CN116083772A - 一种具有900k高温抗性软磁高熵合金 - Google Patents

一种具有900k高温抗性软磁高熵合金 Download PDF

Info

Publication number
CN116083772A
CN116083772A CN202211698801.0A CN202211698801A CN116083772A CN 116083772 A CN116083772 A CN 116083772A CN 202211698801 A CN202211698801 A CN 202211698801A CN 116083772 A CN116083772 A CN 116083772A
Authority
CN
China
Prior art keywords
alloy
soft magnetic
entropy alloy
temperature resistance
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211698801.0A
Other languages
English (en)
Inventor
王海舟
郎润秋
陈海洋
王沿东
赵雷
朱长旺
张晓芬
杨丽霞
李冬玲
沈学静
贾云海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ncs Testing Technology Co ltd
University of Science and Technology Beijing USTB
Original Assignee
Ncs Testing Technology Co ltd
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ncs Testing Technology Co ltd, University of Science and Technology Beijing USTB filed Critical Ncs Testing Technology Co ltd
Priority to CN202211698801.0A priority Critical patent/CN116083772A/zh
Publication of CN116083772A publication Critical patent/CN116083772A/zh
Priority to US18/530,485 priority patent/US20240105370A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种具有900K高温抗性软磁高熵合金,包括Fe、Co、Ni、Si、Al元素等,其合金成分的原子百分比表达为FexCoyNizSimAln,其中,x=40~80%,y=20~60%,z=0~30%,m=0~20%,n=0~20%,x+y+z+m+n=100%;其他掺杂元素的原子百分比p=0~5%,0.5≤m/n≤3;材料性能指标为:室温饱和磁化强度Ms=90~150emu/g,矫顽力Hc=0.1~15Oe;900K时饱和磁化强度Ms=70~130emu/g,矫顽力Hc=0.1~25Oe。本发明采用上述的一种具有900K高温抗性软磁高熵合金,通过对多主元合金微观结构组态的综合调控,在基体组织中了实现了纳米尺度析出相的连续弥散分布,从而一定程度上提升了合金的软磁性能,且加工路线简单可靠,可重复型高。

Description

一种具有900K高温抗性软磁高熵合金
技术领域
本发明涉及新材料技术领域,特别是涉及一种具有900K高温抗性软磁高熵合金。
背景技术
软磁材料是实现电磁转换的金属功能材料,广泛应用于全体工业部门之中,直接影响国民经济生产活动。软磁材料相较于永磁材料,具有较高的饱和磁化强度(Ms)与矫顽力(Hc),可以在具有较低损耗的前提下实现电-电转换、电-磁转换、磁-电转换等。随着第三代半禁带宽半导体与5G高频通讯技术的快速发展,新兴科技部门与电子信息技术对同时具有优良高温抗性与低损耗量的先进软磁材料的需求日趋迫切。应用于传统工业部门的软磁材料,如金属基软磁材料、软磁铁氧体材料、非晶及纳米晶软磁材料、以及软磁复合材料均暴露出严重不足,具体表现在无法满足高Ms与低Hc表现,同时具有高居里温度(Tc)与高电阻率(ρ)等本征性能。
迄今为止,传统的金属基软磁合金仍高度依赖于传统合金设计方法。即依托于一种或两种主要元素为基体主元,通过添加少量合金化或微合金化元素来调整合金的综合性能表现,同时辅以材料成型方法与热处理制度等手段综合调控其性能。由此可知,传统金属基软磁合金具有高度的成分依赖性与工艺依赖性,只能在某一方面具有良好性能表现,无法胜任新一代软磁材料的性能要求。
高熵合金的出现为新型软磁合金材料体系的探索提供了新的机遇与挑战。高熵合金即多主元合金,其特点在于同时存在多个主要组成元素。高熵合金的广义定义为:由五种或者五种以上元素按照等摩尔或近等摩尔比例混合,且每种元素含量都在5%~35%之间。随着高熵合金的不断发展,以计算熵值定义的高熵合金宽化了合金的元素的种类与含量,主要表现为主元数为四元,元素含量不再局限于5%~35%。但是高熵合金的混乱特性导致元素难以发生长程扩散,不同组元在不同温度下的亲和力差异也导致多种复杂团簇的遗传行为。上述效应使得高熵合金易于形成短程序结构,同时也倾向于形成简单结构而非复杂金属间化合物,如体心立方相(A2)、面心立方相(A1)、及其有序超结构(B2、L12和L21等)。通过对高熵合金微结构的设计与调控,可以有效的开发出具有极端环境多物理场耦合复杂使役能力的新型高性能金属结构材料与金属功能材料。高熵合金的出现,为应用于微电子电路前沿技术、下一代高频通讯技术提供了具有广阔前景的合金成分体系设计平台。
自上世纪九十年代以来,非晶/纳米晶复合软磁材料的出现,使得FeCo基合金通过掺杂非晶化元素快淬,获得了具有FeNi基合金的低矫顽力表现,同时具有良好的饱和磁化强度。其本质原因在于在非晶基体中诱导出具有小于铁磁交换长度的纳米级晶体颗粒,使弥散分布的纳米晶质点呈磁单畴状态,极大的提升了对外场的响应能力,获得了良好的综合性能表现。只有适当控制弥散分布在基体中的纳米质点尺寸,合金才会呈现出优异软磁性能表现;且当纳米质点的直径越小,共格程度越高,合金的软磁性能理应越好。值得注意的是,非晶/纳米晶复合软磁材料的在材料成型方法存在着一定程度的限制,且无法满足严苛使役环境考验,因此尚无法替换传统金属晶态材料。
其中合金体系FeCoNiSiAl随元素含量的差异,室温相具有体心立方结构(bcc)与面心立方结构(fcc)两种。按室温下元素磁性分类,Fe、Co和Ni为铁磁性元素,Si为抗磁性元素,Al为顺磁性元素。从相的磁有序性出发,fcc相磁性较弱;bcc相通常呈铁磁性。在金属结构材料领域中,一般通过调控出如bcc与有序B2相共存呈编织网状的调幅分解组织,往往会极大的增强合金力学性能与高温抗软化表现。但这种存在较大错配度的微观结构组态会显著降低合金的软磁性能表现(如文献中报道的矫顽力1000Oe的高熵合金)。在简单合金体系中,二元有序金属间化合物与端际固溶体组成的微观组织中,基本上无法调控有序相与基体的分布情况。而在多组元高熵体系中,有望通过改变多个主元之间的摩尔比例,在基体组织中,包括但不限于A1、A2、B2、D03、L12、L21上获得合适的相分布、相分数、晶格常数与点阵错配等方面特征。
因此通过对高熵合金成分体系的探索,综合对合金微结构的全面调控,有望发展出具有应对软磁使用条件要求的新合金。
发明内容
本发明的目的是提供一种具有900K高温抗性软磁高熵合金,针对于FeCoNiSiAl多主元高熵合金中无序/有序基体中无法获得具有优异综合软磁性能表现的弥散分布纳米级第二相的微观组织形貌,开发出一种具有纳米粒子共格析出于基体、且耐900K高温的新型多主元FeCoNi基Heusler型软磁高熵合金。
为实现上述目的,本发明提供了一种具有900K高温抗性软磁高熵合金,所述900K高温抗性软磁高熵合金包括Fe、Co、Ni、Si和Al元素,其合金成分的原子百分比表达为FexCoyNizSimAln,其中,x=40~80%,y=20~60%,z=0~30%,m=0~20%,n=0~20%,x+y+z+m+n=100%。
优选的,所述的具有900K高温抗性软磁高熵合金还同时含有下述(a)和(b)群:
(a)除上述五种元素外,第六以及更多种元素可掺杂原子百分比为p=0~5%;
(b)Si元素与Al元素的原子百分比的比例为0.5≤m/n≤3。
