WO2022236742A1 - 电子雾化装置 - Google Patents

电子雾化装置 Download PDF

Info

Publication number
WO2022236742A1
WO2022236742A1 PCT/CN2021/093393 CN2021093393W WO2022236742A1 WO 2022236742 A1 WO2022236742 A1 WO 2022236742A1 CN 2021093393 W CN2021093393 W CN 2021093393W WO 2022236742 A1 WO2022236742 A1 WO 2022236742A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump chamber
liquid
outlet channel
channel
inlet
Prior art date
Application number
PCT/CN2021/093393
Other languages
English (en)
French (fr)
Inventor
刘成川
杨豪
夏畅
赵月阳
雷桂林
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/093393 priority Critical patent/WO2022236742A1/zh
Publication of WO2022236742A1 publication Critical patent/WO2022236742A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves

Definitions

  • the present application relates to the technical field of atomizers, in particular to an electronic atomization device.
  • the present application provides an electronic atomization device to solve the technical problem of how to realize quantitative liquid supply and ensure the service life and safety of the micropump in the prior art.
  • the first technical solution provided by this application is to provide an electronic atomization device, including: a liquid storage chamber, an atomizing core, and a liquid supply component; the liquid storage chamber is used to store an aerosol generating substrate ; Atomizing core, used to atomize the aerosol-generating substrate; Liquid supply assembly, having a pump cavity, an inlet channel, and an outlet channel; one end of the inlet channel communicates with the pump cavity, and the other end communicates with the liquid storage cavity; one end of the outlet channel communicates with the pump cavity, and the other end is connected to the atomizing core; the inlet channel is provided with a first valve to control the aerosol-generating substrate from the liquid storage cavity The outlet passage is provided with a second valve, which controls the aerosol-generating substrate to flow from the pump chamber to the atomizing core in one direction; the liquid supply assembly includes a regulator for The volume of the pump chamber is periodically adjusted, so as to pump the aerosol-generating substrate in the liquid storage chamber to the atomizing core.
  • both the first valve and the second valve are electronically controlled mechanical valves or one-way valves.
  • the inlet channel is provided with a first Tesla structure to form the first valve; the outlet channel is provided with a second Tesla structure to form the second valve.
  • one end of the inlet passage for connecting the pump cavity is set as a first constriction structure to form the first valve; one end of the outlet passage for connecting the pump cavity is set as a second constriction structure to form the second valve.
  • the inlet channel includes a first segment of the inlet channel and a second segment of the inlet channel, the cross-sectional area of the first segment of the inlet channel is larger than the cross-sectional area of the second segment of the inlet channel, thereby forming the first constriction Port structure; the side of the first section of the inlet channel close to the pump cavity and the side of the second section of the inlet channel close to the pump cavity are flush or tangent;
  • the outlet channel includes a first section of outlet channel and a second section of outlet channel, the cross-sectional area of the first section of outlet channel is larger than the cross-sectional area of the second section of outlet channel, thereby forming the second constriction structure ;
  • the outlet channel of the first section is set coaxially with the outlet channel of the second section.
  • the first constriction structure is a tapered structure
  • the outlet channel includes a first section of outlet channel and a second section of outlet channel, the cross-sectional area of the first section of outlet channel is larger than the cross-sectional area of the second section of outlet channel, thereby forming the second necking structure;
  • the outlet channel of the first section is arranged coaxially with the outlet channel of the second section.
  • the movement direction of the regulating member is parallel or perpendicular to the flow direction of the aerosol-generating substrate flowing into the pump chamber.
  • the liquid supply assembly includes two inlet passages, the two inlet passages and the outlet passages meet at one place and communicate with the pump chamber through a connecting passage; the two inlet passages are connected along the outlet passage symmetrically arranged and located on both sides of the intersection of the two inlet passages and the outlet passages.
  • the connecting channel is a tapered structure.
  • the regulator also includes a controller and a battery;
  • the regulator includes a piezoelectric ceramic sheet and a substrate, and the controller controls the battery to apply alternating current to the piezoelectric ceramic sheet and the substrate to make the pump chamber Implement periodic expansion/compression.
  • a controller and a first detection element are also included; in response to an activation signal of the first detection element, the controller controls the adjustment member to work to deliver a certain amount of aerosol-generating substrate to the atomizing core.
  • the controller controls the operation of the regulating member to deliver a certain amount of aerosol generating substrate to the atomizing core, in response to the detection signal of the second detection element, the control The controller controls the work of the atomizing core.
  • the controller is also used to determine the suction interval, and control the regulating member to work during the suction interval so as to deliver a certain amount of aerosol-generating substrate to the atomizing core again.
  • the electronic atomization device of the present application includes a liquid storage chamber, an atomizing core and a liquid supply assembly; the liquid storage chamber is used to store the aerosol generating substrate; the atomizing core is used for atomization An aerosol-generating substrate; the liquid supply component has a pump chamber, an inlet channel and an outlet channel; one end of the inlet channel communicates with the pump chamber, and the other end communicates with the liquid storage chamber; one end of the outlet channel communicates with the pump chamber, and the other end connects to the atomizer core; the inlet passage is provided with a first valve to control the one-way flow of the aerosol-generating substrate from the liquid storage chamber to the pump chamber; the outlet passage is provided with a second valve to control the one-way flow of the aerosol-generating substrate from the pump chamber to the atomizing core;
  • the liquid component includes an adjustment member, which is used to adjust the volume of the pump chamber, so as to pump the aerosol-generating substrate in the liquid storage chamber to the atomizing core
  • the directional liquid supply of the liquid supply component is realized; by setting the regulator to adjust the volume of the pump chamber, the active and quantitative liquid supply to the atomizing core is realized.
  • Fig. 1 is a schematic structural diagram of an electronic atomization device provided by the present application
  • Fig. 2 is a simplified structural schematic diagram of the liquid supply assembly provided by the present application.
  • Fig. 3 is a schematic structural view of the adjustment member provided by the present application.
  • Fig. 4 is the working principle diagram of the regulator provided by the present application.
  • Fig. 5 is the working schematic diagram of the regulator provided by the present application.
  • Fig. 6a is a schematic structural diagram of the first embodiment of the liquid supply assembly provided by the present application.
  • Fig. 6b is a schematic structural diagram of the second embodiment of the liquid supply assembly provided by the present application.
  • Fig. 7 is a schematic structural view of the liquid supply assembly provided in Fig. 6a;
  • Fig. 8 is a working principle diagram of the liquid supply assembly provided by the present application.
  • Fig. 9a is a velocity contour diagram of the contracted state of the pump cavity of the liquid supply assembly provided in Fig. 6a;
  • Fig. 9b is the flow line of the pump cavity contracted state of the liquid supply assembly provided in Fig. 6a;
  • Fig. 9c is a velocity contour diagram of the expansion state of the pump cavity of the liquid supply assembly provided in Fig. 6a;
  • Fig. 9d is a streamline diagram of the expanded state of the pump cavity of the liquid supply assembly provided in Fig. 6a;
  • Fig. 10 is a simulation result diagram of the liquid supply assembly provided in Fig. 6a and Fig. 6b;
  • Fig. 11 is a schematic structural diagram of the third embodiment of the liquid supply assembly provided by the present application.
  • Fig. 12 is a schematic structural diagram of the fourth embodiment of the liquid supply assembly provided by the present application.
  • Fig. 13 is a simulation result diagram of the liquid supply assembly provided in Fig. 11;
  • Fig. 14 is another simulation result diagram of the liquid supply assembly provided in Fig. 11;
  • Fig. 15 is a simulation result diagram of the liquid supply assembly provided in Fig. 12;
  • Fig. 16 is a schematic structural diagram of the fifth embodiment of the liquid supply assembly provided by the present application.
  • Fig. 17 is an analysis diagram of the included angle of the conical structure provided by the present application.
  • Fig. 18 is a flow chart of the working process of the electronic atomization device provided by the present application.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided in this application.
  • the electronic atomization device includes a liquid storage chamber 1 , an atomizing core 2 , a liquid supply assembly 3 , a liquid inlet channel 5 , a liquid outlet channel 6 , an air inlet channel 7 , a battery 8 , a controller 9 , and a casing 10 .
  • the liquid storage chamber 1 , the atomizing core 2 , the liquid supply assembly 3 , the liquid inlet channel 5 , the liquid outlet channel 6 , the air inlet channel 7 , the battery 8 , and the controller 9 are arranged in the housing chamber 100 formed by the casing 10 .
  • the liquid storage chamber 1 is used to store the aerosol-generating substrate
  • the atomizing core 2 is used to atomize the aerosol-generating substrate
  • the liquid supply component 3 is used to transport the aerosol-generating substrate in the liquid storage chamber 1 to the atomizing core 2 for further
  • the liquid channel 5 communicates with the liquid storage chamber 1 and the liquid supply assembly 3
  • the liquid outlet channel 6 communicates with the liquid supply assembly 3 and the atomizing core 2 .
  • the atomizing core 2 includes a heating element 21 and a porous liquid guiding element 22, the heating element 21 is arranged on the surface of the porous liquid guiding element 22, and the heating element 21 can be atomized through resistance heating, microwave heating atomization, electromagnetic heating atomization, Ultrasonic vibration atomizes the aerosol to generate a matrix; optionally, the porous liquid-guiding element 22 is porous ceramics, and the heating element 21 is resistance heating.
  • the air intake channel 7 communicates with the external atmosphere.
  • the electronic atomization device When the user inhales, the external air enters the electronic atomization device through the air intake channel 7 and carries the aerosol atomized by the atomizing core 2 to be inhaled by the user.
  • the electronic atomization device also includes a ventilation channel 11; Balance with the outside atmosphere.
  • the battery 8 , the atomizing core 2 and the liquid supply assembly 3 are electrically connected to the controller 9 , and the controller 9 controls the battery 8 to supply power to the atomizing core 2 or the liquid supply assembly 3 .
  • the electronic atomization device In order to start the electronic atomization device conveniently, it also includes a first detection element 12 , the first detection element 12 is arranged on the casing 10 , and the first detection element 12 is electrically connected with the controller 9 . That is to say, after the first detection element 12 is triggered, the controller 9 controls the liquid supply assembly 3 and the atomizing core 2 to work.
  • the first detection element 12 can be a mechanical button, or a touch button, which is arranged at a position convenient for the user to touch, such as on the side wall of the casing 10 . It can be understood that the first detection element 12 can also be set to activate the electronic atomization device through voice control or light control, and the specific activation method can be designed according to needs, which is not limited in this application.
  • the electronic atomization device also includes a second detection element (not shown); optionally, the second detection element is an airflow sensor, the airflow sensor is electrically connected to the controller 9, and the airflow sensor detects the suction negative pressure, and the controller 9 controls
  • the airflow sensor can be a microphone or a negative pressure sensor, which can be designed according to needs.
  • FIG. 2 is a schematic structural diagram of the liquid supply assembly provided by the present application.
  • the liquid supply assembly 3 has a pump chamber 31, an inlet passage 32 and an outlet passage 33; one end of the inlet passage 32 communicates with the pump chamber 31, and the other end communicates with the liquid storage chamber 1; one end of the outlet passage 33 communicates with the pump chamber 31, and the other end communicates with the pump chamber 31.
  • the inlet passage 32 is provided with a first valve 323, and the first valve 323 controls the aerosol generating substrate to flow from the liquid storage chamber 1 to the pump chamber 31 in one direction;
  • the outlet passage 33 is provided with a second valve 331, the second The valve 331 controls the one-way flow of the aerosol-generating substrate from the pump chamber 31 to the atomizing core 2;
  • the liquid supply assembly 3 includes a regulating member 34 for periodically adjusting the volume of the pump chamber 31, so that the aerosol in the liquid storage chamber 1 The generated substrate is pumped to atomizing core 2.
