WO2022233225A1 - 增加多功能气敏传感器气体选择功能的方法和气敏传感器 - Google Patents

增加多功能气敏传感器气体选择功能的方法和气敏传感器 Download PDF

Info

Publication number
WO2022233225A1
WO2022233225A1 PCT/CN2022/087113 CN2022087113W WO2022233225A1 WO 2022233225 A1 WO2022233225 A1 WO 2022233225A1 CN 2022087113 W CN2022087113 W CN 2022087113W WO 2022233225 A1 WO2022233225 A1 WO 2022233225A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
nano
gas sensor
sensor
sensing
Prior art date
Application number
PCT/CN2022/087113
Other languages
English (en)
French (fr)
Inventor
徐芳
何浩培
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Publication of WO2022233225A1 publication Critical patent/WO2022233225A1/zh
Priority to US18/503,207 priority Critical patent/US20240068972A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds

Definitions

  • the present application relates to the technical field of gas sensors, in particular to a method for increasing the gas selection function of a multifunctional gas sensor and a gas sensor.
  • sensors are considered to be one of the three pillars of modern information technology.
  • Gas sensors play an important role in industrial manufacturing, environmental monitoring, drug diagnosis, personal safety, and more.
  • Semiconductor-based resistive gas sensors have the advantages of small size, simple structure, high response, and low price.
  • the principle of semiconductor resistive gas sensor for gas detection is that gas adsorbs and chemically reacts on its surface, so it responds to a variety of gases, but the working environment of gas detection is generally more complicated, and single-probe gas sensor is in multi-component.
  • the current research focus and difficulties in the field of gas sensor technology.
  • the currently used technology is to combine multiple gas-sensing sensor elements with different sensitive characteristics into an array for integrated use, and test the effect of gas-sensing sensor elements made of different materials on the gas.
  • Response performance a large number of data analysis and multi-data comparison analysis are performed to identify and detect two or more gases.
  • this type of device is not a single-probe device, and has problems such as large size, complex structure, time-consuming and cumbersome testing process and data processing.
  • the existing gas sensors can only achieve dual-function gas selectivity at most, that is, the gas sensor can only select two gases through temperature control.
  • this method of realizing bifunctional gas selectivity through temperature regulation has a large temperature regulation range, and increasing the operating temperature of the device has a series of hidden dangers in safety and defects in energy consumption.
  • a single-probe gas sensor can realize the selection function of more than two gases .
  • the purpose of this application is to provide a method for increasing the gas selection function of a multifunctional gas sensor, and a gas sensor with more gas selection functions.
  • One aspect of the present application discloses a method for increasing the gas selection function of a multifunctional gas sensor, including forming a nano-precious metal particle modification layer on the surface of a semiconductor gas sensor material layer on the gas sensor probe, so that a single probe of the gas sensor can be It can realize the selective regulation of detection of at least three gases in the working temperature range of 0-400 °C.
  • the nano-precious metal particle modified layer refers to a layer formed by stacking nano-precious metal particles.
  • the modification of nano-precious metal particles on the surface of the semiconductor gas-sensing material layer can increase the gas selection function of the gas-sensing sensor with a single probe, and realize the detection of at least three gases in the working temperature range of 0-400 °C.
  • the detection selectivity regulation of the gas sensor is improved; the gas selectivity of the gas sensor is improved, and the types of selected gases are expanded.
  • the key point of this application is to find that the types of selected gases can be increased by modifying the semiconductor gas-sensing material with nano-precious metal particles, so as to achieve the detection selectivity of at least three gases; as for the specific nano-precious metal particles, please refer to the present
  • Some noble metal nanomaterials and specific semiconductor gas-sensing materials can also refer to existing gas-sensing sensors, and the substrate of gas-sensing sensor probes can also refer to existing gas-sensing sensors, such as ceramic tubes, silicon wafers, glass, plastics Wait.
  • nano-precious metals, semiconductor gas-sensing materials, and substrates are all defined in detail. For details, see the following technical solutions.
  • the nano precious metal particles are at least one of nano gold, nano silver, nano platinum and nano palladium.
  • the nano precious metal particles are nano gold.
  • the thickness of the nano-precious metal particle modification layer is 1-10 nm.
  • the nano-precious metal particle modification layer is formed on the surface of the semiconductor gas-sensing material layer in the following manner:
  • Magnetron sputtering is used to coat a 1-10nm noble metal film on the surface of the semiconductor gas sensing material layer, and then rapidly annealed at high temperature to form split noble metal nanoparticles, that is, to obtain a nano noble metal particle modification layer; where high temperature refers to The temperature between 200°C and 600°C is preferably about 500°C. It can be understood that the purpose of high temperature is to quickly anneal after high temperature, so that the noble metal film will split into nanoparticles. If the temperature is too low, the effect of magnetron sputtering of noble metal film will not be split into nanoparticles, and the temperature will be too high.
  • the material deforms and melts the noble metal nanoparticles formed by magnetron sputtering, and the effect of splitting into nanoparticles cannot be finally achieved; therefore, temperatures between 200°C and 600°C are used to ensure that the desired formation of split noble metals can be obtained. Therefore, rapid annealing at high temperature, specifically, heating at a high temperature of 200°C to 600°C for 1-5 minutes, and then quickly taking it out and cooling it in low-temperature air at room temperature or lower than room temperature to cool it down rapidly.
  • the gas sensor substrate coated with the semiconductor gas sensing material layer is immersed in an ethanol suspension of noble metal nanoparticles, the noble metal nanoparticles are self-assembled on the surface of the semiconductor gas sensing material layer, and then heated to remove moisture and organic matter to obtain Nano precious metal particle modified layer.
  • the heating condition is generally a temperature between 200°C and 600°C, preferably a temperature of about 500°C, for at least half an hour.
  • the heating temperature here needs to be determined according to the organic matter contained in the semiconductor gas-sensing material layer and the noble metal nanoparticle modification layer. Because the purpose is to remove the organic matter, the heating temperature should reach the volatilization temperature of the organic matter.
  • this application provides two methods for preparing nano-precious metal particle modified layers, wherein, the first method requires a short-time rapid annealing to split the magnetron sputtered metal film into nanoparticles, so the temperature needs to be adjusted first. Raised to about 500 ° C, and then put the device in for about 3 minutes, then quickly taken out and annealed.
  • the second method is nanoparticles itself, and does not need to form particles by annealing; heating is only to bind the self-assembled nanoparticles more tightly to the surface of the semiconductor gas-sensing material layer, and to remove moisture and possible organics such as ethanol, etc.; so it is Put the device into the furnace, then heat it to about 500°C, and keep it at about 500°C for half an hour.
  • the nano noble metal particle modification layer of the present application is not a complete airtight film layer, but a surface modification layer formed by attaching noble metal nanoparticles to the surface of the semiconductor gas sensitive material layer; therefore, for magnetron sputtering formation
  • the metal films require high temperature, annealing to form split noble metal nanoparticles.
  • the semiconductor gas sensing material is a common semiconductor gas sensing material, such as at least one of ZnO, TiO 2 , WO 3 , SnO 2 and In 2 O 3 .