优选的,第六以及更多种元素为Nb、V、Ti、Mn、Ga中的一种。
优选的,所述的具有900K高温抗性软磁高熵合金具有共格组织形貌:在基体组织中,包括但不限于A1、A2、B2、D03、L12、L21上共格析出10~100nm尺寸级第二相质点,该质点具有铁磁性。
优选的,纳米尺度第二相质点在基体组织中连续弥散分布。
优选的,所述的900K高温抗性软磁高熵合金典型性能指标为:系列合金室温饱和磁化强度Ms=90~150emu/g,矫顽力Hc=0.1~15Oe;900K时饱和磁化强度Ms=70~130emu/g,矫顽力Hc=0.1~25Oe。
本发明实现上述合金成分顶层设计方案的构思具体如下:
首先将高熵合金中的主元区分为两类,即铁磁性起源元素Fe、Co、Ni三种与结构化元素Si、Al、以及可能存在的第六种元素或更多种元素。根据材料基因组计划思想,综合利用高通量制备与计算材料学手段,圈定可能存在具有金属间化合物出现的相区区间。
进而利用在高熵合金中常见的析出相调控手段,对选定的成分区间进行探索,通过对特殊相区内组分合金基本物性信息的收集与归纳,建立其简单的材料物性与性能的映射关系。
最后通过设计团簇与冷却速率的关联性,调控最终合金成分中微结构的分布形态与相对含量。利用Ni、Al、Si三原子的高亲和力特征,设计具有不同析出相特征的材料终态模型,最终确立具有优异软磁性能的高熵合金体系。
利用上述合金成分顶层设计法则,极大的提高了具有高性能表现的多主元高熵合研发效率。
值得注意的是,在基体上获得具有较小尺寸的纳米级析出相需要额外的两个约束条件。其一在于,对于基体组织与纳米析出相的相对含量而言,本申请中所涉及的Si和Al元素在形成Heusler构型金属间化合物时,分别为复杂相形成元素与简单相形成元素。其中Ni和Al的交互作用更强,当Ni的含量过多时,Ni和Al会优先形成B2相。所以本申请中为了保证特殊微结构形成,需提高Ni元素的含量。其二在于,为保证本发明中的合金具有更加优异的软磁性能,需保证纳米质点中铁磁性元素的含量,即要整体调控Fe/Co/Ni元素的含量。因此,本申请进一步限定了第六种元素(可掺杂)的的原子百分比含量p与Si和Al两种元素的原子百分比含量m和n。
本发明的制备方法如下:采用99.98%高纯度组元原料,根据原子百分比换算成质量分数进行配料;在真空非自耗电弧熔炉的水冷铜坩埚内放入总质量为50g的混合料;进而在氩气保护气氛下引弧熔炼,反复熔炼5次以保证合金锭成分均匀;最后将熔炼均匀的合金锭熔化,利用铜模吸铸将熔体吸入圆柱形铜模型腔,冷却后获得直径为10mm的棒状试样。
利用金相显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD,Cu Kα辐射,λ=0.15406nm)表征合金微观结构组态;利用振动样品磁强计(VSM)测试合金室温和高温磁滞回线。据此,确定出本发明为上述的一种具有900K高温抗性软磁高熵合金。
与传统软磁合金相比,本发明的优点在于:
本发明是发明人依托材料基因组计划思想,调控合金中纳米尺度第二相的析出分布特征,发展出的一种具有900K高温抗性软磁高熵合金。通过改变结构性与铁磁性元素的相对含量,调整Fe、Co和Ni三种铁磁性元素的相对含量,以及可能存在的第六(以及更多)种掺杂元素含量,进而实现了对纳米级尺寸的共格析出相弥散分布在基体组织中的合理调控,并建立了成分调控准则,屏蔽了传统的“炒菜式”的繁琐的经验化合金设计方法;
另外在与成分高度相关的特殊相区内,有效地改善了Heusler型高熵合金的室温与高温软磁性能表现。由于析出相与基体组织在室温和高温下都保持了良好的共格关系,晶格常数基本一致,致使磁畴易于翻转,使得合金在室温和高温下均具有优异的软磁性能,最大程度地提升合金饱和磁化强度,并降低矫顽力,从而以多主元合金化模式发展出Heusler型软磁高熵合金;
最后由于纳米质点在基体组织中共格析出,使得纳米析出相不易长大,进而使得该微结构具有优异的高温组织稳定性,从而使得合金在900K高温环境中仍能够保持良好的软磁性能。其材料典型性能指标为:系列合金室温饱和磁化强度Ms=90~150emu/g,矫顽力Hc=0.1~15Oe;900K时饱和磁化强度Ms=70~130emu/g,矫顽力Hc=0.1~25Oe。
因此,本发明采用上述结构的一种具有900K高温抗性软磁高熵合金,具有以下有益效果:
(1)通过对合金成分的顶层设计,使新型软磁高熵合金体系的主元元素配比合理,进而实现了一种具有900K高温抗性的软磁高熵合金;
(2)合金的制备工艺与成型方法简单,采用真空非自耗电弧炉熔炼即可;
(3)具有10~100nm尺寸的析出相弥散分布在基体组织中,这种特殊的微观结构组态使得高熵合金呈现出优异的软磁性能表现。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为实施例1制备的Fe36.87Co7.37Ni29.50Si16.56Al9.70(at.%)合金的TEM图,析出相质点(直径d~10nm)连续弥散共格析出在基体组织上;