  • Fig. 3 is a schematic structural diagram of the adjusting member provided in this application
  • Fig. 4 is a working principle diagram of the adjusting member provided in this application
  • Fig. 5 is a working schematic diagram of the adjusting member provided in this application.
  • the adjusting member 34 may be a PZT piezoelectric sheet composed of a piezoelectric ceramic sheet 341 and a substrate 342 , or may be a piston, as long as it can adjust the volume of the pump chamber 31 .
  • the regulating member 34 is a PZT piezoelectric film (as shown in FIG. 3 ) composed of a piezoelectric ceramic film 341 and a substrate 342 ; usually, the substrate 342 is a copper sheet.
  • both the piezoelectric ceramic sheet 341 and the substrate 342 are circular in shape, and the diameter of the piezoelectric ceramic sheet 341 is smaller than that of the substrate 342 .
  • the PZT piezoelectric sheet moves from the positive maximum displacement state to the negative maximum displacement state.
  • the pump chamber 31 is continuously compressed, and the medium in the pump chamber 31 is continuously pumped out.
  • the pump chamber 31 It is in the state of suction medium.
  • the compression/expansion state of the pump cavity 31 is periodically performed with the sinusoidal signal, realizing the one-way operation of the liquid supply assembly 3 .
  • the controller 9 controls the battery 8 to apply alternating current to the piezoelectric ceramic sheet 341 and the substrate 342 so that the pump chamber 31 realizes periodic expansion/compression.
  • Fig. 6a is a schematic structural diagram of the first embodiment of the liquid supply assembly provided by the present application
  • Fig. 6b is a schematic structural diagram of the second embodiment of the liquid supply assembly provided by the present application
  • Fig. 7 is a schematic structural diagram of the liquid supply assembly provided in FIG. 6a.
  • the moving direction of the regulating member 34 is parallel or perpendicular to the flow direction of the aerosol-generating substrate flowing into the pump chamber 31. That is to say, the adjustment member 34 can be set so that the movement direction of the adjustment member 34 is perpendicular to the flow direction of the aerosol-generating substrate flowing into the pump chamber 31, and the liquid supply assembly 3 is a planar structure (as shown in FIG. 6 a ); the adjustment member 34 can be set as The movement direction of the regulating member 34 is parallel to the flow direction of the aerosol-generating substrate flowing into the pump chamber 31, and the liquid supply assembly 3 has an axisymmetric structure (as shown in FIG. 6b ).
  • the liquid supply assembly 3 When the liquid supply assembly 3 is a planar structure, see FIG. 7, the liquid supply assembly 3 also includes a base 35 and a cover plate 36, and the adjustment member 34, the base 35 and the cover plate 36 cooperate to form a pump chamber 31, an inlet channel 32 and an outlet. Channel 33.
  • the base 35 is provided with a groove 351, an inlet groove 352 and an outlet groove 353, the adjusting member 34 covers the groove 351, and the cover plate 36 covers the inlet groove 352 and the outlet groove 353, forming the pump chamber 31 and the inlet channel 32 respectively. and exit channel 33.
  • the base 35 is also provided with a liquid inlet groove 354 and a liquid outlet groove 355, the liquid inlet groove 354 is arranged at the end of the inlet groove 352 away from the inner space of the groove 351 and communicates with the inlet groove 352, and the liquid outlet groove 355 is arranged at the outlet groove 353 is away from the end of the inner space of the groove 351 and communicates with the outlet groove 353 .
  • the cross-sectional shape and size of the liquid inlet groove 354 is the same as the cross-sectional shape and size of the inlet groove 352 near the end of the liquid inlet groove 354, and the cross-sectional shape and size of the liquid outlet groove 355 is the same as that of the outlet groove 353 near the end of the liquid outlet groove 355.
  • the cross-sectional shape and dimensions are the same.
  • a liquid inlet hole 361 is provided on the cover plate 36 corresponding to the liquid inlet groove 354 , and a liquid outlet hole 362 is arranged corresponding to the liquid outlet groove 355 .
  • the liquid inlet hole 361 communicates with the liquid inlet channel 5 to communicate with the liquid storage chamber 1 ; the liquid outlet hole 362 communicates with the liquid outlet channel 6 to connect to the atomizing core 2 .
  • the liquid inlet hole 361 is arranged in cooperation with the structural size of the liquid inlet groove 354
  • the liquid outlet hole 362 is arranged in cooperation with the structural size of the liquid outlet groove 355 .
  • a plurality of first installation holes 363 are arranged on the periphery of the cover plate 36, and a plurality of second installation holes 356 are arranged on the base 35 corresponding to the plurality of first installation holes 363.
  • the first installation holes 363 and the second The structural dimensions of the mounting holes 356 are matched, and the cover plate 36 and the base 35 are fixed together through the first mounting holes 363 and the second mounting holes 356 .
  • a through hole 364 is also provided on the cover plate 36 to expose the adjustment member 34 and provide space for the displacement of the adjustment member 34 , so as to realize the adjustment of the volume of the pump chamber 31 .
  • the liquid supply assembly 3 includes two inlet passages 32, the two inlet passages 32 and the outlet passage 33 meet at one place and communicate with the pump chamber 31 through the connecting passage 37; the two inlet passages
  • the channels 32 are arranged symmetrically along the outlet channel 33 and on either side of the junction of the two inlet channels 32 and the outlet channel 33 .
  • the arrangement and number of the inlet channel 32 and the outlet channel 33 can be selected according to the needs, so that the liquid in the inlet channel 32 can flow into the pump chamber 31 and the liquid in the outlet channel 33 can be pumped out of the pump chamber 31 .
  • connection passage 37 can be set as a tapered structure to reduce the resistance of liquid flowing into or flowing out of the pump chamber 31, so that the pump chamber 31 can enter and pump liquid more smoothly;
  • One end is the shrink end.
  • a connection groove 356 is provided on the base 35 , and the cover plate 36 covers the connection groove 356 to form a connection channel 37 .
  • the structures of the base 35 and the cover plate 36 in the liquid supply assembly 3 are changed correspondingly, which will not be repeated here.
  • both the first valve 323 and the second valve 331 can be electronically controlled mechanical valves or one-way valves, which can realize the liquid in the inlet passage 32 flowing from the liquid storage chamber 1 to the pump chamber 31, and the liquid in the outlet passage 33 It is sufficient for the liquid to flow from the pump chamber 31 to the atomizing core 2 .
  • both the first valve 323 and the second valve 331 are electronically controlled mechanical valves, when the pump chamber 31 expands, the first valve 323 opens and the second valve 331 closes; when the pump chamber 31 compresses, the first valve 323 closes, The second valve 331 is opened.
  • first valve 323 and the second valve 331 are one-way valves, such as silicone one-way valves, when the pump chamber 31 expands, the first valve 323 opens and the second valve 331 closes; when the pump chamber 31 compresses, the first valve 323 closed, the second valve 331 is opened.
  • the first valve 323 and the second valve 331 can be a Tesla valve or a structure similar to a Tesla valve, which can realize the net flow of the liquid in the inlet channel 32 from the liquid storage chamber 1 to the pump chamber 31,
  • the liquid in the outlet passage 33 may flow from the pump cavity 31 to the atomizing core 2 .
  • This application introduces the valve-like structure forming the first valve 323 and the second valve 331 .
  • a first Tesla structure is provided on the inlet channel 32 to form a first valve 323; a second Tesla structure is provided on the outlet channel 33 to form a second valve.
  • Second valve 331 Referring to Fig. 6b, in the second embodiment of the liquid supply assembly 3, a first Tesla structure is provided on the inlet channel 32 to form a first valve 323; a second Tesla structure is provided on the outlet channel 33 to form a second valve 323. Second valve 331 .
  • the movement direction of the regulating member 34 in the first embodiment is perpendicular to the flow direction of the aerosol-generating substrate flowing into the pump chamber 31, and the regulating member 34 in the second embodiment
  • the moving direction of the member 34 is parallel to the flow direction of the aerosol generating substrate flowing into the pump chamber 31; whether the moving direction of the regulating member 34 is parallel to the flowing direction of the aerosol generating substrate flowing into the pump chamber 31, or the moving direction of the regulating member 34 is perpendicular to the aerosol generating
  • the flow direction of the substrate flowing into the pump chamber 31, the principle of pumping liquid into the pump chamber 31 is the same as that of the pump liquid.
  • the liquid supply assembly 3 The working principle is introduced.
  • Fig. 9a is a velocity cloud diagram of the contraction state of the pump cavity of the liquid supply assembly provided in Fig. 6a
  • Fig. 9b is a streamline diagram of the contracted state of the pump chamber of the liquid supply assembly provided in Fig. 6a
  • Fig. 9c is a velocity contour diagram of the expansion state of the pump chamber of the liquid supply assembly provided in Fig. 6a
  • Fig. 9d is a diagram of the liquid supply assembly provided in Fig. 6a The streamline diagram of the pump chamber expansion state.
  • the periodic expansion/compression of the pump chamber 31 is realized; when the pump chamber 31 is under negative pressure, the pump chamber 31 is in an expanded state, and the inlet channel 32 The liquid flowing into the pump chamber 31 is more than the liquid flowing into the pump chamber 31 through the outlet passage 33; when the pump chamber 31 is under positive pressure, the pump chamber 31 is in a compressed state, and the liquid flowing out of the pump chamber 31 through the outlet passage 33 is more than the liquid flowing out of the inlet passage 32 31, the liquid flowing out of the outlet channel 33 is sprayed to the atomizing core 2 for atomization.
  • the displacement of the adjustment member 34 is upward (the PZT piezoelectric sheet moves from the equilibrium position to the positive maximum displacement and the PZT piezoelectric sheet moves from the negative maximum displacement to the equilibrium position), the volume of the pump chamber 31 increases, and the pump chamber 31 In the expanded state, the pump cavity 31 is in the state of medium inflow.
  • the arc surface A of the first Tesla valve generates a vortex, which is in the same direction as the liquid flows into the pump chamber 31; the arc surface B of the second Tesla valve generates a vortex, which is opposite to the direction of the liquid flowing into the pump chamber 31, preventing The medium flows from the outlet channel 33 into the pump chamber 31 .
  • the pump chamber 31 is in an expanded state, liquid enters the pump chamber 31 from the inlet passage 32 and the outlet passage 33, but due to the blocking effect of the arc surface B, the liquid mainly enters the pump chamber 31 from the inlet passage 32, and the outlet The amount of liquid entering the pump chamber 31 through the channel 33 is very small.
  • the adjustment member 34 is displaced downward (the PZT piezoelectric sheet moves from the positive maximum displacement position to the negative maximum displacement position), the volume of the pump chamber 31 decreases, the pump chamber 31 is in a contracted state, and the pump chamber 31 is pumped out by the medium. state.
  • the arc surface A of the first Tesla valve produces a vortex, which is opposite to the direction in which the liquid flows into the pump chamber 31, preventing the liquid in the pump chamber 31 from flowing out from the inlet channel 32; the arc surface B of the second Tesla valve produces The vortex is the same as the direction in which the liquid flows into the pump chamber 31 .
  • the liquid in the pump chamber 31 is pumped out from the inlet passage 32 and the outlet passage 33 when the pump chamber 31 is in a contracted state, due to the blocking effect of the arc surface A, the liquid is mainly pumped out from the outlet passage 33 into the In the atomizing core 2, the amount of liquid pumped out from the inlet channel 32 is very small.
  • the compression/expansion state of the pump chamber 31 is carried out periodically with the sinusoidal signal. Inflow, in order to achieve the directional transport of liquid. Since the regulating member 34 has a maximum positive displacement and a maximum negative displacement, the liquid in the pump chamber 31 is quantitative, so as to realize quantitative liquid supply to the atomizing core 2 .
  • FIG. 10 is a simulation result diagram of the liquid supply assembly provided in FIG. 6a and FIG. 6b .
  • Fig. 10 define the abscissa as time and the ordinate as mass flow in the simulation result diagram.
  • the aerosol-generating substrate flows from the pump chamber 31 to the outlet channel 33; when the mass flow rate of the liquid in the outlet channel 33 is positive, the aerosol-generating substrate flows from the outlet channel 33 to the pump chamber 31; that is to say, the part above the abscissa is the return flow of the outlet channel 33.
  • the backflow of the outlet passage 33 in the liquid supply assembly 3 provided in Figure 6b is less than the backflow of the outlet passage 33 in the liquid supply assembly 3 provided in Figure 6a, which is more conducive to pump chamber 31 pumping.
  • the adjustment member 24 is set so that the movement direction of the adjustment member 34 is parallel to the flow direction of the aerosol-generating substrate flowing into the pump chamber 31, and the ratio adjustment member 24 is set so that the movement direction of the adjustment member 34 is perpendicular to the flow direction of the aerosol-generating substrate flowing into the pump chamber 31
