CN113061839A - 一种电阻型纳米结构氢气传感器的制备方法 - Google Patents
一种电阻型纳米结构氢气传感器的制备方法 Download PDFInfo
- Publication number
- CN113061839A CN113061839A CN202110466005.3A CN202110466005A CN113061839A CN 113061839 A CN113061839 A CN 113061839A CN 202110466005 A CN202110466005 A CN 202110466005A CN 113061839 A CN113061839 A CN 113061839A
- Authority
- CN
- China
- Prior art keywords
- nano
- hydrogen sensor
- silicon
- preparing
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/087—Oxides of copper or solid solutions thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Molecular Biology (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明公开了一种电阻型纳米结构氢气传感器的制备方法,包括:S1,利用飞秒脉冲激光在硅样品衬底上诱导出随机分布的纳米凸起结构;S2,利用磁控溅射设备在覆盖纳米突起的硅表面溅射CuO纳米薄膜;S3,利用真空热蒸发镀膜技术在CuO纳米薄膜料表面蒸镀一层钯膜;S4,在镀好钯膜的硅样品两端制备铟电极后,制备出电阻型氢气传感器。本发明利用飞秒脉冲激光可以方便快速的在硅表面诱导出大面积随机分布的纳米突起结构,结合磁控溅射和热蒸发镀上氢敏材料钯后,获得比较大的表面积和体积比,从而可以实现氢气传感器件的制备。
Description
技术领域
本发明涉及传感器件的制备技术领域,具体涉及一种电阻型纳米结构氢气传感器的制备方法。
背景技术
基于mos(半导体金属氧化物)的气体传感器由于其成本低、寿命长、测量电路简单、性能可靠而被广泛应用于有害气体的监测。半导体金属氧化物(MOS)在氢气传感中表现出两种响应机制:一种是材料颜色的变化,另一种是材料在氢气存在下电阻的变化。CuO无毒、化学稳定、环保。CuO的还原过程是在气体(氢气)存在的情况下进行的,因此CuO是目前研究最广泛的铜氧化物传感材料。因此,CuO为开发高性能气体传感器提供了巨大的潜力。在CuO表面上附着钯(Pd)作为催化剂,进一步提高其灵敏度和选择性,可以改善CuO的气敏性能。
钯对氢的传感机理的第一步是在钯表面化学吸附氢,然后再分解氢。第二步是分解的氢原子扩散到钯晶格,随后占据晶格的间隙,这一步也称为氢在钯晶格中的溶解。它们作为杂质参与了Pd导电电子的散射,从而使Pd膜的电阻增大。根据氢的可利用性,PdHx也可以形成α相和β相,它们都比纯Pd具有更高的电阻率。在任何时间点存在于感测Pd膜上的α和β相的相对分数以及Pd晶格中的溶解氢决定了感测膜的整体电阻率。一旦校准研究已经完成,就对电阻率进行连续监测,以量化氢浓度。研究者尝试用Pd纯形或与其他金属、金属氧化物、聚合物、氮化纳米管和碳基材料混合形成合金或功能化层或掺杂来提高传感器对H2的检测性能。
根据检测机理,H2传感器可分为催化、电化学、电阻基、功函数基、机械、光学和声学等7类,在各种类型的气体传感器中,基于半导体金属氧化物(MOS)的传感器是最有希望测量环境中各种气体的候选材料。MOS(半导体金属氧化物)基气体传感器的性能高度依赖于其微观结构和表面形貌,纳米结构由于其很大的表面积体积比,能大幅度改善传感器的灵敏度和选择性。纳米结构常见的制备方法有气相法、液相法和固相法。气相法包括化学气相反应法和物理气相法,液相法包括沉淀法、水热法、溶胶-凝胶法、冷冻干燥法和喷雾法,固相法包括粉碎法、热分解法、固相反应法等。这些制备方法虽然很多已经比较成熟了,但制备过程较为复杂,涉及比较多的材料试剂,导致制备的成本较高。
发明内容
本发明的目的是为了克服以上现有技术存在的不足,提供了一种制备过程简单快速的电阻型纳米结构氢气传感器的制备方法。
本发明的目的通过以下的技术方案实现:
一种电阻型纳米结构氢气传感器的制备方法,包括:
S1,利用飞秒脉冲激光在硅样品衬底上诱导出随机分布的纳米凸起结构;
S2,利用磁控溅射设备在覆盖纳米突起的硅表面溅射CuO纳米薄膜;
S3,利用真空热蒸发镀膜技术在CuO纳米薄膜料表面蒸镀一层钯膜;
S4,在镀好钯膜的硅样品两端制备铟电极后,制备出电阻型氢气传感器。
2、根据权利要求1所述的电阻型纳米结构氢气传感器的制备方法,其特征在于,步骤S4包括:利用电阻型氢气传感器测试氢气浓度。
优选地,硅样品衬底的尺寸为0.5mm×16mm×16mm。
优选地,步骤S1包括:将硅样品放置在装有5mm深的蒸馏水的培养皿中;并将培养皿放置在位移台上进行飞秒激光加工;设置飞秒激光加工的功率为4.5mW,线扫描速度为1mm/s,扫描间距为22μm,经过焦距为15cm的透镜将飞秒激光聚焦在硅衬底表面,通过电脑控制位移台的移动实现飞秒激光微纳加工。
优选地,步骤S2包括:将飞秒激光处理好的硅样品放入JCP-350磁控溅射镀膜机里;用氩气清洗整个板面10分钟;以O2:Ar=32:4的比例通入气体,流速为28sccm;通过磁控溅射30分钟在覆盖随机分布的纳米凸起硅样品表面溅射一层CuO纳米薄膜。
优选地,步骤S3包括:将0.0086g的99.99%纯度的钯放到蒸发盘上,将激光加工过并且镀过CuO薄膜的硅样品放到样品台上固定好;盖上玻璃外罩抽真空,加载电流130A,时间为2分钟,掩膜;缓慢减小电流直至为零,将镀好的样品取出。
本发明相对于现有技术具有如下优点:
本发明利用飞秒脉冲激光可以方便快速的在硅表面诱导出大面积随机分布的纳米突起结构,结合磁控溅射和热蒸发镀上氢敏材料钯后,获得比较大的表面积和体积比,从而可以实现氢气传感器件的制备。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本实施例的电阻型纳米结构氢气传感器的制备方法的示意性流程图。
图2为本实施例的电阻型纳米结构氢气传感器的样品实物图。
图3为本实施例的电阻型纳米结构氢气传感器的SEM图。
图4为本实施例的电阻型纳米结构氢气传感器在氢气浓度为0.5%、室温下的三次循环响应图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
参见图1,本实施例的电阻型纳米结构氢气传感器的制备方法包括以下步骤:
1、纳米凸起结构诱导:使用的飞秒激光加工的功率为4.5mW,线扫描速度为1mm/s,扫描间距为22μm,经过焦距为15cm的透镜将飞秒激光聚焦在半导体硅样品表面,通过电脑控制的位移台实现飞秒激光微纳加工。实验时将0.5mm×16mm×16mm的Si放置在5mm深的蒸馏水中,从而诱导出大面积随机分布的纳米突起结构。
2、磁控溅射镀膜:将飞秒激光处理好的硅样品放入JCP-350磁控溅射镀膜机里;用氩气清洗整个板面10分钟;以O2:Ar=32:4的比例通入气体,流速为28sccm;通过磁控溅射30分钟在覆盖随机分布的纳米凸起硅样品表面溅射一层CuO纳米薄膜。
3、真空热蒸发镀膜:将0.0086g的99.99%纯度的钯放到蒸发舟上,将激光加工过并且镀过CuO薄膜的硅片放到样品台上固定好。盖上玻璃外罩抽真空,加载电流130A,时间为2分钟,掩膜;缓慢减小电流直至为零,将镀好的样品取出。样品实物图如图2所示。
4、形貌表征:通过场发射扫描电子显微镜(SEM)来表征样品的形貌,如图3所示,可以看到硅片表面覆盖有随机分布的纳米凸起结构,极大的提高了样品的表面积体积比。
5、氢敏特性测试:在样品两端制备铟电极后,将其放置到气敏测试腔中,通过两个钨探针接触在样品的铟电极上,配置一定浓度的氢气通过质量流量计,经过管道混合后流经测试腔,样品的电阻发生变化。利用CGS-MT光电气综合测试平台和SA3101软件检测样品的伏安特性曲线,并将数据采集并储存到电脑。制备的传感器在室温下对40ppm的氢气灵敏度(S=Rg-Ra/Ra,Ra为传感器在空气中的电阻,Rg为传感器在氢气中的电阻)为0.019,在氢气浓度为0.5%时灵敏度为1.091,在室温下传感器在氢气浓度为0.5%时的三次重复性使用如图4所示,可以发现传感器在室温条件下的循环响应功能良好。
综上,本发明不同于通过传统的化学制备方法(如化学沉淀法、溶胶凝胶法、水热法、化学气相沉积等)和物理方法(如物理沉积法)来制备材料表面纳米结构,利用飞秒激光烧蚀半导体硅可以快速地诱导出大面积随机分布的纳米凸起结构,使用磁控溅射和真空热蒸发镀膜平台,再通过控制镀膜时间的长短来控制氧化铜和氢敏钯纳米薄膜的厚度。相比于其他纳米结构制备方法飞秒激光能方便、快速的制备纳米凸起结构。因此研究用飞秒激光诱导的微纳结构制备纳米氢气传感器具有重要意义。更重要的是现在的半导体工艺是基于硅基材料,使用Si衬底为以后制备氢传感器集成电路芯片打下了良好的基础,硅基纳米结构氢气传感器芯片的研制无疑可以提高器件的稳定性和可靠性,降低器件的功耗。
上述具体实施方式为本发明的优选实施例,并不能对本发明进行限定,其他的任何未背离本发明的技术方案而所做的改变或其它等效的置换方式,都包含在本发明的保护范围之内。
Claims (6)
1.一种电阻型纳米结构氢气传感器的制备方法,其特征在于,包括:
S1,利用飞秒脉冲激光在硅样品衬底上诱导出随机分布的纳米凸起结构;
S2,利用磁控溅射设备在覆盖纳米突起的硅表面溅射CuO纳米薄膜;
S3,利用真空热蒸发镀膜技术在CuO纳米薄膜料表面蒸镀一层钯膜;
S4,在镀好钯膜的硅样品两端制备铟电极后,制备出电阻型氢气传感器。
2.根据权利要求1所述的电阻型纳米结构氢气传感器的制备方法,其特征在于,步骤S4包括:利用电阻型氢气传感器测试氢气浓度。
3.根据权利要求5所述的电阻型纳米结构氢气传感器的制备方法,其特征在于,硅样品衬底的尺寸为0.5mm×16mm×16mm。
4.根据权利要求1所述的电阻型纳米结构氢气传感器的制备方法,其特征在于,步骤S1包括:将硅样品放置在装有5mm深的蒸馏水的培养皿中;并将培养皿放置在位移台上进行飞秒激光加工;
设置飞秒激光加工的功率为4.5mW,线扫描速度为1mm/s,扫描间距为22μm,经过焦距为15cm的透镜将飞秒激光聚焦在硅衬底表面,通过电脑控制位移台的移动实现飞秒激光微纳加工。
5.根据权利要求4所述的电阻型纳米结构氢气传感器的制备方法,其特征在于,步骤S2包括:将飞秒激光处理好的硅样品放入JCP-350磁控溅射镀膜机里;用氩气清洗整个板面10分钟;以O2:Ar=32:4的比例通入气体,流速为28sccm;通过磁控溅射30分钟在覆盖随机分布的纳米凸起硅样品表面溅射一层CuO纳米薄膜。
6.根据权利要求5所述的电阻型纳米结构氢气传感器的制备方法,其特征在于,步骤S3包括:将0.0086g的99.99%纯度的钯放到蒸发盘上,将激光加工过并且镀过CuO薄膜的硅样品放到样品台上固定好;盖上玻璃外罩抽真空,加载电流130A,时间为2分钟,掩膜;缓慢减小电流直至为零,将镀好的样品取出。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110466005.3A CN113061839B (zh) | 2021-04-28 | 2021-04-28 | 一种电阻型纳米结构氢气传感器的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110466005.3A CN113061839B (zh) | 2021-04-28 | 2021-04-28 | 一种电阻型纳米结构氢气传感器的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113061839A true CN113061839A (zh) | 2021-07-02 |
CN113061839B CN113061839B (zh) | 2022-08-02 |
Family
ID=76568214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110466005.3A Active CN113061839B (zh) | 2021-04-28 | 2021-04-28 | 一种电阻型纳米结构氢气传感器的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113061839B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115963151A (zh) * | 2022-10-25 | 2023-04-14 | 绍兴市特种设备检测院 | 一种氢气传感器及智能监测系统 |
WO2023123669A1 (zh) * | 2021-12-27 | 2023-07-06 | 浙江工业大学 | 一种催化燃烧式氢气传感器及其制备方法 |
WO2024113474A1 (zh) * | 2022-11-29 | 2024-06-06 | 中国科学院苏州纳米技术与纳米仿生研究所 | 氢敏变色材料及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101158662A (zh) * | 2007-11-02 | 2008-04-09 | 华南理工大学 | 氢气传感器用薄膜材料及其制备方法 |
CN103175784A (zh) * | 2013-03-26 | 2013-06-26 | 武汉理工大学 | 基于飞秒激光微加工的光纤光栅氢气传感器及其制备方法 |
CN110568023A (zh) * | 2019-08-01 | 2019-12-13 | 国网浙江省电力有限公司温州供电公司 | 一种气体传感器及其制备方法 |
-
2021
- 2021-04-28 CN CN202110466005.3A patent/CN113061839B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101158662A (zh) * | 2007-11-02 | 2008-04-09 | 华南理工大学 | 氢气传感器用薄膜材料及其制备方法 |
CN103175784A (zh) * | 2013-03-26 | 2013-06-26 | 武汉理工大学 | 基于飞秒激光微加工的光纤光栅氢气传感器及其制备方法 |
CN110568023A (zh) * | 2019-08-01 | 2019-12-13 | 国网浙江省电力有限公司温州供电公司 | 一种气体传感器及其制备方法 |
Non-Patent Citations (2)
Title |
---|
YADAV, PRASHANTA ETAL.: "Sputter-Grown Pd-Capped CuO Thin Films for a Highly Sensitive and Selective Hydrogen Gas Sensor", 《JOURNAL OF ELECTRONIC MATERIALS》 * |
欧阳跃军等: "电阻型氢气传感器研究进展", 《化学传感器》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023123669A1 (zh) * | 2021-12-27 | 2023-07-06 | 浙江工业大学 | 一种催化燃烧式氢气传感器及其制备方法 |
CN115963151A (zh) * | 2022-10-25 | 2023-04-14 | 绍兴市特种设备检测院 | 一种氢气传感器及智能监测系统 |
CN115963151B (zh) * | 2022-10-25 | 2024-01-19 | 绍兴市特种设备检测院 | 一种氢气传感器及智能监测系统 |
WO2024113474A1 (zh) * | 2022-11-29 | 2024-06-06 | 中国科学院苏州纳米技术与纳米仿生研究所 | 氢敏变色材料及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN113061839B (zh) | 2022-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113061839B (zh) | 一种电阻型纳米结构氢气传感器的制备方法 | |
Luongo et al. | Development of a highly sensitive porous Si-based hydrogen sensor using Pd nano-structures | |
Dong et al. | Porous NiO nanosheets self-grown on alumina tube using a novel flash synthesis and their gas sensing properties | |
Jun et al. | High H2 sensing behavior of TiO2 films formed by thermal oxidation | |
Han et al. | Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor | |
TWI612288B (zh) | 一種重金屬檢驗試片與其製備方法 | |
CN108802121B (zh) | 一种光电流溶解氧传感器 | |
CN109433225A (zh) | 一种钯/镍合金负载的石墨烯材料的制备方法及应用 | |
Li et al. | NO2 sensing performance of p-type intermediate size porous silicon by a galvanostatic electrochemical etching method | |
Hadiyan et al. | Sub-ppm acetone gas sensing properties of free-standing ZnO nanorods | |
Qin et al. | KOH post-etching-induced rough silicon nanowire array for H2 gas sensing application | |
Fan et al. | One-pot hydrothermal synthesis of CuO with tunable morphologies on Ni foam as a hybrid electrode for sensing glucose | |
Moon et al. | A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization | |
Arida | Novel pH microsensor based on a thin film gold electrode modified with lead dioxide nanoparticles | |
US12099029B2 (en) | Superhydrophilic thick-film pH sensor based on chemical etching, and preparation method thereof | |
Ren et al. | Grain boundaries dependent hydrogen sensitivity in MAO-TiO2 thin films sensors | |
CN118032873A (zh) | 一种硫化氢气体传感器及其制备工艺 | |
CN110054791A (zh) | MOFs-贵金属有序复合材料及其制备方法和应用 | |
Esfandyarpour et al. | Ultrahigh-sensitive tin-oxide microsensors for H/sub 2/S detection | |
Xu et al. | Development and performance of an all-solid-stated pH sensor based on modified membranes | |
Yan et al. | Fabrication and optimization of ZnO NR sensors in-situ grown on ITO substrates by a solution method | |
CN116626112A (zh) | 一种检测氢气的碳基传感器 | |
CN102243207A (zh) | 电极表面具有纳米凹凸结构的电化学传感器及其制备方法 | |
Wei et al. | A novel porous silicon composite sensor for formaldehyde detection | |
Zhang et al. | A ppb-level formaldehyde gas sensor based on rose-like nickel oxide nanoparticles prepared using electrodeposition process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |