WO2022236741A1 - 电子雾化装置 - Google Patents

电子雾化装置 Download PDF

Info

Publication number
WO2022236741A1
WO2022236741A1 PCT/CN2021/093392 CN2021093392W WO2022236741A1 WO 2022236741 A1 WO2022236741 A1 WO 2022236741A1 CN 2021093392 W CN2021093392 W CN 2021093392W WO 2022236741 A1 WO2022236741 A1 WO 2022236741A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
outlet
inlet
groove
aerosol
Prior art date
Application number
PCT/CN2021/093392
Other languages
English (en)
French (fr)
Inventor
刘成川
赵月阳
杨豪
夏畅
雷桂林
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/093392 priority Critical patent/WO2022236741A1/zh
Publication of WO2022236741A1 publication Critical patent/WO2022236741A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/02Sprayers or atomisers specially adapted for therapeutic purposes operated by air or other gas pressure applied to the liquid or other product to be sprayed or atomised

Definitions

  • the present application relates to the technical field of atomizers, in particular to an electronic atomization device.
  • the present application provides an electronic atomization device to solve the technical problem of how to realize quantitative liquid supply and ensure the service life and safety of the micropump in the prior art.
  • the first technical solution provided by this application is to provide an electronic atomization device, including a liquid storage chamber, an atomizing core, and a liquid supply component; the liquid storage chamber is used to store an aerosol-generating substrate; The atomizing core is used to atomize the aerosol-generating substrate; the liquid supply component has a pump cavity, an inlet channel and an outlet channel; both the inlet channel and the outlet channel have a structure of shrinkage and expansion holes; one end of the inlet channel It communicates with the liquid storage chamber, and the other end communicates with the pump chamber; one end of the outlet channel communicates with the pump chamber, and the other end connects with the atomizing core; Periodically adjust the volume of the pump chamber so that the amount of liquid flowing from the inlet passage to the pump chamber is greater than the amount of liquid flowing from the pump chamber to the inlet passage, and flows from the pump chamber to the outlet The amount of liquid in the channel is greater than the amount of liquid flowing from the outlet channel to the pump chamber, so as to pump the aerosol
  • the electronic atomization device further includes an auxiliary heating component, and the auxiliary heating component heats the aerosol-generating substrate entering the pump chamber.
  • the auxiliary heating component heats the aerosol-generating substrate entering the pump cavity until its viscosity is reduced to below 50 cp.
  • the auxiliary heating component heats the aerosol-generating substrate entering the pump chamber until its viscosity is reduced to below 30 cp.
  • the structure of the constriction and dilation hole is conical; the constriction port of the inlet channel communicates with the liquid storage chamber, and the expansion port of the inlet channel communicates with the pump cavity; the constriction port of the outlet channel communicates with the pump chamber.
  • the pump cavity is connected, and the expansion port of the outlet channel is connected to the atomizing core; the inlet channel and the outlet channel both include symmetrically arranged first sides and second sides on the central axis section; the The included angle between the first side and the second side is 5-10 degrees.
  • the length of the inlet channel is L1
  • the size of the constriction of the inlet channel is W1
  • L1/W1 is 11:1-15:1
  • the length of the outlet channel is L2
  • the shrinkage of the outlet channel The mouth size is W2, L2/W2 is 11:1-15:1.
  • the structure of the contraction and expansion hole is conical; the contraction port of the inlet passage is connected with the pump chamber, and the expansion port of the inlet passage is connected with the liquid storage chamber; the expansion port of the outlet passage is connected with the pump chamber.
  • the pump cavity is connected, and the constriction port of the outlet channel is connected to the atomizing core; the inlet channel and the outlet channel both include a symmetrically arranged first side and a second side on the central axis section; the The included angle between the first side and the second side is 30-40 degrees.
  • the regulator also includes a controller and a battery;
  • the regulator includes a piezoelectric ceramic sheet and a substrate, and the controller controls the battery to apply alternating current to the piezoelectric ceramic sheet and the substrate to make the pump chamber Implement periodic expansion/compression.
  • the liquid supply assembly also includes a base and a cover plate;
  • the base is provided with a groove, an inlet groove and an outlet groove, and the inlet groove and the outlet groove are respectively communicated with the groove;
  • the adjustment piece covers the groove, and the cover plate covers the inlet groove and the outlet groove, respectively forming the pump chamber, the inlet channel and the outlet channel.
  • the base is also provided with a liquid inlet groove and a liquid outlet groove, the liquid inlet groove is arranged at the end of the inlet groove away from the inner space of the groove and communicates with the inlet groove, and the outlet groove
  • the liquid tank is set at the end of the outlet tank away from the inner space of the groove and communicates with the outlet tank;
  • the cover plate is provided with a liquid inlet hole corresponding to the liquid inlet groove, corresponding to the outlet A liquid outlet hole is arranged at the liquid tank.
  • a controller and a first detection element are also included; in response to an activation signal of the first detection element, the controller controls the auxiliary heating assembly to work.
  • the controller controls the regulating member to work to deliver a certain amount of aerosol generating matrix to the atomizing core matrix.
  • the preset temperature is 30-80°C.
  • the controller controls the operation of the regulating member to deliver a certain amount of aerosol generating substrate to the atomizing core, in response to the detection signal of the second detection element, the control The controller controls the work of the atomizing core.
  • the controller is also used to determine the suction interval, and control the auxiliary heating component to heat the aerosol-generating substrate in the liquid supply component to a preset temperature again during the suction interval, and control the The regulator works to re-deliver a certain amount of aerosol-generating substrate to the atomizing core.
  • the electronic atomization device of the present application includes a liquid storage chamber, an atomizing core, and a liquid supply assembly; the liquid storage chamber is used to store aerosol-generating substrates; the atomizing core is used for atomization Aerosol generating matrix; the liquid supply component has a pump chamber, an inlet channel and an outlet channel; both the inlet channel and the outlet channel have a shrinkage and expansion hole structure; one end of the inlet channel communicates with the liquid storage chamber, and the other end communicates with the pump chamber; one end of the outlet channel It communicates with the pump chamber, and the other end is connected to the atomizing core; the liquid supply assembly includes a regulator, which is used to periodically adjust the volume of the pump chamber, so that the amount of liquid flowing from the inlet channel to the pump chamber is more than that from the pump the amount of liquid flowing from the pump chamber to the inlet channel, and the amount of liquid flowing from the pump chamber to the outlet channel is greater than the amount of liquid flowing from the outlet channel to the
  • the active and quantitative liquid supply to the atomizing core is realized, so that the atomizing core consumes more uniformly the components in the aerosol generating matrix during the atomization process; and the active liquid supply is realized through the above-mentioned liquid supply component, The durability and safety of the liquid supply are improved, which is conducive to improving the performance of the electronic atomization device.
  • Fig. 1 is a schematic structural diagram of an electronic atomization device provided by the present application
  • Fig. 2 is a simplified structural schematic diagram of the liquid supply assembly provided by the present application.
  • Fig. 3 is a specific structural schematic diagram of the liquid supply assembly provided by the present application.
  • Fig. 4 is a structural schematic diagram of the adjustment member provided by the present application.
  • Fig. 5 is a working principle diagram of the regulating member provided by the present application.
  • Fig. 6 is a schematic diagram of the work of the regulator provided by the present application.
  • Fig. 7 is a schematic structural view of the inlet channel in the liquid supply assembly provided by the present application.
  • Fig. 8 is a schematic structural view of the outlet channel in the liquid supply assembly provided by the present application.
  • Fig. 9 is an analysis diagram of the angle between the first side and the second side of the inlet channel provided in Fig. 7;
  • Fig. 10 is a working principle diagram of the liquid supply assembly provided by the present application.
  • Fig. 11 is the simulation result of the liquid supply assembly provided by the present application.
  • Fig. 12 is the viscosity-temperature graph of the different media that the application provides
  • Fig. 13 is a flow chart of the working process of the electronic atomization device provided by the present application.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second” and “third” may explicitly or implicitly include at least one of such features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided in this application.
  • the electronic atomization device includes a liquid storage chamber 1, an atomizing core 2, a liquid supply component 3, an auxiliary heating component 4, a liquid inlet channel 5, a liquid outlet channel 6, an air intake channel 7, a battery 8, a controller 9, and a housing 10 .
  • the liquid storage chamber 1, the atomizing core 2, the liquid supply assembly 3, the auxiliary heating assembly 4, the liquid inlet channel 5, the liquid outlet channel 6, the air intake channel 7, the battery 8, and the controller 9 are arranged in the storage chamber formed by the casing 10 100 in.
  • the liquid storage chamber 1 is used to store the aerosol generating substrate
  • the atomizing core 2 is used to atomize the aerosol generating substrate
  • the liquid supply component 3 is used to transport the aerosol generating substrate in the liquid storage chamber 1 to the atomizing core 2, assisting
  • the heating component 4 heats the aerosol-generating substrate entering the liquid supply component 3
  • the liquid inlet channel 5 communicates with the liquid storage chamber 1 and the liquid supply component 3
  • the liquid outlet channel 6 communicates with the liquid supply component 3 and the atomizing core 2 .
  • the atomizing core 2 can generate the matrix through resistance heating atomization, microwave heating atomization, electromagnetic heating atomization, infrared heating atomization, ultrasonic vibration atomization aerosol; preferably, the atomization core 2 includes a heating element 21 and a porous The liquid-guiding element 22 and the heating element 21 are arranged on the surface of the porous liquid-guiding element 22.
  • the porous liquid-guiding element 22 is made of porous ceramics, fiber wool, or glass fiber, and the heating element 21 is resistance heating.
  • the electronic atomization device also includes a temperature sensor (not shown), the temperature sensor is arranged on the liquid inlet pipe 5 and is electrically connected to the controller 9, and is used to generate a substrate for the aerosol entering the liquid supply component 3 The temperature is detected and fed back to the controller 9.
  • the air intake channel 7 communicates with the external atmosphere.
  • the electronic atomization device When the user inhales, the external air enters the electronic atomization device through the air intake channel 7 and carries the aerosol atomized by the atomizing core 2 to be inhaled by the user.
  • the electronic atomization device also includes a ventilation channel 11; Balance with the outside atmosphere.
  • the battery 8 , the atomizing core 2 and the liquid supply assembly 3 are electrically connected to the controller 9 , and the controller 9 controls the battery 8 to supply power to the atomizing core 2 or the liquid supply assembly 3 .
  • the electronic atomization device In order to start the electronic atomization device conveniently, it also includes a first detection element 12 , the first detection element 12 is arranged on the casing 10 , and the first detection element 12 is electrically connected with the controller 9 . That is to say, after the first detection element 12 is triggered, the controller 9 controls the liquid supply assembly 3 and the atomizing core 2 to work.
  • the first detection element 12 can be a mechanical button, or a touch button, which is arranged at a position convenient for the user to touch, such as on the side wall of the casing 10 . It can be understood that the first detection element 12 can also be set to activate the electronic atomization device through voice control or light control, and the specific activation method can be designed according to needs, which is not limited in this application.
  • the electronic atomization device also includes a second detection element (not shown); optionally, the second detection element is an airflow sensor, the airflow sensor is electrically connected to the controller 9, and the airflow sensor detects the suction negative pressure, and the controller 9 controls
  • the airflow sensor can be a microphone or a negative pressure sensor, which can be designed according to needs.
  • Fig. 2 is a schematic structural diagram of the liquid supply assembly provided in the present application
  • Fig. 3 is a schematic structural diagram of the liquid supply assembly provided in the present application.
  • the liquid supply assembly 3 has a pump chamber 31 , an inlet channel 32 and an outlet channel 33 ; both the inlet channel 32 and the outlet channel 33 have contracted and expanded hole structures.
  • One end of the inlet passage 32 communicates with the liquid storage chamber 1 , and the other end communicates with the pump chamber 31 ; one end of the outlet passage 33 communicates with the pump chamber 31 , and the other end connects with the atomizing core 2 .
  • the liquid supply assembly 3 includes a regulator 34, which is used to periodically adjust the volume of the pump chamber 31, so that the amount of liquid flowing from the inlet passage 32 to the pump chamber 31 is more than the amount of liquid flowing from the pump chamber 31 to the inlet passage 32. From the pump chamber 31 The amount of liquid flowing to the outlet channel 33 is greater than the amount of liquid flowing from the outlet channel 33 to the pump chamber 31 , so as to pump the aerosol-generating substrate in the liquid storage chamber 1 to the atomizing core 2 .
  • the liquid supply assembly 3 specifically includes a base 35 and a cover plate 36 , and the adjustment member 34 , the base 35 and the cover plate 36 cooperate to form a pump chamber 31 , an inlet channel 32 and an outlet channel 33 .
  • the base 35 is provided with a groove 351, an inlet groove 352 and an outlet groove 353; the adjustment member 34 covers the groove 351, and the cover plate 36 covers the inlet groove 352 and the outlet groove 353, forming the pump chamber 31 and the inlet channel 32 respectively. and exit channel 33.
  • the shape of the groove 351 is not limited, for example, it may be circular and have an annular side wall; the inlet groove 352 and the outlet groove 353 communicate with the groove 351 respectively, for example, the inlet groove 352 and the outlet groove 353 are respectively arranged in the groove 351
  • the connection between the inlet groove 352 and the outlet groove 353 and the groove 351 is a gap in the side wall of the groove 351;
  • the shape of the adjustment member 34 matches the shape of the groove 351, and the adjustment member 34 covers the entire groove 351 to form
  • the cover plate 36 has a through hole 364 in the middle, the cover plate 36 covers the inlet groove 352 and the outlet groove 353 to form the inlet passage 32 and the outlet passage 33, and exposes the adjustment member 34 to provide space for the displacement of the adjustment member 34, In this way, the adjustment of the volume of the pump cavity 31 is realized.
  • the base 35 is also provided with a liquid inlet groove 354 and a liquid outlet groove 355.
  • the liquid inlet groove 354 is arranged at the end of the inlet groove 352 away from the inner space of the groove 351 and communicates with the inlet groove 352.
  • the liquid outlet groove 355 is arranged at the outlet groove 353 is away from the end of the inner space of the groove 351 and communicates with the outlet groove 353 .
  • the cross-sectional area of the liquid inlet groove 354 is greater than the cross-sectional area of the expansion opening of the inlet groove 352, and the cross-sectional area of the liquid outlet groove 355 is greater than the cross-sectional area of the expansion opening of the outlet groove 353; optionally, the liquid inlet groove 354 It is the same as the structural size of the liquid outlet groove 355.
  • a liquid inlet hole 361 is provided on the cover plate 36 corresponding to the liquid inlet groove 354 , and a liquid outlet hole 362 is arranged corresponding to the liquid outlet groove 355 .
  • the liquid inlet hole 361 communicates with the liquid inlet channel 5
  • the liquid outlet hole 362 communicates with the liquid outlet channel 6 .
  • the liquid inlet hole 361 is arranged in cooperation with the structural size of the liquid inlet groove 354
  • the liquid outlet hole 362 is arranged in cooperation with the structural size of the liquid outlet groove 355 .
  • the liquid inlet hole 361 and the liquid outlet hole 362 are respectively disposed on opposite sides of the through hole 364 .
  • a plurality of first installation holes 363 are also provided on the periphery of the cover plate 36, and a plurality of second installation holes 356 are arranged on the base 35 corresponding to the plurality of first installation holes 363.
  • the first installation holes 363 and the first installation holes 363 The structural dimensions of the two installation holes 356 are matched, and the cover plate 36 and the base 35 are fixed together through the first installation hole 363 and the second installation hole 356 .
  • the base 35 is also provided with a sealing groove 357, and the sealing groove 357 is arranged around the groove 351, the inlet groove 352, the outlet groove 353, the liquid inlet groove 354 and the liquid outlet groove 355; that is to say, the groove 351, the inlet groove 352 , the outlet groove 353 , the liquid inlet groove 354 and the liquid outlet groove 355 are located in the inner space of the figure formed by the sealing groove 357 .
  • the liquid supply assembly 3 further includes a sealing ring 37 disposed in the sealing groove 357 . The assembly process is that the adjustment member 34 covers the groove 351 , and the adjustment member 24 forms a closed cavity with the cover plate 36 and the sealing ring 37 that is interference fit in the sealing groove 357 .
  • Fig. 4 is a schematic structural diagram of the adjusting member provided in this application
  • Fig. 5 is a working principle diagram of the adjusting member provided in this application
  • Fig. 6 is a working schematic diagram of the adjusting member provided in this application.
  • the adjusting member 34 may be a PZT piezoelectric sheet composed of a piezoelectric ceramic sheet 341 and a substrate 342 , or may be a piston, as long as it can adjust the volume of the pump chamber 31 .
  • the adjustment member 34 is a PZT piezoelectric film composed of a piezoelectric ceramic film 341 and a substrate 342; usually, the substrate 342 is a copper film.
  • both the piezoelectric ceramic sheet 341 and the substrate 342 are circular in shape, and the diameter of the piezoelectric ceramic sheet 341 is smaller than that of the substrate 342 .
  • the PZT piezoelectric sheet moves from the positive maximum displacement state to the negative maximum displacement state.
  • the pump chamber 31 is continuously compressed, and the medium in the pump chamber 31 is continuously pumped out.
  • the pump chamber 31 It is in the state of suction medium.
  • the compression/expansion state of the pump cavity 31 is periodically performed with the sinusoidal signal, realizing the one-way operation of the liquid supply assembly 3 .
  • the controller 9 controls the battery 8 to apply alternating current to the piezoelectric ceramic sheet 341 and the substrate 342 so that the pump chamber 31 realizes periodic expansion/compression.
  • FIG. 7 is a schematic structural view of the inlet passage in the liquid supply assembly provided by the present application
  • FIG. 8 is a schematic structural diagram of the outlet passage in the liquid supply assembly provided by the present application.
  • the structural dimensions of the inlet channel 32 and the outlet channel 33 are substantially the same. The difference is that the expansion port of the inlet passage 32 is connected to the pump chamber 31, and the contraction port of the outlet passage 33 is connected to the pump chamber 31; or, the contraction port of the inlet passage 32 is connected to the pump chamber 31, and the expansion port of the outlet passage 33 is connected to the pump chamber 31. pump chamber 31 .
  • the cross-sections of the inlet channel 32 and the outlet channel 33 can be triangular, polygonal, circular or irregular, and only need to form a contracted and expanded port structure.
  • both the shrinkage and expansion opening structures of the inlet channel 32 and the outlet channel 33 are conical.
  • the constriction and expansion opening structure of the inlet channel 32 is conical.
  • the constriction port of the inlet passage 32 communicates with the liquid storage chamber 1, and the expansion port of the inlet passage 32 communicates with the pump chamber 31;
  • the inlet passage 32 includes a symmetrically arranged first side 321 and a second side 322 on the cross-section of the central axis, namely
  • the entrance groove 352 has two opposite sides on the central axis section, and the angle ⁇ between the first side 321 and the second side 322 is 5-10 degrees; optionally, the first side 321 and the second side
  • the included angle ⁇ of 322 is 7.2 degrees.
  • the length of the inlet passage 32 is L1
  • the size of the constriction of the inlet passage 32 is W1
  • L1/W1 is 11:1-15:1; optionally, L1/W1 is 13:1.
  • the contraction and expansion opening structure of the outlet channel 33 is conical.
  • the constricted opening of the outlet channel 33 communicates with the pump chamber 31, and the expanded opening of the outlet channel 33 is connected to the atomizing core 2;
  • the outlet channel 33 includes symmetrically arranged first sides 321 and second sides 322 on the cross-section of the central axis, namely Outlet slot 353 has two opposite sides on the cross-section of the central axis, and the angle ⁇ between the first side 321 and the second side 322 is 5-10 degrees; optionally, the first side 321 and the second side
  • the included angle ⁇ of 322 is 7.2 degrees.
  • the length of the outlet channel 33 is L2, the size of the constriction of the outlet channel 33 is W2, and L2/W2 is 11:1-15:1; optionally, L2/W2 is 13:1.
  • the contraction and expansion opening of the inlet channel 32 is conical; the expansion opening of the inlet channel 32 communicates with the liquid storage chamber 1 , and the contraction opening of the inlet channel 32 communicates with the pump chamber 31 .
  • the constriction and expansion openings of the outlet channel 33 are conical in shape; Both the inlet channel 32 and the outlet channel 33 include symmetrically arranged first side 321 and second side 322 on the central axis section; the angle ⁇ between the first side 321 and the second side 322 is 30-40 degrees; Optionally, the angle ⁇ between the first side 321 and the second side 322 is 35 degrees.
  • FIG. 9 is an analysis diagram of the angle between the first side and the second side of the inlet channel provided in FIG. 7 .
  • the resistance of the liquid flowing from the constricted port to the dilated port is about 0.28, and the resistance of the liquid flowing from the dilated port to the constricted port is about 1.009; That is, the resistance of a liquid (eg, an aerosol-generating substrate) flowing from a constricted port to a divergent port is less than that of a liquid flowing from a divergent port to a constricted port at the characteristic size.
  • a liquid eg, an aerosol-generating substrate
  • the narrowing port of the inlet channel 32 is connected with the liquid storage chamber 1
  • the expanding port of the inlet channel 32 is connected with the pump chamber 31
  • the contracting port of the outlet channel 33 is connected with the pump chamber 31
  • the expanding port of the outlet channel 33 is connected to the atomizer
  • the resistance of the liquid flowing from the constricted port to the dilated port is greater than 1.46, and the resistance of the liquid flowing from the dilated port to the constricted port is about 1.005; that is That is to say, the resistance of the liquid flowing from the expansion port to the contraction port under the characteristic size is smaller than the resistance of the liquid flowing from the contraction port to the expansion port.
  • the expansion port of the inlet channel 32 communicates with the liquid storage chamber 1
  • the contraction port of the inlet channel 32 communicates with the pump chamber 31
  • the expansion port of the outlet channel 33 communicates with the pump chamber 31
  • the contraction port of the outlet channel 33 is connected to the atomizer
  • the angle between the first side 321 and the second side 322 is 30-40 degrees is conducive to pump chamber 31 liquid intake and pump liquid.
  • the resistance when the liquid flows from the contraction port to the expansion port is 0.28, which is 30 degrees compared with the angle between the first side 321 and the second side 322.
  • the resistance of liquid flowing from the expansion port to the contraction port is 1.005.
  • the included angle between the first side 321 and the second side 322 is 30-40 degrees, the liquid flows from the constricted port to the dilated port, and wall fluid separation will occur, causing part of the liquid to flow back from the dilated port to the constricted port. That is to say, choosing the included angle between the first side 321 and the second side 322 to be 5-10 degrees is more favorable for the pump cavity 31 to enter and pump liquid.
  • FIG. 10 is a working principle diagram of the liquid supply assembly provided by the present application.
  • the constricted port of the inlet channel 32 is connected to the liquid storage chamber 1 , and the expanded port is connected to the pump chamber 31 ;
  • the periodic expansion/compression of the pump chamber 31 is realized; when the pump chamber 31 is under negative pressure, the pump chamber 31 is in an expanded state, and the inlet channel 32
  • the liquid flowing into the pump chamber 31 is more than the liquid flowing into the pump chamber 31 through the outlet passage 33; when the pump chamber 31 is under positive pressure, the pump chamber 31 is in a contracted state, and the liquid flowing out of the pump chamber 31 through the outlet passage 33 is more than that flowing out of the inlet passage 32 31 liquid, the liquid flowing out of the outlet channel 33 sprays the liquid to the atomizing core 2 for atomization through its expansion port (jet port).
  • the adjustment member 34 (PZT piezoelectric film) is displaced upward, the volume of the pump chamber 31 increases, the pump chamber 31 is in an expanded state, and the pump chamber 31 is in a state of medium inflow.
  • the medium in the right side outlet channel 33 i.e., Outlet
  • the liquid flows from the expansion port of the outlet channel 33 to the contraction port of the outlet channel 33 and enters the pump cavity 31 .
  • the resistance of the liquid flowing from the constriction to the expansion is less than the resistance of the liquid from the expansion to the constriction, and the inlet passage 32 flows into more than the outlet passage 33. Liquid, the liquid mainly enters the pump chamber 31 from the inlet channel 32 .
  • the adjustment member 34 PZT piezoelectric film
  • the volume of the pump chamber 31 decreases, the pump chamber 31 is in a contracted state, and the pump chamber 31 is in the state of pumping out the medium.
  • the left inlet channel 32 that is, Inlet
  • the medium in the right outlet channel 33 that is, Outlet
  • both the inlet channel 32 and the outlet channel 33 have liquid pumped out from the pump chamber 31, the resistance of the liquid flowing from the contraction port to the expansion port is less than the resistance of the liquid flowing from the expansion port to the contraction port, and the outlet channel 33 flows out more than the inlet port. There is more liquid in the channel 32, and the liquid mainly enters the atomizing core 2 from the outlet channel 33.
  • the compression/expansion state of the pump chamber 31 is carried out periodically with the sinusoidal signal. Inflow, in order to achieve the directional transport of liquid. Since the regulating member 34 has a maximum positive displacement and a maximum negative displacement, the liquid in the pump chamber 31 is quantitative, so as to realize quantitative liquid supply to the atomizing core 2 .
  • FIG. 11 is the simulation result of the liquid supply assembly provided by this application.
  • the adjustment member 34 is located at the maximum positive displacement, that is, the pump chamber 31 is in an expanded state, and the amount of liquid entering the pump chamber 31 through the inlet passage 32 is 3.439kg/s, and the outlet passage 33
  • the amount of liquid entering the pump chamber 31 is 2.947kg/s; at the peak and valley at the junction of the second cycle and the third cycle, the regulator 34 is located at the negative maximum displacement, that is, the pump chamber 31 is in a contracted state, and enters the outlet from the pump chamber 31
  • the amount of liquid in the passage 33 is 3.443kg/s, and the amount of liquid entering the inlet passage 32 from the pump chamber 31 is 2.94kg/s.
  • Fig. 12 is a viscosity-temperature relationship diagram of different media provided by the present application.
  • Fig. 12 is a graph showing the viscosity-temperature relationship of aerosol generating substrates that can be atomized by some electronic atomization devices, and the viscosity at room temperature is above 150cp. Since the liquid supply component 3 is a micropump, and the inlet channel 32 and the outlet channel 33 are both contracted and expanded pore structures, the viscosity of the aerosol-generating matrix is too high to be conducive to transportation.
  • the heating temperature of the aerosol-generating substrate in the pump cavity 31 is 30-80°C, and the specific heating temperature depends on the aerosol
  • the auxiliary heating component 4 heats the aerosol-generating substrate entering the pump cavity 31 of the liquid supply component 3 until its viscosity is reduced to below 50 cp;
  • the heating temperature of the aerosol-generating substrate is 50-80°C.
  • the auxiliary heating assembly 4 heats the aerosol-generating substrate entering the pump cavity 31 until its viscosity is reduced to below 30 cp; 80°C.
  • FIG. 13 is a flow chart of the working process of the electronic atomization device provided in this application.
  • the liquid level in the liquid storage chamber 1 in the vertical direction is higher than the liquid level in the pump chamber 31 of the liquid supply assembly 3, and the pump chamber 31 is placed vertically with the electronic atomization device
  • the medium will be filled with an aerosol-generating matrix.
  • the first detection element 12 is triggered to activate the electronic atomization device.
  • the controller 9 controls the auxiliary heating component 4 to work.
  • the controller 9 controls the battery 8 to supply power to the auxiliary heating component 4, so that the auxiliary heating component 4 heats the aerosol-generating substrate in the pump chamber 31 of the liquid supply component 3, and then the pump The viscosity of the aerosol-generating substrate in chamber 31 falls within the working range of liquid supply assembly 3 .
  • Pre-pump liquid in response to the auxiliary heating component 4 heating the aerosol-generating substrate in the pump chamber 31 to a preset temperature, the controller 9 controls the regulator 34 to work to deliver a certain amount of aerosol-generating substrate to the atomizing core 2 . That is to say, the auxiliary heating component 4 heats the aerosol-generating substrate in the pump cavity 31 of the liquid supply component 3 to a preset temperature, and the controller 9 controls the battery 8 to supply power to the regulator 34, so that the liquid supply component 3 supplies the atomizing core 2
  • the porous liquid-guiding member 22 transports the quantitative aerosol-generating matrix.
  • the preset temperature is 30-80° C., which is selected according to the characteristics of the aerosol-generating substrate.
  • the controller 9 is also used to determine the suction interval, and control the auxiliary heating component 4 to heat the aerosol-generating substrate entering the pump chamber 31 of the liquid supply component 3 again to a preset value during the suction interval. temperature, and control the operation of the regulator 34 to deliver a certain amount of aerosol-generating substrate to the atomizing core 2 again. That is to say, after one suction is completed, the controller 9 controls the battery 8 to supply power to the auxiliary heating assembly 4 to heat the aerosol generating substrate in the pump chamber 31 of the liquid supply assembly 3 to a preset temperature, and then the controller 9 controls The battery 8 powers the regulating member 34 to deliver a certain amount of aerosol-generating substrate to the atomizing core 2, ready for the next puff.
  • the puff interval is the time interval between the completion of one puff and the start of the next puff.
  • the method of rehydration between pumping is: rehydration is performed between the completion of each suction and the start of the next pumping: that is, the liquid is replenished every time one suction is made, so as to ensure that each suction The same aerosol concentration was obtained.
  • the method of rehydration between pumping is: rehydration is performed between the completion of the predetermined number of suctions and the start of the next predetermined number of suctions, and the predetermined number of suctions is more than 1 time; for example, every 3 times of suction One-time liquid, thereby reducing the frequency of rehydration and prolonging the service life of the liquid supply assembly 3 .
  • the amount of liquid supplied by the liquid supply component 3 for each replenishment should be sufficient for the user to pump multiple times. Due to the different consumption of aerosol-generating substrates by different users, in the initial setting, the liquid supply component 3 performs rehydration according to the pre-set frequency of rehydration in the suction interval. Suction habit setting; after using for a period of time, the controller 9 adjusts the frequency of liquid replenishment in the suction interval of the liquid supply component 3 according to the user's use habits, so as to prevent excessive liquid replenishment and leakage, or too little liquid replenishment phenomenon of dry burning.
  • the average duration of each puff of a user is greater than the average duration of each puff of most users, it indicates that the average consumption of each puff of the user is greater than the average consumption of each puff of most users; usually , if the average duration of each puff of the user is greater than the average duration of each puff of most users, the frequency of rehydration needs to be increased; otherwise, the frequency of rehydration needs to be reduced.
  • the normal suction state is a cycle of 3) suction atomization and 4) oil replenishment between suction intervals.
  • the problem of uneven transportation makes the aerosol taste continuous; and there is no need to install a valve plate in the liquid supply component 3, so that the life and safety of the liquid supply component 3 are guaranteed, and the valve plate is prevented from being corroded or mixed with foreign particles Delivered to the aerosol-generating matrix of the atomizing core 2.
  • the liquid supply component 3 replenishes the atomizing core 2 with the suction interval, which can reduce the volume of the liquid supply component 3, which is beneficial to reduce the volume of the electronic atomization device and save costs.
  • the electronic atomization device of the present application includes a liquid storage chamber, an atomizing core, and a liquid supply assembly; the liquid storage chamber is used to store the aerosol generating substrate; the atomizing core is used to atomize the aerosol generating substrate; the liquid supply assembly has a pump chamber, The inlet channel and the outlet channel; the inlet channel and the outlet channel are both contracted and expanded hole structures; one end of the inlet channel communicates with the liquid storage chamber, and the other end communicates with the pump chamber; one end of the outlet channel communicates with the pump chamber, and the other end connects to the atomizing core
  • the liquid supply assembly includes a regulator, which is used to periodically adjust the volume of the pump chamber, so that the amount of liquid flowing from the inlet passage to the pump chamber is more than the amount of liquid flowing from the pump chamber to the inlet passage, from the The amount of liquid flowing from the pump chamber to the outlet channel is greater than the amount of liquid flowing from the outlet channel to the pump chamber, so that the aerosol-generating substrate in the liquid storage chamber is
  • the active and quantitative liquid supply to the atomizing core is realized, so that the atomizing core consumes more uniformly the components in the aerosol generating matrix during the atomization process; and the active liquid supply is realized through the above-mentioned liquid supply component, The durability and safety of the liquid supply are improved, which is conducive to improving the performance of the electronic atomization device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种电子雾化装置,包括储液腔(1)、雾化芯(2)、供液组件(3);储液腔(1)用于储存气溶胶生成基质;雾化芯(2)用于雾化气溶胶生成基质;供液组件(3)具有泵腔(31)、入口通道(32)和出口通道(33);入口通道(32)和出口通道(33)均为收缩扩张孔结构;入口通道(32)的一端与储液腔(1)连通,另一端与泵腔(31)连通;出口通道(33)的一端与泵腔(31)连通,另一端连接至雾化芯(2);供液组件(1)包括调节件(34),用于周期调节泵腔(31)的容积大小,使得从入口通道(32)流向泵腔(31)的液体量多于从泵腔(31)流向入口通道(32)的液体量,从泵腔(31)流向出口通道(33)的液体量多于从出口通道(33)流向泵腔(31)的液体量,从而将储液腔(1)中的气溶胶生成基质泵向雾化芯(2)。通过以上设置,实现对雾化芯(2)主动且定量的供液。

Description

电子雾化装置 技术领域
本申请涉及雾化器技术领域,具体是涉及一种电子雾化装置。
背景技术
现有的,电子雾化装置的供液技术大多数为通过抽吸负压配合多孔陶瓷或棉芯吸液的被动供液。但是,通过多孔陶瓷或棉芯的毛细作用使得气溶胶生成基质的各组分输运不均匀,且受储液腔中负压的影响,气溶胶生成基质的输送量无法精确控制,会对口感产生影响,降低用户的使用体验感。
基于此,提出了通过微泵供液的供液技术,但现有的微泵均为有阀微泵,有阀微泵中的阀片存在寿命风险、耐腐蚀风险,无法保证微泵的寿命和安全性。
发明内容
有鉴于此,本申请提供一种电子雾化装置,以解决现有技术中如何实现定量供液且保证微泵寿命和安全性的技术问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种电子雾化装置,包括储液腔、雾化芯、供液组件;储液腔,用于储存气溶胶生成基质;雾化芯,用于雾化所述气溶胶生成基质;供液组件,具有泵腔、入口通道和出口通道;所述入口通道和所述出口通道均为收缩扩张孔结构;所述入口通道一端与所述储液腔连通,另一端与所述泵腔连通;所述出口通道的一端与所述泵腔连通,另一端连接至所述雾化芯;所述供液组件包括调节件,用于周期调节所述泵腔的容积大小,使得从所述入口通道流向所述泵腔的液体量多于从所述泵腔流向所述入口通道的液体量,从所述泵腔流向所述出口通道的液体量多于从所述出口通道流向所述泵腔的液体量,从而将所述储液腔 中的气溶胶生成基质泵向所述雾化芯。
其中,所述电子雾化装置还包括辅助加热组件,所述辅助加热组件对进入所述泵腔内的气溶胶生成基质进行加热。
其中,所述辅助加热组件对进入所述泵腔内的气溶胶生成基质进行加热至其粘度降低至50cp以下。
其中,所述辅助加热组件对进入所述泵腔内的气溶胶生成基质进行加热至其粘度降低至30cp以下。
其中,所述收缩扩张孔结构为圆锥形;所述入口通道的收缩口与所述储液腔连通,所述入口通道的扩张口与所述泵腔连通;所述出口通道的收缩口与所述泵腔连通,所述出口通道的扩张口连接至所述雾化芯;所述入口通道和所述出口通道在中心轴截面上均包括对称设置的第一侧边和第二侧边;所述第一侧边与所述第二侧边的夹角为5-10度。
其中,所述入口通道的长度为L1,所述入口通道的收缩口的尺寸为W1,L1/W1为11:1-15:1;所述出口通道的长度为L2,所述出口通道的收缩口的尺寸为W2,L2/W2为11:1-15:1。
其中,所述收缩扩张孔结构为圆锥形;所述入口通道的收缩口与所述泵腔连通,所述入口通道的扩张口与所述储液腔连通;所述出口通道的扩张口与所述泵腔连通,所述出口通道的收缩口连接至所述雾化芯;所述入口通道和所述出口通道在中心轴截面上均包括对称设置的第一侧边和第二侧边;所述第一侧边与所述第二侧边的夹角为30-40度。
其中,还包括控制器和电池;所述调节件包括压电陶瓷片和基片,所述控制器控制所述电池给所述压电陶瓷片和所述基片施加交流电以使所述泵腔实现周期性的扩张/压缩。
其中,所述供液组件还包括基座和盖板;所述基座上设置有凹槽、入口槽和出口槽,所述入口槽和所述出口槽分别与所述凹槽连通;所述调节件覆盖所述凹槽,所述盖板覆盖所述入口槽和所述出口槽,分别形成所述泵腔、所述入口通道和所述出口通道。
其中,所述基座上还设置有进液槽和出液槽,所述进液槽设置于 所述入口槽远离所述凹槽内部空间的端部并与所述入口槽连通,所述出液槽设置于所述出口槽远离所述凹槽内部空间的端部并与所述出口槽连通;所述盖板上对应于所述进液槽处设置有进液孔,对应于所述出液槽处设置有出液孔。
其中,还包括控制器和第一检测元件;响应于所述第一检测元件的启动信号,所述控制器控制所述辅助加热组件工作。
其中,响应于所述辅助加热组件将所述供液组件中的气溶胶生成基质加热到预设温度,所述控制器控制所述调节件工作以向所述雾化芯输送定量的气溶胶生成基质。
其中,所述预设温度为30-80℃。
其中,还包括第二检测元件;所述控制器控制所述调节件工作以向所述雾化芯输送定量的气溶胶生成基质之后,响应于所述第二检测元件的检测信号,所述控制器控制所述雾化芯工作。
其中,所述控制器还用于判断出抽吸间隔,且在所述抽吸间隔控制所述辅助加热组件再次将所述供液组件中的气溶胶生成基质加热到预设温度,并控制所述调节件工作以向所述雾化芯再次输送定量的气溶胶生成基质。
本申请的有益效果:区别于现有技术,本申请的电子雾化装置包括储液腔、雾化芯、供液组件;储液腔用于存储气溶胶生成基质;雾化芯用于雾化气溶胶生成基质;供液组件具有泵腔、入口通道和出口通道;入口通道和出口通道均为收缩扩张孔结构;入口通道一端与储液腔连通,另一端与泵腔连通;出口通道的一端与泵腔连通,另一端连接至雾化芯;供液组件包括调节件,用于周期调节泵腔的容积大小,使得从所述入口通道流向所述泵腔的液体量多于从所述泵腔流向所述入口通道的液体量,从所述泵腔流向所述出口通道的液体量多于从所述出口通道流向所述泵腔的液体量,从而将储液腔中的气溶胶生成基质泵向雾化芯。通过上述设置,实现对雾化芯主动且定量的供液,使得雾化芯在雾化过程中对气溶胶生成基质中各组分的消耗更均匀;且通过上述供液组件实现主动供液,提高了供液的持久性和安全性,利于提高电子雾化装置的性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置的结构示意图;
图2是本申请提供的供液组件的简易结构示意图;
图3是本申请提供的供液组件的具体结构示意图;
图4是本申请提供的调节件的结构示意图;
图5是本申请提供的调节件的工作原理图;
图6是本申请提供的调节件的工作示意图;
图7是本申请提供的供液组件中入口通道的结构示意图;
图8是本申请提供的供液组件中出口通道的结构示意图;
图9是图7提供的入口通道的第一侧边与第二侧边夹角大小分析图;
图10是本申请提供的供液组件的工作原理图;
图11是本申请提供的供液组件的仿真结果;
图12是本申请提供的不同介质的粘度-温度关系图;
图13是本申请提供的电子雾化装置的工作过程流程图。
具体实施方式
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐 含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,图1是本申请提供的电子雾化装置的结构示意图。
电子雾化装置包括储液腔1、雾化芯2、供液组件3、辅助加热组件4、进液通道5、出液通道6、进气通道7、电池8、控制器9、壳体10。储液腔1、雾化芯2、供液组件3、辅助加热组件4、进液通道5、出液通道6、进气通道7、电池8、控制器9设置于壳体10形成的收容腔100中。储液腔1用于储存气溶胶生成基质,雾化芯2用于雾化气溶胶生成基质,供液组件3用于将储液腔1中的气溶胶生成基质输送至雾化芯2,辅助加热组件4对进入供液组件3中的气溶胶生成基质进行加热,进液通道5连通储液腔1和供液组件3,出液通道6连通供液组件3和雾化芯2。其中,雾化芯2可以通过电阻加热雾化、微波加热雾化、电磁加热雾化、红外加热雾化、超声波震动雾化气溶胶生成基质;优选地,雾化芯2包括发热件21和多孔导液件22,发热件21设置于多孔导液件22的表面,可选的,多孔导液件22为多孔陶瓷、纤维棉、玻璃纤维,发热件21为电阻加热。
进一步,电子雾化装置还包括温度感测器(未图示),温度感测 器设置于进液管道5且与控制器9电连接,用于对进入供液组件3中的气溶胶生成基质的温度进行检测并反馈至控制器9。
进气通道7与外界大气连通,用户抽吸时,外界大气通过进气通道7进入电子雾化装置中并携带雾化芯2雾化好的气溶胶被用户吸食。为了保证储液腔1出液顺畅,电子雾化装置还包括换气通道11;换气通道11的一端与储液腔1连通,另一端与进气通道7连通,保证储液腔1中气压与外界大气的平衡。电池8、雾化芯2和供液组件3与控制器9电连接,控制器9控制电池8给雾化芯2或供液组件3供电。