  • the flow direction scheme is better. That is, the axisymmetric structure of the liquid supply assembly 3 is more conducive to directional liquid supply to the atomizing core 2 than the planar structure.
  • Fig. 11 is a schematic structural diagram of the third embodiment of the liquid supply assembly provided by the present application
  • Fig. 12 is a schematic structural diagram of the fourth embodiment of the liquid supply assembly provided by the present application.
  • One end of the inlet channel 32 used to connect to the pump chamber 31 is configured as a first constricted structure to form a first valve 323 ; one end of the outlet channel 33 used to connect to the pump chamber 31 is configured as a second constricted structure to form a second valve 331 .
  • the movement direction of the regulating member 34 is perpendicular to the flow direction of the aerosol-generating substrate flowing into the pump chamber 31, and the inlet channel 32 includes a first section of the inlet channel 324 and a second section of the inlet channel 325, the first section
  • the cross-sectional area of the inlet passage 324 is larger than that of the second section of the inlet passage 325, thereby forming a first constriction structure (ie, forming the first valve 323).
  • the side of the first section of inlet channel 324 close to the pump cavity 31 is flush with the side of the second section of inlet channel 325 close to the pump cavity 31;
  • the first section of inlet channel 324 and the second section of inlet channel 325 are circular, the side of the first section of inlet channel 324 near the pump cavity 31 is tangent to the side of the second section of inlet channel 325 near the pump cavity 31;
  • the above arrangement makes the vortex flow in the area A of the inlet channel 32 , which is the same as the flow direction of the liquid flowing from the inlet channel 32 to the pump chamber 31 , and opposite to the flow direction of the liquid in the pump chamber 31 flowing out from the inlet channel 32 . That is to say, the vortex formed by the region A of the first constriction prevents the liquid in the pump cavity 31 from flowing out from the inlet channel 32 .
  • the outlet channel 33 includes a first section outlet channel 332 and a second section outlet channel 333, the cross-sectional area of the first section outlet channel 332 is greater than the cross-sectional area of the second section outlet channel 333, thereby forming a second constriction structure (that is, A second valve 331) is formed; the outlet channel 332 of the first section is coaxially arranged with the outlet channel 333 of the second section.
  • a vortex is formed in the region B of the outlet passage 33 , which is the same direction as the liquid flows from the pump chamber 31 to the outlet passage 33 and opposite to the direction of the liquid flowing from the outlet passage 33 into the pump chamber 31 . That is to say, the vortex formed by the area B of the second constriction prevents liquid from flowing into the pump chamber 31 from the outlet channel 33 .
  • the liquid flows into the pump chamber 31 from the inlet passage 32 net, and the liquid in the pump chamber 31 flows out from the outlet passage 33 net.
  • the movement direction of the regulating member 34 is parallel to the flow direction of the aerosol-generating substrate flowing into the pump cavity 31 .
  • the arrangement of the inlet channel 32 and the outlet channel 33 in the liquid supply assembly 3 provided in FIG. 12 is the same as that of the liquid supply assembly provided in FIG. 11 .
  • the configurations of the inlet channel 32 and the outlet channel 33 in 3 are the same, and will not be repeated here.
  • FIG. 13 is a simulation result diagram of the liquid supply assembly provided in FIG. 11 .
  • the abscissa is defined as time in the simulation result graph, and the ordinate is mass flow.
  • the aerosol-generating substrate flows from the pump chamber 31 to the outlet channel 33; when the mass flow rate of the liquid in the outlet channel 33 is positive, the aerosol-generating substrate flows from the outlet channel 33 to the pump chamber 31; that is to say, the part above the abscissa is the return flow of the outlet channel 33.
  • Setting the first constriction structure at the inlet channel 32 and setting the second constriction structure at the outlet channel 33 can also realize directional liquid supply; It is better to arrange a first Tesla valve structure and a second Tesla valve structure in the outlet channel 33 (as shown in FIG. 13 ).
  • Fig. 14 is the graph of the liquid flow at outlet channel 33 with time; Experimental conditions: the height of the pump chamber 31 is 100 ⁇ m when the regulator 34 is in the non-working state, and the regulator 34 is applied 20Hz alternating current, the viscosity of the medium is 220cp; the experimental result is that the delivery volume of the liquid is 12.4mg/s (as shown in Figure 14, which is another simulation result diagram of the liquid supply component provided in Figure 11).
  • the liquid supply assembly 3 that Fig. 12 provides to carry out the experiment, Fig.
  • the liquid supply assembly 3 is an axisymmetric structure, it is more conducive to directional liquid supply than a planar structure; that is, the adjustment member 24 is set so that the movement direction of the adjustment member 34 is parallel to the flow direction of the aerosol-generating substrate flowing into the pump chamber 31, It is better than the solution in which the adjustment member 24 is arranged such that the movement direction of the adjustment member 34 is perpendicular to the flow direction of the aerosol-generating substrate flowing into the pump cavity 31 .
  • Fig. 16 is a schematic structural diagram of the fifth embodiment of the liquid supply assembly provided by the present application
  • Fig. 17 is an analysis diagram of the included angle of the tapered structure provided by the present application.
  • the first constricted structure (ie, the first valve 323 ) is a conical structure; optionally, one end of the conical structure used to connect to the pump cavity 31 is a constricted port.
  • the resistance of the liquid flowing from the constricted port to the dilated port is about 0.28, and the resistance of the liquid flowing from the dilated port to the constricted port is about 1.009; That is to say, the resistance of the liquid flowing from the constricted port to the dilated port is smaller than the resistance of the liquid flowing from the dilated port to the constricted port under the characteristic size.
  • the resistance of the liquid flowing from the contraction port to the expansion port is greater than 1.46, and the resistance of the liquid flowing from the expansion port to the contraction port is about 1.005; that is to say, the characteristic
  • the resistance of the liquid flowing from the expansion port to the contraction port under the size is smaller than the resistance of the liquid flowing from the contraction port to the expansion port.
  • the end of the tapered structure used to connect to the pump chamber 31 can be a constricted mouth end or an expanded mouth end. It is only necessary to make the inlet passage 32 close to the tapered structure provided at the end of the pump chamber 31 so that the inlet passage 32 flows into the pump chamber 31.
  • the amount of liquid in the pump chamber 31 needs to be greater than the amount of liquid in the pump chamber 31 that flows out from the inlet channel 32 .
  • the outlet channel 33 includes a first section outlet channel 332 and a second section outlet channel 333, the cross-sectional area of the first section outlet channel 332 is greater than the cross-sectional area of the second section outlet channel 333, thereby forming a second constriction structure (that is, A second valve 331) is formed; the outlet channel 332 of the first section is coaxially arranged with the outlet channel 333 of the second section.
  • a vortex is formed in the region B of the outlet passage 33 , which is the same direction as the liquid flows from the pump chamber 31 to the outlet passage 33 and opposite to the direction of the liquid flowing from the outlet passage 33 into the pump chamber 31 . That is to say, the vortex formed by the area B of the second constriction prevents liquid from flowing into the pump chamber 31 from the outlet channel 33 .
  • FIG. 18 is a flow chart of the working process of the electronic atomization device provided by this application.
  • Pre-pump liquid when the user wants to use the electronic atomization device, trigger the first detection element 12 to start the electronic atomization device, in response to the activation signal of the first detection element 12, the controller 9 controls the adjustment member 34 to work to inject The wick 2 delivers a quantity of aerosol-generating substrate. That is to say, the controller 9 controls the battery 8 to supply power to the regulator 34, so that the liquid supply component 3 can transport the quantitative aerosol-generating substrate to the porous liquid-conducting member 22 of the atomizing core 2. suction process.
  • the controller 9 is also used to determine the suction interval, and control the adjustment member 34 to work at the suction interval to deliver a certain amount of aerosol-generating substrate to the atomizing core 2 again. That is to say, after one puff is completed, the controller 9 controls the battery 8 to supply power to the regulator 34 to deliver a certain amount of aerosol-generating substrate to the atomizing core 2, ready for the next puff.
  • the puff interval is the time interval between the completion of one puff and the start of the next puff.
  • the method of rehydration between pumping is: rehydration is performed between the completion of each suction and the start of the next pumping: that is, the liquid is replenished every time one suction is made, so as to ensure that each suction The same aerosol concentration was obtained.
  • the method of rehydration between pumping is: rehydration is performed between the completion of the predetermined number of suctions and the start of the next predetermined number of suctions, and the predetermined number of suctions is more than 1 time; for example, every 3 times of suction One-time liquid, thereby reducing the frequency of rehydration and prolonging the service life of the liquid supply assembly 3 .
  • the amount of liquid supplied by the liquid supply component 3 for each replenishment should be sufficient for the user to pump multiple times. Due to the different consumption of aerosol-generating substrates by different users, in the initial setting, the liquid supply component 3 performs rehydration according to the pre-set frequency of rehydration in the suction interval. Suction habit setting; after using for a period of time, the controller 9 adjusts the frequency of liquid replenishment in the suction interval of the liquid supply component 3 according to the user's use habits, so as to prevent excessive liquid replenishment and leakage, or too little liquid replenishment phenomenon of dry burning.
  • the average duration of each puff of a user is greater than the average duration of each puff of most users, it indicates that the average consumption of each puff of the user is greater than the average consumption of each puff of most users; usually , if the average duration of each puff of the user is greater than the average duration of each puff of most users, the frequency of rehydration needs to be increased; otherwise, the frequency of rehydration needs to be reduced.
  • the working process is completed 1) After pre-pumping, the normal suction state is 2) suction atomization and 3) oil replenishment cycle between suction intervals.
  • the problem of uneven transportation makes the aerosol taste continuous; and there is no need to install a valve plate in the liquid supply component 3, so that the life and safety of the liquid supply component 3 are guaranteed, and the valve plate is prevented from being corroded or mixed with foreign particles Delivered to the aerosol-generating matrix of the atomizing core 2.
  • the liquid supply component 3 replenishes the atomizing core 2 with the suction interval, which can reduce the volume of the liquid supply component 3, which is beneficial to reduce the volume of the electronic atomization device and save costs.
  • the electronic atomization device of the present application includes a liquid storage chamber, an atomizing core and a liquid supply assembly; the liquid storage chamber is used to store the aerosol generating substrate; the atomizing core is used to atomize the aerosol generating substrate; the liquid supply assembly has a pump chamber, The inlet channel and the outlet channel; one end of the inlet channel communicates with the pump chamber, and the other end communicates with the liquid storage chamber; one end of the outlet channel communicates with the pump chamber, and the other end connects to the atomizing core; the inlet channel is provided with a first valve to control the air
  • the aerosol-generating matrix flows from the liquid storage chamber to the pump chamber in one direction; the outlet channel is provided with a second valve to control the aerosol-generating substrate to flow in one direction from the pump chamber to the atomizing core;
  • the liquid supply component includes a regulator for adjusting the pump chamber The size of the volume, so that the aerosol-generating substrate in the liquid storage chamber is pumped to the atomizing core.
  • the directional liquid supply of the liquid supply component is realized; by setting the regulator to adjust the volume of the pump chamber, the active and quantitative liquid supply to the atomizing core is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种电子雾化装置,包括储液腔(1)、雾化芯(2)和供液组件(3);储液腔(1)用于储存气溶胶生成基质,雾化芯(2)用于雾化气溶胶生成基质;供液组件(3)具有泵腔(31)、入口通道(32)和出口通道(33);入口通道(32)的一端与泵腔(31)连通,另一端与储液腔(1)连通;出口通道(33)的一端与泵腔(31)连通,另一端连接至雾化芯(2);入口通道(32)设置有第一阀(323),控制气溶胶生成基质从储液腔(1)单向流向泵腔(31),出口通道(33)设置有第二阀(331),控制气溶胶生成基质从泵腔(31)单向流至雾化芯(2);供液组件(3)包括调节件(34),用于调节泵腔(31)的容积大小,从而将储液腔(1)中的气溶胶生成基质泵向雾化芯(2)。通过设置,实现供液组件(3)的定向供液;调节件(34)调节泵腔(31)容积的大小,实现对雾化芯(2)主动且定量的供液,使得雾化芯(2)对气溶胶生成基质中各组分的消耗更均匀。