图2为实施例1制备的Fe36.87Co7.37Ni29.50Si16.56Al9.70(at.%)合金的磁滞回线图,图中横坐标为施加磁场,纵坐标为磁化强度;
图3为实施例1制备的Fe36.87Co7.37Ni29.50Si16.56Al9.70(at.%)合金的矫顽力图,图中横坐标为施加磁场,纵坐标为磁化强度。
具体实施方式
以下将对本发明进行进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明并不限于本实施例。
实施例1
五元Fe36.87Co7.37Ni29.50Si16.56Al9.70(at.%)合金
步骤一:合金制备
一种具有900K高温抗性软磁高熵合金Fe36.87Co7.37Ni29.50Si16.56Al9.70(at.%),采用高纯度纯元素作为合金原料,合金成分原子比换算成质量百分比进行配料,为42Fe-9Co-35Ni-9Si-5Al(wt.%)。在非自耗电弧熔炼炉的水冷铜坩埚内放入配制好的50g混合料,然后经机械泵抽真空、分子泵抽真空、充高纯Ar气、洗气步骤后,在Ar气保护氛围下进行熔炼,反复熔炼5次以保证合金锭成分均匀。将熔炼均匀的合金锭熔化,进行铜模吸铸,将熔体吸入圆柱形铜模型腔中,最终得到直径为10mm的棒状试样。
步骤二:合金组织结构和磁性能测试
利用OM、SEM、XRD、TEM等表征手段检测均匀化处理后合金微观结构组态,结果表明本发明的合金具有特定的共格纳米组织:第二相纳米颗粒连续弥散地共格析出在基体组织中,见附图1;利用振动样品磁强计(VSM)测试磁滞回线,室温饱和磁化强度Ms=120emu/g,矫顽力Hc=2.5Oe;900K饱和磁化强度Ms=96emu/g,矫顽力Hc=2Oe。
实施例2
六元(Fe67.84Co1.47Ni4.42Si16.60Al9.67)97Nb3(at.%)合金
步骤一:合金制备
一种具有900K高温抗性软磁高熵合金(Fe67.84Co1.47Ni4.42Si16.60Al9.67)97Nb3(at.%)。采用高纯度纯元素作为合金原料,合金成分原子比换算成质量百分比进行配料,为78Fe-2Co-5Ni-10Si-5Al(wt.%)。在非自耗电弧熔炼炉的水冷铜坩埚内放入配制好的50g混合料,然后经机械泵抽真空、分子泵抽真空、充高纯Ar气、洗气步骤后,在Ar气保护氛围下进行熔炼,反复熔炼5次以保证合金锭成分均匀,制备出预合金铸锭。随后按照去皮精磨后的预合金锭质量称取3at.%质量Nb单质,熔炼,并将熔炼均匀的液态金属进行铜模吸铸,将熔体吸入圆柱形铜模型腔中,最终得到直径为10mm的棒状试样。
步骤二:合金组织结构和磁性能测试
利用OM、SEM、XRD、TEM等表征手段检测均匀化处理后合金微观结构组态,结果表明本发明的合金具有特定的共格纳米组织:第二相纳米颗粒连续弥散地共格析出在基体组织中;利用震动样品磁强计(VSM)测试磁滞回线,室温饱和磁化强度Ms=124emu/g,矫顽力Hc=0.8Oe;900K饱和磁化强度Ms=83.4emu/g,矫顽力Hc=0.7Oe。
实施例3
六元(Fe36.87Co29.50Ni7.37Si16.56Al9.7)95Ga5(at.%)合金
步骤一:合金制备
一种具有900K高温抗性软磁高熵合金(Fe67.84Co1.47Ni4.42Si16.60Al9.67)95Ga5(at.%)。采用高纯度纯元素作为合金原料,合金成分原子比换算成质量百分比进行配料,为42Fe-35Co-8Ni-10Si-5Al(wt.%)。在非自耗电弧熔炼炉的水冷铜坩埚内放入配制好的50g混合料,然后经机械泵抽真空、分子泵抽真空、充高纯Ar气、洗气步骤后,在Ar气保护氛围下进行熔炼,反复熔炼5次以保证合金锭成分均匀,制备出预合金铸锭。随后按照去皮精磨后的预合金锭质量称取5at.%质量Ga单质,熔炼,并将熔炼均匀的液态金属进行铜模吸铸,将熔体吸入圆柱形铜模型腔中,最终得到直径为10mm的棒状试样。
步骤二:合金组织结构和磁性能测试
利用OM、SEM、XRD、TEM等表征手段检测均匀化处理后合金微观结构组态,结果表明本发明的合金具有特定的共格纳米组织:第二相纳米颗粒连续弥散地共格析出在基体组织中;利用震动样品磁强计(VSM)测试磁滞回线,室温饱和磁化强度Ms=126emu/g,矫顽力Hc=10.4Oe;900K饱和磁化强度Ms=89.4emu/g,矫顽力Hc=10Oe。
同时,下述表1中所示的具有900K高温抗性软磁高熵合金编号1~20的化学成分均与此成分来源相同。如上所述,可较好地实现发明。
此外,下述表1中的化学成分组成均属于一种具有900K高温抗性软磁高熵合金。但由本专利设计的一种具有900K高温抗性软磁高熵合金成分并不限于此表。其中“-”表示没有添加该元素。
表1
因此,本发明采用上述结构的一种具有900K高温抗性软磁高熵合金,通过对多主元合金微观结构组态的综合调控,在基体组织中了实现了纳米尺度析出相的连续弥散分布,从而一定程度上提升了合金的软磁性能,且加工路线简单可靠,可重复型高。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。

Claims (6)

1.一种具有900K高温抗性软磁高熵合金,其特征在于:所述900K高温抗性软磁高熵合金包括Fe、Co、Ni、Si和Al元素,其合金成分的原子百分比表达为FexCoyNizSimAln,其中,x=40~80%,y=20~60%,z=0~30%,m=0~20%,n=0~20%,x+y+z+m+n=100%。
2.根据权利要求1所述的一种具有900K高温抗性软磁高熵合金,其特征在于:所述的具有900K高温抗性软磁高熵合金还同时含有下述(a)和(b)群:
(a)除上述五种元素外,第六以及更多种元素可掺杂原子百分比为p=0~5%;
(b)Si元素与Al元素的原子百分比的比例为0.5≤m/n≤3。
3.根据权利要求2所述的一种具有900K高温抗性软磁高熵合金,其特征在于:第六以及更多种元素为Nb、V、Ti、Mn、Ga中的一种。
4.根据权利要求1所述的一种具有900K高温抗性软磁高熵合金,其特征在于:所述的具有900K高温抗性软磁高熵合金具有共格组织形貌:在基体组织中,包括但不限于A1、A2、B2、D03、L12、L21上共格析出10~100nm尺寸级第二相质点,该质点具有铁磁性。
5.根据权利要求4所述的一种具有900K高温抗性软磁高熵合金,其特征在于:纳米尺度第二相质点在基体组织中连续弥散分布。
6.根据权利要求1-5任一项所述的一种具有900K高温抗性软磁高熵合金,其特征在于:所述的900K高温抗性软磁高熵合金典型性能指标为:系列合金室温饱和磁化强度Ms=90~150emu/g,矫顽力Hc=0.1~15Oe;900K时饱和磁化强度Ms=70~130emu/g,矫顽力Hc=0.1~25Oe。
CN202211698801.0A 2022-12-28 2022-12-28 一种具有900k高温抗性软磁高熵合金 Pending CN116083772A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202211698801.0A CN116083772A (zh) 2022-12-28 2022-12-28 一种具有900k高温抗性软磁高熵合金
US18/530,485 US20240105370A1 (en) 2022-12-28 2023-12-06 High-entropy Soft Magnetic Alloy with 900 K High-temperature Resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211698801.0A CN116083772A (zh) 2022-12-28 2022-12-28 一种具有900k高温抗性软磁高熵合金

