WO2022234746A1 - 無機粉体シート及びその製造方法 - Google Patents

無機粉体シート及びその製造方法 Download PDF

Info

Publication number
WO2022234746A1
WO2022234746A1 PCT/JP2022/015041 JP2022015041W WO2022234746A1 WO 2022234746 A1 WO2022234746 A1 WO 2022234746A1 JP 2022015041 W JP2022015041 W JP 2022015041W WO 2022234746 A1 WO2022234746 A1 WO 2022234746A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic powder
powder sheet
sheet
fibers
less
Prior art date
Application number
PCT/JP2022/015041
Other languages
English (en)
French (fr)
Inventor
祥貴 手塚
裕也 西尾
洋史 千葉
Original Assignee
阿波製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿波製紙株式会社 filed Critical 阿波製紙株式会社
Priority to JP2023518639A priority Critical patent/JPWO2022234746A1/ja
Priority to KR1020237037781A priority patent/KR20240004437A/ko
Priority to CN202280031906.2A priority patent/CN117222839A/zh
Publication of WO2022234746A1 publication Critical patent/WO2022234746A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/68Water-insoluble compounds, e.g. fillers, pigments siliceous, e.g. clays
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/26Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an inorganic powder sheet and a manufacturing method thereof.
  • Insulation sheets for insulating heating elements are used for various purposes.
  • a vehicle or stationary power supply device in which a plurality of secondary battery cells are stacked, high output and high capacity are required, so a large number of high-capacity secondary battery cells are sometimes used.
  • a power supply device there is concern that for some reason one secondary battery cell may become hot and thermally runaway, adversely affecting other adjacent secondary battery cells. Therefore, it is required to thermally insulate the adjacent secondary battery cells when thermal runaway occurs.
  • high heat resistance and flame resistance are required. Under these circumstances, attempts have been made to interpose an inorganic powder sheet between secondary battery cells for heat insulation.
  • a secondary battery cell such as a lithium-ion secondary battery has a structure in which a current collector is inserted into a rigid outer can made of aluminum, it is known that the outer can expands due to rapid charging and discharging. there is for this reason, when the heat diffusion sheet interposed between the outer cans expanded during the thermal runaway becomes thin due to being pressed with a high pressure, there is a problem that the heat insulating performance deteriorates. Therefore, there has been a demand for a heat diffusion sheet with little volume change.
  • One of the objects of the present invention is to provide an inorganic powder sheet with small compression deformation while maintaining high heat insulation and heat resistance, and a method for producing the same.
  • the inorganic powder sheet according to the first embodiment of the present invention is a heat-insulating inorganic powder sheet in which the inorganic powder contains 80% by weight or more of expanded vermiculite and 20% by weight or less of organic fiber. and With the above configuration, an inorganic powder sheet with small compressive deformation is realized while maintaining high heat insulation and heat resistance.
  • the vermiculite has a median diameter of 20 ⁇ m to 70 ⁇ m.
  • the organic fiber is para-aramid fiber, para-aramid pulp, meta-aramid pulp, polyphenylene sulfide fiber, PET fiber, flame retardant It contains at least one of PET fiber, flame-retardant rayon fiber, and natural cellulose fiber.
  • the inorganic powder sheet according to the fourth embodiment of the present invention has a film thickness of 0.1 mm to 1.0 mm.
  • the inorganic powder sheet according to the fifth aspect of the present invention in any one of the above aspects, has a bending resistance of 15 mN or more and 50 mN or less, and a density of 1.00 g/cm 3 or more and 1 .90 g/cm 3 or less.
  • the inorganic powder sheet according to the sixth embodiment of the present invention has a thermal conductivity of 0.3 W / m K or less before compression, and a thermal conductivity of 0.3 W / m K or less when compressed at 4 MPa. Compression rate is 10% or less.
  • an inorganic powder sheet according to a seventh aspect of the present invention is an inorganic powder sheet having heat insulation properties, and has a thermal conductivity of 0.3 W/m ⁇ K or less before compression and 4 MPa.
  • the compression rate when compressed with is 10% or less.
  • the inorganic powder sheet according to the eighth aspect of the present invention has a bending resistance of 15 mN or more and 50 mN or less in any one of the above aspects.
  • the inorganic powder sheet according to the ninth aspect of the present invention is, in any one of the above aspects, the inorganic powder sheet when the surface temperature of the inorganic powder sheet is set to 250 ° C. and the inorganic powder sheet is compressed at 3 MPa. 10 minutes after, the back surface temperature is 240° C. or less.
  • the above configuration it is possible to suppress deterioration of the heat insulating properties of the inorganic powder sheet due to compression.
  • the inorganic powder sheet according to the tenth aspect of the present invention has a median diameter of 20 ⁇ m to 70 ⁇ m in the integrated distribution of the vermiculite particle size distribution measurement in any one of the above aspects.
  • an inorganic powder sheet laminate according to an eleventh embodiment of the present invention is obtained by laminating one or more layers of the inorganic powder sheet according to any one of the above embodiments and a flame-retardant or flame-retardant additional layer.
  • an inorganic powder sheet laminate according to a twelfth aspect of the present invention includes a sheet material as a base material, and the inorganic powder according to any one of the above aspects, which is laminated on at least one surface of the sheet material. a body sheet;
  • a method for producing an inorganic powder sheet according to a thirteenth aspect of the present invention is a method for producing an inorganic powder sheet having heat insulating properties, wherein 80% by weight or more of expanded vermiculite is used as the inorganic powder.
  • an inorganic powder sheet with small compressive deformation is realized while maintaining high heat insulation and heat resistance.
  • the median diameter in the cumulative distribution of the vermiculite particle size distribution measurement is 20 ⁇ m to 70 ⁇ m.
  • the organic fiber is para-aramid fiber, para-aramid pulp, meta-aramid pulp, polyphenylene sulfide fiber, PET fiber, flame It contains at least one of flame-retardant PET fiber, flame-retardant rayon fiber, and natural cellulose fiber.
  • FIG. 1 is an exploded perspective view showing a power supply device according to Embodiment 1 of the present invention
  • FIG. It is a schematic cross section showing the state of the test which measures the time change of the back surface temperature with respect to the surface temperature of 250 degreeC, when compressed by 3 MPa.
  • It is a schematic diagram which shows the state of the test before compression.
  • It is a graph which shows the time change of the back surface temperature with respect to the surface temperature of 250 degreeC when compressing by 3 MPa.
  • 4 is a graph showing the change in rear surface temperature over time without compression.
  • 1 is a schematic cross-sectional view showing an example of an inorganic powder sheet laminate;
  • each of the elements constituting the present invention may be configured with the same member so that a single member may serve as a plurality of elements, or conversely, the function of one member may be performed by a plurality of members. It can also be realized by sharing.
  • the inorganic powder sheet according to the embodiment of the present invention is required to have heat insulation properties and can be used as appropriate for applications for avoiding the spread of fire.
  • it is suitable for applications such as lithium ion secondary batteries that require prevention of spread of fire from the viewpoint of safety when the temperature reaches a high temperature, such as during thermal runaway.
  • an inorganic powder sheet as a spacer interposed between adjacent secondary battery cells in a power supply device in which a large number of rectangular secondary battery cells are stacked and connected in series or parallel will be described. .
