WO2022236585A1 - 玻尿酸用于制备治疗肺纤维化药剂的用途 - Google Patents

玻尿酸用于制备治疗肺纤维化药剂的用途 Download PDF

Info

Publication number
WO2022236585A1
WO2022236585A1 PCT/CN2021/092789 CN2021092789W WO2022236585A1 WO 2022236585 A1 WO2022236585 A1 WO 2022236585A1 CN 2021092789 W CN2021092789 W CN 2021092789W WO 2022236585 A1 WO2022236585 A1 WO 2022236585A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
group
use according
lung
blm
Prior art date
Application number
PCT/CN2021/092789
Other languages
English (en)
French (fr)
Inventor
傅毓秀
Original Assignee
傅毓秀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 傅毓秀 filed Critical 傅毓秀
Priority to PCT/CN2021/092789 priority Critical patent/WO2022236585A1/zh
Publication of WO2022236585A1 publication Critical patent/WO2022236585A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system

Definitions

  • the invention relates to the use of hyaluronic acid for treating pulmonary fibrosis.
  • Pulmonary fibrosis is caused by damage to the lung tissue caused by smoking, bacteria, viruses, air pollution, aging, oxidative free radicals, radiation, chemotherapy drugs, or heredity, resulting in damage to the lung epithelial cells, resulting in the occurrence of interstitial areas in the lungs.
  • the inflammatory response, proliferation of fibroblasts, and subsequent collagen deposition in the extracellular matrix region (Wynn, 2004; Wilson and Wynn, 2009), impede the exchange of oxygen and carbon dioxide.
  • the damage of pulmonary fibrosis to the lungs is irreversible, and it is a gradual deterioration. Therefore, when the pulmonary fibrosis becomes more and more serious, it will cause the patient to suffer from respiratory failure and lead to death.
  • the present invention provides a use of hyaluronic acid to prepare a drug for reducing pulmonary fibrosis, which is an effective medical solution for treating pulmonary fibrosis.
  • the present invention provides a use of hyaluronic acid to prepare a drug for reducing pulmonary fibrosis.
  • the present invention provides a use of hyaluronic acid for manufacturing a drug for treating, preventing or reversing pulmonary fibrosis.
  • the present invention provides a medicament or a pharmaceutical composition for treating, preventing or reversing symptoms of pulmonary fibrosis, which comprises a therapeutically effective amount of hyaluronic acid.
  • the present invention provides a method of treating, preventing or reversing symptoms of pulmonary fibrosis, comprising administering to an individual in need thereof a medicament or a pharmaceutical composition comprising a therapeutically effective amount of hyaluronic acid.
  • hyaluronic acid with a molecular weight of 10 kDa-2 MDa can be used in the present invention.
  • administering hyaluronic acid to rats with pulmonary fibrosis can effectively improve the condition of pulmonary fibrosis, including treating, preventing or reversing the symptoms of pulmonary fibrosis.
  • administering hyaluronic acid to rats with pulmonary fibrosis can reduce leukocyte infiltration in fibrotic lungs, significantly reduce fibrotic tissue, and increase lung volume.
  • hyaluronic acid is effective to increase the level of reduced lung volume, the level of reduced lung space and/or the reduced number of alveoli.
  • the hyaluronic acid is effective in improving decreased blood oxygen saturation levels, alleviating increased respiration rate and restoring lung atrophy.
  • the hyaluronic acid effectively promotes the degradation of fibrotic tissue that has occurred in the lung.
  • the hyaluronic acid effectively promotes the function reversal of alveolar epithelial cells.
  • the hyaluronic acid can be administered via injection, for example, intravenous, arterial, subcutaneous, intramuscular, intraperitoneal injection and the like.
  • the hyaluronic acid can be directly delivered to the lungs from the oral cavity or the respiratory tract.
  • it can be directly introduced into the nasal cavity or oral cavity, inhaled through the nasal cavity, or delivered to the trachea through the nasal cavity or oral cavity through a bronchoscope.
  • Figure 1 shows the experimental flow chart and animal grouping of inducing left lung fibrosis in rats and administering hyaluronic acid treatment.
  • the rats were divided into five groups.
  • bleomycin (BLM) was injected into the left bronchus of the rats on the 0th day, drug treatment was given on the 21st day, and the animals were sacrificed on the 49th day.
  • Figure 2 shows that the administration of hyaluronic acid can increase the oxygen saturation of arterial blood in mice with pulmonary fibrosis.
  • Part A in Fig. 2 is the photos of rats in each group undergoing pulse arterial oximeter detection on the 49th day, where the arrow points to the value of arterial blood oxygen saturation.
  • Part B in Fig. 2 quantifies the value of arterial blood oxygen concentration in each group of rats at different times.
  • Part B in Fig. 2 quantifies the value of arterial blood oxygen concentration in each group of rats at different times.
  • Figure 2 shows that on the seventh day after BLM injury, the arterial blood oxygen saturation of the rats dropped to the lowest level, and the arterial blood oxygen saturation of the rats in the BLM group did not change much after that.
  • the rats in the hyaluronic acid treatment group had higher arterial oxygen saturation than the BLM group from the 35th day.
  • the arterial blood oxygen saturation of rats in the BLM+MIX HA group was significantly higher than that in the BLM+LHA group and BLM+HHA group, and this trend was maintained until the 49th day.
  • Compared with the rats in the BLM+MIX HA group on the same day there was a statistical difference, p ⁇ 0.05.
  • Figure 3 shows that the administration of hyaluronic acid can increase the volume of the left lung in mice with pulmonary fibrosis.
  • the picture shows the appearance of the lungs of rats in each group on the 49th day.
  • the upper row is the frontal photo of the lungs of each group, and the lower row is the back photo of the lungs of each group.
  • Figure 4 shows that the administration of hyaluronic acid can restore the alveolar structure of mice with pulmonary fibrosis.
  • Part A in Fig. 4 is a low-magnification picture of the left lung tissue slices of rats in each group on day 49 after HE staining.
  • Part B in Fig. 4 is a high-magnification magnified photograph of the central area of the left lung tissue slices of each group on day 49 after HE staining.
  • Part C in Fig. 4 is a high-magnification magnified photo of the left lung tissue slices of each group on the 49th day after HE staining.
  • the linear scale bar in part B in Fig. 4 and part C in Fig. 4 represents 100 ⁇ m.
  • Figure 5 shows that the administration of hyaluronic acid can increase the volume of the left lung in mice with pulmonary fibrosis.
  • Part A in Fig. 5 is a low-magnification picture of the left lung tissue slices of rats in each group on the 49th day after HE staining.
  • Part B in Figure 5 sums all left lung tissue sections to quantify the total volume of the left lung. The results showed that the administration of hyaluronic acid could significantly increase the volume of the left lung of the mice with pulmonary fibrosis.
  • the left lung volume of BLM+MIX HA group was significantly higher than that of BLM+LHA group and BLM+HHA group.
  • Compared with the rats in the BLM+MIX HA group there was a statistical difference, p ⁇ 0.05.
  • Figure 6 shows that the administration of hyaluronic acid can reduce the deposition of collagen in the left lung of mice with pulmonary fibrosis.
  • Part A in Figure 6 is a low-magnification picture of the left lung tissue sections of rats in each group on day 49, stained with Sirius red.
  • Part B in Figure 6 is a high-magnification magnified picture of the left lung tissue sections of rats in each group on day 49 after Sirius red staining. Sirius red staining shows a red area, which represents the location of collagen.
  • Part C in Fig. 6 is the quantification of the area percentage of collagen in the left lung of rats in each group. The results showed that in the left lung of BLM, the area stained with red collagen increased significantly.