  • the semiconductor gas sensing material is nano-tetrapod zinc oxide.
  • the substrate of the gas sensor probe is prepared from at least one of ceramics, silicon wafers, plastics or glass.
  • the substrate of the gas sensor probe is a ceramic tube.
  • the substrate of the gas sensor probe is an alumina ceramic tube.
  • the at least three gases include formaldehyde, ethanol and acetone.
  • the selective regulation of the detection of at least three gases in the working temperature range of 0-400° C. specifically includes, compared with the response to other gases, the working temperature of the gas sensor below 200° C. It has the highest response to formaldehyde, the highest response to ethanol at operating temperatures between 200 °C and 340 °C, and the highest response to acetone at operating temperatures of 400 °C or above. Selective regulation of detection of formaldehyde, ethanol and acetone.
  • a gas sensor including a gas sensor probe, the substrate surface of the gas sensor probe is coated with a semiconductor gas sensor material layer, and the surface of the semiconductor gas sensor material layer has a nano noble metal particle modification layer.
  • nano-precious metal particles are modified on the surface of the semiconductor gas-sensing material layer, so that the gas-sensing sensor of the present application can realize the detection of at least three gases in the working temperature range of 0-400°C with only a single probe. Selective detection; improves the gas selectivity of the gas sensor and expands the types of selected gases.
  • the nano-precious metal particles are at least one of nano-gold, nano-silver, nano-platinum and nano-palladium.
  • the nano precious metal particles are nano gold.
  • the thickness of the nano-precious metal particle modification layer is 1-10 nm.
  • the semiconductor gas sensing material is at least one of ZnO, TiO 2 , WO 3 , SnO 2 and In 2 O 3 .
  • the semiconductor gas sensing material is nano-tetrapod zinc oxide.
  • the substrate of the gas sensor probe is prepared from at least one of ceramics, silicon wafers, plastics or glass.
  • the substrate of the gas sensor probe is a ceramic tube.
  • the substrate of the gas sensor probe is an alumina ceramic tube.
  • the alumina ceramic tube is only the probe substrate of the gas-sensing sensor specifically adopted in an implementation manner of the present application. It is not excluded that other ceramic tubes or substrates of other materials may also be used.
  • the gas-sensing sensor of the present application not only Limited to the use of ceramic tube or alumina ceramic tube substrates.
  • the method of the present application for increasing the gas selection function of a multifunctional gas sensor uses nano-precious metal particles to modify the surface of the semiconductor gas sensor material layer, improves the gas selectivity of the gas sensor, and expands the types of selected gases.
  • the selective regulation of the detection of at least three gases in the operating temperature range of °C provides a new solution and approach for the preparation of multifunctional gas sensors with more gas selection functions.
  • Fig. 1 is the scanning electron microscope picture of zinc oxide nano-tetrapod structure in the embodiment of the present application
  • Fig. 2 is the response test result diagram of the nanometer four-legged zinc oxide gas sensor to different gases in the comparative test in the embodiment of the present application;
  • FIG. 3 is a partial enlarged display diagram of the response test result diagram of the nano-tetrapod zinc oxide gas sensor to different gases in the comparative test in the embodiment of the present application;
  • Fig. 4 is the scanning electron microscope picture of the zinc oxide nano-tetrapod structure modified by nano-gold in the embodiment of the present application;
  • FIG. 6 is a partial enlarged display diagram of the response test result of the nano-gold-modified nano-tetrapod zinc oxide gas sensor to different gases in the embodiment of the present application;
  • Fig. 7 is the measured response curve diagram of the nanometer tetrapod zinc oxide gas sensor in the comparative test in the embodiment of the present application;
  • FIG. 9 is a graph of the selectivity change of the nano-gold-modified nano-tetrapod zinc oxide gas sensor to gas in the embodiment of the present application.
  • the existing gas sensor has the problem of cross-sensitivity in the detection of multi-component mixed gas, that is, the gas sensor can detect not only the target gas, but also other non-target gases; this directly affects the detection specificity of the gas sensor. sex.
  • the inventor of the present application uses the defect that the gas sensor is responsive to various gases.
  • the gas sensor has a controllable response selectivity to different gases at different temperatures; thus breaking through the limitation that the existing gas sensor can only achieve dual-function gas selectivity, making the gas sensor of the present application in the case of a single probe
  • the detection selectivity regulation of at least three gases can also be realized under the following conditions. And, just need to 0-400
  • the working temperature range of °C can realize the selective regulation of three gases, the working temperature range is relatively low, the energy consumption is low, and the safety is high. It should be pointed out that the detection of multiple gases mentioned in this application emphasizes selective detection, not simply responding to different gases, but the gas with the highest response can be regulated experimentally and regularly by adjusting the temperature.
  • the present application creatively proposes a method for increasing the gas selection function of a multifunctional gas sensor, including forming a nanometer noble metal material modification layer on the surface of the semiconductor gas sensor material layer of the gas sensor probe, so that the gas sensor A single probe can be achieved in 0-400
  • a gas-sensing sensor including a gas-sensing sensor probe.
  • the substrate surface of the gas-sensing sensor probe is coated with a semiconductor gas-sensing material layer, wherein the surface of the semiconductor gas-sensing material layer has a nano-precious metal particle modification layer.
  • the method and gas sensor of the present application can be realized in 0-400
  • the gas sensor responds to different gases, which is a characteristic of most gas sensors; however, having a response does not mean that it has gas selectivity.
  • the key point of the present application is that the research found that the method of using noble metal nanoparticle modification can realize the increase of the function of a single probe, so that only a single probe can be used to realize the selection function of at least three gases.
  • nano-noble metal-modified gas sensors there have been relevant studies and reports on nano-noble metal-modified gas sensors; however, the existing research and reports only disclose that nano-noble metal modification can enhance the sensitivity and selection specificity of gas sensors.
  • the noble metal nanoparticle modification can expand the types of gases selected by the gas sensor and realize the selection function of at least three gases by a single probe, which is the first research and discovery in this application; the method of increasing the gas selection function of the multifunctional gas sensor in this application is exactly Based on the above research findings.
  • nano-tetrapod zinc oxide is used as the semiconductor gas sensor material, and the influence of nano-gold modification and non-modification on the gas sensor is compared and analyzed.
  • the gas sensor substrate adopts alumina ceramic tube. The specific tests are as follows:
  • Zinc flakes are placed on a long 10 Inner diameter in centimeters 4 mm quartz tube, placed in the center of the tube furnace, one end of the tube furnace 400sccm nitrogen, one end 50sccm Oxygen, which passes through the water before entering the tube furnace.
  • White flocculent zinc oxide can be collected at the oxygen inlet end, that is, nano-tetrapod zinc oxide can be obtained.
  • the ceramic tube used in this example is an alumina ceramic tube. Two circles of gold electrodes are symmetrically distributed on the surface of the ceramic tube electrode, and the electrodes are led out by platinum wires. place the device in 500 Annealed at °C for half an hour. The ceramic tube electrode is welded to the base, and then a resistance wire is inserted into the middle of the ceramic tube electrode to control the temperature. That is, a nano-tetrapod zinc oxide gas sensor with nano-tetrapod zinc oxide as a semiconductor gas-sensing material layer is obtained.
  • a nano-gold modified layer is formed on the surface of the semiconductor gas-sensing material layer of the nano-tetrapod zinc oxide gas sensor to obtain a nano-gold-modified nano-tetrapod zinc oxide gas sensor.
  • the specific preparation method is as follows:
  • Method 1 A layer of gold film is plated on the surface of the semiconductor gas-sensitive material layer by magnetron sputtering, with a thickness of 5nm , then in 500 Rapid annealing at °C 3 Within minutes, the split gold nanoparticles are formed, that is, the nano-gold-modified nano-tetrapod zinc oxide gas sensor of this example is obtained.
  • Method 2 First, use wet chemical method to synthesize gold nanoparticles. Specifically, the 0.1 gram PVP dissolve in 25 ml DEG , heat the solution to 250 °C reflow 5 minutes; will 200 Microliters of chloroauric acid dissolved in 1.8 milliliters DEG , added to the above boiling solution to aggregate reflux 10 minutes to prepare gold nanoparticles.
  • the ZnO nano-tetrapod structure on the surface of the nano-tetrapod ZnO gas sensor was observed by scanning electron microscope, and the results are shown in Fig. 1 as shown; observe the nano-gold-modified nano-tetrapod zinc oxide gas sensor on the surface of the zinc oxide nano-tetrapod structure surface-modified gold nanoparticles, the results are shown in the figure 4 shown. picture 1 and figure 4 The results are in line with expectations.
  • the nano-tetrapod zinc oxide gas sensor and the nano-gold-modified nano-tetrapod zinc oxide gas sensor were tested respectively, that is, the gas sensor directly prepared by the semiconductor gas-sensing material layer, and the surface of the semiconductor gas-sensing material layer has nano-precious metals.
  • the gas sensor of the material modification layer, the influence of the nano noble metal material modification layer on the gas sensor is compared and analyzed. details as follows:
  • the test equipment of the gas sensor is provided by Henan Hanwei Electronic Technology Co., Ltd. WS-30B , place the prepared gas sensor in WS-30B On the test base of , add the gas sensor 5V The test voltage is used to test the resistance of the gas sensor.
  • 500ppm ethanol gas Ethanol
  • the resistance change curve of the gas sensor's response to ethanol, methanol, acetone, and formaldehyde has been obtained, and the 4 The response sensitivity of the gas.
  • the temperature of the device is controlled at room temperature (approximately 25 °C), 100 °C, 200 °C, 260 °C, 300 °C, 340 °C, 400 °C, repeat the above measurement process to obtain the gas sensor at these temperatures for this 4
  • the resistance change curve of the response of the gas was calculated, and the response sensitivity at the corresponding temperature was calculated.
  • the response curve of the nano-tetrapod zinc oxide gas sensor to ethanol, formaldehyde, methanol, and acetone the results are shown in the figure 2 and figure 3 shown; the response curve of the nano-gold-modified nano-tetrapod zinc oxide gas sensor prepared by method 2 to ethanol, formaldehyde, methanol and acetone, the results are shown in the figure 5 and figure 6 shown.
  • the performance of the nano-gold-modified nano-tetrapod ZnO gas sensor prepared by method 1 is the same as that of the nano-gold-modified nano-tetrapod ZnO gas sensor prepared by method 2, which is not repeated here.
  • picture 2 is the total response curve of the nano-tetrapod zinc oxide gas sensor to the four gases, Fig.
  • FIG. 3 is in 200 The enlarged display of the part below °C;
  • Figure 5 is the total response curve of the nano-gold-modified nano-tetrapod zinc oxide gas sensor to four gases, Fig. 6 is in 200 Enlarged display of the portion below °C. Because the response of the rear part of the overall response curve is too high, so that the front part does not show any difference in the overall curve; therefore, the response curve of the front part is provided separately in this example, that is, Fig. 3 and figure 6 .
  • Nano-tetrapod ZnO gas sensor in 260
  • the response to formaldehyde gas is the highest under °C, and the response is the best.
  • the measured response curve of the nano-tetrapod ZnO gas sensor is shown in Fig. 7 shown, Fig. 7 middle,( a ) pictured as 100 The measured response curve of °C, ( b ) pictured as 200 The measured response curve of °C, ( c ) pictured as 260 The measured response curve of °C, ( d ) pictured as 300 The measured response curve of °C, ( e ) pictured as 340 The measured response curve of °C, ( f ) pictured as 400 The measured response curve of °C, ( g ) graph is a ranking graph of responses from low to high.
  • the measured response curve of the nano-gold-modified nano-tetrapod ZnO gas sensor prepared by method 2 is shown in Fig. 8 and figure 9 shown, Fig. 8 middle,( a ) pictured as 100 The measured response curve of °C, ( b ) pictured as 200 The measured response curve of °C, ( c ) pictured as 260 The measured response curve of °C, ( d ) pictured as 300 The measured response curve of °C, ( e ) pictured as 340 The measured response curve of °C, ( f ) pictured as 400 The measured response curve in °C. picture 9 The graph of the selectivity change of the nano-gold-modified nano-tetrapod ZnO gas sensor to the gas.
  • the nano-gold-modified nano-tetrapod ZnO gas sensor exhibits higher response to formaldehyde gas than other gases, that is, exhibits selectivity; 260 °C to 340 °C, compared with other gases, the response to ethanol is the highest, that is, it shows selectivity; 400 °C, compared with other gases, it has the highest response to acetone and exhibits selectivity; it can be seen that the nano-gold-modified ZnO nanotetrapods are in 0-400 It has selectivity for formaldehyde, ethanol and acetone between three gases.
  • the gas selection function of the multifunctional gas sensor can be increased by forming a nano-gold modified layer on the surface of the semiconductor gas sensitive material layer on the gas sensor probe substrate, that is, a single gas sensor can be obtained.
  • the probe can be implemented in 0-400 °C operating temperature range for the detection selectivity of three gases.
  • nano-silver nano-platinum
  • nano-palladium nano-palladium
  • an in-depth analysis of the principle that the nano-gold-modified nano-tetrapod zinc oxide gas sensor can increase the gas selection function and realize the selective detection of three gases finds that the reason why this application can increase the gas selection function and realize the three gases
  • the selective detection is because the nano-gold particles modify the surface of the semiconductor gas-sensing material, which can reduce the reaction activation energy of the gas on the surface of the gas-sensing material, so that the gas-sensing sensor exhibits response performance to the gas at a lower temperature. Therefore, by modifying the nano-gold particles on the surface of the semiconductor gas-sensing material, the effect similar to that of raising the working temperature can be achieved when detecting gas.
  • nano-silver, nano-platinum and nano-palladium can also have the same or equivalent technical effect of the modification of nano-gold particles in this example. Only the specific operating temperature or the best response temperature will be different. However, it can be expected that the use of other nano-precious metal materials must also conform to the rules of this example. For example, the response to formaldehyde is higher than other gases at low temperature, and as the temperature increases, the response to ethanol is the highest compared to other contrast gases.
  • the response to acetone is the highest compared to the other comparison gases; and, it can be expected that the operating temperature range is also in the 0-400 °C, for example 0-300 °C, 0-350 °C or 0-400 °C.
  • the gas selection function of the multifunctional gas sensor can be increased by forming a nano-noble metal particle modification layer on the surface of the semiconductor gas-sensing material layer of the gas-sensing sensor substrate.
  • the specific semiconductor gas-sensing material it can be the nano-tetrapod zinc oxide in this experiment, or other structures of zinc oxide, or other common semiconductors used to make gas-sensing sensors, such as TiO 2 , WO 3 , SnO 2 , In 2 O 3 Wait.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本申请公开了一种增加多功能气敏传感器气体选择功能的方法和气敏传感器。本申请增加多功能气敏传感器气体选择功能的方法包括,在气敏传感器探头的半导体气敏材料层表面形成纳米贵金属颗粒修饰层,使得气敏传感器的单一探头即可实现在0-400℃的工作温度范围对至少三种气体的检测选择性调控。本申请增加多功能气敏传感器气体选择功能的方法,利用纳米贵金属颗粒修饰半导体气敏材料层表面,提升了气敏传感器的气体选择性、拓展了其选择气体的种类,能够实现在0-400℃的工作温度范围对至少三种气体的选择性检测,为制备气体选择功能更多的多功能气敏传感器提供了一种新的方案和途径。

Description

增加多功能气敏传感器气体选择功能的方法和气敏传感器 技术领域
本申请涉及气敏传感器技术领域,特别是涉及一种增加多功能气敏传感器气体选择功能的方法和气敏传感器。
背景技术
传感器作为物联网、人工智能的基础和关键功能单元,被认为是现代信息技术的三大支柱之一。气敏传感器在工业制造、环境监测、药物诊断、个人安全等方面发挥重要作用。基于半导体的电阻式气敏传感器具有体积小、结构简单、响应高、价格低廉等优势。
半导体电阻式气敏传感器检测气体的原理是气体在其表面发生吸附和化学反应,因而对多种气体都有响应,但是气体检测的工作环境一般较复杂,而单探头气敏传感器在多组分混合气体检测中存在交叉敏感的问题,难以在干扰气体中有选择性的识别目标气体。因此,很多研究致力于通过材料制备以及增加过滤膜等方法提升半导体电阻式气敏传感器的气体选择性;如何提升气敏传感器的气体选择性、拓展其选择气体的种类是很重要的技术,也是目前气敏传感器技术领域的研究重点和难点。
目前报道的利用单探头实现多种气体的检测选择性的方案主要是通过调控温度来实现气体选择性的调控。然而,现有的研究仅仅实现了对两种气体的选择性调控;即在 A 温度对 X 气体选择性响应,然后通过改变温度到 B ,对 Y 气体选择性响应。
为了实现两种以上或更多气体的选择性检测,目前采用的技术是,将多个不同敏感特性的气敏传感器元件组成阵列集成使用,分别测试不同的材料制成的气敏传感器元件对气体的响应性能,进行大量数据分析和多数据比对分析来识别检测两种以上或更多的气体。但是,这类器件不是单探头器件,存在体积大、结构复杂、测试过程和数据处理耗时久且繁琐等问题。
综上所述,现有的气敏传感器,尤其是单一探头的气敏传感器,最多只能实现双功能的气体选择性,即只能够通过温度调控使得气敏传感器能够对两种气体进行选择性检测;并且,这种通过温度调控实现双功能气体选择性的方式,温度调控范围较大,增加器件的工作温度存在一系列在安全上的隐患和能耗上的缺陷。目前尚未有单一探头的气敏传感器能够实现两种以上气体选择功能的研究和报道
技术问题
本申请的目的是提供一种增加多功能气敏传感器气体选择功能的方法,以及具有更多的气体选择功能的气敏传感器。
技术解决方案
为了实现上述目的,本申请采用了以下技术方案:
本申请的一方面公开了一种增加多功能气敏传感器气体选择功能的方法,包括在气敏传感器探头上的半导体气敏材料层表面形成纳米贵金属颗粒修饰层,使得气敏传感器的单一探头即可实现在0-400℃的工作温度范围对至少三种气体的检测选择性调控。其中,纳米贵金属颗粒修饰层,是指由纳米贵金属颗粒堆积形成的层。
需要说明的是,本申请研究发现,在半导体气敏材料层表面修饰纳米贵金属颗粒,可以增多单一探头的气敏传感器的气体选择功能,实现在0-400℃的工作温度范围对至少三种气体的检测选择性调控;提升了气敏传感器的气体选择性、拓展了其选择气体的种类。可以理解,本申请的关键在于研究发现通过纳米贵金属颗粒修饰半导体气敏材料的方式可以增加被选择的气体的种类,从而实现至少三种气体的检测选择性;至于具体的纳米贵金属颗粒可以参考现有的贵金属纳米材料,具体的半导体气敏材料也可以参考现有的气敏传感器,气敏传感器探头的衬底也可以参考现有的气敏传感器,例如采用陶瓷管、硅片、玻璃、塑料等。但是,为了确保气敏传感器的气体选择功能,本申请的一种实现方式中,对纳米贵金属、半导体气敏材料和衬底等都进行了详细限定,详见以下技术方案。
本申请的一种实现方式中,纳米贵金属颗粒为纳米金、纳米银、纳米铂和纳米钯中的至少一种。
优选的,纳米贵金属颗粒为纳米金。
本申请的一种实现方式中,纳米贵金属颗粒修饰层的厚度为1-10nm。
本申请的一种实现方式中,纳米贵金属颗粒修饰层是通过以下方式形成于半导体气敏材料层表面:
(1)采用磁控溅射在半导体气敏材料层表面镀1-10nm的贵金属膜,然后在高温下快速退火,形成分裂的贵金属纳米颗粒,即获得纳米贵金属颗粒修饰层;其中,高温是指200℃-600℃之间的温度,优选为500℃左右的温度。可以理解,高温的目的是高温后快速退火,使得贵金属膜分裂成纳米颗粒,温度太低达不到磁控溅射的贵金属膜分裂成纳米颗粒的效果,而温度太高又会使半导体气敏材料变形,并熔化磁控溅射形成的贵金属纳米颗粒,也无法最终实现分裂成纳米颗粒的效果;因此,采用200℃到600℃之间的温度,以确保能够获得所需的形成分裂的贵金属纳米颗粒的效果;因此,高温下快速退火,具体是指,在200℃到600℃高温加热1-5分钟,然后迅速取出在室温或低于室温的低温空气中冷却,使其迅速降温。
或者,
(2)将涂覆了半导体气敏材料层的气敏传感器衬底浸泡到贵金属纳米颗粒的乙醇悬浮液中,贵金属纳米颗粒自组装到半导体气敏材料层表面,然后加热去除水分和有机物,获得纳米贵金属颗粒修饰层。其中,加热的条件一般为200℃到600℃之间的一个温度,优选为500℃左右的温度,加热至少半小时。这里加热温度需要根据半导体气敏材料层以及贵金属纳米颗粒修饰层所含的有机物决定,因为其目的是为了去除有机物,所以加热温度应达到有机物的挥发温度。
需要说明的是,本申请提供了两种制备纳米贵金属颗粒修饰层的方法,其中,第一种方法,要短时间快速退火将磁控溅射的金属膜分裂成纳米颗粒,所以需要先将温度升到500℃左右,然后将器件放进去3min左右,然后迅速取出、退火。第二种方法本身就是纳米颗粒,不需要通过退火形成颗粒;加热只是为了将自组装的纳米颗粒与半导体气敏材料层表面结合更紧,并去除水分和可能的有机物,如乙醇等;所以是将器件放进炉子,然后加热至500℃左右,在500℃左右维持半小时即可。
可以理解,本申请的纳米贵金属颗粒修饰层并非一个完整的气密性的膜层,而是由贵金属纳米颗粒附着在半导体气敏材料层表面形成的表面修饰层;因此,对于磁控溅射形成的金属膜需要高温、退火形成分裂的贵金属纳米颗粒。
本申请的一种实现方式中,半导体气敏材料为常见的半导体气敏材料,例如ZnO、TiO 2、WO 3、SnO 2和In 2O 3中的至少一种。
优选的,半导体气敏材料为纳米四足氧化锌。
本申请的一种实现方式中,气敏传感器探头的衬底由陶瓷、硅片、塑料或玻璃中的至少一种制备。
优选的,气敏传感器探头的衬底为陶瓷管。
更优选的,气敏传感器探头的衬底为氧化铝陶瓷管。
本申请的一种实现方式中,至少三种气体包括甲醛、乙醇和丙酮。
本申请的一种实现方式中,在0-400℃的工作温度范围对至少三种气体的检测选择性调控,具体包括,相较于对其他气体响应,气敏传感器在200℃以下的工作温度时对甲醛响应最高,在200℃到340℃之间的工作温度对乙醇响应最高,在400℃或以上的工作温度对丙酮响应最高,利用气敏传感器在不同工作温度下的最高响应气体,实现对甲醛、乙醇和丙酮的检测选择性调控。
本申请的另一方面公开了一种气敏传感器,包括气敏传感器探头,气敏传感器探头的衬底表面涂覆有半导体气敏材料层,半导体气敏材料层表面具有纳米贵金属颗粒修饰层。
需要说明的是,本申请在半导体气敏材料层的表面修饰纳米贵金属颗粒,使得本申请的气敏传感器,仅仅使用单一探头即可实现在0-400℃的工作温度范围对至少三种气体的选择性检测;提升了气敏传感器的气体选择性、拓展了其选择气体的种类。
本申请的一种实现方式中,气敏传感器的纳米贵金属颗粒修饰层中,纳米贵金属颗粒为纳米金、纳米银、纳米铂和纳米钯中的至少一种。
优选的,纳米贵金属颗粒为纳米金。
本申请的一种实现方式中,纳米贵金属颗粒修饰层的厚度为1-10nm。
本申请的一种实现方式中,气敏传感器的半导体气敏材料层中,半导体气敏材料为ZnO、TiO 2、WO 3、SnO 2和In 2O 3中的至少一种。
优选的,半导体气敏材料为纳米四足氧化锌。
本申请的一种实现方式中,气敏传感器探头的衬底由陶瓷、硅片、塑料或玻璃中的至少一种制备。
优选的,气敏传感器探头的衬底为陶瓷管。
更优选的,气敏传感器探头的衬底为氧化铝陶瓷管。
可以理解,氧化铝陶瓷管只是本申请的一种实现方式中具体采用的气敏传感器探头衬底,不排除还可以采用其他陶瓷管,或者采用其他材料的衬底,本申请的气敏传感器不仅限于采用陶瓷管或氧化铝陶瓷管衬底。
有益效果
由于采用以上技术方案,本申请的有益效果在于:
本申请增加多功能气敏传感器气体选择功能的方法,利用纳米贵金属颗粒修饰半导体气敏材料层表面,提升了气敏传感器的气体选择性、拓展了其选择气体的种类,能够实现在0-400℃的工作温度范围对至少三种气体的检测选择性调控,为制备气体选择功能更多的多功能气敏传感器提供了一种新的方案和途径。
附图说明
图1是本申请实施例中氧化锌纳米四足结构的扫描电子显微镜图;
图2是本申请实施例中对比试验纳米四足氧化锌气敏传感器对不同气体的响应测试结果图;
图3是本申请实施例中对比试验纳米四足氧化锌气敏传感器对不同气体的响应测试结果图的部分放大展示图;
图4是本申请实施例中纳米金修饰的氧化锌纳米四足结构的扫描电子显微镜图;
图5是本申请实施例中纳米金修饰纳米四足氧化锌气敏传感器对不同气体的响应测试结果图;
图6是本申请实施例中纳米金修饰纳米四足氧化锌气敏传感器对不同气体的响应测试结果图的部分放大展示图;
图7是本申请实施例中对比试验纳米四足氧化锌气敏传感器的实测响应曲线图;
图8是本申请实施例中纳米金修饰纳米四足氧化锌气敏传感器的实测响应曲线图;
图9是本申请实施例中纳米金修饰纳米四足氧化锌气敏传感器对气体的选择性变化图。
本发明的实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
现有的气敏传感器在多组分混合气体检测中存在交叉敏感的问题,即气敏传感器不仅对目标气体有检出,对其他非目标气体也有检出;这直接影响气敏传感器的检测特异性。
但是,本申请发明人正是利用气敏传感器对多种气体都有响应的缺陷,通过研究和优化半导体气敏材料层表面修饰,具体的,使用纳米贵金属材料层修饰半导体气敏材料层表面,使得气敏传感器在不同温度下,对不同气体具有可调控的响应选择性;从而突破了现有气敏传感器只能实现双功能气体选择性的限制,使得本申请的气敏传感器在单一探头情况下也能够实现至少三种气体的检测选择性调控。并且,只需要在 0-400 ℃的工作温度范围即可实现三种气体选择性调控,工作温度范围相对较低、能耗低、安全性高。需要指出的是,本申请提到的多种气体的检测,强调选择性检测,不是简单的对不同的气体有响应,而是响应最高的气体可以通过调节温度来实验有规律的调控。
基于以上研究和认识,本申请创造性的提出了一种增加多功能气敏传感器气体选择功能的方法,包括在气敏传感器探头的半导体气敏材料层表面形成纳米贵金属材料修饰层,使得气敏传感器的单一探头即可实现在 0-400 ℃的工作温度范围对至少三种气体的检测选择性。
并提出了一种气敏传感器,包括气敏传感器探头,气敏传感器探头的衬底表面涂覆有半导体气敏材料层,其中,半导体气敏材料层表面具有纳米贵金属颗粒修饰层。
本申请的方法和气敏传感器,仅仅使用单一探头即可实现在 0-400 ℃的工作温度范围对至少三种气体的检测选择性;提升了气敏传感器的气体选择性、拓展了其选择气体的种类。
需要说明的是,在一定的工作温度范围内,气敏传感器对不同的气体有响应,这是大部分气敏传感器都具备的特性;但是,有响应并不意味着具备气体选择性。本申请的关键在于,研究发现利用贵金属纳米颗粒修饰的方法能够实现单探头的功能增加,使得仅仅采用单一探头即可实现至少三种气体的选择功能。
还需要说明的是,纳米贵金属修饰气敏传感器已经有相关的研究和报道;但是,现有研究和报道仅仅是披露了纳米贵金属修饰能够增强气敏传感器的灵敏度和选择特异性。贵金属纳米颗粒修饰能够拓展气敏传感器选择气体的种类,实现单一探头对至少三种气体的选择功能,这是本申请率先研究发现的;本申请增加多功能气敏传感器气体选择功能的方法正是基于以上研究发现而提出。
下面通过具体实施例和附图对本申请作进一步详细说明。以下实施例仅对本申请进行进一步说明,不应理解为对本申请的限制。
实施例
本例采用纳米四足氧化锌作为半导体气敏材料,对比分析了纳米金修饰与不修饰,对气敏传感器的影响。其中,气敏传感器衬底采用氧化铝陶瓷管。具体试验如下:
一、气敏传感器制备
纳米四足氧化锌制备
本例将 1g 锌片置于一根长 10 厘米内径 4 毫米的石英管中,置于管式炉中心,管式炉一端通入 400sccm 的氮气,一端通入 50sccm 氧气,氧气在进入管式炉之前先经过水。管式炉中心温度 750 ℃,烧 20 分钟。在氧气通入端可以收集到白色絮状的氧化锌,即获得纳米四足氧化锌。
纳米四足氧化锌气敏传感器制备
0.25 克的纳米四足氧化锌溶于 5 毫升的松油醇中制成浆料,再用刷子涂到陶瓷管电极上。本例采用的陶瓷管为氧化铝陶瓷管。陶瓷管电极表面对称分布两圈金电极,并以铂金丝引出电极。将器件在 500 ℃下退火半小时。将陶瓷管电极焊接到基座上,再在陶瓷管电极中间穿入电阻丝用以控制温度。即获得纳米四足氧化锌作为半导体气敏材料层的纳米四足氧化锌气敏传感器。
纳米金修饰纳米四足氧化锌气敏传感器制备
在纳米四足氧化锌气敏传感器的半导体气敏材料层表面形成纳米金修饰层,即获得纳米金修饰纳米四足氧化锌气敏传感器。具体制备方法如下:
方法一:通过磁控溅射在半导体气敏材料层表面镀上一层金薄膜,厚度为 5nm ,然后在 500 ℃下快速退火 3 分钟,形成分裂的金纳米颗粒,即获得本例的纳米金修饰纳米四足氧化锌气敏传感器。
方法二:先用湿化学法合成金纳米颗粒,具体的,将 0.1 PVP 溶于 25 毫升 DEG 中,将溶液加热到 250 ℃回流 5 分钟;将 200 微升的氯金酸溶于 1.8 毫升的 DEG 中,加入到上述沸腾的溶液汇总回流 10 分钟,制备获得金纳米颗粒。通过离心机取出合成好的金纳米颗粒,将其分散于乙醇,形成浆料;将制备的纳米四足氧化锌气敏传感器浸于含有金纳米颗粒的乙醇溶液中,等待气敏传感器从白色变成粉色,就说明金纳米颗粒已经自组装到氧化锌表面,本例具体浸泡 10 小时即可;最后,将器件在 500 ℃下退火半小时,获得本例的纳米金修饰纳米四足氧化锌气敏传感器。
本例试验证实以上两种方法都可以有效的制备获得纳米金修饰纳米四足氧化锌气敏传感器,并且性能相当。
采用扫描电子显微镜图观察纳米四足氧化锌气敏传感器表面的氧化锌纳米四足结构,结果如图 1 所示;观察纳米金修饰纳米四足氧化锌气敏传感器表面的氧化锌纳米四足结构表面修饰金纳米颗粒,结果如图 4 所示。图 1 和图 4 的结果都与预期相符。
二、气敏传感器性能测试
本例分别测试了纳米四足氧化锌气敏传感器和纳米金修饰纳米四足氧化锌气敏传感器,即直接采用半导体气敏材料层制备的气敏传感器,以及半导体气敏材料层表面具有纳米贵金属材料修饰层的气敏传感器,对比分析了纳米贵金属材料修饰层对气敏传感器的影响。具体如下:
气敏传感器的测试设备为河南汉威电子科技公司提供的测试设备 WS-30B ,将制备好的气敏传感器置于 WS-30B 的测试基座上,给气敏传感器加上 5V 的测试电压,测试气敏传感器的电阻。
在电阻测试过程中,先通 4 分钟的空气,得到气敏传感器在空气中的稳定电阻。然后通入 500ppm 的乙醇气体( Ethanol ),保持 4 分钟,得到气敏传感器对乙醇气体的响应曲线和稳定电阻;再通入空气维持 4 分钟,得到气敏传感器在乙醇气体撤去之后的电阻恢复曲线,气敏传感器的电阻恢复至最开始的器件在空气中的电阻。接着通入 500ppm 的甲醇气体( Methanol ),维持 4 分钟,得到气敏传感器对甲醇气体的响应曲线和稳定电阻;再通入空气维持 4 分钟,得到气敏传感器在甲醇气体撤去后的电阻恢复曲线,气敏传感器的电阻恢复至最开始的器件在空气中的电阻。再通入 500ppm 的丙酮气体( Acetone ),维持 4 分钟,得到气敏传感器对丙酮气体的响应曲线和稳定电阻;再通入空气维持 4 分钟,得到气敏传感器在丙酮气体撤去后的电阻恢复曲线,气敏传感器的电阻恢复至最开始的器件在空气中的电阻。再通入 500ppm 的甲醛气体( Formaldehyde ),维持 4 分钟,得到气敏传感器对甲醛气体的响应曲线和稳定电阻;再通入空气维持 4 分钟,得到气敏传感器在甲醛气体撤去后的电阻恢复曲线,气敏传感器的电阻恢复至最开始的器件在空气中的电阻。
至此,得到气敏传感器对乙醇、甲醇、丙酮、甲醛气体的响应的电阻变化曲线,从而计算出气敏传感器对着 4 种气体的响应灵敏度。本例分别将器件的温度控制在室温(约 25 ℃)、 100 ℃、 200 ℃、 260 ℃、 300 ℃、 340 ℃、 400 ℃,重复上述测量过程,获得气敏传感器在这些温度下对这 4 种气体的响应的电阻变化曲线,计算出相应温度下的响应灵敏度。
纳米四足氧化锌气敏传感器对乙醇、甲醛、甲醇、丙酮的响应曲线,结果如图 2 和图 3 所示;方法二制备的纳米金修饰纳米四足氧化锌气敏传感器对乙醇、甲醛、甲醇、丙酮的响应曲线,结果如图 5 和图 6 所示。方法一制备的纳米金修饰纳米四足氧化锌气敏传感器性能与方法二制备的纳米金修饰纳米四足氧化锌气敏传感器相同,在此不重复展示。图 2 是纳米四足氧化锌气敏传感器对四种气体总的响应曲线图,图 3 是在 200 ℃以下部分的放大显示图;图 5 是纳米金修饰纳米四足氧化锌气敏传感器对四种气体总的响应曲线图,图 6 是在 200 ℃以下部分的放大显示图。因为整体响应曲线,其后面部分的响应太高,使得前面部分在整体曲线图中显示不出区别;所以,本例单独提供了前面部分的响应曲线图,即图 3 和图 6
2 和图 3 的结果显示,纳米四足氧化锌气敏传感器在 260 ℃之下对甲醛气体响应最高,响应最好。 260 ℃之后对乙醇响应最高,选择性最好。纳米四足氧化锌气敏传感器在 0-400 ℃范围内只能对甲醛和乙醇两种气体进行检测选择性调控。
5 和图 6 的结果显示,纳米金修饰纳米四足氧化锌气敏传感器在 200 ℃以下对甲醛响应最高, 200 ℃到 340 ℃之间对乙醇响应最高, 400 ℃对丙酮响应最高。由此可见,纳米金修饰纳米四足氧化锌气敏传感器的气体选择功能从两种(乙醇、甲醛)拓展到了 3 种(乙醇、甲醛、丙酮),即纳米金修饰纳米四足氧化锌气敏传感器能够对乙醇、甲醛、丙酮三种气体进行检测选择性调控。
2 3 5 6 的结果显示,随着温度升高,纯的氧化锌纳米四足结构和金颗粒修饰的氧化锌纳米四足结构,两者对乙醇、甲醇和甲醛 3 种气体的响应灵敏度都是先上升然后下降,对丙酮气体的响应都是一直上升。在 0-400 ℃之间,金纳米颗粒修饰的氧化锌纳米四足结构先后分别对甲醛、乙醇、丙酮表现出比其他三种气体更高的响应灵敏度,即较好的选择性,而纯的氧化锌纳米四足结构制成的器件只对甲醛和乙醇表现出较好的选择性。因此说明通过金颗粒修饰,可以增加氧化锌纳米四足结构的气体选择性的种类,在同样的 0-400 ℃之间获得三种气体选择性的气敏传感器。
纳米四足氧化锌气敏传感器的实测响应曲线如图 7 所示,图 7 中,( a )图为 100 ℃的实测响应曲线,( b )图为 200 ℃的实测响应曲线,( c )图为 260 ℃的实测响应曲线,( d )图为 300 ℃的实测响应曲线,( e )图为 340 ℃的实测响应曲线,( f )图为 400 ℃的实测响应曲线,( g )图为响应从低到高的排序图。图 7 也可以看出,在 260 ℃之前和之后,纳米四足氧化锌气敏传感器分别对甲醛和乙醇表现出比其他气体的更高的响应灵敏度,即在四种测试气体中最高的响应灵敏度;可见纯的氧化锌纳米四足结构在 0-400 ℃之间只对甲醛和乙醇具有选择性。
方法二制备的纳米金修饰纳米四足氧化锌气敏传感器的实测响应曲线如图 8 和图 9 所示,图 8 中,( a )图为 100 ℃的实测响应曲线,( b )图为 200 ℃的实测响应曲线,( c )图为 260 ℃的实测响应曲线,( d )图为 300 ℃的实测响应曲线,( e )图为 340 ℃的实测响应曲线,( f )图为 400 ℃的实测响应曲线。图 9 为纳米金修饰纳米四足氧化锌气敏传感器对气体的选择性变化图。图 8 和图 9 也可以看出,在 200 ℃以下,纳米金修饰纳米四足氧化锌气敏传感器对甲醛气体表现出较其他气体更高的响应,即表现出选择性;在 260 ℃到 340 ℃之间,相较于其他气体,对乙醇响应最高,即表现出选择性;在 400 ℃,相较于其他气体,对丙酮响应最高,表现出选择性;可见纳米金修饰的氧化锌纳米四足结构在 0-400 ℃之间对甲醛、乙醇和丙酮三种气体都具有选择性。
根据以上试验和分析可见,可以通过在气敏传感器探头衬底上的半导体气敏材料层表面形成纳米金修饰层的方式,增加多功能气敏传感器的气体选择功能,即使得气敏传感器的单一探头就可以实现在 0-400 ℃的工作温度范围对三种气体的检测选择性。
需要说明的是,虽然本例具体采用的是纳米金对半导体气敏材料层表面进行修饰;但是,可以预期其他类似的纳米贵金属材料,例如纳米银、纳米铂和纳米钯,也可以起到类似的增加多功能气敏传感器的气体选择功能的作用。
本例对纳米金修饰纳米四足氧化锌气敏传感器能够增加气体选择功能,实现三种气体的选择性检测的原理进行深入分析发现,本申请之所以能够增加气体选择功能,实现三种气体的选择性检测,是因为,纳米金颗粒修饰半导体气敏材料表面,可以降低气体在气敏材料表面的反应活化能,从而使得气敏传感器在更低的温度下对气体表现出响应性能。因此,通过在半导体气敏材料表面修饰纳米金颗粒,在检测气体时可以达到和升高工作温度类似的效果。
基于以上原理分析,可以预期,其它与纳米金颗粒类似的贵金属颗粒,例如纳米银、纳米铂和纳米钯,也能够具有本例纳米金颗粒修饰相同或相当的技术效果。只是具体的工作温度或者最佳响应温度会有所区别。但是,可以预期的是,采用其他纳米贵金属材料,也必然符合本例的规律,例如在低温下对甲醛响应比其他气体更高,随着温度升高,对乙醇响应相较于其他对比气体最高,最后是对丙酮响应相较于其他对比气体最高;并且,可以预期工作温度范围也是在 0-400 ℃,例如 0-300 ℃、 0-350 ℃或 0-400 ℃。
可以理解,本实验相对于现有技术的贡献是,研究发现可以通过在气敏传感器衬底的半导体气敏材料层表面形成纳米贵金属颗粒修饰层的方式,增加多功能气敏传感器的气体选择功能,即使得气敏传感器的单一探头就可以实现在 0-400 ℃的工作温度范围对三种气体的检测选择性,强调选择性。至于具体的半导体气敏材料可以是本实验的纳米四足氧化锌,也可以是氧化锌的其他结构,或者其他常见的用于制作气敏传感器的半导体,如 TiO 2 WO 3 SnO 2 In 2O 3 等。可以预期其他结构的氧化锌或其他半导体材料,如 TiO 2 WO 3 SnO 2 In 2O 3 ,只要表面进行纳米贵金属颗粒修饰,就能够达到增加多功能气敏传感器的气体选择功能的效果。只是不同半导体的具体选择,可能会影响工作温度或者最佳响应温度。同样的,也可以预期,即便采用不同的半导体材料,也必然符合本例的规律,例如在低温下对甲醛响应最高,随着温度升高,对乙醇响应最高,最后是丙酮响应最高。
以上内容是结合具体的实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换

Claims (13)

  1. 一种增加多功能气敏传感器气体选择功能的方法,其特征在于:包括在气敏传感器探头的半导体气敏材料层表面形成纳米贵金属颗粒修饰层,使得气敏传感器的单一探头即可实现在0-400℃的工作温度范围对至少三种气体的检测选择性;
    所述纳米贵金属颗粒为纳米金、纳米银、纳米铂和纳米钯中的至少一种;
    所述纳米贵金属颗粒修饰层的厚度为1-10nm;
    所述至少三种气体包括甲醛、乙醇和丙酮;
    所述在0-400℃的工作温度范围对至少三种气体的检测选择性,具体包括,在200℃以下的工作温度时气敏传感器对甲醛响应最高,在200℃到340℃之间的工作温度气敏传感器对乙醇响应最高,在400℃的工作温度气敏传感器对丙酮响应最高,利用气敏传感器在不同工作温度下的最高响应气体,实现对甲醛、乙醇和丙酮的检测选择性。
  2. 根据权利要求1所述的方法,其特征在于:所述纳米贵金属颗粒为纳米金。
  3. 根据权利要求1所述的方法,其特征在于:所述纳米贵金属颗粒修饰层可采用以下方法制备,
    (1)采用磁控溅射在半导体气敏材料层表面镀1-10nm的贵金属膜,然后在高温下快速退火,形成分裂的贵金属纳米颗粒,即获得所述纳米贵金属颗粒修饰层;
    或者,
    (2)将涂覆了半导体气敏材料层的气敏传感器探头浸泡到贵金属纳米颗粒的乙醇悬浮液中至少10h,使贵金属纳米颗粒自组装到半导体气敏材料层表面,然后加热去除水分和有机物,即获得所述纳米贵金属颗粒修饰层。
  4. 根据权利要求1所述的方法,其特征在于:所述半导体气敏材料为ZnO、TiO 2、WO 3、SnO 2和In 2O 3中的至少一种。
  5. 根据权利要求4所述的方法,其特征在于:所述半导体气敏材料为纳米四足氧化锌。
  6. 根据权利要求1所述的方法,其特征在于:所述气敏传感器探头的衬底由陶瓷、硅片、塑料或玻璃中的至少一种制备。
  7. 根据权利要求6所述的方法,其特征在于:所述气敏传感器探头的衬底为氧化铝陶瓷管。
  8. 一种气敏传感器,包括气敏传感器探头,所述气敏传感器探头的衬底表面涂覆有半导体气敏材料层,其特征在于:所述半导体气敏材料层表面具有纳米贵金属颗粒修饰层;
    所述纳米贵金属颗粒为纳米金、纳米银、纳米铂和纳米钯中的至少一种;
    所述纳米贵金属颗粒修饰层的厚度为1-10nm。
  9. 根据权利要求8所述的气敏传感器,其特征在于:所述纳米贵金属颗粒为纳米金。
  10. 根据权利要求8所述的气敏传感器,其特征在于:所述半导体气敏材料为ZnO、TiO 2、WO 3、SnO 2和In 2O 3中的至少一种。
  11. 根据权利要求10所述的气敏传感器,其特征在于:所述半导体气敏材料为纳米四足氧化锌。
  12. 根据权利要求8-11任一项所述的气敏传感器,其特征在于:所述气敏传感器探头的衬底由陶瓷、硅片、塑料或玻璃中的至少一种制备。
  13. 根据权利要求12所述的气敏传感器,其特征在于:所述气敏传感器探头的衬底为氧化铝陶瓷管。
PCT/CN2022/087113 2021-05-07 2022-04-15 增加多功能气敏传感器气体选择功能的方法和气敏传感器 WO2022233225A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/503,207 US20240068972A1 (en) 2021-05-07 2023-11-07 Method for increasing gas selection functions of multifunctional gas-sensitive sensor, and gas-sensitive sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110495104.4A CN113252736B (zh) 2021-05-07 2021-05-07 增加多功能气敏传感器气体选择功能的方法和气敏传感器
CN202110495104.4 2021-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/503,207 Continuation US20240068972A1 (en) 2021-05-07 2023-11-07 Method for increasing gas selection functions of multifunctional gas-sensitive sensor, and gas-sensitive sensor

Publications (1)

Publication Number Publication Date
WO2022233225A1 true WO2022233225A1 (zh) 2022-11-10

Family

ID=77223945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087113 WO2022233225A1 (zh) 2021-05-07 2022-04-15 增加多功能气敏传感器气体选择功能的方法和气敏传感器

Country Status (3)

Country Link
US (1) US20240068972A1 (zh)
CN (1) CN113252736B (zh)
WO (1) WO2022233225A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046852A (zh) * 2023-01-17 2023-05-02 云南民族大学 一种ZnO纳米颗粒修饰α-三氧化钼异质结的高性能乙醇气体传感器
CN116119718A (zh) * 2022-11-18 2023-05-16 中冶南方工程技术有限公司 一种气敏材料及其制备方法和氨气传感器及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113252736B (zh) * 2021-05-07 2023-01-03 深圳技术大学 增加多功能气敏传感器气体选择功能的方法和气敏传感器
CN116425200B (zh) * 2023-03-06 2024-07-02 江苏大学 抗湿度干扰的氢气气敏材料、半导体电阻式氢气传感器和智能氢气传感系统及制备和应用
CN116294419A (zh) * 2023-05-22 2023-06-23 合肥美的电冰箱有限公司 净味方法、装置、制冷设备、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120097917A1 (en) * 2010-09-29 2012-04-26 Weilie Zhou Aligned, Coated Nanowire Arrays for Gas Sensing
CN107607591A (zh) * 2017-09-11 2018-01-19 吉林大学 一种基于SnO2修饰的NiO纳米结构敏感材料的超灵敏甲苯气体传感器及其制备方法
CN110057869A (zh) * 2018-01-18 2019-07-26 中国科学院过程工程研究所 一种半导体气敏传感器及其制备方法
CN113252736A (zh) * 2021-05-07 2021-08-13 深圳技术大学 增加多功能气敏传感器气体选择功能的方法和气敏传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107024513B (zh) * 2016-02-01 2021-08-24 武汉市义光亿科贸有限公司 气敏元件、气敏装置和系统
CN106556624A (zh) * 2016-08-17 2017-04-05 安徽建筑大学 一种纳米结构气敏材料的制备方法
CN106835021B (zh) * 2017-01-05 2019-06-21 深圳大学 一种Pd纳米颗粒表面修饰ZnO纳米线气敏材料的制备方法
CN108956715B (zh) * 2018-07-19 2020-10-02 东北大学 一种Au@WO3核壳结构纳米球及其制备方法和应用
CN109725039A (zh) * 2019-01-10 2019-05-07 沈阳化工大学 一种Pd修饰ZnO纳米棒阵列的制备及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120097917A1 (en) * 2010-09-29 2012-04-26 Weilie Zhou Aligned, Coated Nanowire Arrays for Gas Sensing
CN107607591A (zh) * 2017-09-11 2018-01-19 吉林大学 一种基于SnO2修饰的NiO纳米结构敏感材料的超灵敏甲苯气体传感器及其制备方法
CN110057869A (zh) * 2018-01-18 2019-07-26 中国科学院过程工程研究所 一种半导体气敏传感器及其制备方法
CN113252736A (zh) * 2021-05-07 2021-08-13 深圳技术大学 增加多功能气敏传感器气体选择功能的方法和气敏传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FANG LIANG,PENG LIPING,YANG XIAOFEI ,HUANG QIULIU ,ZHOU KE ,WU FANG ,LIU GAOBIN ,MA YONG: "Study on NO2 Gas Sensing Characteristics of In-doped ZnO Thin Films Prepared by Rf Magnetron Sputtering", JOURNAL OF CHONGQING UNIVERSITY, vol. 32, no. 9, 15 September 2009 (2009-09-15), pages 1002 - 1005+1015, XP055982982, ISSN: 1000-582X *
WANG WEI, WANG XINJUN;LIU YANL: "Enhanced Acetone Sensing Performance of Au Nanoparticles Functionalized Flower-like ZnO", RARE METAL MATERIALS AND ENGINEERING, vol. 42, no. 8, 15 August 2013 (2013-08-15), CN , pages 1699 - 1702, XP055982977, ISSN: 1002-185X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116119718A (zh) * 2022-11-18 2023-05-16 中冶南方工程技术有限公司 一种气敏材料及其制备方法和氨气传感器及其制备方法
CN116046852A (zh) * 2023-01-17 2023-05-02 云南民族大学 一种ZnO纳米颗粒修饰α-三氧化钼异质结的高性能乙醇气体传感器

Also Published As

Publication number Publication date
CN113252736B (zh) 2023-01-03
CN113252736A (zh) 2021-08-13
US20240068972A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
WO2022233225A1 (zh) 增加多功能气敏传感器气体选择功能的方法和气敏传感器
WO2018082585A1 (zh) 一种多孔氧化锌纳米片负载高分散纳米贵金属复合气敏材料的合成方法
Zhuiykov et al. Nanocrystalline V2O5–TiO2 thin-films for oxygen sensing prepared by sol–gel process
CN103852496A (zh) 基于准定向氧化钨纳米线的气敏传感器元件的制备方法
CN110887874B (zh) 一种基于钙钛矿的湿敏传感器及其制备方法和用途
US8414831B2 (en) Chlorine gas sensing system
WO2018223760A1 (zh) 电化学生物传感器电极、传感器及其制备方法
CN105158303A (zh) 贵金属/贱金属氧化物/石墨烯三元复合气敏材料及制备
CN105606660A (zh) 一种检测no2的气敏材料及其气敏元件的制作方法
CN108732214A (zh) 基于PdO@In2O3复合物纳米敏感材料的丙酮气体传感器及其制备方法
CN101824603A (zh) 一种复合薄膜气敏传感器的制作方法
CN101216448A (zh) 基于钯-银丝状电极的氢气传感器
CN110823965A (zh) 一种室温检测no2的气敏材料及其制备方法
CN113061839A (zh) 一种电阻型纳米结构氢气传感器的制备方法
KR20100085321A (ko) 가스센서 및 그 제조방법
Naim et al. Influence of Ag and Pd contents on the properties of PANI–Ag–Pd nanocomposite thin films and its performance as electrochemical sensor for E. coli detection
KR20050066058A (ko) 센서 구조체 및 그 제조방법
CN112014445A (zh) 一种三元复合材料及其应用
Jiang et al. Gas sensitivity of heterojunction TiO2NT/GO materials prepared by a simple method with low-concentration acetone
WO2019155859A1 (ja) センサ用電極材、センサ用電極、センサ、及びバイオセンサ
KR20180069372A (ko) Au, Pt 및 Pd 금속입자로 기능화된 ZnO 나노선의 상온 감응 특성을 이용한 가스센서 및 그 제조 방법
EA035977B1 (ru) Одноэлектродный газовый сенсор на основе окисленного титана, способ его изготовления, сенсорное устройство и мультисенсорная линейка на его основе
CN113640361A (zh) 用于痕量甲醛气体检测的栅极敏感型fet气体传感器阵列及其制备方法
Wang et al. A novel COOH–GO–COOH–MWNT/pDA/AuNPs based electrochemical aptasensor for detection of AFB 1
CN110243879B (zh) 一种硫离子修饰的SnO2基低温SO2敏感材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22798566

Country of ref document: EP

Kind code of ref document: A1