Publications (1)

Publication Number Publication Date
CN116083772A true CN116083772A (zh) 2023-05-09

Family

ID=86213076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211698801.0A Pending CN116083772A (zh) 2022-12-28 2022-12-28 一种具有900k高温抗性软磁高熵合金

Country Status (2)

Country Link
US (1) US20240105370A1 (zh)
CN (1) CN116083772A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127436A (ja) * 2013-12-27 2015-07-09 井上 明久 高延性・高加工性を持つ高磁束密度軟磁性鉄基非晶質合金
CN111205820A (zh) * 2020-02-10 2020-05-29 大连理工大学 受金龟子甲壳螺旋结构启发的适应多种波及多功能仿生吸波超材料
CN114649124A (zh) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 导磁材料及其制备方法和包含该导磁材料的烹饪器具
WO2022236915A1 (zh) * 2021-05-12 2022-11-17 深圳市亚稳科技投资有限公司 一种用于制备运动器材高熵材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127436A (ja) * 2013-12-27 2015-07-09 井上 明久 高延性・高加工性を持つ高磁束密度軟磁性鉄基非晶質合金
CN111205820A (zh) * 2020-02-10 2020-05-29 大连理工大学 受金龟子甲壳螺旋结构启发的适应多种波及多功能仿生吸波超材料
CN114649124A (zh) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 导磁材料及其制备方法和包含该导磁材料的烹饪器具
WO2022236915A1 (zh) * 2021-05-12 2022-11-17 深圳市亚稳科技投资有限公司 一种用于制备运动器材高熵材料及其制备方法

Also Published As

Publication number Publication date
US20240105370A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
Cui et al. Current progress and future challenges in rare-earth-free permanent magnets
Kumari et al. A comprehensive review: recent progress on magnetic high entropy alloys and oxides
US20180114614A1 (en) Rare Earth-Free Permanent Magnetic Material
CN109023005B (zh) 一种新型耐600℃高温的软磁高熵合金
Inoue Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys
CN104934179A (zh) 强非晶形成能力的铁基纳米晶软磁合金及其制备方法
CN110387500B (zh) 一种高磁感高频铁基纳米晶软磁合金及其制备方法
CN110541116B (zh) 一种晶化可控的铁基纳米晶软磁合金
CN105755404A (zh) 一种铁基非晶/纳米晶软磁合金薄带及其制备方法
TWI685004B (zh) 軟磁性合金及磁性部件
JP4863377B2 (ja) サマリウム−鉄系永久磁石材料
CN101430958A (zh) Sm(Co,M)7型合金薄带磁体的制备方法
Yakin et al. A review of soft magnetic properties of mechanically alloyed amorphous and nanocrystalline powders
Mohapatra et al. Hard and semi-hard Fe-based magnetic materials
TW201925493A (zh) 軟磁性合金及磁性部件
Oraon et al. Combined experimental and DFT studies of Co82Zr12V6-xBx melt-spun ribbons to investigate structure and magnetic properties
Becker et al. Permanent magnet materials
Pei et al. Effect of reduction-diffusion time on microstructure and properties of Nd-Fe-B nanoparticles prepared by low-energy chemical method
CN116083772A (zh) 一种具有900k高温抗性软磁高熵合金
CN107045911B (zh) Nd-Fe-B薄带磁体及其制备方法
JPH118109A (ja) 希土類永久磁石材料及びその製造方法
Jin et al. Microstructure and magnetic properties of (Pr, Tb) 2 (Fe, Nb, Zr) 14B/α-Fe nanocomposites
Shahi et al. High Entropy Alloys: A Potentially Viable Magnetic Material
Wang et al. Effects of B addition on the microstructure and magnetic properties of Fe-Co-Mo alloys
CN115608996B (zh) 一种铁基纳米晶软磁合金粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination