WO2022231002A1 - 中空糸膜およびその製造方法 - Google Patents

中空糸膜およびその製造方法 Download PDF

Info

Publication number
WO2022231002A1
WO2022231002A1 PCT/JP2022/019447 JP2022019447W WO2022231002A1 WO 2022231002 A1 WO2022231002 A1 WO 2022231002A1 JP 2022019447 W JP2022019447 W JP 2022019447W WO 2022231002 A1 WO2022231002 A1 WO 2022231002A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
spherical structure
temperature
polyvinylidene fluoride
Prior art date
Application number
PCT/JP2022/019447
Other languages
English (en)
French (fr)
Inventor
憲太郎 小林
健太 岩井
陽一郎 小崎
智子 金森
高志 橘
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US18/288,249 priority Critical patent/US20240216871A1/en
Priority to JP2022527193A priority patent/JPWO2022231002A1/ja
Priority to AU2022267170A priority patent/AU2022267170A1/en
Priority to KR1020237037125A priority patent/KR20230174230A/ko
Priority to CN202280031676.XA priority patent/CN117222472A/zh
Priority to EP22795915.2A priority patent/EP4331714A1/en
Publication of WO2022231002A1 publication Critical patent/WO2022231002A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/082Hollow fibre membranes characterised by the cross-sectional shape of the fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/08Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
    • D01F6/12Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43914Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres hollow fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/005Laser beam treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • C08J2201/0522Inducing phase separation by thermal treatment, e.g. cooling a solution the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/22Polymers or copolymers of halogenated mono-olefins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/042Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Definitions

  • the present invention relates to a hollow fiber membrane and a manufacturing method thereof.
  • Separation membranes such as microfiltration membranes and ultrafiltration membranes are used for purposes such as clarification, concentration, and separation in water treatment applications and food and pharmaceutical applications.
  • Application to liquids to be filtered that are highly difficult to filter and applications that require high-precision separation are being considered, and the demand for separation membranes that achieve both filterability and separation performance is increasing.
  • Patent Document 1 discloses a porous hollow fiber membrane containing a vinylidene fluoride-based resin, in which the pore diameters of the pores in the hollow fiber membrane gradually decrease toward at least one side of the inner and outer peripheral surfaces. Hollow fiber membranes having In addition, it is described that this hollow fiber membrane is excellent in permeation performance, fractionation properties and strength.
  • Patent Document 2 a hollow fiber membrane having a spherical structure formed from a polyvinylidene fluoride resin using a thermally induced phase separation method and having a spherical structure larger than that in the vicinity of the inner surface within 10 ⁇ m from the outer surface is disclosed. disclosed. It is described that, by having a large spherical structure in the vicinity of the outer surface, clogging is prevented and high water permeability is maintained continuously, and high strength is exhibited in the homogeneous inner layer.
  • Patent Document 2 discloses, as a method for producing such a membrane, a method of imparting a temperature gradient in the thickness direction of the separation membrane to a polyvinylidene fluoride resin solution before solidification. Specifically, it is described that the spinneret for forming the hollow fiber is heated, and the spherical structure on the surface of the heated side is coarsened.
  • the hollow fiber membrane disclosed in Patent Document 1 has a three-dimensional network structure in which the pore diameters of the pores in the hollow fiber membrane gradually decrease toward one side.
  • Such a membrane is inferior in strength and is not suitable for operations such as external pressure cross-flow filtration in which a large load is applied to the membrane.
  • the layer having the separation function is very thin in such a membrane, the separation function is easily deteriorated due to membrane damage during operation. Therefore, it is difficult to maintain a stable separation function over the long term.
  • the membrane of Patent Document 2 has a relatively small and homogeneous spherical structure inside, which can block components in the liquid, so separation performance can be maintained for a long time. Moreover, since there is a large spherical structure in the vicinity of the outer surface, clogging components (components that cause clogging) can be trapped inside. On the other hand, the region where the clogging component can be captured remains only in the vicinity of the outer surface. Therefore, depending on the liquid to be filtered, especially the liquid containing a large amount of turbidity components and organic substances, and the conditions such as operation time, there is a problem that the time for which water permeability can be maintained is shortened. On the other hand, there is a demand for a longer period of time in which water permeability can be maintained even in a liquid that is difficult to filter.
  • An object of the present invention is to provide a hollow fiber membrane using a polyvinylidene fluoride resin that can maintain separation and water permeability, and a method for producing the same.
  • Db n of the spherical structure in Sb n Da 1 >Db 2 and the minimum value i min of the natural number i that satisfies the following conditions (1) and (2) is 3 ⁇ i min ⁇ (L-20) /10 hollow fiber membrane.
  • the throat diameter obtained by pore network model analysis of the hollow fiber membrane is the constriction diameter of the spherical structure gap
  • an average diameter da n of constriction diameters of spherical structure gaps in a region San of 10 ⁇ (n ⁇ 1) to 10 ⁇ n ⁇ m from the first surface For the average diameter db n of the constriction diameters of the spherical structure gaps in the region Sb n from 10 ⁇ (n ⁇ 1) to 10 ⁇ n ⁇ m from the second surface, da 1 > db 2 , and the following conditions (1) and 8.
  • the analysis area in the analysis is a rectangular parallelepiped including an arbitrary 50 ⁇ m square of the first surface and a 50 ⁇ m square of the second surface facing the first surface.
  • the spherical structure is made of a polyvinylidene fluoride resin, a hydrophilic polymer is present on the surface and inside the spherical structure; 12.
  • P1 is the ratio (% by mass) of the hydrophilic polymer to the polyvinylidene fluoride resin after the hollow fiber membrane is immersed in a 3000 ppm sodium hypochlorite aqueous solution (pH 12.5) at 60 ° C. for 30 hours. 13. 13. 13 above, wherein the ratio P1/P0, the ratio of P1 to P0, is 70% or less, where P0 is the ratio (% by mass) of the hydrophilic polymer to the polyvinylidene fluoride resin in the above. hollow fiber membrane. 14.
  • step (a) dissolving a polyvinylidene fluoride resin in a poor solvent to obtain a polyvinylidene fluoride resin solution; (b) a step of holding the polyvinylidene fluoride resin solution at a temperature at which the formation of primary nuclei proceeds; (c) After the step (b), the polyvinylidene fluoride resin solution is discharged in the form of hollow fibers through a pipe and a nozzle, and in at least one of the pipe or the nozzle, the temperature is increased in the thickness direction of the polyvinylidene fluoride resin solution.
  • the polyvinylidene fluoride resin solution is immersed in a cooling bath to cause solid-liquid thermally induced phase separation of the polyvinylidene fluoride resin solution; comprising the step of solidifying by A method for producing a hollow fiber membrane, wherein the temperature gradient ⁇ T (° C.) applied in the step (c) and the time t (seconds) for applying the temperature gradient are 50 ⁇ T ⁇ t ⁇ 300. 15.
  • the thickness Ls of the polyvinylidene fluoride-based resin that imparts a temperature gradient is 5 ⁇ Ls/L ⁇ 40 with respect to the thickness L of the layer of the spherical structure. Membrane manufacturing method. 16.
  • the temperature T2 (° C.) in the step (b), the temperature T4 (° C.) of the cooling bath in the step (d), and the crystallization temperature Tc (° C.) of the polyvinylidene fluoride resin are (Tc ⁇ T4)/( 16.
  • a hollow fiber membrane capable of maintaining separability and water permeability and a method for producing the same can be provided.
  • FIG. 1 is an electron micrograph of the vicinity of the first surface and the second surface in a radial cross section of a hollow fiber membrane.
  • FIG. 2 is a schematic diagram showing a method of calculating the average diameter of spherical structures.
  • FIG. 3 is a diagram showing the results of measuring the average diameter of spherical structures with respect to the distance from the first surface.
  • FIG. 4 is a diagram illustrating a pore network model analysis image of a hollow fiber membrane.
  • FIG. 5 is a top view showing a specific example of the configuration of a spinneret used for manufacturing hollow fiber membranes.
  • FIG. 6 is a cross-sectional view of the base shown in FIG. 5 taken along the line AA. 7 is a bottom view of the base shown in FIG. 5.
  • FIG. FIG. 8 is a diagram showing an example of the shape of piping.
  • a hollow fiber membrane according to an embodiment of the present invention has a layer of a resin spherical structure, the thickness L of the layer of the spherical structure is 60 ⁇ m or more and 500 ⁇ m or less, and the layer of the spherical structure is formed between the first surface and the an average diameter Da n of spherical structures in an area San from 10 ⁇ (n ⁇ 1) to 10 ⁇ n ⁇ m from the first surface; and 10 ⁇ (n -1)
  • Db n of the spherical structure in the region Sb n of ⁇ 10 ⁇ n ⁇ m Da 1 > Db 2 and the minimum value i min of the natural number i satisfying the following conditions (1) and (2) is 3 ⁇ i min ⁇ (L ⁇ 20)/10.
  • a hollow fiber membrane according to an embodiment of the present invention has a resin spherical structure layer.
  • the hollow fiber membrane may be composed only of a layer with a spherical structure, or may have other layers.
  • the layer of spherical structure made of resin refers to a layer of spherical structure made of resin.
  • the resin constituting the layer of the spherical structure a thermoplastic resin composed of a chain polymer is preferable, and a polyvinylidene fluoride resin is particularly preferable because of its high chemical resistance.
  • the polyvinylidene fluoride resin means a resin containing at least one of a vinylidene fluoride homopolymer and a vinylidene fluoride copolymer.
  • the polyvinylidene fluoride-based resin may contain multiple types of vinylidene fluoride copolymers.
  • the spherical structure is preferably made of polyvinylidene fluoride resin.
  • the spherical structure is composed of a polyvinylidene fluoride resin
  • the thermoplastic resin component that constitutes the spherical structure is substantially composed of the polyvinylidene fluoride resin.
  • the spherical structure may contain, in addition to the thermoplastic resin, other resins miscible with the thermoplastic resin and polyhydric alcohols or surfactants at a ratio of 50% by weight or less.
  • the spherical structure may contain impurities that are inevitably contained in addition to these, and the content of the impurities is preferably 1% by weight or less, for example.
  • a vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers.
  • Other fluorine-based monomers include, for example, one or more monomers selected from the group consisting of vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trifluorochloroethylene.
  • a monomer other than the fluorine-based monomer for example, a monomer such as ethylene may be copolymerized to the extent that the effect of the present invention is not impaired.
  • the spherical structure layer may contain other resins miscible with the thermoplastic resin and polyhydric alcohol or surfactant in a proportion of 50% by weight or less.
  • the term “spherical structure” refers to a solid portion having a substantially circular cross section perpendicular to the length direction of the hollow fiber membrane (that is, parallel to the radial direction of the hollow fiber membrane), and the solid portion connected as described below. It refers to an organization formed by being When not referring to the entire tissue, but particularly to a portion having a substantially circular cross section, the term “solid portion” may be used.
  • a substantially circular shape includes a perfect circle and an ellipse.
  • Each solid portion is connected by sharing a portion thereof in the plane direction or thickness direction of the separation membrane (hollow fiber membrane).
  • the shape of the cross section parallel to the length direction of the hollow fiber membrane is not particularly limited, and may be any shape such as a substantially circular shape or a columnar shape.
  • Separation membranes exhibit high strength and elongation by having a spherical structure, and exhibit high water permeability by including voids between spherical solid portions.
  • the first surface is preferably arranged upstream in the filtration direction and the second surface is arranged downstream in the filtration direction.
  • the liquid to be filtered preferably flows from the first surface toward the second surface.
  • the first surface is the liquid to-be-filtrated side. That is, when used for so-called external pressure filtration, the outer surface of the hollow fiber membrane is the first surface and the inner surface is the second surface, and when used for internal pressure filtration, the inner surface of the hollow fiber membrane is the second surface.
  • the first surface, the outer surface is the second surface.
  • FIG. 1 is an electron micrograph of a radial cross section of a hollow fiber membrane, (a) near the first surface and (b) near the second surface.
  • a region of 10 ⁇ (n ⁇ 1) to 10 ⁇ n ⁇ m from the first surface is defined as San
  • a region of 10 ⁇ ( n ⁇ 1) to 10 ⁇ n ⁇ m from the second surface is defined as Sbn.
  • n is a natural number.
  • a photograph is taken so that the arc, which is the first surface of the hollow fiber membrane, can be confirmed.
  • the tangent line of the central portion of the arc forming the first surface is aligned with the horizontal direction in the photograph.
  • a straight line Ma 1 is drawn through the intersection of the arc forming the first plane and the left and right edges of the photograph.
  • the straight line Ma 1 is preferably parallel to the horizontal direction of the photograph, but may be inclined.
  • a straight line Ma2 parallel to this straight line is drawn at a position 10 ⁇ m closer to the second surface than the straight line Ma1.
  • straight lines Ma 3 , Ma 4 . . . Man are drawn.
  • Area Sa 1 is the area between straight lines Ma 1 and Ma 2 .
  • the straight line Ma n is parallel to the straight line Ma 1 and drawn at a position 10 ⁇ n ⁇ m from the straight line Ma 1 in the direction of the second plane.
  • the area San is the area between the straight line Ma n and the straight line Ma (n+1) in the photograph.
  • the second surface is similarly photographed so that the arc can be confirmed.
  • the tangent line of the central portion of the arc forming the second surface is aligned with the horizontal direction in the photograph.
  • a straight line Mb 1 is drawn through the intersection of the arc forming the first plane and the left and right ends of the photograph.
  • the straight line Mb1 is preferably parallel to the horizontal direction of the photograph, but may be inclined.
  • a straight line is drawn at intervals of 10 ⁇ m from the second surface, similarly to the straight line Man. That is, a straight line Mb2 parallel to this straight line Mb1 is drawn at a position 10 ⁇ m closer to the first surface than the straight line Mb1.
  • straight lines Mb 3 . . . Mb n can be drawn.
  • Region Sb n is the region between straight lines Mb n and Mb (n+1) .
  • the average diameter Dan of the spherical structures in the region San and the average diameter Dbn of the spherical structures in the region Sbn are calculated as follows. First, an electron micrograph is taken in a cross section in the radial direction. Magnification at the time of photographing is not particularly limited as long as it is a magnification capable of measuring 15 or more spherical structures. For example, if the average diameter of the spherical structures is 1 to 3 ⁇ m, observation at a magnification of 1000 to 5000 is preferable because a sufficient number of spherical structures for calculating the average diameter can be obtained.
  • solid parts that overlap other spheres and are positioned deeper than the other spheres are excluded from the measurement targets.
  • the solid portions positioned deeper than the other spheres are exemplified as X1 to X4 in FIG.
  • the solid portion that is cut off at the outer edge of the photographed image is also excluded from the measurement target.
  • solid portions such as solid portion X5 shown in FIG. shown).
  • FIG. 3 shows the result of measuring the average diameter of the spherical structure in the thickness direction of FIG. 1 by such a method.
  • the horizontal axis is the distance in the thickness direction from the first surface
  • the vertical axis is the average diameter of the spherical structures in each region.
  • the average diameter Da n is plotted at a distance of 10 ⁇ (n ⁇ 1) ⁇ m from the first surface. is plotted at a position of 20 ⁇ m.
  • the average diameter Da1 of the spherical structure in the region Sa1 and the average diameter Db2 of the region Sb2 satisfy the relational expression Da1 > Db2 . Since the average diameter Da1 of the region Sa1 in the vicinity of the first surface is larger than the average diameter Db2 of the region Sb2 in the vicinity of the second surface, the liquid flow resistance in the vicinity of the first surface is reduced. Improves water permeability.
  • the present inventors further found that the minimum value i min of the natural number i satisfying the following conditions (1) and (2) is 3 ⁇ i min ⁇ (L-20) / 10, so that water permeability and separability are long. I have found that it keeps time. However, in the above 3 ⁇ i min ⁇ (L ⁇ 20)/10, the decimal point of (L ⁇ 20)/10 is discarded. Also, as will be described later, L represents the thickness of the layer of the spherical structure.
  • the film thickness (thickness L of the spherical structure layer) is 240 ⁇ m, 3 ⁇ i min ⁇ (L ⁇ 20)/10 is also satisfied.
  • the thickness L of the spherical structure layer is preferably 60 ⁇ m or more and 500 ⁇ m or less in consideration of water permeability and strength, and is 100 ⁇ m or more from the viewpoint of the distribution of blocked locations in the thickness direction due to depth filtration. It is more preferably 500 ⁇ m or less, and further preferably 150 ⁇ m or more and 350 ⁇ m or less from the viewpoint of the film area.
  • the value i min is preferably i min ⁇ L ⁇ 0.75/10. That is, it is preferable that (1) and (2) are satisfied in the range from the first surface to 3/4 of the thickness of the entire film. However, in the above i min ⁇ L ⁇ 0.75/10, the fractional part of L ⁇ 0.75/10 is rounded down. Under this condition, it is preferable that the following condition (4) be satisfied for all natural numbers m larger than the numerical value i min and equal to or less than (L-20)/10. (4) -0.30 ⁇ Dam - Db2 ⁇ 0.30
  • Regions that satisfy (4) above have average diameters close to each other, and therefore have a homogeneous structure within the range of i min ⁇ m ⁇ (L-20)/10. Further, according to the definition of the range of m, the area occupied by the homogeneous structure is 1/4 or more of the film thickness, so sufficient separation can be obtained. In addition, even if the membrane surface is damaged during membrane formation or operation, the thickness of the layer having the homogeneous structure is within this range, so that deterioration of separation and blocking properties can be suppressed.
  • the uniform structure layer is at least 10 ⁇ m or more.
  • the thickness of the layer of uniform structure is more preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more.
  • Da 1 /Da imin ⁇ 4.00.
  • Da 1 /Da imin is greater than 1.10, the dispersion of clogging components in the thickness direction is promoted. Further, when Da 1 /Dan is less than 4.00 , high strength can be maintained.
  • the relationship of Da 1 / Dai is more preferably 1.15 ⁇ Da 1 / Dimin ⁇ 3.50, more preferably 1.20 ⁇ D 1 / Dimin ⁇ 3.00.
  • the first surface is the outer surface of the hollow fiber membrane (the outer surface of the hollow fiber membrane is the first surface). Since the first surface is on the outer surface of the hollow fiber membrane, the membrane area can be increased.
  • FIG. 4 shows pore network model analysis images of a hollow fiber membrane, in which (a) is the vicinity of the first surface, (b) is the vicinity of the second surface, and the upper side of the image is the membrane surface.
  • a pore network model is a model in which the voids of a porous body are mechanically divided at constrictions, and spheres (hereinafter sometimes referred to as pores) corresponding to the volume of the divided regions and pipes corresponding to the area of the divided surface are used. (Hereinafter, it may be called a throat.) is created, and the void part of the porous body is expressed as a network structure of pores and throats.
  • a three-dimensional image obtained by superimposing electron micrographs may be used for pore network model analysis, and the size of the analysis area is not particularly limited.
  • a combined three-dimensional image is preferable because a sufficient number of constrictions in the spherical structural gap can be secured for analysis.
  • the water permeability of a porous body is quantitatively analyzed by performing a Hagen-Poiseuille flow analysis on the water flow in the throat.
  • the porosity in the analysis region is equal, the water permeability increases as the average value of the throat diameters, that is, the average constriction diameter increases.
  • the average constriction diameter da1 of the spherical structure gap in the region Sa1 and the average constriction diameter db2 of the region Sb2 satisfy the relational expression da1 > db2 . That is, when the throat diameter obtained by the pore network model analysis of the hollow fiber membrane is taken as the constriction diameter of the spherical structure gap, the spherical shape in the region San from 10 ⁇ ( n ⁇ 1) to 10 ⁇ n ⁇ m from the first surface Regarding the average diameter da n of the constriction diameter of the structural gap and the average diameter db n of the constriction diameter of the spherical structural gap in the region Sb n from 10 ⁇ (n ⁇ 1) to 10 ⁇ n ⁇ m from the second surface, da 1 > db 2 is preferred.
  • the average constriction diameter da1 of the region Sa1 in the vicinity of the first surface is larger than the average constriction diameter db2 of the region Sb2 in the vicinity of the second surface, the liquid permeation resistance in the vicinity of the first surface is reduced. Therefore, the water permeability is improved.
  • the present inventors further found that the minimum value j min of the natural number j satisfying the following conditions (1) and (2) is 3 ⁇ j min ⁇ (L-20) / 10, so that water permeability and separability are long. I have found that it keeps time. However, in the above 3 ⁇ j min ⁇ (L ⁇ 20)/10, the fractional part of (L ⁇ 20)/10 is rounded down. ( 1 ) da1/ daj ⁇ 1.15 (2) da j ⁇ db 2 ⁇ 0.10 ⁇ m The fact that the value jmin is within the above range means that the average necking diameter is smaller than the average necking diameter da1 in the region closest to the first surface and equal to the average necking diameter db2 of the region Sb2.
  • a region Sa j having a region is located closer to the second surface than Sa2.
  • the clogging component can be dispersed more widely in the thickness direction of the film.
  • j min ⁇ 3 is preferred, and j min ⁇ 5 is more preferred.
  • j min ⁇ L ⁇ 0.5/10 is more preferable.
  • the fractional part of L ⁇ 0.5/10 is rounded down.
  • Na 1 ⁇ Nb 2 between the number of throats Na n in the region San created by the analysis and the number of throats Nb n in the region Sb n . That is, it is preferable that Na 1 ⁇ Nb 2 for the number of throats Na n in the region San and the number of throats Nb n in the region Sb n obtained by the pore network model analysis.
  • the large number of throats in the vicinity of the second surface increases the number of branches of the permeation path and improves detour performance when clogging occurs.
  • the number of throats Na n in the area San refers to the number of throats whose center of gravity is in the area San , and not all of the throats (entirely) may be contained in the area San .
  • the present inventors have further found that the minimum value k min of the natural number k that satisfies the following conditions (3) and (4) is 3 ⁇ k min ⁇ (L-20) / 10, so that water permeability and separability are long. I have found that it keeps time. However, in the above 3 ⁇ k min ⁇ (L-20)/10, the decimal point of (L-20)/10 is discarded.
  • the analysis region in the above analysis is a rectangular parallelepiped containing an arbitrary 50 ⁇ m square of the first surface and a 50 ⁇ m square of the second surface facing the first surface, and Sa n and Sb n are areas of 50 ⁇ m ⁇ 50 ⁇ m ⁇ 10 ⁇ m.
  • the value k min is within the above range means that the region Sa has a number of throats greater than the number of throats Na 1 in the region closest to the first surface and equal to the number of throats Nb 2 in the region Sb 2 . k is located closer to the second surface than Sa2. As a result, the clogging component can be dispersed more widely in the thickness direction of the film. As a result, it is possible to lengthen the operation period. K min ⁇ 3 is preferred, and k min ⁇ 5 is more preferred. Further, it is more preferable that k min ⁇ L ⁇ 0.5/10. However, in the above k min ⁇ L ⁇ 0.5/10, the fractional part of L ⁇ 0.5/10 is rounded down.
  • the average constriction diameter db2 of the spherical structure gaps in the vicinity of the second surface is larger than 0.10 ⁇ m, a hollow fiber membrane with high water permeability can be obtained.
  • the db2 is smaller than 10.0 ⁇ m, it is possible to impart inhibitory properties suitable for sterilization and the like.
  • hydrophilic polymer exists on the surface and inside of the spherical structure. This makes it possible to achieve excellent stain resistance while maintaining water permeability.