Description

电子雾化装置 技术领域
本申请涉及雾化器技术领域,具体是涉及一种电子雾化装置。
背景技术
现有的,电子雾化装置的供液技术大多数为通过抽吸负压配合多孔陶瓷或棉芯吸液的被动供液。但是,通过多孔陶瓷或棉芯的毛细作用使得气溶胶生成基质的各组分输运不均匀,且受储液腔中负压的影响,气溶胶生成基质的输送量无法精确控制,会对口感产生影响,降低用户的使用体验感。
基于此,提出了通过微泵供液的供液技术,但现有的微泵均为有阀微泵,有阀微泵中的阀片存在寿命风险、耐腐蚀风险,无法保证微泵的寿命和安全性。
发明内容
有鉴于此,本申请提供一种电子雾化装置,以解决现有技术中如何实现定量供液且保证微泵寿命和安全性的技术问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种电子雾化装置,包括:储液腔、雾化芯、供液组件;储液腔,用于储存气溶胶生成基质;雾化芯,用于雾化所述气溶胶生成基质;供液组件,具有泵腔、入口通道、出口通道;所述入口通道的一端与所述泵腔连通,另一端与所述储液腔连通;所述出口通道的一端与所述泵腔连通,另一端连接至所述雾化芯;所述入口通道设置有第一阀,控制所述气溶胶生成基质从所述储液腔单向流向所述泵腔;所述出口通道设置有第二阀,控制所述气溶胶生成基质从所述泵腔单向流至所述雾化芯;所述供液组件包括调节件,用于周期调节所述泵腔的容积大小,从而将所述储液腔中的气溶胶生成基质泵向所述雾化芯。
其中,所述第一阀和所述第二阀均为电子控制机械阀或单向阀。
其中,所述入口通道上设置有第一特斯拉结构以形成所述第一阀;所述出口通道上设置有第二特斯拉结构以形成所述第二阀。
其中,所述入口通道用于连接所述泵腔的一端设置为第一缩口结构以形成所述第一阀;所述出口通道用于连接所述泵腔的一端设置为第二缩口结构以形成所述第二阀。
其中,所述入口通道包括第一段入口通道和第二段入口通道,所述第一段入口通道的横截面积大于所述第二段入口通道的横截面积,从而形成所述第一缩口结构;所述第一段入口通道靠近所述泵腔的一侧和所述第二段入口通道靠近所述泵腔的一侧平齐或相切;
所述出口通道包括第一段出口通道和第二段出口通道,所述第一段出口通道的横截面积大于所述第二段出口通道的横截面积,从而形成所述第二缩口结构;所述第一段出口通道与所述第二段出口通道同轴设置。
其中,所述第一缩口结构为锥形结构;
所述出口通道包括第一段出口通道和第二段出口通道,所述第一段出口通道的横截面积大于第二段出口通道的横截面积,从而形成所述第二缩口结构;所述第一段出口通道与所述第二段出口通道同轴设置。
其中,所述调节件的运动方向与所述气溶胶生成基质流入所述泵腔的流向平 行或垂直。
其中,所述供液组件包括两个入口通道,两个所述入口通道和所述出口通道交汇在一处并通过连接通道与所述泵腔连通;两个所述入口通道沿所述出口通道对称设置,且位于两个所述入口通道和所述出口通道的交汇处的两侧。
其中,所述连接通道为锥形结构。
其中,还包括控制器和电池;所述调节件包括压电陶瓷片和基片,所述控制器控制所述电池给所述压电陶瓷片和所述基片施加交流电以使所述泵腔实现周期性的扩张/压缩。
其中,还包括控制器和第一检测元件;响应于所述第一检测元件的启动信号,所述控制器控制所述调节件工作以向所述雾化芯输送定量的气溶胶生成基质。
其中,还包括第二检测元件;所述控制器控制所述调节件工作以向所述雾化芯输送定量的气溶胶生成基质之后,响应于所述第二检测元件的检测信号,所述控制器控制所述雾化芯工作。
其中,所述控制器还用于判断出抽吸间隔,且在所述抽吸间隔控制所述调节件工作以向所述雾化芯再次输送定量的气溶胶生成基质。
本申请的有益效果:区别于现有技术,本申请的电子雾化装置包括储液腔、雾化芯和供液组件;储液腔用于储存气溶胶生成基质;雾化芯用于雾化气溶胶生成基质;供液组件具有泵腔、入口通道和出口通道;入口通道的一端与泵腔连通,另一端与储液腔连通;出口通道的一端与泵腔连通,另一端连接至雾化芯;入口通道设置有第一阀,控制气溶胶生成基质从储液腔单向流向泵腔;出口通道设置有第二阀,控制气溶胶生成基质从泵腔单向流至雾化芯;供液组件包括调节件,用于调节泵腔的容积大小,从而将储液腔中的气溶胶生成基质泵向雾化芯。通过在入口通道上设置第一阀,出口通道上设置第二阀,实现供液组件的定向供液;通过设置调节件调节泵腔容积的大小,实现对雾化芯主动且定量的供液,使得雾化芯在雾化过程中对气溶胶生成基质中各组分的消耗更均匀;且通过上述供液组件实现主动供液,提高了供液的持久性和安全性,利于提高电子雾化装置的性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置的结构示意图;
图2是本申请提供的供液组件的简易结构示意图;
图3是本申请提供的调节件的结构示意图;
图4是本申请提供的调节件的工作原理图;
图5是本申请提供的调节件的工作示意图;
图6a是本申请提供的供液组件第一实施方式的结构简图;
图6b是本申请提供的供液组件第二实施方式的结构简图;
图7是图6a提供的供液组件的结构示意图;
图8是本申请提供的供液组件的工作原理图;
图9a是图6a提供的供液组件的泵腔收缩状态的速度云图;
图9b是图6a提供的供液组件的泵腔收缩状态的流线;
图9c是图6a提供的供液组件的泵腔扩张状态的速度云图;
图9d是图6a提供的供液组件的泵腔扩张状态的流线图;
图10是图6a和图6b提供的供液组件的仿真结果图;
图11是本申请提供的供液组件第三实施方式的结构简图;
图12是本申请提供的供液组件第四实施方式的结构简图;
图13是图11提供的供液组件的仿真结果图;
图14是图11提供的供液组件的另一仿真结果图;
图15是图12提供的供液组件的仿真结果图;
图16是本申请提供的供液组件第五实施方式的结构简图;
图17是本申请提供的锥形结构夹角大小分析图;
图18是本申请提供的电子雾化装置的工作过程流程图。
具体实施方式
下面结合附图和实施例,对本申请作进一步的详细描述。特别指出的是,以下实施例仅用于说明本申请,但不对本申请的范围进行限定。同样的,以下实施例仅为本申请的部分实施例而非全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,图1是本申请提供的电子雾化装置的结构示意图。
电子雾化装置包括储液腔1、雾化芯2、供液组件3、进液通道5、出液通道6、进气通道7、电池8、控制器9、壳体10。储液腔1、雾化芯2、供液组件3、进液通道5、出液通道6、进气通道7、电池8、控制器9设置于壳体10形成的收容腔100中。储液腔1用于储存气溶胶生成基质,雾化芯2用于雾化气溶胶生成基质,供液组件3用于将储液腔1中的气溶胶生成基质输送至雾化芯2,进液通道5连通储液腔1和供液组件3,出液通道6连通供液组件3和雾化芯2。其中,雾化芯2包括发热件21和多孔导液件22,发热件21设置于多孔导液件22的表面,发热件21可以通过电阻加热雾化、微波加热雾化、电磁加热雾化、超声波震动雾化气溶胶生成基质;可选的,多孔导液件22为多孔陶瓷,发热件21为电阻加热。
进气通道7与外界大气连通,用户抽吸时,外界大气通过进气通道7进入电 子雾化装置中并携带雾化芯2雾化好的气溶胶被用户吸食。为了保证储液腔1出液顺畅,电子雾化装置还包括换气通道11;换气通道11的一端与储液腔1连通,另一端与进气通道7连通,保证储液腔1中气压与外界大气的平衡。电池8、雾化芯2和供液组件3与控制器9电连接,控制器9控制电池8给雾化芯2或供液组件3供电。
为了方便启动电子雾化装置,还包括第一检测元件12,第一检测元件12设置于壳体10上,第一检测元件12与控制器9电连接。也就是说,第一检测元件12被触发后,控制器9控制供液组件3和雾化芯2工作。第一检测元件12可以为机械按钮,也可以为触控按键,设置于方便用户触摸的位置,例如壳体10侧壁上。可以理解的是,第一检测元件12也可以设置为通过声控或光控等方式启动电子雾化装置,具体的启动方式可以根据需要进行设计,本申请对此不作限定。
电子雾化装置还包括第二检测元件(未图示);可选的,第二检测元件为气流传感器,气流传感器与控制器9电连接,气流传感器检测到抽吸负压,控制器9控制雾化芯2工作;气流传感器可以为咪头,也可以为负压传感器,可以根据需要进行设计。
请参阅图2,图2是本申请提供的供液组件的简易结构示意图。
供液组件3具有泵腔31、入口通道32和出口通道33;入口通道32的一端与泵腔31连通,另一端与储液腔1连通;出口通道33的一端与泵腔31连通,另一端连接至雾化芯2;入口通道32设置有第一阀323,第一阀323控制气溶胶生成基质从储液腔1单向流向泵腔31;出口通道33设置有第二阀331,第二阀331控制气溶胶生成基质从泵腔31单向流至雾化芯2;供液组件3包括调节件34,用于周期调节泵腔31的容积大小,从而将储液腔1中的气溶胶生成基质泵向雾化芯2。
请参阅图3-图5,图3是本申请提供的调节件的结构示意图,图4是本申请提供的调节件的工作原理图,图5是本申请提供的调节件的工作示意图。
其中,调节件34可以是由压电陶瓷片341和基片342组成的PZT压电片,也可以是活塞,能够实现对泵腔31容积的调节即可。在本实施例中,调节件34选用由压电陶瓷片341和基片342组成的PZT压电片(如图3所示);通常,基片342为铜片。在具体实施方式中,压电陶瓷片341和基片342的形状均为圆形,且压电陶瓷片341的直径小于基片342的直径。
在压电陶瓷片341与基片342之间施加电压会使PZT压电片发生纵向弯曲位移(如图4所示),施加交流电压将实现往复振动,从而实现对泵腔31容积的周期性调节。
参见图5,PZT压电片由正向最大位移状态运动至负向最大位移状态,此过程中泵腔31持续压缩,泵腔31中的介质被持续泵出。PZT压电片由平衡位置(y=0)移动至正向最大位移处和PZT压电片由负向位移最大处移动至平衡位置对应的泵腔31状态为持续扩张,此过程中泵腔31为吸入介质状态。泵腔31压缩/扩张状态随正弦信号周期性进行,实现供液组件3的单向工作。具体地,控制器9控制电池8给压电陶瓷片341和基片342施加交流电以使泵腔31实现周期性的扩张/压缩。
请参阅图6a、图6b和图7,图6a是本申请提供的供液组件第一实施方式的结构简图,图6b是本申请提供的供液组件第二实施方式的结构简图,图7是图6a提供的供液组件的结构示意图。
在具体实施中,调节件34的运动方向与气溶胶生成基质流入泵腔31的流向 平行或垂直。也就是说,调节件34可以设置为调节件34的运动方向与气溶胶生成基质流入泵腔31的流向垂直,供液组件3为平面结构(如图6a所示);调节件34可以设置为调节件34的运动方向与气溶胶生成基质流入泵腔31的流向平行,供液组件3为轴对称结构(如图6b所示)。
当供液组件3为平面结构时,参见图7,供液组件3还包括基座35和盖板36,调节件34、基座35和盖板36配合形成泵腔31、入口通道32和出口通道33。具体地,基座35上设置有凹槽351、入口槽352和出口槽353,调节件34覆盖凹槽351,盖板36覆盖入口槽352和出口槽353,分别形成泵腔31、入口通道32和出口通道33。
基座35上还设置有进液槽354和出液槽355,进液槽354设置于入口槽352远离凹槽351内部空间的端部且与入口槽352连通,出液槽355设置于出口槽353远离凹槽351内部空间的端部且与出口槽353连通。在一实施方式中,进液槽354的截面形状尺寸与入口槽352靠近进液槽354端部的截面形状尺寸相同,出液槽355的截面形状尺寸与出口槽353靠近出液槽355端部的截面形状尺寸相同。
盖板36上对应于进液槽354处设置有进液孔361,对应于出液槽355处设置有出液孔362。进液孔361与进液通道5连通,以与储液腔1连通;出液孔362与出液通道6连通,以连接至雾化芯2。进液孔361与进液槽354的结构尺寸配合设置,出液孔362与出液槽355的结构尺寸配合设置。
在盖板36的周缘上设置有多个第一安装孔363,在基座35上对应于多个第一安装孔363处设置有多个第二安装孔356,第一安装孔363和第二安装孔356的结构尺寸配合设置,通过第一安装孔363和第二安装孔356将盖板36和基座35固定在一起。盖板36上还设置有通孔364,以使调节件34暴露,为调节件34的位移提供空间,从而实现对泵腔31容积大小的调节。
参见图6a-6b,在本实施方式中,供液组件3包括两个入口通道32,两个入口通道32和出口通道33交汇在一处并通过连接通道37与泵腔31连通;两个入口通道32沿出口通道33对称设置,且位于两个入口通道32和出口通道33的交汇处的两侧。通过将两个入口通道32沿着出口通道33对称设置,有利于供液组件3保持平衡。入口通道32和出口通道33的设置方式及其个数可以根据需要进行选择,能够实现入口通道32中的液体净流入泵腔31,出口通道33中的液体净泵出泵腔31即可。进一步,可以将连接通道37设置为锥形结构,以减小液体流入或流出泵腔31的阻力,使得泵腔31进液和泵液更加顺畅;可选的,连接通道37远离泵腔31的一端为缩口端。具体地,在基座35上设置有连接槽356,盖板36覆盖连接槽356形成连接通道37。
当供液组件3为轴对称结构时,供液组件3中的基座35和盖板36的结构做相应改变,不再赘述。
在一实施方式中,第一阀323和第二阀331可以均为电子控制机械阀或单向阀,能够实现入口通道32中的液体从储液腔1流向泵腔31,出口通道33中的液体从泵腔31流向雾化芯2即可。具体地,当第一阀323和第二阀331均为电子控制机械阀,泵腔31扩张时,第一阀323打开,第二阀331关闭;泵腔31压缩时,第一阀323关闭,第二阀331打开。当第一阀323和第二阀331均为单向阀,例如硅胶单向阀,泵腔31扩张时,第一阀323打开,第二阀331关闭;泵腔31压缩时,第一阀323关闭,第二阀331打开。
在另一实施方式中,第一阀323和第二阀331可以是特斯拉阀或类似特斯拉 阀的结构,能够实现入口通道32中的液体从储液腔1净流向泵腔31,出口通道33中的液体从泵腔31净流向雾化芯2即可。本申请就形成第一阀323和第二阀331的类阀结构进行介绍。
参见图6a,在供液组件3的第一实施方式中,入口通道32上设置有第一特斯拉结构以形成第一阀323;出口通道33上设置有第二特斯拉结构以形成第二阀331。参见图6b,在供液组件3的第二实施方式中,入口通道32上设置有第一特斯拉结构以形成第一阀323;出口通道33上设置有第二特斯拉结构以形成第二阀331。图6a与图6b所提供的供液组件3的不同之处在于,第一实施方式中的调节件34的运动方向垂直于气溶胶生成基质流入泵腔31的流向,第二实施方式中的调节件34的运动方向平行于气溶胶生成基质流入泵腔31的流向;无论调节件34的运动方向平行于气溶胶生成基质流入泵腔31的流向,还是调节件34的运动方向垂直于气溶胶生成基质流入泵腔31的流向,泵腔31进液和泵液的原理相同,本申请就调节件34的运动方向垂直于气溶胶生成基质流入泵腔31的流向的情况下,对供液组件3的工作原理进行介绍。
请参阅图8、图9a、图9b、图9c、图9d,图8是本申请提供的供液组件的工作原理图,图9a是图6a提供的供液组件的泵腔收缩状态的速度云图,图9b是图6a提供的供液组件的泵腔收缩状态的流线图,图9c是图6a提供的供液组件的泵腔扩张状态的速度云图,图9d是图6a提供的供液组件的泵腔扩张状态的流线图。
通过给调节件34施加交流电以给泵腔31提供周期性的正压/负压,进而实现泵腔31周期性的扩张/压缩;泵腔31负压时,泵腔31处于扩张状态,入口通道32流入泵腔31的液体多于出口通道33流入泵腔31的液体;泵腔31正压时,泵腔31处于压缩状态,出口通道33流出泵腔31的液体多于入口通道32流出泵腔31的液体,出口通道33流出的液体喷射到雾化芯2雾化。
具体地,调节件34位移向上(PZT压电片由平衡位置移动至正向最大位移处和PZT压电片由负向最大位移处移动至平衡位置),泵腔31容积增大,泵腔31处于扩张状态,泵腔31为介质流入状态。此时,第一特斯拉阀的弧面A产生涡流,与液体流入泵腔31的方向相同;第二特斯拉阀的弧面B产生涡流,与液体流入泵腔31的方向相反,阻止介质从出口通道33流入泵腔31。进一步,虽然泵腔31处于扩张状态时,从入口通道32和出口通道33均有液体进入泵腔31,但由于弧面B的阻流作用,液体主要是从入口通道32进入泵腔31,出口通道33进入泵腔31的液体量很少。
反过来,调节件34位移向下(PZT压电片由正向最大位移处运动至负向最大位移处),泵腔31容积减小,泵腔31处于收缩状态,泵腔31为介质泵出状态。此时,第一特斯拉阀的弧面A产生涡流,与液体流入泵腔31的方向相反,阻止泵腔31中的液体从入口通道32流出;第二特斯拉阀的弧面B产生涡流,与液体流入泵腔31的方向相同。进一步,虽然泵腔31处于收缩状态时,泵腔31中液体从入口通道32和出口通道33均有液体泵出,但由于弧面A的阻流作用,液体主要是从出口通道33泵出进入雾化芯2,从入口通道32泵出的液体量很少。
所以,在调节件34(PZT压电片)周期性上下运动过程中,泵腔31压缩/扩张状态随正弦信号周期性进行,每个周期内,出口通道33液体净流出,入口通道32液体净流入,以此实现对液体的定向输运。由于调节件34有最大正位移和最大负位移,泵腔31中的液体是定量的,以此实现对雾化芯2的定量供液。
请参阅图10,图10是图6a和图6b提供的供液组件的仿真结果图。
通过实现发现,参见图10,在仿真结果图中定义横坐标为时间,纵坐标为质量流量。出口通道33中的液体质量流量为负值时,气溶胶生成基质从泵腔31流向出口通道33;出口通道33中的液体质量流量为正值时,气溶胶生成基质从出口通道33流向泵腔31;也就是说,在横坐标以上的部分为出口通道33的回流量。从图10提供的仿真结果可以得出,图6b提供的供液组件3中的出口通道33的回流比图6a提供的供液组件3中出口通道33的回流少,更有利于泵腔31泵液。也就是说,调节件24设置为调节件34的运动方向平行于气溶胶生成基质流入泵腔31的流向,比调节件24设置为调节件34的运动方向垂直于气溶胶生成基质流入泵腔31的流向的方案更优。即,供液组件3为轴对称结构比平面结构时更利于向雾化芯2定向供液。
请参阅图11和图12,图11是本申请提供的供液组件第三实施方式的结构简图,图12是本申请提供的供液组件第四实施方式的结构简图。
入口通道32用于连接泵腔31的一端设置为第一缩口结构以形成第一阀323;出口通道33用于连接泵腔31的一端设置为第二缩口结构以形成第二阀331。
在一实施方式中,参见图11,调节件34的运动方向垂直于气溶胶生成基质流入泵腔31的流向,入口通道32包括第一段入口通道324和第二段入口通道325,第一段入口通道324的横截面积大于第二段入口通道325的横截面积,从而形成第一缩口结构(即,形成第一阀323)。当第一段入口通道324和第二段入口通道325均为方形时,第一段入口通道324靠近泵腔31的一侧与第二段入口通道325靠近泵腔31的一侧平齐;当第一段入口通道324和第二段入口通道325均为圆形时,第一段入口通道324靠近泵腔31的一侧与第二段入口通道325靠近泵腔31的一侧相切;通过上述设置,使在入口通道32的A区域形成涡流,与液体从入口通道32流向泵腔31的流向相同,且与泵腔31中液体从入口通道32流出的流向相反。也就是说,第一缩口结构的A区域形成的涡流阻碍泵腔31中的液体从入口通道32流出。
出口通道33包括第一段出口通道332和第二段出口通道333,第一段出口通道332的横截面积大于第二段出口通道333的横截面积,从而形成第二缩口结构(即,形成第二阀331);第一段出口通道332与第二段出口通道333同轴设置。通过上述设置,使在出口通道33的B区域形成涡流,与液体从泵腔31流向出口通道33的方向相同,且与液体从出口通道33流入泵腔31的方向相反。也就是说,第二缩口结构的B区域形成的涡流阻碍液体从出口通道33流入泵腔31。
通过设置第一缩口结构和第二缩口结构,实现液体从入口通道32净流入泵腔31,泵腔31中液体从出口通道33净流出。
参见图12,调节件34的运动方向平行于气溶胶生成基质流入泵腔31的流向,图12提供的供液组件3中入口通道32和出口通道33的设置方式与图11提供的供液组件3中入口通道32和出口通道33的设置方式相同,不再赘述。
请参阅图13,图13是图11提供的供液组件的仿真结果图。
通过实验发现,在仿真结果图中定义横坐标为时间,纵坐标为质量流量。出口通道33中的液体质量流量为负值时,气溶胶生成基质从泵腔31流向出口通道33;出口通道33中的液体质量流量为正值时,气溶胶生成基质从出口通道33流向泵腔31;也就是说,在横坐标以上的部分为出口通道33的回流量。在入口通道32设置第一缩口结构,在出口通道33设置第二缩口结构同样能够实现定向 供液;且在出口通道33的回流量特别少,其在克服回流方面效果比在入口通道32设置第一特斯拉阀结构,在出口通道33设置第二特斯拉阀结构更好(如图13所示)。使用图11提供的供液组件3进行实验,图14为出口通道33处液体流量随时间变化图;实验条件:调节件34处于非工作状态时泵腔31的高度为100μm,对调节件34施加20Hz的交流电,介质粘度为220cp;实验结果为液体的输送量为12.4mg/s(如图14所示,图14是图11提供的供液组件的另一仿真结果图)。使用图12提供的供液组件3进行实验,图15为出口通道33处液体流量随时间变化图;实验条件:调节件34处于非工作状态时泵腔31的高度为100μm,对调节件34施加20Hz的交流电,介质粘度为220cp;实验结果为液体的输送量为43.52mg/s(如图15所示,图15是图12提供的供液组件的仿真结果图)。进一步证明了供液组件3为轴对称结构时比平面结构更有利于定向供液;也就是说,调节件24设置为调节件34的运动方向平行于气溶胶生成基质流入泵腔31的流向,比调节件24设置为调节件34的运动方向垂直于气溶胶生成基质流入泵腔31的流向的方案更优。
请参阅图16和图17,图16是本申请提供的供液组件第五实施方式的结构简图,图17是本申请提供的锥形结构夹角大小分析图。
在供液组件3的第五实施方式中,第一缩口结构(即第一阀323)为锥形结构;可选的,锥形结构用于连接泵腔31的一端为收缩口端。参见图17,当锥形结构的两侧壁的夹角为5-10度时,液体从收缩口流向扩张口时的阻力约为0.28,液体从扩张口流向收缩口的阻力约为1.009;也就是说,该特征尺寸下液体从收缩口流向扩张口时的阻力小于液体从扩张口流向收缩口的阻力。当锥形结构的两侧壁的夹角为30-40度时,液体从收缩口流向扩张口时的阻力大于1.46,液体从扩张口流向收缩口的阻力约为1.005;也就是说,该特征尺寸下液体从扩张口流向收缩口时的阻力小于液体从收缩口流向扩张口的阻力。可以理解的是,锥形结构用于连接泵腔31的一端可以为收缩口端,也可以为扩张口端,只需使入口通道32靠近泵腔31一端设置的锥形结构使得入口通道32流入泵腔31的液体量大于泵腔31中液体从入口通道32流出的液体量即可。
出口通道33包括第一段出口通道332和第二段出口通道333,第一段出口通道332的横截面积大于第二段出口通道333的横截面积,从而形成第二缩口结构(即,形成第二阀331);第一段出口通道332与第二段出口通道333同轴设置。通过上述设置,使在出口通道33的B区域形成涡流,与液体从泵腔31流向出口通道33的方向相同,且与液体从出口通道33流入泵腔31的方向相反。也就是说,第二缩口结构的B区域形成的涡流阻碍液体从出口通道33流入泵腔31。
请参阅图18,图18是本申请提供的电子雾化装置的工作过程流程图。
电子雾化装置的工作过程描述如下:
1)预泵液:用户要使用电子雾化装置时,触发第一检测元件12以启动电子雾化装置,响应于第一检测元件12的启动信号,控制器9控制调节件34工作以向雾化芯2输送定量的气溶胶生成基质。也就是说,控制器9控制电池8给调节件34供电,使供液组件3向雾化芯2的多孔导液件22输运定量气溶胶生成基质,此时准备工作完成,后续为正常抽吸流程。
2)抽吸雾化:控制器9控制调节件34工作以向雾化芯2输送定量的气溶胶生成基质之后,响应于第二检测元件的检测信号(例如,气流传感器检测到的抽吸负压),控制器9控制雾化芯2工作。也就是说,第二检测元件将其检测信号 反馈给控制器9,控制器9根据该信号控制电池8给雾化芯2的发热件21供电,使雾化芯2工作雾化气溶胶生成基质生成气溶胶,雾化好的气溶胶与从进气通道7进入的空气混合被用户吸食。抽吸动作完成后,控制器9控制电池8停止给雾化芯2供电,使得雾化芯2的发热件21停止动作。
3)抽吸间隔补液:控制器9还用于判断出抽吸间隔,且在抽吸间隔控制调节件34工作以向雾化芯2再次输送定量的气溶胶生成基质。也就是说,在完成一次抽吸后,控制器9控制电池8给调节件34供电以向雾化芯2输送定量的气溶胶生成基质,为下一次抽吸做好准备。
其中,抽吸间隔为完成一次抽吸与开始下一次抽吸之间的时间间隔。在一实施方式中,抽吸间隔补液的方式为:在完成每一次抽吸与开始下一次抽吸之间进行补液:也就是说,每抽吸1次补一次液,从而确保每次抽吸到的气溶胶浓度相同。在另一实施方式中,抽吸间隔补液的方式为:完成预定抽吸次数与开始下一预定抽吸次数之间进行补液,且预定抽吸次数大于1次;例如,每抽吸3次补一次液,从而减少补液次数,延长供液组件3的使用寿命。
每完成多次抽吸补一次液的方式中,供液组件3每次补液的供液量要足够用户抽吸多次。由于不同用户抽吸一次对气溶胶生成基质的消耗量不同,在初始设定中,供液组件3按预先设定好的抽吸间隔补液频次进行补液,该补液频次或补液间隔根据多数用户的抽吸习惯设定;使用一段时间后,控制器9根据用户的使用习惯,调整供液组件3在抽吸间隔进行补液的频次,防止出现补液过多出现漏液的现象,或补液过少出现干烧的现象。例如,如果用户的每次抽吸的平均时长大于多数用户的每次抽吸的平均时长,则表明用户的每次抽吸的平均消耗量大于多数用户的每次抽吸的平均消耗量;通常,如果用户的每次抽吸的平均时长大于多数用户的每次抽吸的平均时长,则需要增加补液频次,反之,需要减小补液频次。
进一步,为了避免电子雾化装置的供液组件3和雾化芯2同时工作,在供液组件3补液的过程中,如果检测到用户的抽吸动作,则停止补液,进一步发出提示信息,从而避免用户快速抽吸,抽吸间隔不够完成一次补液而导致的供液组件3和雾化芯2同时工作。
电子雾化装置首次开封后完成工作过程1)预泵液后,正常抽吸状态是2)抽吸雾化和3)抽吸间隔补油的循环。通过在电子雾化装置中设置供液组件3,实现对雾化芯2的定量供液,避免了仅用雾化芯2的多孔导液件22导液带来的气溶胶生成基质组分输运不均匀的问题,使气溶胶的口感具有持续性;且供液组件3中并不需设置阀片,使得供液组件3的寿命和安全性得到保障,避免阀片被腐蚀或异物颗粒混入输送到雾化芯2的气溶胶生成基质中。供液组件3利用抽吸间隔对雾化芯2进行补液,可以缩小供液组件3的体积,有利于减小电子雾化装置的体积,节省成本。
本申请的电子雾化装置包括储液腔、雾化芯和供液组件;储液腔用于储存气溶胶生成基质;雾化芯用于雾化气溶胶生成基质;供液组件具有泵腔、入口通道和出口通道;入口通道的一端与泵腔连通,另一端与储液腔连通;出口通道的一端与泵腔连通,另一端连接至雾化芯;入口通道设置有第一阀,控制气溶胶生成基质从储液腔单向流向泵腔;出口通道设置有第二阀,控制气溶胶生成基质从泵腔单向流至雾化芯;供液组件包括调节件,用于调节泵腔的容积大小,从而将储液腔中的气溶胶生成基质泵向雾化芯。通过在入口通道上设置第一阀,出口通道上设置第二阀,实现供液组件的定向供液;通过设置调节件调节泵腔容积的大小, 实现对雾化芯主动且定量的供液,使得雾化芯在雾化过程中对气溶胶生成基质中各组分的消耗更均匀;且通过上述供液组件实现主动供液,提高了供液的持久性和安全性,利于提高电子雾化装置的性能。
以上所述仅为本申请的部分实施例,并非因此限制本申请的保护范围,凡是利用本申请说明书及附图内容所作的等效装置或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (13)