  • the amount of collagen deposition was lower than that in the BLM group. Moreover, the amount of collagen deposition in the left lung of the rats in the BLM+MIX HA group was significantly less than that in the BLM+LHA group and the BLM+HHA group. *: Compared with the normal group of rats, there is a statistical difference, p ⁇ 0.05. #: Compared with the rats in the BLM group, there is a statistical difference, p ⁇ 0.05. Compared with the rats in the BLM+MIX HA group, there was a statistical difference, p ⁇ 0.05.
  • the articles “a” and “an” refer to one or more than one (ie, at least one) of the grammatical object of the article.
  • an element means one element or more than one element.
  • hyaluronic acid hyaluronan or hyaluronic acid
  • HA hyaluronic acid
  • hyaluronic acid can be divided into low molecular weight hyaluronic acid (MW 10kDa-100kDa), medium molecular weight hyaluronic acid (MW 100kDa-1MDa), and high molecular weight hyaluronic acid (>MW 1MDa) (Tavianatou et al., 2019).
  • the hyaluronic acid used in the present invention may include the above hyaluronic acid with different molecular weights or its salts, or a mixture thereof, and the molecular weight ranges from 10kDa to 2MDa.
  • pulmonary fibrosis (PF) or a fibrotic condition in the lung is a lung disease or condition involving scarring of lung tissue or formation of fibrous connective tissue.
  • connective tissue mainly composed of extracellular matrix (ECM), such as collagen, elastin, proteoglycans and glycoproteins.
  • ECM extracellular matrix
  • MMPs matrix metalloproteinases
  • fibrosis in the lung include increased lung density (eg, total cell count (TCC) in bronchoalveolar lavage fluid (BALF)), decreased lung volume/volume, increased lung space and number of alveoli, and lung atrophy.
  • TCC total cell count
  • BALF bronchoalveolar lavage fluid
  • Other common symptoms include cough, fatigue and weakness, chest discomfort, loss of appetite, and weight loss.
  • Routine tests are available to identify patients with pulmonary fibrotic conditions, such as chest x-rays, high-resolution computed tomography (HRCT), magnetic resonance imaging (MRI), pulmonary function tests, pulse oximeters, arterial blood gases ( ABG) determination, bronchoscopy, bronchoalveolar lavage (BAL), lung biopsy, exercise test, esophogram and echocardiography (ECHO).
  • HRCT high-resolution computed tomography
  • MRI magnetic resonance imaging
  • pulmonary function tests pulmonary function tests
  • pulse oximeters pulse oximeters
  • ABG arterial blood gases
  • BAL bronchoalveolar lavage
  • lung biopsy exercise test
  • exercise test esophogram and echocardiography
  • PF pulmonary fibrosis
  • IPF idiopathic pulmonary fibrosis
  • pulmonary fibrosis that is clearly associated with another disease (eg, scleroderma or rheumatoid arthritis) can be considered pulmonary fibrosis secondary to scleroderma or secondary to rheumatoid arthritis.
  • factors thought to promote pulmonary fibrosis include smoking, exposure to environmental pollutants or dust, viral or bacterial lung infections, specific drugs such as certain antibiotics, chemotherapeutic agents or therapeutic radiation, and genetic predisposition.
  • a decreased or increased level of an index or symptom associated with a pulmonary fibrotic disorder as described herein is referenced to its control (or normal) level.
  • control level describes the value that a person of ordinary skill in the art and/or a medical professional would expect a healthy individual or group of people with similar physical characteristics and medical history to have.
  • an elevated level means 5%, 10%, 20%, 30%, 50%, 70%, 90%, 100%, 200%, 300%, 500% or more above a control (or normal) level , compared with the control (or normal) level; and the reduced level refers to 5%, 10%, 20%, 30%, 50%, 70%, 90%, 100% lower than the control (or normal) level, 200%, 300%, 500% or more, compared to control (or normal) levels.
  • subject in need of treatment means a human or non-human animal in need of treatment for pulmonary fibrosis or a fibrotic disorder of the lungs.
  • individuals in need of methods of treatment are individuals suffering from one or more fibrotic disorders of the lung.
  • an individual in need of a method of treatment of the present invention exhibits one or more of the following: increased levels of collagen deposition in the lungs, increased levels of cellular infiltration in the lungs, increased levels of lung density High, and/or increased levels of fibroblast activation in the lungs compared to normal levels.
  • an individual in need of the methods of treatment of the present invention exhibits one or more of the following: decreased levels of lung volume, decreased levels of lung spaces, decreased number of alveoli, compared to normal levels.
  • an individual in need of a method of treatment of the invention exhibits decreased blood oxygen saturation levels and/or increased respiratory rate (due to impaired lung function) compared to normal levels.
  • the individual in need of the methods of treatment of the invention is a patient diagnosed with pulmonary fibrosis (PF).
  • PF pulmonary fibrosis
  • subject includes human and non-human animals, such as companion animals (such as dogs, cats, etc.), farm animals (such as cows, sheep, pigs, horses, etc.), or laboratory animals (such as large rats, mice, guinea pigs, etc.).
  • companion animals such as dogs, cats, etc.
  • farm animals such as cows, sheep, pigs, horses, etc.
  • laboratory animals such as large rats, mice, guinea pigs, etc.
  • treating refers to administering or administering a composition comprising one or more active agents to a subject suffering from a disease, disease condition or disease symptom or disease progression (exacerbation), with the purpose of curing, curing, Alleviate, relieve, alter, ameliorate, ameliorate, enhance or affect the disease, the condition or symptoms of the disease, the disease-induced disorder or the progression of the disorder.
  • treating pulmonary fibrosis or a symptom of pulmonary fibrosis includes helping to recover or reverse from fibrosis to a normal state, in whole or in part.
  • terapéuticaally effective amount refers to the amount of an active ingredient which provides a desired therapeutic or biological effect in a subject to be treated.
  • an effective amount for treating a symptom of fibrosis in the lungs may be an amount of hyaluronic acid sufficient to completely or partially reverse the disease state from the disease state toward normal levels.
  • the therapeutically effective amount of hyaluronic acid is sufficient to cause ECM (such as collagen) deposition of ECM (such as collagen) in the lung, cellular infiltration in the lung, lung density and/or fibroblast formation in the lung.
  • ECM such as collagen
  • Activation of cells decreased by 5%, 5%, 10%, 20%, 30%, 50%, 70%, 90%, 100%, 200%, 300% or 500% or more, relative to prior to administration of hyaluronic acid corresponding level.
  • the therapeutically effective amount of hyaluronic acid is sufficient to cause a 5%, 5%, 10%, 20%, 30%, 50% increase in lung volume, air space, alveolar number, and/or lung function. %, 70%, 90%, 100%, 200%, 300% or 500% or more, relative to the corresponding level before administration of hyaluronic acid.
  • the therapeutically effective amount of hyaluronic acid is sufficient to cause increased degradation of the ECM (eg, collagen) and/or restoration of the lung epithelium relative to corresponding levels prior to administration of the hyaluronic acid.
  • the degradation of ECM can be caused by the activation of certain specific matrix metalloproteinases (MMPs), such as MMP9.
  • MMPs matrix metalloproteinases
  • repair of the lung epithelium may involve the proliferation of type II alveolar epithelial cells (AEC2s) and their transdifferentiation into type I alveolar epithelial cells (AEC1s).
  • a therapeutically effective amount can vary depending on various reasons, such as the route and frequency of administration, the body weight and species of the individual receiving the drug, and the purpose of administration. Those skilled in the art can determine the dosage in each case from the disclosure herein, established methods and their own experience.