  • hydrophilic polymers include polymers containing vinyl alcohol, ethylene glycol, vinylpyrrolidone, methacrylic acid, allyl alcohol, cellulose, and vinyl acetate.
  • the copolymer containing a hydrophilic group includes polyvinyl alcohol having a saponification degree of less than 99%, a vinylpyrrolidone/vinyl acetate copolymer, a vinylpyrrolidone/vinylcaprolactam copolymer, and a vinylpyrrolidone/vinyl alcohol copolymer. polymer, etc., and at least one of these is preferably included.
  • the content of the hydrophilic polymer is preferably 1.0 parts by mass or more with respect to 100 parts by mass of the hydrophobic polymer.
  • the hydrophilic polymer is more preferably 1.0 parts by mass or more and 6.0 parts by mass or less, still more preferably 1.0 parts by mass or more and 4.0 parts by mass with respect to 100 parts by mass of the hydrophobic polymer. It is below. If the content of the hydrophilic polymer is more than 6.0 parts by mass, the hydrophilic polymer may narrow the flow path and reduce the liquid permeability.
  • the content of the hydrophilic polymer is preferably within the above range with respect to 100 parts by mass of the polyvinylidene fluoride resin.
  • the hollow fiber membrane according to the embodiment of the present invention is a hydrophilic polymer for polyvinylidene fluoride resin after immersing the hollow fiber membrane in a 3000 ppm sodium hypochlorite aqueous solution (pH 12.5) at 60 ° C. for 30 hours.
  • a hydrophilic polymer for polyvinylidene fluoride resin after immersing the hollow fiber membrane in a 3000 ppm sodium hypochlorite aqueous solution (pH 12.5) at 60 ° C. for 30 hours.
  • the ratio P1/P0 of the P1 to the P0 is the percentage. , 70% or less.
  • the hydrophilic polymer present on the surface of the spherical structure is removed from the hollow fiber membrane by immersion in an aqueous sodium hypochlorite solution, but the hydrophilic polymer present inside remains. Therefore, P1/P0 represents the mass ratio of the hydrophilic polymer inside the spherical structure to the total mass of the hydrophilic polymer.
  • the content of the hydrophilic polymer in the hollow fiber membrane can be quantified by X-ray electron spectroscopy (XPS), total reflection infrared spectroscopy (ATR-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), and the like. be.
  • a hollow fiber membrane using 1 H-NMR contains a fluororesin-based hydrophobic polymer
  • a 2 cm hollow fiber membrane is dissolved in 1 mL of dimethylsulfoxide and measured by 1 H-NMR.
  • the spherical structure is made of polyvinylidene fluoride resin
  • this measurement is performed at two arbitrary points on the hollow fiber membrane, and the amount of hydrophilic polymer is determined when the ratio of PVDF resin detected is 100. .
  • a method for producing a hollow fiber membrane according to an embodiment of the present invention includes the following steps (a) to (d) when, for example, the spherical structure is made of a polyvinylidene fluoride resin. (a) A step of dissolving a polyvinylidene fluoride resin in a poor solvent to obtain a polyvinylidene fluoride resin solution.
  • step (b) a step of holding the polyvinylidene fluoride-based resin solution under conditions that promote the formation of primary nuclei;
  • step (c) After the step (b), the polyvinylidene fluoride resin solution is discharged in the form of hollow fibers through a pipe and a nozzle, and in at least one of the pipe or the nozzle, the temperature is increased in the thickness direction of the polyvinylidene fluoride resin solution. Step of applying a gradient.
  • step (d) After the step (c), a step of solidifying the polyvinylidene fluoride resin solution by solid-liquid thermally induced phase separation by immersing the polyvinylidene fluoride resin solution in a cooling bath.
  • the temperature gradient ⁇ T (°C) applied in step (c) and the time t (seconds) for applying the temperature gradient satisfy 50 ⁇ T ⁇ t ⁇ 300.
  • a poor solvent is used to induce solid-liquid thermally induced phase separation in the subsequent step (d).
  • Solvents that induce solid-liquid thermally induced phase separation are, in particular, medium-chain alkyl ketones such as cyclohexanone, isophorone, ⁇ -butyrolactone, methyl isoamyl ketone, dimethyl sulfoxide, and propylene carbonate, esters, organic carbonates, and the like.
  • a mixed solvent is mentioned.
  • the resin concentration in the resin solution is preferably 30% by weight or more and 60% by weight or less in order to achieve both water permeability and strength and elongation.
  • the temperature T1°C during melting in step (a) is preferably equal to or higher than the crystallization temperature Tc°C.
  • the crystallization temperature Tc can be measured using a differential scanning calorimetry (DSC measurement) device.
  • the crystallization temperature Tc was obtained by sealing a mixture having the same composition as the resin solution used for film formation in a sealed DSC container, raising the temperature to the dissolution temperature at a heating rate of 10° C./min, holding it for 30 minutes, and dissolving it uniformly. , is the rising temperature of the crystallization peak observed in the process of cooling at a cooling rate of 10° C./min.
  • the temperature T1°C is more preferably (Tc+20)°C or higher, and more preferably (Tc+30)°C or higher.
  • the temperature T1° C. is preferably (Tc+100)° C. or lower, more preferably (Tc+90)° C. or lower. More specifically, the temperature T1°C is preferably 100°C or higher, more preferably 110°C or higher.
  • the temperature T1° C. is preferably 200° C. or lower, more preferably 190° C. or lower.
  • the polyvinylidene fluoride resin solution is uniformly dissolved.
  • it is more preferably 4 hours or more.
  • the resin solution may contain other additives.
  • the step (b) is a step of holding the polyvinylidene fluoride-based resin solution under conditions that promote the formation of primary nuclei.
  • the formation process of the spherical structure is considered to be the crystal formation process from the results of X-ray diffraction and the like.
  • the primary nucleus is the first crystal formed when a crystalline polymer such as a polyvinylidene fluoride resin is crystallized. This primary nucleus grows into a single spherical structure.
  • the growth of spherical structures continues until they collide with each other, and the collision stops the growth, so the final particle size of the spherical structures depends on the number of primary nuclei generated first. That is, it is considered preferable to form a large number of primary nuclei to obtain a small microspherical structure, and it is preferable to form a small number of primary nuclei to obtain a large macrospherical structure. That is, in controlling the spherical structure, it is effective to control the progress of primary nucleus formation.
  • the progress of the formation of primary nuclei in the resin solution can be controlled by temperature, pressure and/or time.
  • the primary nucleation temperature T2 is preferably the temperature of the cooling bath in step (d) or higher, more preferably the crystallization temperature Tc° C. or higher, and still more preferably (Tc+20)° C. or higher.
  • the temperature at which the resin is dissolved is preferably T1° C. or lower, more preferably (Tc+55)° C. or lower.
  • the pressure it is preferable to pressurize the resin solution to 0.5 MPa or more, more preferably 0.8 MPa or more. By allowing the resin solution to stay under this pressure, the formation of primary nuclei proceeds stably at the above temperature.
  • the upper limit of the pressure is preferably 3.0 MPa.
  • the time for which the conditions for the formation of primary nuclei are maintained is preferably 10 seconds or longer, preferably 20 seconds or longer.
  • the formation of primary nuclei of crystals in thermally induced phase separation progresses gradually in a region from below the melting temperature to above the crystallization temperature Tc (herein referred to as a “metastable region”).
  • the number of primary nuclei formed relatively stably can be controlled by setting conditions.
  • step (c) is to discharge the resin solution that has passed through step (b) in the form of hollow fibers through a tubular die for molding.
  • the liquid may be sent to the molding die via a pipe provided after the step (b) and before the step (c).
  • FIG. 5 shows an example of the shape of the molding die.
  • a die 1 for manufacturing a hollow fiber membrane includes an inner nozzle 11 and an annular nozzle 12 provided outside the inner nozzle 11 so as to surround the inner nozzle.
  • the inner nozzle 11 comprises an inner nozzle inlet 111 and an inner nozzle outlet 112
  • the annular nozzle 12 comprises an annular nozzle inlet 121 and an annular nozzle outlet 122, as shown in FIGS.
  • the resin solution is ejected from the annular nozzle of the outer tube, and at the same time, the fluid forming the hollow portion is ejected from the nozzle of the inner tube, whereby the resin solution is molded (processed) into a hollow shape.
  • An example of the shape of the piping is shown in FIG.
  • a pipe 2 is connected to the mouthpiece 1, and more specifically, a pipe outlet 132 and an annular nozzle inlet 121 are connected.
  • a resin solution is introduced through a pipe inlet 131 , and a resin solution led out through a pipe outlet 132 is introduced into the annular nozzle 12 through an annular nozzle inlet 121 .
  • the step (c) comprises a step of imparting a temperature gradient to the polyvinylidene fluoride-based resin solution in the thickness direction of at least one of the pipe and the mouthpiece.
  • “Provide a temperature gradient in the thickness direction” means that in the resin solution flowing through the pipe or in the resin solution formed in the shape of hollow fibers in the spinneret, the temperature of one part in the thickness direction and the temperature of the other part It refers to making it different from. For example, in a resin solution formed in a hollow fiber shape, it refers to increasing the temperature relatively from one surface to the other surface.
  • the temperature of the die 1 is made higher or lower than the temperature of the supplied resin solution.
  • the temperature of the injection liquid passing through the inner nozzle 11 of the die 1 is made higher or lower than the temperature of the supplied resin solution.
  • the temperature of the preceding pipe that feeds the liquid to the nozzle 1 is made higher or lower than the temperature of the resin solution to be supplied.
  • the primary nuclei after formation are relatively greatly affected by the temperature rise of the resin solution and decrease, resulting in a decrease in the number of spherical structures after solidification. That is, the primary nucleus of the resin solution behaves differently with respect to temperature changes during temperature rise and temperature fall.
  • a step of partially heating the resin solution is preferably used.
  • the means for controlling the temperature (temperature control means) in (1) to (3) above is not limited to a specific device or method. Examples of temperature control means are shown below.
  • the die may be warmed by a heater arranged around the die, or the die may be warmed by a mold temperature controller before use.
  • the injection liquid may be warmed by a heater or the like before reaching the nozzle 1 .
  • the injection liquid may be warmed and then flowed into the pipe connected to the mouthpiece 1, or the pipe itself may be heated by a heater.
  • the piping may be warmed by a heater or a mold temperature controller.
  • a circular pipe is preferable from the viewpoint of providing a temperature gradient in the thickness direction of the hollow fiber membrane.
  • the "temperature" T3 in (1) to (3) above is the set temperature of each temperature control means (for example, a heater or a mold temperature controller).
  • the method (1) of increasing the temperature of the nozzle 1 and the method of (2) increasing the temperature of the injecting liquid are the temperature gradients in the circumferential direction of the hollow fiber membrane. It is preferable for suppressing the unevenness of the In the method (3) of increasing the temperature of the preceding pipe that feeds the solution to the nozzle 1, the resin solution that has been heated near the wall surface of the pipe in the pipe is similarly passed through the vicinity of the wall surface in the nozzle 1.
  • Such piping and mouthpiece design are required, but compared to the case where the mouthpiece 1 is heated, there is no need to heat the injection liquid. As will be described later, depending on the heating conditions, there is a possibility that the injection liquid may boil and contain bubbles. In this case, it is preferable to control the temperature of the die 1 in the subsequent stage to a temperature of T2 to T3 in order to suppress cooling.
  • a natural number i that satisfies the following conditions (1) and (2): can be 3 ⁇ i min ⁇ (L ⁇ 20)/10.
  • the temperature gradient .DELTA.T is the absolute value of T3-T2
  • the time t is the time for the resin solution to flow through the pipe or mouthpiece provided with the temperature gradient (referred to as residence time).
  • ⁇ T ⁇ t ⁇ 50 When ⁇ T ⁇ t ⁇ 50, a heat gradient can be applied to a deep part in the thickness direction of the resin solution, so that the diameter of the spherical structure also has a gradient from the surface of the film to the deep part in the thickness direction. can be done. If ⁇ T ⁇ t is too large, the uniformity of heat in the thickness direction of the resin solution increases, so the diameter of the spherical structure in the obtained film also becomes uniform in the thickness direction. On the other hand, when ⁇ T ⁇ t ⁇ 300, the gradient of the spherical structure as described above can be formed. Therefore, 50 ⁇ T ⁇ t ⁇ 300 is preferable, and 60 ⁇ T ⁇ t ⁇ 250 is more preferable.
  • the time t for applying the temperature gradient is preferably 0.1 seconds or more and 20 seconds or less, more preferably more than 5 seconds and 10 seconds or less.
  • the time t for applying the temperature gradient (heating time when the temperature of the resin solution is raised) is determined by heating the die 1 for hollow fiber membranes shown in FIGS. It is the time it takes to pass through the base. Further, when the temperature gradient is imparted to the resin solution by heating the pipe upstream of the nozzle 1, the time t is the time required for passing through the pipe. For example, as shown in FIG. 8, when the resin solution is supplied from the pipe 2 to the mouthpiece 1 and the outer circumference of the pipe 2 is heated, the time for the resin to pass from the pipe inlet 131 to the pipe outlet 132 is time t.
  • the thickness Ls of the polyvinylidene fluoride resin that imparts the temperature gradient is 5 ⁇ Ls/L ⁇ 40 with respect to the thickness L of the spherical structure layer.
  • the thickness Ls of the polyvinylidene fluoride-based resin that provides the temperature gradient is the thickness of the flow path of the piping that provides the temperature gradient. For example, when a temperature gradient is applied to the nozzle 1 as shown in FIG. is. That is, it is the value obtained by subtracting the inner diameter from the outer diameter of the annular nozzle 12 and dividing the result by two.
  • the radius of the pipe becomes the thickness Ls of the polyvinylidene fluoride resin.
  • the circular pipe equivalent radius is a value obtained by 2 ⁇ A/P from the cross-sectional area A of the pipe and the wetted edge length P of the pipe.
  • the wetted edge length P is the peripheral length of the wetted portion of the cross section of the pipe.
  • the pipe position for calculating the thickness Ls is the position closest to the heat source. If the heat source is a heat medium that passes liquid through the mold or a heat source that heats at a point such as a rod heater, the thickness of the flow path at the position closest to the heat source in the piping through which the polyvinylidene fluoride resin passes. . If the heat source is a band heater or a double pipe that heats the pipe on the surface, the flow path at the center of the range covered by the heat source in the length direction of the pipe through which the polyvinylidene fluoride resin passes. thickness.
  • the thickness Ls is Ls/L>5
  • heat is prevented from being transferred throughout the thickness of the layer of the spherical structure, and the spherical structure on the first surface side such as the hollow fiber membrane according to the embodiment of the present invention is prevented from being transferred. It is possible to obtain a coarse structure with a dense spherical structure on the second surface side.
  • Ls/L ⁇ 40 By satisfying Ls/L ⁇ 40, only the spherical structure of the region Sa1 on the first surface side is prevented from becoming coarse, and a structure is obtained in which the size of the spherical structure is attenuated to the second surface side. be able to. 10 ⁇ Ls/L ⁇ 40 is more preferred, and 15 ⁇ Ls/L ⁇ 35 is even more preferred.
  • the polyvinylidene fluoride resin solution discharged in the form of hollow fibers is immersed in a cooling bath after passing through the air. At this time, it is preferable to pass through the air for 0.3 seconds or more.
  • the time to pass through the air is the time until the polyvinylidene fluoride resin solution discharged from the nozzle in step (c) lands on the cooling bath, and is hereinafter referred to as "idle running time" on the toilet bowl.
  • the idle running time is 0.3 seconds or longer, it is possible to secure the time for the heat applied in step (c) to be transmitted to the inner surface side, which is preferable. It is preferably 1 second or longer, more preferably 1.5 seconds or longer. Further, when the idle running time is long, the cooling from the outer surface progresses, so the time is preferably 5 seconds or less, more preferably 3 seconds or less.
  • the free running time can be calculated from the following formula.
  • Idle running time (seconds) idle running distance (m) / take-up speed in cooling bath (m/second)
  • the idle running distance is the length of a straight line drawn vertically downward from the bottom of the mouthpiece to the upper surface of the cooling bath.
  • the take-up speed in the cooling bath can be calculated from the following formula from the rotation speed (rpm) of the cooling bath roll and the roll diameter (m).
  • is the circular constant. For example, if a roll with a diameter of 0.2 m is rotating at a speed of 10 rpm, the take-up speed will be about 0.1 m/sec.
  • Take-up speed (m/sec) roll rotation speed (rpm)/60 x ⁇ x roll diameter (m)
  • the temperature, humidity, solvent vapor concentration, etc. may be adjusted when passing through the air.
  • step (d) after step (c), the polyvinylidene fluoride resin solution is immersed in a cooling bath to solidify the polyvinylidene fluoride resin solution by solid-liquid thermally induced phase separation.
  • Thermally induced phase separation is a method in which a resin solution dissolved in a poor solvent or a good solvent at a temperature equal to or higher than the crystallization temperature Tc is solidified by cooling. Examples of thermally induced phase separation include (A) and (B) below.
  • a liquid-liquid type in which a resin solution that is uniformly dissolved at a high temperature separates into a dense phase and a dilute phase of the resin due to a decrease in dissolving ability of the solution when the temperature is lowered.
  • B A solid-liquid type in which a resin solution that is uniformly dissolved at a high temperature drops below the crystallization temperature Tc when cooled, causing crystallization and phase separation into a polymer solid phase and a polymer dilute solution phase.
  • the dense phase forms a fine three-dimensional network structure
  • a spherical structure is formed. Therefore, the solid-liquid type is preferably adopted for the production of the separation membrane according to the embodiment of the present invention.
  • the cooling bath is preferably a mixed liquid containing a poor solvent or a good solvent with a concentration of 50% by weight or more and 95% by weight or less and a non-solvent with a concentration of 5% by weight or more and 50% by weight or less.
  • concentration of the non-solvent 50% by weight or less, solidification due to thermally induced phase separation can proceed preferentially over solidification due to non-solvent-induced phase separation.
  • concentration of the good solvent the higher the solidification rate.
  • the concentration of the good solvent is high, solidification can be promoted and the surface of the separation membrane can be made smooth. is possible.
  • the poor solvent it is preferable to use the same poor solvent as the resin solution.
  • Good solvents include N-methyl-2-pyrrolidone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethyl urea, lower alkyl ketones such as trimethyl phosphate, esters, amides and mixed solvents thereof. be done.
  • Non-solvents include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, and pentane.
  • Aliphatic hydrocarbons such as diols, hexanediol, low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, or other chlorinated organic liquids and mixed solvents thereof etc.
  • the term “good solvent” means a solvent capable of dissolving 5% by weight or more of a solute even at a low temperature of less than 60°C.
  • the “poor solvent” means that 5% by weight or more cannot be dissolved at a low temperature of less than 60°C, but 5% by weight or more can be dissolved at a high temperature region of 60°C or more and the melting point of the polyvinylidene fluoride resin or less. means solvent.
  • non-solvent is meant a solvent that neither dissolves nor swells a solute up to the melting point of the solute or the boiling point of the solvent.
  • crystallization (hereinafter also referred to as nucleation) caused by cooling and growth of the formed crystal nuclei occur, resulting in phase separation into a polymer solid phase and a polymer dilute solution phase.
  • nucleation crystallization
  • step (b) it is believed that growth originating from the primary nuclei formed in step (b) and random nucleation and growth not originating from the primary nuclei occur.
  • the number of globular structures produced correlates with the number of primary nuclei. Since the growth of the globular structure proceeds until it touches the surrounding globular structures, a small number of primary nuclei promotes growth and produces a coarse globular structure, while a small number of primary nuclei produces a dense globular structure.
  • the growth originating from the primary nucleus and the random nucleation and growth not originating from the primary nucleus depend on the cooling rate of the resin solution. That is, it depends on the difference between the primary nucleation temperature T2 and the cooling bath temperature T4. The smaller the difference, the easier the crystallization of the former proceeds, and the larger the difference, the easier the crystallization of the latter.
  • step (c) when a temperature gradient is applied in the thickness direction of the hollow fiber membrane in step (c), and the resin solution in a state where the number of primary nuclei changes in the thickness direction is rapidly cooled, regardless of the number of primary nuclei, Since random nucleation occurs without any difficulty, a structure in which the average diameter of the spherical structure changes in the thickness direction of the hollow membrane is unlikely to occur.
  • the resin material in which the number of primary nuclei changes in the thickness direction is gradually cooled, growth starting from the primary nuclei proceeds, and the average diameter of the spherical structure changes in the thickness direction.
  • Such a hollow fiber membrane can be obtained.
  • the crystallization temperature Tc is also affected by the cooling rate of the resin solution. The faster the cooling rate, the higher the crystallization temperature and the faster the phase separation. The cooling rate depends on the difference between the primary nucleation temperature T2 and the cooling bath temperature T4.
  • the average diameter of the spherical structure in the thickness direction of the hollow membrane can be increased by producing under the following temperature conditions. I found that it changed, and came to the present invention. (Tc ⁇ T4)/(T2 ⁇ T4) ⁇ 0.50
  • T2-T4 is a parameter that becomes the overall cooling rate, but Tc-T4 is a parameter that contributes to growth.
  • Tc-T4 is a parameter that contributes to growth.
  • the growth starting from the primary nucleus progresses by reducing the temperature difference that contributes to the growth of the entire cooling rate. More preferably (Tc-T4)/(T2-T4) ⁇ 0.45, still more preferably (Tc-T4)/(T2-T4) ⁇ 0.40.
  • Tc ⁇ T4 is greater than 15° C., it is possible to suppress the solidification time from becoming too long, and to prevent the manufacturing equipment from becoming excessively large.
  • the inventors have found that when Tc-T4 is less than 35° C., growth starting from the primary nucleus described above proceeds.
  • T2-T4 is preferably less than 100°C, more preferably less than 80°C.
  • the hollow fiber membrane coagulated in step (d) may be produced through the following steps. After the step (d), it is also preferable to extend the voids between the spherical structures to improve the water permeability and to strengthen the breaking strength.
  • the temperature around the film during stretching is preferably 50°C or higher and 140°C or lower, more preferably 55°C or higher and 120°C or lower, still more preferably 60°C or higher and 100°C or lower.
  • the draw ratio is preferably 1.1 times or more and 4 times or less, more preferably 1.1 times or more and 2 times or less.
  • the film When the film is drawn at a temperature of 50°C or higher, it can be stably and uniformly drawn.
  • the film is stretched at a temperature of 140°C or less, the film is stretched at a temperature lower than the melting point (177°C) of the polyvinylidene fluoride resin. can be expanded, and the permeability can be improved.
  • the stretching it is preferable to perform the stretching in a liquid because temperature control is easier.
  • the stretching may be performed in a gas such as steam.
  • the liquid water is preferable because it is simple, but when stretching is performed at a temperature of about 90°C or higher, it is also preferable to use low-molecular-weight polyethylene glycol or the like. On the other hand, when such stretching is not performed, the water permeability and breaking strength are lowered, but the breaking elongation and blocking properties are improved as compared with the case where stretching is performed. Therefore, the presence or absence of the stretching process and the stretching ratio in the stretching process can be appropriately set according to the use of the separation membrane.
  • the temperature conditions described above apply to the temperature of the liquid when drawing is performed in a liquid, and to the temperature of the gas when drawing is performed in a gas.
  • These production methods are not particularly limited and can be applied to any thermoplastic resin that forms a spherical structure by thermally induced phase separation.
  • heat treatment may be performed after step (d).
  • the glass transition temperature of polyvinylidene fluoride resin is around ⁇ 49° C., and shrinkage progresses gradually depending on the usage environment. Therefore, shrinkage during use can be suppressed by heat-shrinking in advance at a temperature higher than the working temperature. It is preferable to heat-treat at +10°C of use temperature, more preferably +20°C or more of use temperature, until the shrinkage disappears.
  • step (d) it is preferable to further include the following steps (e) and (f) after the step (d).
  • step (e) a step of introducing a hydrophilic polymer into the hollow fiber membrane;
  • step (f) a step of performing a heat treatment at 100° C. or higher after the step (e);
  • a method for introducing a hydrophilic polymer into a hollow fiber membrane will be explained.
  • an aqueous solution in which a hydrophilic polymer is dissolved is passed through or immersed in the hollow fiber membrane to physically adsorb it, or a method of insolubilizing the hydrophilic polymer by irradiation, or a method of insolubilizing the hydrophilic polymer, or a hollow fiber membrane. and a method of forming a covalent bond through a chemical reaction with a reactive group present in.
  • it is preferable to irradiate the surface of the spherical structure because the hydrophilic polymer can be adhered more firmly to the surface of the spherical structure. That is, in step (e), it is preferable to apply radiation after passing an aqueous solution in which a hydrophilic polymer is dissolved through the hollow fiber membrane.
  • the step of introducing the hydrophilic polymer described above it is possible to attach the hydrophilic polymer to the surface of the spherical structure, for example, compared to the method of kneading the hydrophilic polymer into the film-forming stock solution before forming the film. It is possible to improve the stain resistance.
  • the copolymer (hydrophilic polymer) concentration in the aqueous solution is preferably 10 ppm or more, more preferably 100 ppm or more, and most preferably 500 ppm or more.
  • the copolymer (hydrophilic polymer) concentration in the aqueous solution is preferably 100,000 ppm or less 10,000 ppm or less is more preferable.
  • the hydrophilic polymer when it is poorly soluble or insoluble in water, it is hydrophilic in an organic solvent that does not dissolve the hollow fibers or a mixed solvent of water and an organic solvent that is compatible with water and does not dissolve the hollow fibers. Polymers may be dissolved.
  • the organic solvent that can be used in the organic solvent or the mixed solvent include, but are not limited to, alcoholic solvents such as methanol, ethanol, and propanol.
  • the mass fraction of the organic solvent in the mixed solvent is preferably 60% or less, more preferably 10% or less, and most preferably 1% or less.
  • the irradiation dose of radiation is preferably 15 kGy or more, more preferably 25 kGy or more.
  • a hydrophilic polymer can be effectively introduced by setting the dose to 15 kGy or more.
  • the irradiation dose is preferably 100 kGy or less. This is because if the irradiation dose exceeds 100 kGy, the copolymer tends to undergo three-dimensional cross-linking, decomposition of the ester group portion of the vinyl carboxylate monomer unit, and the like.
  • An antioxidant may be used to suppress the cross-linking reaction during irradiation.
  • An antioxidant means a substance that has the property of easily donating electrons to other molecules. Examples include water-soluble vitamins such as vitamin C, polyphenols, and alcoholic solvents such as methanol, ethanol, and propanol. but not limited to these. These antioxidants may be used alone or in combination of two or more. When an antioxidant is used, it is necessary to consider safety, so low-toxic antioxidants such as ethanol and propanol are preferably used.
  • the introduction amount of the hydrophilic polymer into the hollow fiber membrane can be quantified by total reflection infrared spectroscopy (ATR-IR), as described above. Moreover, it can be quantified by X-ray electron spectroscopy (XPS) or the like, if necessary.
  • ATR-IR total reflection infrared spectroscopy
  • XPS X-ray electron spectroscopy
  • the heat treatment step for the hollow fiber membrane includes a method of applying heat in a dry state, a method of applying heat in a wet state such as water vapor, and the like. Part of the polyvinylidene fluoride-based resin is shrunk by the heat treatment, and part of the hydrophilic polymer can be incorporated into the spherical structure. If the heat treatment temperature is too low, a sufficient amount of hydrophilic polymer cannot be introduced. Therefore, the heat treatment temperature is preferably 100° C. or higher, more preferably 120° C. or higher, and most preferably 150° C. or higher.
  • the heat treatment temperature is preferably below the melting point of the vinylidene fluoride copolymer.
  • the thickness L (film thickness L) of the layer having the spherical structure was obtained by the following method.
  • the outer diameter and inner diameter of the hollow fiber membrane are determined by cutting the hollow fiber membrane with a single-edged blade or the like along a plane perpendicular to the axial direction, observing the cross section with a microscope or the like, and measuring the diameter of the circle. If the circle is flat, measure the length of the longest diameter (major diameter) and the shortest diameter (minor diameter) of the circle, and average the two to obtain the diameter. good.
  • the center-of-gravity position and throat diameter of each throat were determined, and the average throat diameter of the throat having the center-of-gravity position of region San was calculated as the average constriction diameter dan , and the number of throats Nan was calculated.
  • a cube with a side of 50 ⁇ m was photographed from the portion in contact with the arc forming the second surface toward the first surface in order, and the cubes were connected to change to a rectangular parallelepiped. calculated the average constriction diameter (average diameter of constriction diameters) dbn and the number of throats Nbn of the regions Sbn in the same manner as described above.
  • Crystallization temperature Tc of polyvinylidene fluoride resin solution Using Seiko Electronics' DSC-620-0, a mixture having the same composition as the membrane-forming polymer stock solution composition, such as polyvinylidene fluoride resin and solvent, was sealed in a sealed DSC container, and the temperature was raised at a rate of 10 ° C./min to the dissolution temperature. The temperature was raised and maintained for 30 minutes to dissolve uniformly. After that, the rise temperature of the crystallization peak observed in the process of lowering the temperature at a temperature lowering rate of 10° C./min was defined as the crystallization temperature Tc.
  • TMP transmembrane pressure difference
  • TMP ((Pi + Po) / 2) - Pf
  • Example 1 38% by weight of a vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 and 62% by weight of gamma-butyrolactone were dissolved at 150°C.
  • This resin solution was held for 20 seconds at 100° C. (primary core holding temperature T2) within the range of (Tc+20)° C. to (Tc+55)° C. under a pressure of 1.2 MPa. After that, the resin solution was sent to the nozzle through a pipe whose outer peripheral portion was heated to 108° C. (T3). The residence time in the pipe heated to 108° C.
  • the stretched hollow fiber membrane was washed with water, immersed in 30% glycerin for 2 hours, and air-dried overnight. After that, heat treatment was performed under steam at 125° C. for 1 hour.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane has a spherical structure, the average diameter Da1 of the region Sa1 is 2.62 ⁇ m, the average diameter Db2 of the region Sb2 is 1.84 ⁇ m, and the above - mentioned
  • the natural number i min satisfying the conditions (1) and (2) was 5, and the average diameter Da 5 of the spherical structures in the region Sa 5 was 2.02 ⁇ m.
  • the average constriction diameter da 1 of the region Sa 1 is 1.40 ⁇ m
  • the average constriction diameter db 2 of the region Sb 2 is 1.14 ⁇ m
  • the natural number j min satisfying the above conditions (1) and (2) is 5, and the region Sa
  • the average constriction diameter da 5 of the spherical structure gap in 5 was 1.20 ⁇ m.
  • This membrane had a pure water permeability of 3.6 m/hr, a beer filtration rate of 400 L/m 2 , and a rejection rate of 92%, which were able to maintain the water permeability and separation performance for a long period of time.
  • Example 2 38% by weight of a vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 and 62% by weight of gamma-butyrolactone were dissolved at 150°C.
  • This resin solution was held at 100° C. within the range of (Tc+20)° C. to (Tc+55)° C. for 20 seconds under a pressure of 1.2 MPa. After that, the resin solution was sent to the mouthpiece through a pipe whose outer circumference was heated to 125°C. The residence time of the resin solution in the pipe heated to 125° C. was 7.05 seconds, and the radius of the pipe was 4.0 mm.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane has a spherical structure, the average diameter Da 1 of the region Sa 1 is 3.40 ⁇ m, the average diameter Db 2 of the region Sb 2 is 2.15 ⁇ m, and the above-mentioned
  • the natural number i min satisfying the conditions (1) and (2) was 5, and the average diameter Da 5 of the spherical structures in the region Sa 5 was 2.30 ⁇ m.
  • the average constriction diameter da 1 of the region Sa 1 is 1.45 ⁇ m
  • the average constriction diameter db 2 of the region Sb 2 is 1.14 ⁇ m
  • the natural number j min satisfying the above conditions (1) and (2) is 5, and the region Sa
  • the average constriction diameter da 5 of the spherical structure gap in 5 was 1.24 ⁇ m.
  • This membrane had a pure water permeability of 4.4 m/hr, a beer filtration rate of 700 L/m 2 , and a rejection rate of 82%, and was able to maintain its water permeability and separation properties over a long period of time.
  • Example 3 36% by weight of a vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 and 64% by weight of gamma-butyrolactone were dissolved at 150°C.
  • This resin solution was held at 99° C. within the range of (Tc+20)° C. to (Tc+55)° C. for 20 seconds under a pressure of 1.2 MPa. After that, the resin solution was sent to the nozzle through a pipe whose outer circumference was heated to 108°C. The residence time of the resin solution in the pipe heated to 108° C. was 9.50 seconds, and the radius of the pipe was 4.0 mm.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane has a spherical structure, the average diameter Da 1 of the region Sa 1 is 3.70 ⁇ m, the average diameter Db 2 of the region Sb 2 is 1.86 ⁇ m, and the above-mentioned
  • the natural number i min satisfying the conditions (1) and (2) was 6, and the average diameter Da 6 of the spherical structures in the region Sa 6 was 2.10 ⁇ m.
  • the average constriction diameter da 1 of the region Sa 1 is 1.66 ⁇ m
  • the average constriction diameter db 2 of the region Sb 2 is 1.27 ⁇ m
  • the natural number j min satisfying the above conditions (1) and (2) is 6, and the region Sa
  • the average constriction diameter da 6 of the spherical structure gap in 6 was 1.29 ⁇ m.
  • This membrane had a pure water permeability of 4.6 m/hr, a beer filtration rate of 450 L/m 2 , and a rejection rate of 91%, and was able to maintain its water permeability and separation properties over a long period of time.
  • Example 4 38% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 and 62% by weight of dimethyl sulfoxide were dissolved at 120°C. This resin solution was held at 75° C. within the range of (Tc+20)° C. to (Tc+55)° C. for 20 seconds under a pressure of 1.2 MPa. Thereafter, the resin solution was fed to a die heated to 85° C. and discharged 5.8 seconds after entering the die. The channel width of the annular nozzle of the mouthpiece was 1.75 mm. While the resin solution was passed through the tube outside the mouthpiece, a 90% by weight aqueous solution of dimethylsulfoxide at 75° C.
  • the extruded resin solution was solidified for 5 minutes in a bath of 90% by weight of dimethyl sulfoxide in an aqueous solution at a temperature of 18°C. After solidification, the resulting film was washed with water and stretched 1.5 times in hot water at 95°C. The stretched hollow fiber membrane was washed with water, immersed in 30% glycerin for 2 hours, and air-dried overnight. After that, heat treatment was performed under steam at 125° C. for 1 hour.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane has a spherical structure, the average diameter Da 1 of the region Sa 1 is 3.52 ⁇ m, the average diameter Db 2 of the region Sb 2 is 1.90 ⁇ m, and the above-mentioned
  • the natural number i min satisfying the conditions (1) and (2) was 7, and the average diameter Da 7 of the spherical structures in the region Sa 7 was 1.90 ⁇ m.
  • the average constriction diameter da 1 of the region Sa 1 is 1.50 ⁇ m
  • the average constriction diameter db 2 of the region Sb 2 is 1.27 ⁇ m
  • the natural number j min satisfying the above conditions (1) and (2) is 7, and the region Sa
  • the average constriction diameter da7 of the spherical structure gap in 7 was 1.31 ⁇ m.
  • This membrane had a pure water permeability of 4.3 m/hr, a beer filtration rate of 480 L/m 2 , and a rejection rate of 90%, which were able to maintain the water permeability and separation properties over a long period of time.
  • Example 5 38% by weight of a vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 and 62% by weight of gamma-butyrolactone were dissolved at 150°C. This resin solution was held at 98° C. within the range of (Tc+20)° C. to (Tc+55)° C. for 20 seconds under a pressure of 1.2 MPa. After that, the resin solution was sent to the nozzle through a pipe whose outer circumference was heated to 132°C. The residence time of the resin solution in the pipe heated to 132° C. was 7.05 seconds, and the radius of the pipe was 4.0 mm.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane has a spherical structure, the average diameter Da 1 of the region Sa 1 is 4.30 ⁇ m, the average diameter Db 2 of the region Sb 2 is 2.24 ⁇ m, and the above-mentioned
  • the natural number i min satisfying the conditions (1) and (2) was 12, and the average diameter Da 12 of the spherical structures in the region Sa 12 was 2.50 ⁇ m.
  • the average constriction diameter da 1 of the region Sa 1 is 1.55 ⁇ m
  • the average constriction diameter db 2 of the region Sb 2 is 1.24 ⁇ m
  • the natural number j min satisfying the above conditions (1) and (2) is 12, and the region Sa
  • the average constriction diameter da 12 of the spherical structure gap in 12 was 1.34 ⁇ m.
  • This membrane had a pure water permeability of 5.1 m/hr, a beer filtration rate of 720 L/m 2 , and a rejection rate of 81%.
  • Example 6 38% by weight of a vinylidene fluoride homopolymer having a weight average molecular weight of 417,000 and 62% by weight of gamma-butyrolactone were dissolved at 150°C. This resin solution was held at 97° C. within the range of (Tc+20)° C. to (Tc+55)° C. for 20 seconds under a pressure of 1.2 MPa. After that, the resin solution was sent to the nozzle through a pipe whose outer circumference was heated to 140°C. The residence time of the resin solution in the pipe heated to 140° C. was 6.83 seconds, and the radius of the pipe was 4.0 mm.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane has a spherical structure
  • the average diameter Da1 of the region Sa1 is 4.60 ⁇ m
  • the average diameter Db2 of the region Sb2 is 2.29 ⁇ m
  • the above - mentioned The natural number i min satisfying the conditions (1) and (2) was 17, and the average diameter Da 12 of the spherical structures in the region Sa 12 was 2.47 ⁇ m.
  • the average constriction diameter da 1 of the region Sa 1 is 1.86 ⁇ m
  • the average constriction diameter db 2 of the region Sb 2 is 1.32 ⁇ m
  • the natural number j min satisfying the above conditions (1) and (2) is 17, and the region Sa
  • the average constriction diameter da 17 of the spherical structure gap in 17 was 1.60 ⁇ m.
  • This membrane had a pure water permeability of 5.8 m/hr, a beer filtration rate of 800 L/m 2 , and a rejection rate of 72%. result.
  • Example 1 A hollow fiber membrane was obtained in the same manner as in Example 1, except that the temperature of the outer circumference of the pipe was 100°C.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane had a spherical structure, and the average diameter Da1 of the region Sa1 was 1.83 ⁇ m, and the average diameter Db2 of the region Sb2 was 1.79 ⁇ m.
  • the average constriction diameter da1 of the region Sa1 was 1.14 ⁇ m, the average constriction diameter db2 of the region Sb2 was 1.14 ⁇ m, and there was no natural number j satisfying the above conditions (1) and (2).
  • This membrane has a pure water permeability of 2.0 m/hr, a beer filtration rate of 150 L/m 2 , and a rejection rate of 96%. I didn't.
  • the extruded resin solution was solidified for 5 minutes in a bath containing an aqueous solution of 90% by weight of ⁇ -butyrolactone at a temperature of 5°C. After solidification, the resulting film was washed with water and stretched 1.5 times in hot water at 95°C. The stretched hollow fiber membrane was washed with water, immersed in 30% glycerin for 2 hours, and air-dried overnight. After that, heat treatment was performed under steam at 125° C. for 1 hour.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane had a spherical structure, and the average diameter Da1 of the region Sa1 was 2.58 ⁇ m, and the average diameter Db2 of the region Sb2 was 1.86 ⁇ m.
  • the natural number i min that satisfies the conditions (1) and ( 2 ) of is 2 , and the average diameter Da2 of the spherical structure in the region Sa2 was 1.96 ⁇ m.
  • the average constriction diameter da 1 of the region Sa 1 is 1.39 ⁇ m
  • the average constriction diameter db 2 of the region Sb 2 is 1.14 ⁇ m
  • the natural number j min satisfying the above conditions (1) and (2) is 2
  • the region Sa 2 was 1.15 ⁇ m.
  • the pure water permeability of this membrane is 2.5 m/hr
  • the beer filtration rate is 250 L/m 2
  • the rejection rate is 96%. I didn't.
  • the extruded resin solution was solidified for 5 minutes in a bath containing 90% by weight of dimethyl sulfoxide in an aqueous solution at a temperature of 5°C. After solidification, the resulting film was washed with water and stretched 1.5 times in hot water at 95°C. The stretched hollow fiber membrane was washed with water, immersed in 30% glycerin for 2 hours, and air-dried overnight. After that, heat treatment was performed under steam at 125° C. for 1 hour.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane has a spherical structure
  • the average diameter Da1 of the region Sa1 is 2.54 ⁇ m
  • the average diameter Db2 of the region Sb2 is 1.81 ⁇ m
  • the natural number i min satisfying the conditions (1) and ( 2 ) was 2
  • the average diameter Da2 of the spherical structures in the region Sa2 was 1.89 ⁇ m.
  • the average constriction diameter da 1 of the region Sa 1 is 1.34 ⁇ m
  • the average constriction diameter db 2 of the region Sb 2 is 1.10 ⁇ m
  • the natural number j min satisfying the above conditions (1) and (2) is 2, and the region Sa 2 was 1.14 ⁇ m.
  • the pure water permeability of this membrane is 2.7 m/hr
  • the beer filtration rate is 220 L/m 2
  • the rejection rate is 96%. I didn't.
  • the extruded resin solution was solidified for 5 minutes in a bath containing an aqueous solution of 90% by weight of ⁇ -butyrolactone at a temperature of 5°C. After solidification, the resulting film was washed with water and stretched 1.5 times in hot water at 95°C. The stretched hollow fiber membrane was washed with water, immersed in 30% glycerin for 2 hours, and air-dried overnight. After that, heat treatment was performed under steam at 125° C. for 1 hour.
  • the cross section perpendicular to the length direction of the obtained hollow fiber membrane has a spherical structure, the average diameter Da 1 of the region Sa 1 is 3.35 ⁇ m, the average diameter Db 2 of the region Sb 2 is 3.11 ⁇ m, and the above-mentioned There is no natural number i min that satisfies conditions (1) and (2).
  • This membrane had a pure water permeability of 7.8 m/hr and was not subjected to a beer filtration test.
  • Tables 1 and 2 show the manufacturing conditions of each hollow fiber membrane, and Tables 3 and 4 show the evaluation results of the obtained hollow fiber membranes.
  • Example 7 PVP/PVAc (Kollidon VA64; manufactured by BASF) was used as a hydrophilic polymer (coating polymer).
  • the hollow fiber membrane prepared in Example 1 was immersed for 1 hour in a 1.0% by mass ethanol aqueous solution in which 1000 ppm of the prepared hydrophilic polymer composed of vinylpyrrolidone/vinyl acetate random copolymer was dissolved, and then subjected to ⁇ of 25 kGy.
  • a vinyl pyrrolidone/vinyl propanoate random copolymer was introduced into the hollow fiber membrane by irradiating rays, and heat treatment was performed in an oven at 150° C. for 1 hour.
  • the PVP/PVAc content (parts by mass of the hydrophilic polymer when the polyvinylidene fluoride resin is 100 parts by mass) is measured by subjecting the obtained hollow fiber membrane to the above-described 1 H-NMR measurement. At the same time, pure water permeability was measured after introduction of hydrophilic polymer and after chemical washing.
  • Example 8 A hydrophilic polymer was introduced in the same manner as in Example 7 except that PEG was used as the hydrophilic polymer, and the results shown in Table 5 were obtained.
  • Example 9 A hydrophilic polymer was introduced in the same manner as in Example 7 except that PEGMA was used as the hydrophilic polymer, and the results shown in Table 5 were obtained.
  • Example 10 After heat treatment in an oven at 125 ° C. for 1 hour, the hollow fiber membrane prepared in Example 1 was immersed in a 1.0% by mass ethanol aqueous solution in which 10,000 ppm of PVP/PVAc was dissolved for 1 hour. PVP/PVAc was introduced into the hollow fiber membranes by irradiation with a line.
  • the hollow fiber membrane of the present invention is suitably used for water treatment applications such as wastewater treatment, water purification treatment, and industrial water production, as well as applications such as food and pharmaceutical production. Further, the hollow fiber membrane of the present invention is suitably used as a microfiltration membrane or an ultrafiltration membrane for these applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本発明は、球状構造の層の厚みLが60μm以上500μm以下であり、前記球状構造の層が、第1の面と第2の面とを有し、前記第1の面から10μm以内の領域Sa1における球状構造の平均直径Da1と、前記第2の面から10μm~20μmの領域Sb2における球状構造の平均直径Db2とが、Da1>Db2の関係式を満たし、球状構造が特定のパラメータを満たす中空糸膜に関する。

Description

中空糸膜およびその製造方法
 本発明は、中空糸膜およびその製造方法に関する。
 精密ろ過膜や限外ろ過膜などの分離膜は、水処理用途や食品・医薬用途において、清澄化、濃縮、分離といった目的で使用されているが、近年、分離膜の適用範囲拡大に伴い、ろ過難度の高い被ろ過液や高精度な分離が要求される用途への適用が検討されており、ろ過性と分離性を両立した分離膜への要求は一層高まっている。
 特許文献1には、フッ化ビニリデン系樹脂を含む多孔性の中空糸膜で、中空糸膜内の気孔の孔径が、内外周面側の少なくとも一方の側に向かって漸次的に小さくなる傾斜構造を有する中空糸膜が開示されている。また、この中空糸膜について、透過性能、分画特性および強度に優れる旨が記載されている。
 特許文献2には、ポリフッ化ビニリデン系樹脂から熱誘起相分離法を用いて形成された球状構造を有し、かつ外表面から10μm以内に、内表面近傍より大きい球状構造を有する中空糸膜が開示されている。外表面近傍に大きな球状構造を有することで、目詰まりしにくく高い透水性能を継続して維持すること、内層の均質な層で高い強度を発現する旨が記載されている。
 さらに特許文献2では、このような膜の製造方法として、凝固前のポリフッ化ビニリデン系樹脂溶液に対し、分離膜の厚み方向における温度勾配を付与する方法が開示されている。具体的には、中空糸状に成形する口金を加温するなどし、加温された側の表面の球状構造が粗大化する旨が記載されている。
国際公開第2015/146469号 国際公開第2016/006611号
 特許文献1に開示される中空糸膜は、中空糸膜内の気孔の孔径が一方の側に向かって漸次的に小さくなる3次元網目構造である。このような膜は強度に劣り、外圧クロスフローろ過のような膜に大きな負荷をかける運転には適さない。また、このような膜は分離機能を有する層が非常に薄いので、運転中の膜損傷によって分離機能が容易に低下する。そのため、長期的に安定した分離機能を維持することが困難である。
 特許文献2の膜は、その内部に、比較的小さく均質な球状構造を有し、これによって液体中の成分を阻止できるので、分離性能を長時間維持することができる。また、外表面近傍に大きな球状構造が存在するので、その内部に目詰まり成分(目詰まりを引き起こす成分)を捕捉することができる。一方で、目詰まり成分を補足できる領域が外表面近傍のみに留まる。よって、ろ過の対象となる液体、とくに濁質成分や有機物成分が多い液体や、運転時間等の条件によっては、透水性を維持できる時間が短くなるという問題がある。これに対して、ろ過が難しい液体においても透水性を維持できる時間をより長くしたいという要求がある。
 本発明は、ポリフッ化ビニリデン系樹脂を用いた中空糸膜において、分離性と透水性を維持できる中空糸膜およびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明は、以下の1~19の態様を包含する。
1.樹脂の球状構造の層を有する中空糸膜であって、
 前記球状構造の層の厚みLが60μm以上500μm以下であり、
 前記球状構造の層が、第1の面と第2の面とを有し、
 前記第1の面から10×(n-1)~10×nμmの領域Saにおける球状構造の平均直径Daと、前記第2の面から10×(n-1)~10×nμmの領域Sbにおける球状構造の平均直径Dbについて、Da>Dbであり、かつ
 下記条件(1)および(2)を満たす自然数iの最小値iminが3≦imin≦(L-20)/10である中空糸膜。
 (1)Da/Da≧1.1
 (2)-0.3μm≦Da-Db≦0.3μm
 ただし、前記nは自然数であり、前記3≦imin≦(L-20)/10において、(L-20)/10の少数点以下は切り捨てる。
2.imin≦L×0.75/10である、前記1に記載の中空糸膜。
 ただし、前記imin≦L×0.75/10において、L×0.75/10の小数点以下は切り捨てる。
3.1.10<Da/Daimin<4.00である、前記1または2に記載の中空糸膜。
4.0.50μm<Db<2.00μmである、前記1~3のいずれか1に記載の中空糸膜。
5.1.00≦Da/Da≦1.10である、前記1~4のいずれか1に記載の中空糸膜。
6.前記第1の面が被ろ過液側である、前記1~5のいずれか1に記載の中空糸膜。
7.前記第1の面が中空糸膜の外表面である、前記1~6のいずれか1に記載の中空糸膜。
8.前記中空糸膜に対するポアネットワークモデル解析により求められるスロート径を前記球状構造間隙のくびれ径とした際に、
 前記第1の面から10×(n-1)~10×nμmの領域Saにおける球状構造間隙のくびれ径の平均直径daと、
 前記第2の面から10×(n-1)~10×nμmの領域Sbにおける球状構造間隙のくびれ径の平均直径dbについて、da>dbであり、かつ
 下記条件(1)および(2)を満たす自然数jの最小値jminが3≦jmin≦(L-20)/10である、前記1~7のいずれか1に記載の中空糸膜。
 (1)da/da≧1.15
 (2)da-db≦0.10μm
 ただし、前記3≦jmin≦(L-20)/10において、(L-20)/10の小数点以下は切り捨てる。
9.jmin≦L×0.5/10である、前記8に記載の中空糸膜。
 ただし、前記jmin≦L×0.5/10において、L×0.5/10の小数点以下は切り捨てる。
10.前記ポアネットワークモデル解析により求められる、前記領域Saにおけるスロート個数Naと、前記領域Sbにおけるスロート個数Nbについて、Na<Nbであり、かつ
 下記条件(3)および(4)を満たす自然数kの最小値kminが3≦kmin≦(L-20)/10である、前記8または9に記載の中空糸膜。
 (3)Na/Na≦0.90
 (4)Nb-Na≦400個
 ただし、前記3≦kmin≦(L-20)/10において、(L-20)/10の小数点以下は切り捨てる。
 ただし、前記解析における解析領域は前記第1の面の任意の50μm四方と前記第1の面に対向する前記第2の面の50μm四方を含む直方体である。
11.0.10μm<db<10.0μmである、前記8~10のいずれか1に記載の中空糸膜。
12.前記球状構造がポリフッ化ビニリデン系樹脂からなり、
 前記球状構造の表面におよび内部に親水性高分子が存在し、
 前記ポリフッ化ビニリデン系樹脂100質量部に対して1.0質量部以上の前記親水性高分子を含む、前記1~11のいずれか1に記載の中空糸膜。
13.前記中空糸膜を60℃の3000ppm次亜塩素酸ナトリウム水溶液(pH12.5)に30時間浸漬した後のポリフッ化ビニリデン系樹脂に対する親水性高分子の割合(質量%)をP1とし、前記浸漬の前における、ポリフッ化ビニリデン系樹脂に対する親水性高分子の割合(質量%)をP0とした際に、前記P1の前記P0に対する割合P1/P0の百分率が70%以下である、前記12に記載の中空糸膜。
14.(a)ポリフッ化ビニリデン系樹脂を貧溶媒に溶解してポリフッ化ビニリデン系樹脂溶液を得る工程、
 (b)前記ポリフッ化ビニリデン系樹脂溶液を一次核の形成が進行する温度で保持する工程、
 (c)前記工程(b)の後に、配管および口金を通してポリフッ化ビニリデン系樹脂溶液を中空糸状に吐出し、かつ、前記配管または口金の少なくとも一方において、ポリフッ化ビニリデン系樹脂溶液の厚み方向にかけて温度勾配を付与する工程、及び
 (d)前記工程(c)の後に、前記ポリフッ化ビニリデン系樹脂溶液を冷却浴に浸漬することで、前記ポリフッ化ビニリデン系樹脂溶液を固-液型熱誘起相分離によって固化させる工程を含み、
 前記工程(c)で付与する温度勾配ΔT(℃)と温度勾配を付与する時間t(秒)が50≦ΔT×t≦300である、中空糸膜の製造方法。
15.前記工程(c)において、温度勾配を付与するポリフッ化ビニリデン系樹脂の厚みLsが前記球状構造の層の厚みLに対して、5<Ls/L<40である、前記14に記載の中空糸膜の製造方法。
16.前記工程(b)における温度T2(℃)、前記工程(d)における冷却浴の温度T4(℃)及び前記ポリフッ化ビニリデン系樹脂の結晶化温度Tc(℃)が、(Tc-T4)/(T2-T4)<0.50を満たす、前記14または15に記載の中空糸膜の製造方法。
17.15<Tc-T4<35を満たす、前記16に記載の中空糸膜の製造方法。
18.前記工程(d)の後に、さらに以下の工程(e)及び(f)を含む、前記14~17のいずれか1に記載の中空糸膜の製造方法。
 (e)中空糸膜に親水性高分子を導入する工程
 (f)前記工程(e)の後に100℃以上の熱処理を行う工程
19.前記工程(e)において、親水性高分子を溶解した水溶液を中空糸膜に通水させた後、放射線照射を行うことを含む、前記18に記載の中空糸膜の製造方法。
 本発明によれば、分離性と透水性を維持できる中空糸膜及びその製造方法を提供できる。
図1は、中空糸膜の径方向断面における第1の面と第2の面の近傍の電子顕微鏡写真である。 図2は、球状構造の平均直径を算出する方法を示す模式図である。 図3は、第1面からの距離に対する球状構造の平均直径を測定した結果を示す図である。 図4は、中空糸膜のポアネットワークモデル解析画像を例示する図である。 図5は、中空糸膜の製造に用いられる口金の構成の具体例を表す上面図である。 図6は、図5に示す口金のA-A断面図である。 図7は、図5に示す口金の底面図である。 図8は、配管の形状の例を示す図である。
 以下、本発明の実施形態を説明するが、本発明は以下の実施形態に限定されず、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。本明細書において、重量基準の割合(百分率、部など)は、質量基準の割合(百分率、部など)と同じである。
 本発明の実施形態に係る中空糸膜は、樹脂の球状構造の層を有し、前記球状構造の層の厚みLが60μm以上500μm以下であり、前記球状構造の層が、第1の面と第2の面とを有し、前記第1の面から10×(n-1)~10×nμmの領域Saにおける球状構造の平均直径Daと、前記第2の面から10×(n-1)~10×nμmの領域Sbにおける球状構造の平均直径Dbについて、Da>Dbであり、かつ下記条件(1)および(2)を満たす自然数iの最小値iminが3≦imin≦(L-20)/10である。
 (1)Da/Da≧1.1
 (2)-0.3μm≦Da―Db≦0.3μm
 ただし、前記nは自然数であり、前記3≦imin≦(L-20)/10において、(L-20)/10の少数点以下は切り捨てる。
 <中空糸膜>
 本発明の実施形態に係る中空糸膜は、樹脂の球状構造の層を有する。中空糸膜は、球状構造の層のみで構成されていてもよいし、他の層を有してもよい。なお、樹脂の球状構造の層とは、樹脂から構成される球状構造の層のことをいう。
 球状構造の層を構成する樹脂としては、鎖状高分子からなる熱可塑性樹脂が好ましく、耐薬品性が高いため、ポリフッ化ビニリデン系樹脂が特に好ましい。ここでポリフッ化ビニリデン系樹脂とは、フッ化ビニリデンホモポリマーおよびフッ化ビニリデン共重合体の少なくとも一方を含有する樹脂を意味する。ポリフッ化ビニリデン系樹脂は、複数の種類のフッ化ビニリデン共重合体を含有してもよい。換言すれば、球状構造はポリフッ化ビニリデン系樹脂からなることが好ましい。球状構造がポリフッ化ビニリデン系樹脂からなるとは、球状構造を構成する熱可塑性樹脂成分がポリフッ化ビニリデン系樹脂から実質的に構成されることをいう。球状構造がポリフッ化ビニリデン系樹脂からなる場合も、熱可塑性樹脂以外に、熱可塑性樹脂と混和可能な他の樹脂および多価アルコールまたは界面活性剤を50重量%以下の割合で含んでもよい。また、球状構造はこれら以外に不可避的に含有される不純物を含んでいてもよく、当該不純物の含有量は例えば1重量%以下が好ましい。
 フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーとの共重合体である。それ以外のフッ素系モノマーとしては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンからなる群より選ばれる1種類以上のモノマーが挙げられる。また、本発明の効果を損なわない程度に、上記フッ素系モノマー以外のモノマーとして、例えばエチレンなどのモノマーが共重合されていてもよい。
 また球状構造の層は、熱可塑性樹脂以外に、熱可塑性樹脂と混和可能な他の樹脂および多価アルコールまたは界面活性剤を50重量%以下の割合で含んでもよい。
 本明細書において、「球状構造」とは、中空糸膜の長さ方向に垂直な(つまり中空糸膜の径方向に平行な)断面が略円形の固形部、および固形部が後述のとおり連結されることで形成される組織を指す。組織全体ではなく、特に断面が略円形の部分を指すときは「固形部」と呼ぶことがある。略円形とは、真円、楕円を含む。各固形部は、分離膜(中空糸膜)の面方向または厚み方向において、互いにその一部を共有することにより連結されている。中空糸膜の長さ方向に平行な断面の形状については、特に限定されず、略円形や、柱状形など任意の形状を取り得る。
 分離膜(中空糸膜)は、球状構造を有することで、高い強伸度を示すと共に、球状の固形部間に空隙を含むことで高い透水性能を示す。
 ろ過時には、第1の面はろ過方向の上流側、第2の面はろ過方向の下流側に配置されることが好ましい。被ろ過液は、第1の面から第2の面に向かって流れることが好ましい。換言すれば、第1の面が被ろ過液側であることが好ましい。つまり、いわゆる外圧式のろ過に用いられる場合は、中空糸膜の外面が第1の面、内面が第2の面であり、内圧式のろ過に用いられる場合は、中空糸膜の内面が第1の面、外面が第2の面である。
 次に、図1を用いて、中空糸膜の厚み方向の位置に対する球状構造の直径について述べる。
 以下では、便宜上、中空糸膜の外表面を第1の面とし、内表面を第2の面として説明する。図1は中空糸膜の径方向断面の電子顕微鏡写真であり、(a)は第1の面の近傍であり、(b)は第2の面の近傍である。
 断面において、第1の面から0~10μm、10μm~20μm、・・・10×(1-n)μm~10×nμm・・・と10μm毎に区切られた領域に、それぞれ符号Sa、Sa、・・・Sa・・・を付す。また、第2の面から0~10μm、10μm~20μm、・・・10×(1-n)~10×nμm・・・と10μm毎に区切られた領域に、それぞれ符号Sb、Sb、・・・Sbを付す。すなわち、第1の面から10×(n-1)~10×nμmの領域をSaとし、第2の面から10×(n-1)~10×nμmの領域をSbとする。なおここで、nは自然数である。
 図1に示すように、中空糸膜の第1の面である円弧が確認できるように写真を撮る。このとき、第1の面を形成する円弧の中心部分の接線を写真における水平方向に合わせる。得られた写真において、第1の面を形成する円弧と写真の左右端の交点を通る直線Maを描く。直線Maは、写真の水平方向に平行なことが好ましいが、傾いてもよい。
 さらに、この直線に平行な直線Maを、直線Maよりも第2の面に10μm近い位置に描く。同様にして直線Ma、Ma・・・Maを引いていく。領域Saは、直線MaとMaとの間の領域である。直線Maは直線Maに平行で、直線Maから第2の面方向に10×nμm進んだ位置にひかれた直線である。領域Saは、写真において直線Maと直線Ma(n+1)との間の領域である。
 第2の面についても同様に、その円弧が確認できるように写真を撮る。このとき、第2の面を形成する円弧の中心部分の接線を写真における水平方向に合わせる。得られた写真において、第1の面を形成する円弧と写真の左右端の交点を通る直線Mbを描く。直線Mb1は、写真の水平方向に平行なことが好ましいが、傾いてもよい。
 さらに、直線Maと同様に第2の面から10μm間隔で直線を描く。つまり、この直線Mbに平行な直線Mbを、直線Mbよりも第1の面に10μm近い位置に描く。同様の操作を繰り返すことで、直線Mb・・・Mbを描くことができる。領域Sbは、直線MbとMb(n+1)との間の領域である。
 領域Saにおける球状構造の平均直径Da、領域Sbにおける球状構造の平均直径Dbは、以下のとおり算出される。
 まず、径方向の断面における電子顕微鏡写真を撮影する。撮影時の拡大倍率については、球状構造を15個以上測長できる倍率であれば特に限定されない。例えば、球状構造の平均直径が1~3μmであれば、1000倍~5000倍で観察すると、平均直径を算出するのに十分な数の球状構造を確保できるので好ましい。
 撮影方向(図1、2の紙面に垂直な方向)において、他の球と重なっており、他の球よりも奥に位置する固形部は測定対象から除外する。なお、他の球よりも奥に位置する固形部とは、図2中にX1~X4として例示される。また、撮影像の外縁で途切れている固形部も測定対象から除外する。
 残った固形部のうち、図2に示す固形部X5のように、他の固形部と連結していない、つまり輪郭の全体が確認できる固形部については、その長径(図2中に一点鎖線で示す)を測定する。
 一方、他の固形部と連結している固形部においては、輪郭線の一部が確認できない。そこで、固形部の輪郭線の一部のみが確認できる場合は、その全体像を推測した上で、以下のように測定する。連続な輪郭線を持つ球X6、X7等では、その輪郭線上に両端が位置する最も長い線分を描き、その長さを長径とする。また、断続的な輪郭線を持つX8~X10では、そのうちの1つ、または2つの輪郭線に両端が位置する最も長い線分を長径とする。ただし、以下の(A)又は(B)の場合は、該当する固形部を測定対象から除外する。
 (A)確認できる輪郭線が、その固形部について推測される略円形の輪郭線の全体の50%未満である場合(例:X11、12)。
 (B)上記線分の両端が、連続する一本の輪郭線の両端上にある場合(例:X8)。
 なお、判定に用いられる電子顕微鏡写真の端で組織が途切れている場合、その端の組織の球状構造径は測定しないこととする。このようにして、測定対象となる各固形部における球状構造径(球状構造の長径)を測定し、これらの相加平均を算出して、領域Saにおける球状構造の平均直径Da及び領域Sbにおける球状構造の平均直径Dbが得られる。
 このような方法で、図1について厚み方向に球状構造の平均直径を測定した結果を図3に示す。横軸は第1の面からの厚み方向の距離であり、縦軸は各領域における球状構造の平均直径である。作図の都合上、平均直径Daは、第1の面からの距離が10×(n-1)μmの位置にプロットしており、たとえば領域Saの平均直径Daは、厚み方向の距離が20μmの位置にプロットしている。
 領域Saにおける球状構造の平均直径Daと領域Sbの平均直径Dbとは、Da>Dbの関係式を満たす。第1の面近傍の領域Saの平均直径Daが、第2の面近傍の領域Sbの平均直径Dbよりも大きいことで、第1の面近傍の通液抵抗が小さくなるため、透水性が向上する。
 本発明者らはさらに、下記条件(1)および(2)を満たす自然数iの最小値iminが3≦imin≦(L-20)/10であることで、透水性および分離性が長時間維持されることを見いだした。ただし、上記3≦imin≦(L-20)/10において、(L-20)/10の少数点以下は切り捨てる。また後述するが、Lは球状構造の層の厚みを表す。
 (1)Da/Da≧1.1
 (2)-0.3μm≦Da-Db≦0.3μm
 値iminが上記範囲にあるということは、すなわち、第1の面の最近傍の領域における平均直径Daよりも小さく、かつ領域Sbの球状構造の平均直径Dbと同等の平均直径を有する領域Saが、Saよりも第2の面に近い位置にある。これによって、目詰まり成分が膜の厚み方向により広く分散可能となる。その結果、運転期間を長くすることが可能となる。imin≧3が好ましく、imin≧5が好ましく、imin≧1/2×L/10がさらに好ましい。ただし、上記imin≧1/2×L/10において、1/2×L/10の小数点以下は切り捨てる。
 図3では第1の面から第2の面に向かうにつれ、球状構造の平均直径が小さくなり、imin=5にて-0.30≦Da-Db≦0.30の条件(2)を満たす。このときDa/Da=1.29となり、条件(1)も満たしている。図3の例では膜厚(球状構造の層の厚みL)が240μmであることから3≦imin≦(L-20)/10も満たす。
 球状構造の層(中空糸膜)の厚みLは、透水性能と強伸度を考慮して60μm以上500μm以下であることが好ましく、デプスろ過による厚み方向への閉塞場所分散の観点からは100μm以上500μm以下であることがより好ましく、膜面積の観点から150μm以上350μm以下であることがさらに好ましい。
 また、上記値iminは、imin≦L×0.75/10であることが好ましい。つまり、(1)および(2)を満たすのは、膜全体の厚みに対して、第1の面から3/4までの範囲であることが好ましい。ただし、上記imin≦L×0.75/10において、L×0.75/10の小数点以下は切り捨てる。
 この条件下で、数値iminよりも大きく(L-20)/10以下の全ての自然数mについて、下記条件(4)が満たされることが好ましい。
 (4)-0.30≦Da-Db≦0.30
 上記(4)を満たす領域は、互いに近い平均直径を有しているので、imin<m≦(L-20)/10である範囲では構造が均質である。また、mの範囲の規定から、膜厚において均質構造が占める領域は1/4以上であるので、十分な分離性が得られる。また、製膜時または運転時に膜表面が損傷を受けた場合も、均質構造の層の厚みがこの範囲にあることで、分離性および阻止性の悪化を抑制することができる。均一構造の層は、少なくとも10μm以上であることが好ましい。均一構造の層は、20μm以上であることがより好ましく、30μm以上であることがさらに好ましい。
 また、1.10<Da/Daimin<4.00であることが好ましい。Da/Daiminが1.10より大きいことで、目詰まり成分の厚み方向への分散が促進される。また、Da/Daが4.00より小さいことで、高い強度を維持できる。Da/Daの関係は、より好ましくは1.15<Da/Daimin<3.50、さらに好ましくは1.20<Da/Daimin<3.00である。
 また、0.50μm<Db<2.00μmであることが好ましい。第2の面近傍の球状構造の平均直径Dbが0.50μmよりも大きいことで、高い透水性能を備えた中空糸膜が得られる。また、Dbが2.00μmよりも小さいことで、除菌などに適した阻止性を付与することができる。
 また、1.00≦Da/Da≦1.10であることが好ましい。Da/Daが1.00以上であることで、第1の面から球状構造の平均直径が小さくなるため、本発明においてより好適な構造を得ることができる。Da/Daが1.10以下であることで、第1の面から緩やかに球状構造の平均直径が小さくなるため、iminを大きく取ることができ、ろ過性の向上が期待される。
 また、第1の面が中空糸膜の外表面である(中空糸膜の外面が第1の面である)ことが好ましい。第1の面が中空糸膜の外面にあることで、膜面積を大きくとることができる。
 次に、図4を用いて、中空糸膜の厚み方向の位置に対する球状構造間隙のくびれ径について述べる。
 図4は中空糸膜のポアネットワークモデル解析画像であり、(a)は第1の面の近傍であり、(b)は第2の面の近傍で、ともに画像の上側が膜面である。
 ポアネットワークモデルとは多孔体の空隙部分をくびれ部で機械的に分割し、分割された領域体積に相当する球(以下ではポアと呼称する場合がある。)と分割面の面積に相当する管(以下ではスロートと呼称する場合がある。)を作成し、多孔体の空隙部分をポアとスロートのネットワーク構造として表現するモデルである。
 ポアネットワークモデル解析には電子顕微鏡写真を重ね合わせた3次元画像を用いればよく、解析領域のサイズは特に限定されないが、球状構造の平均直径が1~3μmである場合、50μm四方の写真を重ね合わせた3次元画像であれば、解析に十分な球状構造間隙のくびれ部の数が確保できるので好ましい。
 一般に、スロート内の水流をハーゲン・ポワズイユの流れ解析をすることで、多孔体の透水性が定量解析される。ここで、解析領域内の空隙率が等しい場合、スロート径の平均値つまり平均くびれ径が大きいほど透水性が高くなる。
 領域Saにおける球状構造間隙の平均くびれ径daと領域Sbの平均くびれ径dbとは、da>dbの関係式を満たすことが好ましい。すなわち、中空糸膜に対するポアネットワークモデル解析により求められるスロート径を球状構造間隙のくびれ径とした際に、前記第1の面から10×(n-1)~10×nμmの領域Saにおける球状構造間隙のくびれ径の平均直径daと、前記第2の面から10×(n-1)~10×nμmの領域Sbにおける球状構造間隙のくびれ径の平均直径dbについて、da>dbであることが好ましい。第1の面近傍の領域Saの平均くびれ径daが、第2の面近傍の領域Sbの平均くびれ径dbよりも大きいことで、第1の面近傍の通液抵抗が小さくなるため、透水性が向上する。
 本発明者らはさらに、下記条件(1)および(2)を満たす自然数jの最小値jminが3≦jmin≦(L-20)/10であることで、透水性および分離性が長時間維持されることを見いだした。ただし、上記3≦jmin≦(L-20)/10において、(L-20)/10の小数点以下は切り捨てる。
 (1)da/da≧1.15
 (2)da-db≦0.10μm
 値jminが上記範囲にあるということは、すなわち、第1の面の最近傍の領域における平均くびれ径daよりも小さく、かつ領域Sbの平均くびれ径dbと同等の平均くびれ径を有する領域Saが、Saよりも第2の面に近い位置にある。これによって、目詰まり成分が膜の厚み方向により広く分散可能となる。その結果、運転期間を長くすることが可能となる。jmin≧3が好ましく、jmin≧5がより好ましい。また、jmin≦L×0.5/10がさらに好ましい。ただし、上記jmin≦L×0.5/10において、L×0.5/10の小数点以下は切り捨てる。
 加えて、前記解析により作成された前記領域Saにおけるスロート個数Naと、前記領域Sbにおけるスロート個数Nbについて、Na<Nbであることが好ましい。すなわち、ポアネットワークモデル解析により求められる、領域Saにおけるスロート個数Naと、領域Sbにおけるスロート個数Nbについて、Na<Nbであることが好ましい。第2の面近傍においてスロート個数が多いことで、透過経路の分岐が増えて目詰まり発生時の迂廻性能が向上する。
 領域Saにおけるスロート個数Naとは、スロートの重心点が領域Saにあるスロートの個数のことを指し、スロートの全て(全体)が領域Saに収まっていなくともよい。
 本発明者らはさらに、下記条件(3)および(4)を満たす自然数kの最小値kminが3≦kmin≦(L-20)/10であることで、透水性および分離性が長時間維持されることを見いだした。ただし、上記3≦kmin≦(L-20)/10において、(L-20)/10の小数点以下は切り捨てる。
 (3)Na/Na≧0.90
 (4)Nb-Na≦400個
 ただし、上記解析における解析領域は第1の面の任意の50μm四方と第1の面に対向する第2の面の50μm四方を含む直方体であり、SaおよびSbは50μm×50μm×10μmの領域である。
 値kminが上記範囲にあるということは、すなわち、第1の面の最近傍の領域におけるスロート個数Naよりも多く、かつ領域Sbのスロート個数Nbと同等のスロート個数を有する領域Saが、Saよりも第2の面に近い位置にある。これによって、目詰まり成分が膜の厚み方向により広く分散可能となる。その結果、運転期間を長くすることが可能となる。kmin≧3が好ましく、kmin≧5がより好ましい。また、kmin≦L×0.5/10がさらに好ましい。ただし、上記kmin≦L×0.5/10において、L×0.5/10の小数点以下は切り捨てる。
 また、0.10μm<db<10.0μmであることが好ましい。または、0.1μm<db<10μmであることが好ましい。第2の面近傍の球状構造間隙の平均くびれ径dbが0.10μmよりも大きいことで、高い透水性能を備えた中空糸膜が得られる。また、dbが10.0μmよりも小さいことで、除菌などに適した阻止性を付与することができる。
 次に、本発明の実施形態にかかる中空糸膜において、球状構造の表面および内部に親水性高分子が存在することも好ましい。これにより、透水性を維持しつつ、優れた耐汚れ性を実現することができる。
 親水性高分子としては、例えばビニルアルコール、エチレングリコール、ビニルピロリドン、メタクリル酸、アリルアルコール、セルロース、酢酸ビニルを含む重合体が挙げられる。さらに、親水性基を含有する共重合体ポリマーとしては、ケン化度が99%未満のポリビニルアルコールやビニルピロリドン・酢酸ビニル共重合ポリマー、ビニルピロリドン・ビニルカプロラクタム共重合ポリマー、ビニルピロリドン・ビニルアルコール共重合ポリマー、などが挙げられ、これらのうち少なくとも1種を含んでいることが好ましい。
 親水性高分子の含有量は、疎水性高分子100質量部に対し、1.0質量部以上であることが好ましい。疎水性高分子100質量部に対し、親水性高分子はより好ましくは、1.0質量部以上、6.0質量部以下であり、更に好ましくは1.0質量部以上、4.0質量部以下である。
 親水性高分子の含有量が6.0質量部より大きい場合は、親水性高分子により流路が狭まり、液体の透過性が低下してしまうおそれがある。例えば、球状構造がポリフッ化ビニリデン系樹脂からなる場合は、ポリフッ化ビニリデン系樹脂100質量部に対して親水性高分子の含有量が上記範囲内にあることが好ましい。
 さらに本発明の実施形態に係る中空糸膜は、中空糸膜を60℃の3000ppm次亜塩素酸ナトリウム水溶液(pH12.5)に30時間浸漬した後のポリフッ化ビニリデン系樹脂に対する親水性高分子の割合(質量%)をP1とし、浸漬の前における、ポリフッ化ビニリデン系樹脂に対する親水性高分子の割合(質量%)をP0とした際に、前記P1の前記P0に対する割合P1/P0の百分率が、70%以下であることが好ましい。球状構造の表面に存在する親水性高分子は次亜塩素酸ナトリウム水溶液に浸漬することで中空糸膜から除去されるが、内部に存在する親水性高分子は残存する。よって、P1/P0は、親水性高分子の総質量に対する球状構造内部の親水性高分子の質量比を表す。
 中空糸膜の親水性高分子の含有量は、X線電子分光法(XPS)、全反射赤外分光法(ATR-IR)、プロトン核磁気共鳴分光法(1H-NMR)等によって定量可能である。以下では、H-NMRを用いた中空糸膜がフッ素樹脂系疎水性高分子を含有する場合を例に説明する。H-NMRで親水性高分子の導入量を定量する方法として、2cmの中空糸膜を1mLのジメチルスルホキシドに溶解させ、H-NMRにて測定することが挙げられる。例えば、球状構造がポリフッ化ビニリデン系樹脂からなる場合、本測定を中空糸膜の任意の二点で行い、検出されるPVDF系樹脂の割合を100としたときの親水性高分子の量を求める。
 <中空糸膜の製造方法>
 本発明の実施形態に係る中空糸膜の製造方法は、例えば球状構造がポリフッ化ビニリデン系樹脂からなる場合、以下の工程(a)~(d)を備える。
 (a)ポリフッ化ビニリデン系樹脂を貧溶媒に溶解してポリフッ化ビニリデン系樹脂溶液を得る工程。
 (b)前記ポリフッ化ビニリデン系樹脂溶液を一次核の形成が進行する条件下で保持する工程。
 (c)前記工程(b)の後に、配管および口金を通してポリフッ化ビニリデン系樹脂溶液を中空糸状に吐出し、かつ、前記配管または口金の少なくとも一方において、ポリフッ化ビニリデン系樹脂溶液の厚み方向にかけて温度勾配を付与する工程。
 (d)前記工程(c)の後に、前記ポリフッ化ビニリデン系樹脂溶液を冷却浴に浸漬することで、前記ポリフッ化ビニリデン系樹脂溶液を固-液型熱誘起相分離によって固化させる工程。
 加えて、前記工程(c)で付与する温度勾配ΔT(℃)と温度勾配を付与する時間t(秒)が50≦ΔT×t≦300であることが好ましい。
 工程(a)においては、後の工程(d)での固-液型熱誘起相分離を誘起させるために、貧溶媒が用いられる。固-液型熱誘起相分離を誘起させる溶媒として、特に、シクロヘキサノン、イソホロン、γ-ブチロラクトン、メチルイソアミルケトン、ジメチルスルホキシド、プロピレンカーボネート等の中鎖長のアルキルケトン、エステル、および有機カーボネート等およびその混合溶媒が挙げられる。
 樹脂溶液中の樹脂濃度が高いほど、一次核が形成されやすいので、球状構造の平均直径が小さくなり、結果として高い強伸度を有する分離膜が得られる。ただし、樹脂溶液中の樹脂濃度が低い方が、製造した分離膜の空隙率が高くなり、高い透水性能が得られる。これらの観点から、透水性と強伸度とを両立するために、樹脂溶液中の樹脂濃度は30重量%以上60重量%以下であることが好ましい。
 工程(a)における溶解時の温度T1℃は、結晶化温度Tc℃以上であることが好ましい。結晶化温度Tcは、示差走査熱量測定(DSC測定)装置を用いて測定することができる。結晶化温度Tcは、製膜に用いる樹脂溶液と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/分で溶解温度まで昇温し30分保持して均一に溶解した後に、降温速度10℃/分で降温する過程で観察される結晶化ピークの立ち上がり温度である。
 具体的には、温度T1℃は、(Tc+20)℃以上であることがより好ましく、(Tc+30)℃以上であることがさらに好ましい。また、温度T1℃は、(Tc+100)℃以下であることが好ましく、(Tc+90)℃以下であることがより好ましい。より具体的には、温度T1℃は、100℃以上が好ましく、110℃以上がより好ましい。また温度T1℃は、200℃以下が好ましく、190℃以下がより好ましい。
 また、固-液型熱誘起相分離により球状構造を均質に形成させるために、ポリフッ化ビニリデン系樹脂溶液は均一に溶解できていることが好ましく、そのために溶解時間は2時間以上であることが好ましく、4時間以上であることがより好ましい。
 樹脂溶液は、その他の添加剤を含有してもよい。
 工程(b)は、ポリフッ化ビニリデン系樹脂溶液を一次核の形成が進行する条件下で保持する工程である。球状構造の形成過程は、X線回折の結果などから、結晶生成過程であると考えられる。一般に、ポリフッ化ビニリデン系樹脂などの結晶性高分子が結晶化する際に始めに生成する結晶を一次核という。この一次核が成長し、一つの球状構造になる。
 球状構造の成長は、球状構造同士が衝突するまで続き、衝突により成長が停止するので、最終的な球状構造の粒径は最初に生成する一次核の数に依存する。すなわち、小さな微小球状構造を得るには多数の一次核を形成することが好ましく、大きな巨大球状構造を得るには少数の一次核を形成することが好ましいと考えられる。すなわち、球状構造の制御においては、一次核の形成の進行を制御することが効果的である。
 樹脂溶液の一次核の形成の進行は、温度、圧力及び/または時間による制御が可能である。一次核形成温度T2としては、具体的には、工程(d)の冷却浴の温度以上が好ましく、結晶化温度Tc℃以上がより好ましく、(Tc+20)℃以上がさらに好ましい。また、樹脂の溶解時の温度T1℃以下が好ましく、(Tc+55)℃以下がより好ましい。
 圧力としては、樹脂溶液を0.5MPa以上に加圧することが好ましく、0.8MPa以上に加圧することがより好ましい。この圧力下に樹脂溶液を滞在させることにより、前記温度における一次核の形成の進行が安定的に進む。圧力の上限は3.0MPaであることが好ましい。
 一次核の形成が進行する条件に保持する時間としては、10秒以上に保持することが好ましく、20秒以上に保持することが好ましい。熱誘起相分離における結晶の一次核の形成は、溶融温度以下から結晶化温度Tc以上の領域(本明細書では「準安定領域」と称する。)で徐々に進行するが、樹脂溶液を前記の条件下とすることによって比較的安定的に形成する一次核の数を制御できる。
 工程(c)は、具体的には、工程(b)を経た樹脂溶液を、管状である成形用口金において中空糸状に吐出することである。この時、工程(b)の後段でかつ工程(c)の前段に備えた配管を経由して成形用口金に送液してもよい。成形用口金の形状の例を図5に示す。図5に示すように、中空糸膜製造用の口金1は、内側ノズル11と、内側ノズルを囲むように、内側ノズル11の外側に設けられた環状ノズル12と、を備える。図6,7に示すように、内側ノズル11は内側ノズル入口111および内側ノズル出口112を備え、環状ノズル12は、環状ノズル入口121および環状ノズル出口122を備える。外管の環状ノズルから樹脂溶液が吐出され、それと同時に、内管のノズルから中空部を形成する流体が吐出されることで、樹脂溶液が中空状に成形(加工)される。
 配管の形状の例を図8に示す。口金1には配管2が接続されており、具体的には配管出口132と環状ノズル入口121とが接続されている。配管入口131より樹脂溶液が導入され、配管出口132より導出された樹脂溶液が環状ノズル入口121より環状ノズル12に導入される。
 さらに工程(c)は、前記配管または口金の少なくとも一方において、ポリフッ化ビニリデン系樹脂溶液を、その厚み方向にかけて温度勾配を付与する工程を備えている。「厚み方向にかけて温度勾配を付与する」とは、配管を流れる樹脂溶液において、または口金において中空糸の形状に形成された樹脂溶液において、その厚み方向における一部の温度と、他の部分の温度とを異ならせることを指す。例えば、中空糸状に形成された樹脂溶液においては、一方の面から他方の面にかけて、温度を相対的に高くすることを指す。
 厚み方向にかけて温度勾配を付与する具体的な手法として、例えば以下(1)~(3)のうちの少なくとも1つを実行することが挙げられる。
 (1)口金1の温度を、供給される樹脂溶液の温度よりも高くするか、または低くする。
 (2)口金1の内側ノズル11を通る注入液の温度を、供給される樹脂溶液の温度よりも高くするか、または低くする。
 (3)口金1に送液する前段の配管の温度を、供給される樹脂溶液の温度よりも高くするか、または低くする。
 上記(1)~(3)の少なくとも1つを実行することで、中空糸膜の外表面もしくは内表面いずれか一方の表面近傍の球状構造を、他方の表面近傍の球状構造より大きくすることができる。上記(1)~(3)における口金1の温度、注入液の温度、配管の温度をそれぞれT3(℃)と表す。
 温度を相対的に高くする方法において、大きい平均直径を有する球状構造にしたい部分以外の樹脂温度を低下させることも可能であるが、この場合、樹脂温度を低下させた側の球状構造を小さくする効果は、樹脂温度を上昇させて球状構造を大きくする効果に比べて小さい。これは、前述したように一次核の形成は準安定領域で徐々に進行するためである。
 例えば、特定温度による冷却で比較的短時間で樹脂溶液に温度勾配を付与する場合などは、一次核の形成の進行には不十分な条件となる。一方、形成後の一次核は、樹脂溶液の昇温に対して比較的大きく影響されて減少し、固化後の球状構造数が減少する。すなわち、樹脂溶液の一次核は、昇温と降温の温度変化に対する変化挙動が異なる。
 従って、「温度勾配を付与する」ことにより、球状構造径を変化させる場合においては、樹脂溶液を部分的に昇温する工程が好ましく用いられる。
 上記(1)~(3)で温度を制御する手段(温度制御手段)は具体的な装置または方法に限定されるものではない。温度制御手段について、以下に例を示す。
 上記(1)においては、口金の周囲に配置したヒーターで口金を温めてもよいし、口金を金型温調器で温めてから使用してもよい。
 上記(2)においては、口金1に至る前に注入液をヒーター等で温めればよい。注入液は温めてから口金1に接続された配管に流してもよいし、配管自体をヒーター温めてもよい。
 上記(3)においては、ヒーターまたは金型温調器などで配管を温めればよい。配管の形状については、中空糸膜の厚み方向に温度勾配を付与するという観点で、円管状の配管が好ましい。
 また、上記(1)~(3)における「温度」T3は、それぞれの温度制御手段(例えばヒータまたは金型温調器)の設定温度である。
 「厚み方向にかけて温度勾配を付与する」という点で、上記(1)の口金1の温度を上げる方法や、(2)注入液の温度を上げる方法が、中空糸膜の円周方向において温度勾配のムラを抑制する上で好ましい。上記(3)の口金1に送液する前段の配管の温度を上げる方法では、配管中では配管の壁面近傍にいて加熱されていた樹脂溶液を、口金1内でも同様に壁面近傍に通液させるような配管、口金設計が必要となるが、口金1を加温する場合と比較して、注入液を加温する必要がない。後述するように、注入液は加温条件によっては沸騰して気泡が混入する可能性があるため、樹脂溶液のみを加温できる(3)の方法も好適である。この場合、後段の口金1の温度は、冷却を抑制するためにT2~T3の温度に制御することが好ましい。
 また、配管を加温する場合には、鉛直方向に敷設した配管を加温することが好ましい。水平方向に敷設された配管では、樹脂溶液の自重により配管内での樹脂溶液の混合が進むため、厚み方向に付与した温度勾配を維持することが難しいが、鉛直方向に敷設された配管では厚み方向での樹脂溶液の混合を抑制することができる。
 温度勾配を付与する工程において、温度勾配ΔT(℃)と温度勾配を付与する時間t(秒)を50≦ΔT×t≦300とする場合、下記条件(1)および(2)を満たす自然数iの最小値iminを3≦imin≦(L-20)/10とすることができる。
 (1)Da/Da≧1.1
 (2)-0.3μm≦Da-Db≦0.3μm。
 ここで温度勾配ΔTはT3-T2の絶対値、時間tは温度勾配が付与された配管または口金を樹脂溶液が流れる時間(滞留時間と呼ぶ)である。ΔT×t≧50であることで、樹脂溶液の厚み方向の深部にまで熱の勾配を付与することができるので、球状構造の径についても膜の表面から厚み方向深部にまで勾配を生じさせることができる。ΔT×tが大きすぎると、樹脂溶液の厚み方向での熱の均一性が高まるので、得られる膜における球状構造の直径も厚み方向で均一になる。これに対して、ΔT×t≦300であることで、上述したような球状構造の勾配を形成することができる。よって、50≦ΔT×t≦300が好ましく、60≦ΔT×t≦250がさらに好ましい。
 温度勾配を付す時間tは0.1秒以上20秒以下が好ましく、5秒より大きく10秒以下がさらに好ましい。
 温度勾配を付す時間t(樹脂溶液を昇温させる場合は加熱時間)は、図5~7に示す中空糸膜用口金1を加熱することで樹脂溶液に温度勾配を付す場合は、樹脂溶液が口金を通過するのにかかる時間である。また、口金1の上流の配管を加温することで樹脂溶液に温度勾配を付与する場合は、時間tは当該配管を通過するのにかかる時間である。例えば図8に示すように配管2から口金1に樹脂溶液を供給し、配管2の外周部を加温する場合、配管入口131から配管出口132までを樹脂が通過する時間が時間tである。
 さらに、工程(c)においては、温度勾配を付与するポリフッ化ビニリデン系樹脂の厚みLsが前記球状構造の層の厚みLに対して、5<Ls/L<40であることが好ましい。温度勾配を付与するポリフッ化ビニリデン系樹脂の厚みLsとは、温度勾配を付与する配管の流路厚みである。例えば図6に示すような口金1において温度勾配を付与す場合、ポリフッ化ビニリデン系樹脂の厚みは環状ノズル12を通過することとなるため、ポリフッ化ビニリデン系樹脂の厚みLsは環状ノズル12の厚みである。つまり環状ノズル12の外径から内径を差し引き、2で割った値である。
 また、口金1に送液する前段の配管において温度勾配を付与する場合、ポリフッ化ビニリデン系樹脂が通過する配管が円管であればその半径がポリフッ化ビニリデン系樹脂の厚みLsとなる。配管が円管以外の形状である場合には、配管の円管相当半径がポリフッ化ビニリデン系樹脂の厚みLsとなる。円管相当半径とは、配管の断面積Aと配管の濡れ縁長さPより、2×A/Pで求められる値である。濡れ縁長さPは配管断面のうち、接液する部分の周長である。
 厚みLsを算出する配管位置は、熱源から最も距離が近い位置である。熱源が金型に通液させる熱媒や棒ヒーターのような点で加温する熱源である場合には、ポリフッ化ビニリデン系樹脂が通過する配管において、熱源から最も近い位置の流路厚みとなる。熱源がバンドヒーターや二重管のように、配管を面で加温する場合は、ポリフッ化ビニリデン系樹脂が通過する配管の長さ方向において、熱源がカバーする範囲の中心の位置における流路の厚みである。
 厚みLsがLs/L>5であることで、球状構造の層の厚み全体にわたって伝熱されることを防ぎ、本発明の実施形態に係る中空糸膜のような第1の面側の球状構造が粗大で第2の面側の球状構造が緻密な構造を得ることができる。Ls/L<40であることで、第1の面側の領域Sa1の球状構造のみが粗大になることを防ぎ、第2の面側まで球状構造のサイズが減衰していくような構造を得ることができる。10<Ls/L<40がより好ましく、15<Ls/L<35がさらに好ましい。
 中空糸状に吐出されたポリフッ化ビニリデン系樹脂溶液は空気中を通過した後に冷却浴に浸漬される。この時、空気中を0.3秒以上通過させることが好ましい。空気中を通過させる時間とは、工程(c)において口金から吐出されたポリフッ化ビニリデン系樹脂溶液が冷却浴に着液するまでの時間であり、便器上「空走時間」として以後記載する。
 空走時間として0.3秒以上であると、工程(c)において付与した熱が内表面側に伝わる時間を確保でき、好ましい。好ましくは1秒以上であり、さらに好ましくは1.5秒以上である。また、空走時間が長い場合には外表面からの冷却が進むため、5秒以下が好ましく、さらに好ましくは3秒以下である。
 空走時間は下式から計算することができる。
 空走時間(秒)=空走距離(m)/冷却浴での引き取り速度(m/秒)
 ここで空走距離とは、口金の最下部から鉛直下方に冷却浴の上面にまで引いた直線の長さである。冷却浴での引き取り速度は、冷却浴ロールの回転速度(rpm)とロール直径(m)より下式から計算できる。πは円周率である。例えば直径0.2mのロールが10rpmの速度で回転している場合、引き取り速度は約0.1m/秒となる。
 引き取り速度(m/秒)=ロールの回転速度(rpm)/60×π×ロール直径(m)
 また、空気中を通過させる際に、温度や湿度、溶媒蒸気濃度などを調整してもよい。
 工程(d)では、工程(c)後に、前記ポリフッ化ビニリデン系樹脂溶液を冷却浴に浸漬することで、前記ポリフッ化ビニリデン系樹脂溶液を固-液型熱誘起相分離によって固化させる。
 熱誘起相分離とは、結晶化温度Tc以上の温度で貧溶媒または良溶媒に溶解した樹脂溶液を、冷却することにより固化させる方法である。熱誘起相分離としては、例えば以下(A)及び(B)が挙げられる。
(A)高温時に均一に溶解した樹脂溶液が、降温時に溶液の溶解能力低下が原因で樹脂の濃厚相と希薄相に分離する液-液型。
(B)高温時に均一に溶解した樹脂溶液が、降温時に結晶化温度Tc以下になり結晶化が起こりポリマー固体相とポリマー希薄溶液相に相分離する固-液型。
 液-液型では、濃厚相によって微細な三次元網目構造が形成される一方、固-液型では球状構造が形成される。よって、本発明の実施形態に係る分離膜の製造には、固-液型が好ましく採用される。
 冷却浴としては、濃度が50重量%以上95重量%以下の貧溶媒あるいは良溶媒と、濃度が5重量%以上50重量%以下の非溶媒とを含有する混合液体が好ましい。非溶媒の濃度が50重量%以下であることで、非溶媒誘起相分離による凝固よりも熱誘起相分離による凝固を優先的に進めることができる。なお、良溶媒の濃度が低い方が凝固速度は大きくなるが、冷却浴の温度を低くすることで、良溶媒の濃度が高くても、凝固を促進して、分離膜表面を平滑にすることは可能である。
 貧溶媒としては樹脂溶液と同じ貧溶媒を用いることが好ましく採用される。
 良溶媒としてはN-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等の低級アルキルケトン、エステル、アミド等およびその混合溶媒が挙げられる。
 また、非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o-ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体およびその混合溶媒などが挙げられる。
 なお、本明細書において「良溶媒」とは、60℃未満の低温でも溶質を5重量%以上溶解させることが可能な溶媒を意味する。また「貧溶媒」とは、60℃未満の低温では5重量%以上溶解させることができないが、60℃以上かつポリフッ化ビニリデン系樹脂の融点以下の高温領域で5重量%以上溶解させることができる溶媒を意味する。「非溶媒」とは、溶質の融点または溶媒の沸点まで、溶質を溶解も膨潤もさせない溶媒を意味する。
 冷却浴の温度T4を、ポリフッ化ビニリデン系樹脂の結晶化温度Tcより低くすることで、固-液型の相分離を誘起する。以下冷却浴温度T4と結晶化温度Tc、ならびに一次核形成温度T2の関係について述べる。
 固-液型の熱誘起相分離においては、冷却によって生じる結晶化(以下核化ともいう。)とできた結晶核の成長が起こり、ポリマー固体相とポリマー希薄溶液相に相分離する。固-液型の相分離においては、工程(b)で形成させた一次核を起点とした成長と、一次核を起点としないランダムな核化と成長が生じると考えられている。一次核を起点とした成長では、生成する球状構造の数は一次核の数と相関する。球状構造の成長は周囲の球状構造に接触するまで進むため、一次核の数が少ないと成長が促進され粗大な球状構造が生成し、一次核の数が少ないと緻密な球状構造が生成する。
 この一次核を起点とした成長と、一次核を起点としないランダムな核化と成長は、樹脂溶液の冷却速度に依存する。すなわち、一次核形成温度T2と冷却浴温度T4の差に依存する。その差が小さいほど前者の結晶化が進みやすく、その差が大きいほど後者の結晶化が進みやすい。すなわち、工程(c)において中空糸膜の厚み方向に温度勾配が付与され、一次核の数が厚み方向に変化するような状態にある樹脂溶液を急速に冷却した場合、一次核の数にかかわらずランダムな核化が生じるため、中空膜の厚み方向において球状構造の平均直径が変化するような構造が生じにくい。一方で一次核の数が厚み方向に変化するような状態にある樹脂用を徐々に冷却した場合、一次核を起点とした成長が進行することで、厚み方向に球状構造の平均直径が変化するような中空糸膜を得ることができる。
 また、結晶化温度Tcは樹脂溶液の冷却速度にも影響を受ける。冷却速度が速いほど結晶化温度は高くなり、速く相分離が進むことになる。冷却速度は一次核形成温度T2と冷却浴温度T4の差に依存する。
 本発明の実施形態に係る中空糸膜の製造方法においては、上記特性を鑑みて試行錯誤した結果、以下のような温度条件で製造することで、中空膜の厚み方向において球状構造の平均直径が変化することを見出し、本発明に至った。
 (Tc-T4)/(T2-T4)<0.50
 T2-T4は全体の冷却速度となるパラメータであるが、Tc-T4は成長に寄与するパラメータである。全体の冷却速度のうち、成長に寄与する温度差を小さくすることで、一次核を起点とした成長が進むことを見出した。より好ましくは(Tc-T4)/(T2-T4)<0.45であり、さらに好ましくは(Tc-T4)/(T2-T4)<0.40である。本発明の実施形態に係る中空糸膜の製造方法においては、15<Tc-T4<35の関係を満たすことが好ましい。Tc-T4が15℃より大きいことで、凝固時間が長くなりすぎることを抑制でき、製造設備が過剰に大きくなることを防止できる。また、Tc-T4は35℃より小さいことで、上述した一次核を起点とした成長化が進行することを見出した。
 また、T2-T4は100℃より小さいことが好ましく、80℃より小さいことがさらに好ましい。
 工程(d)で凝固された中空糸膜は、その後以下の工程を経て製造しても良い。
 工程(d)の後に球状構造間の空隙を拡大し透水性能を向上させることおよび破断強度を強化するために延伸を行うことも好ましい。延伸時の膜の周囲の温度は好ましくは50℃以上140℃以下であり、より好ましくは55℃以上120℃以下、さらに好ましくは60℃以上100℃以下である。延伸倍率は、好ましくは1.1倍以上4倍以下、より好ましくは1.1倍以上2倍以下である。
 50℃以上の温度条件下で延伸した場合、安定して均質に延伸することができる。140℃以下の温度条件下で延伸した場合、ポリフッ化ビニリデン系樹脂の融点(177℃)より低い温度下で延伸するので、延伸しても膜が融解せずに、膜の構造を保ちながら空隙を拡大することができ、透水性能を向上させることができる。
 また、延伸は、液体中で行う方が、温度制御が容易であり好ましい。ただし、延伸をスチームなどの気体中で行っても構わない。
 液体としては水が簡便で好ましいが、90℃程度以上の温度で延伸する場合には、低分子量のポリエチレングリコールなどを用いることも好ましく採用できる。一方、このような延伸を行わない場合は、延伸を行う場合と比べて、透水性能および破断強度は低下するが、破断伸度および阻止性は向上する。したがって、延伸工程の有無および延伸工程の延伸倍率は分離膜の用途に応じて適宜設定することができる。
 上述の温度条件は、延伸を液体中で行う場合は液体の温度に適用され、延伸を気体中で行う場合は気体の温度に適用される。なお、これら製造方法は熱誘起相分離によって球状構造を形成する熱可塑性樹脂であれば、特に限定されず適用可能である。
 また、工程(d)の後に、熱処理を施してもよい。ポリフッ化ビニリデン系樹脂のガラス転移温度は-49℃付近であり、使用環境によっては徐々に収縮が進行する。そのため、使用温度よりも高い温度であらかじめ熱収縮させておくことで、使用時の収縮を抑制することが可能である。好ましくは使用温度+10℃、さらに好ましくは使用温度+20℃以上で、収縮が無くなるまで熱処理を施すのが良い。
 また、工程(d)の後に、さらに以下の工程(e)及び(f)を含むことが好ましい。
 (e)中空糸膜に親水性高分子を導入する工程。
 (f)前記工程(e)の後に100℃以上の熱処理を行う工程。
 中空糸膜に親水性高分子を導入する方法を説明する。方法としては、親水性高分子を溶解した水溶液を中空糸膜に通液、もしくは浸漬させ、物理的に吸着させる方法、または放射線照射を行い、親水性高分子を不溶化させる方法、または中空糸膜に存在する反応性基との化学反応により共有結合を形成する方法が挙げられる。特に、放射線照射を行うことが、球状構造の表面により強固に親水性高分子を付着させることができることから好ましい。すなわち、工程(e)において、親水性高分子を溶解した水溶液を中空糸膜に通水させた後、放射線照射を行うことが好ましい。
 また、上記の親水性高分子の導入工程により、例えば、製膜原液に親水性高分子を混錬後に製膜する方法と比較して、球状構造の表面に親水性高分子を付着させることができ、耐汚れ性を向上させることができる。
 親水性高分子水溶液の濃度は、小さすぎると十分な量の親水性高分子が導入されない。したがって、上記水溶液中の共重合体(親水性高分子)濃度は10ppm以上が好ましく、100ppm以上がより好ましく、500ppm以上がもっとも好ましい。ただし、水溶液の親水性高分子の濃度が大きすぎると、モジュールからの溶出物の増加が懸念されるため、上記水溶液中の共重合体(親水性高分子)濃度は100,000ppm以下が好ましく、10,000ppm以下がより好ましい。
 なお、上記親水性高分子が水に難溶又は不溶である場合は、中空糸を溶解しない有機溶媒又は水と相溶し、かつ中空糸を溶解しない有機溶媒と水との混合溶媒に親水性高分子を溶解させてもよい。上記有機溶媒又は上記混合溶媒に用いうる有機溶媒の具体例として、メタノール、エタノール又はプロパノール等のアルコール系溶媒が挙げられるが、これらに限定されるものではない。
 また、上記混合溶媒中の有機溶媒の割合が多くなると、中空糸が膨潤し、中空糸膜の孔径等が変化してしまう可能性がある。したがって、上記混合溶媒中の有機溶媒の質量分率は60%以下が好ましく、10%以下がより好ましく、1%以下が最も好ましい。
 前記放射線照射にはα線、β線、γ線、X線、紫外線又は電子線等を用いることができる。ここで、安全性や簡便さの点から、γ線や電子線を用いた放射線法が好ましい。放射線の照射線量は15kGy以上が好ましく、25kGy以上がより好ましい。15kGy以上にすることで親水性高分子を効果的に導入することができる。また、上記照射線量は100kGy以下が好ましい。照射線量が100kGyを超えると、共重合体が3次元架橋やカルボン酸ビニルモノマー単位のエステル基部分の分解等を起こしやすくなり場合があるためである。
 放射線を照射する際の架橋反応を抑制するため、抗酸化剤を用いてもよい。抗酸化剤とは、他の分子に電子を与えやすい性質を持つ物質のことを意味し、例えば、ビタミンC等の水溶性ビタミン類、ポリフェノール類又はメタノール、エタノール若しくはプロパノール等のアルコール系溶媒が挙げられるが、これらに限定されるものではない。これらの抗酸化剤は単独で用いてもよいし、2種類以上混合して用いてもよい。抗酸化剤を用いる場合、安全性を考慮する必要があるため、エタノールやプロパノール等、毒性の低い抗酸化剤が好適に用いられる。
 前記親水性高分子の中空糸膜への導入量は、前述のとおり、全反射赤外分光法(ATR-IR)により定量可能である。また、必要に応じて、X線電子分光法(XPS)等によっても定量可能である。
 また、中空糸膜に親水性高分子を導入した後に、中空糸膜を熱処理することも好ましい。中空糸膜の熱処理工程としては、乾燥状態で熱を加える方法、水蒸気などの湿潤下で熱を加える方法などが挙げられる。熱処理を行うことでポリフッ化ビニリデン系樹脂の一部が収縮し、球状構造の内部に親水性高分子の一部を取り込むことができる。熱処理温度が低すぎると十分な量の親水性高分子が導入されないため、熱処理の温度としては、100℃以上が好ましく、120℃以上がより好ましく、150℃以上がもっとも好ましい。一方、熱処理温度が高すぎるとポリフッ化ビニリデンの融点を超えてしまい、中空糸膜が溶解後、微多孔が閉塞してしまい、透水性が低下してしまう。そのため、熱処理温度としては、フッ化ビニリデン共重合体の融点以下が好ましい。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
 (1)領域Saの平均直径Da、球状構造の層の厚みL(膜厚L)
 中空糸膜長さ方向に垂直な断面(厚み方向に平行な断面)を、HITACHI製電子顕微鏡(SU1510)を用いて第1の面を形成する円弧が写るよう1000倍で撮影した。得られた写真において、第1の面から第2の面に向かって直線Ma、Ma・・・Maを10μm間隔で引いていき、直線MaとMan+1、写真の左右端で囲まれた領域Saの測長可能なすべての球状構造について長径を測定した。その相加平均を算出して、平均直径Daを得た。
 1つの撮影像に第1の面と領域Saとが入らない場合は、一部が重なるように厚み方向にずらした複数の視野を、同じ倍率で撮影した。撮影した写真を、同一の構造が重なるようにして繋げることで、厚み方向に連続した像を得た。
 また、次の方法で、球状構造の層の厚みL(膜厚L)を求めた。膜厚Lは、中空糸膜の外径と内径より、L=(外径-内径)/2により算出される。中空糸膜の外径、内径は、中空糸膜を片刃などで軸方向に垂直な面で切断し、断面を顕微鏡などの方法で観察して円の直径を測定する。円が扁平している場合には、円のうち、最も直径が長い部分の長さ(長径)と、最も直径が短い部分の長さ(短径)を測定し、両者を平均して直径としてよい。
 (2)領域Sbの平均直径Db
 中空糸膜長さ方向に垂直な断面(厚み方向に平行な断面)を、電子顕微鏡を用いて1000倍で撮影した。得られた像において、分離膜の第2の面から第1の面に向かって、直線Mb、Mb、Mbを引き、Mb、Mbと写真の左右端で囲まれた領域Sb内にある測長可能な全ての球状構造の長径を測定した。得られた数値の相加平均を算出して、平均直径Dbを得た。
 (3)領域Saの平均くびれ径(くびれ径の平均直径)daとスロート個数Na、領域Sbの平均くびれ径(くびれ径の平均直径)dbとスロート個数Nb
 中空糸膜にRuOをコーティング後、空隙部に樹脂を充填し、FEI製電子顕微鏡(HeliosG4 CX)の集束イオンビーム法によるエッチング機能を用いて、中空糸膜長さ方向に垂直な断面(厚み方向に平行な断面)の写真を250μm間隔で200枚撮影した。第1の面を形成する円弧に接する部分から順に第2の面に向かって、1辺50μmの立方体を撮影し、立方体を連結させた直方体をポアネットワークモデルにより解析した。各スロートの重心位置とスロート径を求め、領域Saの重心位置のあるスロートのスロート径平均を平均くびれ径daとして算出し、加えてスロート個数Naを算出した。また、ポアネットワークモデルによる解析対象として、第2の面を形成する円弧に接する部分から順に第1の面に向かって、1辺50μmの立方体を撮影し、立方体を連結させた直方体に変更した以外は上記と同様に、領域Sbの平均くびれ径(くびれ径の平均直径)dbとスロート個数Nbを算出した。
 (4)分離膜の透水性能
 中空糸膜1~10本程度からなる長さ約10cmの小型モジュールを作製し、温度25℃、ろ過差圧18.6kPaの条件で第1の面から蒸留水を送液して全量ろ過し、一定時間の透過水量(m)を測定して得た値を、単位時間(hr)、単位有効膜面積(m)、50kPa当たりに換算して算出した。
 (5)ポリフッ化ビニリデン系樹脂溶液の結晶化温度Tc
 セイコー電子製DSC-620-0を用いて、ポリフッ化ビニリデン系樹脂と溶媒など製膜ポリマー原液組成と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/分で溶解温度まで昇温し30分保持して均一に溶解した。その後、降温速度10℃/分で降温する過程で観察される結晶化ピークの立ち上がり温度を結晶化温度Tcとした。
 (6)実液運転評価
 ビール酵母を含有した市販の無ろ過ビール「銀河高原ビール」(商品名。以下、評価用ビールと呼称する。)を使用した。容器内に0℃を維持した評価用ビール2Lを用意し、この容器からポンプを介して評価用ビールが中空糸膜の外面を灌流して容器に戻ると同時に、中空糸膜によってろ過されたろ液は評価用ビールが入っている容器とは異なる容器で採取するよう回路を組んだ。その際、モジュールへの評価用ビールの入口圧と出口圧およびろ過側の圧を測定できるようにした。膜面線速度が1.5m/secの流速で流れるように、評価用ビールを導入した。また、ろ過速度は、1m/dになるように調整し、定流量ろ過で運転した。この状態で、中空糸膜外面に評価用ビールを5±3℃で灌流、一部をろ過するクロスフローろ過を継続して実施した。運転を継続するに従い、中空糸膜が閉塞することで透水性が下がってくるが、定流量ろ過であるため、膜間圧力差(TMP)が上昇することになる。TMPは下式より算出する。ここで、Piは入口圧、Poは出口圧およびPfはろ過側の圧である。
 TMP=((Pi+Po)/2)-Pf
 TMPが150kPaまで上昇する時間[h]を測定して、下式よりビール処理量を算出した。高い通水性を長時間維持できる場合にはビール処理量としては大きくなる。通水性が早くに減少するような場合にはビール処理量は小さくなる。
 ビール処理量[L/m]=ろ過速度100[L/m/h]×圧力150kPaまで上昇する時間[h]。
 (7)阻止性
 評価用ビールについて、被ろ過液とろ過液をサンプリング後30分室温で静置し、その濁度をネフェロメトリー式の濁度計にて測定した。その後下式より阻止率を計算した。
 阻止率(%)=(原液濁度-ろ過液濁度)/原液濁度
 (8)親水性高分子(コートポリマー)の含有量測定
 2cmの中空糸膜を1mLのジメチルスルホキシドに溶解させ、日本電子製JNM-ECZ400Rを用いて、H-NMRにて測定した。本測定を中空糸膜の任意の二点で行い、検出されるPVDFの割合を100としたときの親水性高分子の量を求めた。なお、実施例及び比較例において、親水性高分子に対して以下の略号を用いた。
 PVP:ポリピニルピロリドン
 PVP/PVAc:ビニルピロリドン/酢酸ビニルランダム共重合体
 PEG:ポリエチレングリコール
 PEGMA:ポリエチレングリコールメタクリレート
 (9)薬洗耐久性
 親水性高分子を導入した中空糸膜をエタノールに30分間浸漬し、次いで純水に60分間浸漬して湿潤した後、95℃のオーブンで5時間洗浄を行った。その後、次亜塩素酸ナトリウムを有効塩素濃度として3000ppmで含み、更に水酸化ナトリウムを濃度0.04質量%で含む水溶液に30時間浸漬し、次いで流水で2時間水洗した。この中空糸膜の親水性高分子含有率を上記親水性高分子の含有量測定と同様にして測定した。またその結果から、(8)で求められるPVDFに対する親水性高分子の割合(質量%)に対する、(9)で求められるPVDFに対する親水性高分子の割合(質量%)の百分率を求め、「薬液浸漬後コートポリマー残存率」として表に示した。
 [実施例1]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とガンマブチロラクトン62重量%を150℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である100℃(一次核保持温度T2)で20秒間保持した。
 その後、外周部を108℃(T3)に加温した配管を経由して口金に樹脂溶液を送液した。108℃に加温された配管での滞留時間は7.05秒(温度勾配を付す時間)、配管の半径は4.0mm(温度勾配を付すポリフッ化ビニリデン系樹脂の厚みLs)であった。
 樹脂溶液を口金の外側の管に通しながら、同時に、100℃のγ-ブチロラクトン90重量%水溶液を口金の内側の管から吐出した。吐出された樹脂溶液を、γ-ブチロラクトン90重量%の水溶液からなる温度25℃(冷却浴温度T4)の浴中で5分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっており、領域Saの平均直径Daは2.62μm、領域Sbの平均直径Dbは1.84μm、上述の条件(1)及び(2)を満たす自然数iminは5であり、領域Saにおける球状構造の平均直径Daは2.02μmであった。領域Saの平均くびれ径daは1.40μm、領域Sbの平均くびれ径dbは1.14μm、上述の条件(1)及び(2)を満たす自然数jminは5であり、領域Saにおける球状構造間隙の平均くびれ径daは1.20μmであった。この膜の純水透水性は3.6m/hrであり、ビールろ過量は400L/m、阻止率は92%と長時間に渡って透水性と分離性を維持できた。
 [実施例2]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とガンマブチロラクトン62重量%を150℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である100℃に20秒間保持した。
 その後、樹脂溶液は外周部を125℃に加温した配管を経由して口金に送液された。125℃に加温された配管での樹脂溶液の滞留時間は7.05秒、配管の半径は4.0mmであった。
 樹脂溶液を口金の外側の管に通しながら、同時に、100℃のγ-ブチロラクトン90重量%水溶液を二重管式口金の内側の管から吐出した。吐出された樹脂溶液を、γ-ブチロラクトン90重量%の水溶液からなる温度25℃の浴中で1分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっており、領域Saの平均直径Daは3.40μm、領域Sbの平均直径Dbは2.15μm、上述の条件(1)及び(2)を満たす自然数iminは5であり、領域Saにおける球状構造の平均直径Daは2.30μmであった。領域Saの平均くびれ径daは1.45μm、領域Sbの平均くびれ径dbは1.14μm、上述の条件(1)及び(2)を満たす自然数jminは5であり、領域Saにおける球状構造間隙の平均くびれ径daは1.24μmであった。この膜の純水透水性は4.4m/hrであり、ビールろ過量は700L/m、阻止率は82%と長時間に渡って透水性と分離性を維持できた。
 [実施例3]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー36重量%とガンマブチロラクトン64重量%を150℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である99℃に20秒間保持した。
 その後、樹脂溶液は外周部を108℃に加温した配管を経由して口金に送液された。108℃に加温された配管での樹脂溶液の滞留時間は9.50秒、配管の半径は4.0mmであった。
 樹脂溶液を口金の外側の管に通しながら、同時に、100℃のγ-ブチロラクトン90重量%水溶液を口金の内側の管から吐出した。吐出された樹脂溶液を、γ-ブチロラクトン90重量%の水溶液からなる温度25℃の浴中で5分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっており、領域Saの平均直径Daは3.70μm、領域Sbの平均直径Dbは1.86μm、上述の条件(1)及び(2)を満たす自然数iminは6であり、領域Saにおける球状構造の平均直径Daは2.10μmであった。領域Saの平均くびれ径daは1.66μm、領域Sbの平均くびれ径dbは1.27μm、上述の条件(1)及び(2)を満たす自然数jminは6であり、領域Saにおける球状構造間隙の平均くびれ径daは1.29μmであった。この膜の純水透水性は4.6m/hrであり、ビールろ過量は450L/m、阻止率は91%と長時間に渡って透水性と分離性を維持できた。
 [実施例4]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とジメチルスルホキシド62重量%を120℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である75℃に20秒間保持した。
 その後、樹脂溶液は85℃に加熱された口金に送液され、口金に入ってから5.8秒後に吐出された。口金の環状ノズルの流路幅は1.75mmであった。
 樹脂溶液を口金の外側の管に通しながら、同時に、75℃のジメチルスルホキシド90重量%水溶液を口金の内側の管から吐出した。吐出された樹脂溶液を、ジメチルスルホキシド90重量%の水溶液からなる温度18℃の浴中で5分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっており、領域Saの平均直径Daは3.52μm、領域Sbの平均直径Dbは1.90μm、上述の条件(1)及び(2)を満たす自然数iminは7であり、領域Saにおける球状構造の平均直径Daは1.90μmであった。領域Saの平均くびれ径daは1.50μm、領域Sbの平均くびれ径dbは1.27μm、上述の条件(1)及び(2)を満たす自然数jminは7であり、領域Saにおける球状構造間隙の平均くびれ径daは1.31μmであった。この膜の純水透水性は4.3m/hrであり、ビールろ過量は480L/m、阻止率は90%と長時間に渡って透水性と分離性を維持できた。
 [実施例5]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とガンマブチロラクトン62重量%を150℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である98℃に20秒間保持した。
 その後、樹脂溶液は外周部を132℃に加温した配管を経由して口金に送液された。132℃に加温された配管での樹脂溶液の滞留時間は7.05秒、配管の半径は4.0mmであった。
 樹脂溶液を口金の外側の管に通しながら、同時に、100℃のγ-ブチロラクトン90重量%水溶液を口金の内側の管から吐出した。吐出された樹脂溶液を、γ-ブチロラクトン90重量%の水溶液からなる温度25℃の浴中で5分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっており、領域Saの平均直径Daは4.30μm、領域Sbの平均直径Dbは2.24μm、上述の条件(1)及び(2)を満たす自然数iminは12であり、領域Sa12における球状構造の平均直径Da12は2.50μmであった。領域Saの平均くびれ径daは1.55μm、領域Sbの平均くびれ径dbは1.24μm、上述の条件(1)及び(2)を満たす自然数jminは12であり、領域Sa12における球状構造間隙の平均くびれ径da12は1.34μmであった。この膜の純水透水性は5.1m/hrであり、ビールろ過量は720L/m、阻止率は81%と長時間に渡って透水性と分離性を維持できた。
 [実施例6]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とガンマブチロラクトン62重量%を150℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である97℃に20秒間保持した。
 その後、樹脂溶液は外周部を140℃に加温した配管を経由して口金に送液された。140℃に加温された配管での樹脂溶液の滞留時間は6.83秒、配管の半径は4.0mmであった。
 樹脂溶液を口金の外側の管に通しながら、同時に、100℃のγ-ブチロラクトン90重量%水溶液を口金の内側の管から吐出した。吐出された樹脂溶液を、γ-ブチロラクトン90重量%の水溶液からなる温度25℃の浴中で5分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっており、領域Saの平均直径Daは4.60μm、領域Sbの平均直径Dbは2.29μm、上述の条件(1)及び(2)を満たす自然数iminは17であり、領域Sa12における球状構造の平均直径Da12は2.47μmであった。領域Saの平均くびれ径daは1.86μm、領域Sbの平均くびれ径dbは1.32μm、上述の条件(1)及び(2)を満たす自然数jminは17であり、領域Sa17における球状構造間隙の平均くびれ径da17は1.60μmであった。この膜の純水透水性は5.8m/hrであり、ビールろ過量は800L/m、阻止率は72%と長時間に渡って透水性を維持できたが、分離性がやや悪化する結果となった。
 [比較例1]
 配管の外周部の温度を100℃とした以外は、実施例1に記載の方法と同様の方法で中空糸膜を得た。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっていたが、領域Saの平均直径Daは1.83μm、領域Sbの平均直径Dbは1.79μm、上述の条件(1)及び(2)を満たす自然数iは存在しなかった。
 領域Saの平均くびれ径daは1.14μm、領域Sbの平均くびれ径dbは1.14μm、上述の条件(1)及び(2)を満たす自然数jは存在しなかった。
 この膜の純水透水性は2.0m/hrであり、ビールろ過量は150L/m、阻止率は96%と分離性は高いものの、長時間に渡って透水性を維持することはできなかった。
 [比較例2]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とガンマブチロラクトン62重量%を150℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である95℃に20秒間保持した後、外側の管を99℃に加熱された口金に送液した。樹脂溶液は、口金に入ってから1.68秒後に吐出された。樹脂溶液を口金の外側の管に通しながら、同時に、95℃のγ-ブチロラクトン90重量%水溶液を口金の内側の管から吐出した。吐出された樹脂溶液を、γ-ブチロラクトン90重量%の水溶液からなる温度5℃の浴中で5分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっていたが、領域Saの平均直径Daは2.58μm、領域Sbの平均直径Dbは1.86μm、上述の条件(1)及び(2)を満たす自然数iminは2であり、領域Saにおける球状構造の平均直径Daは1.96μmであった。領域Saの平均くびれ径daは1.39μm、領域Sbの平均くびれ径dbは1.14μm、上述の条件(1)及び(2)を満たす自然数jminは2であり、領域Saにおける球状構造間隙の平均くびれ径daは1.15μmであった。この膜の純水透水性は2.5m/hrであり、ビールろ過量は250L/m、阻止率は96%と分離性は高いものの、長時間に渡って透水性を維持することはできなかった。
 [比較例3]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とジメチルスルホキシド62重量%を120℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である75℃に20秒間保持した後、外側の管を80℃に加熱された口金に送液した。樹脂溶液は、口金に入ってから1.68秒後に吐出された。樹脂溶液を口金の外側の管に通しながら、同時に、75℃のジメチルスルホキシド90重量%水溶液を口金の内側の管から吐出した。吐出された樹脂溶液を、ジメチルスルホキシド90重量%の水溶液からなる温度5℃の浴中で5分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっており、領域Saの平均直径Daは2.54μm、領域Sbの平均直径Dbは1.81μm、上述の条件(1)及び(2)を満たす自然数iminは2であり、領域Saにおける球状構造の平均直径Daは1.89μmであった。領域Saの平均くびれ径daは1.34μm、領域Sbの平均くびれ径dbは1.10μm、上述の条件(1)及び(2)を満たす自然数jminは2であり、領域Saにおける球状構造間隙の平均くびれ径daは1.14μmであった。この膜の純水透水性は2.7m/hrであり、ビールろ過量は220L/m、阻止率は96%と分離性は高いものの、長時間に渡って透水性を維持することはできなかった。
 [比較例4]
 重量平均分子量41.7万のフッ化ビニリデンホモポリマー38重量%とジメチルスルホキシド62重量%を120℃で溶解した。この樹脂溶液を、1.2MPaの圧力下で、(Tc+20)℃以上(Tc+55)℃以下の範囲内である75℃に20秒間保持した後、外側の管を138℃に加熱された口金に送液した。樹脂溶液は、口金に入ってから5.23秒後に吐出された。
 樹脂溶液を口金の外側の管に通しながら、同時に、75℃のγ-ブチロラクトン90重量%水溶液を口金の内側の管から吐出した。吐出された樹脂溶液を、γ-ブチロラクトン90重量%の水溶液からなる温度5℃の浴中で5分固化させた。固化した後、得られた膜を水洗し、95℃の温水中で1.5倍に延伸した。延伸後の中空糸膜は水洗した後に、30%グリセリンに2時間浸漬した後、1晩風乾した。その後、125℃の蒸気下にて1時間熱処理を施した。
 得られた中空糸膜の長さ方向に垂直な断面は球状構造となっており、領域Saの平均直径Daは3.35μm、領域Sbの平均直径Dbは3.11μm、上述の条件(1)及び(2)を満たす自然数iminは存在しなかった。
 この膜の純水透水性は7.8m/hrであり、ビールろ過試験には供さなかった。
 各中空糸膜の製造条件を表1、2に、得られた中空糸膜の評価結果を表3、4にそれぞれ示す。なお、表3、4について、「Da/Da」など、n=iの値を含んで表される項目の具体的な数値は、iとしてiminを適用した場合の数値を表す。すなわち、表3、4において「Da/Da」の行に具体的に示される値は実質的には「Da/Daimin」の数値である。これは、iをj、kとした場合についても同様である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 [実施例7]
 親水性高分子(コートポリマー)として、PVP/PVAc(コリドンVA64;BASF社製)を用いた。作製したビニルピロリドン/酢酸ビニルランダム共重合体からなる親水性高分子1000ppmを溶解した1.0質量%エタノール水溶液に、実施例1で作製した中空糸膜を1時間浸漬させた後、25kGyのγ線を照射して中空糸膜にビニルピロリドン/プロパン酸ビニルランダム共重合体を導入し、150℃のオーブンで1時間熱処理を施した。
 得られた中空糸膜を上述のH-NMR測定を行うことにより、PVP/PVAcの含有量(ポリフッ化ビニリデン系樹脂を100質量部とした場合の親水性高分子の質量部)を測定するとともに、親水性高分子導入後ならびに薬洗後の純水透水性を測定した。
 [実施例8]
 親水性高分子としてPEGを用いた以外は実施例7と同様の方法で親水性高分子の導入を行い、表5の結果を得た。
 [実施例9]
 親水性高分子としてPEGMAを用いた以外は実施例7と同様の方法で親水性高分子の導入を行い、表5の結果を得た。
 [実施例10]
 125℃のオーブンで1時間熱処理を施した後に、PVP/PVAc10,000ppmを溶解した1.0質量%エタノール水溶液に、実施例1で作製した中空糸膜を1時間浸漬させた後、25kGyのγ線を照射して中空糸膜にPVP/PVAcを導入した。
Figure JPOXMLDOC01-appb-T000005
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2021年4月28日出願の日本特許出願(特願2021-075668)、2021年6月30日出願の日本特許出願(特願2021-108523)及び2021年8月27日出願の日本特許出願(特願2021-138656)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の中空糸膜は例えば排水処理、浄水処理、工業用水製造などの水処理用途、ならびに食品、医薬の製造などの用途に好適に用いられる。また、本発明の中空糸膜は、例えばこれらの用途等に用いられる精密ろ過膜や限外ろ過膜として好適に用いられる。
 1   口金
 2   配管
 11  内側ノズル
 12  環状ノズル
 111 内側ノズル入口
 112 内側ノズル出口
 121 環状ノズル入口
 122 環状ノズル出口
 131 配管入口
 132 配管出口

Claims (19)

  1.  樹脂の球状構造の層を有する中空糸膜であって、
     前記球状構造の層の厚みLが60μm以上500μm以下であり、
     前記球状構造の層が、第1の面と第2の面とを有し、
     前記第1の面から10×(n-1)~10×nμmの領域Saにおける球状構造の平均直径Daと、前記第2の面から10×(n-1)~10×nμmの領域Sbにおける球状構造の平均直径Dbについて、Da>Dbであり、かつ
     下記条件(1)および(2)を満たす自然数iの最小値iminが3≦imin≦(L-20)/10である中空糸膜。
     (1)Da/Da≧1.1
     (2)-0.3μm≦Da-Db≦0.3μm
     ただし、前記nは自然数であり、前記3≦imin≦(L-20)/10において、(L-20)/10の少数点以下は切り捨てる。
  2.  imin≦L×0.75/10である、請求項1に記載の中空糸膜。
     ただし、前記imin≦L×0.75/10において、L×0.75/10の小数点以下は切り捨てる。
  3.  1.10<Da/Daimin<4.00である、請求項1または2に記載の中空糸膜。
  4.  0.50μm<Db<2.00μmである、請求項1~3のいずれか1項に記載の中空糸膜。
  5.  1.00≦Da/Da≦1.10である、請求項1~4のいずれか1項に記載の中空糸膜。
  6.  前記第1の面が被ろ過液側である、請求項1~5のいずれか1項に記載の中空糸膜。
  7.  前記第1の面が中空糸膜の外表面である、請求項1~6のいずれか1項に記載の中空糸膜。
  8.  前記中空糸膜に対するポアネットワークモデル解析により求められるスロート径を前記球状構造間隙のくびれ径とした際に、
     前記第1の面から10×(n-1)~10×nμmの領域Saにおける球状構造間隙のくびれ径の平均直径daと、
     前記第2の面から10×(n-1)~10×nμmの領域Sbにおける球状構造間隙のくびれ径の平均直径dbについて、da>dbであり、かつ
     下記条件(1)および(2)を満たす自然数jの最小値jminが3≦jmin≦(L-20)/10である、請求項1~7のいずれか1項に記載の中空糸膜。
     (1)da/da≧1.15
     (2)da-db≦0.10μm
     ただし、前記3≦jmin≦(L-20)/10において、(L-20)/10の小数点以下は切り捨てる。
  9.  jmin≦L×0.5/10である、請求項8に記載の中空糸膜。
     ただし、前記jmin≦L×0.5/10において、L×0.5/10の小数点以下は切り捨てる。
  10.  前記ポアネットワークモデル解析により求められる、前記領域Saにおけるスロート個数Naと、前記領域Sbにおけるスロート個数Nbについて、Na<Nbであり、かつ
     下記条件(3)および(4)を満たす自然数kの最小値kminが3≦kmin≦(L-20)/10である、請求項8または9に記載の中空糸膜。
     (3)Na/Na≦0.90
     (4)Nb-Na≦400個
     ただし、前記3≦kmin≦(L-20)/10において、(L-20)/10の小数点以下は切り捨てる。
     ただし、前記解析における解析領域は前記第1の面の任意の50μm四方と前記第1の面に対向する前記第2の面の50μm四方を含む直方体である。
  11.  0.10μm<db<10.0μmである、請求項8~10のいずれか1項に記載の中空糸膜。
  12.  前記球状構造がポリフッ化ビニリデン系樹脂からなり、
     前記球状構造の表面におよび内部に親水性高分子が存在し、
     前記ポリフッ化ビニリデン系樹脂100質量部に対して1.0質量部以上の前記親水性高分子を含む、請求項1~11のいずれか1項に記載の中空糸膜。
  13.  前記中空糸膜を60℃の3000ppm次亜塩素酸ナトリウム水溶液(pH12.5)に30時間浸漬した後のポリフッ化ビニリデン系樹脂に対する親水性高分子の割合(質量%)をP1とし、前記浸漬の前における、ポリフッ化ビニリデン系樹脂に対する親水性高分子の割合(質量%)をP0とした際に、前記P1の前記P0に対する割合P1/P0の百分率が70%以下である、請求項12に記載の中空糸膜。
  14.  (a)ポリフッ化ビニリデン系樹脂を貧溶媒に溶解してポリフッ化ビニリデン系樹脂溶液を得る工程、
     (b)前記ポリフッ化ビニリデン系樹脂溶液を一次核の形成が進行する温度で保持する工程、
     (c)前記工程(b)の後に、配管および口金を通してポリフッ化ビニリデン系樹脂溶液を中空糸状に吐出し、かつ、前記配管または口金の少なくとも一方において、ポリフッ化ビニリデン系樹脂溶液の厚み方向にかけて温度勾配を付与する工程、及び
     (d)前記工程(c)の後に、前記ポリフッ化ビニリデン系樹脂溶液を冷却浴に浸漬することで、前記ポリフッ化ビニリデン系樹脂溶液を固-液型熱誘起相分離によって固化させる工程を含み、
     前記工程(c)で付与する温度勾配ΔT(℃)と温度勾配を付与する時間t(秒)が50≦ΔT×t≦300である、中空糸膜の製造方法。
  15.  前記工程(c)において、温度勾配を付与するポリフッ化ビニリデン系樹脂の厚みLsが前記球状構造の層の厚みLに対して、5<Ls/L<40である、請求項14に記載の中空糸膜の製造方法。
  16.  前記工程(b)における温度T2(℃)、前記工程(d)における冷却浴の温度T4(℃)及び前記ポリフッ化ビニリデン系樹脂の結晶化温度Tc(℃)が、(Tc-T4)/(T2-T4)<0.50を満たす、請求項14または15に記載の中空糸膜の製造方法。
  17.  15<Tc-T4<35を満たす、請求項16に記載の中空糸膜の製造方法。
  18.  前記工程(d)の後に、さらに以下の工程(e)及び(f)を含む、請求項14~17のいずれか1項に記載の中空糸膜の製造方法。
     (e)中空糸膜に親水性高分子を導入する工程
     (f)前記工程(e)の後に100℃以上の熱処理を行う工程
  19.  前記工程(e)において、親水性高分子を溶解した水溶液を中空糸膜に通水させた後、放射線照射を行うことを含む、請求項18に記載の中空糸膜の製造方法。
PCT/JP2022/019447 2021-04-28 2022-04-28 中空糸膜およびその製造方法 WO2022231002A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/288,249 US20240216871A1 (en) 2021-04-28 2022-04-28 Hollow fiber membrane and manufacturing method therefor
JP2022527193A JPWO2022231002A1 (ja) 2021-04-28 2022-04-28
AU2022267170A AU2022267170A1 (en) 2021-04-28 2022-04-28 Hollow fiber membrane and manufacturing method therefor
KR1020237037125A KR20230174230A (ko) 2021-04-28 2022-04-28 중공사막 및 그 제조 방법
CN202280031676.XA CN117222472A (zh) 2021-04-28 2022-04-28 中空纤维膜及其制造方法
EP22795915.2A EP4331714A1 (en) 2021-04-28 2022-04-28 Hollow fiber membrane and manufacturing method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021075668 2021-04-28
JP2021-075668 2021-04-28
JP2021108523 2021-06-30
JP2021-108523 2021-06-30
JP2021138656 2021-08-27
JP2021-138656 2021-08-27

Publications (1)

Publication Number Publication Date
WO2022231002A1 true WO2022231002A1 (ja) 2022-11-03

Family

ID=83846901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019447 WO2022231002A1 (ja) 2021-04-28 2022-04-28 中空糸膜およびその製造方法

Country Status (6)

Country Link
US (1) US20240216871A1 (ja)
EP (1) EP4331714A1 (ja)
JP (1) JPWO2022231002A1 (ja)
KR (1) KR20230174230A (ja)
AU (1) AU2022267170A1 (ja)
WO (1) WO2022231002A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031038A1 (fr) * 2001-10-04 2003-04-17 Toray Industries, Inc. Film de fibres creuses et son procede de production
WO2014054658A1 (ja) * 2012-10-02 2014-04-10 Jnc株式会社 微多孔膜およびその製造方法
WO2015146469A1 (ja) 2014-03-26 2015-10-01 株式会社クラレ 中空糸膜、及び中空糸膜の製造方法
WO2016006611A1 (ja) 2014-07-07 2016-01-14 東レ株式会社 分離膜およびその製造方法
JP2019130522A (ja) * 2018-02-02 2019-08-08 東レ株式会社 中空糸膜、中空糸膜の製造方法、および中空糸膜を用いたビール、ワインまたは日本酒の製造方法
JP2021075668A (ja) 2019-11-13 2021-05-20 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク、活性エネルギー線硬化型インクジェット用インク、収容容器、2次元又は3次元の像形成装置、2次元又は3次元の像形成方法、硬化物、及び加飾体
JP2021108523A (ja) 2019-12-27 2021-07-29 東洋電機製造株式会社 冷却異常判定装置及び冷却異常判定方法
JP2021138656A (ja) 2020-03-05 2021-09-16 株式会社バイオコクーン研究所 神経突起伸長促進剤、神経細胞の樹状突起発現促進剤、及び神経栄養因子様作用物質

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031038A1 (fr) * 2001-10-04 2003-04-17 Toray Industries, Inc. Film de fibres creuses et son procede de production
WO2014054658A1 (ja) * 2012-10-02 2014-04-10 Jnc株式会社 微多孔膜およびその製造方法
WO2015146469A1 (ja) 2014-03-26 2015-10-01 株式会社クラレ 中空糸膜、及び中空糸膜の製造方法
WO2016006611A1 (ja) 2014-07-07 2016-01-14 東レ株式会社 分離膜およびその製造方法
JP2019130522A (ja) * 2018-02-02 2019-08-08 東レ株式会社 中空糸膜、中空糸膜の製造方法、および中空糸膜を用いたビール、ワインまたは日本酒の製造方法
JP2021075668A (ja) 2019-11-13 2021-05-20 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク、活性エネルギー線硬化型インクジェット用インク、収容容器、2次元又は3次元の像形成装置、2次元又は3次元の像形成方法、硬化物、及び加飾体
JP2021108523A (ja) 2019-12-27 2021-07-29 東洋電機製造株式会社 冷却異常判定装置及び冷却異常判定方法
JP2021138656A (ja) 2020-03-05 2021-09-16 株式会社バイオコクーン研究所 神経突起伸長促進剤、神経細胞の樹状突起発現促進剤、及び神経栄養因子様作用物質

Also Published As

Publication number Publication date
JPWO2022231002A1 (ja) 2022-11-03
AU2022267170A1 (en) 2023-11-09
KR20230174230A (ko) 2023-12-27
EP4331714A1 (en) 2024-03-06
US20240216871A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
US9174174B2 (en) Separation membrane and method for producing the same
CA2456170C (en) Multilayer microporous membrane
JP5619532B2 (ja) フッ化ビニリデン系樹脂多孔膜およびその製造方法
US10406487B2 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
TWI669152B (zh) 微孔性聚偏二氟乙烯平面膜及其製造方法
KR102286568B1 (ko) 분리막 및 그의 제조 방법
JP2010094670A (ja) ポリフッ化ビニリデン系複合膜およびその製造方法
US20200289991A1 (en) Porous hollow fiber membrane and method for producing same
JP2007181813A (ja) 中空糸膜の製造方法および中空糸膜
CN112657343A (zh) 一种聚酰胺中空纤维复合分离膜及其制备方法
JP2009240899A (ja) 複合中空糸膜及びその製造方法
JP2019130522A (ja) 中空糸膜、中空糸膜の製造方法、および中空糸膜を用いたビール、ワインまたは日本酒の製造方法
WO2022231002A1 (ja) 中空糸膜およびその製造方法
JP2012187575A (ja) 複合膜及びその製造方法
TWI403355B (zh) A fluororesin-based polymer separation membrane and a method for producing the same
EP0037730B1 (en) Asymmetric ultrafiltration membrane and production thereof
JP6958745B2 (ja) 分離膜
JP2023033237A (ja) 中空糸膜およびその製造方法
JP2015110212A (ja) 精密ろ過用中空糸膜
JP2023007470A (ja) 中空糸膜
JP2688564B2 (ja) 酢酸セルロース中空糸分離膜
JP2022170736A (ja) 分離膜
JP2024049374A (ja) 多孔質中空糸膜およびその製造方法
JPH10337456A (ja) 製膜原液
JPS62294405A (ja) 中空糸型血漿分離膜及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022527193

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795915

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 18288249

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: AU2022267170

Country of ref document: AU

Ref document number: 2022267170

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202280031676.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022267170

Country of ref document: AU

Date of ref document: 20220428

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022795915

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795915

Country of ref document: EP

Effective date: 20231128