  1. 一种电子雾化装置,其中,包括:
    储液腔,用于储存气溶胶生成基质;
    雾化芯,用于雾化所述气溶胶生成基质;
    供液组件,具有泵腔、入口通道、出口通道;所述入口通道的一端与所述泵腔连通,另一端与所述储液腔连通;所述出口通道的一端与所述泵腔连通,另一端连接至所述雾化芯;所述入口通道设置有第一阀,控制所述气溶胶生成基质从所述储液腔单向流向所述泵腔;所述出口通道设置有第二阀,控制所述气溶胶生成基质从所述泵腔单向流至所述雾化芯;所述供液组件包括调节件,用于周期调节所述泵腔的容积大小,从而将所述储液腔中的气溶胶生成基质泵向所述雾化芯。
  2. 根据权利要求1所述的电子雾化装置,其中,所述第一阀和所述第二阀均为电子控制机械阀或单向阀。
  3. 根据权利要求1所述的电子雾化装置,其中,所述入口通道上设置有第一特斯拉结构以形成所述第一阀;所述出口通道上设置有第二特斯拉结构以形成所述第二阀。
  4. 根据权利要求1所述的电子雾化装置,其中,所述入口通道用于连接所述泵腔的一端设置为第一缩口结构以形成所述第一阀;所述出口通道用于连接所述泵腔的一端设置为第二缩口结构以形成所述第二阀。
  5. 根据权利要求4所述的电子雾化装置,其中,所述入口通道包括第一段入口通道和第二段入口通道,所述第一段入口通道的横截面积大于所述第二段入口通道的横截面积,从而形成所述第一缩口结构;所述第一段入口通道靠近所述泵腔的一侧和所述第二段入口通道靠近所述泵腔的一侧平齐或相切;
    所述出口通道包括第一段出口通道和第二段出口通道,所述第一段出口通道的横截面积大于所述第二段出口通道的横截面积,从而形成所述第二缩口结构;所述第一段出口通道与所述第二段出口通道同轴设置。
  6. 根据权利要求4所述的电子雾化装置,其中,所述第一缩口结构为锥形结构;
    所述出口通道包括第一段出口通道和第二段出口通道,所述第一段出口通道的横截面积大于第二段出口通道的横截面积,从而形成所述第二缩口结构;所述第一段出口通道与所述第二段出口通道同轴设置。
  7. 根据权利要求1所述的电子雾化装置,其中,所述调节件的运动方向与所述气溶胶生成基质流入所述泵腔的流向平行或垂直。
  8. 根据权利要求1所述的电子雾化装置,其中,所述供液组件包括两个入口通道,两个所述入口通道和所述出口通道交汇在一处并通过连接通道与所述泵腔连通;两个所述入口通道沿所述出口通道对称设置,且位于两个所述入口通道和所述出口通道的交汇处的两侧。
  9. 根据权利要求8所述的电子雾化装置,其中,所述连接通道为锥形结构。
  10. 根据权利要求1所述的电子雾化装置,其中,还包括控制器和电池;所述调节件包括压电陶瓷片和基片,所述控制器控制所述电池给所述压电陶瓷片和所述基片施加交流电以使所述泵腔实现周期性的扩张/压缩。
  11. 根据权利要求1所述的电子雾化装置,其中,还包括控制器和第一检测元件;响应于所述第一检测元件的启动信号,所述控制器控制所述调节件工作以向所述雾化芯输送定量的气溶胶生成基质。
  12. 根据权利要求11所述的电子雾化装置,其中,还包括第二检测元件;所述控制器控制所述调节件工作以向所述雾化芯输送定量的气溶胶生成基质之后,响应于所述第二检测元件的检测信号,所述控制器控制所述雾化芯工作。
  13. 根据权利要求12所述的电子雾化装置,其中,所述控制器还用于判断出抽吸间隔,且在所述抽吸间隔控制所述调节件工作以向所述雾化芯再次输送定量的气溶胶生成基质。
PCT/CN2021/093393 2021-05-12 2021-05-12 电子雾化装置 WO2022236742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093393 WO2022236742A1 (zh) 2021-05-12 2021-05-12 电子雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093393 WO2022236742A1 (zh) 2021-05-12 2021-05-12 电子雾化装置

Publications (1)

Publication Number Publication Date
WO2022236742A1 true WO2022236742A1 (zh) 2022-11-17

Family

ID=84027911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093393 WO2022236742A1 (zh) 2021-05-12 2021-05-12 电子雾化装置

Country Status (1)

Country Link
WO (1) WO2022236742A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541577A (zh) * 2003-04-29 2004-11-03 一种非可燃性电子喷雾香烟
US20170013884A1 (en) * 2014-03-31 2017-01-19 Westfield Limited (Ltd.) Personal vaporizer with liquid supply by suction
CN108024579A (zh) * 2015-07-10 2018-05-11 尤尔实验室有限公司 无芯汽化装置及方法
CN108883241A (zh) * 2016-03-31 2018-11-23 菲利普莫里斯生产公司 带泵的气溶胶生成系统
CN109563825A (zh) * 2016-08-16 2019-04-02 菲利普莫里斯生产公司 气溶胶生成装置
CN110944534A (zh) * 2017-06-01 2020-03-31 富特姆1有限公司 电子烟流体泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541577A (zh) * 2003-04-29 2004-11-03 一种非可燃性电子喷雾香烟
US20170013884A1 (en) * 2014-03-31 2017-01-19 Westfield Limited (Ltd.) Personal vaporizer with liquid supply by suction
CN108024579A (zh) * 2015-07-10 2018-05-11 尤尔实验室有限公司 无芯汽化装置及方法
CN108883241A (zh) * 2016-03-31 2018-11-23 菲利普莫里斯生产公司 带泵的气溶胶生成系统
CN109563825A (zh) * 2016-08-16 2019-04-02 菲利普莫里斯生产公司 气溶胶生成装置
CN110944534A (zh) * 2017-06-01 2020-03-31 富特姆1有限公司 电子烟流体泵

Similar Documents

Publication Publication Date Title
US11617230B2 (en) Aerosol-generating system with pump
CN110944534B (zh) 电子烟流体泵
US10307549B2 (en) Aerosol generating device for nebulizing a liquid and a method of temperature control of a liquid to be nebulized
US5938117A (en) Methods and apparatus for dispensing liquids as an atomized spray
AU2014316769B2 (en) Atomizing spray apparatus
US20220053832A1 (en) Assembly comprising sheet heating element and delivery device
TWI644625B (zh) 電子香煙
CN110839966B (zh) 供液方法和装置
US20230232498A1 (en) Aerosol-generating system with pump
WO2022236742A1 (zh) 电子雾化装置
CN115336812A (zh) 电子雾化装置
CN109952040A (zh) 通过泵送空气分配液体气溶胶形成基质的气溶胶生成系统和方法
WO2022236741A1 (zh) 电子雾化装置
WO2021000399A1 (zh) 一种雾化装置
WO2022237453A1 (zh) 一种雾化器及其电子雾化装置
CN217218188U (zh) 一种雾化器及气溶胶产生装置
CN115336811A (zh) 电子雾化装置
KR20230049000A (ko) 휴대용 가습 장치
TWM546115U (zh) 電子香煙
TW201231102A (en) Drug deliver device having nebulization module
WO2024037049A1 (zh) 电子雾化装置、电源组件、雾化器的控制方法及存储介质
WO2023207311A1 (zh) 电子雾化装置及其控制方法、计算机存储介质
CN116998759A (zh) 喷嘴组件及电子雾化装置
CN220756584U (zh) 一种雾化器和雾化装置
CN218219162U (zh) 电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941315

Country of ref document: EP

Kind code of ref document: A1