  • Such a power supply device is used as a power source for driving electric vehicles such as electric vehicles, hybrid vehicles, electric buses, trains, and electric carts, as a backup power source for factories and base stations, and as a storage battery for home use.
  • electric vehicles such as electric vehicles, hybrid vehicles, electric buses, trains, and electric carts
  • backup power source for factories and base stations
  • storage battery for home use.
  • it can be used as an inorganic powder sheet sandwiched between objects that expand and contract repeatedly.
  • a power supply device 100 shown in this figure includes a plurality of secondary battery cells 20 and an inorganic powder sheet 10 interposed between the secondary battery cells 20 .
  • the exterior can 21 has a bottomed cylindrical prismatic shape, and a plurality of the cans are stacked such that the main surfaces face each other.
  • both end surfaces of a battery stack 25 in which secondary battery cells 20 are laminated are covered with end plates 30, and the end plates 30 are fastened together with a fastening member.
  • the battery stack 25 is fixed onto the base plate 40 as necessary.
  • the base plate 40 can function as a cooling plate by circulating a coolant inside, for example.
  • Each secondary battery cell 20 accommodates an electrode body inside an outer can 21 and seals the open end with a sealing plate 22 .
  • a pair of electrodes 23 and an explosion-proof valve 24 are provided on the sealing plate 22 located on the upper surface of the outer can 21 in FIG.
  • the plurality of secondary battery cells 20 are electrically connected in series and/or in parallel with each other by connecting the electrodes 23 with bus bars.
  • the explosion-proof valve 24 is a member for discharging high-pressure gas inside the armored can 21 by detecting that the internal pressure of the armored can 21 has increased and opening the valve.
  • Each explosion-proof valve 24 is connected with a gas duct for guiding high-pressure gas to the outside as required.
  • An inorganic powder sheet 10 is interposed between adjacent secondary battery cells 20 .
  • the inorganic powder sheet 10 is called a spacer, a separator, or the like, and insulates the outer can 21 between the adjacent secondary battery cells 20 so that a short circuit does not occur. (Inorganic powder sheet 10)
  • the inorganic powder sheet has heat insulating properties and insulating properties.
  • This inorganic powder sheet contains inorganic powder and organic fibers. It preferably contains 80% by weight or more of inorganic powder and 20% by weight or less of organic fiber.
  • Expanded vermiculite can be used as the inorganic powder. Here, 80% to 82.5% by weight of expanded vermiculite and 20% to 17.5% by weight of organic fiber were blended. Such a configuration realizes an inorganic powder sheet with small compressive deformation while maintaining high heat insulation and heat resistance.
  • Vermiculite preferably has a volume average particle size of 1 ⁇ m to 500 ⁇ m, more preferably 1 to 200 ⁇ m.
  • the median diameter in the integrated distribution is preferably 20 ⁇ m to 70 ⁇ m.
  • the volume average particle diameter and median diameter can be measured using a known device such as a laser diffraction particle size distribution analyzer.
  • Organic fibers include organic synthetic fibers such as para-aramid fiber, para-aramid pulp, meta-aramid pulp, polyphenylene sulfide fiber, PET fiber, flame-retardant PET fiber, and flame-retardant rayon fiber, or wood (softwood, hardwood) pulp, cotton, hemp, etc. any one or more of the natural cellulose fibers of The form of the fiber is not limited, and may be fibrillated. JIS P 8121 (2012) Canadian Standard Freeness Method can be suitably used for determining the degree of fibrillation of fibers.
  • the blending ratio of organic fibers is preferably 0 to 20% by weight, more preferably 5 to 20% by weight. If it is equal to or less than the upper limit of the above range, the amount of deformation during compression can be suppressed, and the decrease in heat resistance tends to be suppressed.
  • the film thickness of the inorganic powder sheet is preferably 0.1 mm to 2.0 mm, more preferably 0.2 mm to 1.5 mm, even more preferably 0.3 mm to 1.0 mm. .
  • the bending resistance of the inorganic powder sheet is preferably 50 mN or less. Preferably, it is 27mN to 49mN. Within the above range, the inorganic powder sheet tends to maintain its compression resistance and flexibility, and is excellent in handleability.
  • the density of the inorganic powder sheet is preferably 1.00 g/cm 3 or more, more preferably 1.30 g/cm 3 or more. By making it equal to or higher than the lower limit value described above, a characteristic of small compressive deformation can be obtained.
  • the upper limit is not particularly limited, it is usually 1.90 g/cm 3 or less.
  • heat and pressure processing may be performed using a hot calender roll or the like. This makes it possible to adjust the denseness of the interior and improve the compression resistance performance.
  • the thermal conductivity of the inorganic powder sheet before compression is preferably 0.300 W/m ⁇ K or less, more preferably 0.200 W/m ⁇ K or less. It is preferably 0.145 W/m ⁇ K to 0.149 W/m ⁇ K.
  • an improved unsteady planar heat source method can be suitably used for measuring a thin film and low thermal conductivity material as in the present invention.
  • the compression ratio when the inorganic powder sheet is compressed at 4 MPa is preferably 10% or less, more preferably 9% or less.
  • the lower limit is not particularly limited, it is usually 0.1% or more. Preferably, it is 2.8-8.7%.
  • the inorganic powder sheet according to the present embodiment has a small amount of displacement during compression, and therefore has the advantage of being able to maintain heat insulation in a compressed state.
  • the conditions for compression are as follows: using a universal material testing machine (manufactured by Instron), press with a flat circular compressor with a diameter of 50 mm at a rate of 0.1 mm/min until reaching 4 MPa.
  • the inorganic powder sheet was compressed at 3 MPa by a hot press and held at 250 ° C. with the press plate on one side as the high temperature side and at 40 ° C. with the press plate on the opposite side as the low temperature side for 10 minutes.
  • the surface temperature of the body sheet on the low temperature side is preferably 240° C. or less.
  • the temperature after 5 minutes is 192.4°C to 196.8°C and the temperature after 10 minutes is 233.8°C to 235.7°C.
  • the powder sheet according to the present embodiment has an excellent feature that heat transmission during compression can be suppressed to a low level even though it has a higher thermal conductivity than the mica sheet.
  • the inorganic powder sheet may be composed of a single layer, or may have a laminated structure of multiple layers. This allows different properties to be added. Additional layers may be added, for example with flame-retardant or flame-retardant properties. By adding a material with excellent flame resistance in this way, it is possible to suppress the spread of fire at high temperatures.
  • the additional layer is composed of inorganic fillers such as silicate minerals, metal oxides and graphite, inorganic fibers such as glass fibers, organic fibers with excellent flame retardancy such as aramid, and organic fibers containing flame retardants.
  • an additional sheet containing mica and organic fibers is used as the additional layer.
  • the inorganic powder sheet laminate may be configured by laminating an inorganic powder sheet on at least one surface of a sheet material.
  • a sheet material 1 such an example is shown in the schematic cross-sectional view of FIG.
  • the inorganic powder sheet laminate shown in this figure has a two-layer structure in which an inorganic powder sheet 10 is laminated on the upper surface of a sheet material 1 .
  • the inorganic powder sheet 10 is not limited to one layer, and two or more layers may be laminated. Moreover, it may be laminated on both sides of the sheet material 1 .
  • a flexible material or a highly rigid material can be used for the sheet material 1 serving as the base material.
  • an elastic body such as rubber or a sheet material made of urethane sponge or the like can be used.
  • a hard resin plate or the like can be used as the material with high rigidity.
