WO2022237199A1 - 一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件 - Google Patents

一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件 Download PDF

Info

Publication number
WO2022237199A1
WO2022237199A1 PCT/CN2021/143412 CN2021143412W WO2022237199A1 WO 2022237199 A1 WO2022237199 A1 WO 2022237199A1 CN 2021143412 W CN2021143412 W CN 2021143412W WO 2022237199 A1 WO2022237199 A1 WO 2022237199A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
quantum dots
shell
quantum dot
zns
Prior art date
Application number
PCT/CN2021/143412
Other languages
English (en)
French (fr)
Inventor
单玉亮
王允军
Original Assignee
苏州星烁纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州星烁纳米科技有限公司 filed Critical 苏州星烁纳米科技有限公司
Priority to US18/284,871 priority Critical patent/US20240188418A1/en
Publication of WO2022237199A1 publication Critical patent/WO2022237199A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the application belongs to the field of nanotechnology, and in particular relates to a quantum dot with a core-shell structure for an electroluminescent device, a preparation method thereof, and an electroluminescent device.
  • Quantum dot light-emitting diode is a device that directly stimulates quantum dots to emit light. Compared with traditional organic light-emitting devices (OLEDs), QLEDs have the characteristics of superior color purity, brightness, low cost and good stability. Quantum dots can be dispersed in organic solvents, and luminescent films can be produced by inkjet printing, spin coating, scrape coating, etc., and are suitable for panels of different sizes. Therefore, the QLED market prospect is very promising.
  • a common QLED generally includes an anode, a hole transport layer, a quantum dot electroluminescent layer, an electron transport layer, and a cathode structure from bottom to top.
  • the external circuit injects electrons and holes into the device through the cathode and anode respectively.
  • the injected Carriers pass through the electron transport layer and the hole transport layer to the light-emitting layer to recombine and emit light.
  • the electron transport layer of the existing QLED uses zinc oxide, and the electron migration speed is fast.
  • the hole transport layer is made of organic materials, and the hole migration speed is slow, which leads to the imbalance of electrons and holes injected into the quantum dot electroluminescent layer, which brings The defects of low efficiency and low brightness. Therefore, we urgently need to optimize quantum dots, change their conductivity, and enable better recombination of electrons and holes, thereby comprehensively improving the performance of QLEDs.
  • the present application provides a quantum dot with a core-shell structure, including a core body and a surface shell layer, wherein the surface shell layer is ZnS 1-x O x , where 0.1 ⁇ x ⁇ 0.9.
  • the mass percent content of oxygen in the core-shell quantum dots is not more than 1%.
  • a surface ligand is connected to the surface shell, and the surface ligand contains at least one of mercapto, carboxyl, amine, amide, organic phosphine, and organic ester.
  • the present application also provides a method for preparing quantum dots with a core-shell structure for an electroluminescent device, comprising steps:
  • the gas containing oxygen is passed into the dispersion liquid containing the initial quantum dots to react to form quantum dots with a core-shell structure, wherein the initial quantum dots include a core body and a ZnS shell layer coated outside the core, and the core
  • the quantum dot with shell structure includes a core body and a surface shell layer, and the surface shell layer is ZnS 1-x O x , wherein, 0.1 ⁇ x ⁇ 0.9.
  • the gas is air.
  • the gas flow rate is 0.1-1 L/min; preferably 0.2-0.5 L/min.
  • the temperature is 20-100°C, preferably 30-60°C.
  • the dispersion liquid also contains a non-coordinating solvent, and the non-coordinating solvent is selected from at least one of aliphatic solvents and/or aromatic solvents;
  • the non-coordinating solvent is selected from one or more of the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons and chloroform, chlorobenzene, propylene glycol methyl ether acetate and hexanediol diacrylate, wherein the aliphatic hydrocarbons are selected from n-heptane , n-octane, n-hexane octadecene, octadecane and hexadecene are one or more of the group consisting of aromatic hydrocarbons selected from toluene and/or benzene; preferably, the initial quantum dots in the dispersion
  • the concentration is 10-100 mg/mL, more preferably 10-50 mg/mL.
  • the present application also provides an electroluminescent device, including a quantum dot light-emitting layer, the quantum dot light-emitting layer includes the above-mentioned core-shell structure quantum dots for electroluminescent devices, or includes the above-mentioned for electroluminescent devices.
  • the core-shell structure quantum dots obtained by the preparation method.
  • the core-shell structure quantum dots of the present application include a core body and a surface shell layer, and the surface shell layer is ZnS 1-x O x , wherein, 0.1 ⁇ x ⁇ 0.9, this structure can effectively strengthen the core-shell structure quantum dots
  • the electrical conductivity, the brightness and external quantum efficiency (EQE) of the electroluminescent device prepared by it have been greatly improved;
  • the preparation method of the core-shell quantum dots of the present application adopts air as the oxygen source to prepare the ZnS 1-x O x surface shell, the source of raw materials is extensive, common and easy to get, non-toxic and harmless, the process is simple, and the preparation method is green Environmental protection, with good economic and social benefits.
  • Fig. 1 is the surface energy spectrum analysis diagram of the core-shell structure quantum dot of the embodiment 1 of the present application;
  • Fig. 2 is the scanning electron microscope picture of the core-shell structure quantum dot of the embodiment 1 of the present application;
  • Fig. 3 is a comparative diagram of the voltage (V)-current density (A/m 2 ) of the electroluminescent devices of Example 1 and Comparative Example 1 of the present application;
  • Fig. 4 is the voltage (V)-brightness (nit) comparative figure of the electroluminescence device of the application embodiment 1 and comparative example 1;
  • Fig. 5 is a comparative diagram of the voltage (V)-external quantum efficiency of the electroluminescent devices of Example 1 and Comparative Example 1 of the present application.
  • the electrons and holes injected into the quantum dot electroluminescent layer of common quantum dot electroluminescent devices are unbalanced, resulting in low quantum efficiency and low brightness of QLEDs.
  • the present application provides a core-shell quantum dot for electroluminescent devices, including a core body and a surface shell layer, the surface shell layer is ZnS 1-x O x , wherein 0.1 ⁇ x ⁇ 0.9.
  • Oxygen, sulfur, and zinc are distributed on the outer surface of the surface shell of the quantum dot.
  • the presence of oxygen in the surface shell can effectively adjust the conductivity of the quantum dot, so that the electrons migrating from the cathode stay in the quantum dot to emit light as much as possible.
  • the layer is efficiently combined with the hole, instead of penetrating the quantum dot light-emitting layer to enter the hole transport layer, thereby significantly improving the luminous efficiency and brightness of the electroluminescent device.
  • x is selected from 0.16, 0.25, 0.32, 0.36, 0.44, 0.48, 0.72 or 0.78.
  • oxygen is doped on the surface of quantum dots, which changes the conductivity of quantum dots.
  • the conductivity and energy level of quantum dots can be adjusted, so as to find electrons and holes in the quantum dots.
  • the excellent recombination conditions of the electroluminescent layer realize the improvement of the brightness and external quantum efficiency of the QLED device.
  • the surface shell layer contains an appropriate content of oxygen element, which is beneficial to realize the effective recombination of electrons and holes in the quantum dot light-emitting layer .
  • the mass percentage of oxygen in the core-shell quantum dots is not more than 1%, and the oxygen content is within a reasonable range, so that the conductivity of the core-shell quantum dots is improved. Suitable.
  • the content of oxygen element is 0.16%, 0.23%, 0.25%, 0.32%, 0.44%, 0.5%, 0.64%, 0.72%, 0.78%.
  • the surface shell is connected with a surface ligand, and the surface ligand includes at least one of a sulfhydryl group, a carboxyl group, an amine group, an amide group, an organic phosphine group, and an organic ester group;
  • the shell layer is connected to the ligand on the upper surface to make the core-shell structure quantum dots more dispersed in the quantum dot light-emitting layer, which is beneficial to the preparation of subsequent QLED devices.
  • the present application also provides a method for preparing quantum dots with a core-shell structure for electroluminescent devices, including the steps of: passing a gas containing oxygen into the initial quantum dots at a certain temperature to react to form quantum dots with a core-shell structure , wherein, the initial quantum dots include a core body and a ZnS shell layer coated outside the core body, the core-shell structure quantum dots include a core body, a surface shell layer, and the surface shell layer is ZnS 1-x O x , where 0.1 ⁇ x ⁇ 0.9.
  • the conductivity of the formed core-shell quantum dots is improved, which is conducive to better recombination of holes and electrons in the quantum dot light-emitting layer.
  • the ZnS shell may include several layers of ZnS molecular layers coated outside the core.
  • the ZnS shell includes a layer of ZnS molecular layers, the gas containing oxygen is passed into the initial quantum dots.
  • oxygen will oxidize part of the ZnS molecules in the ZnS molecular layer to form ZnO, thereby obtaining the ZnS 1-x O x surface shell layer; when the ZnS shell layer includes multiple ZnS molecular layers, the gas containing oxygen is introduced After the initial quantum dots enter, oxygen will oxidize part of the ZnS molecules in the outermost ZnS molecular layer away from the core to form ZnO, thereby obtaining the ZnS 1-x O x surface shell.
  • the percentage of oxygen is 15-60%, and the degree of oxidation of the obtained quantum dots with core-shell structure is more appropriate.
  • the gas is air.
  • air as the oxidant can not only reduce the production cost, but also obtain a suitable reaction rate, and quickly obtain the partially oxidized ZnS 1-x O x surface shell.
  • the flow rate of gas is 0.1 ⁇ 1L/min, thereby adjusts the oxidation speed of ZnS shell layer, obtains the ZnS 1-x Ox surface shell layer of suitable oxygen element proportion, and gas flow rate is preferably 0.2 ⁇ 1L/min. 0.5L/min.
  • the temperature is 20-100°C. Under low temperature conditions, the oxidation degree of the ZnS shell layer is better, and the surface shell interface is complete, which is beneficial for electrons and holes to recombine and emit light in the core-shell quantum dots.
  • the temperature is preferably 30 to 60°C.
  • the nucleosome comprises a group II-VI compound, a group III-V compound, a group IV-VI compound, a group I-III-VI compound, a group I-II-IV-VI compound, or a combination thereof.
  • the group II-VI compounds may include: CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, HgZnTeS, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeTeS, H
  • the II-VI compound may further include a Group III metal.
  • the III-V compound may include: GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, InZnP, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, or combinations thereof.
  • the group III-V compound may further include a group II metal (eg, InZnP).
  • the IV-VI compound may include: SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, SnPbSTe, or a combination thereof.
  • Examples of the group I-III-VI compound may include CuInSe 2 , CuInS 2 , CuInGaSe, and CuInGaS, but are not limited thereto.
  • Examples of the group I-II-IV-VI compound may include CuZnSnSe and CuZnSnS, but are not limited thereto.
  • the core body is coated with ZnS 1-x O x surface shell layer to improve the conductivity of the core-shell quantum dots.
  • the dispersion liquid comprising initial quantum dots further comprises at least one of a non-coordinating solvent, an aliphatic solvent and/or an aromatic solvent; preferably, the non-coordinating solvent is selected from the group consisting of aliphatic hydrocarbons, aromatic One or more of hydrocarbons and chloroform, chlorobenzene, propylene glycol methyl ether acetate and hexanediol diacrylate, wherein the aliphatic hydrocarbons are selected from n-heptane, n-octane, n-hexane, octadecene, decacene One or more of the group consisting of octadecane and hexadecene, and the aromatic hydrocarbon is selected from toluene and/or benzene.
  • the non-coordinating solvent is selected from the group consisting of aliphatic hydrocarbons, aromatic One or more of hydrocarbons and chloroform, chlorobenzene, propylene glycol
  • the non-coordinating solvent contains at least one of aliphatic hydrocarbons and aromatic hydrocarbons, which can make the ZnS shell of the initial quantum dots dispersed in the non-coordinating solvent easier to be uniformly oxidized, forming ZnS 1-x O with better surface energy x surface shell.
  • the non-coordinating solvent of the present application is preferably at least one of n-hexane, n-heptane, toluene, and octadecene, which is beneficial to the partial surface oxidation reaction of the initial quantum dots; the initial quantum dots are in the dispersion liquid
  • concentration of the oxygen is 10-100 mg/mL to control the reaction rate of oxygen, preferably 20-50 mg/mL to make the oxidation reaction rate of the surface shell more appropriate.
  • the core-shell structure quantum dots of the present application are obtained by partially oxidizing the surface of the initial quantum dots. Partial surface oxidation makes the core-shell structure quantum dots more conductive, which is more conducive to making holes and electrons in the quantum dots in electroluminescent devices. Composite luminescence in the point-emitting layer.
  • the present application also provides an electroluminescent device, including a quantum dot light-emitting layer, the quantum dot light-emitting layer includes the above-mentioned core-shell structure quantum dots for electroluminescent devices, or includes the preparation of the above-mentioned electroluminescent devices. method to obtain core-shell quantum dots.
  • the core-shell structure quantum dots, electroluminescent devices according to some exemplary embodiments of the present application are described in more detail below; however, the exemplary embodiments of the present application are not limited thereto.
  • the purified red InP/ZnS quantum dots were prepared into a 17 mg/mL n-octane solution to prepare an electroluminescent device, and its performance was tested.
  • the purified green light InP/ZnS quantum dots were prepared into a 17 mg/mL n-octane solution to prepare an electroluminescent device, and its performance was tested.
  • the purified blue-light ZnSe/ZnS quantum dots were prepared into a 13 mg/mL n-octane solution to prepare an electroluminescent device, and its performance was tested.
  • the purified red CdSe/ZnS quantum dots were formulated into a 15mg/mL n-octane solution to prepare an electroluminescent device.
  • the current density, brightness and maximum external quantum efficiency (EQE) at 3V were tested.
  • EQE maximum external quantum efficiency
  • Table 1 the surface energy spectrum analysis diagram of the core-shell structure quantum dots of embodiment 1 is shown in Figure 1, from which it can be seen that the surface shell layer that the core-shell structure quantum dots comprises is ZnS 0.56 O 0.44 ; the core-shell structure quantum dots of embodiment 1
  • the particle diameter of the core-shell structure quantum dot is about 8nm; the contrast relationship of the voltage-current density, voltage-brightness, voltage-external quantum efficiency of embodiment 1 and comparative example 1 is shown in Fig. 3 ⁇ 5, the performance parameter of the electroluminescent device that comprises the quantum dot of InP nucleus in embodiment 1 ⁇ 14, comparative example 1 is as table 1, the electroluminescence of the quantum dot that comprises InP nucleus in embodiment 15, comparative example 2
  • the performance parameter of device is as table 2
  • the performance parameter of the electroluminescence device of the quantum dot that comprises ZnSe nucleus is as table 3 in embodiment 16, comparative example 3, comprises the electroluminescence of the quantum dot of CdSe nucleus in embodiment 17, comparative example 4.
  • the performance parameters of the luminescent device are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件,核壳结构量子点包括核体、表面壳层,所述表面壳层为ZnS 1-xO x,其中,0.1≤x≤0.9;本申请的核壳量子点可以显著提升由其制备的电致发光器件的电流密度、亮度和外量子效率。

Description

一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件
本申请是以申请号为202110505210.6,申请日为2021年5月10日的中国申请为基础,并主张其优先权,该中国申请的公开内容再次作为整体引入本申请中。
技术领域
本申请属于纳米技术领域,具体涉及一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件。
背景技术
量子点电致发光器件(Quantum dot light-emitting diode,QLED)是一种电直接激发量子点发光的器件。与传统的有机发光器件(OLED)相比,QLED具有更优异的色纯度、亮度、成本低和稳定性好等特点。量子点可分散于有机溶剂,可采用喷墨打印、旋涂、刮涂等方法制造发光薄膜,适用于不同尺寸的面板。因此,QLED市场前景十分可观。
常见的QLED一般自下而上依次包含阳极、空穴传输层、量子点电致发光层、电子传输层、阴极的结构,外电路通过阴极、阳极分别向器件内注入电子和空穴,注入的载流子通过电子传输层和空穴传输层到达发光层复合发光。现有QLED的电子传输层采用氧化锌,电子迁移速度快,空穴传输层采用有机材料,空穴迁移速度慢,导致量子点电致发光层中注入的电子和空穴不平衡,带来了效率低、亮度小的缺陷。所以我们亟需优化量子点,改变其导电性,使得电子和空穴获得更好的复合,从而全面提升QLED的性能。
发明内容
针对上述技术问题,本申请提供一种核壳结构量子点,包括核体、表面壳层,所述表面壳层为ZnS 1-xO x,其中,0.1≤x≤0.9。
进一步地,ZnS 1-xO x中,0.1≤x≤0.5。
进一步地,氧元素在核壳结构量子点中的质量百分含量不超过1%。
进一步地,表面壳层上连接表面配体,表面配体包含巯基、羧基、胺基、酰胺、有机膦、有机酯中的至少一种。
本申请还提供一种用于电致发光器件的核壳结构量子点的制备方法,包括步骤:
在一定温度下,将包含氧气的气体通入包含初始量子点的分散液中,以反应形成核壳结构量子点,其中,初始量子点包括核体以及包覆于核体外的ZnS壳层,核壳结构量子点包括核体、表面壳层,表面壳层为ZnS 1-xO x,其中,0.1≤x≤0.9。
进一步地,气体为空气。
进一步地,气体的流速为0.1~1L/min;优选为0.2~0.5L/min。
进一步地,温度为20~100℃,优选为30~60℃。
进一步地,分散液还包含非配位溶剂,非配位溶剂选自脂肪族溶剂和/或芳香族溶剂中的至少一种;
优选地,非配位溶剂选自脂肪烃、芳香烃和氯仿、氯苯、丙二醇甲醚醋酸酯和己二醇二丙烯酸酯组成的组中的一种或多种,其中脂肪烃选自正庚烷、正辛烷、正己烷十八烯、十八烷和十六烯组成的组中的一种或多种,芳香烃选自甲苯和/或苯;优选地,初始量子点在分散液中的浓度为10~100mg/mL,更优选为10~50mg/mL。
本申请还提供一种电致发光器件,包括量子点发光层,量子点发光层包括如上述的用于电致发光器件的核壳结构量子点,或者包括由上述的用于电致发光器件的制备方法获得的核壳结构量子点。
有益效果:
(1)本申请的核壳结构量子点包括核体、表面壳层,所述表面壳层为ZnS 1-xO x,其中,0.1≤x≤0.9,该结构可以有效增强核壳结构量子点的导电性,由其制备得到的电致发光器件的亮度和外量子效率(EQE)都获得很大提升;
(2)本申请的核壳结构量子点的制备方法,采用空气作为氧源制备ZnS 1-xO x表面壳层,原料来源广泛、常见易得、无毒无害,工艺简单,制备方法绿色环保,具备良好的经济效益与社会效益。
附图说明
图1为本申请实施例1的核壳结构量子点的表面能谱分析图;
图2为本申请实施例1的核壳结构量子点的扫描电子显微镜图;
图3为本申请实施例1和对比例1的电致发光器件的电压(V)-电流密度(A/m 2)对比图;
图4为本申请实施例1和对比例1的电致发光器件的电压(V)-亮度(nit)对比图;
图5为本申请实施例1和对比例1的电致发光器件的电压(V)-外量子效率对比图。
具体实施方式
下面将结合本申请实施方式,对本申请实施例中的技术方案进行详细地描述。应注意的是,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部实施方式。如果不另外定义,则说明书中的所有术语(包括技术术语和科学术语)可以被定义为本领域技术人员通常所理解的。除非清楚定义,否则可以不理想化地或夸大地解释通用字典中定义的术语。此外,除非明确地描述为相反,否则词语“包括”和诸如“包含”或“含有”的变型将被理解为意指包括所陈述的元件(要素),但不排除任何其它元件(要素)。
在附图中,为了清楚,夸大了层、膜、面板、区域等的厚度。在整个说明书中,同样的附图标记表示同样的元件。
将理解的是,当诸如层、膜、区域或基底的元件被称作“在”另一元件“上”时,该元件可以直接在所述另一元件上,或者也可以存在中间元件。相反地,当元件被称作“直接在”另一元件“上”时,不存在中间元件。
此外,除非另外提及,否则单数包括复数。如在此使用的,“一”、“一个(种/者)”、“该(所述)”和“……中的至少一个(种/者)”不表示量的限制,而是意图包括单数和复数两者,除非上下文另外明确指出。例如,除非上下文另外明确指出,否则“元件(要素)”具有与“至少一个元件(要素)”相同的含义。“至少一个(种/者)”不被解释为限制“一”或“一个(种/者)”。“或”表示“和/或”。如在此使用的,术语“和/或”包括相关所列项中的一个或更多个的任何组合和全部组合。还将理解的是,术语“包含”和/或“包括”或者它们的变型用在本说明书中时,说明存在所陈述的特征、区域、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或更多个其它特征、区域、整体、步骤、操作、元件、组件和/或它们的组。
将理解的是,虽然在此使用术语“第一”、“第二”、“第三”等来描述各种元件、组件、区域、层和/或部分,但是这些元件、组件、区域、层和/或部分不应受这些术语限制。这些术语仅用于将一个元件、组件、区域、层或部分与另一元件、组件、区域、层或部分区分开。
如背景技术所述,目前常见的量子点电致发光器件的量子点电致发光层中注入的电子和空穴不平衡,导致QLED量子效率低、亮度小。
基于此,本申请提供一种用于电致发光器件的核壳结构量子点,包括核体、表面壳层,表面壳层为ZnS 1-xO x,其中,0.1≤x≤0.9。该量子点的表面壳层的外表面分布有氧硫锌三种元素,表面壳层中氧元素的存在可以有效调节量子点导电性,使从阴极迁移而来的电子尽可能留在量子点发光层中与空穴高效结合,而不是穿透量子点发光层进入空穴传输层,从而显著提高电致发光器件的发光效率、亮度。可选地,ZnS 1-xO x中,x选自0.16、0.25、0.32、0.36、0.44、0.48、0.72或0.78。
本申请将氧元素掺杂在量子点表面,改变了量子点导电性,通过设计不同比例的氧元素掺杂,可以实现对量子点导电性以及能级的调控,从而寻找到电子和空穴在电致发光层的优异复合条件,实现QLED器件亮度和外量子效率的提升。
在本申请第一具体实施方式中,在ZnS 1-xO x中,0.1≤x≤0.5,表面壳层中含有合适含量的氧元素,利于实现电子与空穴在量子点发光层中有效复合。
在本申请的第二具体实施方式中,氧元素在所述核壳结构量子点中的质量百分含量不超过1%,氧元素含量在合理范围内,使核壳结构量子点的导电性更合适。可选地,氧元素的含量为0.16%,0.23%,0.25%,0.32%,0.44%,0.5%,0.64%,0.72%,0.78%。
在本申请的第三具体实施方式中,表面壳层上连接表面配体,表面配体包含巯基、羧基、胺基、酰胺基、有机膦基团、有机酯基团中的至少一种;表面壳层连接上表面配体使核壳结构量子点在量子点发光层中分散性更好,有利于后续QLED器件的制备。
本申请还提供一种用于电致发光器件的核壳结构量子点的制备方法,包括步骤:在一定温度下,将包含氧气的气体通入初始量子点中,以反应形成核壳结构量子点,其中,所述初始量子点包括核体以及包覆于所述核体外的ZnS壳层,所述核壳结构量子点包括核体、表面壳层,所述表面壳层为ZnS 1-xO x,其中,0.1≤x≤0.9。通过对初始量子点的ZnS壳层进行部分氧化,使得形成的核壳结构量子点的导电性更好,利于空穴与电子在量子点发光层中更好复合。
可以理解的是,本申请的初始量子点中,ZnS壳层可以包括包覆于核体外的若干层ZnS分子层,当ZnS壳层包括一层ZnS分子层时,包含氧气的气体通入初始量子点中后,氧气会将该层ZnS分子层中部分ZnS分子氧化形成ZnO,从而得到ZnS 1-xO x表面壳层;当ZnS壳层包括多层ZnS分子层时,包含氧气的气体通入初始量子点中后,氧气会将远离核体的最外层ZnS分子层中部分ZnS分子氧化形成ZnO,从而得到ZnS 1-xO x表面壳层。
优选实施方式中,包含氧气的气体中,氧气百分含量为15~60%,获得的核壳结构量子点的氧化程度更合适。
在一具体实施方式中,气体为空气。使用空气作为氧化剂,既可以降低生产成本,又可以获得合适的反应速率,快速获得部分氧化的ZnS 1-xO x表面壳层。
在另一具体实施方式中,气体的流速为0.1~1L/min,从而调节ZnS壳层的氧化速度,获得合适氧元素占比的ZnS 1-xO x表面壳层,气体流速优选为0.2~0.5L/min。
在又一具体实施方式中,温度为20~100℃,在低温条件下,ZnS壳层的氧化程度较好,表面壳层界面完整,利于电子与空穴在核壳结构量子点中复合发光,温度优选为30~60℃。
在再一具体实施方式中,核体包括II-VI族化合物、III-V族化合物、IV-VI族化合物、I-III-VI族化合物、I-II-IV-VI族化合物或其组合。例如,所述II-VI族化合物可包括:CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS、HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe、或其组合。所述II-VI族化合物可进一步包括III族金属。所述III-V族化合物可包括:GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、InZnP、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb、或其组合。所述III-V族化合物可进一步包括II族金属(例如,InZnP)。所述IV-VI族化合物可包括:SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe、或其组合。所述I-III-VI族化合物的实例可包括CuInSe 2、CuInS 2、CuInGaSe、和CuInGaS,但不限于此。所述I-II-IV-VI族化合物的实例可包括CuZnSnSe和CuZnSnS,但不限于此。核体上包覆ZnS 1-xO x表面壳层,提高核壳结构量子点的导电性。
在还一具体实施方式中,包含初始量子点的分散液还包含非配位溶剂,脂肪族溶剂和/或芳香族溶剂中的至少一种;优选地,非配位溶剂选自脂肪烃、芳香烃和氯仿、氯苯、丙二醇甲醚醋酸酯和己二醇二丙烯酸酯组成的组中的一种或多种,其中脂肪烃选自正庚烷、正辛烷、正己烷、十八烯、十八烷和十六烯组成的组中的一种或多种,芳香烃选自甲苯和/或苯。非配位溶剂包含脂肪烃、芳香烃中的至少一种,能够使分散在非配位溶剂中的初始量子点的ZnS壳层更容易被均匀氧化,形成表面能更好的ZnS 1-xO x表面壳层。
优选实施方式中,本申请的非配位溶剂优选为正己烷、正庚烷、甲苯、十八烯中的至少一种,利于对初始量子点进行部分表面氧化反应;初始量子点在分散液中的浓度为10~100mg/mL,控制氧气反应速率,优选为20~50mg/mL,使表面壳层的氧化反应速度更合适。
本申请的核壳结构量子点通过对初始量子点进行表面部分氧化而获得,部分表面氧化使核壳结构量子点的导电性更好,更利于在电致发光器件中使空穴与电子在量子点发光层中复合发光。
本申请还提供一种电致发光器件,包括量子点发光层,量子点发光层包括上述的用于电致发光器件的核壳结构量子点,或者包括由上述的用于电致发光器件的制备方法获得的核壳结构量子点。
以下更详细地描述根据本申请的一些示例性实施方式的核壳结构量子点、电致发光器件;然而,本申请的示例性实施方式不限于此。
实施例1
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为50℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到InP/ZnS 0.56O 0.44的量子点,氧元素在该量子点中的质量百分含量为0.44%,将该量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例2
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为20℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到表面壳层为ZnS 0.68O 0.32的量子点,氧元素在该量子点中的质量百分含量为0.32%,将量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例3
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为80℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到表面壳层为ZnS 0.28O 0.72的量子点,氧元素在该量子点中的质量百分含量为0.72%,表面能谱分析也证实了氧的掺杂比例,将量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例4
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为80℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.1L/min。反应1小时,纯化得到表面壳层为ZnS 0.75O 0.25的量子点,氧元素在该量子点中的质量百分含量为0.25%,将量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例5
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为80℃,利用气泵通过针头往溶液中鼓入空气,注入速度1L/min。反应1小时,纯化得到表面壳层为ZnS 0.22O 0.78的量子点,氧元素在该量子点中的质量百分含量为0.78%,将量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例6
将纯化好的红光InP/ZnS量子点加入正庚烷配制成50mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为80℃,利用气泵通过针头往溶液中鼓入空气,注 入速度1L/min。反应1小时,纯化得到表面壳层为ZnS 0.84O 0.16的量子点,氧元素在该量子点中的质量百分含量为0.16%,将量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例7
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为30℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到表面壳层为ZnS 0.66O 0.34的量子点,将量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例8
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为60℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到表面壳层为ZnS 0.36O 0.64的量子点,将量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例9
将纯化好的红光InP/ZnS量子点加入十八烯配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为100℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到表面壳层为ZnS 0.10O 0.90的量子点,将量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例10
将纯化好的红光InP/ZnS量子点加入正庚烷配制成10mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为50℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到InP/ZnS 0.46O 0.54的量子点,将该量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例11
将纯化好的红光InP/ZnS量子点加入正庚烷配制成100mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为50℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到InP/ZnS 0.90O 0.10的量子点,将该量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例12
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为50℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.1L/min,反应1小时,纯化得到InP/ZnS 0.75O 0.25的量子点,将该量子点配制为 17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例13
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为50℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.5L/min,反应1小时,纯化得到InP/ZnS 0.39O 0.61的量子点,将该量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例14
将纯化好的红光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为50℃,利用气泵通过针头往溶液中鼓入空气,注入速度1L/min,反应1小时,纯化得到InP/ZnS 0.28O 0.72的量子点,将该量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例15
将纯化好的绿光InP/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为50℃,利用气泵通过针头往溶液中鼓入空气,注入速度0.25L/min,反应1小时,纯化得到InP/ZnS 0.56O 0.44的量子点,氧元素在该量子点中的质量百分含量为0.23%,将该量子点配制为15mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例16
将纯化好的蓝光ZnSe/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为30℃,利用气泵通过针头往溶液中鼓入空气,注入速度1L/min,反应1小时,纯化得到表面壳层为ZnS 0.52O 0.48的量子点,氧元素在该量子点中的质量百分含量为0.64%,将量子点配制为13mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
实施例17
将纯化好的红光CdSe/ZnS量子点加入正庚烷配制成20mg/mL溶液,取5mL溶液到反应瓶中,塞上橡胶塞,设置温度为30℃,利用气泵通过针头往溶液中鼓入空气,注入速度1L/min,反应1小时,纯化得到表面壳层为ZnS 0.64O 0.36的量子点,氧元素在该量子点中的质量百分含量为0.5%,将量子点配制为15mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
对比例1
将纯化好的红光InP/ZnS量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
对比例2
将纯化好的绿光InP/ZnS量子点配制为17mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
对比例3
将纯化好的蓝光ZnSe/ZnS量子点配制为13mg/mL的正辛烷溶液,制备成电致发光器件,测试其性能。
对比例4
将纯化好的红光CdSe/ZnS量子点配制为15mg/mL的正辛烷溶液,制备成电致发光器件,测试其在3V时的电流密度、亮度以及最大外量子效率(EQE),具体结果请见表1,实施例1的核壳结构量子点表面能谱分析图如图1,从中可知核壳结构量子点包含的表面壳层为ZnS 0.56O 0.44;实施例1的核壳结构量子点的扫描电子显微镜图如图2,从中可知核壳结构量子点的粒径为8nm左右;实施例1与对比例1的电压-电流密度、电压-亮度、电压-外量子效率的对比关系如图3~5,实施例1~14、对比例1中包含InP核的量子点的电致发光器件的性能参数如表1,实施例15、对比例2中包含InP核的量子点的电致发光器件的性能参数如表2,实施例16、对比例3中包含ZnSe核的量子点的电致发光器件的性能参数如表3,实施例17、对比例4中包含CdSe核的量子点的电致发光器件的性能参数如表4。
表1实施例1~14、对比例1中包含InP核的量子点的电致发光器件的性能参数
Figure PCTCN2021143412-appb-000001
Figure PCTCN2021143412-appb-000002
表2实施例15、对比例2中包含InP核的量子点的电致发光器件的性能参数
Figure PCTCN2021143412-appb-000003
表3实施例16、对比例3中包含ZnSe核的量子点的电致发光器件的性能参数
Figure PCTCN2021143412-appb-000004
表4实施例17、对比例4中包含CdSe核的量子点的电致发光器件的性能参数
Figure PCTCN2021143412-appb-000005
由上表1~3以及图1~5可知,相较于对比例1~4,采用本申请实施例1~17的核壳结构量子点制备电致发光器件的发光层时,获得的电致发光器件的电学性能优异,电流效率、亮度和外量子效率得到显著提升。
尽管发明人已经对本申请的技术方案做了较详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例作出修改和/或变通或者采用等同的替代方案是显然的,都不能脱离本申请精神的实质,本申请中出现的术语用于对本申请技术方案的阐述和理解,并不能构成对本申请的限制。

Claims (10)

  1. 一种用于电致发光器件的核壳结构量子点,其特征在于,包括核体、表面壳层,所述表面壳层为ZnS 1-xO x,其中,0.1≤x≤0.9。
  2. 根据权利要求1所述的用于电致发光器件的核壳结构量子点,其特征在于,所述ZnS 1-xO x中,0.1≤x≤0.5。
  3. 根据权利要求1所述的用于电致发光器件的核壳结构量子点,其特征在于,氧元素在所述核壳结构量子点中的质量百分含量不超过1%。
  4. 根据权利要求1所述的用于电致发光器件的核壳结构量子点,其特征在于,所述表面壳层上连接有表面配体,所述表面配体包含巯基、羧基、胺基、酰胺、有机膦、有机酯中的至少一种。
  5. 一种用于电致发光器件的核壳结构量子点的制备方法,其特征在于,包括步骤:
    在一定温度下,将包含氧气的气体通入包含初始量子点的分散液中,以反应形成核壳结构量子点,其中,所述初始量子点包括核体以及包覆于所述核体外的ZnS壳层,所述核壳结构量子点包括所述核体、表面壳层,所述表面壳层为ZnS 1-xO x,其中,0.1≤x≤0.9。
  6. 根据权利要求5所述的用于电致发光器件的核壳结构量子点的制备方法,其特征在于,所述气体为空气。
  7. 根据权利要求5所述的用于电致发光器件的核壳结构量子点的制备方法,其特征在于,所述气体的流速为0.1~1L/min。
  8. 根据权利要求5所述的用于电致发光器件的核壳结构量子点的制备方法,其特征在于,所述温度为20~100℃。
  9. 根据权利要求5所述的用于电致发光器件的核壳结构量子点的制备方法,其特征在于,所述分散液还包含非配位溶剂,所述非配位溶剂包含脂肪族溶剂和/或芳香族溶剂中的至少一种;优选地,所述非配位溶剂选自脂肪烃、芳香烃、氯仿、氯苯、丙二醇甲醚醋酸酯和己二醇二丙烯酸酯组成的组中的一种或多种,其中所述脂肪烃选自正庚烷、正辛烷、正己烷、十八烯、十八烷和十六烯组成的组中的一种或多种,所述芳香烃选自甲苯和/或苯;
    优选地,所述分散液中,所述初始量子点的浓度为10-100mg/mL,更优选为10-50mg/mL。
  10. 一种电致发光器件,其特征在于,包括量子点发光层,所述量子点发光层包括如权利要求1-4任一所述的用于电致发光器件的核壳结构量子点,或者包括由权利要求5-9任一所述的用于电致发光器件的制备方法获得的核壳结构量子点。
PCT/CN2021/143412 2021-05-10 2021-12-30 一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件 WO2022237199A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/284,871 US20240188418A1 (en) 2021-05-10 2021-12-30 Core/shell quantum dot for Light-Emitting Diode and Preparation Method therefor, and Light-Emitting Diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110505210.6 2021-05-10
CN202110505210.6A CN115322767A (zh) 2021-05-10 2021-05-10 一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件

Publications (1)

Publication Number Publication Date
WO2022237199A1 true WO2022237199A1 (zh) 2022-11-17

Family

ID=83912419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143412 WO2022237199A1 (zh) 2021-05-10 2021-12-30 一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件

Country Status (3)

Country Link
US (1) US20240188418A1 (zh)
CN (1) CN115322767A (zh)
WO (1) WO2022237199A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118256224A (zh) * 2022-12-26 2024-06-28 广东聚华新型显示研究院 核壳量子点及其制备方法、量子点电致发光器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086396A (zh) * 2010-11-25 2011-06-08 华北电力大学 一种CuInS2-ZnS/ZnSe/ZnS核壳结构半导体量子点的制备方法及其在发光器件中的应用
US20150083969A1 (en) * 2013-09-26 2015-03-26 Samsung Electronics Co., Ltd. Nanocrystal particles and processes for synthesizing the same
CN104974759A (zh) * 2014-04-11 2015-10-14 韩国机械研究院 由卤素盐稳定化的量子点及其制造方法
CN106957652A (zh) * 2015-12-22 2017-07-18 三星电子株式会社 量子点、制造其的方法,包括其的量子点聚合物复合物和器件
IN201741004351A (zh) * 2017-02-07 2018-08-10 Christobel Dr.G.Janita
CN108929670A (zh) * 2018-07-18 2018-12-04 纳晶科技股份有限公司 核壳量子点、其制备方法、器件及组合物
CN110003884A (zh) * 2019-03-14 2019-07-12 纳晶科技股份有限公司 掺杂量子点及其制备方法、量子点光电器件
CN111989571A (zh) * 2018-04-23 2020-11-24 杰宜斯科技有限公司 包含接头材料和量子点珠的生物传感器以及使用其的目标抗原检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130052478A (ko) * 2011-11-11 2013-05-22 엘지이노텍 주식회사 태양전지 및 이의 제조방법
CN105229801B (zh) * 2013-02-07 2017-03-15 第一太阳能有限公司 窗口层上具有保护层的光伏器件及其制造方法
CN107903901B (zh) * 2017-11-23 2021-01-29 纳晶科技股份有限公司 核壳量子点、其制备方法及含其的发光器件
CN110429145A (zh) * 2019-08-09 2019-11-08 暨南大学 一种硒化锑薄膜太阳电池及其制备方法
CN112266791B (zh) * 2020-10-14 2023-07-07 苏州星烁纳米科技有限公司 一种量子点及其制备方法、量子点膜、显示装置
CN115312670A (zh) * 2021-05-08 2022-11-08 苏州星烁纳米科技有限公司 一种量子点电致发光二极管、发光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086396A (zh) * 2010-11-25 2011-06-08 华北电力大学 一种CuInS2-ZnS/ZnSe/ZnS核壳结构半导体量子点的制备方法及其在发光器件中的应用
US20150083969A1 (en) * 2013-09-26 2015-03-26 Samsung Electronics Co., Ltd. Nanocrystal particles and processes for synthesizing the same
CN104974759A (zh) * 2014-04-11 2015-10-14 韩国机械研究院 由卤素盐稳定化的量子点及其制造方法
CN106957652A (zh) * 2015-12-22 2017-07-18 三星电子株式会社 量子点、制造其的方法,包括其的量子点聚合物复合物和器件
IN201741004351A (zh) * 2017-02-07 2018-08-10 Christobel Dr.G.Janita
CN111989571A (zh) * 2018-04-23 2020-11-24 杰宜斯科技有限公司 包含接头材料和量子点珠的生物传感器以及使用其的目标抗原检测方法
CN108929670A (zh) * 2018-07-18 2018-12-04 纳晶科技股份有限公司 核壳量子点、其制备方法、器件及组合物
CN110003884A (zh) * 2019-03-14 2019-07-12 纳晶科技股份有限公司 掺杂量子点及其制备方法、量子点光电器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XIAOXIA, CHEN ZHENYU, CHEN ZHONG, LIU NA, DAI WEN, LI CAN: "An experimental and theoretical study on the photoluminescence of O and Br co-doped ZnS quantum dots synthesized by a solid-state reaction method", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 845, 10 December 2020 (2020-12-10), CH , pages 1 - 9, XP093004967, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2020.155405 *

Also Published As

Publication number Publication date
CN115322767A (zh) 2022-11-11
US20240188418A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
US8878196B2 (en) Light-emitting device comprising semiconductor nanocrystal layer free of voids and method for producing the same
EP2184333B1 (en) Quantum dot electroluminescent device and method for fabricating the same
US10991899B2 (en) Quantum dot device and electronic device
US20200035935A1 (en) Quantum dot device and display device
CN113130775B (zh) 氧化锌纳米粒子及改性方法,量子点发光二极管及制备法
CN113025308B (zh) 量子点薄膜,量子点发光二极管及其制备方法
WO2022237199A1 (zh) 一种用于电致发光器件的核壳结构量子点及其制备方法、电致发光器件
CN113023767B (zh) 改性氧化锌纳米颗粒及其改性方法,及量子点发光二极管
KR20120059063A (ko) 양자점 발광 소자 및 그의 제조 방법
CN113801648B (zh) 复合材料及其制备方法和量子点发光二极管
CN115312670A (zh) 一种量子点电致发光二极管、发光装置
CN113025309A (zh) 量子点及其表面改性的方法和量子点发光二极管
CN114686231B (zh) 颗粒及其制备方法、量子点发光二极管
WO2024139648A1 (zh) 发光器件及其制备方法、显示装置
CN118284260A (zh) 一种空穴功能薄膜及其制备方法、发光器件和显示装置
WO2024139481A1 (zh) 发光器件及制备方法、显示装置
KR20170091818A (ko) 발광 소자
CN117979731A (zh) 复合材料、量子点发光二极管及其制备方法
CN117682947A (zh) 电子传输材料、发光器件及其制备方法、显示装置
CN117683406A (zh) 墨水、发光器件及制备方法
CN118284267A (zh) 烧结量子点层、相关设备及制备方法
CN118272072A (zh) 量子点的制备方法、发光器件及显示装置
CN118270734A (zh) 复合材料及其制备方法、发光器件、显示装置
KR20240121393A (ko) 금속 산화물 나노 입자 및 이의 제조 방법, 금속 산화물 나노 입자를 포함하는 발광 소자
CN117750799A (zh) 墨水、串联电致发光器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284871

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941761

Country of ref document: EP

Kind code of ref document: A1