WO2022236915A1 - 一种用于制备运动器材高熵材料及其制备方法 - Google Patents
一种用于制备运动器材高熵材料及其制备方法 Download PDFInfo
- Publication number
- WO2022236915A1 WO2022236915A1 PCT/CN2021/099961 CN2021099961W WO2022236915A1 WO 2022236915 A1 WO2022236915 A1 WO 2022236915A1 CN 2021099961 W CN2021099961 W CN 2021099961W WO 2022236915 A1 WO2022236915 A1 WO 2022236915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- entropy
- sports equipment
- materials
- preparing
- general formula
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title abstract 3
- 239000000956 alloy Substances 0.000 claims abstract description 55
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 42
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 4
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 4
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 4
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 4
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 239000000758 substrate Substances 0.000 claims description 13
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 9
- 239000007769 metal material Substances 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 9
- 239000004677 Nylon Substances 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 8
- 229920001778 nylon Polymers 0.000 claims description 8
- 239000013077 target material Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000005507 spraying Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 238000010891 electric arc Methods 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 238000007712 rapid solidification Methods 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000007750 plasma spraying Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000005496 tempering Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 150000002910 rare earth metals Chemical group 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 235000009854 Cucurbita moschata Nutrition 0.000 description 2
- 240000001980 Cucurbita pepo Species 0.000 description 2
- 235000009852 Cucurbita pepo Nutrition 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 235000020354 squash Nutrition 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000288673 Chiroptera Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D18/00—Pressure casting; Vacuum casting
- B22D18/06—Vacuum casting, i.e. making use of vacuum to fill the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
- C22C38/105—Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the invention relates to the technical field of high-entropy amorphous alloys, in particular to a high-entropy material used for preparing sports equipment and a preparation method thereof.
- Sports equipment is the general term for various apparatuses, equipment and articles for use in competitive sports competitions and body-building exercises. Because of the high strength and modulus of metal materials, sports equipment generally uses metal materials as a support or stable structure, but often the hardness and wear resistance of metal materials are insufficient, resulting in damage to sports equipment.
- the materials used in different structures are generally different, such as rackets (such as badminton rackets, tennis rackets, etc.), the racket shaft, frame and strings are generally made of different materials, and have different functional demands:
- the shaft needs to be light, high hardness and good compressive strength
- the frame body needs good compressive strength and no deformation
- the focus of the racket string is elongation, tensile strength, elasticity, etc.
- one of the purposes of the present invention is to provide a high-entropy material for preparing sports equipment, which has high strength, high elasticity and high toughness, and is suitable for preparing sports equipment.
- the string can maintain a stable amplitude, so that the player can stably control the hitting direction;
- the second object of the present invention is to provide a method for preparing high-entropy materials for sports equipment, and the obtained material can be used to prepare large-scale sports equipment.
- the structural load-bearing structure can also be used to meet the strength and elasticity requirements of the racket shaft, the frame body and the racket string in the preparation of the racket.
- a high-entropy material for preparing sports equipment the general formula of the material is Fe a Ni b Al c Ti d X e Y f ; wherein a, b, c, d, e and f are the atomic percentages of the corresponding elements, and 30 ⁇ a ⁇ 35, 28 ⁇ b ⁇ 30, 10 ⁇ c ⁇ 20, 5 ⁇ d ⁇ 15, 0 ⁇ e ⁇ 20 and 0.5 ⁇ f ⁇ 1; X is one of Co, Ta, Nb, Cr or W or Two or more combination elements; Y is one or two or more combination elements of La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er or Tm.
- the general formula for preparing high-entropy materials for sports equipment is Fe a Ni b Al c Ti d Co e Er f .
- the general formula for preparing high-entropy materials for sports equipment is Fe a Ni b Al c Ti d Co e Gd f .
- the general formula for preparing high-entropy materials for sports equipment is Fe a Ni b Al c Ti d Co e Gd0. 5 Er0. 5 .
- a preparation method for preparing sports equipment high-entropy materials as described above comprising the following steps:
- the corresponding metal material is melted in an inert gas according to the proportioning ratio to obtain a master alloy ingot;
- the master alloy is placed in a vacuum electric arc furnace, and after the arc is melted, it is sucked and cast into a copper mold with a cavity for rapid cooling to obtain a bulk high-entropy material rod or plate; or the master alloy is placed in a rapid solidification device for induction Melting in a furnace, spraying it into a mold with a cavity for cooling to obtain a bulk high-entropy material bar or plate; Ribbon-shaped high-entropy materials.
- the inert gas is one of nitrogen, helium or argon.
- a preparation method for preparing sports equipment high-entropy materials as described above comprising the following steps:
- the base is plastic, nylon or polyester.
- step 2) the spraying conditions are that the pressure is 1.5-2.5Pa, the plasma current is 110-130mA, and the voltage is 350-450V.
- the thermal annealing temperature is 573-773K, and the thermal annealing time is 60-80 minutes, so as to increase the adhesion of the coating and obtain nanostructures with a size of 40-60nm.