  • wet papermaking can be used as a method for manufacturing such inorganic powder sheets.
  • inorganic powder 80% by weight or more of expanded vermiculite and 20% by weight or less of organic fiber are dispersed in water to form a papermaking slurry, which is dewatered on a wire mesh and dried to form a wet papermaking sheet. is obtained.
  • a known machine can be used as the papermaking machine. For example, a fourdrinier paper machine, a cylinder paper machine, an inclined short-mesh paper machine, a twin-wire paper machine and the like can be mentioned. Also, if necessary, the density of the sheet can be adjusted by equipment such as a wet press and a touch press.
  • Further calendering may be performed for the purpose of increasing the density of the wet-made sheet.
  • the calendering process may be continuous with or independent of the wet papermaking process.
  • Known calenders can be used, and examples thereof include metal rolls, resin rolls, rubber rolls, double belt presses, and the like.
  • the calender may be heated to increase density and processing efficiency. Preferably, it is carried out by heating in a temperature range below the melting point of the organic fibers to be blended. As a result, an inorganic powder sheet with small compressive deformation is realized while maintaining high heat insulation and heat resistance.
  • Example 1 80% by weight of expanded vermiculite having a median diameter of 25 ⁇ m, 10% by weight of para-aramid pulp, and 10% by weight of softwood pulp were dispersed in water to prepare a papermaking slurry.
  • the resulting papermaking slurry was subjected to wet papermaking using a fourdrinier machine to obtain an inorganic powder precursor sheet having a basis weight of 170 g/m 2 .
  • the obtained inorganic powder precursor sheets were laminated in three layers, and subjected to thermal calendering by passing between a pair of metal rolls with a roll temperature of 190° C. and a nip pressure of 200 KPa/cm. got a sheet.
  • Example 2 80% by weight of expanded vermiculite having a median diameter of 25 ⁇ m, 10% by weight of para-aramid pulp, and 10% by weight of softwood pulp were dispersed in water to prepare a papermaking slurry.
  • the resulting papermaking slurry was subjected to wet papermaking
  • Example 3 82.5% by weight of expanded vermiculite having a median diameter of 58 ⁇ m, 8.75% by weight of para-aramid pulp, and 8.75% by weight of softwood pulp were dispersed in water to prepare a papermaking slurry.
  • the obtained papermaking slurry was subjected to wet papermaking with a fourdrinier machine to obtain an inorganic powder precursor sheet having a basis weight of 520 g/m 2 .
  • the obtained inorganic powder precursor sheet was heat calendered in the same manner as in Example 1, except that it was made into a single layer, to obtain an inorganic powder sheet according to Example 2. (Example 3)
  • the thickness and density of the inorganic powder sheets according to Examples 1 to 3 and Comparative Example 1 were measured according to JIS P 8118 (2014). (bending resistance)
  • the bending resistance of the inorganic powder sheets according to Examples 1 to 3 and Comparative Example 1 was measured according to JIS L 1085 (1998) bending resistance test (Gurley method). The measurement was performed using a Gurley flexibility tester manufactured by Toyo Tester Kogyo Co., Ltd., with a fulcrum distance of 50 mm and a sample piece having a length of 89 mm and a width of 25 mm. (Thermal conductivity)
  • the thermal conductivity of the inorganic powder sheets according to Examples 1 to 3 and Comparative Example 1 was measured according to ASTM D7984-16 by an improved unsteady planar heat source method.
  • a thermal conductivity measuring device TCi (Max-k) manufactured by C-Therm was used.
  • the inorganic powder sheet was cut out into a circle with a diameter of 30 mm as a sample, the sample sheet was placed on a sensor unit containing a heater, and a weight of 500 g was placed on the sample. In this state, heating was started with a steady output, the time change of the sensor temperature was measured, and the thermal effusivity and the thermal conductivity were measured from the following formula (1).
  • volume change was measured when the inorganic powder sheets according to each example and comparative example were pressed with a high pressure. Specifically, an inorganic powder sheet is cut to 100 mm ⁇ 100 mm as a sample sheet, and a universal material testing machine (manufactured by Instron) is used with a flat circular compressor with a diameter of 50 mm at 0.1 mm / min. 4 MPa compression rate was calculated by calculating the percentage of the sheet thickness before the test. (250°C heating compression test)
  • the time change of the back surface temperature with respect to the surface temperature of 250° C. was measured.
  • the inorganic powder sheet is cut to 180 mm ⁇ 120 mm to obtain a sample sheet SS, and as shown in the schematic cross-sectional view of FIG. 2, two stainless steel plates 12 having a thickness of 10 mm and dimensions of 180 mm ⁇ 120 mm and a sample sheet SS were placed therebetween.
  • Ten sheets of kraft paper 13 are laminated on the lower surface of the stainless steel plate 12 for the purpose of heat insulation and pressure homogenization.
  • a thermocouple 15 is attached to the surface of the stainless plate 12 in contact with the kraft paper 13 with an aluminum tape.
  • the temperature of the first hot-press plate 11 is set at 250° C.
  • the temperature of the second hot-press plate 16 is set at 40° C.
  • the entire apparatus is covered with a glass fiber heat insulating material.
  • the pressure applied to the sample sheet was divided into cases of 760 Pa and cases of 3 MPa, and measurement was performed using new sample sheets in each case.
  • the evaluation of the heat insulating performance was confirmed by the temperatures measured 5 minutes and 10 minutes after starting compression heating with a hot press device. In addition, as a blank measurement, the measurement was performed under each pressure condition without sandwiching the sample sheet between the stainless steel plates. (350°C heating compression test)
  • the time change of the backside temperature with respect to the surface temperature of 350°C was measured for the inorganic powder sheets according to Example 2 and Comparative Example 1.
  • the test equipment shown in FIG. 3 was used.
  • a laminate obtained by sandwiching both sides of a sample sheet SS of 145 mm ⁇ 90 mm between aluminum plates 17 of 10 mm thickness and size of 180 mm ⁇ 120 mm was placed on a hot plate 18 of 250 mm ⁇ 150 mm. placed on top of the Hot plate 18 is heated to 350°C.
  • a thermocouple 15 was placed on the upper surface of the laminate, a glass needle mat 19 was placed thereon for heat insulation, and a weight WT of 1.3 kg was placed on the upper surface.
  • the pressure applied to the sample sheet was calculated to be 1.5 KPa.
  • the inorganic powder sheets according to Examples 1 to 3 had a lower 4 MPa compressibility than Comparative Example 1, although the bending resistance was lower than that of Comparative Example 1.
  • the present invention has the advantage that it can be easily wound or attached to a curved surface, and that compression deformation is small, as compared with the comparative example.
  • Fig. 4 shows the time change of the back surface temperature with respect to the surface temperature of 250°C when compressed at 3 MPa.
  • a comparison of Examples 1 and 3 shows that vermiculite has a faster initial rise in back surface temperature than mica, but the temperature reverses after about 4 minutes, and it was confirmed that vermiculite has higher heat insulation performance.
  • Fig. 5 shows the results of measuring the back surface temperature in the 350°C heat insulation test.
  • the inorganic powder sheet of the present invention can be used as a heat insulating sheet sandwiched between objects that expand and contract repeatedly.
  • a heat insulating spacer interposed between secondary battery cells or between secondary battery cell modules, a buffer sheet interposed between an explosion-proof valve and a gas duct, or a heat insulating material that protects a drive circuit such as an ECU. etc. can be suitably used.
  • it can also be used as building materials such as heat insulating materials and heat-resistant materials that prevent the spread of fire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paper (AREA)

Abstract

高い断熱性や耐熱性を維持しつつ、圧縮変形の小さい無機粉体シート及びその製造方法を提供する。 無機粉体シートは、無機粉体として、膨張処理済バーミキュライトを80重量%以上と、有機繊維を20重量%以下とを含んでおり、断熱性を有する。上記構成により、高い断熱性や耐熱性を維持しつつ、圧縮変形の小さい無機粉体シートが実現される。

Description

無機粉体シート及びその製造方法
 本発明は、無機粉体シート及びその製造方法に関する。
 発熱体を断熱するための断熱シートが、様々な用途で用いられている。例えば、二次電池セルを複数枚積層した車載用や定置用の電源装置においては、高出力化、高容量化が求められていることから、高容量の二次電池セルを多数用いることがある。このような電源装置において、何らかの理由で一の二次電池セルが高温になって熱暴走し、隣接する他の二次電池セルに悪影響を与えることが懸念される。このため、熱暴走時に隣接する二次電池セル同士を、熱的に断熱することが求められる。加えて、高い耐熱性と耐燃性が求められる。このような状況から、無機粉体シートを二次電池セル同士の間に介在させて断熱することが試みられてきた。
 しかしながら、リチウムイオン二次電池のような二次電池セルは、アルミニウム製の硬質の外装缶に集電体を挿入した構成であるところ、急激な充放電によって外装缶が膨張することが知られている。このため、熱暴走時に膨張した外装缶同士の間に介在される熱拡散シートが、高い圧力で押圧されて厚さが薄くなると、断熱性能が低下するという問題があった。このため、体積変化の少ない熱拡散シートが求められていた。
特開2020-187870号公報
 本発明の目的の一は、高い断熱性や耐熱性を維持しつつ、圧縮変形の小さい無機粉体シート及びその製造方法を提供することにある。
課題を解決するための手段及び発明の効果
 本発明の第1の形態に係る無機粉体シートは、断熱性を有する無機粉体シートであって、無機粉体として、膨張処理済バーミキュライトを80重量%以上と、有機繊維を20重量%以下とを含んでいる。上記構成により、高い断熱性や耐熱性を維持しつつ、圧縮変形の小さい無機粉体シートが実現される。
 さらにまた、本発明の第2の形態に係る無機粉体シートは、上記いずれかの形態において、前記バーミキュライトのメジアン径が、20μm~70μmである。
 さらにまた、本発明の第3の形態に係る無機粉体シートは、上記いずれかの形態において、前記有機繊維が、パラアラミド繊維、パラアラミドパルプ、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維、天然セルロース繊維のいずれか一以上を含んでいる。
 さらにまた、本発明の第4の形態に係る無機粉体シートは、上記いずれかの形態において、前記無機粉体シートの膜厚が、0.1mm~1.0mmである。
 さらにまた、本発明の第5の形態に係る無機粉体シートは、上記いずれかの形態において、剛軟度が、15mN以上、50mN以下であり、密度が、1.00g/cm3以上、1.90g/cm3以下である。上記構成により、剛性を維持しつつも曲げに対する抵抗力を低減して加工し易い無機粉体シートを実現できる。
 さらにまた、本発明の第6の形態に係る無機粉体シートは、上記いずれかの形態において、圧縮前の熱伝導率が、0.3W/m・K以下であり、4MPaで圧縮した場合の圧縮率が、10%以下である。
 さらにまた、本発明の第7の形態に係る無機粉体シートは、断熱性を有する無機粉体シートであって、圧縮前の熱伝導率が、0.3W/m・K以下であり、4MPaで圧縮した場合の圧縮率が、10%以下である。
 さらにまた、本発明の第8の形態に係る無機粉体シートは、上記いずれかの形態において、剛軟度が、15mN以上、50mN以下である。
 さらにまた、本発明の第9の形態に係る無機粉体シートは、上記いずれかの形態において、前記無機粉体シートの表面温度を250℃とし、3MPaで圧縮した時の、前記無機粉体シートの10分後の裏面温度が、240℃以下である。上記構成により、圧縮による無機粉体シートの断熱性の低下を抑制できる。
 さらにまた、本発明の第10の形態に係る無機粉体シートは、上記いずれかの形態において、前記バーミキュライトの粒度分布測定の積算分布において、メジアン径が20μm~70μmである。
 さらにまた、本発明の第11の形態に係る無機粉体シート積層体は、上記いずれかの形態に係る無機粉体シートを一層以上と、難燃性又は防炎性の付加層を積層している。
 さらにまた、本発明の第12の形態に係る無機粉体シート積層体は、基材となるシート材と、前記シート材の少なくとも一方の面に積層された、上記いずれかの形態に係る無機粉体シートとを備える。
 さらにまた、本発明の第13の形態に係る無機粉体シートの製造方法は、断熱性を有する無機粉体シートの製造方法であって、無機粉体として、膨張処理済バーミキュライトを80重量%以上に、有機繊維を20重量%以下配合して、水に分散させてスラリー化して湿式抄紙する工程と、シート状に抄紙されたものを熱カレンダー加工する工程とを含む。これにより、高い断熱性や耐熱性を維持しつつ、圧縮変形の小さい無機粉体シートが実現される。
 さらにまた、本発明の第14の形態に係る無機粉体シートの製造方法は、上記において、前記バーミキュライトの粒度分布測定の積算分布において、メジアン径が20μm~70μmである。
 さらにまた、本発明の第15の形態に係る無機粉体シートの製造方法は、上記いずれかにおいて、前記有機繊維が、パラアラミド繊維、パラアラミドパルプ、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維、天然セルロース繊維のいずれか一以上を含んでいる。
本発明の実施形態1に係る電源装置を示す分解斜視図である。 3MPaで圧縮した時の、表面温度250℃に対する裏面温度の時間変化を測定する試験の様子を示す模式断面図である。 圧縮前の試験の様子を示す模式図である。 3MPaで圧縮した時の、表面温度250℃に対する裏面温度の時間変化を、示すグラフである。 圧縮無しでの裏面温度の時間変化を示すグラフである。 無機粉体シート積層体の一例を示す模式断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに限定されない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
[実施形態1]
 本発明の実施形態に係る無機粉体シートは、断熱性が求められると共に、類焼を回避する用途に適宜利用できる。例えば、リチウムイオン二次電池のような、熱暴走時等、高温に至った際に安全性の観点から類焼防止が求められる用途に適している。ここでは、角形の二次電池セルを多数積層して直列や並列に接続した電源装置において、隣接する二次電池セル同士の間に介在されるスペーサとして、無機粉体シートを用いる例を説明する。このような電源装置は、電気自動車やハイブリッド自動車、電動バス、電車、電動カート等の電動車両の駆動用電源として、あるいは工場や基地局のバックアップ電源用、さらには家庭用の蓄電池として利用される。好適には、繰り返し膨張収縮する対象物同士の間に挟まれて使用される無機粉体シートとして利用できる。
 実施形態1に係る電源装置を、図1の分解斜視図に示す。この図に示す電源装置100は、複数の二次電池セル20と、二次電池セル20同士の間に介在される無機粉体シート10とを備える。二次電池セル20は、外装缶21を有底筒状の角形としており、複数枚を主面同士が対向する姿勢で積層されている。積層は、例えば二次電池セル20を積層した電池積層体25の両端面を、それぞれ端面板30で覆うと共に、端面板30同士を締結部材で締結する。また、電池積層体25は、必要に応じて基礎板40上に固定される。基礎板40は、例えば内部に冷媒を循環させて冷却板として機能させることができる。
 各二次電池セル20は、外装缶21の内部に電極体を収納し、開口端を封口板22で封止している。図1において外装缶21の上面に位置する封口板22には、一対の電極23と防爆弁24が設けられる。複数の二次電池セル20は、電極23同士をバスバーで接続することにより、互いに直列及び/又は並列に電気的に接続される。また防爆弁24は、外装缶21の内圧が高くなったことを検出して開弁され、外装缶21内部の高圧ガスを排出するための部材である。各防爆弁24は、必要に応じて高圧ガスを外部に案内するためのガスダクトと連結される。
 隣接する二次電池セル20同士の間には、無機粉体シート10が介在される。無機粉体シート10は、スペーサやセパレータ等と呼ばれ、隣接する二次電池セル20間で外装缶21が短絡しないように絶縁する。
(無機粉体シート10)
 無機粉体シートは、断熱性と絶縁性を有する。この無機粉体シートは、無機粉体と有機繊維を含む。好ましくは無機粉体を80重量%以上、有機繊維を20重量%以下含む。無機粉体には、膨張処理済バーミキュライトが利用できる。ここでは、膨張バーミキュライトを80重量%~82.5重量%、有機繊維を20重量%~17.5重量%配合した。このような構成により、高い断熱性や耐熱性を維持しつつ、圧縮変形の小さい無機粉体シートが実現される。バーミキュライトは、その体積平均粒径を1μm~500μmとすることが好ましく、1~200μmとすることがより好ましい。またバーミキュライトの粒度分布は、積算分布においてメジアン径を20μm~70μmとすることが好ましい。体積平均粒径及びメジアン径は、例えばレーザー回折式粒度分布測定装置等の公知の装置を用いて測定できる。上記の範囲の上限値以下とすることで、無機粉体シートの空隙を少なく密度を高めることで、圧縮変形が小さくなる傾向にあり、上記の範囲の下限値以上とすることで、無機粉体シートの粉落ちが少なくなる傾向にある。
(有機繊維)
 有機繊維は、パラアラミド繊維、パラアラミドパルプ、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維等の有機合成繊維、又は木材(針葉樹、広葉樹)パルプ、綿、麻等の天然セルロース繊維のいずれか一以上を利用できる。繊維の形態は限定されず、フィブリル化されていてもよい。繊維のフィブリル化度合いの判定には、JIS P 8121(2012)カナダ標準ろ水度法が好適に利用できる。有機繊維の配合率は、0~20重量%が好ましく、5~20重量%がより好ましい。上記の範囲の上限値以下であれば、圧縮時の変形量を抑制でき、耐熱性の低下も抑制できる傾向にある。
 また無機粉体シートの膜厚は、0.1mm~2.0mmとすることが好ましく、0.2mm~1.5mmとすることがより好ましく、0.3mm~1.0mmとすることがさらに好ましい。このように無機粉体シートを薄膜とすることで、省スペースでも利用でき、例えば電源装置の断熱シートに使用する際、多数の二次電池セル間に無機粉体シートを介在させて積層する際に装置が大型化する事態を回避できる。
 さらに無機粉体シートの剛軟度は、50mN以下とすることが好ましい。好適には、27mN~49mNとする。上記の範囲内であれば、無機粉体シートの耐圧縮性と、柔軟性を維持して取扱い性に優れる傾向にある。
 さらにまた無機粉体シートの密度は、1.00g/cm3以上とすることが好ましく、1.30g/cm3以上がより好ましい。前述した下限値以上とすることで、圧縮変形の小さい特性が得られる。上限は特に制限されないが、通常1.90g/cm3以下である。このような特性を実現するために、無機粉体シートの製造工程において、無機粉体と有機繊維を抄紙後に、熱カレンダーロール等により加熱加圧加工を行ってもよい。これにより内部の緻密度を調整して耐圧縮性能を高めることができる。この結果、耐圧縮性を維持しつつも曲げに対する抵抗力を低減して、加工し易い無機粉体シートを実現できる。また、マイカシート等の断熱シートに比べ、柔軟性が高いことから、ロール状に巻回でき、ロール体として保管や運搬等の管理が容易に行え、生産性や作業性が向上する。さらに比重が小さいことで、同面積や同厚みの断熱シートに比べて軽量化が図られる。例えば車載用の電源装置では燃費向上のため軽量化が強く求められているため、このような用途において好適に適用できる。
 さらに無機粉体シートの圧縮前の熱伝導率は、0.300W/m・K以下とすることが好ましく、0.200W/m・K以下とすることがより好ましい。好適には0.145W/m・K~0.149W/m・Kとする。本発明のように薄膜かつ低熱伝導率材料の測定には、例えば改良非定常平面熱源法を好適に用いることができる。
 一方で、無機粉体シートを4MPaで圧縮した場合の圧縮率を、10%以下とすることが好ましく、9%以下がより好ましい。下限には特に制限がないが、通常0.1%以上である。好適には、2.8~8.7%とする。このように本実施形態に係る無機粉体シートでは、圧縮時の変位量が少ないため、圧縮された状態での断熱性を維持できるという特長を実現する。ここで圧縮時の条件は、万能材料試験機(インストロン社製)を用いて、直径50mmの平坦な円形圧縮子で0.1mm/minの速度で4MPaに達するまで押圧したものとする。
 加えて、無機粉体シートを熱プレスにより3MPaで圧縮し、片面のプレス板を高温側として250℃、反対面のプレス板を低温側として40℃に保持した時の、10分後の無機粉体シートの低温側の面温度が、240℃以下であることが好ましい。好適には、5分後の温度が192.4℃~196.8℃、10分後の温度が233.8℃~235.7℃であることが好ましい。
 これにより、圧縮による無機粉体シートの断熱性の低下を抑制できる。特に本実施形態に係る粉体シートは、マイカシートよりも熱伝導率が高いにもかかわらず、圧縮時の熱の透過を低く抑えることができるという優れた特長を有する。
 また、無機粉体シートを単層で構成する他、複数層の積層構造としてもよい。これにより、異なる特性を付加することができる。例えば難燃性や防炎性を備える付加層を付加してもよい。このように難燃性に優れた材質を付加することで、高温時に類焼を抑制できる。例えば付加層は、珪酸塩鉱物、金属酸化物、黒鉛等の無機充填剤、ガラス繊維等の無機繊維、アラミド等の難燃性に優れる有機繊維及び難燃剤を含有した有機繊維等で構成される。ここでは付加層として、マイカと有機繊維を配合した付加シートを使用している。
 さらに無機粉体シート積層体は、シート材の少なくとも一方の面に、無機粉体シートを積層して構成してもよい。このような例を図6の模式断面図に示す。この図に示す無機粉体シート積層体は、シート材1の上面に、無機粉体シート10を積層した2層構造としている。無機粉体シート10は、1層に限らず2層以上積層してもよい。またシート材1の両面に積層してもよい。
 基材となるシート材1には、可撓性材料または剛性の高い材料を用いることができる。可撓性材料には、ゴムなどの弾性体や、ウレタンスポンジ等からなるシート材が利用できる。また剛性の高い材料には、硬質の樹脂板等が利用できる。このような基材をシート材1として用いることで、基材の断熱性や耐熱性を向上させることができる。
[無機粉体シートの製造方法]
 このような無機粉体シートの製造方法には、湿式抄紙が利用できる。例えば無機粉体として、80重量%以上の膨張処理済バーミキュライトと、20重量%以下の有機繊維を、水に分散させて抄紙スラリーとして、ワイヤーメッシュ上で脱水、乾燥することで湿式抄紙されたシートが得られる。抄紙機械としては公知の物が利用できる。例えば長網抄紙機、円網抄紙機、傾斜短網抄紙機、ツインワイヤ―抄紙機等が挙げられる。また必要に応じて、ウェットプレス、タッチプレス等の設備によりシートの密度を調整できる。
 湿式抄紙されたシートの密度を高める目的で、さらにカレンダー加工を行ってもよい。この場合、カレンダー工程が湿式抄紙工程と連続していても、独立していてもよい。カレンダー装置は既知のものが利用でき、例えば金属ロール、樹脂ロール、ゴムロール、ダブルベルトプレス等が挙げられる。カレンダー装置は密度や加工効率を高めるため加温してもよい。好ましくは、配合される有機繊維の融点以下の温度範囲において加熱して行う。これにより、高い断熱性や耐熱性を維持しつつ、圧縮変形の小さい無機粉体シートが実現される。
[実施例]
(実施例1)
メジアン径が25μmである膨張バーミキュライト80重量%と、パラアラミドパルプ10重量%と、針葉樹パルプ10重量%とを水に分散し、抄紙スラリーとした。得られた抄紙スラリーを長網抄紙機にて湿式抄紙して、坪量が170g/m2である無機粉体前駆体シートを得た。得られた無機粉体前駆体シートを3層に積層し、ロール温度190℃、ニップ圧を200KPa/cmとした1対の金属ロール間を通して熱カレンダー加工を行い、実施例1に係る無機粉体シートを得た。
(実施例2)
 メジアン径が58μmである膨張バーミキュライト82.5重量%と、パラアラミドパルプ8.75重量%と、針葉樹パルプ8.75重量%とを水に分散し、抄紙スラリーとした。得られた抄紙スラリーを長網抄紙機にて湿式抄紙して、坪量が520g/m2である無機粉体前駆体シートを得た。得られた無機粉体前駆体シートを、単一の層とした他は実施例1と同様に熱カレンダー加工を行い、実施例2に係る無機粉体シートを得た。
(実施例3)
 メジアン径が27μmである天然マイカ90重量%と、パラアラミドパルプ10重量%を水に分散し、抄紙スラリーとした。得られた抄紙スラリーを長網抄紙機にて湿式抄紙して、坪量が210g/m2である付加層前駆体シートを得た。得られた付加層前駆体シートを、実施例1の無機粉体前駆体シートの両面に積層し3層構造とした他は、実施例1と同様に熱カレンダー加工を行い、実施例3に係る無機粉体シートを得た。
(比較例1)
 また比較例として、ワイドワーク社より入手した市販のマイカシート(WW-FMS-L)を用いた。このマイカシートは、マイカと数%のシリコーン接着剤を含むとされている。各実施例、比較例のサンプルの組成は、表1の通りである。また、得られた各実施例、比較例について測定した。
(坪量)
 実施例1~3及び比較例1に係る無機粉体シートの坪量は、JIS P 8124(2011)に準じて測定した。
(厚さ、密度)
 実施例1~3及び比較例1に係る無機粉体シートの厚さ及び密度は、JIS P 8118(2014)に準じて測定した。
(剛軟度)
 実施例1~3及び比較例1に係る無機粉体シートの剛軟度は、JIS L 1085(1998)剛軟度試験(ガーレ法)に準じて測定した。測定には東洋テスター工業製ガーレー式柔軟度試験機を用いて、支点距離は50mmとし、サンプル片は長さ89mm、幅25mmとして行った。
(熱伝導率)
 実施例1~3及び比較例1に係る無機粉体シートの熱伝導率の測定は、ASTM D7984-16に準じて改良非定常平面熱源法で行った。ここではC-Therm社製の熱伝導率測定装置TCi(Max-k)を用いた。無機粉体シートを直径30mmの円形に切り抜いてサンプルとして、ヒーターを内蔵したセンサユニットの上にサンプルシートを配置し、サンプルの上に500gの重りを載せた。この状態で定常出力で加熱を開始して、センサ温度の時間変化を測定し、次式の数1から熱浸透率と熱伝導率を測定した。
Figure JPOXMLDOC01-appb-M000001
 以上の結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表に示すように、比較例1よりも実施例1~3の方が剛軟度が低いことが確認された。このように柔軟性を高めたことで、ロール形状にし易い、可搬性やハンドリングに優れた無機粉体シートが得られる。
(4MPa圧縮試験)
 次に、各実施例及び比較例に係る無機粉体シートが高い圧力で押圧される際の体積変化を測定した。具体的には、無機粉体シートを100mm×100mmに裁断してサンプルシートとして、万能材料試験機(インストロン社製)を用いて、直径50mmの平坦な円形圧縮子で、0.1mm/minの速度で4MPaに達するまで押圧した際の押し込み長さを求め、試験前のシート厚さに対する百分率を算出して4MPa圧縮率とした。
(250℃加熱圧縮試験)
 また、各実施例及び比較例に係る無機粉体シートをプレス機で圧縮した時の、表面温度250℃に対する裏面温度の時間変化を測定した。ここでは無機粉体シートを180mm×120mmに裁断してサンプルシートSSとして、図2の模式断面図に示すように、300mm×300mmの第一熱プレス板11と第二熱プレス板16との間に、厚さ10mm、寸法180mm×120mmの2枚のステンレス板12と、その間にサンプルシートSSとを挟んで配置した。またステンレス板12の下面には、断熱と圧力の均質化を目的として、クラフト紙13を10枚積層している。また、ステンレス板12がクラフト紙13と接する面に、熱電対15をアルミニウム製テープで貼付している。加えて、第一熱プレス板11の温度を250℃、第二熱プレス板16の温度を40℃に設定して、装置全体をガラス繊維製断熱材で覆っている。サンプルシートに掛ける圧力は、760Paの場合と、3MPaの場合とに分け、それぞれ新品のサンプルシートを用いて測定を行った。
 断熱性能の評価は、熱プレス装置にて圧縮加熱を開始した5分後及び10分後に計測した温度によって確認した。またブランク測定として、ステンレス板にサンプルシートを挟まずに、それぞれの圧力条件で測定を行った。
(350℃加熱圧縮試験)
 さらに、実施例2及び比較例1に係る無機粉体シートの、表面温度350℃に対する裏面温度の時間変化を測定した。ここでは図3に示す試験装置を用いて行った。ここではホットプレート上でサンプルを加熱するため、145mm×90mmのサンプルシートSSの両面を、厚さ10mm、大きさ180mm×120mmのアルミ板17で挟持した積層体を、250mm×150mmのホットプレート18の上面に載置する。ホットプレート18は350℃に加熱する。さらに積層体の上面に熱電対15を載置し、その上に断熱のためガラスニードルマット19を置き、上面に1.3kgの重りWTを載せた。サンプルシートに係る圧力を算出すると、1.5KPaであった。
 断熱性能の評価は、上述した積層体を、350℃で安定したホットプレート上に載せて加熱を開始してから5分後及び10分後に計測した温度によって確認した。またブランク測定として、アルミ板にサンプルシートを挟まない積層体を用意して測定を行った。以上の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 以上のように、実施例1~3に係る無機粉体シートはいずれも比較例1より剛軟度が低いにもかかわらず、4MPa圧縮率が低いことが確認された。このように本発明は比較例に比べて、容易に巻回、または曲面への貼付が可能であり、かつ圧縮変形の小さい特長を有している。
 表2から、断熱性能の高い順に並べると、荷重760Paの場合は比較例1の5分後及び10分後の温度が最も低温になっているものの、荷重3.0MPaの場合は、比較例1よりも実施例1~3の方が低温であった。このように、本発明は比較例よりも軽量かつ圧縮による断熱性の低下を防げることが確認された。
 また表2から、実施例2に係る無機粉体シートは、比較例1に比べて、350℃断熱試験においても加熱5分後及び10分後の温度が低いことから、断熱性能も高いことが確認された。
 また、3MPaで圧縮した時の、表面温度250℃に対する裏面温度の時間変化を、図4に示す。実施例1と3を比較すると、バーミキュライトのほうがマイカよりも裏面温度の初期上昇が早いものの、4分経過したあたりで温度が逆転し、より断熱性能が高いことが確認できた。
 さらに、350℃断熱試験での裏面温度を測定した結果を、図5に示す。実施例2と比較例1を比較すると、2分後以降は比較例1よりも温度が低温側にあるため、比較例1よりも断熱性能が高いことが確認できた。
 本発明の無機粉体シートは、繰り返し膨張収縮する対象物同士の間に挟まれて使用される断熱シートとして利用できる。例えば二次電池セル同士、又は二次電池セルモジュール同士の間に介在される断熱用のスペーサや、防爆弁とガスダクトの間に介在される緩衝シート、あるいはECU等の駆動回路を保護する断熱材等に好適に利用できる。また、建築用途において、類焼を防止する断熱材、耐熱材などの建材等にも利用できる。
1…シート材
10…無機粉体シート
11…第一熱プレス板
12…ステンレス板
13…クラフト紙
15…熱電対
16…第二熱プレス板
17…アルミ板
18…ホットプレート
19…ガラスニードルマット
20…二次電池セル
21…外装缶
22…封口板
23…電極
24…防爆弁
25…電池積層体
30…端面板
40…基礎板
100…電源装置
SS…サンプルシート
WT…重り

Claims (15)

  1.  断熱性を有する無機粉体シートであって、
     無機粉体として、膨張処理済バーミキュライトを80重量%以上と、
     有機繊維を20重量%以下と
    を含んでなる無機粉体シート。
  2.  請求項1に記載の無機粉体シートであって、
     前記バーミキュライトのメジアン径が、20μm~70μmである無機粉体シート。
  3.  請求項1又は2に記載の無機粉体シートであって、
     前記有機繊維が、パラアラミド繊維、パラアラミドパルプ、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維、天然セルロース繊維のいずれか一以上を含んでなる無機粉体シート。
  4.  請求項1~3のいずれか一項に記載の無機粉体シートであって、
     前記無機粉体シートの膜厚が、0.1mm~1.0mmである無機粉体シート。
  5.  請求項1~4のいずれか一項に記載の無機粉体シートであって、
     剛軟度が、15mN以上、50mN以下であり、
     密度が、1.00g/cm3以上、1.90g/cm3以下である無機粉体シート。
  6.  請求項1~5のいずれか一項に記載の無機粉体シートであって、
     圧縮前の熱伝導率が、0.3W/m・K以下であり、
     4MPaで圧縮した場合の圧縮率が、10%以下である無機粉体シート。
  7.  断熱性を有する無機粉体シートであって、
     圧縮前の熱伝導率が、0.3W/m・K以下であり、
     4MPaで圧縮した場合の圧縮率が、10%以下である無機粉体シート。
  8.  請求項7に記載の無機粉体シートであって、
     剛軟度が、15mN以上、50mN以下である無機粉体シート。
  9.  請求項1~8のいずれか一項に記載の無機粉体シートであって、
     前記無機粉体シートの表面温度を250℃とし、3MPaで圧縮した時の、前記無機粉体シートの10分後の裏面温度が、240℃以下である無機粉体シート。
  10.  請求項1~9のいずれか一項に記載の無機粉体シートであって、
     前記バーミキュライトの粒度分布測定の積算分布において、メジアン径が20μm~70μmである無機粉体シート。
  11.  請求項1~10のいずれか一項に記載の無機粉体シートを一層以上と、
     難燃性又は防炎性の付加層を積層してなる無機粉体シート積層体。
  12.  基材となるシート材と、
     前記シート材の少なくとも一方の面に積層された、請求項1~10のいずれか一項に記載の無機粉体シートとを備える無機粉体シート積層体。
  13.  断熱性を有する無機粉体シートの製造方法であって、
     無機粉体として、膨張処理済バーミキュライトを80重量%以上に、有機繊維を20重量%以下配合して、水に分散させてスラリー化して湿式抄紙する工程と、
     シート状に抄紙されたものを熱カレンダー加工する工程と、
    を含む無機粉体シートの製造方法。
  14.  請求項13に記載の無機粉体シートの製造方法であって、
     前記バーミキュライトの粒度分布測定の積算分布において、メジアン径が20μm~70μmである無機粉体シートの製造方法。
  15.  請求項13又は14に記載の無機粉体シートの製造方法であって、
     前記有機繊維が、パラアラミド繊維、パラアラミドパルプ、メタアラミドパルプ、ポリフェニレンサルファイド繊維、PET繊維、難燃PET繊維、難燃レーヨン繊維、天然セルロース繊維のいずれか一以上を含んでなる無機粉体シートの製造方法。
PCT/JP2022/015041 2021-05-06 2022-03-28 無機粉体シート及びその製造方法 WO2022234746A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023518639A JPWO2022234746A1 (ja) 2021-05-06 2022-03-28
KR1020237037781A KR20240004437A (ko) 2021-05-06 2022-03-28 무기 분체 시트 및 그 제조 방법
CN202280031906.2A CN117222839A (zh) 2021-05-06 2022-03-28 无机粉体片材及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-078484 2021-05-06
JP2021078484 2021-05-06

Publications (1)

Publication Number Publication Date
WO2022234746A1 true WO2022234746A1 (ja) 2022-11-10

Family

ID=83932157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015041 WO2022234746A1 (ja) 2021-05-06 2022-03-28 無機粉体シート及びその製造方法

Country Status (4)

Country Link
JP (1) JPWO2022234746A1 (ja)
KR (1) KR20240004437A (ja)
CN (1) CN117222839A (ja)
WO (1) WO2022234746A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180802A (ja) * 1984-02-28 1985-09-14 Nippon Sekisoo Kogyo Kk 繊維質成形層体の製造法
JPH11241297A (ja) * 1997-12-19 1999-09-07 Tokiwa Electric Co Ltd 断熱性シート
CN102503299A (zh) * 2011-10-27 2012-06-20 苏州晟保隆新材料科技有限公司 含膨胀蛭石的建筑内饰防火板材及其制造方法
JP2013155828A (ja) * 2012-01-31 2013-08-15 Imae Kogyo Kk 筒状断熱材及びこれを装着した機器
CN104418557A (zh) * 2013-09-05 2015-03-18 上海斯米克控股股份有限公司 一种轻质高强蛭石硅酸钙板及其制备方法
JP2020165065A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 耐熱断熱シートとその製造方法、及び組電池
JP2020193413A (ja) * 2019-05-29 2020-12-03 パナソニックIpマネジメント株式会社 断熱シートおよびその製造方法、ならびに電子機器および電池ユニット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303017B2 (ja) 2019-05-10 2023-07-04 イビデン株式会社 電池セル及び組電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180802A (ja) * 1984-02-28 1985-09-14 Nippon Sekisoo Kogyo Kk 繊維質成形層体の製造法
JPH11241297A (ja) * 1997-12-19 1999-09-07 Tokiwa Electric Co Ltd 断熱性シート
CN102503299A (zh) * 2011-10-27 2012-06-20 苏州晟保隆新材料科技有限公司 含膨胀蛭石的建筑内饰防火板材及其制造方法
JP2013155828A (ja) * 2012-01-31 2013-08-15 Imae Kogyo Kk 筒状断熱材及びこれを装着した機器
CN104418557A (zh) * 2013-09-05 2015-03-18 上海斯米克控股股份有限公司 一种轻质高强蛭石硅酸钙板及其制备方法
JP2020165065A (ja) * 2019-03-29 2020-10-08 王子ホールディングス株式会社 耐熱断熱シートとその製造方法、及び組電池
JP2020193413A (ja) * 2019-05-29 2020-12-03 パナソニックIpマネジメント株式会社 断熱シートおよびその製造方法、ならびに電子機器および電池ユニット

Also Published As

Publication number Publication date
JPWO2022234746A1 (ja) 2022-11-10
CN117222839A (zh) 2023-12-12
KR20240004437A (ko) 2024-01-11

Similar Documents

Publication Publication Date Title
JP7351854B2 (ja) 電源装置及び電源装置用断熱シート
US20210384543A1 (en) Planar solid oxide fuel unit cell and stack
WO2020083331A1 (en) Thermal barrier material for electric vehicle battery applications
CN113875082B (zh) 用于高安全性包设计的导热性各向异性的多层复合材料
CN112151918B (zh) 一种隔热膜及其制备方法与应用
US20240006723A1 (en) Silicone laminate and battery
US20210305640A1 (en) Power supply device
JPWO2020261940A1 (ja) バッテリモジュール
WO2022234746A1 (ja) 無機粉体シート及びその製造方法
WO2021256093A1 (ja) 断熱シート及びこれを備える電源装置
JPH1140130A (ja) 二次電池用セパレータ
WO2023134602A1 (en) Laminate useful as cell-to-cell battery insulation
JP2020187869A (ja) 熱伝達抑制シート及び組電池
TW202322451A (zh) 電池用斷熱材和非水電解質二次電池
JP2020187870A (ja) 電池セル及び組電池
JP2022172672A (ja) 熱拡散シート
JP2020187868A (ja) 熱伝達抑制シート及び組電池
JP7400070B1 (ja) 延焼防止材、積層体、組電池及び自動車
JP7510882B2 (ja) 隣接する電池セルを絶縁するためのセパレータおよびそれを備えた電源装置
CN217158540U (zh) 一种气凝胶电芯隔板
EP4357124A1 (en) Fire spread prevention material, method for producing same, laminate, assembled battery, and automobile
CN220358152U (zh) 叠片电芯、电池及电子设备
WO2023243690A1 (ja) 多層断熱材及び多層断熱材の製造方法
WO2024142514A1 (ja) 延焼防止材、積層体、組電池及び自動車
KR20230110055A (ko) 압력 강하 시트를 포함하는 배터리 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023518639

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280031906.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798853

Country of ref document: EP

Kind code of ref document: A1