  • hyaluronic acid can be administered by various procedures known in the art, for example via blood injection, or subcutaneous injection. Or delivered directly from the respiratory tract to the trachea, or lungs, eg, direct nasal inhalation; or bronchoscopic administration through the nasal cavity or oral cavity to the trachea, or via tracheostomy.
  • hyaluronic acid may be delivered directly to the respiratory tract (eg nose or trachea) and thus to the lungs.
  • hyaluronic acid as an active ingredient can also be formulated together with a pharmaceutically acceptable carrier to form a pharmaceutical composition in a suitable form (eg, as a cell suspension) for delivery.
  • the pharmaceutical compositions of the present invention may contain from about 0.1% to about 100% by weight of active ingredient, wherein weight percentages are calculated based on the weight of the entire composition.
  • a "pharmaceutically acceptable carrier” is nontoxic to an individual at the dosages and concentrations employed and is compatible with hyaluronic acid and any other ingredients of any formulation comprising hyaluronic acid.
  • hyaluronic acid solutions can be prepared in suitable isotonic liquids, such as phosphate buffered saline, physiological saline, aqueous dextrose and/or mixtures thereof, and other suitable liquids known to those skilled in the art.
  • suitable isotonic liquids such as phosphate buffered saline, physiological saline, aqueous dextrose and/or mixtures thereof, and other suitable liquids known to those skilled in the art.
  • the final therapeutic form should be protected from contamination and should be able to inhibit the growth of microorganisms such as bacteria or fungi.
  • a single intravenous dose can be administered. Alternatively, a slow long-term infusion or multiple short-term daily infusions may be used. Alternating days or dosing once every few days may also be used if desired. Wherein the hyaluronic acid is administered via blood injection or subcutaneous injection.
  • hyaluronic acid can be divided into low molecular weight hyaluronic acid (MW 10kDa-100kDa), medium molecular weight hyaluronic acid (MW 100kDa-1MDa), and high molecular weight hyaluronic acid (>MW 1MDa) (Tavianatou et al., 2019).
  • the experimental design was to give BLM injury on day 0, and lung function was performed before BLM injury. Then, lung function tests were performed every seven days, that is, on days 7, 14, 21, 28, 35, 42, and 49.
  • the first group is the normal (Normal) group, that is, on the 0th day, the normal rats that received 200 ⁇ l of normal saline (saline) injection in the trachea of the rats, and began to inject 200 ⁇ l of normal saline (saline) into the trachea from the 21st day. figure 1).
  • the second group is the BLM group, that is, on the 0th day, the rats received intratracheal injection of BLM, and on the 21st day, they did not receive treatment and were only given saline to the pulmonary fibrosis rat group ( Figure 1).
  • the third group is the BLM+LHA group, that is, on the 0th day, the rats received BLM injections in the left bronchi, and on the 21st day after the injury, low molecular weight hyaluronic acid (MW 10kDa-100kDa) was injected (nine times in total) .
  • low molecular weight hyaluronic acid MW 10kDa-100kDa
  • the fourth group is the BLM+HHA group, that is, on the 0th day, the rats received BLM injections in the left bronchi, and on the 21st day after the injury, high molecular weight hyaluronic acid (>MW 1MDa) was infused (9 times in total).
  • the fifth group is the BLM+MIX HA group, that is, on the 0th day, the rats received BLM injection in the left bronchus, and on the 21st day after the injury, hyaluronic acid (MW10kDa-2MDa) mixed with various molecular weights was infused (nine times in total). ).
  • Rats in each group were sacrificed on the 49th day, and the lungs were observed. See Figure 1 for animal grouping and experimental flow chart.
  • HE Stain 1.6 Hematoxylin&Eosion Stain, referred to as HE Stain
  • Lung tissue sections were first dewaxed, placed in Xylene, alcohols of decreasing concentration (100%, 95%, 80%, 70% alcohol), placed in hematoxylin (Hematoxylin) solution (Muto Chemical Co., Ltd. , No.3008-1) for 5 minutes, then place the lung tissue slices in eosin (Eosin) solution (Muto Chemical, No.3200-2) for 2.5 minutes, then soak the tissue slices in glacial acetic acid for 3 seconds, then rinse with running water.
  • the lung tissue sections were soaked in alcohols with increasing concentrations for dehydration (50%, 70%, 80%, 90%, 95%, 100% in sequence), and then soaked in xylene twice for 5 minutes each time. Finally, the slides were sealed with mounting glue (Permount, Fisher Scientific SP15-500) for optical microscope observation and photographing.
  • the rats in the BLM+LHA group and BLM+HHA group started on the 35th day and continued until the 49th day. Compared with the BLM injury group, the oxygen saturation in arterial blood was significantly increased, and both showed a statistical increase ( Part A in Figure 2 and Part B in Figure 2). In the rats in the BLM+MIX HA group, the arterial blood oxygen saturation increased significantly from the 35th day to the 49th day, which was statistically improved compared with the BLM injury group.
  • the arterial blood oxygen saturation of the rats in the BLM+MIX HA group was significantly different from the BLM+LHA group and the BLM+HHA group from the 35th day (Part A in Figure 2 and Figure 2 Part B) shows that the administration of hyaluronic acid can improve the oxygen exchange function of the lungs of mice with pulmonary fibrosis, and the treatment effect of hyaluronic acid with mixed molecular weight is the best. Therefore, the oxygen saturation concentration in arterial blood is from 85%, Increase to 93% week by week to achieve the effect of reversal repair.
  • the administration of hyaluronic acid can improve the phenomenon of lung atrophy in mice with pulmonary fibrosis
  • the continuous tissue sections of the left lungs of rats in each group were stained with HE, and the central area of the left lung (part B in Fig. 4) and the peripheral area (part B in Fig. Part C of ).
  • the results showed that the alveoli in the left lung of the rats in the normal group were intact, the connective tissue mostly existed around the bronchi, and the connective tissue between alveoli and alveoli was very little.
  • the alveolar structure only appeared in the outer periphery of the left lung, and a large number of cells infiltrated in the central area.
  • BLM+LHA group BLM+HHA group
  • BLM+MIX HA group in the central area of their left lungs, although most of the cells were infiltrated, there were still a few alveolar spaces (B in Figure 4 part). It is worth noting that the alveoli in the normal group were smaller, and the alveoli in the BLM group were larger, while the alveoli in the BLM+LHA group and BLM+MIX HA group were smaller. The shapes are all smaller, and are closer to the alveolar structure of the normal group (Part C in Figure 4).
  • hyaluronic acid can stimulate alveolar regeneration and increase the total volume of the left lung of mice with pulmonary fibrosis, and the treatment with mixed molecular weight hyaluronic acid can increase the lung volume the most (Part A in Figure 5 and Part B in Figure 5).
  • the expression of collagen in the left lung of the rats in the BLM+MIX HA group was less than that in the BLM+LHA group and BLM+HHA group. It is speculated that the administration of hyaluronic acid can reduce the collagen in the left lung of mice with pulmonary fibrosis, and therefore reduce the fibrosis of the lungs, and the administration of hyaluronic acid with mixed molecular weights can reduce the fibrosis in the lungs.
  • bleomycin was administered to successfully establish a unilateral, severe, consistent, and stable animal model of pulmonary fibrosis, which is also conducive to the continued survival of experimental rats.
  • the left lung After 21 days of administration of bleomycin, the left lung not only shrank, but the fibrosis had reached an obvious and saturated state.
  • hyaluronic acid was given.
  • the fibrosis of the left lung decreased, the alveoli increased, and the lung volume It rose again, and the lung function was significantly improved again. Therefore, administration of hyaluronic acid can reverse and repair fibrosis in the lungs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

玻尿酸用于制备治疗及预防肺纤维化药物的用途。玻尿酸可减少肺纤维化的功效,可用于治疗、预防、甚至逆转肺纤维化。

Description

玻尿酸用于制备治疗肺纤维化药剂的用途 技术领域
本发明涉及玻尿酸用于治疗肺纤维化的用途。
背景技术
肺脏纤维化是由于肺部组织受到吸烟、细菌、病毒、空气污染、老化、氧化自由基、放射线、化疗药物、或遗传性等伤害,导致肺部上皮细胞的损伤,使得肺部间质区域发生发炎反应、纤维母细胞增生,进而导致细胞外间质区域内胶原蛋白的沉积(Wynn,2004;Wilson and Wynn,2009),造成氧气与二氧化碳的交换受阻。肺脏纤维化对肺部的伤害是不可逆的,是渐进式的恶化,因此,当肺部纤维化现象越来越严重后,会使得病患发生呼吸衰竭进而导致死亡。
一旦确诊为肺部纤维化,病患平均存活时间不超过三年(American Thoracic Society,2000;Olson et al.,2007)。截至目前为止,临床上并没有任何药物,可以有效治疗肺部纤维化,仅靠类固醇投予以降低病患不适感。
在临床实务上,大部分因为呼吸问题寻求诊疗的患者并不是处于早期阶段,而是已经发展成肺纤维化的时候。有需要提供治疗肺部的纤维化病症的有效医疗方法,特别是能逆转肺纤维化的状态。
发明内容
本发明提供一种玻尿酸制备减少肺部的纤维化药剂的用途,为治疗肺部的纤维化病症的有效医疗方案。
一方面,本发明提供一种玻尿酸制备减少肺部的纤维化药剂的用途。
另一方面,本发明提供一种玻尿酸用于制造治疗、预防或逆转肺纤维化药剂的用途。
又一方面,本发明提供一种用于治疗、预防或逆转肺纤维化症状的药剂或医药组合物,其包含治疗有效量的玻尿酸。
再一方面,本发明提供了一种治疗、预防或逆转肺纤维化症状的 方法,包含对有此需要的个体施用包含治疗有效量的玻尿酸的药剂或医药组合物。
根据本发明,本发明可使用分子量10kDa-2MDa的玻尿酸。
根据本发明实施例,对于肺纤维化的大白鼠施打玻尿酸,可有效改善肺纤维化的状况,包括治疗、预防或逆转肺部的纤维化症状。
根据本发明实施例,对于肺纤维化的大白鼠施打玻尿酸,可降低纤维化肺部内白血球浸润、显著减少纤维化组织,及增加肺脏体积。
根据本发明实施例,玻尿酸有效地增加降低的肺体积水平,降低的肺空间水平和/或降低的肺泡数量。
根据本发明实施例,该玻尿酸有效地改善降低的血氧饱和度水平,缓解增加的呼吸速率和恢复肺脏的萎缩。
根据本发明实施例,该玻尿酸有效促进已经在肺中发生的纤维化组织的降解。
根据本发明实施例,该玻尿酸有效促进肺泡上皮细胞功能逆转。
根据本发明实施例,该玻尿酸可经由注射施用,例如,静脉、动脉、皮下、肌肉、腹腔注射等。
根据本发明又一实施例,该玻尿酸可直接由口腔或呼吸道递送至肺。例如,直接由鼻腔或口腔送入、由鼻腔吸入、或经鼻腔或口腔以支气管镜送至气管施予。
在下面的描述中阐述了本发明的一个或多个实施例的细节。从以下几个实施例的详细描述以及从所附的权利要求中,本发明的其它特征或优点将是显而易见的。
附图说明
当结合附图阅读时,将更好地理解前面的概述以及以下对本发明的详细描述。为了说明本发明,在附图中示出了目前较佳的实施例。然而,应该理解的是,本发明不限于所示的精确布置和手段。
在附图中:
图1显示诱发大白鼠左肺纤维化以及施予玻尿酸治疗的实验流程图及动物分组。大白鼠共分为五组,实验组中,第0天将博来霉素(bleomycin,简称BLM)打入大白鼠的左支气管,第21天开始给予 药物治疗,第49天牺牲动物。
图2显示给予玻尿酸能增加肺纤维化病鼠动脉血的含氧饱和度。图2中的A部分为第49天,各组大白鼠进行脉冲式动脉血氧仪检测的照片,其中箭头所指为动脉血氧饱和度的数值。图2中的B部分定量各组大白鼠,在不同时间里,动脉血氧浓度的数值。图2中的B部分定量各组大白鼠,在不同时间里,动脉血氧浓度的数值。图2显示,给予BLM伤害后第七天,大白鼠的动脉血氧饱和度降到最低,BLM组大白鼠的动脉血氧饱和度之后没有太大的改变。给予玻尿酸治疗组别的大白鼠,从第35天开始,他们的动脉血氧饱和度都较BLM组高。其中,BLM+MIX HA组大白鼠的动脉血氧饱和度又比BLM+LHA组、和BLM+HHA组,明显高出许多,此种趋势一直维持到第49天。*:与同日正常组大白鼠相比,有统计差异,p<0.05。#:与同日BLM组的大白鼠相比,有统计差异,p<0.05。
Figure PCTCN2021092789-appb-000001
与同日BLM+MIX HA组的大白鼠相比,有统计差异,p<0.05。
图3显示给予玻尿酸能提升肺纤维化病鼠的左肺体积。图为各组大白鼠在第49天的肺脏外观图,上排为各组肺脏正面照,下排为各组肺脏的背面照。
图4显示给予玻尿酸能修复肺纤维化病鼠的肺泡结构。图4中的A部分为第49天的各组大白鼠左肺组织片经过HE染色的低倍率图片。图4中的B部分为第49天的各组左肺组织片经过HE染色高倍率放大中央区域的照片。图4中的C部分为第49天的各组左肺组织片经过HE染色高倍率放大左肺外周围的照片。其中图4中的B部分及4中的C部分中的直线比例尺代表100μm。
图5显示给予玻尿酸能增加肺纤维化病鼠的左肺体积。图5中的A部分为第49天的各组大白鼠左肺组织片经过HE染色的低倍率图片。图5中的B部分为加总所有左肺组织切片,定量左肺的总体积。结果显示,给予玻尿酸,能明显增加肺纤维化病鼠左肺体积。其中,BLM+MIX HA组的左肺体积,又比BLM+LHA组、BLM+HHA组、明显增多。*:与正常组大白鼠相比,有统计差异,p<0.05。#:与BLM组的大白鼠相比,有统计差异,p<0.05。
Figure PCTCN2021092789-appb-000002
与BLM+MIX HA组的大白鼠相比,有统计差异,p<0.05。
图6显示给予玻尿酸能降低肺纤维化病鼠左肺内胶原蛋白的沉积。图6中的A部分为第49天的各组大白鼠左肺组织切片,经过Sirius red染色的低倍率左肺图片。图6中的B部分为第49天的各组大白鼠左肺组织切片,经过Sirius red染色的高倍率放大图片,Sirius red染色呈现红色区域,即代表胶原蛋白存在位置。图6中的C部分为定量各组大白鼠左肺内胶原蛋白所占的面积百分比。结果显示,BLM的左肺,染上红色胶原蛋白的面积明显上升。BLM+LHA组、BLM+HHA组、和BLM+MIX HA组大白鼠的左肺内,胶原蛋白的沉积量,都较BLM组别低。并且,BLM+MIX HA组大白鼠的左肺内胶原蛋白的沉积量,明显又比BLM+LHA组、和BLM+HHA组来得少。*:与正常组大白鼠相比,有统计差异,p<0.05。#:与BLM组的大白鼠相比,有统计差异,p<0.05。
Figure PCTCN2021092789-appb-000003
与BLM+MIX HA组的大白鼠相比,有统计差异,p<0.05。
具体实施方式
除非另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的技术人员通常理解的相同的含义。
如本文所使用的,冠词“一”和“一个”是指冠词的一个或多于一个(即,至少一个)语法对象。举例来说,“一个元素”是指一个元素或多于一个元素。
术语“包括”或“包含”通常以包括/包括允许存在一个或多个特征,成分或组分的意义来使用。术语“包括”或“包含”涵盖术语“由...组成”或“由......组成”。
如本文所使用,“玻尿酸(hyaluronan或hyaluronic acid),简称HA)”,又称透明质酸或醣醛酸,存在于人体的结缔组织及真皮层中,是一种透明的胶状物质。玻尿酸依照分子量,可以区分为低分子量玻尿酸(MW 10kDa-100kDa)、中分子量玻尿酸(MW 100kDa-1MDa)、与高分子量玻尿酸(>MW 1MDa)(Tavianatou et al.,2019)。本发明使用的玻尿酸可包括以上不同分子量的玻尿酸或其盐,或其混合,分子量范围为10kDa-2MDa。
如本文所使用,“肺纤维化(PF)”或肺中的纤维化病症是涉及肺 组织的疤痕或纤维结缔组织形成的肺部疾病或病症。在正常成人肺中,超过约25%(w/w)的肺是结缔组织,主要由细胞外基质(ECM)组成,例如胶原蛋白,弹性蛋白,蛋白聚醣和糖蛋白。一般而言,当肺受损时,肺纤维母细胞被激活,以产生ECM。ECM可以被蛋白酶降解,例如,某些基质金属蛋白酶(MMPs)。过量ECM的积聚导致壁增厚并导致呼吸问题。肺组织损伤也诱发炎症反应,增加肺中的细胞浸润。肺中纤维化的其它特征包括肺密度增加(例如,支气管肺泡灌洗液(BALF)中的总细胞计数(TCC)),肺体积/容积减小,肺空间和肺泡数量增加以及肺萎缩。肺部纤维化病人可能表现为呼吸频率快,气体交换不良。其他常见症状包括咳嗽,疲劳和虚弱,胸部不适,食欲不振,体重减轻。常规测试可用于鉴定患有肺纤维化病症的患者,例如胸部X射线,高分辨率计算器断层扫描(HRCT),磁共振成像(MRI),肺功能测试,脉搏血氧计,动脉血气体(ABG)测定,支气管镜检查,支气管肺泡灌洗(BAL),肺部活组织检查,运动试验,esophogram和超声心动图(ECHO)。
在临床上,诊断为肺纤维化(pulmonary fibrosis,PF)的患者可以是特发性或非特发性(继发性)。当没有已知的肺纤维化发生的原因时,这种纤维化被称为特发性肺纤维化(IPF)。如果纤维化与另一种疾病明显相关,或者肺部纤维化/疤痕形成是特定药物的副作用或暴露于已知引起肺纤维化的药物,那么这种纤维化被称为非特发性肺纤维化。例如,与另一种疾病(例如,硬皮病或类风湿性关节炎)明显相关的肺纤维化可以被认为是继发于硬皮病或继发于类风湿性关节炎的肺纤维化。被认为促进肺纤维化的因素的一些其他例子包括吸烟,暴露于环境污染物或粉尘,病毒或细菌肺感染,特定药物如某些抗生素,化学治疗剂或治疗性辐射以及遗传倾向。
如本文所用,如本文所述的与肺纤维化病症有关的指数或症状的降低或升高的水平是参照其对照(或正常)水平。如本文所使用的,术语“正常水平”或“对照水平”是描述本领域普通技术人员和/或医疗专业人员预期一个健康的个体或具有类似身体特征和病史的人群具有的值。例如,升高的水平表示高于对照(或正常)水平5%,10%,20%,30%,50%,70%,90%,100%,200%,300%,500%或更 多,与对照(或正常)水平比较而言;而降低的水平是指低于对照(或正常)水平5%,10%,20%,30%,50%,70%,90%,100%,200%,300%,500%或更多,与对照(或正常)水平相比而言。
如本文所用的术语“需要治疗方法的个体”是表示需要治疗肺纤维化或肺部的纤维化病症的人类或非人类动物。具体而言,需要治疗方法的个体是患有肺部的一或多种纤维化病症的个体。
在一些具体实施态样中,需要本发明治疗方法的个体表现出以下一种或多种病症:肺部的胶原蛋白沉积水平升高,肺部的细胞浸润水平升高,肺部的密度水平升高,和/或肺部的纤维母细胞的活化水平升高,与正常水平相比而言。
在一些具体实施态样中,需要本发明的治疗方法的个体表现出以下一或多种病症:降低的肺部体积水平,降低的肺部空间水平,降低的肺泡数量,与正常水平相比。
在一些具体实施态样中,需要本发明治疗方法的个体表现出下降的血氧饱和度水平和/或升高的呼吸速率(由于肺功能受损导致),与正常水平相比。
在某些具体实施态样中,需要本发明治疗方法的个体是被诊断患有肺纤维化(PF)的患者。
在此使用的术语“个体”或“主体”包括人类和非人类动物,如伴侣动物(如狗,猫等),农场动物(如牛,绵羊,猪,马等),或实验动物(如大鼠,小鼠,豚鼠等)。
如本文所用的术语“治疗”是指将包含一种或多种活性剂的组合物施用或施用于患有疾病,疾病病症或疾病症状或疾病进展(恶化)的对象,目的是治愈,治愈,缓解,舒解,改变,改善,改良,增进或影响该疾病,该疾病的病症或症状,疾病诱发的障碍或障碍的进展。具体而言,如本文中所使用的,治疗肺纤维化或肺部纤维化的症状包括完全地或部分地帮助从纤维化恢复或逆转为正常状态。
本文使用的术语“治疗有效量”是指活性成分在治疗对像中提供所需的治疗或生物作用的量。例如,用于治疗肺部的纤维化症状的有效量可以是玻尿酸的量,其足以使疾病状态完全地或部分地从疾病状态朝向正常水平逆转。
在一些具体实施态样中,治疗有效量的玻尿酸是足以引起ECM(例如胶原蛋白)在肺中的ECM(如胶原蛋白)沉积,肺中的细胞浸润,肺密度和/或肺部的纤维母细胞的活化,降低5%,5%,10%,20%,30%,50%,70%,90%,100%,200%,300%或500%或更多,相对于施用玻尿酸之前的对应水平。
在一些具体实施态样中,治疗有效量的玻尿酸是足以引起肺体积,肺空间(air space),肺泡数量和/或肺功能增加5%,5%,10%,20%,30%,50%,70%,90%,100%,200%,300%或500%或更多,相对于施用玻尿酸之前的对应水平。
在一些具体实施态样中,治疗有效量的玻尿酸是足以引起提升ECM(例如胶原蛋白)的降解和/或肺上皮的恢复,相对于施用玻尿酸之前的对应水平。具体而言,ECM的降解可由某些特定基质金属蛋白酶(MMP)的活化引起,如MMP9。此外,肺上皮的修复可能涉及Ⅱ型肺泡上皮细胞(AEC2s)的增殖,并转分化为Ⅰ型肺泡上皮细胞(AEC1s)。
治疗有效量可以根据各种原因而改变,例如给药途径和频率,接受所述药物的个体的体重和种类,以及给药目的。本领域技术人员可以根据本文的公开内容,确定的方法和他们自己的经验确定每种情况下的剂量。
根据本发明,可以通过本领域已知的各种程序来施用玻尿酸,例如经由血液注射、或皮下注射施用。或直接由呼吸道递送至气管、或肺,例如,直接由鼻腔吸入;或经鼻腔或口腔至气管的支气管镜施予,或经气切手术给予。
根据本发明实施例,可以将玻尿酸直接递送至呼吸道(例如鼻或气管)并因此递送至肺。而作为活性成分的玻尿酸也可以与药学上可接受的载体一起配制以形成适合形式的药物组合物(例如,作为细胞悬浮液)以用于递送。取决于给药方式,本发明的药物组合物可包含约0.1重量%至约100重量%的活性成分,其中基于整个组合物的重量计算重量百分比。“医药上可接受的载体”在所采用的剂量和浓度下对个体是无毒的,且与玻尿酸和包含玻尿酸的任何制剂的任何其他成分兼容。
在一些具体实施态样中,可以在合适的等渗液体,例如,磷酸盐缓冲盐水,生理盐水,葡萄糖水溶液和/或其混合物以及本领域技术人员已知的其它合适的液体中制备玻尿酸溶液。应该保护最终的治疗形式免受污染,并应该能够抑制微生物如细菌或真菌的生长。可以施用单一的静脉内剂量。或者,可以使用缓慢的长期输注或多个短期的每日输注。如果需要,也可以使用每隔几天交替一天或一次给药。其中该玻尿酸经由血液注射、或皮下注射施用。
通过以下实施例进一步说明本发明,这些实施例仅用于说明而不是限制。根据本公开内容,本领域技术人员应该理解,可以在所公开的具体实施方式中做出许多改变,并且仍然获得相似或相似的结果,而不偏离本发明的精神和范围。
实施例
1.材料与方法
1.1左肺纤维化动物模式的建立
取雄性大白鼠(250g SD Rat),于左支气管内注入5mg博来霉素(bleomycin,简称BLM),造成严重的、一致性的、稳定的、左肺纤维化的动物模式(Chu et al.,2019)。
1.2玻尿酸的给予
玻尿酸依照分子量,可以区分为低分子量玻尿酸(MW 10kDa-100kDa)、中分子量玻尿酸(MW 100kDa-1MDa)、与高分子量玻尿酸(>MW 1MDa)(Tavianatou et al.,2019)。分别将低分子量玻尿酸(MW10kDa-100kDa)、与混合分子量玻尿酸(MW 10kDa-2MDa)溶在200μl生理食盐水,在BLM注射后第21天开始,即第四周给予三次玻尿酸、第五周、第六周、与第七周都给予两次玻尿酸,也就是分别在BLM损伤后第21、23、26、29、33、36、40、43、46天(共九次)(图1)。
实验设计第0天为给予BLM伤害,肺功能是在BLM伤害之前进行。接着,每隔七天进行肺功能检测,即在第7、14、21、28、35、42、49天。
1.3实验分组
大白鼠分为五组:
第一组为正常(Normal)组,即在第0天,大白鼠气管内接受200μl生理食盐水(saline)注射的正常大白鼠,在第21天开始,经气管内只注射200μl生理食盐水(图1)。
第二组为BLM组,即在第0天,大白鼠气管内接受BLM注射的大白鼠,在第21天开始,并没有接受治疗,仅给予saline的肺纤维化病鼠组(图1)。
第三组为BLM+LHA组,即在第0天,大白鼠左侧支气管内接受BLM注射,在伤害后第21天开始,打入低分子量的玻尿酸(MW 10kDa-100kDa)(共九次)。
第四组为BLM+HHA组,即在第0天,大白鼠左侧支气管内接受BLM注射,在伤害后第21天开始,打入高分子量的玻尿酸(>MW 1MDa)(共九次)。
第五组为BLM+MIX HA组,即在第0天,大白鼠左侧支气管内接受BLM注射,在伤害后第21天开始,打入混合各分子量的玻尿酸(MW10kDa-2MDa)(共九次)。
各组大白鼠都在第49天牺牲,观察肺脏。动物分组、与实验流程图参见图1。
1.4实验动物肺功能检测-动脉血氧浓度的测定
在第0、7、14、21、28、35、42、49天,使用脉冲式血氧浓度器夹住大白鼠的后肢(Veterinary Vital Signs Monitor Capnograph/Pulse Oximeter,Nonin
Figure PCTCN2021092789-appb-000004
Vet LS1-10R),用以侦测动脉血中的氧气浓度。
1.5实验动物灌流固定、组织石蜡包埋及切片
在第49天,大白鼠灌流后,取出肺脏,进行石蜡包埋、与肺脏连续组织切片,最后,以各种染色,如苏木紫-伊红染色(Hematoxylin&Eosion Stain,简称HE Stain)、天狼星红染色(sirius red,以分析肺脏病理情况。
1.6苏木紫-伊红染色(Hematoxylin&Eosion Stain,简称HE Stain)
肺组织切片先进行脱蜡,依序放入二甲苯(Xylene)、浓度递减的酒精中(100%、95%、80%、70%酒精)、置于苏木精(Hematoxylin)溶液(武藤化学,No.3008-1)中染5分钟,接着,将肺组织片置于伊红(Eosin) 溶液(武藤化学,No.3200-2)中染2.5分钟,随即,组织片浸泡于冰醋酸3秒,再以流动的水冲洗。肺组织切片浸泡至浓度递增的酒精内进行脱水(依序为50%、70%、80%、90%、95%、100%),再浸泡于二甲苯两次,每次5分钟。最后,以封片胶(Permount,Fisher Scientific SP15-500)封片,进行光学显微镜观察及拍照。
1.7天狼星红染色(Sirius Red Stain)
肺组织切片脱蜡、复水后,置入0.1%天狼星红(Sigma 2610-10-8)于苦味酸(Picric acid)中染10分钟,随即,肺组织片浸泡于二次水清洗,接着,将肺组织片切片浸泡置浓度递增的酒精内进行脱水(依序为50%、70%、80%、90%、95%、100%),再浸泡于二甲苯。最后,以封片胶封片,进行光学显微镜观察及拍照。
1.8统计分析
所有实验数据以以平均值标准误差(Mean±SEM,Standard error of the mean)表示。各平均值间的比较以单因子变异细数分析(One-Way ANOVA)分析,再以LSD进行多重比较。实验数据皆以p<0.05作为具有显著差异的最低起始标准。
2.结果
2.1给予玻尿酸能改善肺纤维化病鼠的肺部功能
以脉冲式血氧浓度仪分析动脉血氧饱和度(SpO2),藉此评估肺部气体交换的功能。结果显示,在实验时间的49天内,正常组大白鼠的血氧饱和度均维持在99%左右(图2中的A部分及图2中的B部分)。在给予BLM伤害后第7天,各组大白鼠的血氧饱和度都有明显下降的现象,约为86.6±1.5%,一直到第49天,BLM组大白鼠的动脉血氧饱和度都没有改善,与正常组大白鼠相较,均呈现明显的减少(图2中的A部分及图2中的B部分)。
BLM+LHA组、和BLM+HHA组大白鼠,在后第35天开始,一直持续到第49天,动脉血氧饱和度显著升高,与BLM伤害组相较,都呈现统计上的提升(图2中的A部分及图2中的B部分)。BLM+MIX HA组大白鼠,在第35天开始,一直持续到第49天,动脉血氧饱和度都显著升高,与BLM伤害组相较,都呈现统计上的提升。并且,BLM+MIX HA组大白鼠的动脉血氧饱和度,从第35天开始,相较 BLM+LHA组、和BLM+HHA组,都有明显的差异(图2中的A部分及图2中的B部分),显示给予玻尿酸,都可以提高肺纤维化病鼠肺部的氧气交换功能,而给予混合分子量的玻尿酸治疗效果最好,因此,动脉血内的含氧饱和浓度从85%,逐周地上升到93%,达到逆转修复的效果。
2.2由外型巨观显示,给予玻尿酸能改善肺纤维化病鼠肺脏萎缩的现象
在BLM伤害后的第49天,牺牲各组大白鼠,观察肺部的外观型态,由前面观(图3上排)、与背面观(图3下排)照片显示,正常组大白鼠的左、右肺均可以看见白色肺泡结构,肺泡呈现完整、平滑的情形。BLM组的左肺明显萎缩,仅存一些的肺泡出现在左肺的外周围,左肺的中央区域已经呈现没有肺泡的结疤组织。BLM+LHA组与BLM+MIX HA组大白鼠,他们左肺的总体积,都有明显的较BLM组多(图3)。其中,BLM+MIX HA组的大白鼠,其左肺的白色肺泡区域,又比BLM+LHA组有较多的趋势(图3)。
2.3由苏木紫-伊红染色,显示给予玻尿酸能修复肺纤维化病鼠的肺泡结构
各组大白鼠左肺连续的组织切片,经HE染色,由低倍率图片(图4中的A部分),分别放大左肺的中央区域(图4中的B部分)、与周边区域(图4中的C部分)。结果显示,正常组大白鼠左肺肺泡完整,结缔组织多存在于支气管周围,肺泡与肺泡之间的结缔组织极少。BLM组大白鼠的左肺,肺泡结构只出现在左肺的外周围,中央区域多为大量细胞浸润的现象。而BLM+LHA组、BLM+HHA组、与BLM+MIX HA组大白鼠,他们左肺的中央区域内,虽然大多是细胞浸润的情形,但仍然有少许肺泡空间的出现(图4中的B部分)。值得注意的是,正常组的肺泡型态都较小,BLM组左肺外周围的肺泡型态都较大,而BLM+LHA组与BLM+MIX HA组大白鼠,他们左肺外周围的肺泡型态都较小,比较接近正常组的肺泡结构(图4中的C部分)。
加总所有HE染色的左肺组织切片,经由统计定量,结果显示,BLM组左肺总体积明显萎缩,萎缩左肺内的肺泡体积大量减少(图5中的A部分及图5中的B部分)。然而,BLM+LHA组、BLM+HHA 组、与BLM+MIX HA组大白鼠的左肺体积都较BLM组明显增加。并且,BLM+MIX HA组的大白鼠,其左肺的总体积,又比BLM+HHA组与BLM+LHA组有较多的情形。推测给予玻尿酸,可以刺激肺泡再生,提升肺纤维化病鼠左肺的总体积,而给予混合分子量的玻尿酸治疗,肺脏的体积增加最多(图5中的A部分及图5中的B部分)。
2.4由天狼星红染色显示,给予玻尿酸能降低肺纤维化病鼠肺部内的胶原蛋白
在BLM伤害后的第49天,牺牲各组大白鼠,观察肺部的纤维化的情形。各组大白鼠的左肺组织切片,经天狼星红(Sirius red)染色,由低倍率(图6中的A部分)到高倍率放大(图6中的B部分)的照片显示,染上红色为胶原蛋白存在的位置,即纤维化的区域。在正常组大白鼠的左肺中,胶原蛋白主要出现在支气管周边、血管旁边,含量极低(图6中的A部分及图6中的B部分)。BLM组的左肺,染上红色胶原蛋白的面积明显上升,则代表肺纤维化的病况也明显增加(图6中的C部分)。BLM+LHA组、BLM+HHA组、和BLM+MIX HA组大白鼠左肺胶原蛋白的沉积量,与正常组大白鼠相比,都有统计上增加的情形(图6中的B部分及图6中的C部分)。然而,BLM+LHA组和BLM+MIX HA组大白鼠左肺内胶原蛋白的沉积量,与BLM组大白鼠相较,都有明显的减少(图6中的B部分及图6中的C部分)。并且,BLM+MIX HA组的大白鼠,其左肺内胶原蛋白表现量,又比BLM+LHA组和BLM+HHA组有较少的情形。推测给予玻尿酸,可以降低肺纤维化病鼠左肺内胶原蛋白,因此,减低肺脏的纤维化,而给予混合分子量的玻尿酸治疗,肺脏内的纤维化体最少。
3.结论
本实验给予博来霉素(bleomycin),成功建立单侧、严重的、一致性、稳定的肺脏纤维化动物模式,也利于实验大白鼠继续存活。当给予博来霉素21天后,左肺不仅萎缩,并且纤维化已经达到明显的、饱和的状态,此时,才给予玻尿酸,治疗四星期后,左肺的纤维化减少、肺泡增加、肺脏体积又再次上升、与肺功能显著再提升。因此,给予玻尿酸可以逆转修复肺脏的纤维化。
参考文献
1.American Thoracic Society.Idiopathic pulmonary fibrosis:diagnosis and treatment.Am.J.Respir.Crit.Care Med.2000;161,646-664.
2.Olson AL,Swigris JJ,Lezotte DC,Norris JM,Wilson CG,Brown KK.Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003.Am J Respir Crit Care Med.2007;176(3):277-284.
3.Wilson MS and Wynn TA.Pulmonary fibrosis:pathogenesis,etiology and regulation.Mucosal Immunol 2009;2,103-121.
4.Wynn TA.Fibrotic disease and the T(H)1/T(H)2paradigm.Nat.Rev.Immunol.2004;4:583-594.
5.Tavianatou,A.G.;Caon,I.;Franchi,M.;Piperigkou,Z.;Galesso,D.;Karamanos,N.K.Hyaluronan:molecular size-dependent signaling and biological functions in inflammation and cancer.FEBS J.2019.286:2883-2908.
6.Chu KA,Wang SY,Yeh CC,Fu TW,Fu YY,Ko TL,Chiu MM,Tsai PJ,Fu YS.Reversal of bleomycin-induced rat pulmonary fibrosis by a xenograft of human umbilical mesenchymal stem cells from Wharton’s jelly.Theranostics.2019;9(22):6646-6664.