为了方便启动电子雾化装置,还包括第一检测元件12,第一检测元件12设置于壳体10上,第一检测元件12与控制器9电连接。也就是说,第一检测元件12被触发后,控制器9控制供液组件3和雾化芯2工作。第一检测元件12可以为机械按钮,也可以为触控按键,设置于方便用户触摸的位置,例如壳体10侧壁上。可以理解的是,第一检测元件12也可以设置为通过声控或光控等方式启动电子雾化装置,具体的启动方式可以根据需要进行设计,本申请对此不作限定。
电子雾化装置还包括第二检测元件(未图示);可选的,第二检测元件为气流传感器,气流传感器与控制器9电连接,气流传感器检测到抽吸负压,控制器9控制雾化芯2工作;气流传感器可以为咪头,也可以为负压传感器,可以根据需要进行设计。
请参阅图2和图3,图2是本申请提供的供液组件的简易结构示意图,图3是本申请提供的供液组件的具体结构示意图。
供液组件3具有泵腔31、入口通道32和出口通道33;入口通道32和出口通道33均为收缩扩张孔结构。入口通道32的一端与储液腔1连通,另一端与泵腔31连通;出口通道33的一端与泵腔31连通,另一端连接至雾化芯2。供液组件3包括调节件34,用于周期调节泵腔31的容积大小,使得从入口通道32流向泵腔31的液体量多于从泵腔31流向入口通道32的液体量,从泵腔31流向出口通道33的液体量多于从出口通道33流向泵腔31的液体量,从而将储液腔1 中的气溶胶生成基质泵向雾化芯2。
在一实施例中,供液组件3具体包括基座35和盖板36,调节件34、基座35和盖板36配合形成泵腔31、入口通道32和出口通道33。具体地,基座35上设置有凹槽351、入口槽352和出口槽353;调节件34覆盖凹槽351,盖板36覆盖入口槽352和出口槽353,分别形成泵腔31、入口通道32和出口通道33。具体地,凹槽351形状不限,例如可以为圆形且具有环形侧壁;入口槽352和出口槽353分别与凹槽351连通,例如,入口槽352和出口槽353分别设置于凹槽351相对的两侧,入口槽352和出口槽353与凹槽351的连通处为凹槽351侧壁的缺口;调节件34形状与凹槽351形状匹配,且调节件34覆盖整个凹槽351而形成泵腔31;盖板36中间具有通孔364,盖板36覆盖入口槽352和出口槽353而形成入口通道32和出口通道33,并使调节件34暴露,为调节件34的位移提供空间,从而实现对泵腔31容积大小的调节。
基座35上还设置有进液槽354和出液槽355,进液槽354设置于入口槽352远离凹槽351内部空间的端部并与入口槽352连通,出液槽355设置于出口槽353远离凹槽351内部空间的端部并与出口槽353连通。在一实施方式中,进液槽354的截面积大于入口槽352的扩张口的截面积,出液槽355的截面积大于出口槽353的扩张口的截面积;可选的,进液槽354和出液槽355的结构尺寸相同。
盖板36上对应于进液槽354处设置有进液孔361,对应于出液槽355处设置有出液孔362。进液孔361与进液通道5连通,出液孔362与出液通道6连通。进液孔361与进液槽354的结构尺寸配合设置,出液孔362与出液槽355的结构尺寸配合设置。在一个实施例中,进液孔361和出液孔362分别设置于通孔364相对的两侧。
在盖板36的周缘上还设置有多个第一安装孔363,在基座35上对应于多个第一安装孔363处设置有多个第二安装孔356,第一安装孔363和第二安装孔356的结构尺寸配合设置,通过第一安装孔363和第二安装孔356将盖板36和基座35固定在一起。
进一步,基座35上还设置有密封槽357,密封槽357环绕凹槽 351、入口槽352、出口槽353、进液槽354和出液槽355设置;也就是说,凹槽351、入口槽352、出口槽353、进液槽354和出液槽355位于密封槽357围设形成的图形的内部空间中。供液组件3还包括密封圈37,密封圈37设置于密封槽357中。组装过程为,调节件34覆盖凹槽351,调节件24与盖板36和过盈配合在密封槽357的密封圈37形成封闭腔体。
请参阅图4-图6,图4是本申请提供的调节件的结构示意图,图5是本申请提供的调节件的工作原理图,图6是本申请提供的调节件的工作示意图。
其中,调节件34可以是由压电陶瓷片341和基片342组成的PZT压电片,也可以是活塞,能够实现对泵腔31容积的调节即可。在本实施例中,调节件34选用由压电陶瓷片341和基片342组成的PZT压电片;通常,基片342为铜片。在具体实施方式中,压电陶瓷片341和基片342的形状均为圆形,且压电陶瓷片341的直径小于基片342的直径。
在压电陶瓷片341与基片342之间施加电压会使PZT压电片发生纵向弯曲位移(如图5所示),施加交流电压将实现往复振动,从而实现对泵腔31容积的周期性调节。
参见图6,PZT压电片由正向最大位移状态运动至负向最大位移状态,此过程中泵腔31持续压缩,泵腔31中的介质被持续泵出。PZT压电片由平衡位置(y=0)移动至正向最大位移处和PZT压电片由负向位移最大处移动至平衡位置对应的泵腔31状态为持续扩张,此过程中泵腔31为吸入介质状态。泵腔31压缩/扩张状态随正弦信号周期性进行,实现供液组件3的单向工作。具体地,控制器9控制电池8给压电陶瓷片341和基片342施加交流电以使泵腔31实现周期性的扩张/压缩。
请参阅图7和图8,图7是本申请提供的供液组件中入口通道的结构示意图,图8是本申请提供的供液组件中出口通道的结构示意图。
入口通道32和出口通道33的结构尺寸基本相同。不同之处在于入口通道32的扩张口连通至泵腔31,出口通道33的收缩口连通至 泵腔31;或,入口通道32的收缩口连通至泵腔31,出口通道33的扩张口连通至泵腔31。可以理解的是,入口通道32和出口通道33的截面可以是三角形、多边形、圆形或非规则形状,只需形成收缩扩张口结构即可。可选的,入口通道32和出口通道33的收缩扩张口结构均为圆锥形。
在一实施方式中,入口通道32的收缩扩张口结构为圆锥形。入口通道32的收缩口与储液腔1连通,入口通道32的扩张口与泵腔31连通;入口通道32在中心轴截面上包括对称设置的第一侧边321和第二侧边322,即入口槽352在中心轴截面上两个相对的侧边,第一侧边321和第二侧边322的夹角α为5-10度;可选的,第一侧边321和第二侧边322的夹角α为7.2度。入口通道32的长度为L1,入口通道32的收缩口的尺寸为W1,L1/W1为11:1-15:1;可选的,L1/W1为13:1。
出口通道33的收缩扩张口结构为圆锥形。出口通道33的收缩口与泵腔31连通,出口通道33的扩张口连接至雾化芯2;出口通道33在中心轴截面上包括对称设置的第一侧边321和第二侧边322,即出口槽353在中心轴截面上两个相对的侧边,第一侧边321和第二侧边322的夹角α为5-10度;可选的,第一侧边321和第二侧边322的夹角α为7.2度。出口通道33的长度为L2,出口通道33的收缩口的尺寸为W2,L2/W2为11:1-15:1;可选的,L2/W2为13:1。
在另一实施方式中,入口通道32的收缩扩张口结构为圆锥形;入口通道32的扩张口与储液腔1连通,入口通道32的收缩口与泵腔31连通。出口通道33的收缩扩张口结构均为圆锥形;出口通道33的扩张口与泵腔31连通,出口通道33的收缩口连接至雾化芯2。入口通道32和出口通道33在中心轴截面上均包括对称设置的第一侧边321和第二侧边322;第一侧边321与第二侧边322的夹角α为30-40度;可选的,第一侧边321和第二侧边322的夹角α为35度。
请参阅图9,图9是图7提供的入口通道的第一侧边与第二侧边夹角大小分析图。
当第一侧边321与第二侧边322的夹角为5-10度时,液体从收 缩口流向扩张口时的阻力约为0.28,液体从扩张口流向收缩口的阻力约为1.009;也就是说,该特征尺寸下液体(例如,气溶胶生成基质)从收缩口流向扩张口时的阻力小于液体从扩张口流向收缩口的阻力。因此,当入口通道32的收缩口与储液腔1连通,入口通道32的扩张口与泵腔31连通,出口通道33的收缩口与泵腔31连通,出口通道33的扩张口连接至雾化芯2时(当入口通道32中液体流向为从收缩口流向扩张口,出口通道33中液体流向为从收缩口流向扩张口时),第一侧边321与第二侧边322的夹角为5-10度有利于泵腔31进液和泵液。
当第一侧边321与第二侧边322的夹角为30-40度时,液体从收缩口流向扩张口时的阻力大于1.46,液体从扩张口流向收缩口的阻力约为1.005;也就是说,该特征尺寸下液体从扩张口流向收缩口时的阻力小于液体从收缩口流向扩张口的阻力。因此,当入口通道32的扩张口与储液腔1连通,入口通道32的收缩口与泵腔31连通,出口通道33的扩张口与泵腔31连通,出口通道33的收缩口连接至雾化芯2时(当入口通道32中液体流向为从扩张口流向收缩口,出口通道33中液体流向为从扩张口流向收缩口时),第一侧边321与第二侧边322的夹角为30-40度有利于泵腔31进液和泵液。
第一侧边321与第二侧边322的夹角为5-10度时液体从收缩口流向扩张口时的阻力为0.28,比第一侧边321与第二侧边322的夹角为30-40度时液体从扩张口流向收缩口的阻力1.005小。且第一侧边321与第二侧边322的夹角为30-40度时,液体从收缩口流向扩张口,会出现壁液分离的现象,会导致部分液体从扩张口向收缩口回流。也就是说,选用第一侧边321与第二侧边322的夹角为5-10度,更有利于泵腔31进液和泵液。
请参阅图10,图10是本申请提供的供液组件的工作原理图。
根据入口通道32的收缩口连通储液腔1,扩张口连通泵腔31;出口通道33的收缩口连通泵腔31,扩张口为喷射口且连接至雾化芯2。通过给调节件34施加交流电以给泵腔31提供周期性的正压/负压,进而实现泵腔31周期性的扩张/压缩;泵腔31负压时,泵腔31处于 扩张状态,入口通道32流入泵腔31的液体多于出口通道33流入泵腔31的液体;泵腔31正压时,泵腔31处于收缩状态,出口通道33流出泵腔31的液体多于入口通道32流出泵腔31的液体,出口通道33流出的液体通过其扩张口(喷射口)将液体喷到雾化芯2雾化。
具体地,调节件34(PZT压电片)位移向上,泵腔31容积增大,泵腔31处于扩张状态,泵腔31为介质流入状态,此过程左侧入口通道32(即,Inlet)内的介质自左向右,右侧出口通道33(即,Outlet)内的介质自右向左;也就是说,液体从入口通道32的收缩口流向入口通道32的扩张口进入泵腔31,且液体从出口通道33的扩张口流向出口通道33的收缩口进入泵腔31。进一步,虽然液体从入口通道32和出口通道33进入泵腔31,但是液体从收缩口流向扩张口时的阻力小于液体从扩张口流向收缩口的阻力,入口通道32流入比出口通道33更多的液体,液体主要是从入口通道32进入泵腔31。
反过来,调节件34(PZT压电片)位移向下,泵腔31容积减小,泵腔31处于收缩状态,泵腔31为介质泵出状态,此过程左侧入口通道32(即,Inlet)内的介质自右向左,右侧出口通道33(即,Outlet)内的介质自左向右;也就是说,泵腔31中的液体从入口通道32的扩张口流向入口通道32的收缩口进入储液腔1,且泵腔31中的液体从出口通道33的收缩口流向出口通道33的扩张口进入雾化芯2。进一步,虽然入口通道32和出口通道33均有液体自泵腔31向外泵出,但是液体从收缩口流向扩张口时的阻力小于液体从扩张口流向收缩口的阻力,出口通道33流出比入口通道32更多的液体,液体主要是从出口通道33进入雾化芯2。
所以,在调节件34(PZT压电片)周期性上下运动过程中,泵腔31压缩/扩张状态随正弦信号周期性进行,每个周期内,出口通道33液体净流出,入口通道32液体净流入,以此实现对液体的定向输运。由于调节件34有最大正位移和最大负位移,泵腔31中的液体是定量的,以此实现对雾化芯2的定量供液。
请参阅图11,图11是本申请提供的供液组件的仿真结果。
通过实验发现,左侧入口通道32(即,Inlet)内的的液体进多出 少,右侧出口通道33(即,Outlet)内的出多进少,从而实现将储液腔1中的气溶胶生成基质泵向雾化芯2。图11中的第二周期中的峰顶为调节件34位于正向最大位移处,即泵腔31处于扩张状态,通过入口通道32进入泵腔31的液体量为3.439kg/s,出口通道33进入泵腔31的液体量为2.947kg/s;在第二周期与第三周期交界的峰谷为调节件34位于负向最大位移处,即泵腔31处于收缩状态,从泵腔31进入出口通道33的液体量为3.443kg/s,从泵腔31进入入口通道32的液体量为2.94kg/s。
请参阅图12,图12是本申请提供的不同介质的粘度-温度关系图。
通过实验发现,不同介质在不同温度下的粘度不同,但其粘度都随着温度的升高而减低。图12为部分电子雾化装置可雾化的气溶胶生成基质的粘度-温度关系图,在常温下的粘度均在150cp以上。由于供液组件3为微泵,入口通道32和出口通道33均为收缩扩张孔结构,气溶胶生成基质的粘度太高不利于输送。所以,通过对进入供液组件3中的气溶胶生成基质进行加热,以降低其粘度便于输送;对泵腔31内的气溶胶生成基质的加热温度至30-80℃,具体加热温度根据气溶胶生成基质的特性进行设定。可选的,辅助加热组件4对进入供液组件3的泵腔31中的气溶胶生成基质进行加热至其粘度降低至50cp以下;也就是说,优选对进入供液组件3的泵腔31中的气溶胶生成基质的加热温度为50-80℃。可选的,辅助加热组件4对进入泵腔31内的气溶胶生成基质进行加热至其粘度降低至30cp以下;也就是说,优选对泵腔31内的气溶胶生成基质的加热温度至60-80℃。
请参阅图13,图13是本申请提供的电子雾化装置的工作过程流程图。
电子雾化装置的工作过程描述如下:
1)预热:在首次抽吸前,竖直方向上储液腔1中的液位比供液组件3的泵腔31中的液位高,电子雾化装置竖直放置状态下泵腔31中将填满气溶胶生成基质。用户要使用电子雾化装置时,触发第一检测元件12以启动电子雾化装置,响应于第一检测元件12的启动信号,控制器9控制辅助加热组件4工作。也就是说,电子雾化装置被启动 时,控制器9控制电池8给辅助加热组件4供电,以使辅助加热组件4加热供液组件3的泵腔31中的气溶胶生成基质,进而使泵腔31中气溶胶生成基质的粘度降至供液组件3的工作范围内。
2)预泵液:响应于辅助加热组件4将泵腔31内的气溶胶生成基质加热到预设温度,控制器9控制调节件34工作以向雾化芯2输送定量的气溶胶生成基质。也就是说,辅助加热组件4加热供液组件3的泵腔31中的气溶胶生成基质至预设温度,控制器9控制电池8给调节件34供电,使供液组件3向雾化芯2的多孔导液件22输运定量气溶胶生成基质,此时准备工作完成,后续为正常抽吸流程。其中,预设温度为30-80℃,具体根据气溶胶生成基质的特性进行选择。
3)抽吸雾化:控制器9控制调节件34工作以向雾化芯2输送定量的气溶胶生成基质之后,响应于第二检测元件的信号(例如,气流传感器检测到的抽吸负压),控制器9控制雾化芯2工作。也就是说,第二检测元件将其检测信号反馈给控制器9,控制器9根据该信号控制电池8给雾化芯2的发热件21供电,使雾化芯2工作雾化气溶胶生成基质生成气溶胶,雾化好的气溶胶与从进气通道7进入的空气混合被用户吸食。抽吸动作完成后,控制器9控制电池8停止给雾化芯2供电,使得雾化芯2的发热件21停止动作。
4)抽吸间隔补液:控制器9还用于判断出抽吸间隔,且在抽吸间隔控制辅助加热组件4再次将进入供液组件3的泵腔31中的气溶胶生成基质加热到预设温度,并控制调节件34工作以向雾化芯2再次输送定量的气溶胶生成基质。也就是说,在完成一次抽吸后,控制器9控制电池8给辅助加热组件4供电以将供液组件3的泵腔31中的气溶胶生成基质加热到预设温度,然后控制器9控制电池8给调节件34供电以向雾化芯2输送定量的气溶胶生成基质,为下一次抽吸做好准备。
其中,抽吸间隔为完成一次抽吸与开始下一次抽吸之间的时间间隔。在一实施方式中,抽吸间隔补液的方式为:在完成每一次抽吸与开始下一次抽吸之间进行补液:也就是说,每抽吸1次补一次液,从而确保每次抽吸到的气溶胶浓度相同。在另一实施方式中,抽吸间隔 补液的方式为:完成预定抽吸次数与开始下一预定抽吸次数之间进行补液,且预定抽吸次数大于1次;例如,每抽吸3次补一次液,从而减少补液次数,延长供液组件3的使用寿命。
每完成多次抽吸补一次液的方式中,供液组件3每次补液的供液量要足够用户抽吸多次。由于不同用户抽吸一次对气溶胶生成基质的消耗量不同,在初始设定中,供液组件3按预先设定好的抽吸间隔补液频次进行补液,该补液频次或补液间隔根据多数用户的抽吸习惯设定;使用一段时间后,控制器9根据用户的使用习惯,调整供液组件3在抽吸间隔进行补液的频次,防止出现补液过多出现漏液的现象,或补液过少出现干烧的现象。例如,如果用户的每次抽吸的平均时长大于多数用户的每次抽吸的平均时长,则表明用户的每次抽吸的平均消耗量大于多数用户的每次抽吸的平均消耗量;通常,如果用户的每次抽吸的平均时长大于多数用户的每次抽吸的平均时长,则需要增加补液频次,反之,需要减小补液频次。
进一步,为了避免电子雾化装置的供液组件3和雾化芯2同时工作,在供液组件3补液的过程中,如果检测到用户的抽吸动作,则停止补液,进一步发出提示信息,从而避免用户快速抽吸,抽吸间隔不够完成一次补液而导致的供液组件3和雾化芯2同时工作。
电子雾化装置首次开封后完成工作过程1)预热和2)预泵液后,正常抽吸状态是3)抽吸雾化和4)抽吸间隔补油的循环。通过在电子雾化装置中设置供液组件3,实现对雾化芯2的定量供液,避免了仅用雾化芯2的多孔导液件22导液带来的气溶胶生成基质组分输运不均匀的问题,使气溶胶的口感具有持续性;且供液组件3中并不需设置阀片,使得供液组件3的寿命和安全性得到保障,避免阀片被腐蚀或异物颗粒混入输送到雾化芯2的气溶胶生成基质中。供液组件3利用抽吸间隔对雾化芯2进行补液,可以缩小供液组件3的体积,有利于减小电子雾化装置的体积,节省成本。
本申请的电子雾化装置包括储液腔、雾化芯、供液组件;储液腔用于存储气溶胶生成基质;雾化芯用于雾化气溶胶生成基质;供液组件具有泵腔、入口通道和出口通道;入口通道和出口通道均为收缩扩 张孔结构;入口通道一端与储液腔连通,另一端与泵腔连通;出口通道的一端与泵腔连通,另一端连接至雾化芯;供液组件包括调节件,用于周期调节泵腔的容积大小,使得从所述入口通道流向所述泵腔的液体量多于从所述泵腔流向所述入口通道的液体量,从所述泵腔流向所述出口通道的液体量多于从所述出口通道流向所述泵腔的液体量,从而将储液腔中的气溶胶生成基质泵向雾化芯。通过上述设置,实现对雾化芯主动且定量的供液,使得雾化芯在雾化过程中对气溶胶生成基质中各组分的消耗更均匀;且通过上述供液组件实现主动供液,提高了供液的持久性和安全性,利于提高电子雾化装置的性能。
以上所述仅为本申请的部分实施例,并非因此限制本申请的保护范围,凡是利用本申请说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种电子雾化装置,其中,包括:
    储液腔,用于储存气溶胶生成基质;
    雾化芯,用于雾化所述气溶胶生成基质;
    供液组件,具有泵腔、入口通道和出口通道;所述入口通道和所述出口通道均为收缩扩张孔结构;所述入口通道的一端与所述储液腔连通,另一端与所述泵腔连通;所述出口通道的一端与所述泵腔连通,另一端连接至所述雾化芯;所述供液组件包括调节件,用于周期调节所述泵腔的容积大小,使得从所述入口通道流向所述泵腔的液体量多于从所述泵腔流向所述入口通道的液体量,从所述泵腔流向所述出口通道的液体量多于从所述出口通道流向所述泵腔的液体量,从而将所述储液腔中的气溶胶生成基质泵向所述雾化芯。
  2. 根据权利要求1所述的电子雾化装置,其中,所述电子雾化装置还包括辅助加热组件,所述辅助加热组件对进入所述泵腔内的气溶胶生成基质进行加热。
  3. 根据权利要求2所述的电子雾化装置,其中,所述辅助加热组件对进入所述泵腔内的气溶胶生成基质进行加热至其粘度降低至50cp以下。
  4. 根据权利要求2所述的电子雾化装置,其中,所述辅助加热组件对进入所述泵腔内的气溶胶生成基质进行加热至其粘度降低至30cp以下。
  5. 根据权利要求1所述的电子雾化装置,其中,所述收缩扩张孔结构为圆锥形;所述入口通道的收缩口与所述储液腔连通,所述入口通道的扩张口与所述泵腔连通;所述出口通道的收缩口与所述泵腔连通,所述出口通道的扩张口连接至所述雾化芯;所述入口通道和所述出口通道在中心轴截面上均包括对称设置的第一侧边和第二侧边;所述第一侧边与所述第二侧边的夹角为5-10度。
  6. 根据权利要求5所述的电子雾化装置,其中,所述入口通道的长度为L1,所述入口通道的收缩口的尺寸为W1,L1/W1为 11:1-15:1;所述出口通道的长度为L2,所述出口通道的收缩口的尺寸为W2,L2/W2为11:1-15:1。
  7. 根据权利要求1所述的电子雾化装置,其中,所述收缩扩张孔结构为圆锥形;所述入口通道的收缩口与所述泵腔连通,所述入口通道的扩张口与所述储液腔连通;所述出口通道的扩张口与所述泵腔连通,所述出口通道的收缩口连接至所述雾化芯;所述入口通道和所述出口通道在中心轴截面上均包括对称设置的第一侧边和第二侧边;所述第一侧边与所述第二侧边的夹角为30-40度。
  8. 根据权利要求1所述的电子雾化装置,其中,还包括控制器和电池;所述调节件包括压电陶瓷片和基片,所述控制器控制所述电池给所述压电陶瓷片和所述基片施加交流电以使所述泵腔实现周期性的扩张/压缩。
  9. 根据权利要求1所述的电子雾化装置,其中,所述供液组件还包括基座和盖板;所述基座上设置有凹槽、入口槽和出口槽,所述入口槽和所述出口槽分别与所述凹槽连通;所述调节件覆盖所述凹槽,所述盖板覆盖所述入口槽和所述出口槽,分别形成所述泵腔、所述入口通道和所述出口通道。
  10. 根据权利要求9所述的电子雾化装置,其中,所述基座上还设置有进液槽和出液槽,所述进液槽设置于所述入口槽远离所述凹槽内部空间的端部并与所述入口槽连通,所述出液槽设置于所述出口槽远离所述凹槽内部空间的端部并与所述出口槽连通;所述盖板上对应于所述进液槽处设置有进液孔,对应于所述出液槽处设置有出液孔。
  11. 根据权利要求1所述的电子雾化装置,其中,还包括控制器和第一检测元件;响应于所述第一检测元件的启动信号,所述控制器控制所述辅助加热组件工作。
  12. 根据权利要求11所述的电子雾化装置,其中,响应于所述辅助加热组件将所述供液组件中的气溶胶生成基质被加热到预设温度,所述控制器控制所述调节件工作以向所述雾化芯输送定量的气溶胶生成基质。
  13. 根据权利要求12所述的电子雾化装置,其中,所述预设温 度为30-80℃。
  14. 根据权利要求12所述的电子雾化装置,其中,还包括第二检测元件;所述控制器控制所述调节件工作以向所述雾化芯输送定量的气溶胶生成基质之后,响应于所述第二检测元件的检测信号,所述控制器控制所述雾化芯工作。
  15. 根据权利要求14所述的电子雾化装置,其中,所述控制器还用于判断出抽吸间隔,且在所述抽吸间隔控制所述辅助加热组件再次将所述供液组件中的气溶胶生成基质加热到预设温度,并控制所述调节件工作以向所述雾化芯再次输送定量的气溶胶生成基质。
PCT/CN2021/093392 2021-05-12 2021-05-12 电子雾化装置 WO2022236741A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093392 WO2022236741A1 (zh) 2021-05-12 2021-05-12 电子雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093392 WO2022236741A1 (zh) 2021-05-12 2021-05-12 电子雾化装置

Publications (1)

Publication Number Publication Date
WO2022236741A1 true WO2022236741A1 (zh) 2022-11-17

Family

ID=84027907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093392 WO2022236741A1 (zh) 2021-05-12 2021-05-12 电子雾化装置

Country Status (1)

Country Link
WO (1) WO2022236741A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518147A (en) * 1994-03-01 1996-05-21 The Procter & Gamble Company Collapsible pump chamber having predetermined collapsing pattern
CN103751891A (zh) * 2014-01-27 2014-04-30 杨留霞 医用雾化给药器
CN204723537U (zh) * 2015-06-25 2015-10-28 佛山可为医疗科技有限公司 气雾剂输注系统
CN107847690A (zh) * 2015-05-16 2018-03-27 苏州汉方医药有限公司 手动悬浮微粒发生器及其应用
CN108697867A (zh) * 2016-03-31 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成系统的雾化组合件
CN109563825A (zh) * 2016-08-16 2019-04-02 菲利普莫里斯生产公司 气溶胶生成装置
US10286163B1 (en) * 2014-03-04 2019-05-14 Philip J. Paustian On demand aerosolized delivery inhaler
CN112403706A (zh) * 2020-06-08 2021-02-26 璞真生活有限公司 精油雾化器
CN212940904U (zh) * 2020-04-29 2021-04-13 江苏省苏北人民医院 一种带有安全阀的雾化器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518147A (en) * 1994-03-01 1996-05-21 The Procter & Gamble Company Collapsible pump chamber having predetermined collapsing pattern
CN103751891A (zh) * 2014-01-27 2014-04-30 杨留霞 医用雾化给药器
US10286163B1 (en) * 2014-03-04 2019-05-14 Philip J. Paustian On demand aerosolized delivery inhaler
CN107847690A (zh) * 2015-05-16 2018-03-27 苏州汉方医药有限公司 手动悬浮微粒发生器及其应用
CN204723537U (zh) * 2015-06-25 2015-10-28 佛山可为医疗科技有限公司 气雾剂输注系统
CN108697867A (zh) * 2016-03-31 2018-10-23 菲利普莫里斯生产公司 用于气溶胶生成系统的雾化组合件
CN109563825A (zh) * 2016-08-16 2019-04-02 菲利普莫里斯生产公司 气溶胶生成装置
CN212940904U (zh) * 2020-04-29 2021-04-13 江苏省苏北人民医院 一种带有安全阀的雾化器
CN112403706A (zh) * 2020-06-08 2021-02-26 璞真生活有限公司 精油雾化器

Similar Documents

Publication Publication Date Title
CN110944534B (zh) 电子烟流体泵
JP7054676B2 (ja) ポンプを備えたエアロゾル発生システム
US4961885A (en) Ultrasonic nebulizer
TWI644625B (zh) 電子香煙
CN110839966B (zh) 供液方法和装置
WO2022236741A1 (zh) 电子雾化装置
WO2020015516A1 (zh) 供液方法和装置
CN109952040A (zh) 通过泵送空气分配液体气溶胶形成基质的气溶胶生成系统和方法
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
WO2022236742A1 (zh) 电子雾化装置
CN115336812A (zh) 电子雾化装置
WO2022237453A1 (zh) 一种雾化器及其电子雾化装置
CN115336811A (zh) 电子雾化装置
EP2918909B1 (en) A liquid fuel portable heater having a thermoelectric generator, and according control method
WO2023035912A1 (zh) 雾化器及电子雾化装置
WO2023207367A1 (zh) 电子雾化装置及其加热控制方法、计算机存储介质
WO2023207311A1 (zh) 电子雾化装置及其控制方法、计算机存储介质
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
WO2023004793A1 (zh) 电子雾化装置、雾化器及其雾化组件
WO2023193151A1 (zh) 雾化器及电子雾化装置
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
CN218219162U (zh) 电子雾化装置
CN113966870B (zh) 一种用于雾化高粘度烟油的超声雾化装置
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
WO2023207292A1 (zh) 电子雾化装置及其储液雾化组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941314

Country of ref document: EP

Kind code of ref document: A1