- the high-entropy material of the present invention is made up of these 6 or more metal elements of Fe, Ni, Al, Ti, X and Y; wherein, Y is a rare earth element, and the rare earth element has a higher solid content in Fe Solubility, the rare earth atoms dissolve into the magnesium matrix to enhance the bonding force between atoms, causing the matrix to produce lattice distortion.
- the role of solid solution strengthening of rare earth elements is mainly to slow down the atomic diffusion rate and hinder the movement of dislocations, thereby strengthening the matrix and improving the strength and high temperature creep performance of the alloy.
- Both Fe and Ni belong to the transition group elements of the fourth period, have similar atomic radius and electronegativity, and are easy to form a simple single solid solution structure; Fe element can increase the mixing entropy value, making the structure tend to be uniform and stable; the addition of Ti improves the alloy The overall hardness of the alloy makes the alloy have excellent wear resistance and temper softening resistance; Al is cheap and easy to obtain, and has a large atomic radius. After solid solution, it can have a solid solution strengthening effect and is easy to form on the surface of the alloy Dense oxide film further improves the corrosion resistance of the alloy;
- the high-entropy material has performance characteristics such as high strength, high hardness, temper softening resistance, and wear resistance, and is suitable for preparing sports equipment, such as support structure components and rackets Wait.
- the present invention adopts vacuum electric arc furnace smelting to obtain high-entropy materials in the form of blocks or strips, and the steps are simple, which can be used to prepare racket shafts and/or frames of rackets.
- the present invention utilizes the magnetron sputtering method to attach the high-entropy material as a coating on the substrate, including but not limited to plastics, nylon or polyester, which can improve the specific strength of the composite material after being composited with the high-entropy material.
- the material has high specific strength and high elongation at break and can be used to make racket strings.
- the high-entropy material of the present invention is composed of 6 or more metal elements of Fe, Ni, Al, Ti, X and Y; wherein, Y is a rare earth element, and the rare earth element has a higher solid solubility in Fe, Rare earth atoms dissolve into the magnesium matrix to enhance the bonding force between atoms and cause lattice distortion of the matrix.
- the role of solid solution strengthening of rare earth elements is mainly to slow down the atomic diffusion rate and hinder the movement of dislocations, thereby strengthening the matrix and improving the strength and high temperature creep performance of the alloy. Adding a certain amount of rare earth to the alloy can purify the alloy, refine the crystal grains, reduce the friction coefficient of the coating, and improve the wear resistance of the alloy.
- rare earth Since rare earth is a surface active element, it will be adsorbed on the growing eutectic carbide, which is beneficial to obtain plate-shaped carbide, and can purify molten iron to reduce inclusions. Rare earth can also modify the eutectic Si, change the morphology of Si, thereby increasing the hardness of the alloy, and combine with metal Al to improve the processing performance of the material.
- the prepared high-entropy alloy can not only ensure the dielectric loss and magnetic loss, but also obtain Excellent corrosion resistance.
- Both Fe and Ni belong to the transition group elements of the fourth period, have similar atomic radius and electronegativity, and are easy to form a simple single solid solution structure; Fe element can increase the mixing entropy value, making the structure tend to be uniform and stable; the addition of Ti improves the alloy The overall hardness of the alloy makes the alloy have excellent wear resistance and temper softening resistance; Al is cheap and easy to obtain, and has a large atomic radius. After solid solution, it can have a solid solution strengthening effect and is easy to form on the surface of the alloy The dense oxide film further improves the corrosion resistance of the alloy. Cr element can increase the stability of austenite and increase the content of retained austenite in the structure. Molybdenum can improve its hardenability, refine the structure and improve toughness.
- the high-entropy material has performance characteristics such as high strength, high hardness, temper softening resistance, and wear resistance, and is suitable for preparing sports equipment, such as support structure components and rackets Wait. Including but not limited to baseball bats, badminton rackets, tennis rackets, squash rackets, table tennis rackets, and pool stick tips.
- racket strings in badminton rackets, tennis rackets, squash rackets and other equipment.
- racket strings are mainly divided into three categories: gut, synthetic fiber and nylon. Natural gut is expensive, and synthetic fibers and nylon are often used instead. However, although these three materials have good elasticity, their stiffness is insufficient.
- the master alloy is placed in a vacuum electric arc furnace with a melting temperature of 850°C. After arc melting, it is suction-cast into a copper mold with a cavity at a temperature of 20°C and rapidly cooled to obtain a bulk high-entropy material.
- the yield strength of the high-entropy material of this embodiment is 2043MPa
- the fracture strength is 2310MPa
- the flexural modulus is 3426MPa
- the impact strength is 46KJ/m 2 .
- the high-entropy material obtained in Example 1 has high fracture strength and high hardness.
- the high-entropy material in this example is used to prepare a baseball bat, which complies with the provisions of GB/T1.1-2009.
- the baseball bat had a tensile strength of 2184 MPa, a tensile modulus of elasticity of 1239 MPa, and a flexural modulus of 3301 MPa.
- the master alloy is melted in an induction furnace of a rapid solidification device, and the melting temperature is 1000° C. After melting, it is sprayed into a mold with a cavity for cooling to obtain a high-entropy material plate.
- the yield strength of the high-entropy material of this embodiment is 2114MPa
- the fracture strength is 1867MPa
- the flexural modulus is 3049MPa.
- the high-entropy material of this example is used to prepare a billiard cue. The steps of remelting, molding and shaping of the billiard cue are omitted, and the obtained billiard cue has a compressive strength of 1695N, a residual deformation of 0.18mm, and a deflection of the racket shaft of 20mm.
- the master alloy is placed in a vacuum electric arc furnace with a melting temperature of 1000°C. After the arc is melted, it is suction-cast into a copper mold with a cavity at a temperature of 20°C and rapidly cooled to obtain a high-entropy material.
- the yield strength of the high-entropy material of this embodiment is 2712MPa
- the fracture strength is 2287MPa
- the flexural modulus is 3719MPa
- the impact strength is 49KJ/m 2 .
- the high-entropy material in this example is used to prepare the shaft of a badminton racket, which complies with the provisions of GB/T 32609-2016.
- the compressive strength of the racket shaft is 1462N
- the residual deformation of the racket shaft is 0.22mm
- the deflection of the racket shaft is 13mm.
- the master alloy is melted at 1000°C in a furnace, and sprayed onto the surface of a high-speed rotating roller to cool down after melting to obtain a strip-shaped high-entropy material.
- the yield strength of the high-entropy material of this embodiment is 2532MPa
- the fracture strength is 1983MPa
- the flexural modulus is 3644MPa
- the impact strength is 40KJ/m 2 .
- the high-entropy material of this example is used to prepare the frame of a badminton racket, which complies with the provisions of GB/T 32609-2016.
- the size and preparation method of the racket frame will not have a great impact on the performance of the material, so it is omitted.
- the compressive strength of the frame top is 1377N
- the compressive residual deformation of the frame head plane is 3mm
- the compressive residual deformation of the frame head side is 7mm. Heat resistance of the frame: no breakage, no deformation.
- the high-entropy alloy materials of Examples 1 to 4 are made into samples of 10 mm ⁇ 5 mm, placed in 1% hydrofluoric acid solution and 3.5% sodium chloride solution for soaking for 48 hours, and the mass before and after soaking is measured. , calculate its weight change, as shown in the table below.
- Table 1 The mass change of the high-entropy materials of Examples 1-4 soaked in corrosive solution for 48h
- the mass change of the high-entropy alloy materials of Examples 1-3 in the corrosive solution of hydrofluoric acid and sodium chloride is very small, and there is no change on the surface of the alloy by visual observation, so the alloys prepared in Examples 1-4 High-entropy alloy materials have excellent corrosion resistance.
- the high-entropy materials in Examples 1 to 3 contain an amorphous structure, which has the characteristics of single-phase disorder in the structure, and a uniform passivation barrier layer is formed spontaneously, and Al metal is added to prevent corrosion. Medium corrosion, thus showing excellent corrosion resistance.
- the target material is plasma sprayed on the substrate; the spraying conditions are pressure of 1.5Pa, plasma current of 110mA, and voltage of 350V; the substrate is nylon;
- the thermal annealing temperature is 573K, and the thermal annealing time is 80 minutes.
- the coating thickness is 45 nm.
- the target material is plasma sprayed on the substrate; the spraying conditions are as follows: the pressure is 2.5Pa, the plasma current is 130mA, and the voltage is 450V; the substrate is PTFE;
- the thermal annealing temperature is 773K, and the thermal annealing time is 60 minutes.
- the coating thickness is 58 nm.
- the high-entropy materials of Examples 5-6 are sprayed on the corresponding substrates as coatings to obtain composite materials to make racket strings, which are not limited to what kind of racket strings. Comparing the tensile strength, density, required chord diameter and chord quality of the composite materials of Examples 5-6 with sheep intestine and nylon under the same breaking load of 400N, as shown in the following table:
- Example 5-6 It can be seen from Table 2 that under the same breaking load, the diameter of the strings made of the composite materials of Examples 5-6 can be reduced by more than 2 times compared with the gut. The thinner the string, the better the elasticity, but relatively, the thinner the string will be less resistant. However, the strings made of composite materials in Examples 5-6 have the advantages of small diameter while having high elasticity, high strength, high tensile strength and high elongation at break.
- the material composition of Example 5 and Example 4 is exactly the same, that is, the same material, which means that the high-entropy material of the present invention can be used to prepare the racket frame (or racket shaft) and the racket string in the same racket.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Golf Clubs (AREA)
Abstract
本发明公开了一种用于制备运动器材高熵材料,材料的通式为Fe aNi bAl cTi dX eY f;其中30≤a≤35、28≤b≤30、10≤c≤20、5≤d≤15、0≤e≤20和0.5≤f≤1;X为Co、Ta、Nb、Cr或W中的一种或两种以上组合元素;Y为La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er或Tm中的一种或两种以上组合元素。本发明通过优化合金成分,比传统合金具有更大优势,该高熵材料同时具有高强度、高硬度、耐回火软化、耐磨等性能特性,适用于制备运动器材,如支撑结构组件和球拍等。
Description
本发明涉及高熵非晶合金技术领域,具体涉及一种用于制备运动器材高熵材料及其制备方法。
运动器材是竞技体育比赛和健身锻炼所使用的各种器械、装备及用品的总称。因为金属材料强度和模量高,所以运动器材一般采用金属材料作为支撑或稳定的结构,但往往金属材料硬度和耐磨性能不足导致运动器材受到损坏。
即使是同一种器具,不同的结构所使用的材料一般不同,如球拍(如羽毛球拍、网球拍等),拍杆、框身和拍弦一般都是采用不同的材料,有不同的功能诉求:拍杆需要轻便、硬度高和抗压强度好,框身需要抗压强度好且不变形,拍弦的关注点则在于延伸率、抗拉力、弹性等。现有并无将球拍的拍杆、框身和拍弦都选用同一种材料的方案。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种用于制备运动器材高熵材料,兼具高强度、高弹性和高韧性,适用于制备运动器材,若制备球拍中的拍弦,能保持稳定的振幅,从而使选手稳定地控制击球方向;本发明的目的之二在于提供一种用于制备运动器材高熵材料的制备方法,得到的材料可用于制备大型运动器材的结构承重结构,还能用于满足制备球拍中拍杆、框身和拍弦对强度和弹性的需求。
本发明的目的之一采用如下技术方案实现:
一种用于制备运动器材高熵材料,材料的通式为Fe
aNi
bAl
cTi
dX
eY
f;其中a、b、c、d、e和f为对应元素的原子百分比,30≤a≤35、28≤b≤30、10≤c≤20、5≤d≤15、0≤e≤20和0.5≤f≤1;X为Co、Ta、Nb、Cr或W中的一种或两种以上组合元素;Y为La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er或Tm中的一种或两种以上组合元素。
进一步,所述用于制备运动器材高熵材料的通式为Fe
aNi
bAl
cTi
dCo
eEr
f。
再进一步,所述用于制备运动器材高熵材料的通式为Fe
aNi
bAl
cTi
dCo
eGd
f。
进一步,所述用于制备运动器材高熵材料的通式为Fe
aNi
bAl
cTi
dCo
eGd0.
5Er0.
5。
本发明的目的之二采用如下技术方案实现:
一种如上述用于制备运动器材高熵材料的制备方法,包括以下步骤:
1)根据材料通式按照配比将对应的金属材料在惰性气体中熔炼,得到母合金锭;
2)将母合金置于真空电弧炉中,电弧熔化后吸铸到带有空腔的铜模中快速冷却,得到块体高熵材料棒材或板材;或将母合金置于快速凝固装置的感应炉中熔化,熔化后喷射到带有空腔的模具中冷却,得到块体高熵材料棒材或板材;或将母合金置于炉中熔化,熔化后喷射到高速旋转的辊轮表面冷却得到条带状高熵材料。
进一步,步骤1)中,所述惰性气体为氮气、氦气或氩气中的一种。
一种如上述的用于制备运动器材高熵材料的制备方法,包括以下步骤:
1)将根据通式配比制成的合金材料作为靶材;
2)将靶材等离子喷涂在基体上;
3)在惰性气体中进行热退火,得到附在基体的高熵材料涂层。
进一步,步骤2)中,所述基体为塑料、尼龙或聚酯。
再进一步,步骤2)中,喷涂条件为压力为1.5~2.5Pa,等离子体电流为110~130mA,电压为350~450V。
进一步,步骤3)中,热退火温度为573~773K,热退火时间为60~80分钟,以增加涂层的附着力并得到尺寸为40-60nm的纳米结构。
相比现有技术,本发明的有益效果在于:
(1)本发明的高熵材料由Fe、Ni、Al、Ti、X和Y这6种或6种以上的金属元素组成;其中,Y为稀土元素,稀土元素在Fe中具有较高的固溶度,稀土原子溶入镁基体中增强原子间的结合力,使基体产生晶格畸变。稀土元素固溶强化的作用主要是减慢原子扩散速率,阻碍位错运动,从而强化基体,提高合金的强度和高温蠕变性能。Fe和Ni同属第四周期过渡组元素,具有相近的原子半径和电负性,容易形成简单的单固溶体结构;Fe元素可以增加混合熵值,使结构趋于均一稳定;Ti的加入提升了合金的整体硬度,使合金具有优良的耐磨性能和抗回火软化性能;Al价廉易得,且具有较大的原子半径,固溶后可以起到固溶强化效应,还容易使合金表面生成致密的氧化膜,进一步提高合金的耐蚀性;
由于合金主元增多产生高熵效应,抑制了具有复杂晶体结构的脆性金属间化合物的产生,使晶体易于形成简单体心或单面心结构,并伴有非晶和纳米晶体的产生。本发明通过优化合金成分,比传统合金具有更大优势,该高熵材料同时具有高强度、高硬度、耐回火软化、耐磨等性能特性,适用于制备运动器材,如支撑结构组件和球拍等。
(2)本发明采用真空电弧炉熔炼,得到块体或条带状的高熵材料,步骤简便,可用于制备球拍的拍杆和/或框身。
(3)本发明利用磁控溅射法将高熵材料作为涂层附在基体上,包括但不限于塑料、尼龙或聚酯,与高熵材料复合后能提高复合材料的比强度,该复合材料具有高比强度和高断裂伸长率,可用于制备球拍弦。
下面,结合具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
一种用于制备运动器材高熵材料,材料的通式为Fe
aNi
bAl
cTi
dX
eY
f;其中a、b、c、d、e和f为对应元素的原子百分比,30≤a≤35、28≤b≤30、10≤c≤20、5≤d≤15、0≤e≤20和0.5≤f≤1;a+b+c+d+e+f=1;X为Co、Ta、Nb、Cr或W中的一种或两种以上组合元素;Y为La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er或Tm中的一种或两种以上组合元素。
本发明的高熵材料由Fe、Ni、Al、Ti、X和Y这6种或6种以上的金属元素组成;其中,Y为稀土元素,稀土元素在Fe中具有较高的固溶度,稀土原子溶入镁基体中增强原子间的结合力,使基体产生晶格畸变。稀土元素固溶强化的作用主要是减慢原子扩散速率,阻碍位错运动,从而强化基体,提高合金的强度和高温蠕变性能。在合金中加入一定量的稀土,可以净化合金,细化晶粒,降低涂层摩擦因数,提高合金的耐磨性能。由于稀土是表面活性元素,会吸附在生长的共晶碳化物上,利于获得板块状碳化物,并且能净化铁液减少夹杂。稀土还能变质共晶Si,改变Si的形貌,从而提升合金的硬度,并且结合金属Al 提高材料的加工性能,制备的高熵合金在保证具备介电损耗和磁损耗的同时,还可以获得优异的耐腐蚀性。
Fe和Ni同属第四周期过渡组元素,具有相近的原子半径和电负性,容易形成简单的单固溶体结构;Fe元素可以增加混合熵值,使结构趋于均一稳定;Ti的加入提升了合金的整体硬度,使合金具有优良的耐磨性能和抗回火软化性能;Al价廉易得,且具有较大的原子半径,固溶后可以起到固溶强化效应,还容易使合金表面生成致密的氧化膜,进一步提高合金的耐蚀性。Cr元素可以增加奥氏体的稳定性,提高组织中的残余奥氏体含量。钼元素可以提高其淬透性,细化组织结构,提高韧性。
由于合金主元增多产生高熵效应,抑制了具有复杂晶体结构的脆性金属间化合物的产生,使晶体易于形成简单体心或单面心结构,并伴有非晶和纳米晶体的产生。本发明通过优化合金成分,比传统合金具有更大优势,该高熵材料同时具有高强度、高硬度、耐回火软化、耐磨等性能特性,适用于制备运动器材,如支撑结构组件和球拍等。包括但不限于棒球棒、羽毛球拍、网球拍、壁球拍、兵乓球拍和桌球棍尖。
羽毛球拍、网球拍、壁球拍等器材均存在拍弦,一般拍弦线主要分为三类:羊肠、合成纤维和尼龙。天然肠线价钱贵,常用合成纤维和尼龙代替。但这三种材料弹性虽好,但是刚度不足。
实施例1
制备Fe
30Ni
28Al
10Ti
11.5Co
20Er
0.5的棒状高熵合金材料,具体步骤如下:
1)根据上述通式按照配比将对应的金属材料在Ar气中熔炼三次,得到母合金锭;上述所用的金属纯度达到99.9%;
2)将母合金置于真空电弧炉中,熔化温度为850℃,电弧熔化后吸铸到带有空腔的温度为20℃的铜模中快速冷却,得到块体高熵材料。
经过测量,本实施例的高熵材料屈服强度为2043MPa,断裂强度为2310MPa,弯曲模量为3426MPa,抗冲击强度为46KJ/m
2。说明本实施例1所得的高熵材料具有高断裂强度和高硬度。本实施例的高熵材料用于制备棒球棒,符合GB/T1.1-2009的规定。该棒球棒的拉伸强度为2184MPa、拉伸弹性模量为1239MPa、弯曲模量为3301MPa。
实施例2
制备Fe
35Ni
30Al
19Ti
15GD
1的高熵合金材料,具体步骤如下:
1)根据上述通式按照配比将对应的金属材料在Ar气中熔炼三次,得到母合金锭;上述所用的金属纯度达到99.9%;
2)将母合金置于快速凝固装置的感应炉中熔化,熔化温度为1000℃,熔化后喷射到带有空腔的模具中冷却,得到高熵材料板材。
经过测量,本实施例的高熵材料屈服强度为2114MPa,断裂强度为1867MPa,弯曲模量为3049MPa。本实施例的高熵材料用于制备台球杆。制备台球杆的重溶步骤、入模和定型步骤省略,得到的台球杆的抗压强度为1695N,残余变形量0.18mm,拍杆挠度20mm。
实施例3
制备Fe
30Ni
28Al
10Ti
11Co
20Er
0.5GD
0.5的棒状高熵合金材料,具体步骤如下:
1)根据上述通式按照配比将对应的金属材料在Ar气中熔炼三次,得到母合金锭;上述所用的金属纯度达到99.9%;
2)将母合金置于真空电弧炉中,熔化温度为1000℃,电弧熔化后吸铸到带有空腔的温度为20℃的铜模中快速冷却,得到高熵材料。
经过测量,本实施例的高熵材料屈服强度为2712MPa,断裂强度为2287MPa,弯曲模量为3719MPa,抗冲击强度为49KJ/m
2。本实施例的高熵材料用于制备羽毛球拍的拍杆,符合GB/T 32609-2016的规定。拍杆的抗压强度为1462N,拍杆残余变形量0.22mm,拍杆挠度13mm。
实施例4
制备Fe
35Ni
30Al
10Ti
11.5Cr
13GD
0.5的高熵合金材料,具体步骤如下:
1)根据上述通式按照配比将对应的金属材料在Ar气中熔炼三次,得到母合金锭;上述所用的金属纯度达到99.9%;
2)将母合金置于炉中在1000℃下熔化,熔化后喷射到高速旋转的辊轮表面冷却得到条带状高熵材料。
经过测量,本实施例的高熵材料屈服强度为2532MPa,断裂强度为1983MPa,弯曲模量为3644MPa,抗冲击强度为40KJ/m
2。本实施例的高熵材料用于制备羽毛球拍的拍框,符合GB/T 32609-2016的规定。拍框的尺寸和制备方法由于不会对材料的性能产生太大影响,故省略。框顶的抗压强度为1377N,框头平面抗压残余变形量3mm,框头侧面抗压残余变形量7mm。框架的耐热性:未折损,未变形。
将实施例1~4的高熵合金材料制成10mm×5mm的样品,分别放在浓度为1%的氢氟酸溶液和浓度为3.5%的氯化钠溶液中浸泡48h,测量浸泡前后的质量,计算其重量变化,具体如下表所示。
表1实施例1~4的高熵材料在腐蚀性溶液中浸泡48h后的质量变化
从表1中看出,实施例1~3的高熵合金材料在氢氟酸和氯化钠的腐蚀液中的质量变化很小,肉眼观察合金表面无变化,所以实施例1~4制备的高熵合金材料具有优良的耐腐蚀性能。这是因为本实施例1~3的高熵材料中含有非晶结构,结构上具有单相无序特点,自发的形成一层均一的钝化隔层,且都加入了Al金属,能够阻止腐蚀介质的腐蚀,从而表现出优异的耐腐蚀性能。
实施例5
制备Fe
35Ni
30Al
10Ti
11.5Cr
13GD
0.5(与实施例4组成相同)的高熵合金材料,具体步骤如下:
1)将根据通式配比制成的合金材料作为靶材;
2)将靶材等离子喷涂在基体上;喷涂条件为压力为1.5Pa,等离子体电流为110mA,电压为350V;基体为尼龙;
3)在惰性气体中进行热退火,得到附在基体的高熵材料涂层。热退火温度 为573K,热退火时间为80分钟。涂层厚度为45nm。
实施例6
制备Fe
35Ni
30Al
10Ti
11.5Co
12Er
1的高熵合金材料,具体步骤如下:
1)将根据通式配比制成的合金材料作为靶材;
2)将靶材等离子喷涂在基体上;喷涂条件为压力为2.5Pa,等离子体电流为130mA,电压为450V;基体为PTFE;
3)在惰性气体中进行热退火,得到附在基体的高熵材料涂层。热退火温度为773K,热退火时间为60分钟。涂层厚度为58nm。
将实施例5~6的高熵材料作为涂料喷涂在对应的基体上,得到复合材料制成拍弦,此处不限定是何种球拍的拍弦。将实施例5~6的复合材料与羊肠和尼龙在同一断裂负荷400N下,比较四者的抗拉强度、密度、所需弦直径和弦的质量,如下表所示:
表2实施例5~6的复合材料与羊肠和尼龙制成球弦的参数对比
由表2可知,在相同断裂负荷下,与羊肠线相比,实施例5~6复合材料制成的弦线的直径与羊肠线相比可减少2倍以上。弦线越细,弹性越好,但相对地,细弦线的承受力就会降低。但实施例5~6复合材料制成的弦线在具有高弹性、高强度、高拉伸强度和高断裂伸长率的同时还具有小直径的优点。实施例5和实施例4的材料组成完全相同,即是相同材料,即说明本发明的高熵材料可以用于制备同一球拍中的拍框(或拍杆)以及拍弦。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。
Claims (10)
- 一种用于制备运动器材高熵材料,其特征在于,材料的通式为Fe aNi bAl cTi dX eY f;其中a、b、c、d、e和f为对应元素的原子百分比,30≤a≤35、28≤b≤30、10≤c≤20、5≤d≤15、0≤e≤20和0.5≤f≤1;X为Co、Ta、Nb、Cr或W中的一种或两种以上组合元素;Y为La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er或Tm中的一种或两种以上组合元素。
- 如权利要求1所述的用于制备运动器材高熵材料,其特征在于,所述用于制备运动器材高熵材料的通式为Fe aNi bAl cTi dCo eEr f。
- 如权利要求1所述的用于制备运动器材高熵材料,其特征在于,所述用于制备运动器材高熵材料的通式为Fe aNi bAl cTi dCo eGd f。
- 如权利要求1所述的用于制备运动器材高熵材料,其特征在于,所述用于制备运动器材高熵材料的通式为Fe aNi bAl cTi dCo eGd 0.5Er 0.5。
- 一种如权利要求1~4任一项所述的用于制备运动器材高熵材料的制备方法,其特征在于,包括以下步骤:1)根据材料通式按照配比将对应的金属材料在惰性气体中熔炼,得到母合金锭;2)将母合金置于真空电弧炉中,电弧熔化后吸铸到带有空腔的铜模中快速冷却,得到块体高熵材料棒材或板材;或将母合金置于快速凝固装置的感应炉中熔化,熔化后喷射到带有空腔的模具中冷却,得到块体高熵材料棒材或板材;或将母合金置于炉中熔化,熔化后喷射到高速旋转的辊轮表面冷却得到条带状高熵材料。
- 如权利要求5所述的用于制备运动器材高熵材料的制备方法,其特征在于,步骤1)中,所述惰性气体为氮气、氦气或氩气中的一种。
- 一种如权利要求1~4任一项所述的用于制备运动器材高熵材料的制备方法,其特征在于,包括以下步骤:1)将根据通式配比制成的合金材料作为靶材;2)将靶材等离子喷涂在基体上;3)在惰性气体中进行热退火,得到附在基体的高熵材料涂层。
- 如权利要求6所述的用于制备运动器材高熵材料的制备方法,其特征在于,步骤2)中,所述基体为塑料、尼龙或聚酯中的一种。
- 如权利要求6所述的用于制备运动器材高熵材料的制备方法,其特征在于,步骤2)中,喷涂条件为压力为1.5~2.5Pa,等离子体电流为110~130mA,电压为350~450V。
- 如权利要求6所述的用于制备运动器材高熵材料的制备方法,其特征在于,步骤3)中,热退火温度为573~773K。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110517585.4A CN113337784B (zh) | 2021-05-12 | 2021-05-12 | 一种用于制备运动器材高熵材料及其制备方法 |
CN202110517585.4 | 2021-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022236915A1 true WO2022236915A1 (zh) | 2022-11-17 |
Family
ID=77468270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/099961 WO2022236915A1 (zh) | 2021-05-12 | 2021-06-15 | 一种用于制备运动器材高熵材料及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113337784B (zh) |
WO (1) | WO2022236915A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116083772A (zh) * | 2022-12-28 | 2023-05-09 | 钢研纳克检测技术股份有限公司 | 一种具有900k高温抗性软磁高熵合金 |
CN116288032A (zh) * | 2023-03-29 | 2023-06-23 | 武汉科技大学 | 一种Nb元素微合金化抗高温抗磨损块体多组分合金及其制备方法和应用 |
NL2035024A (en) * | 2023-03-29 | 2023-07-05 | Sino Energy Huayuan Floating Wind Inst | LA-ELEMENT MICRO-ALLOYED AlCrFeNiTi SERIES BULK ALLOY WITH HIGH CORROSION RESISTANCE AND WEAR RESISTANCE, AND PREPARATION METHOD THEREFORE AND APPLICATIONS THEREOF |
CN117758163A (zh) * | 2023-12-25 | 2024-03-26 | 河南理工大学 | 一种高温热弹性弹热制冷合金的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103334065A (zh) * | 2013-06-06 | 2013-10-02 | 清华大学 | 高熵非晶合金材料及其制备方法 |
KR20150073270A (ko) * | 2013-12-20 | 2015-07-01 | 서울대학교산학협력단 | 희토류 원소계 하이엔트로피 벌크 비정질 합금 |
CN105862036A (zh) * | 2016-06-25 | 2016-08-17 | 芜湖三刀材料科技有限公司 | 一种铁基表面高熵涂层及制备方法 |
US20190040500A1 (en) * | 2017-08-02 | 2019-02-07 | National Tsing Hua University | Precipitation strengthened high-entropy superalloy |
US20200056272A1 (en) * | 2018-08-14 | 2020-02-20 | The Industry & Academic Cooperation In Chungnam National University(Iac) | Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104694808B (zh) * | 2015-03-26 | 2017-02-22 | 北京科技大学 | 具有弥散纳米析出相强化效应的高熵合金及其制备方法 |
CN112064024B (zh) * | 2020-09-23 | 2021-08-31 | 广东省科学院新材料研究所 | 阻扩散高熵合金涂层材料、耐高温涂层材料及其制备方法和应用 |
-
2021
- 2021-05-12 CN CN202110517585.4A patent/CN113337784B/zh active Active
- 2021-06-15 WO PCT/CN2021/099961 patent/WO2022236915A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103334065A (zh) * | 2013-06-06 | 2013-10-02 | 清华大学 | 高熵非晶合金材料及其制备方法 |
KR20150073270A (ko) * | 2013-12-20 | 2015-07-01 | 서울대학교산학협력단 | 희토류 원소계 하이엔트로피 벌크 비정질 합금 |
CN105862036A (zh) * | 2016-06-25 | 2016-08-17 | 芜湖三刀材料科技有限公司 | 一种铁基表面高熵涂层及制备方法 |
US20190040500A1 (en) * | 2017-08-02 | 2019-02-07 | National Tsing Hua University | Precipitation strengthened high-entropy superalloy |
US20200056272A1 (en) * | 2018-08-14 | 2020-02-20 | The Industry & Academic Cooperation In Chungnam National University(Iac) | Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116083772A (zh) * | 2022-12-28 | 2023-05-09 | 钢研纳克检测技术股份有限公司 | 一种具有900k高温抗性软磁高熵合金 |
CN116288032A (zh) * | 2023-03-29 | 2023-06-23 | 武汉科技大学 | 一种Nb元素微合金化抗高温抗磨损块体多组分合金及其制备方法和应用 |
NL2035023A (en) * | 2023-03-29 | 2023-07-05 | Univ Wuhan Science & Tech | Nb-ELEMENT MICRO-ALLOYED BULK MULTI-COMPONENT ALLOY WITH HIGH-TEMPERATURE RESISTANCE AND WEAR RESISTANCE, PREPARATION METHOD THEREFOR, AND APPLICATIONS THEREOF |
NL2035024A (en) * | 2023-03-29 | 2023-07-05 | Sino Energy Huayuan Floating Wind Inst | LA-ELEMENT MICRO-ALLOYED AlCrFeNiTi SERIES BULK ALLOY WITH HIGH CORROSION RESISTANCE AND WEAR RESISTANCE, AND PREPARATION METHOD THEREFORE AND APPLICATIONS THEREOF |
CN116288032B (zh) * | 2023-03-29 | 2024-04-02 | 武汉科技大学 | 一种Nb元素微合金化抗高温抗磨损块体多组分合金及其制备方法和应用 |
CN117758163A (zh) * | 2023-12-25 | 2024-03-26 | 河南理工大学 | 一种高温热弹性弹热制冷合金的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113337784B (zh) | 2023-02-21 |
CN113337784A (zh) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022236915A1 (zh) | 一种用于制备运动器材高熵材料及其制备方法 | |
KR102013260B1 (ko) | 저원가 고강도 강인성 초박형 9Ni강판의 제조방법 | |
KR100910193B1 (ko) | 초고강도 석출 경화 스테인레스강 및 이것으로부터 제조된세장형 스트립 | |
TWI321592B (en) | High strength and high toughness alloy with low density | |
WO2006136079A1 (fr) | Acier coulé résistant à l’usure de type martensite rigidifié par une couche d’austénite et son procédé de fabrication | |
WO2020228503A1 (zh) | 一种高强高导 Cu-Ag-Sc 合金及其制备方法 | |
CN107080927B (zh) | 一种非晶合金丝改性羽毛球拍杆及其制备方法 | |
CN110772766B (zh) | 一种非晶合金加强型球拍及其制备方法 | |
WO2019080458A1 (zh) | 微合金化弹簧钢及其制备方法 | |
JP2012144807A (ja) | ゴルフクラブヘッドの合金およびその製造方法 | |
CN110983194A (zh) | 一种超级韧性钢铁材料及其制造方法 | |
CN107263885A (zh) | 一种非晶合金条带改性羽毛球拍框及其制备方法 | |
JP2013159857A (ja) | ゴルフクラブヘッド用Fe−Cr−Ni系合金 | |
CN103045951A (zh) | 高氮无镍奥氏体抗菌不锈钢(HNSAg)及其制备方法 | |
TW527426B (en) | Martensitic stainless steel for golf club head | |
CN108374105A (zh) | 可穿戴设备用钛合金及其制备方法 | |
CN108456805A (zh) | 一种用于植入骨骼的β型钛合金及其制造方法 | |
CN108300941A (zh) | 一种高压泥浆泵泵体用钢及其制造方法 | |
TWI777652B (zh) | 具有抗衝擊強度層及柔韌層之鈦合金板材及其製造方法 | |
JP2909089B2 (ja) | マルエージング鋼およびその製造方法 | |
CN104480371A (zh) | 一种耐磨性铁合金制备方法 | |
TWI440492B (zh) | 高爾夫球桿合金 | |
CN111763888A (zh) | 一种耐低温承压铸钢件制备方法 | |
CN105779910B (zh) | 一种具有大弹性变形能力的铜锆铝基金属玻璃复合材料 | |
CN102732771B (zh) | 一种制作高尔夫球杆球头的铁合金材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21941484 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (25.03.2024) |