Claims (14)

  1. 一种玻尿酸制备减少肺部的纤维化药剂的用途。
  2. 根据权利要求1所述的用途,其该药剂用于治疗、预防或逆转肺纤维化症状。
  3. 根据权利要求1所述的用途,其中该玻尿酸的分子量为10kDa-2MDa。
  4. 根据权利要求1所述的用途,其中该玻尿酸有效提升一或多种选自以下所组成的群组的症状:降低的肺部体积水平,降低的肺部空间水平,和降低的肺泡数量,上述症状是与正常水平相比而言。
  5. 根据权利要求1所述的用途,其中该玻尿酸有效地改善降低的血氧饱和度水平,缓解增加的呼吸速率和恢复肺脏的萎缩。
  6. 根据权利要求1所述的用途,其中该玻尿酸有效促进已经在肺中发生的纤维化组织的降解。
  7. 根据权利要求1所述的用途,其中该玻尿酸有效促进肺泡上皮细胞功能逆转。
  8. 根据权利要求1所述的用途,其中该玻尿酸经由注射施用。
  9. 根据权利要求8所述的用途,其中该玻尿酸经由静脉、动脉、皮下、肌肉、或腹腔注射施用。
  10. 根据权利要求1所述的用途,其中该玻尿酸直接由口腔或呼吸道递送至肺。
  11. 根据权利要求10所述的用途,其中该玻尿酸直接由鼻腔或口 腔送入。
  12. 根据权利要求10所述的用途,其中该玻尿酸直接由鼻腔吸入。
  13. 根据权利要求10所述的用途,其中该玻尿酸经鼻腔或口腔以支气管镜送至气管施予。
  14. 根据权利要求10所述的用途,其中该玻尿酸经气切手术给予施予。
PCT/CN2021/092789 2021-05-10 2021-05-10 玻尿酸用于制备治疗肺纤维化药剂的用途 WO2022236585A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092789 WO2022236585A1 (zh) 2021-05-10 2021-05-10 玻尿酸用于制备治疗肺纤维化药剂的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/092789 WO2022236585A1 (zh) 2021-05-10 2021-05-10 玻尿酸用于制备治疗肺纤维化药剂的用途

Publications (1)

Publication Number Publication Date
WO2022236585A1 true WO2022236585A1 (zh) 2022-11-17

Family

ID=84027849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092789 WO2022236585A1 (zh) 2021-05-10 2021-05-10 玻尿酸用于制备治疗肺纤维化药剂的用途

Country Status (1)

Country Link
WO (1) WO2022236585A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079072A1 (en) * 2021-11-05 2023-05-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of low molecular weight hyaluronic acid for the treatment of lung mucosal inflammation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026735A1 (en) * 1994-03-31 1995-10-12 Cantor Jerome O Use of intratracheally administered hyaluronic acid to ameliorate emphysema
WO1996024362A1 (fr) * 1995-02-07 1996-08-15 Shiseido Company, Ltd. Agents anti-inflammatoires
WO2008140499A2 (en) * 2006-11-29 2008-11-20 The General Hospital Corporation Method for treating sepsis
CN101801391A (zh) * 2007-07-23 2010-08-11 农业工业研究发展公司 透明质酸在制备用于改善皮肤、眼和粘膜的保护功能的组合物中的用途
CN111247174A (zh) * 2017-10-26 2020-06-05 卓英医疗有限责任公司 在炎症状态的治疗中的官能化的透明质酸或其衍生物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026735A1 (en) * 1994-03-31 1995-10-12 Cantor Jerome O Use of intratracheally administered hyaluronic acid to ameliorate emphysema
WO1996024362A1 (fr) * 1995-02-07 1996-08-15 Shiseido Company, Ltd. Agents anti-inflammatoires
WO2008140499A2 (en) * 2006-11-29 2008-11-20 The General Hospital Corporation Method for treating sepsis
CN101801391A (zh) * 2007-07-23 2010-08-11 农业工业研究发展公司 透明质酸在制备用于改善皮肤、眼和粘膜的保护功能的组合物中的用途
CN111247174A (zh) * 2017-10-26 2020-06-05 卓英医疗有限责任公司 在炎症状态的治疗中的官能化的透明质酸或其衍生物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIEROVA ANNA, KASPAROVA JITKA, PEJCHAL JAROSLAV, KUBELKOVA KLARA, JELICOVA MARCELA, PALARCIK JIRI, KORECKA LUCIE, BILKOVA ZUZANA, : "Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles", FRONTIERS IN PHARMACOLOGY, vol. 11, 12 August 2020 (2020-08-12), XP093004822, DOI: 10.3389/fphar.2020.01199 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079072A1 (en) * 2021-11-05 2023-05-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of low molecular weight hyaluronic acid for the treatment of lung mucosal inflammation

Similar Documents

Publication Publication Date Title
Levy PEEP in ARDS—how much is enough?
JP2002526451A (ja) 急性肺傷害の予防方法
KR20140107190A (ko) 글루타릴 히스타민의 기도 질환 치료 용도
WO2022236585A1 (zh) 玻尿酸用于制备治疗肺纤维化药剂的用途
Pawlaczyk et al. Animal models of peritoneal dialysis: thirty years of our own experience
CN111514137A (zh) 一种化合物在制备治疗急性肺损伤的药物中的用途
CN108904511A (zh) 一种治疗急性肺损伤和急性呼吸窘迫综合征的药物及用途
WO2022236599A1 (zh) 玻尿酸用于制备治疗急性呼吸窘迫症药剂的用途
TWI816119B (zh) 玻尿酸用於製備治療急性呼吸窘迫症藥劑之用途
TW201827044A (zh) 用於治療發炎性腸病的組合物
CN114191424B (zh) 一种药物组合物及其在制备治疗急性肺损伤药物中的应用
TW202243680A (zh) 玻尿酸用於製備治療肺纖維化藥劑之用途
CN111494392A (zh) 一种用于治疗急性肺损伤的组合物及其应用
CN114432421B (zh) 一种用于治疗急性肺损伤的KdPT多肽及其应用
AU2023201746A1 (en) Treatment of acute respiratory disease syndrome (ARDS) with polysulfated polysaccharides
Lee et al. Lack of exercise decreases survival and increases organ damage after hemorrhagic shock in rats
Love et al. Recovery characteristics following maintenance of anaesthesia with sevoflurane or isoflurane in dogs premedicated with acepromazine
CN115317505A (zh) 玻尿酸用于制备治疗肺纤维化药剂的用途
US11224633B2 (en) Kit for treating sepsis and/or any systemic (SIRS) or damaging cellular hyperinflammation
KR102606504B1 (ko) 니클로사마이드를 포함하는 폐고혈압의 예방 및 치료용 조성물
CN108289936A (zh) 用于治疗心肺手术的术后并发症的组合物和方法
CN113304249B (zh) 胸腺素β4在制备肺纤维化合并肺癌病治疗药物中的应用
CN114522221B (zh) 分泌蛋白ctgf在用于制备治疗急性肺损伤药物中的应用
Villarta-De Dios et al. Should Mesenchymal Stem Cell Therapy be used in the treatment of COVID-19?
CN109394776B (zh) 一种治疗弥漫性肺间质纤维化的中药组分方及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941161

Country of ref document: EP

Kind code of ref document: A1