WO2022230746A1 - ポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体 - Google Patents

ポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体 Download PDF

Info

Publication number
WO2022230746A1
WO2022230746A1 PCT/JP2022/018379 JP2022018379W WO2022230746A1 WO 2022230746 A1 WO2022230746 A1 WO 2022230746A1 JP 2022018379 W JP2022018379 W JP 2022018379W WO 2022230746 A1 WO2022230746 A1 WO 2022230746A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
hydroxyalkanoate
weight
parts
soluble polymer
Prior art date
Application number
PCT/JP2022/018379
Other languages
English (en)
French (fr)
Inventor
徹也 南
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202280030718.8A priority Critical patent/CN117242127A/zh
Priority to JP2023517475A priority patent/JPWO2022230746A1/ja
Publication of WO2022230746A1 publication Critical patent/WO2022230746A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • One embodiment of the present invention relates to poly(3-hydroxyalkanoate)-based expanded particles and poly(3-hydroxyalkanoate)-based expanded molded articles.
  • Biodegradable plastics are used in (a) agricultural, forestry and fishery materials used in the environment, and (b) food containers, packaging materials, sanitary goods, garbage bags, etc. that are difficult to collect and reuse after use. Development is underway with the aim of wide-ranging applications. Furthermore, foams made of biodegradable plastics are expected to be used in cushioning materials for packaging, boxes for agricultural products, boxes for fish, automobile members, building materials, civil engineering materials, and the like.
  • poly(3-hydroxyalkanoate) (hereinafter sometimes referred to as "P3HA”) is attracting attention as a plant-based plastic from the viewpoint of excellent biodegradability and carbon neutrality.
  • Patent Document 1 discloses a resin composition obtained by mixing an aliphatic polyester-based copolymer produced from microorganisms with a polyalkylene oxide at a specific ratio. More specifically, in Patent Document 1, by mixing a polyalkylene oxide in a specific ratio with an aliphatic polyester-based copolymer produced from microorganisms, the glass transition point is low and the toughness at low temperatures is high. It is disclosed that a biodegradable resin is obtained.
  • Patent Document 2 describes non-crosslinked pre-expanded particles obtained by expanding particles made of a resin composition containing a biodegradable poly(3-hydroxyalkanoate)-based resin as a main component, and the pre-expanded particles. is disclosed. More specifically, in Patent Document 2, particles made of a resin composition containing a poly(3-hydroxyalkanoate)-based resin and a specific glycerin triester are expanded under specific conditions to increase the expansion ratio. and non-cross-linked poly(3-hydroxyalkanoate)-based pre-expanded particles and in-mold expansion-molded articles having a high closed cell ratio.
  • Patent Document 3 discloses an aliphatic polyester foam and aliphatic polyester porous particles having a uniform pore structure, and methods for producing them. More specifically, in Patent Document 3, by foaming an aliphatic polyester in the presence of a polyol, it has a desired foaming ratio, a high porosity, and a small variation in pore size. It is disclosed that an aliphatic polyester foam or aliphatic polyester porous particles having properties are obtained.
  • an object of one embodiment of the present invention is to provide poly(3-hydroxyalkanoate)-based foamed particles having a high expansion ratio obtained by a single foaming treatment, and poly(3-hydroxyalkanoate). ) system foam molding.
  • the poly(3-hydroxyalkanoate)-based expanded beads according to one embodiment of the present invention are Poly (3-hydroxyalkanoate) resin (A), and a nonionic water-soluble polymer (B),
  • the content of the nonionic water-soluble polymer (B) is 0.10 to 5.00 parts by weight with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A).
  • the poly(3-hydroxyalkanoate) foamed particles have a closed cell ratio of 90% or more.
  • poly(3-hydroxyalkanoate)-based expanded beads and a poly(3-hydroxyalkanoate)-based expanded molded article having a high expansion ratio obtained by a single expansion treatment. can be done.
  • Patent Document 1 does not describe the effect of the polyalkylene oxide on the expansion ratio of the expanded beads when a resin composition in which a polyalkylene oxide is mixed with an aliphatic polyester copolymer is used to form the expanded beads.
  • a resin composition in which a polyalkylene oxide is mixed with an aliphatic polyester copolymer is used to form the expanded beads.
  • an example is disclosed in which 5.26 parts by weight or more of polyalkylene oxide is used with respect to 100 parts by weight of the aliphatic polyester copolymer.
  • it is preferable to reduce subcomponents other than the resin as much as possible, and there is room for improvement in this respect.
  • Patent Document 2 discloses the use of a large amount of a specific glycerin triester, or a combination of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer (PHBH) with a high MFR and a small amount of glycerin tri-ester.
  • PHBH poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer
  • the use of an ester is disclosed to improve the expansion ratio.
  • the use of PHBH with a high MFR results in poor moldability and a narrow process window, and there is room for improvement in this respect.
  • a plasticizer is used, and in this case, the strength of the foam molded product is lowered, and there is room for improvement in this respect as well.
  • the obtained aliphatic polyester foam or porous particles have a low independent pore porosity, and it is not possible to apply these to secondary processing such as in-mold foam molding. The inventor independently found it.
  • poly(3-hydroxyalkanoate)-based foamed beads containing a specific amount of nonionic water-soluble polymer can increase the expansion ratio by one foaming treatment. Therefore, the inventors have found that the second foaming treatment is not always necessary, and have completed the present invention. If the second foaming treatment is not required, there is a great advantage that not only can the manufacturing process of the expanded beads be simplified, but also the manufacturing cost of the expanded beads can be reduced.
  • poly(3-hydroxyalkanoate)-based expanded beads may be referred to as “expanded beads”, and "poly(3-hydroxyalkanoate)-based expanded beads according to one embodiment of the present invention” may be referred to as "this foamed particle”, “poly(3-hydroxyalkanoate)-based foamed molded article” may be referred to as “foamed molded article”, and “poly(3 -hydroxyalkanoate)-based foamed molded article” is sometimes referred to as "the present foamed molded article”.
  • the present expanded beads are expanded beads obtained by expanding poly(3-hydroxyalkanoate)-based resin particles made of a poly(3-hydroxyalkanoate)-based resin composition.
  • poly(3-hydroxyalkanoate)-based resin composition may be referred to as "resin composition”
  • poly(3-hydroxyalkanoate)-based resin particles may be referred to as “resin particles”.
  • repeating unit derived from X monomer may be referred to as "X unit”.
  • a repeating unit can also be called a constitutional unit.
  • a poly(3-hydroxyalkanoate)-based foamed particle comprises a poly(3-hydroxyalkanoate)-based resin (A) and a nonionic water-soluble polymer (B). .
  • the content of the nonionic water-soluble polymer (B) is 0.10 to 5.00 parts by weight with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A).
  • the poly(3-hydroxyalkanoate)-based foamed particles have a closed cell rate of 90% or more.
  • the present foamed beads have the above-described structure, and therefore have the advantage of being able to achieve a high expansion ratio.
  • the foamed molded article can be produced by molding the foamed particles by a known method.
  • a poly(3-hydroxyalkanoate)-based expanded bead according to one embodiment of the present invention contains a poly(3-hydroxyalkanoate)-based resin (A) as a component.
  • poly(3-hydroxyalkanoate)-based resin (A) may be referred to as “poly(3-hydroxyalkanoate)" or "P3HA”. Below, the said component is demonstrated.
  • P3HA is a polymer having 3-hydroxyalkanoate units as essential structural units (monomer units).
  • 3-hydroxyalkanoate may be referred to as "3HA”.
  • P3HA is preferably a polymer containing a repeating unit represented by the following general formula (1): [-CHR-CH 2 -CO-O-] (1).
  • R represents an alkyl group represented by C n H 2n+1 , and n represents an integer of 1-15.
  • R include linear or branched alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group and hexyl group.
  • n is preferably 1 to 10, more preferably 1 to 8.
  • P3HA produced from microorganisms is particularly preferable as P3HA.
  • P3HA produced by microorganisms is poly[(R)-3HA] in which the 3HA units are all (R)-3HA.
  • P3HA preferably contains 50 mol% or more, more preferably 70 mol% or more, and 80 mol% of 3HA units (especially repeating units of general formula (1)) in 100 mol% of all repeating units of P3HA. It is more preferable to include the above. Further, the repeating units (monomer units) may be 3HA units alone, or in addition to 3HA units, repeating units derived from monomers other than 3HA (e.g., 4-hydroxyalkanoate units, etc.) may be used. may contain.
  • 3HA units include 3-hydroxybutyrate units, 3-hydroxyvalerate units and 3-hydroxyhexanoate units.
  • 3-Hydroxybutyrate has a melting point and tensile strength close to propylene. Therefore, the P3HA according to one embodiment of the invention preferably comprises 3-hydroxybutyrate units.
  • 3-hydroxybutyrate may be referred to as "3HB”.
  • the monomer from which repeating units other than the repeating unit with the highest content are derived is called a comonomer.
  • the "repeating unit derived from a comonomer” may be referred to as a “comonomer unit”.
  • comonomer is not particularly limited, 3-hydroxyhexanoate (hereinafter sometimes referred to as 3HH) or 4-hydroxybutyrate (hereinafter sometimes referred to as 4HB) is preferable.
  • 3HH 3-hydroxyhexanoate
  • 4HB 4-hydroxybutyrate
  • P3HA is poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxy hexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
  • poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and poly(3-hydroxybutyrate-co-4-hydroxy butyrate) is more preferred.
  • P3HA preferably has a 3HB unit as an essential repeating unit (structural unit) and also has a comonomer unit. That is, P3HA is preferably a copolymer having 3HB units and comonomer units.
  • P3HA is a copolymer having 3-hydroxybutyrate units and comonomer units, and the ratio of 3HB units to comonomer units (3HB units/ comonomer unit) is preferably 99/1 (mol%/mol%) to 85/15 (mol%/mol%).
  • the ratio of 3HB units and comonomer units in 100 mol% of all repeating units in the copolymer (3HB units/comonomer units) is 97/3 (mol%/mol%) to 87. /13 (mol%/mol%) is more preferred, and 95/5 (mol%/mol%) to 89/11 (mol%/mol%) is even more preferred.
  • P3HA having such a ratio of each monomer unit can be produced according to a method known to those skilled in the art, for example, the method described in International Publication WO2009/145164.
  • the ratio of each monomer unit in P3HA can be determined by a method known to those skilled in the art, for example, the method described in WO2013/147139.
  • the method for producing P3HA is not particularly limited, and may be a production method by chemical synthesis or a production method by microorganisms. Among them, the production method using microorganisms is preferable.
  • a known method can be applied to the method for producing P3HA using a microorganism, but it preferably includes a culturing step, a purification step, and a drying step.
  • the method of culturing the P3HA-producing microorganism in the culturing step is not particularly limited, and for example, the method described in International Publication No. WO2019/142717 can be used.
  • 3HB and other hydroxyalkanoate-producing bacteria include Aeromonas caviae, which is a P3HB3HV and P3HB3HH-producing bacterium, and Alcaligenes eutrophus, which is a P3HB4HB-producing bacterium. be done.
  • Aeromonas caviae which is a P3HB3HV and P3HB3HH-producing bacterium
  • Alcaligenes eutrophus which is a P3HB4HB-producing bacterium. be done.
  • P3HB3HH Alcaligenes eutrophus AC32 (FERM BP-6038) strain (Alcaligenes eutrophus AC32, FERM BP-6038) strain (Alcaligenes eutrophus AC32, FERM BP-6038) strain (Alcaligenes eutrophus AC32, FERM BP-6038), in which the productivity of P3HB3HH was improved by introducing the gene of the P3
  • microbial cells obtained by culturing a microorganism such as Alcaligenes eutrophus AC32 strain under appropriate conditions to accumulate P3HB3HH in the cells are preferably used.
  • a microorganism such as Alcaligenes eutrophus AC32 strain under appropriate conditions to accumulate P3HB3HH in the cells
  • genetically modified microorganisms into which various P3HA synthesis-related genes have been introduced may be used according to the P3HA to be produced.
  • various culture conditions, including the type of substrate may be optimized according to the P3HA to be produced with respect to the culture conditions of microorganisms (bacteria).
  • the method of purifying P3HA obtained by microbial culture in the purification step is not particularly limited, and known physical treatment, chemical treatment and/or biological treatment can be applied.
  • the purification method described in WO 2010/067543 can be preferably applied.
  • the method of drying P3HA obtained by microbial culture and purification in the drying process is not particularly limited, and spray drying, fluid bed drying, airflow drying, rotary drying, vibration drying, and band drying can be applied.
  • the drying method described in JP 2018/070492 can be preferably applied.
  • the drying step includes (a) a step of preparing an aqueous suspension A containing 100 parts by weight of P3HA and 0.10 to 5.00 parts by weight of a nonionic water-soluble polymer described later; (b) spray drying the aqueous suspension A prepared in step (a).
  • step (a) P3HA containing 0.10 to 5.00 parts by weight of nonionic water-soluble polymer is obtained with respect to 100 parts by weight of P3HA.
  • step (b) in the method for producing P3HA of the present invention the aqueous suspension A prepared in step (a) is spray-dried.
  • the method of spray drying includes, for example, a method in which the aqueous suspension A is supplied in the form of fine droplets into a dryer, and the droplets are dried while being brought into contact with hot air in the dryer.
  • the method (atomizer) for supplying the aqueous suspension A in the form of fine droplets into the dryer is not particularly limited, and includes known methods such as a method using a rotating disk and a method using a nozzle.
  • the method of contacting the droplets with the hot air in the dryer is not particularly limited, and examples thereof include a co-current method, a counter-current method, and a method using these methods in combination.
  • the drying temperature during the spray drying in the step (b) may be a temperature that can remove most of the aqueous medium from the droplets of the aqueous suspension A, and can be dried to the desired moisture content, and the quality Conditions can be appropriately set so as not to cause deterioration (molecular weight reduction, color tone reduction) and melting as much as possible. Also, the amount of hot air in the dryer can be appropriately set according to, for example, the size of the dryer.
  • the method for producing P3HA according to one embodiment of the present invention may include a step of further drying the obtained P3HA after step (b).
  • the method for producing P3HA according to one embodiment of the present invention may include other steps (for example, a step of adding various additives to the aqueous suspension A, etc.).
  • the method for producing P3HA according to one embodiment of the present invention it is possible to obtain P3HA in a dry state with high productivity and excellent thermal stability. According to the method for producing P3HA according to one embodiment of the present invention, it is possible to reduce the costs (equipment costs, utilities) especially in the drying process. In addition, according to the P3HA production method according to one embodiment of the present invention, it is possible to obtain P3HA in the form of powder (P3HA powder), so that P3HA with excellent handleability can be obtained with high efficiency. can.
  • a poly(3-hydroxyalkanoate)-based expanded bead according to one embodiment of the present invention contains a nonionic water-soluble polymer (B) as a component. Below, the said component is demonstrated.
  • the nonionic water-soluble polymer (B) in the present invention is a polymer that does not ionize into ions when dissolved in water.
  • the content of the nonionic water-soluble polymer (B) in the foamed beads is 0.10 to 5.00 parts by weight, preferably 0.10 parts by weight, based on 100 parts by weight of the above P3HA. 4.00 parts by weight, more preferably 0.10 parts by weight to 3.00 parts by weight, more preferably 0.10 parts by weight to 2.00 parts by weight, more preferably 0.10 parts by weight parts by weight to 1.50 parts by weight.
  • the lower limit is not limited to 0.10, but 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0 .90 or 1.00. With this structure, the expansion ratio of the poly(3-hydroxyalkanoate)-based expanded beads obtained by one expansion treatment can be increased.
  • the content of the nonionic water-soluble polymer (B) contained in the poly(3-hydroxyalkanoate) foamed particles can be reduced, and as a result, the nonionic Various effects of the water-soluble polymer (B) on poly(3-hydroxyalkanoate)-based foamed particles can be prevented.
  • the content of the nonionic water-soluble polymer (B) in the foamed particles can be analyzed by an analysis institution or the like.
  • the content of the nonionic water-soluble polymer (B) in the foamed beads can be measured, for example, by the following methods (1) to (4): (1) 20 mg of the foamed beads are dissolved in 0.2% of heavy chloroform; (2) Add 20 mg of 1,1,2,2-tetrachloroethane as an internal standard to the deuterated chloroform solution prepared in (1) above; (3) (a) Arbitrary amount ( heavy chloroform solution prepared by dissolving 10 mg of nonionic water-soluble polymer (B) (standard) and 20 mg of 1,1,2,2-tetrachloroethane in 0.8 ml of heavy chloroform, and (b) For each of the heavy chloroform solutions prepared in (2) above, by 1 H-NMR, measure the NMR spectrum derived from the nonionic water-soluble polymer (B) contained in the heavy chloroform solutions.
  • Nonionic water-soluble polymer calculated from both NMR spectra obtained with reference to the measurement results of the deuterated chloroform solution containing the nonionic water-soluble polymer (B) (standard) ( Based on the signal intensity ratio derived from B), the amount of nonionic water-soluble polymer (B) in the expanded beads is quantified.
  • This method is sometimes called a liquid separation method.
  • the expanded beads obtained using a cross-linking agent may not completely dissolve in an organic solvent. Expanded beads obtained using a cross-linking agent are also referred to as “expanded beads X”. Regarding the content of the nonionic water-soluble polymer (B) in the expanded beads X, the expanded beads obtained under exactly the same conditions as the method for producing the expanded beads X except that no cross-linking agent was used (hereinafter referred to as "expanded The content of the nonionic water-soluble polymer (B) in the expanded particles Y obtained by measuring the above-described liquid separation method is calculated as follows: of the nonionic water-soluble polymer (B) content.
  • the nonionic water-soluble polymer (B) has hydrophilic groups.
  • the nonionic water-soluble polymer (B) preferably further has a hydrophobic group. Since the nonionic water-soluble polymer (B) has a hydrophilic group, the nonionic water-soluble polymer (B) has the advantage of increasing the foaming ratio.
  • a nonionic water-soluble polymer (B) having a hydrophobic group has the advantage of being able to suppress bleeding from resin particles or foamed particles. Such a configuration is preferable from the viewpoint of improvement in expansion ratio and compatibility with P3HA.
  • the hydrophilic group is not limited, and may include an oxyethylene group, a hydroxy group, a carboxyl group, an ether group, and the like. Among these, an oxyethylene group and a hydroxy group are preferable from the viewpoint that it is easy to balance hydrophilicity and hydrophobicity.
  • Examples of the hydrophobic group include, but are not limited to, linear alkyl groups, branched alkyl groups, oxypropylene groups, fluoroalkyl groups, and alkylsiloxane groups. Among these, straight-chain alkyl groups, branched alkyl groups, and oxypropylene groups are preferable from the viewpoint that hydrophilicity and hydrophobicity are easily balanced.
  • the nonionic water-soluble polymer (B) includes a combination of a hydrophilic block and a hydrophobic block, a combination of a hydrophilic main chain and a hydrophobic side chain, a hydrophobic main chain and a hydrophilic side chain, and A combination of
  • the nonionic water-soluble polymer (B) is preferably a biodegradable substance. Such a configuration is preferable because the obtained P3HA-based expanded particles and P3HA-based expanded molded article are biodegradable.
  • a biodegradable substance is a substance that is biodegradable according to OECD TG301.
  • the biodegradable nonionic water-soluble polymer (B) is not limited, and examples include natural polymers, semi-synthetic polymers, and synthetic polymers.
  • specific examples of natural polymers include starch, guar gum, carrageenan xanthan gum, and the like.
  • Examples of semi-synthetic polymers include cellulose derivatives, starch derivatives and the like.
  • Synthetic polymers include polyalkylene oxide, polyvinyl alcohol, polyacrylamide, polyvinylpyrrolidone, poly-N-vinylacetamide and the like.
  • starch derivatives, cellulose derivatives, polyvinyl alcohol, and polyalkylene oxides are preferable from the viewpoint that hydrophilicity and hydrophobicity are easily balanced.
  • the nonionic water-soluble polymer (B) is preferably at least one selected from the group consisting of polyalkylene oxide, polyvinyl alcohol, and cellulose derivatives.
  • the content of the nonionic water-soluble polymer (B) is preferably 0.10 to 1.00 parts by weight per 100 parts by weight of P3HA.
  • the lower limit is not limited to 0.10, but 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, or 0 .90. With this structure, the expansion ratio of poly(3-hydroxyalkanoate)-based expanded beads obtained by one expansion treatment can be further increased.
  • the content of the nonionic water-soluble polymer (B) contained in the poly(3-hydroxyalkanoate) foamed particles can be further reduced, and as a result, the nonionic It is possible to further prevent various effects of the water-soluble polymer (B) on the poly(3-hydroxyalkanoate)-based foamed particles.
  • the polyalkylene oxide is not particularly limited, and for example, commercially available products can be used.
  • Commercially available products include, for example, Pluronic 10400 (manufactured by BASF), Pluronic 10500 (manufactured by BASF), Genapol PF80 (manufactured by Clariant), Unilube DP60-600B (manufactured by NOF), Unilube DP60-950B (manufactured by NOF).
  • Pronon 208 (manufactured by NOF Corporation), Epan U105 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Epan U108 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Epan 750 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Emulsogen EPN 287 (CLARIANT ), Emulsogen LCN 407 (manufactured by Clariant), Neugen TDS (manufactured by Daiichi Kogyo Seiyaku), DKS NL (manufactured by Daiichi Kogyo Seiyaku), Neugen SD (manufactured by Daiichi Kogyo Seiyaku), and the like.
  • the polyvinyl alcohol is not particularly limited, and for example, commercially available products can be used.
  • Commercially available products include, for example, Kuraray Poval PVA-205 (manufactured by Kuraray Co., Ltd.), Kuraray Poval PVA-217 (manufactured by Kuraray Co., Ltd.), Kuraray Poval PVA-224 (manufactured by Kuraray Co., Ltd.), Exeval RS-1713 (manufactured by Kuraray Co., Ltd.), Exeval RS-1717 (manufactured by Kuraray), Gosenol GH-22 (manufactured by Mitsubishi Chemical), Gosenol GH-20R (manufactured by Mitsubishi Chemical), Gosenol GH-17R (manufactured by Mitsubishi Chemical), Gosenol GM-14R (Mitsubishi Chemical company), Gosenol GL-05 (Mitsubishi Chemical Co., Ltd.), Gosenol GL-03 (
  • the cellulose derivative is not particularly limited, and for example, commercially available products can be used.
  • Commercially available products include, for example, Metrose MCE-100 (manufactured by Shin-Etsu Chemical Co., Ltd.), Metolose MCE-400 (manufactured by Shin-Etsu Chemical Co., Ltd.), Metolose MCE-4000 (manufactured by Shin-Etsu Chemical Co., Ltd.), Metolose SFE-400 (Shin-Etsu Chemical Kogyo Co., Ltd.), Metrose SFE-4000 (manufactured by Shin-Etsu Chemical Co., Ltd.), Metrose SE-50 (manufactured by Shin-Etsu Chemical Co., Ltd.), Metrose NE-100 (manufactured by Shin-Etsu Chemical Co., Ltd.), and the like.
  • the expanded beads may further contain additives (other additives) other than the poly(3-hydroxyalkanoate) resin (A) and the nonionic water-soluble polymer (B).
  • additives include, for example, crystal nucleating agents, cell control agents, lubricants, plasticizers, antistatic agents, flame retardants, conductive agents, heat insulating agents, cross-linking agents, antioxidants, ultraviolet absorbers, coloring agents, inorganic Fillers, organic fillers, hydrolysis inhibitors, etc. can be used depending on the purpose.
  • additives having biodegradability are particularly preferable.
  • crystal nucleating agents examples include pentaerythritol, orotic acid, aspartame, cyanuric acid, glycine, zinc phenylphosphonate, and boron nitride.
  • One type of these crystal nucleating agents may be used alone, or two or more types may be mixed and used.
  • the mixing ratio may be appropriately adjusted according to the purpose.
  • the content of the crystal nucleating agent in the expanded beads is not particularly limited.
  • the content of the crystal nucleating agent is, for example, preferably 5.0 parts by weight or less, more preferably 3.0 parts by weight or less, with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A). 0.5 parts by weight or less is more preferable.
  • the lower limit of the content of the crystal nucleating agent in the poly(3-hydroxyalkanoate) resin (A) is not particularly limited. It can be 0.1 parts by weight or more.
  • cell regulators examples include talc, silica, calcium silicate, calcium carbonate, aluminum oxide, titanium oxide, diatomaceous earth, clay, sodium bicarbonate, alumina, barium sulfate, aluminum oxide, and bentonite.
  • talc is preferable because it is particularly excellent in dispersibility in P3HA.
  • one type of these cell control agents may be used alone, or two or more types may be mixed and used.
  • the mixing ratio may be appropriately adjusted depending on the purpose.
  • the content of the cell control agent in the foamed beads is not particularly limited, but is preferably 0.01 to 1.00 parts by weight with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A). , 0.03 to 0.50 parts by weight, more preferably 0.05 to 0.30 parts by weight.
  • plasticizers include glycerin ester compounds such as glycerin diacetomonolaurate, citrate compounds such as acetyl tributyl citrate, sebacate compounds such as dibutyl sebacate, adipate compounds, and polyethers.
  • Ester-based compounds benzoate-based compounds, phthalate-based compounds, isosorbide ester-based compounds, polycaprolactone-based compounds, dibasic acid ester-based compounds such as benzylmethyldiethylene glycol adipate, and the like.
  • glycerol ester-based compounds, citrate ester-based compounds, sebacate ester-based compounds and dibasic acid ester-based compounds are preferable in that the plasticizing effect of P3HA is excellent.
  • One type of these plasticizers may be used alone, or two or more types may be mixed and used. Moreover, when mixing and using two or more types of plasticizers, you may adjust a mixing ratio suitably according to the objective.
  • the content of the plasticizer in the expanded beads is not particularly limited, but is preferably 1 to 20 parts by weight, and 2 to 2 parts by weight, based on 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A). 15 parts by weight is more preferred, and 3 to 10 parts by weight is even more preferred.
  • the foamed particles may contain a compound having an isocyanate group (hereinafter sometimes referred to as an isocyanate compound).
  • isocyanate compounds may have toxicity.
  • the foamed beads may contain an isocyanate compound, the obtained foamed beads and the foamed molding may become yellow.
  • the content of the isocyanate compound in the foamed beads is preferably less than 3.0 parts by weight, and less than 1.0 parts by weight, with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A). More preferably less than 0.1 parts by weight. Most preferably, the foamed particles do not contain an isocyanate compound.
  • isocyanate compound for example, a polyisocyanate compound having two or more isocyanate groups in one molecule can be used.
  • isocyanate compounds include aromatic isocyanate compounds, alicyclic isocyanate compounds, and aliphatic isocyanate compounds.
  • aromatic isocyanate compounds include isocyanate compounds having tolylene, diphenylmethane, naphthylene, tolidine, xylene and/or triphenylmethane as a skeleton.
  • Alicyclic isocyanate compounds include isophorone and/or hydrogenated diphenylmethane-based isocyanate compounds.
  • Aliphatic isocyanate compounds include isocyanate compounds having hexamethylene and/or lysine skeletons. Furthermore, a mixture obtained by combining two or more of these isocyanate compounds can also be used.
  • an isocyanate compound it is preferable to use an isocyanate compound having a tolylene and/or diphenylmethane skeleton, particularly an isocyanate compound having a diphenylmethane skeleton (polyisocyanate) in terms of versatility, handleability, weather resistance, etc.
  • lubricants include behenic acid amide, oleic acid amide, erucic acid amide, stearic acid amide, palmitic acid amide, N-stearylbehenic acid amide, N-stearyl erucic acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide, ethylenebiserucamide, ethylenebislaurylamide, ethylenebiscapricamide, p-phenylenebisstearicamide, polycondensates of ethylenediamine, stearic acid and sebacic acid.
  • behenic acid amide and erucic acid amide are preferable in terms of particularly excellent lubricating effect on P3HA.
  • the amount of the lubricant to be used is not particularly limited, but is preferably 0.01 to 5.00 parts by weight, more preferably 0.05 to 3.00 parts by weight, and still more preferably 100 parts by weight of P3HA. 0.10 to 1.50 parts by weight.
  • the lubricant may be used not only by one type but also by mixing two or more types, and the mixing ratio can be appropriately adjusted depending on the purpose.
  • antistatic agents examples include coconut oil fatty acid diethanolamide.
  • the content of the antistatic agent in the expanded beads is not particularly limited.
  • the apparent density of the expanded beads is not limited, but is preferably 20 g/L to 67 g/L, more preferably 25 g/L to 65 g/L, and even more preferably 30 g/L to 63 g/L. According to this configuration, it is possible to obtain a poly(3-hydroxyalkanoate)-based foamed molded article having well-balanced mechanical strength and light weight.
  • the apparent density may be measured according to the measurement method described in the examples below.
  • the expansion ratio of the present expanded beads is not limited, but is preferably 18 times or more, more preferably 19 times or more, more preferably 20 times or more, more preferably 21 times or more, more preferably 22 times or more, and 23 times or more. More preferred.
  • the upper limit of the expansion ratio of the present expanded beads is not limited, but may be, for example, 50 times, 40 times, 30 times, 25 times, or 23 times. According to this configuration, it is possible to obtain a poly(3-hydroxyalkanoate)-based foamed molded article having well-balanced mechanical strength and light weight.
  • the expansion ratio may be measured according to the measurement method described in the examples described later.
  • the amount of heat on the high temperature side of the expanded beads is not limited, but is preferably 0.1 J/g to 20.0 J/g, more preferably 0.3 J/g to 18.0 J/g, and 0.5 J/g to 15.0 J/g. 0 J/g is more preferred.
  • the poly(3-hydroxyalkanoate)-based expanded particles obtained in the expansion step are free from mutual adhesion and are poly(3-hydroxyalkanoate)-based expanded particles having excellent in-mold foam moldability. can be done.
  • the measurement of the heat quantity on the high temperature side may be carried out according to the measurement method described in the examples described later.
  • the cell diameter of the present expanded beads is not limited, but is preferably 50 ⁇ m to 500 ⁇ m, more preferably 100 ⁇ m to 450 ⁇ m, more preferably 150 ⁇ m to 400 ⁇ m, more preferably 200 ⁇ m to 350 ⁇ m, more preferably 220 ⁇ m to 300 ⁇ m, more preferably 240 ⁇ m to 280 ⁇ m. More preferably, 245 ⁇ m to 270 ⁇ m is particularly preferable. According to this configuration, poly(3-hydroxyalkanoate)-based expanded particles having excellent in-mold foam moldability can be obtained.
  • the cell diameter may be measured according to the measurement method described in Examples below.
  • the gel fraction of the expanded beads is not limited, but is preferably 30% by weight or more, more preferably 40% by weight or more, and more preferably 50% by weight or more.
  • the upper limit of the gel fraction of the expanded beads is not limited, but can be, for example, 90% by weight, 80% by weight, or 75% by weight. This configuration has the advantage of widening the process window in which a good foam molded article can be provided when performing in-mold foam molding.
  • the gel fraction may be measured according to the measurement method described in Examples below.
  • the closed cell ratio of the expanded beads is 90% or more, preferably 91% or more, more preferably 92% or more, more preferably 93% or more, more preferably 94% or more, and more preferably 95% or more. , more preferably 96% or more, more preferably 97% or more, even more preferably 98% or more.
  • the upper limit of the closed cell content of the expanded beads is not limited, but can be, for example, 100%, 99%, 98%, or 97%. According to this configuration, poly(3-hydroxyalkanoate)-based expanded particles having excellent in-mold foam moldability can be obtained.
  • the measurement of the closed cell ratio may be carried out according to the measurement method described in the examples described later.
  • a method for producing poly(3-hydroxyalkanoate)-based expanded beads is not particularly limited, and a known method (for example, the method described in International Publication No. 2019/146555) can be used.
  • the "method for producing poly(3-hydroxyalkanoate)-based expanded beads” may be referred to as "production method”
  • the "poly(3-hydroxyalkanoate)-based poly(3-hydroxyalkanoate)-based "Method for producing expanded beads” may be referred to as "this production method”.
  • a specific embodiment of the present production method includes, for example, a production method including, in order, a resin particle preparation step of adjusting resin particles and an expansion step of expanding the resin particles, but is limited to such a production method. not a thing
  • Resin particle preparation step In this production method, before the foaming step, (a) resin particles containing 100 parts by weight of P3HA and 0.10 to 5.00 parts by weight of a nonionic water-soluble polymer, or (b) P3HA100 It is preferable to include a resin particle preparation step of preparing resin particles composed of parts by weight and 0.10 to 5.00 parts by weight of a nonionic water-soluble polymer.
  • the resin particle preparation step can also be said to be a step of molding the resin into a shape that can be easily used for foaming.
  • the aspect of the resin particle preparation step is not particularly limited as long as the resin particles can be obtained.
  • the resin particle preparation process is (a) a melt-kneading step of melt-kneading a resin composition containing 100 parts by weight of P3HA and 0.10 to 5.00 parts by weight of a nonionic water-soluble polymer; (b) It is preferable to include a particle molding step of molding the melt-kneaded resin composition into a shape that can be easily used for foaming.
  • the aspect of the melt-kneading step is not particularly limited as long as a melt-kneaded resin composition can be obtained.
  • Specific examples of the melt-kneading step include the following methods (a1) and (a2): (a1) 100 parts by weight of P3HA, 0.10 to 5.00 parts by weight of a nonionic water-soluble polymer, and, if necessary, other additives are mixed or blended in a mixing device or the like to obtain a resin A composition is prepared.
  • a method of supplying the resin composition to a melt-kneading device and melt-kneading (a2) 100 parts by weight of P3HA, 0.10 to 5.00 parts by weight of a nonionic water-soluble polymer, and, if necessary, other additives are supplied to a melt-kneading device, A method of preparing (finishing) a resin composition in a furnace and melt-kneading the resin composition.
  • the method (a1) 100 parts by weight of P3HA, 0.10 to 5.00 parts by weight of a nonionic water-soluble polymer, and if necessary, other additives are mixed or blended (dry The order of blending is not particularly limited.
  • 100 parts by weight of P3HA, 0.10 to 5.00 parts by weight of a nonionic water-soluble polymer, and, if necessary, other additives are supplied to the melt-kneading device.
  • the order to do is not particularly limited.
  • the mixing device is not particularly limited, and includes a ribbon blender, a flash blender, a tumbler mixer, a super mixer, and the like.
  • the melt-kneading device is not particularly limited, and includes extruders, kneaders, Banbury mixers, rolls, and the like.
  • the melt-kneading device an extruder is preferable, and a twin-screw extruder is more preferable, because of its excellent productivity and convenience.
  • the amount of the nonionic water-soluble polymer and other additives used for mixing or blending is determined by the nonionic water-soluble polymer and other additives in the resulting resin particles It becomes the content of the agent. Further, in the method (a2), the amount of the nonionic water-soluble polymer and other additives supplied to the melt-kneading device is adjusted to the nonionic water-soluble polymer and other additives in the resulting resin particles. is the content of the additive. Therefore, the amounts of the nonionic water-soluble polymer and other additives used and supplied are described in the above sections (nonionic water-soluble polymer) and (other additives). The description of is incorporated.
  • the P3HA used may already contain a nonionic water-soluble polymer. If the P3HA used already contains a non-ionic water-soluble polymer, the melt-kneading step does not require the use of the non-ionic water-soluble polymer.
  • the total amount of the content of the nonionic polymer contained in P3HA and the amount of the nonionic water-soluble polymer used in the melt-kneading process is It becomes the content of the molecule. In addition, it is not necessary to use all of the other additives used in this production method in the resin particle preparation step.
  • all or part of the other additives used in the production method are not used in the resin particle preparation step, that is, without being contained in the resin particles. may be added to the dispersion during the dispersing step.
  • the temperature at which the resin composition is melt-kneaded depends on the physical properties of P3HA (melting point, weight average molecular weight, etc.) and the types of additives used, and cannot be generally defined.
  • the temperature when the resin composition is melt-kneaded for example, the temperature of the melt-kneaded resin composition discharged from the nozzle of the die (hereinafter sometimes referred to as composition temperature) is 150°C to 200°C. , more preferably 160°C to 195°C, even more preferably 170°C to 190°C.
  • composition temperature is 150° C. or higher, there is no risk of insufficient melt-kneading of the resin composition.
  • the composition temperature is 200° C. or less, there is no risk of thermal decomposition of P3HA.
  • the aspect of the particle forming step is not particularly limited as long as the melt-kneaded resin composition can be formed into a desired shape.
  • the melt-kneaded resin composition can be easily formed into a desired shape in the particle forming step.
  • the melt-kneaded resin composition is discharged from a nozzle of a die provided in the melt-kneading device, and the resin composition is cut by a cutting device at the same time as or after the discharge to obtain a desired shape.
  • the shape of the resin particles to be obtained is not particularly limited, but cylindrical, cylindric, spherical, cubic, cuboid, and the like are preferable because they are easily used for foaming.
  • the resin composition discharged from the nozzle of the die may be cooled.
  • the resin composition may be cut by a cutting device at the same time as or after cooling the resin composition.
  • the temperature exhibited by the cooled resin composition (hereinafter sometimes referred to as the cooling temperature) is not particularly limited.
  • the cooling temperature is preferably 20°C to 80°C, more preferably 30°C to 70°C, even more preferably 40°C to 60°C. According to this configuration, the crystallization of the melt-kneaded resin composition is sufficiently rapid, so there is an advantage that the productivity of the resin particles is improved.
  • melt flow rate (MFR) of the resin particles is not particularly limited, it is preferably 1 g/10 min to 20 g/min, more preferably 1 g/10 min to 17 g/min, and even more preferably 1 g/min to 15 g/min. According to this configuration, it is possible to obtain poly(3-hydroxyalkanoate)-based expanded particles having a high expansion ratio and a high closed cell ratio.
  • the melt flow rate of the resin particles may be measured according to the measurement method described in the examples below.
  • the foaming step in the present production method is not particularly limited as long as the resin particles can be foamed.
  • the foaming step may include a dispersing step of dispersing resin particles in an aqueous dispersion medium. Specific aspects of the dispersing step are not particularly limited. , and/or a plasticizer into the container.
  • the foaming process is a process other than the dispersing process, following the dispersing process, (a) a temperature increase-increase step of increasing the temperature in the container to a constant temperature and increasing the pressure in the container to a constant pressure; (b) a holding step of holding the temperature and pressure in the container at a constant temperature and a constant pressure; (c) releasing one end of the container to release the dispersion in the container into a region (space) having a lower pressure than the foaming pressure (ie, the internal pressure of the container).
  • the dispersing step is, for example, a step of preparing a dispersion in which resin particles, a cross-linking agent, a foaming agent, and optionally a dispersant, a cross-linking aid, a dispersing aid, and a plasticizer are dispersed in an aqueous dispersion medium. It can also be said.
  • the cross-linking agent and the cross-linking aid are consumed by the reaction with the P3HA in the resin particles and may not be present, and (b) the foaming agent and the plasticizer are in the resin particles. It does not have to exist in an impregnated and dispersed state.
  • the container is not particularly limited, it is preferably a container that can withstand the later-described foaming temperature and foaming pressure, such as a pressure-resistant container.
  • the aqueous dispersion medium is not particularly limited as long as it can uniformly disperse resin particles, a cross-linking agent, a foaming agent, and the like.
  • aqueous dispersion medium for example, tap water and/or industrial water can be used.
  • water-based dispersion media include RO water (water purified by reverse osmosis membrane method), distilled water, deionized water (water purified by ion exchange resin), and the like. It is preferable to use pure water, ultrapure water, or the like.
  • the amount of the aqueous dispersion medium used is not particularly limited, it is preferably 100 to 1000 parts by weight with respect to 100 parts by weight of the resin particles.
  • the foaming process can also be said to be a cross-linking process.
  • the cross-linking agent is not particularly limited as long as it can cross-link P3HA.
  • Organic peroxides are preferred as cross-linking agents.
  • the poly(3-hydroxyalkanoate) foamed particles are preferably crosslinked with an organic peroxide.
  • the organic peroxide may be used in (a) the resin particle preparation step, (b) the dispersion step, or (c) the resin particle preparation step and the dispersion step.
  • the organic peroxide and P3HA may be melt-kneaded in the resin particle preparation step, and (b) the resin particles and The organic peroxide may be dispersed in an aqueous dispersion medium, and (c) the organic peroxide and P3HA are melt-kneaded, and the resin particles and the organic peroxide are dispersed in the aqueous dispersion medium.
  • You may let In the dispersion step by dispersing the resin particles produced in the resin particle preparation step and the organic peroxide in the aqueous dispersion medium, the resin particles can be impregnated and reacted with the organic peroxide.
  • an organic peroxide is preferred as the cross-linking agent in the present method for producing expanded beads.
  • an organic peroxide is used as a cross-linking agent, a cross-linked structure is formed by directly bonding the molecular chains of P3HA (without passing through a structure derived from the cross-linking agent).
  • the organic peroxide used as a cross-linking agent is preferably an organic peroxide having a 1-hour half-life temperature of 90° C. to 160° C., and a 1-hour half-life temperature of 115° C. to 125° C. °C organic peroxides are more preferred.
  • organic peroxides include benzoyl peroxide (1-hour half-life temperature: 92° C.), t-butylperoxy-2-ethylhexyl carbonate (1-hour half-life temperature: 121° C.), t -Butyl peroxyisopropyl carbonate (1 hour half-life temperature: 118 ° C.), t-amyl peroxy-2-ethylhexyl carbonate (1 hour half-life temperature: 117 ° C.), t-amyl peroxy isopropyl carbonate (1 hour half-life temperature: 115 ° C.), t-butyl peroxyisobutyrate (1-hour half-life temperature: 93 ° C.), t-butyl peroxy-2-ethylhexanoate (1-hour half-life temperature: 95 ° C.), t- Butyl peroxyisononanoate (1-hour half-life temperature: 123°C), t-butyl peroxya
  • an organic peroxide having a 1-hour half-life temperature of 90° C. or higher has the advantage that it tends to give foamed beads with a desired gel fraction.
  • the use of an organic peroxide having a 1-hour half-life temperature of 160° C. or less has the advantage that there is no risk of unreacted cross-linking agents remaining in the final product.
  • the amount of the cross-linking agent used is not particularly limited, but is preferably 0.1 to 5.0 parts by weight, more preferably 0.3 to 3.0 parts by weight, based on 100 parts by weight of the resin particles. More preferably 0.5 to 2.5 parts by weight.
  • the amount of the cross-linking agent used is 0.1 part by weight or more relative to 100 parts by weight of the resin particles, (a) the obtained expanded beads can be sufficiently cross-linked, and (b) the obtained expanded beads can be independent. The cell content is increased, and a good foam molded article can be obtained.
  • the amount of the cross-linking agent used is 5.0 parts by weight or less with respect to 100 parts by weight of the resin particles, an effect corresponding to the amount of the cross-linking agent added can be obtained, so there is no possibility of causing economical waste. .
  • the amount of the cross-linking agent used has a positive correlation with the gel fraction of the expanded beads, and greatly affects the gel fraction of the expanded beads. Therefore, it is desirable to strictly set the amount of the cross-linking agent to be used in consideration of the gel fraction of the obtained expanded beads.
  • the resin particles used may already contain a cross-linking agent. In this case, the total amount of the cross-linking agent already contained in the resin particles before the dispersing step and the cross-linking agent used in the dispersing step preferably satisfies the above range.
  • foaming agents include inorganic gases such as nitrogen, carbon dioxide, and air; saturated hydrocarbons having 3 to 5 carbon atoms such as propane, normal butane, isobutane, normal pentane, isopentane, and neopentane; dimethyl ether, diethyl ether, and methyl ethyl ether.
  • ethers such as cyclomethane; halogenated hydrocarbons such as monochloromethane, dichloromethane and dichlorodifluoroethane; and water.
  • the foaming agent at least one selected from the group consisting of inorganic gases, saturated hydrocarbons having 3 to 5 carbon atoms, ethers, halogenated hydrocarbons and water can be used.
  • nitrogen or carbon dioxide as the foaming agent from the viewpoint of environmental load and foaming power.
  • One type of these foaming agents may be used alone, or two or more types may be mixed and used.
  • the amount of the foaming agent used is not particularly limited, but is preferably 2 parts by weight to 10000 parts by weight, more preferably 5 parts by weight to 5000 parts by weight, and more preferably 10 parts by weight to 1000 parts by weight with respect to 100 parts by weight of the resin particles. More preferred. When the amount of the foaming agent used is 2 parts by weight or more with respect to 100 parts by weight of the resin particles, expanded beads having a high expansion ratio can be obtained. On the other hand, when the amount of the foaming agent used is 10000 parts by weight or less with respect to 100 parts by weight of the resin particles, an effect corresponding to the amount of the foaming agent used can be obtained, and no economic waste occurs.
  • a dispersant has the advantage of suppressing mutual adhesion (sometimes referred to as blocking) between resin particles and stably producing expanded beads.
  • examples of dispersants include inorganic substances such as tricalcium phosphate, trimagnesium phosphate, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, clay, aluminum oxide, titanium oxide, and aluminum hydroxide.
  • One type of these dispersants may be used alone, or two or more types may be mixed and used. When two or more dispersants are mixed and used, the mixing ratio may be appropriately adjusted depending on the purpose.
  • the amount of the dispersant used is not particularly limited, but is preferably 0.1 to 3.0 parts by weight, more preferably 0.5 to 1.5 parts by weight, relative to 100 parts by weight of the resin particles.
  • cross-linking aids include, for example, compounds having at least one unsaturated bond in the molecule. Among these compounds, allyl esters, acrylic acid esters, methacrylic acid esters, divinyl compounds, and the like are particularly preferable as the cross-linking aid.
  • One type of these cross-linking aids may be used alone, or two or more types may be mixed and used. Moreover, when mixing and using two or more types of cross-linking aids, the mixing ratio may be appropriately adjusted depending on the purpose.
  • the amount of the cross-linking aid used is not particularly limited, but is preferably 0.01 to 3.00 parts by weight, more preferably 0.03 to 1.50 parts by weight, based on 100 parts by weight of the resin particles. More preferably 0.05 to 1.00 parts by weight. When the amount of the cross-linking aid used is 0.01 part by weight or more with respect to 100 parts by weight of the resin particles, it exhibits a sufficient effect as the cross-linking aid.
  • the oxygen concentration in the container and the amount of dissolved oxygen in the dispersion are lowered in order to increase the cross-linking efficiency of P3HA.
  • Methods for lowering the oxygen concentration in the container and the dissolved oxygen content in the dispersion include replacing the gas in the container and the gas dissolved in the dispersion with an inorganic gas such as carbon dioxide and nitrogen; Evacuate the gas inside.
  • a dispersing aid may be used in order to improve the effect of suppressing mutual adhesion between resin particles.
  • dispersion aids include anionic surfactants such as sodium alkanesulfonate, sodium alkylbenzenesulfonate, and sodium ⁇ -olefinsulfonate.
  • anionic surfactants such as sodium alkanesulfonate, sodium alkylbenzenesulfonate, and sodium ⁇ -olefinsulfonate.
  • One type of these dispersing aids may be used alone, or two or more types may be mixed and used.
  • the mixing ratio may be appropriately adjusted depending on the purpose.
  • the amount of the dispersion aid used is not particularly limited, but is preferably 0.001 to 0.500 parts by weight, more preferably 0.010 to 0.200 parts by weight, relative to 100 parts by weight of the resin particles. . In order to further improve the effect of suppressing mutual adhesion between resin particles, it is preferable to use the dispersant and the dispersing aid together.
  • a plasticizer may be used in this manufacturing method. By using a plasticizer, it is possible to obtain expanded beads having a high expansion ratio and flexibility.
  • the plasticizer used in this production method or the plasticizer preferably used includes the above [2. poly(3-hydroxyalkanoate)-based foamed particles], plasticizers described in the section (Additives).
  • the amount of the plasticizer used is not particularly limited, but it is preferably more than 0 parts by weight and 20 parts by weight or less, more preferably 1 part by weight to 15 parts by weight, and 1 part by weight to 10 parts by weight with respect to 100 parts by weight of the resin particles. Part is more preferred.
  • the resin particles used may already contain a plasticizer.
  • the total amount of the plasticizer content in the resin particles and the amount of the plasticizer used in the dispersing step preferably satisfies the above range.
  • the temperature raising-pressurization step is preferably performed after the dispersing step, and the holding step is preferably performed after the temperature raising-pressurization step.
  • the (a) constant temperature in the heating-pressurizing step and the holding step may be referred to as the foaming temperature
  • the (b) constant pressure may be referred to as the foaming pressure.
  • the foaming temperature cannot be defined unconditionally because it varies depending on the type of P3HA, the type of foaming agent, the desired foaming ratio of the foamed particles, and the like.
  • the foaming temperature is, for example, preferably 100.0°C to 140.0°C, more preferably 110.0°C to 135.0°C, and more preferably 115.0°C to 133.0°C.
  • the expansion temperature is 100° C. or higher, there is a tendency to obtain expanded beads with a high expansion ratio.
  • the foaming temperature is 140° C. or less, there is no fear of hydrolysis of the resin particles in the container.
  • the rate at which the temperature is raised to the desired foaming temperature (hereinafter sometimes referred to as temperature raising rate) is preferably 1.0° C./min to 3.0° C./min. 5° C./min to 3.0° C./min is more preferable. If the heating rate is 1.0° C./min or more, the productivity is excellent. On the other hand, if the heating rate is 3.0° C./min or less, impregnation of the foaming agent into the resin particles and reaction between the cross-linking agent and P3HA will not be insufficient during the heating.
  • the foaming pressure is preferably 1.0 MPa to 10.0 MPa (gauge pressure), more preferably 2.0 MPa to 5.0 MPa (gauge pressure), and more preferably 2.5 MPa to 4.0 MPa. If the expansion pressure is 1.0 MPa (gauge pressure) or more, expanded beads with a high expansion ratio can be obtained.
  • the releasing step is preferably carried out after the heating-pressurizing step or after the holding step.
  • the expulsion step can cause the resin particles to expand, resulting in expanded particles.
  • area under pressure lower than the foaming pressure intends “area under pressure lower than the foaming pressure” or “space under pressure lower than the foaming pressure”, and “atmosphere at pressure lower than the foaming pressure”. It can also be called “lower”.
  • the region of pressure lower than the foaming pressure is not particularly limited as long as the pressure is lower than the foaming pressure, and may be, for example, a region under atmospheric pressure.
  • the dispersion In the ejection process, when the dispersion is ejected to a region with a pressure lower than the foaming pressure, the dispersion is passed through an orifice with a diameter of 1 mm to 5 mm for the purpose of adjusting the flow rate of the dispersion and reducing the variation in expansion ratio of the resulting expanded beads. can also be emitted.
  • the low-pressure region space
  • the low-pressure region may be filled with saturated steam for the purpose of improving foamability.
  • a detergent may be used after foaming the resin particles.
  • the cleaning agent include warm water and sodium hexametaphosphate.
  • an antistatic agent may be used after foaming the resin particles.
  • Antistatic agents include, for example, coconut oil fatty acid diethanolamide.
  • the present expanded beads can be obtained by the production methods described in (r1) to (r3) below: (r1)
  • the resin particles obtained in the above (resin particle preparation step) are placed in a pressure vessel, and a foaming agent is pressurized into the pressure vessel without using an aqueous dispersion medium.
  • the resin particles containing the foaming agent are obtained by raising the temperature of the pressure-resistant container as necessary and holding it.
  • the resin particles containing the foaming agent are transferred to the pressure container or another pressure container and heated by a heating means such as steam to remove the foaming agent.
  • a heating means such as steam
  • expanding the resin particles to obtain expanded particles (r3)
  • a cross-linking agent and a foaming agent are pressurized into the melt-kneading device, and the cross-linking agent and the foaming agent are mixed. Adjust the resin composition containing. Then, the resin composition is discharged from a nozzle of a die provided in a melt-kneading device, and at the same time as the discharge, the resin composition is foamed and cut by a cutting device to obtain expanded particles.
  • the pressure when the foaming agent is injected into the pressure vessel is preferably 0.01 MPa (gauge pressure) to 10.00 MPa (gauge pressure), and 0.03 MPa (gauge pressure) to 5.00 MPa (gauge pressure). pressure) is more preferred.
  • the temperature in the pressure vessel when heating the resin particles containing the foaming agent with steam or the like is preferably 100°C to 150°C, more preferably 105°C to 145°C.
  • the pressure when the crosslinking agent and the foaming agent are injected into the melt-kneading device is preferably 3 MPa (gauge pressure) to 30 MPa (gauge pressure), and 5 MPa (gauge pressure) to 15 MPa (gauge pressure). ) is more preferred.
  • expanded beads having a desired apparent density may not be obtained only by the expansion step.
  • the method for producing expanded beads may further include a two-step expansion step of further expanding the expanded beads obtained in the expansion step.
  • the two-stage expansion step is not particularly limited as long as the expanded beads obtained in the expansion step are further expanded to obtain expanded beads having an apparent density even smaller than that of the expanded beads obtained in the expansion step.
  • Examples of the two-stage expansion process include the following aspects: (s1) supplying expanded particles obtained in the expansion process into a container; (s2) introducing air or an inorganic gas such as carbon dioxide into the container; (s3) By (s2), the foamed particles are impregnated with the inorganic gas, and the pressure inside the foamed particles is raised above normal pressure; (s4) After that, the foamed The particles are further expanded by heating with steam or the like to obtain expanded particles having a desired apparent density.
  • the expanded beads obtained in the two-step expansion process are sometimes called two-step expanded beads. Further, when the two-step expansion process is performed, the expansion process may be referred to as a one-step expansion process, and the expanded beads obtained in the one-step expansion process may be referred to as one-step expanded beads.
  • the internal pressure of the expanded beads in the two-stage expansion process is preferably 0.15 MPa to 0.60 MPa (absolute pressure), more preferably 0.20 MPa to 0.50 MPa (absolute pressure).
  • the temperature in the container when the expanded particles are impregnated with the inorganic gas is preferably 10°C to 90°C, more preferably 20°C to 90°C, and 30°C. ⁇ 90°C is more preferred, and 40°C to 90°C is even more preferred.
  • the pressure of steam or the like for heating the expanded beads (hereinafter sometimes referred to as "two-step expansion pressure") varies depending on the properties of the expanded beads used and the desired apparent density. , cannot be defined unconditionally.
  • the two-stage foaming pressure is preferably 0.01 MPa to 0.17 MPa (gauge pressure), more preferably 0.03 MPa to 0.11 MPa (gauge pressure).
  • the gel fraction of the two-stage expanded beads is preferably the same as the gel fraction of the expanded beads. That is, as the gel fraction of the two-stage expanded beads, the description in the above section (gel fraction) can be used as appropriate.
  • a poly(3-hydroxyalkanoate)-based expanded molded article according to one embodiment of the present invention comprises poly(3-hydroxyalkanoate)-based expanded particles according to one embodiment of the present invention.
  • a poly(3-hydroxyalkanoate)-based expanded molded article according to one embodiment of the present invention is obtained by molding the poly(3-hydroxyalkanoate)-based expanded particles according to one embodiment of the present invention. good too.
  • the poly(3-hydroxyalkanoate)-based expanded molded article according to one embodiment of the present invention may contain the poly(3-hydroxyalkanoate)-based expanded particles according to one embodiment of the present invention. With such a configuration, it is possible to provide a poly(3-hydroxyalkanoate)-based foamed molded article having a high expansion ratio.
  • the method for producing the present foamed molded article is not particularly limited, and known methods can be applied. Examples include, but are not limited to, the following in-mold foam molding methods (A) to (D): (A) pressurizing the expanded beads with an inorganic gas in a container to impregnate the expanded beads with the inorganic gas, apply a predetermined internal pressure to the expanded beads, and then fill the expanded beads into a mold; a method of heating with steam; (B) A method of filling the foamed particles into a mold, compressing the mold so as to reduce the volume in the mold by 10% to 75%, and heating with steam; (C) A method of compressing the present expanded beads under gas pressure, filling them into a mold, and heating with steam using the resilience of the expanded beads; (D) A method in which the present expanded particles are filled into a mold and heated with steam without any particular pretreatment.
  • the pressure of steam for heating the foamed beads (hereinafter sometimes referred to as molding pressure) varies depending on the characteristics of the foamed beads used, etc., and cannot be generally defined.
  • the molding pressure is preferably 0.05 MPa to 0.30 MPa (gauge pressure), more preferably 0.08 MPa to 0.25 MPa (gauge pressure), and still more preferably 0.10 MPa to 0.20 MPa (gauge pressure).
  • At least one selected from the group consisting of air, nitrogen, oxygen, carbon dioxide, helium, neon, argon, etc. can be used as the inorganic gas in the method (A) of the method for producing the present foamed molded product.
  • air and/or carbon dioxide are preferred.
  • the temperature in the container when impregnating the foamed particles with the inorganic gas in the method (A) of the method for producing the foamed molded article is preferably 10° C. to 90° C., more preferably 20° C. to 90° C., and 30° C. °C to 90°C is more preferred, and 40°C to 90°C is even more preferred.
  • the internal pressure of the expanded beads in the method (A) is preferably 0.10 MPa to 0.30 MPa (absolute pressure), more preferably 0.11 MPa to 0.25 MPa (absolute pressure), 0.12 MPa to 0.20 MPa (absolute pressure) is more preferable.
  • the internal pressure of the expanded beads may be measured according to the measuring method described in the examples below.
  • the expansion ratio of the foamed molded product is not limited, but is preferably 25 times or more, more preferably 27 times or more, more preferably 30 times or more, and even more preferably 35 times or more.
  • the upper limit of the expansion ratio of the foamed molded article is not limited, but may be, for example, 50 times, 40 times, or 35 times. With this configuration, it is possible to provide a poly(3-hydroxyalkanoate)-based foamed molded article having well-balanced mechanical strength and light weight.
  • An embodiment of the present invention may have the following configuration.
  • Poly(3-hydroxyalkanoate)-based foamed particles comprising a poly(3-hydroxyalkanoate)-based resin (A) and a nonionic water-soluble polymer (B),
  • the content of the ionic water-soluble polymer (B) is 0.10 parts by weight to 5.00 parts by weight with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A).
  • nonionic water-soluble polymer (B) is at least one selected from the group consisting of polyalkylene oxides, polyvinyl alcohols, and cellulose derivatives.
  • B nonionic water-soluble polymer
  • the content of the nonionic water-soluble polymer (B) is 0.10 parts by weight to 1.00 parts by weight with respect to 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A).
  • the poly(3-hydroxyalkanoate) resin (A) is poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxy butyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), and poly(3-hydroxybutyrate-co-
  • the expanded poly(3-hydroxyalkanoate)-based particles according to any one of [1] to [5], which is at least one selected from the group consisting of 4-hydroxybutyrate).
  • the poly(3-hydroxyalkanoate) resin (A) is a copolymer having 3-hydroxybutyrate units and comonomer units, The ratio of 3HB units to comonomer units in 100 mol% of all repeating units in the copolymer (3HB units/comonomer units) is 99/1 (mol%/mol%) to 85/15 (mol%/mol%). ), the expanded poly(3-hydroxyalkanoate) particles according to any one of [1] to [6].
  • poly(3-hydroxyalkanoate)-based expanded particles according to any one of [1] to [10], which have a gel fraction of 30% by weight or more.
  • a poly(3-hydroxyalkanoate)-based expanded molded article comprising the poly(3-hydroxyalkanoate)-based expanded particles according to any one of [1] to [11].
  • Water-soluble polymer Water-soluble polymer-1: nonionic polyvinyl alcohol (Kuraray Poval PVA-205 manufactured by Kuraray Co., Ltd., degree of saponification 87.0 mol% to 89.0 mol%, degree of polymerization 500, hydrophobic group is acetic acid group)
  • Foam control agent Foam control agent: Talc (Talcan powder PK-S manufactured by Hayashi Kasei Co., Ltd.).
  • Crystal nucleating agent Crystal nucleating agent: pentaerythritol (Mitsubishi Chemical Co., Ltd., Neulyzer P).
  • Lubricant-1 behenic acid amide (Crodamide BR manufactured by CRODA), Lubricant-2: Erucamide (Crodamide ER manufactured by CRODA).
  • Dispersant Tertiary calcium phosphate (manufactured by Taihei Kagaku Sangyo Co., Ltd.).
  • Dispersing aid Sodium alkylsulfonate (Latemul PS manufactured by Kao Corporation).
  • crosslinking agent t-butylperoxy-2-ethylhexyl carbonate (content: 97%) (PERBUTYL E manufactured by NOF Corporation).
  • Cleaning agent sodium hexametaphosphate (manufactured by WUXI LOTUS ESSENCE).
  • Antistatic agent coconut oil fatty acid diethanolamide (Profane 128 Extra, manufactured by Sanyo Kasei Co., Ltd.).
  • the high-temperature side calorific value of the poly(3-hydroxyalkanoate)-based foamed particles was measured using a differential scanning calorimeter (DSC7020 manufactured by Hitachi High-Tech Science Co., Ltd.). The specific operating procedures were as follows (1) to (5): (1) Weigh about 5 mg of poly(3-hydroxyalkanoate) foamed particles; (2) Poly(3-hydroxy The temperature of the poly(3-hydroxyalkanoate)-based expanded particles was increased from 10° C. to 190° C.
  • the method for measuring the average cell diameter of the expanded beads was as follows (1) to (5): (1) Using a razor (high-stainless steel double-edged blade manufactured by Feather Co.), cut so as to pass through the center of the expanded beads.
  • the method of measuring the magnification of the poly(3-hydroxyalkanoate)-based foamed molded product was as follows (1) to (4): (1) Digital vernier calipers (manufactured by Mitutoyo) The length (mm) in the longitudinal direction (mm), the lateral direction (mm), and the thickness direction of the poly(3-hydroxyalkanoate)-based foamed molded product was measured, and the poly(3-hydroxyalkanoate)-based foamed product was measured.
  • the raw materials for poly(3-hydroxyalkanoate) expanded particles (P3HA-1 to P3HA-7) were produced by the following method.
  • P3HA-1 Production of P3HA-1 P3HA-1 was produced by the method described in International Publication No. 2018/070492. At this time, 1.00 parts by weight of water-soluble polymer-1 (Kuraray Poval PVA-205 manufactured by Kuraray Co., Ltd.) was used for 100 parts by weight of P3HA.
  • P3HA-2 Production of P3HA-2 P3HA-2 was produced by the method described in International Publication No. 2018/070492. At this time, 1.00 parts by weight of water-soluble polymer-2 (Pronon #208 manufactured by NOF CORPORATION) was used instead of water-soluble polymer-1 for 100 parts by weight of P3HA.
  • P3HA-3 P3HA-3 was produced by the method described in International Publication No. 2018/070492. At this time, with respect to 100 parts by weight of P3HA, instead of water-soluble polymer-1, 1.00 parts by weight of water-soluble polymer-2 (Pronon #208 manufactured by NOF Corporation) and water-soluble polymer-3 (Metolose MCE-4000 manufactured by Shin-Etsu Chemical Co., Ltd.) was used at 0.50 parts by weight.
  • P3HA-4 P3HA-4 was produced by the method described in International Publication No. 2018/070492. At this time, 1.00 parts by weight of water-soluble polymer-4 (Emulsogen EPN 287 manufactured by CLARIANT) was used instead of water-soluble polymer-1 for 100 parts by weight of P3HA.
  • P3HA-5 Production of P3HA-5 P3HA-5 was produced by the method described in International Publication No. 2018/070492. At this time, 1.00 parts by weight of water-soluble polymer-5 (Emulsogen EPA 073 manufactured by CLARIANT) was used instead of water-soluble polymer-1 for 100 parts by weight of P3HA.
  • P3HA-6 was produced by the method described in International Publication No. 2018/070492. At this time, 0.05 parts by weight of water-soluble polymer-1 (Kuraray Poval PVA-205 manufactured by Kuraray Co., Ltd.) was used with respect to 100 parts by weight of P3HA.
  • P3HA-7 Production of P3HA-7 P3HA-7 was produced by fluid bed drying instead of spray drying described in International Publication No. 2018/070492. At this time, no water-soluble polymer was used.
  • P3HA-8 P3HA-8 was produced by the method described in International Publication No. 2018/070492. At this time, 0.50 parts by weight of water-soluble polymer-4 (Emulsogen EPN 287 manufactured by CLARIANT) was used instead of water-soluble polymer-1 for 100 parts by weight of P3HA.
  • Example 1 (Production of poly(3-hydroxyalkanoate) resin particles) Using P3HA-1, 100.0 parts by weight of P3HA-1, 0.10 parts by weight of cell control agent, 1.0 parts by weight of crystal nucleating agent, 0.10 parts by weight of lubricant-1, and 0.10 parts by weight of lubricant-2 It was weighed to 0.10 parts by weight and mixed using a super mixer (SMV (G)-100 manufactured by Kawata Co., Ltd.). The mixture was melt-kneaded using a twin-screw extruder (TEM-26SX manufactured by Toshiba Machine Co., Ltd.) at a cylinder setting temperature of 130° C.
  • SMV super mixer
  • TEM-26SX twin-screw extruder
  • the obtained poly(3-hydroxyalkanoate) resin particles had a weight per particle of 2.0 mg, a length/diameter of 1.5, a Tmp of 145°C, and a melting end temperature of 152°C.
  • the resin particles had an MFR of 2.2 g/10 min measured at a measurement temperature of 160° C. and a load of 5 kgf.
  • the obtained poly(3-hydroxyalkanoate)-based expanded beads had an expansion ratio of 21 times, a gel fraction of 69% by weight, a weight per particle of 2.0 mg, a length/diameter of 0.9, and a cell It had a diameter of 260 ⁇ m and a closed cell ratio of 94%.
  • Tables 2 and 3 summarize the properties of poly(3-hydroxyalkanoate)-based expanded particles.
  • poly(3-hydroxyalkanoate)-based foamed molded product (Production of poly(3-hydroxyalkanoate)-based foamed molded product)
  • the obtained poly(3-hydroxyalkanoate) foamed particles are placed in a pressure vessel heated to 80° C. and pressurized with air to reduce the internal pressure of the poly(3-hydroxyalkanoate) foamed particles. 0.15 MPa (absolute pressure).
  • the foamed particles were filled into a mold having a length of 370 mm, a width of 320 mm and a thickness of 60 mm of a molding machine (EP-900L-M5 manufactured by Daisen).
  • the poly(3-hydroxyalkanoate)-based foamed particles are heated with steam at a pressure of 0.15 MPa (gauge pressure) for 5 to 10 seconds to obtain a poly(3-hydroxyalkanoate)-based foamed molded product. After that, the foam molded article was dried at 75°C. Tables 2 and 3 summarize the evaluation results of poly(3-hydroxyalkanoate)-based foamed moldings.
  • Examples 2 to 5 Comparative Examples 1 to 3
  • Poly(3-hydroxyalkanoate)-based resin was prepared in the same manner as in Example 1 except that the poly(3-hydroxyalkanoate)-based resin and the aqueous polymer used were changed as shown in Tables 2 and 3.
  • Particles, poly(3-hydroxyalkanoate)-based foamed particles, and poly(3-hydroxyalkanoate)-based foamed moldings were produced and evaluated in the same manner as in Example 1. The evaluation results are summarized in Tables 2 and 3.
  • Tables 1 to 3 reveal the following: (1) From Examples 1 to 5, poly(3-hydroxyalkanoate)-based expanded particles were produced using poly(3-hydroxyalkanoate)-based resin and a small amount of nonionic water-soluble polymer. For example, it can be seen that poly(3-hydroxyalkanoate)-based expanded particles with a high expansion ratio can be obtained by a single expansion treatment; (2) In Comparative Example 1, poly(3-hydroxyalkanoate)-based expanded particles were produced using a poly(3-hydroxyalkanoate)-based resin and a small amount of an ionic water-soluble polymer.
  • the present invention is used for packaging cushioning materials (for example, refrigerators, freezers, air conditioner main bodies and their outdoor units, washing machines, air purifiers, humidifiers, rice cookers, microwave ovens, ovens, toasters, fans, storage battery units, etc. cushioning materials for packaging household electrical appliances, cushioning materials for packaging automotive goods such as transmissions, roofs, hoods, doors, batteries, engines, etc.), automotive parts (e.g., bumper core materials, headrests, luggage boxes, tool boxes, floor spacers, seat cores material, child seat core material, sun visor core material, knee pads, etc.), heat insulating materials (e.g. constant temperature storage containers, constant temperature transport containers, etc.), casting model applications, agricultural product boxes, fish boxes, building materials and civil engineering materials, etc. can be suitably used in the field of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

1回の発泡処理によって得られる発泡倍率の高いポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体を提供することを課題とする。非イオン性水溶性高分子を含むポリ(3-ヒドロキシアルカノエート)組成物からなる、ポリ(3-ヒドロキシアルカノエート)系発泡粒子および発泡成形体を提供する。

Description

ポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
 本発明の一実施形態は、ポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体に関する。
 石油由来プラスチックは毎年大量に廃棄されており、これらの大量廃棄物による埋立て処分場の不足および環境汚染が深刻な問題として取り上げられている。また近年、マイクロプラスチックが、海洋環境において大きな問題になっている。このため、(a)海、土等の環境中、並びに(b)埋立て処分場およびコンポスト中で、微生物の作用によって分解される生分解性プラスチックが注目されている。
 生分解性プラスチックは、(a)環境中で利用される農林水産業用資材、並びに(b)使用後の回収および再利用が困難な食品容器、包装材料、衛生用品、ゴミ袋等、への幅広い応用を目指して、開発が進められている。更に生分解性プラスチックから成る発泡体は、包装用緩衝材、農産箱、魚箱、自動車部材、建築材料、土木材料等での使用が期待されている。
 前記生分解性プラスチックの中でも、優れた生分解性およびカーボンニュートラルの観点から、植物原料由来のプラスチックとしてポリ(3-ヒドロキシアルカノエート)(以下、「P3HA」と称する場合がある)が注目されている。
 従来から、生分解性プラスチックに関する技術の開発が、精力的に進められている。例えば、特許文献1には、微生物から生産される脂肪族ポリエステル系共重合体に、ポリアルキレンオキシドを特定の割合で混合してなる樹脂組成物が開示されている。より具体的に、特許文献1には、微生物から生産される脂肪族ポリエステル系共重合体に、ポリアルキレンオキシドを特定の割合で混合することにより、ガラス転移点が低く、低温での靭性が高い生分解性樹脂が得られることが開示されている。
 特許文献2には、生分解性を有するポリ(3-ヒドロキシアルカノエート)系樹脂を主成分とする樹脂組成物からなる粒子を発泡してなる無架橋の予備発泡粒子、および、当該予備発泡粒子を用いた型内発泡成形体が開示されている。より具体的に、特許文献2には、ポリ(3-ヒドロキシアルカノエート)系樹脂と、特定のグリセリントリエステルと、を含む樹脂組成物からなる粒子を特定の条件で発泡させることによって、発泡倍率および独立気泡率が高い無架橋のポリ(3-ヒドロキシアルカノエート)系予備発泡粒子および型内発泡成形体が得られることが開示されている。
 特許文献3には、均一な空孔構造を有する脂肪族ポリエステル発泡体および脂肪族ポリエステル多孔質粒子、並びに、それらの製造方法が開示されている。より具体的に、特許文献3には、脂肪族ポリエステルを、ポリオールの存在下で発泡させることによって、所望の発泡倍率を有し、かつ、空孔率が高く、孔径のバラツキが小さい、生分解性を有する脂肪族ポリエステル発泡体または脂肪族ポリエステル多孔質粒子が得られることが開示されている。
日本国公開特許公報特開2010-229407号公報 日本国公開特許公報特開2012-241166号公報 国際公開第2014/136746号
 しかしながら、上述のような従来技術は、1回の発泡処理によって得られるポリ(3-ヒドロキシアルカノエート)系発泡粒子の発泡倍率が十分に高いとは言えず、発泡倍率の観点から、改善の余地がある。
 以上のような状況に鑑み、本発明の一実施形態の目的は、1回の発泡処理によって得られる発泡倍率の高いポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体を提供することにある。
 すなわち、本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子は、
 ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、および、非イオン性の水溶性高分子(B)を含み、
 前記非イオン性の水溶性高分子(B)の含有量は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して0.10重量部~5.00重量部であり、
 前記ポリ(3-ヒドロキシアルカノエート)系発泡粒子の独立気泡率が、90%以上である。
 本発明の一態様によれば、1回の発泡処理によって得られる発泡倍率の高いポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体を提供することができる。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
 〔1.本発明の一実施形態の技術的思想〕
 特許文献1には、脂肪族ポリエステル系共重合体にポリアルキレンオキシドを混合した樹脂組成物を発泡粒子にする際の、ポリアルキレンオキシドが発泡粒子の発泡倍率に与える効果に関する記載はない。なお、特許文献1に記載の技術では、脂肪族ポリエステル系共重合体100重量部に対して、ポリアルキレンオキシドを5.26重量部以上使用した実施例が開示されている。しかし、樹脂以外の副成分はできる限り減らすことが好ましく、この点で改善の余地がある。
 特許文献2に記載の技術は、無架橋の発泡粒子に関する技術である。特許文献2は、特定のグリセリントリエステルを多量に使用すること、または、MFRが高いポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合体(PHBH)と少量のグリセリントリエステルを使用することにより、発泡倍率が向上することが開示されている。しかし、樹脂以外の副成分はできる限り減らすことが好ましく、この点で改善の余地がある。また、MFRが高いPHBHを使用すると、成形性が悪く、プロセスウインドが狭くなり、この点で改善の余地がある。また、特許文献2に記載の技術では、可塑剤を使用し、この場合には発泡成形体の強度が低下し、この点でも改善の余地がある。
 特許文献3に記載の技術では、得られる脂肪族ポリエステル発泡体または多孔質粒子の独立孔空孔率が低く、これらを型内発泡成形等の二次加工に適用することができないことを、本発明者は独自に見出した。
 鋭意検討の結果、本発明者らは、特定量の非イオン性の水溶性高分子を含むポリ(3-ヒドロキシアルカノエート)系発泡粒子であれば、1回の発泡処理によって発泡倍率が高くなるため、2回目の発泡処理を必ずしも必要としないことを見出し、本発明を完成させるに至った。なお、2回目の発泡処理が不要となれば、発泡粒子の製造工程を簡略化できるのみならず、発泡粒子の製造コストを低減できるという、大きな利点がある。
 〔2.ポリ(3-ヒドロキシアルカノエート)系発泡粒子〕
 本明細書において、「ポリ(3-ヒドロキシアルカノエート)系発泡粒子」を「発泡粒子」と称する場合があり、「本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子」を「本発泡粒子」と称する場合があり、「ポリ(3-ヒドロキシアルカノエート)系発泡成形体」を「発泡成形体」と称する場合があり、「本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡成形体」を「本発泡成形体」と称する場合がある。
 本発泡粒子は、ポリ(3-ヒドロキシアルカノエート)系樹脂組成物からなるポリ(3-ヒドロキシアルカノエート)系樹脂粒子を発泡して得られる発泡粒子である。本明細書において、「ポリ(3-ヒドロキシアルカノエート)系樹脂組成物」を「樹脂組成物」と称する場合があり、「ポリ(3-ヒドロキシアルカノエート)系樹脂粒子」を「樹脂粒子」と称する場合がある。
 本明細書において、X単量体に由来する繰り返し単位を「X単位」と称する場合がある。繰り返し単位は、構成単位ともいえる。
 本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、および、非イオン性の水溶性高分子(B)を含む。前記非イオン性の水溶性高分子(B)の含有量は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して0.10重量部~5.00重量部であり、ポリ(3-ヒドロキシアルカノエート)系発泡粒子の独立気泡率が、90%以上である。
 本発泡粒子は、上述の構成を有するため、高い発泡倍率を達成できるという利点を有する。本発泡成形体は、本発泡粒子を公知の方法によって成形することにより、製造され得る。
 (2-1.ポリ(3-ヒドロキシアルカノエート)系樹脂(A))
 本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子は、成分としてポリ(3-ヒドロキシアルカノエート)系樹脂(A)を含む。本明細書において、「ポリ(3-ヒドロキシアルカノエート)系樹脂(A)」を、「ポリ(3-ヒドロキシアルカノエート)」または「P3HA」と称する場合がある。以下では、当該成分について説明する。
 P3HAは、3-ヒドロキシアルカノエート単位を必須の構成単位(モノマー単位)として有する重合体である。本明細書において、「3-ヒドロキシアルカノエート」を「3HA」と称する場合もある。P3HAとしては、具体的には、下記一般式(1)で示される繰り返し単位を含む重合体が好ましい:
 [-CHR-CH-CO-O-]・・・(1)。
 一般式(1)中、RはC2n+1で表されるアルキル基を示し、nは1~15の整数を示す。Rとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等の直鎖または分岐鎖状のアルキル基が挙げられる。nとしては、1~10が好ましく、1~8がより好ましい。
 P3HAとしては、特に微生物から産生されるP3HAが好ましい。微生物から産生されるP3HAは、3HA単位が、全て(R)-3HAであるポリ[(R)-3HA]である。
 P3HAは、3HA単位(特に一般式(1)の繰り返し単位)を、P3HAの全繰り返し単位100モル%中、50モル%以上含むことが好ましく、70モル%以上含むことがより好ましく、80モル%以上含むことがさらに好ましい。また、繰り返し単位(モノマー単位)としては、3HA単位のみであってもよいし、3HA単位に加えて、3HA以外の単量体に由来する繰り返し単位(例えば、4-ヒドロキシアルカノエート単位等)を含んでいてもよい。
 3HA単位の具体例としては、3-ヒドロキシブチレート単位、3-ヒドロキシバレレート単位および3-ヒドロキシヘキサノエート単位などが挙げられる。3-ヒドロキシブチレートは、融点および引張強度がプロピレンに近い。それ故、本発明の一実施形態に係るP3HAは、3-ヒドロキシブチレート単位を含むことが好ましい。本明細書において、「3-ヒドロキシブチレート」を「3HB」と称する場合もある。
 P3HAが2種以上の繰り返し単位を含む場合、含有量が最も多い繰り返し単位以外の繰り返し単位の由来となるモノマーをコモノマーと称する。本明細書において、「コモノマーに由来する繰り返し単位」を「コモノマー単位」と称する場合もある。
 コモノマーとしては、特に限定されないが、3-ヒドロキシヘキサノエート(以下、3HHと称する場合がある)または4-ヒドロキシブチレート(以下、4HBと称する場合がある)などが好ましい。
 P3HAは、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、およびポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)からなる群より選択される1種以上であることが好ましい。加工性および発泡成形体の物性等の観点から、これらの中では、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、およびポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)がより好ましい。
 P3HAは、3HB単位を必須の繰り返し単位(構成単位)として有し、かつコモノマー単位を有することが好ましい。すなわち、P3HAは、3HB単位とコモノマー単位とを有する共重合体であることが好ましい。
 より具体的に、P3HAは、3-ヒドロキシブチレート単位とコモノマー単位とを有する共重合体であり、共重合体における全繰り返し単位100モル%中の3HB単位とコモノマー単位との比率(3HB単位/コモノマー単位)が、99/1(mol%/mol%)~85/15(mol%/mol%)であることが好ましい。発泡倍率をより高くする観点から、共重合体における全繰り返し単位100モル%中の3HB単位とコモノマー単位との比率(3HB単位/コモノマー単位)は、97/3(mol%/mol%)~87/13(mol%/mol%)がより好ましく、95/5(mol%/mol%)~89/11(mol%/mol%)がさらに好ましい。
 このような各モノマー単位の比率を有するP3HAは、当業者に公知の方法、例えば国際公開WO2009/145164号に記載の方法に準拠して作製することができる。P3HA中の各モノマー単位の比率は、当業者に公知の方法、例えば国際公開2013/147139号に記載の方法により求めることができる。
 本発明の一実施形態において、P3HAの製造方法は特に限定されず、化学合成による製造方法であってもよいし、微生物による製造方法であってもよい。中でも、微生物による製造方法が好ましい。微生物によるP3HAの製造方法については、公知の方法を適用できるが、培養工程、精製工程、乾燥工程を含むことが好ましい。
 培養工程でP3HAを生産する微生物を培養する方法は特に限定されず、例えば、国際公開第WO2019/142717号に記載の方法を使用することができる。
 3HBと、その他のヒドロキシアルカノエートとのコポリマー生産菌として、具体的には、P3HB3HVおよびP3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)等が挙げられる。特に、P3HB3HHに関し、P3HA合成酵素群の遺伝子を導入することでP3HB3HHの生産性を向上させたアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))等がより好ましい。P3HAの製造方法では、アルカリゲネス・ユートロファス AC32株等の微生物を適切な条件で培養して菌体内にP3HB3HHを蓄積させた微生物菌体が好適に用いられる。またコポリマー生産菌に関して、前記以外にも、生産したいP3HAに合わせて、各種P3HA合成関連遺伝子を導入した遺伝子組み換え微生物を用いても良い。また、微生物(菌)の培養条件についても、生産したいP3HAに合わせて、基質の種類を含む様々な培養条件の最適化をすればよい。
 精製工程で微生物培養により得られたP3HAを精製する方法は特に限定されず、公知の物理学的処理、及び/又は、化学的処理、及び/又は、生物学的処理を適用することができる。例えば、国際公開第2010/067543号に記載の精製方法を好ましく適用できる。
 乾燥工程で微生物培養、精製により得られたP3HAを乾燥する方法は特に限定されず、噴霧乾燥や流動層乾燥や気流乾燥や回転乾燥や振動乾燥やバンド乾燥を適用することができ、例えば、国際公開2018/070492号に記載の乾燥方法を好ましく適用できる。
 乾燥工程は
 (a)P3HA100重量部および後述する非イオン性の水溶性高分子0.10重量部~5.00重量部を含む水性懸濁液Aを調製する工程と、
 (b)工程(a)で調製した水性懸濁液Aを噴霧乾燥させる工程と、を含んでいてもよい。
 工程(a)、および工程(b)を含むことにより、P3HA100重量部に対し、非イオン性の水溶性高分子0.10重量部~5.00重量部を含む、P3HAが得られる。
 本発明のP3HAの製造方法における工程(b)では、工程(a)で調製した水性懸濁液Aを噴霧乾燥する。噴霧乾燥の方法としては、例えば、水性懸濁液Aを微細な液滴の状態として乾燥機内に供給し、該乾燥機内で熱風と接触させながら乾燥する方法が挙げられる。水性懸濁液Aを微細な液滴の状態で乾燥機内に供給する方法(アトマイザー)は、特に限定されず、回転ディスクを用いる方法、ノズルを用いる方法等の公知の方法が挙げられる。乾燥機内における液滴と熱風の接触方式は、特に限定されず、並流式、向流式、これらを併用する方式などが挙げられる。
 工程(b)における噴霧乾燥の際の乾燥温度は、水性懸濁液Aの液滴から水性媒体の大半を除去できる温度であればよく、目的とする含水率まで乾燥させることができ、なおかつ品質悪化(分子量低下、色調低下)や溶融を極力生じさせないような条件で適宜設定できる。また、乾燥機内の熱風の風量についても、例えば乾燥機のサイズ等に応じて適宜設定できる。
 本発明の一実施形態に係るP3HA製造方法は、工程(b)の後に、得られたP3HAをさらに乾燥させる工程を含んでいても良い。また、本発明の一実施形態に係るP3HA製造方法は、その他の工程(例えば、水性懸濁液Aに各種添加物を添加する工程等)を含んでいても良い。
 本発明の一実施形態に係るP3HA製造方法によると、高い生産性で熱安定性に優れた乾燥状態のP3HAを得ることができる。本発明の一実施形態に係るP3HA製造方法によると、特に乾燥工程のコスト(設備費、ユーティリティ)を下げることが可能となる。また、本発明の一実施形態に係るP3HA製造方法によると、粉体(P3HA粉体)の状態でP3HAを取得することが可能であるため、ハンドリング性に優れたP3HAを高い効率で得ることができる。
 (2-2.非イオン性の水溶性高分子(B))
 本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子は、成分として非イオン性の水溶性高分子(B)を含む。以下では、当該成分について説明する。
 本発明における非イオン性の水溶性高分子(B)とは、水に溶けた際に電離してイオンにならない高分子のことである。
 本発泡粒子における非イオン性の水溶性高分子(B)の含有量は、上述したP3HA100重量部に対して、0.10重量部~5.00重量部であり、好ましくは0.10重量部~4.00重量部であり、より好ましくは0.10重量部~3.00重量部であり、より好ましくは0.10重量部~2.00重量部であり、より好ましくは、0.10重量部~1.50重量部である。なお、これら全ての数値範囲において、下限値は、0.10に限定されず、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90、または、1.00であってもよい。当該構成であれば、1回の発泡処理によって得られるポリ(3-ヒドロキシアルカノエート)系発泡粒子の発泡倍率を高めることができる。また、当該構成であれば、ポリ(3-ヒドロキシアルカノエート)系発泡粒子に含まれる非イオン性の水溶性高分子(B)の含有量を少なくすることができ、その結果、非イオン性の水溶性高分子(B)がポリ(3-ヒドロキシアルカノエート)系発泡粒子に及ぼす様々な影響を防ぐことができる。
 発泡粒子中の非イオン性の水溶性高分子(B)含有量を定量する方法に特に限定はない。発泡粒子中の非イオン性の水溶性高分子(B)含有量は、分析機関等で分析可能である。発泡粒子中の非イオン性の水溶性高分子(B)含有量は、例えば、以下の(1)~(4)の方法によって測定することができる:(1)発泡粒子20mgを重クロロホルム0.8ml中に溶解させる;(2)前記(1)で調製した重クロロホルム溶液中に、さらに内部標準として1,1,2,2-テトラクロロエタン20mgを加える;(3)(a)任意の量(例えば10mg)の非イオン性の水溶性高分子(B)(標品)と1,1,2,2-テトラクロロエタン20mgとを、重クロロホルム0.8mlに溶解させて調製した重クロロホルム溶液、および(b)前記(2)で調製した重クロロホルム溶液、の各々について、H-NMRにより、それら重クロロホルム溶液中に含まれる非イオン性の水溶性高分子(B)由来のNMRスペクトルを測定する;(4)非イオン性の水溶性高分子(B)(標品)を含む重クロロホルム溶液の測定結果を参照しつつ、得られた両NMRスペクトルから算出した非イオン性の水溶性高分子(B)由来のシグナル強度比に基づき、発泡粒子中の非イオン性の水溶性高分子(B)量を定量する。当該方法を分液法と称する場合もある。
 なお、架橋剤を使用して得られた発泡粒子(一部、架橋された構造を有し得る発泡粒子)は、有機溶媒に完全には溶解しない場合がある。架橋剤を使用して得られた発泡粒子を、「発泡粒子X」とも称する。発泡粒子X中の非イオン性の水溶性高分子(B)含有量については、架橋剤を使用しないこと以外は発泡粒子Xの製造方法と全く同じ条件で得られた発泡粒子(以下、「発泡粒子Y」と称する場合も有る。)を試料として、上述した分液法で測定して得られた発泡粒子Y中の非イオン性の水溶性高分子(B)含有量を、発泡粒子X中の非イオン性の水溶性高分子(B)含有量と見做す。
 非イオン性の水溶性高分子(B)は、親水基を有する。非イオン性の水溶性高分子(B)は、疎水基を更に有するものであることが好ましい。非イオン性の水溶性高分子(B)は親水基を有するので、当該非イオン性の水溶性高分子(B)であれば、発泡倍率を高くすることができるという利点を有する。一方、疎水基を有する非イオン性の水溶性高分子(B)であれば、樹脂粒子や発泡粒子からのブリードを抑制できるという利点を有する。当該構成であれば、発泡倍率の向上やP3HAとの相溶性の観点から好ましい。
 前記親水基としては、限定されず、オキシエチレン基、ヒドロキシ基、カルボキシ基、エーテル基等を挙げることができる。親水性と疎水性のバランスが取り易いという観点から、これらの中では、オキシエチレン基、ヒドロキシ基が好ましい。前記疎水基としては、限定されず、直鎖アルキル基、分岐アルキル基、オキシプロピレン基、フルオロアルキル基、アルキルシロキサン基等を挙げることができる。親水性と疎水性のバランスが取り易いという観点から、これらの中では、直鎖アルキル基、分岐アルキル基、オキシプロピレン基が好ましい。
 非イオン性の水溶性高分子(B)は、親水性ブロックと疎水性ブロックの組み合わせ、親水性の主鎖と疎水性の側鎖との組み合わせ、疎水性の主鎖と親水性の側鎖との組み合わせが挙げられる。
 非イオン性の水溶性高分子(B)は、生分解性の物質であることが好ましい。当該構成であれば、得られるP3HA系発泡粒子およびP3HA系発泡成形体が生分解性を有するため好ましい。なお、生分解性のある物質とは、OECD TG301に準じ、生分解性を有する物質のことである。
 前記生分解性の非イオン性の水溶性高分子(B)としては、限定されず、天然高分子、半合成高分子、合成高分子を挙げることができる。具体的には、天然高分子としては、デンプン、グアガム、カラギーナンキサンタンガム等が挙げられる。半合成高分子としては、セルロース誘導体、デンプン誘導体等が挙げられる。合成高分子としては、ポリアルキレンオキシド、ポリビニルアルコール、ポリアクリルアミド、ポリビニルピロリドン、ポリ-N-ビニルアセトアミド等が挙げられる。親水性と疎水性のバランスが取り易いという観点から、これらの中では、デンプン誘導体、セルロース誘導体、ポリビニルアルコール、ポリアルキレンオキシドが好ましい。
 非イオン性の水溶性高分子(B)は、ポリアルキレンオキシド、ポリビニルアルコール、およびセルロース誘導体からなる群より選ばれる少なくとも1つであることが好ましい。このとき、非イオン性の水溶性高分子(B)の含有量は、P3HA100重量部に対して0.10重量部~1.00重量部であることが好ましい。なお、当該数値範囲において、下限値は、0.10に限定されず、0.20、0.30、0.40、0.50、0.60、0.70、0.80、または、0.90であってもよい。当該構成であれば、1回の発泡処理によって得られるポリ(3-ヒドロキシアルカノエート)系発泡粒子の発泡倍率をより高めることができる。また、当該構成であれば、ポリ(3-ヒドロキシアルカノエート)系発泡粒子に含まれる非イオン性の水溶性高分子(B)の含有量をより少なくすることができ、その結果、非イオン性の水溶性高分子(B)がポリ(3-ヒドロキシアルカノエート)系発泡粒子に及ぼす様々な影響をより防ぐことができる。
 前記ポリアルキレンオキシドとしては、特に限定されず、例えば、市販品を用いることができる。市販品としては、例えば、Pluronic 10400(BASF社製)、Pluronic 10500(BASF社製)、Genapol PF80(Clariant社製)、ユニルーブDP60-600B(日油社製)、ユニルーブDP60-950B(日油社製)、プロノン208(日油社製)、エパンU105(第一工業製薬社製)、エパンU108(第一工業製薬社製)、エパン750(第一工業製薬社製)、Emulsogen EPN 287(CLARIANT製)、Emulsogen LCN 407(CLARIANT製)、ノイゲンTDS(第一工業製薬製)、DKS NL(第一工業製薬製)、ノイゲンSD(第一工業製薬製)等が挙げられる。
 前記ポリビニルアルコールとしては、特に限定されず、例えば、市販品を用いることができる。市販品としては、例えば、クラレポバールPVA-205(クラレ社製)、クラレポバールPVA-217(クラレ社製)、クラレポバールPVA-224(クラレ社製)、エクセバールRS-1713(クラレ社製)、エクセバールRS-1717(クラレ社製)、ゴーセノールGH-22(三菱ケミカル社製)、ゴーセノールGH-20R(三菱ケミカル社製)、ゴーセノールGH-17R(三菱ケミカル社製)、ゴーセノールGM-14R(三菱ケミカル社製)、ゴーセノールGL-05(三菱ケミカル社製)、ゴーセノールGL-03(三菱ケミカル社製)、ゴーセノールKH-20(三菱ケミカル社製)、ゴーセノールKH-17(三菱ケミカル社製)、ゴーセノールKL-05(三菱ケミカル社製)、ゴーセノールKL-03(三菱ケミカル社製)、ゴーセノールNK-05R(三菱ケミカル社製)等が挙げられる。
 前記セルロース誘導体としては、特に限定されず、例えば、市販品を用いることができる。市販品としては、例えば、メトローズMCE-100(信越化学工業社製)、メトローズMCE-400(信越化学工業社製)、メトローズMCE-4000(信越化学工業社製)、メトローズSFE-400(信越化学工業社製)、メトローズSFE-4000(信越化学工業社製)、メトローズSE-50(信越化学工業社製)、メトローズNE-100(信越化学工業社製)等が挙げられる。
 (2-3.添加剤)
 本発泡粒子は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、および非イオン性の水溶性高分子(B)以外の添加剤(その他の添加剤)をさらに含んでもよい。その他の添加剤としては、例えば、結晶核剤、気泡調整剤、滑剤、可塑剤、帯電防止剤、難燃剤、導電剤、断熱剤、架橋剤、酸化防止剤、紫外線吸収剤、着色剤、無機充填剤、有機充填剤、加水分解抑制剤等を目的に応じて使用できる。その他の添加剤としては、特に生分解性を有する添加剤が好ましい。
 結晶核剤としては、例えば、ペンタエリスリトール、オロチン酸、アスパルテーム、シアヌル酸、グリシン、フェニルホスホン酸亜鉛、窒化ホウ素等が挙げられる。これら結晶核剤の1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。また、2種類以上の結晶核剤を混合して使用する場合、目的に応じて、混合比率を適宜調整してもよい。
 発泡粒子における結晶核剤の含有量は、特に限定されない。結晶核剤の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して、例えば、5.0重量部以下が好ましく、3.0重量部以下がより好ましく、1.5重量部以下がさらに好ましい。ポリ(3-ヒドロキシアルカノエート)系樹脂(A)における結晶核剤の含有量の下限は特に限定されないが、例えば、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して、0.1重量部以上でありえる。
 気泡調整剤としては、例えば、タルク、シリカ、ケイ酸カルシウム、炭酸カルシウム、酸化アルミニウム、酸化チタン、珪藻土、クレイ、重曹、アルミナ、硫酸バリウム、酸化アルミニウム、ベントナイト等が挙げられる。これら気泡調整剤の中でも、P3HAへの分散性に特に優れている点で、タルクが好ましい。また、これら気泡調整剤の1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。また、2種類以上の気泡調整剤を混合して使用する場合、目的に応じて、混合比率を適宜調整してもよい。
 本発泡粒子における気泡調整剤の含有量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して、0.01重量部~1.00重量部が好ましく、0.03重量部~0.50重量部がより好ましく、0.05重量部~0.30重量部がさらに好ましい。
 可塑剤としては、例えば、グリセリンジアセトモノラウレート等のグリセリンエステル系化合物、アセチルクエン酸トリブチル等のクエン酸エステル系化合物、セバシン酸ジブチル等のセバシン酸エステル系化合物、アジピン酸エステル系化合物、ポリエーテルエステル系化合物、安息香酸エステル系化合物、フタル酸エステル系化合物、イソソルバイドエステル系化合物、ポリカプロラクトン系化合物、ベンジルメチルジエチレングリコールアジペート等の二塩基酸エステル系化合物等が挙げられる。これらの中でもP3HAの可塑化効果が優れている点で、グリセリンエステル系化合物、クエン酸エステル系化合物、セバシン酸エステル系化合物および二塩基酸エステル系化合物が好ましい。これら可塑剤の1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。また、2種類以上の可塑剤を混合して使用する場合、目的に応じて、混合比率を適宜調整してもよい。
 本発泡粒子における可塑剤の含有量は、特に限定されないが、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して、1重量部~20重量部が好ましく、2重量部~15重量部がより好ましく、3重量部~10重量部がさらに好ましい。
 本発泡粒子は、イソシアネート基を有する化合物(以下、イソシアネート化合物と称する場合がある。)を含んでもよい。但し、イソシアネート化合物は毒性を持つ場合がある。また、発泡粒子がイソシアネート化合物を含む場合、得られる発泡粒子および発泡成形体が黄色くなる場合がある。
 したがって、本発泡粒子におけるイソシアネート化合物の含有量としては、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して、3.0重量部未満が好ましく、1.0重量部未満がより好ましく、0.1重量部未満がさらに好ましい。本発泡粒子がイソシアネート化合物を含まないことが最も好ましい。
 イソシアネート化合物としては、例えば、1分子中にイソシアネート基を2個以上有するポリイソシアネート化合物を用いることができる。イソシアネート化合物の具体的な種類としては芳香族系イソシアネート化合物、脂環族系イソシアネート化合物、脂肪族系イソシアネート化合物等が挙げられる。例えば、(a)芳香族イソシアネート化合物としては、トリレン、ジフェニルメタン、ナフチレン、トリジン、キシレンおよび/またはトリフェニルメタンを骨格とするイソシアネート化合物が挙げられる。(b)脂環族イソシアネート化合物としてはイソホロンおよび/または水素化ジフェニルメタンを骨格とするイソシアネート化合物が挙げられる。(c)脂肪族イソシアネート化合物としてはヘキサメチレンおよび/またはリジンを骨格とするイソシアネート化合物等が挙げられる。更に、これらイソシアネート化合物を2種類以上組み合わせて得られる混合物も使用可能である。イソシアネート化合物を使用する場合には、汎用性、取扱い性、耐候性等からトリレンおよび/またはジフェニルメタンを骨格とするイソシアネート化合物、特にジフェニルメタンを骨格とするイソシアネート化合物(ポリイソシアネート)を使用することが好ましい。
 滑剤としては、例えば、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド、ステアリン酸アミド、パルミチン酸アミド、N-ステアリルベヘン酸アミド、N-ステアリルエルカ酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、エチレンビスラウリル酸アミド、エチレンビスカプリン酸アミド、p-フェニレンビスステアリン酸アミド、エチレンジアミンとステアリン酸とセバシン酸の重縮合物等が挙げられる。中でも、P3HAへの滑剤効果が特に優れている点で、ベヘン酸アミドとエルカ酸アミドが好ましい。滑剤の使用量は、特に限定されないが、P3HA100重量部に対して、0.01重量部~5.00重量部が好ましく、より好ましくは0.05重量部~3.00重量部、更に好ましくは0.10重量部~1.50重量部である。また、滑剤は、1種のみならず2種以上混合してもよく、目的に応じて、混合比率を適宜調整することができる。
 帯電防止剤としては、例えば、ヤシ油脂肪酸ジエタノールアミド等が挙げられる。本発泡粒子における帯電防止剤の含有量は、特に限定されない。
 (2-4.ポリ(3-ヒドロキシアルカノエート)系発泡粒子の物性)
 (見掛け密度)
 本発泡粒子の見掛け密度は、限定されないが、20g/L~67g/Lが好ましく、25g/L~65g/Lがより好ましく、30g/L~63g/Lがさらに好ましい。当該構成によれば、機械的強度と軽量性のバランスの取れたポリ(3-ヒドロキシアルカノエート)系発泡成形体を得ることができる。なお、見掛け密度の測定は、後述する実施例に記載の測定方法にしたがえばよい。
 (発泡倍率)
 本発泡粒子の発泡倍率は、限定されないが、18倍以上が好ましく、19倍以上がより好ましく、20倍以上がより好ましく、21倍以上がより好ましく、22倍以上がより好ましく、23倍以上がさらに好ましい。本発泡粒子の発泡倍率の上限値は、限定されないが、例えば、50倍、40倍、30倍、25倍、または23倍であり得る。当該構成によれば、機械的強度と軽量性のバランスの取れたポリ(3-ヒドロキシアルカノエート)系発泡成形体を得ることができる。なお、発泡倍率の測定は、後述する実施例に記載の測定方法にしたがえばよい。
 (高温側熱量)
 本発泡粒子の高温側熱量は、限定されないが、0.1J/g~20.0J/gが好ましく、0.3J/g~18.0J/gがより好ましく、0.5J/g~15.0J/gがさらに好ましい。当該構成によれば、発泡工程で得られるポリ(3-ヒドロキシアルカノエート)系発泡粒子に互着が無く、型内発泡成形性に優れたポリ(3-ヒドロキシアルカノエート)系発泡粒子とすることができる。なお、高温側熱量の測定は、後述する実施例に記載の測定方法にしたがえばよい。
 (セル径)
 本発泡粒子のセル径は、限定されないが、50μm~500μmが好ましく、100μm~450μmがより好ましく、150μm~400μmがより好ましく、200μm~350μmがより好ましく、220μm~300μmがより好ましく、240μm~280μmがさらに好ましく、245μm~270μmが特に好ましい。当該構成によれば、型内発泡成形性に優れたポリ(3-ヒドロキシアルカノエート)系発泡粒子とすることができる。なお、セル径の測定は、後述する実施例に記載の測定方法にしたがえばよい。
 (ゲル分率)
 本発泡粒子のゲル分率は、限定されないが、30重量%以上が好ましく、40重量%以上がより好ましく、50重量%以上がより好ましい。本発泡粒子のゲル分率の上限値は、限定されないが、例えば、90重量%、80重量%、または75重量%であり得る。当該構成によれば、型内発泡成形をするとき、良好な発泡成形体を提供し得るプロセスウインドが広くなるという利点を有する。なお、ゲル分率の測定は、後述する実施例に記載の測定方法にしたがえばよい。
 (独立気泡率)
 本発泡粒子の独立気泡率は、90%以上であるが、91%以上がより好ましく、92%以上がより好ましく、93%以上がより好ましく、94%以上がより好ましく、95%以上がより好ましく、96%以上がより好ましく、97%以上がより好ましく、98%以上がさらに好ましい。本発泡粒子の独立気泡率の上限値は、限定されないが、例えば、100%、99%、98%、または97%であり得る。当該構成によれば、型内発泡成形性に優れたポリ(3-ヒドロキシアルカノエート)系発泡粒子とすることができる。なお、独立気泡率の測定は、後述する実施例に記載の測定方法にしたがえばよい。
 〔3.ポリ(3-ヒドロキシアルカノエート)系発泡粒子の製造方法〕
 ポリ(3-ヒドロキシアルカノエート)系発泡粒子の製造方法としては、特に限定されず、公知の方法(例えば、国際公開番号2019/146555号に記載の方法)を用いることができる。本明細書において、「ポリ(3-ヒドロキシアルカノエート)系発泡粒子の製造方法」を「製造方法」と称する場合があり、「本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子の製造方法」を「本製造方法」と称する場合がある。
 本製造方法の具体的態様としては、例えば、樹脂粒子を調整する樹脂粒子調製工程と、当該樹脂粒子を発泡させる発泡工程と、を順に含む製造方法が挙げられるが、かかる製造方法に限定されるものではない。
 (3-1.樹脂粒子調製工程)
 本製造方法は、発泡工程の前に、(a)P3HA100重量部と、非イオン性の水溶性高分子0.10重量部~5.00重量部とを含む樹脂粒子、または、(b)P3HA100重量部と、非イオン性の水溶性高分子0.10重量部~5.00重量部とからなる樹脂粒子、を調製する、樹脂粒子調製工程を含むことが好ましい。樹脂粒子調製工程は、樹脂を発泡に利用しやすい形状に成形する工程ともいえる。樹脂粒子調製工程の態様としては、樹脂粒子を得ることができる限り特に限定されない。
 樹脂粒子調製工程は、
 (a)P3HA100重量部と、非イオン性の水溶性高分子0.10重量部~5.00重量部とを含む樹脂組成物を溶融混練する溶融混練工程と、
 (b)溶融混練された樹脂組成物を発泡に利用しやすい形状に成形する粒子成形工程と、を含むことが好ましい。
 溶融混練工程の態様としては、溶融混練された樹脂組成物を得ることができる限り、特に限定されない。溶融混練工程の具体例としては、例えば以下(a1)および(a2)の方法が挙げられる:
 (a1)P3HA100重量部と、非イオン性の水溶性高分子0.10重量部~5.00重量部と、必要に応じて、その他の添加剤とを混合装置などで混合またはブレンドし、樹脂組成物を調製する。その後、当該樹脂組成物を溶融混練装置に供給し、溶融混練する方法;
 (a2)P3HA100重量部と、非イオン性の水溶性高分子0.10重量部~5.00重量部と、必要に応じて、その他の添加剤とを溶融混練装置に供給し、溶融混練装置内で樹脂組成物を調製する(完成させる)とともに、当該樹脂組成物を溶融混練する方法。
 前記(a1)の方法において、P3HA100重量部と、非イオン性の水溶性高分子0.10重量部~5.00重量部と、必要に応じて、その他の添加剤とを混合またはブレンド(ドライブレンド)する順序は特に限定されない。前記(a2)の方法において、P3HA100重量部と、非イオン性の水溶性高分子0.10重量部~5.00重量部と、必要に応じて、その他の添加剤とを溶融混練装置に供給する順序は特に限定されない。
 前記(a1)の方法において、混合装置としては、特に限定されず、リボンブレンダー、フラッシュブレンダー、タンブラーミキサー、スーパーミキサーなどが挙げられる。
 前記(a1)および(a2)の方法において、溶融混練装置としては、特に限定されず、押出機、ニーダー、バンバリミキサー、およびロール等が挙げられる。生産性と利便性優れることから、溶融混練装置としては、押出機が好ましく、二軸押出機がさらに好ましい。
 前記(a1)の方法において、混合またはブレンドに使用する非イオン性の水溶性高分子、およびその他の添加剤の使用量が、得られる樹脂粒子における非イオン性の水溶性高分子およびその他の添加剤の含有量となる。また、前記(a2)の方法において、溶融混練装置に供給される非イオン性の水溶性高分子およびその他の添加剤の供給量が、得られる樹脂粒子における非イオン性の水溶性高分子およびその他の添加剤の含有量となる。それ故、非イオン性の水溶性高分子およびその他の添加剤の前記使用量および前記供給量については、上述の(非イオン性の水溶性高分子)の項および(その他の添加剤)の項の記載が援用される。なお、本発明の一実施形態に係る溶融混練工程において、使用されるP3HAが既に非イオン性の水溶性高分子を含んでいてもよい。使用されるP3HAが既に非イオン性の水溶性高分子を含んでいる場合、溶融混練工程で非イオン性の水溶性高分子を使用しなくてもよい。また、P3HAが含む非イオン性の高分子の含有量と、溶融混練工程での非イオン性の水溶性高分子の使用量との合計量が、得られる樹脂粒子における非イオン性の水溶性高分子の含有量となる。また、本製造方法で使用するその他の添加剤の全てを樹脂粒子調製工程で使用する必要はない。換言すれば、本製造方法で使用するその他の添加剤の全てまたは一部(例えば架橋剤および可塑剤等)を、樹脂粒子調製工程で使用することなく、すなわち樹脂粒子に含有させることなく、後述する分散工程で分散液中に添加してもよい。
 溶融混練工程において、樹脂組成物を溶融混練するときの温度は、P3HAの物性(融点、重量平均分子量等)および使用する添加剤の種類等によるため一概には規定できない。樹脂組成物を溶融混練するときの温度に関して、例えば、ダイスのノズルから吐出される溶融混練された樹脂組成物の温度(以下、組成物温度と称する場合がある。)を150℃~200℃とすることが好ましく、160℃~195℃とすることがより好ましく、170℃~190℃とすることがさらに好ましい。組成物温度が150℃以上である場合、樹脂組成物が溶融混練不足となる虞がない。一方、組成物温度が200℃以下である場合、P3HAが熱分解する虞がない。
 粒子成形工程の態様としては、溶融混練された樹脂組成物を所望の形状に成形できる限り、特に限定されない。前記溶融混練装置としてダイスおよび切断装置を備える溶融混練装置を使用することにより、粒子成形工程において、溶融混練された樹脂組成物を所望の形状に容易に成形できる。具体的には、溶融混練された樹脂組成物を、溶融混練装置に備えられたダイスのノズルから吐出し、吐出と同時に、または吐出後に樹脂組成物を切断装置により切断することにより、所望の形状に成形できる。得られる樹脂粒子の形状としては特に限定されないが、発泡に利用しやすいことから、円柱状、楕円柱状、球状、立方体状、直方体状などが好ましい。
 粒子成形工程では、ダイスのノズルから吐出される樹脂組成物を冷却してもよい。ダイスのノズルから吐出される樹脂組成物を冷却する場合、樹脂組成物の冷却と同時に、または冷却後に樹脂組成物を切断装置により切断すればよい。
 粒子成形工程において、ダイスのノズルから吐出される樹脂組成物を冷却するとき、冷却された樹脂組成物が示す温度(以下、冷却温度と称する場合がある。)は、特に限定されない。冷却温度は、20℃~80℃が好ましく、30℃~70℃がより好ましく、40℃~60℃がさらに好ましい。当該構成によると、溶融混練された樹脂組成物の結晶化が十分に早いため、樹脂粒子の生産性が良好となる利点を有する。
 樹脂粒子のメルトフローレート(MFR)は、特に限定されないが、1g/10min~20g/minが好ましく、1g/10min~17g/minがより好ましく、1g/min~15g/minがさらに好ましい。当該構成によれば、発泡倍率が高く、かつ独立気泡率の高いポリ(3-ヒドロキシアルカノエート)系発泡粒子を得ることができる。なお、樹脂粒子のメルトフローレートの測定は、後述する実施例に記載の測定方法にしたがえばよい。
 (3-2.発泡工程)
 本製造方法における発泡工程の態様としては、樹脂粒子を発泡させることができる限り、特に限定されない。本発明の一実施形態において、発泡工程は、樹脂粒子を水系分散媒中に分散させる分散工程を含み得る。分散工程の具体的な態様は特に限定されないが、分散工程は、例えば、樹脂粒子と、水系分散媒と、架橋剤と、発泡剤と、必要に応じて分散剤、架橋助剤、分散助剤、および/または可塑剤とを容器中に分散させる工程である。発泡工程は、分散工程以外の工程として、分散工程に続いて、
 (a)容器内温度を一定温度まで昇温し、かつ容器内圧力を一定圧力まで昇圧する昇温-昇圧工程と、
 (b)容器内温度および圧力を一定温度かつ一定圧力で保持する保持工程と、
 (c)容器の一端を解放し、容器内の分散液を、発泡圧力(すなわち、容器内圧力)よりも低圧の領域(空間)に放出する放出工程と、を含むことが好ましい。
 (分散工程)
 分散工程は、例えば、水系分散媒中に、樹脂粒子と架橋剤と発泡剤と必要に応じて分散剤、架橋助剤、分散助剤、可塑剤とが分散している分散液を調製する工程ともいえる。なお、分散液中で、(a)架橋剤および架橋助剤は樹脂粒子中のP3HAとの反応により消費され、存在していなくてもよく、(b)発泡剤および可塑剤は樹脂粒子中に含浸され、分散された状態で存在していなくてもよい。
 容器としては特に限定されないが、後述する発泡温度および発泡圧力に耐えられる容器であることが好ましく、例えば耐圧容器であることが好ましい。
 水系分散媒としては、樹脂粒子、架橋剤、発泡剤等を均一に分散できるものであればよく、特に限定されない。水系分散媒としては、例えば、水道水および/または工業用水を用いることもできる。発泡粒子の安定した生産が可能な点から、水系分散媒としては、RO水(逆浸透膜法により精製された水)、蒸留水、脱イオン水(イオン交換樹脂により精製された水)等の純水および超純水等を用いることが好ましい。
 水系分散媒の使用量は、特に限定されないが、樹脂粒子100重量部に対して、100重量部~1000重量部が好ましい。
 本製造方法では、架橋剤を使用することが好ましい。架橋剤を使用することにより、得られる発泡粒子中のP3HAは、架橋構造を有するP3HAとなる。発泡工程では樹脂粒子中のP3HAの架橋反応も進行するため、発泡工程は架橋工程ともいえる。
 架橋剤としては、P3HAを架橋できる限り特に限定されない。架橋剤としては、有機過酸化物が好ましい。換言すれば、ポリ(3-ヒドロキシアルカノエート)系発泡粒子は有機過酸化物により架橋されたものであることが好ましい。有機過酸化物は、(a)樹脂粒子調製工程で使用してもよく、(b)分散工程で使用してもよく、(c)樹脂粒子調製工程および分散工程で使用してもよい。より具体的に、有機過酸化物をP3HAと反応させるためには、(a)樹脂粒子調製工程において有機過酸化物とP3HAとを溶融混練してもよく、(b)分散工程において樹脂粒子と有機過酸化物とを水系分散媒中に分散させてもよく、(c)有機過酸化物とP3HAとを溶融混練するとともに、さらに、樹脂粒子と有機過酸化物とを水系分散媒中に分散させてもよい。分散工程において、樹脂粒子調製工程にて製造された樹脂粒子と、有機過酸化物とを水系分散媒中に分散させることにより、当該樹脂粒子に有機過酸化物を含浸および反応させることができる。これらの理由から、本発泡粒子の製造方法において、架橋剤としては有機過酸化物が好ましい。なお、架橋剤として有機過酸化物を使用する場合、P3HAの分子鎖同士が直接(架橋剤に由来する構造を介することなく)結合することにより、架橋構造が形成される。
 使用するP3HAの種類等によるが、架橋剤として使用する有機過酸化物としては、1時間半減期温度が90℃~160℃の有機過酸化物が好ましく、1時間半減期温度が115℃~125℃の有機過酸化物がより好ましい。そのような有機過酸化物として、具体的には、過酸化ベンゾイル(1時間半減期温度:92℃)、t-ブチルパーオキシ-2-エチルヘキシルカーボネート(1時間半減期温度:121℃)、t-ブチルパーオキシイソプロピルカーボネート(1時間半減期温度:118℃)、t-アミルパーオキシ-2-エチルヘキシルカーボネート(1時間半減期温度:117℃)、t-アミルパーオキシイソプロピルカーボネート(1時間半減期温度:115℃)、t-ブチルパーオキシイソブチレート(1時間半減期温度:93℃)、t-ブチルパーオキシ-2-エチルヘキサノエート(1時間半減期温度:95℃)、t-ブチルパーオキシイソノナノエート(1時間半減期温度:123℃)、t-ブチルパーオキシアセテート(1時間半減期温度:123℃)、t-ブチルパーオキシジベンゾエート(1時間半減期温度:125℃)、t-アミルパーオキシイソブチレート(1時間半減期温度:93℃)、t-アミルパーオキシ-2-エチルヘキサノエート(1時間半減期温度:92℃)、t-アミルパーオキシイソノナノエート(1時間半減期温度:114℃)、t-アミルパーオキシアセテート(1時間半減期温度:120℃)、t-アミルパーオキシベンゾエート(1時間半減期温度:122℃)、ジクミルパーオキサイド(1時間半減期温度:137℃)、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(1時間半減期温度:140℃)、ジ-t-ブチルパーオキサイド(1時間半減期温度:149℃)等が挙げられる。1時間半減期温度が90℃以上である有機過酸化物を使用する場合、所望のゲル分率の発泡粒子を得られる傾向があるという利点を有する。一方、1時間半減期温度が160℃以下である有機過酸化物を使用する場合、未反応の架橋剤が最終生成物中に残存する虞がないという利点を有する。
 架橋剤の使用量は、特に限定されないが、樹脂粒子100重量部に対して、0.1重量部~5.0重量部が好ましく、0.3重量部~3.0重量部がより好ましく、0.5重量部~2.5重量部がさらに好ましい。架橋剤の使用量が樹脂粒子100重量部に対して0.1重量部以上である場合、(a)得られる発泡粒子を十分に架橋することができるとともに、(b)得られる発泡粒子の独立気泡率が高くなり、良好な発泡成形体を得ることができる。一方、架橋剤の使用量が樹脂粒子100重量部に対して、5.0重量部以下である場合、架橋剤の添加量に応じた効果を得られるため、経済的に無駄が生じる虞がない。架橋剤の使用量は発泡粒子のゲル分率と正の相関関係があり、発泡粒子のゲル分率の値に大きく影響する。そのため、得られる発泡粒子のゲル分率を考慮して架橋剤の使用量を厳密に設定することが望ましい。本発明の一実施形態に係る分散工程において、使用する樹脂粒子がすでに架橋剤を含んでいる場合がある。その場合、樹脂粒子が分散工程前に既に含んでいる架橋剤の量と、分散工程において使用される架橋剤の量との合計量が、前記の範囲を充足することが好ましい。
 発泡剤としては、窒素、二酸化炭素、空気等の無機ガス;プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン等の炭素数3~5の飽和炭化水素;ジメチルエーテル、ジエチルエーテル、およびメチルエチルエーテル等のエーテル;モノクロルメタン、ジクロロメタン、ジクロロジフルオロエタン等のハロゲン化炭化水素;水等が挙げられる。発泡剤としては、上述した無機ガス、炭素数3~5の飽和炭化水素、エーテル、ハロゲン化炭化水素および水からなる群より選ばれる少なくとも1種類以上を用いることができる。中でも、環境負荷や発泡力の観点から、発泡剤としては窒素または二酸化炭素を用いることが好ましい。これら発泡剤の1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。また、2種類以上の発泡剤を混合して使用する場合、目的に応じて、混合比率を適宜調整してもよい。
 発泡剤の使用量は、特に限定されないが、樹脂粒子100重量部に対して、2重量部~10000重量部が好ましく、5重量部~5000重量部がより好ましく、10重量部~1000重量部がさらに好ましい。発泡剤の使用量が樹脂粒子100重量部に対して2重量部以上である場合、発泡倍率の高い発泡粒子を得ることができる。一方、発泡剤の使用量が樹脂粒子100重量部に対して10000重量部以下である場合、発泡剤の使用量に応じた効果が得られるため、経済的な無駄が生じない。
 本製造方法では、分散剤を使用することが好ましい。分散剤を使用することにより、樹脂粒子同士の互着(ブロッキングと称する場合がある。)を抑制でき、安定的に発泡粒子を製造できるという利点を有する。分散剤としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、カオリン、タルク、クレイ、酸化アルミニウム、酸化チタン、水酸化アルミニウム等の無機物が挙げられる。これら分散剤の1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。また、2種類以上の分散剤を混合して使用する場合、目的に応じて、混合比率を適宜調整してもよい。
 分散剤の使用量は、特に限定されないが、樹脂粒子100重量部に対して、0.1重量部~3.0重量部が好ましく、0.5重量部~1.5重量部がより好ましい。
 本製造方法では、P3HAの架橋効率を向上させるために、架橋助剤を使用してもよい。架橋助剤としては、例えば、分子内に少なくとも1個の不飽和結合を有する化合物が挙げられる。架橋助剤としては、当該化合物の中でも、特に、アリルエステル、アクリル酸エステル、メタクリル酸エステル、ジビニル化合物等が好ましい。これら架橋助剤の1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。また、2種類以上の架橋助剤を混合して使用する場合、目的に応じて、混合比率を適宜調整してもよい。
 架橋助剤の使用量は特に限定されないが、樹脂粒子100重量部に対して、0.01重量部~3.00重量部が好ましく、0.03重量部~1.50重量部がより好ましく、0.05重量部~1.00重量部がさらに好ましい。架橋助剤の使用量が樹脂粒子100重量部に対して0.01重量部以上であれば、架橋助剤として十分な効果を発揮する。
 分散工程において、樹脂粒子に架橋剤と必要に応じて架橋助剤とを含浸および反応させるとき、P3HAの架橋効率を上げるために、容器内の酸素濃度および分散液中の溶存酸素量を低くすることが好ましい。容器内の酸素濃度および分散液中の溶存酸素量を低くする方法としては、二酸化炭素および窒素等の無機ガスで容器内の気体および分散液中に溶解している気体を置換すること、並びに容器内の気体を真空引きすることが挙げられる。
 本製造方法では、樹脂粒子同士の互着抑制効果を向上させるために、分散助剤を使用してもよい。分散助剤としては、例えば、アルカンスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、α-オレフィンスルホン酸ナトリウム等のアニオン界面活性剤が挙げられる。これら分散助剤の1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。また、2種類以上の分散助剤を混合して使用する場合、目的に応じて、混合比率を適宜調整してもよい。
 分散助剤の使用量は、特に限定されないが、樹脂粒子100重量部に対して、0.001重量部~0.500重量部が好ましく、0.010重量部~0.200重量部がより好ましい。樹脂粒子同士の互着抑制効果をより向上させるために、前記分散剤と当該分散助剤とは、併用することが好ましい。
 本製造方法では、可塑剤を使用してもよい。可塑剤を使用することにより、発泡倍率が高く、柔軟性のある発泡粒子を得ることができる。
 本製造方法で使用する可塑剤、または好適に使用する可塑剤としては、前記〔2.ポリ(3-ヒドロキシアルカノエート)系発泡粒子〕の(添加剤)の項に記載の可塑剤を挙げることができる。
 可塑剤の使用量は特に限定されないが、樹脂粒子100重量部に対して、0重量部より多く、20重量部以下が好ましく、1重量部~15重量部がより好ましく、1重量部~10重量部がさらに好ましい。本発明の一実施形態に係る分散工程において、使用される樹脂粒子がすでに可塑剤を含んでいてもよい。使用される樹脂粒子がすでに可塑剤を含んでいる場合、樹脂粒子中の可塑剤の含有量と、分散工程における可塑剤の使用量との合計量が、前記の範囲を充足することが好ましい。
 (昇温-昇圧工程および保持工程)
 昇温-昇圧工程は、分散工程後に実施されることが好ましく、保持工程は、昇温-昇圧工程後に実施されることが好ましい。本明細書において、昇温-昇圧工程および保持工程における(a)一定温度を発泡温度と称する場合があり、(b)一定圧力を発泡圧力と称する場合がある。
 発泡温度は、P3HAの種類、発泡剤の種類、所望の発泡粒子の発泡倍率等によって異なるので、一概には規定できない。発泡温度は、例えば、100.0℃~140.0℃が好ましく、110.0℃~135.0℃がより好ましく、115.0℃~133.0℃がより好ましい。発泡温度が100℃以上である場合、発泡倍率の高い発泡粒子が得られる傾向がある。一方、発泡温度が140℃以下である場合、容器内で樹脂粒子の加水分解が起こる虞がない。
 昇温-昇圧工程において、所望の発泡温度まで昇温するときの速度(以下、昇温速度と称する場合がある)としては1.0℃/分~3.0℃/分が好ましく、1.5℃/分~3.0℃/分がより好ましい。昇温速度が1.0℃/分以上であれば、生産性に優れる。一方、昇温速度が3.0℃/分以下であれば、昇温時に、樹脂粒子への発泡剤の含浸および架橋剤とP3HAとの反応が不十分となってしまう虞がない。
 発泡圧力は、1.0MPa~10.0MPa(ゲージ圧)が好ましく、2.0MPa~5.0MPa(ゲージ圧)がより好ましく、2.5MPa~4.0MPaがより好ましい。発泡圧力が1.0MPa(ゲージ圧)以上であれば、発泡倍率の高い発泡粒子を得ることができる。
 (放出工程)
 放出工程は、昇温-昇圧工程後、または保持工程後、に実施されることが好ましい。放出工程により、樹脂粒子を発泡させることができ、結果として発泡粒子が得られる。
 放出工程において、「発泡圧力よりも低圧の領域」は、「発泡圧力よりも低い圧力下の領域」または「発泡圧力よりも低い圧力下の空間」を意図し、「発泡圧力よりも低圧の雰囲気下」ともいえる。発泡圧力よりも低圧の領域は、発泡圧力よりも低圧であれば特に限定されず、例えば、大気圧下の領域であってもよい。
 放出工程において、発泡圧力よりも低圧の領域に分散液を放出するとき、分散液の流量調整、得られる発泡粒子の発泡倍率のバラツキ低減等の目的で、直径1mm~5mmの開口オリフィスを通して分散液を放出することもできる。また、比較的融点の高い樹脂粒子を使用する場合、発泡性を向上させる目的で、前記低圧の領域(空間)を飽和水蒸気で満たしても良い。
 放出工程において、樹脂粒子を発泡させた後に洗浄剤を使用してもよい。洗浄剤としては、例えば、温水やヘキサメタリン酸ソーダ等が挙げられる。洗浄剤を使用することで、発泡粒子表面に付着した分散剤を調整することができる。
 放出工程において、樹脂粒子を発泡させた後に帯電防止剤を使用してもよい。帯電防止剤としては、例えば、ヤシ油脂肪酸ジエタノールアミド等が挙げられる。帯電防止剤を使用することで、発泡粒子の静電気を抑制し、ハンドリング性を上げることができる。
 本発泡粒子の製造方法としては、上述した本製造方法が最も好ましいが、これに限定されるものではない。例えば、以下(r1)~(r3)に記載の製造方法であっても、本発泡粒子を得ることができる:
 (r1)前記(樹脂粒子調整工程)によって得られた樹脂粒子を耐圧容器に入れ、水系分散媒を使用せずに、発泡剤を当該耐圧容器に圧入する。必要に応じて前記耐圧容器を昇温し、保持することで発泡剤を含む樹脂粒子を得る。次いで、前記耐圧容器を減圧し大気圧に戻した後、発泡剤を含む樹脂粒子を、前記耐圧容器内で、または別の耐圧容器に移して、水蒸気等の加熱手段で加熱し、前記発泡剤が含浸された樹脂粒子を発泡させて発泡粒子を得る方法;
 (r2)前記(樹脂粒子調整工程)における、前記(溶融混練工程)において、樹脂組成物を溶融混練する際に、溶融混練装置に架橋剤と発泡剤を圧入し、架橋剤と発泡剤とを含む樹脂組成物を調整する。次いで、当該樹脂組成物を溶融混練装置に備えられたダイスのノズルから吐出し、吐出と同時に冷却しつつ樹脂組成物を切断装置により切断することにより、発泡剤を含む樹脂粒子を得る。当該樹脂粒子を耐圧容器に移し、水蒸気等の加熱手段で加熱し、前記樹脂粒子を発泡させて発泡粒子を得る方法;
 (r3)前記(樹脂粒子調整工程)における、前記(溶融混練工程)において、樹脂組成物を溶融混練する際に、溶融混練装置に架橋剤と発泡剤を圧入し、架橋剤と発泡剤とを含む樹脂組成物を調整する。次いで、当該樹脂組成物を溶融混練装置に備えられたダイスのノズルから吐出し、吐出と同時に当該樹脂組成物を発泡させつつ切断装置により切断することにより、発泡粒子を得る方法。
 前記(r1)において、発泡剤を耐圧容器内に圧入する際の圧力は0.01MPa(ゲージ圧)~10.00MPa(ゲージ圧)が好ましく、0.03MPa(ゲージ圧)~5.00MPa(ゲージ圧)がより好ましい。
 前記(r1)および(r2)において、発泡剤を含む樹脂粒子を水蒸気等によって加熱する際の耐圧容器内の温度としては、100℃~150℃が好ましく、105℃~145℃がより好ましい。
 前記(r2)および(r3)において、溶融混練装置に架橋剤と発泡剤を圧入する際の圧力は3MPa(ゲージ圧)~30MPa(ゲージ圧)が好ましく、5MPa(ゲージ圧)~15MPa(ゲージ圧)がより好ましい。
 (二段発泡工程)
 上述した発泡粒子の製造方法において、発泡工程だけでは、所望の見掛け密度の発泡粒子が得られない場合がある。その場合、発泡粒子の製造方法は、発泡工程で得られた発泡粒子をさらに膨張させる二段発泡工程をさらに含んでいてもよい。二段発泡工程としては、発泡工程で得られた発泡粒子をさらに膨張させることにより、発泡工程で得られた発泡粒子の見掛け密度よりもさらに小さい見掛け密度の発泡粒子を得られる限り特に限定されない。二段発泡工程としては、例えば、以下のような態様が挙げられる:(s1)発泡工程で得られた発泡粒子を容器内に供給する;(s2)容器内に空気または二酸化炭素などの無機ガスを供給して容器内圧力を昇圧する;(s3)前記(s2)により、発泡粒子に当該無機ガスを含浸させ、発泡粒子内の圧力を常圧よりも高くする;(s4)その後、当該発泡粒子を水蒸気等で加熱して更に膨張させ、所望の見掛け密度の発泡粒子を得る。二段発泡工程にて得られる発泡粒子を二段発泡粒子と称する場合がある。また、二段発泡工程を行う場合、前記発泡工程を一段発泡工程と称し、一段発泡工程で得られる発泡粒子を一段発泡粒子と称する場合がある。
 二段発泡工程における発泡粒子内圧は、0.15MPa~0.60MPa(絶対圧)が好ましく、0.20MPa~0.50MPa(絶対圧)がより好ましい。
 二段発泡工程において(前記s2およびs3において)、発泡粒子に当該無機ガスを含浸させるときの、容器内温度としては、10℃~90℃が好ましく、20℃~90℃がより好ましく、30℃~90℃がより好ましく、40℃~90℃がさらに好ましい。
 二段発泡工程において(前記s4において)、発泡粒子を加熱する水蒸気等の圧力(以下、「二段発泡圧力」と称する場合がある。)は、用いる発泡粒子の特性および所望の見掛け密度によって異なり、一概には規定できない。二段発泡圧力は、0.01MPa~0.17MPa(ゲージ圧)が好ましく、0.03MPa~0.11MPa(ゲージ圧)がより好ましい。
 二段発泡粒子のゲル分率としては、発泡粒子のゲル分率と同じ態様であることが好ましい。すなわち、二段発泡粒子のゲル分率としては、上述の(ゲル分率)の項の記載を適宜援用できる。
 〔4.ポリ(3-ヒドロキシアルカノエート)系発泡成形体〕
 本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡成形体は、本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子からなるものである。本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡成形体は、本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子を成形してなるものであってもよい。本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡成形体は、本発明の一実施形態に係るポリ(3-ヒドロキシアルカノエート)系発泡粒子を含むものであってもよい。当該構成であれば、発泡倍率が高いポリ(3-ヒドロキシアルカノエート)系発泡成形体を提供することができる。
 本発泡成形体の製造方法(すなわち発泡粒子の成形方法)は特に限定されず、公知の方法を適用することができる。例えば、次の(A)~(D)の型内発泡成形の方法等が挙げられるが、特に限定されない:
 (A)本発泡粒子を容器内で無機ガスで加圧処理して、当該発泡粒子内に無機ガスを含浸させ、所定の発泡粒子内圧を付与した後、該発泡粒子を金型に充填し、水蒸気で加熱する方法;
 (B)本発泡粒子を金型に充填した後、該金型内の体積を10%~75%減ずるように圧縮し、水蒸気で加熱する方法;
 (C)本発泡粒子をガス圧力で圧縮して金型に充填し、該発泡粒子の回復力を利用して、水蒸気で加熱する方法;
 (D)特に前処理することなく、本発泡粒子を金型に充填し、水蒸気で加熱する方法。
 本発泡成形体の製造において、本発泡粒子を加熱する水蒸気の圧力(以下、成形圧力と称する場合がある)は、用いる発泡粒子の特性等によって異なり、一概には規定できない。当該成形圧力は、0.05MPa~0.30MPa(ゲージ圧)が好ましく、0.08MPa~0.25MPa(ゲージ圧)がより好ましく、0.10MPa~0.20MPa(ゲージ圧)がさらに好ましい。
 本発泡成形体の製造方法のうち前記(A)法での無機ガスとしては、空気、窒素、酸素、二酸化炭素、ヘリウム、ネオン、アルゴン等からなる群より選ばれる少なくとも1種を使用できる。これら無機ガスの中でも、空気および/または二酸化炭素が好ましい。
 本発泡成形体の製造方法のうち(A)法での無機ガスを発泡粒子に含浸させる際の容器内の温度としては、10℃~90℃が好ましく、20℃~90℃がより好ましく、30℃~90℃がより好ましく、40℃~90℃がさらに好ましい。
 本発泡成形体の製造方法のうち前記(A)法での発泡粒子の内圧は0.10MPa~0.30MPa(絶対圧)が好ましく、0.11MPa~0.25MPa(絶対圧)がより好ましく、0.12MPa~0.20MPa(絶対圧)がさらに好ましい。発泡粒子の内圧の測定は、後述する実施例に記載の測定方法にしたがえばよい。
 本発泡成形体の発泡倍率は、限定されないが、25倍以上が好ましく、27倍以上がより好ましく、30倍以上がより好ましく、35倍以上がさらに好ましい。本発泡成形体の発泡倍率の上限値は、限定されないが、例えば、50倍、40倍、または35倍であり得る。当該構成であれば、機械的強度と軽量性のバランスの取れたポリ(3-ヒドロキシアルカノエート)系発泡成形体を提供することができる。
 本発明の一実施形態は、以下の様な構成であってもよい。
 〔1〕ポリ(3-ヒドロキシアルカノエート)系発泡粒子であって、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、および、非イオン性の水溶性高分子(B)を含み、前記非イオン性の水溶性高分子(B)の含有量は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して0.10重量部~5.00重量部であり、前記ポリ(3-ヒドロキシアルカノエート)系発泡粒子の独立気泡率が、90%以上である、ポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔2〕前記非イオン性の水溶性高分子(B)が、疎水基を有するものである、〔1〕に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔3〕前記非イオン性の水溶性高分子(B)が、生分解性のものである、〔1〕または〔2〕に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔4〕前記非イオン性の水溶性高分子(B)が、ポリアルキレンオキシド、ポリビニルアルコール、およびセルロース誘導体からなる群より選択される少なくとも1つである、〔1〕~〔3〕の何れか1つに記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔5〕前記非イオン性の水溶性高分子(B)の含有量は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して0.10重量部~1.00重量部である、〔4〕に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔6〕前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)が、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、およびポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)からなる群より選択される少なくとも1つである、〔1〕~〔5〕の何れか1つに記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔7〕前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)は、3-ヒドロキシブチレート単位とコモノマー単位とを有する共重合体であり、
 前記共重合体における全繰り返し単位100モル%中の3HB単位とコモノマー単位との比率(3HB単位/コモノマー単位)が、99/1(mol%/mol%)~85/15(mol%/mol%)である、〔1〕~〔6〕の何れか1つに記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔8〕見掛け密度が20g/L~67g/Lである、〔1〕~〔7〕の何れか1つに記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔9〕高温側熱量が0.1J/g~20.0J/gである、〔1〕~〔8〕の何れか1つに記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔10〕セル径が50μm~500μmである、〔1〕~〔9〕の何れか1つに記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔11〕ゲル分率が30重量%以上である、〔1〕~〔10〕の何れか1つに記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
 〔12〕〔1〕~〔11〕の何れか1つに記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子からなる、ポリ(3-ヒドロキシアルカノエート)系発泡成形体。
 〔13〕発泡倍率が25倍以上である、〔12〕に記載のポリ(3-ヒドロキシアルカノエート)系発泡成形体。
 以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲を限定されるものではない。
 〔材料〕
 実施例および比較例で使用した物質を以下に示す。
 (水溶性高分子)
 水溶性高分子-1:非イオン性のポリビニルアルコール(クラレ社製クラレポバールPVA-205、けん化度87.0mol%~89.0mol%、重合度500、疎水基は酢酸基)
 水溶性高分子-2:非イオン性のポリアルキレンオキシド(日油社製プロノン#208、エチレンオキシド80重量%、平均分子量10000、疎水基はオキシプロピレン基)
 水溶性高分子-3:非イオン性のセルロース誘導体(信越化学工業社製メトローズMCE-4000、メトキシ基25.0%~33.0%、疎水基はメトキシ基)
 水溶性高分子-4:非イオン性のポリアルキレンオキシド(CLARIANT社製Emulsogen EPN 287、エチレンオキシド28mol%、分子量1404、疎水基はオキシプロピレン基)
 水溶性高分子-5:イオン性のポリアルキレンオキシド(CLARIANT社製Emulsogen EPA 073、エチレンオキシド7mol%、分子量577、疎水基はオキシプロピレン基)
 上述した5つの水溶性高分子は全て、親水基、および疎水基を有し、かつ生分解性のものである。
 (気泡調整剤)
 気泡調整剤:タルク(林化成社製タルカンパウダーPK-S)。
 (結晶核剤)
 結晶核剤:ペンタエリスリトール(三菱ケミカル社製ノイライザーP)。
 (滑剤)
 滑剤-1:ベヘン酸アミド(CRODA社製Crodamide BR)、
 滑剤-2:エルカ酸アミド(CRODA社製Crodamide ER)。
 (分散剤)
 分散剤:第三リン酸カルシウム(太平化学産業社製)。
 (分散助剤)
 分散助剤:アルキルスルホン酸ソーダ(花王社製ラテムルPS)。
 (架橋剤)
 架橋剤:t-ブチルパーオキシ-2-エチルヘキシルカーボネート(含有量 97%)(日油社製パーブチルE)。
 (洗浄剤)
 洗浄剤:ヘキサメタリン酸ソーダ(WUXI LOTUS ESSENCE社製)。
 (帯電防止剤)
 帯電防止剤:ヤシ油脂肪酸ジエタノールアミド(三洋化成社製プロファン128エキストラ)。
 〔測定方法〕
 実施例および比較例において実施した評価方法に関して、以下に説明する。
 (ポリ(3-ヒドロキシアルカノエート)系樹脂粒子の融点の測定)
 示差走査熱量計(日立ハイテクサイエンス社製DSC7020)を用いて、ポリ(3-ヒドロキシアルカノエート)系樹脂粒子を約5mg量り取った。次に、当該ポリ(3-ヒドロキシアルカノエート)系樹脂粒子を10℃/分の昇温速度にて10℃から190℃まで昇温した時に得られるDSC曲線において、最も高温の融解ピークの温度を融点とした。
 (ポリ(3-ヒドロキシアルカノエート)系樹脂粒子のMFRの測定)
 メルトフローインデックステスター(安田精機製作所社製)を用いて、JIS K7210に準じて、荷重5kg、測定温度は、上述した(ポリ(3-ヒドロキシアルカノエート)系樹脂粒子の融点の測定)で得られるDSC曲線から読み取った融解終了温度+5℃~融解終了温度+10℃の条件で測定した。
 (ポリ(3-ヒドロキシアルカノエート)系樹脂粒子の比重の測定)
 自動比重計(東洋精機製作所社製DSG-1)を用いて、JIS K7112に準じて、水中置換法にてポリ(3-ヒドロキシアルカノエート)系樹脂粒子の比重(g/cm)を測定した。
 (ポリ(3-ヒドロキシアルカノエート)系発泡粒子の見掛け密度の測定)
 ポリ(3-ヒドロキシアルカノエート)系発泡粒子の見掛け密度の測定方法は、以下の(1)~(3)の通りであった:(1)エタノールが入ったメスシリンダーを用意し、当該エタノール中に重量Wd(g)のポリ(3-ヒドロキシアルカノエート)系発泡粒子を沈めた;(2)エタノールの水位上昇分(水没法)より読み取られるポリ(3-ヒドロキシアルカノエート)系発泡粒子の容積をVd(cm)とした;(3)以下の式により、ポリ(3-ヒドロキシアルカノエート)系発泡粒子の見掛け密度ρdを算出した;
見掛け密度ρd(g/cm)=Wd/Vd。
 (ポリ(3-ヒドロキシアルカノエート)系発泡粒子の発泡倍率の測定)
 ポリ(3-ヒドロキシアルカノエート)系発泡粒子の発泡倍率は、下記の式に基づき算出した:
発泡倍率(倍)=ポリ(3-ヒドロキシアルカノエート)系樹脂粒子の比重/ポリ(3-ヒドロキシアルカノエート)系発泡粒子の見掛け密度ρd。
 (ポリ(3-ヒドロキシアルカノエート)系発泡粒子のゲル分率の測定)
 ポリ(3-ヒドロキシアルカノエート)系発泡粒子のゲル分率の測定方法は、以下の(a1)~(a5)の通りであった:(a1)100mlのフラスコに、0.5gのポリ(3-ヒドロキシアルカノエート)系発泡粒子と、50mlのクロロホルムとを入れた;(a2)大気圧下、62℃で、フラスコ内の混合物を8時間加熱還流した;(a3)得られた加熱処理物を100メッシュの金網を備える吸引濾過装置を用いて濾過処理した;(a4)金網上の濾過処理物を、80℃のオーブン中で真空条件下にて8時間乾燥し、乾燥物重量Wg(g)を測定した;(a5)以下の式により、ゲル分率を算出した:
ゲル分率(重量%)=Wg/0.5×100。
 (ポリ(3-ヒドロキシアルカノエート)系発泡粒子の高温側熱量の測定)
 ポリ(3-ヒドロキシアルカノエート)系発泡粒子の高温側熱量は、示差走査熱量計(日立ハイテクサイエンス社製DSC7020)を用いて測定した。具体的な操作手順は、次の(1)~(5)の通りであった:(1)ポリ(3-ヒドロキシアルカノエート)系発泡粒子を約5mg量り取る;(2)ポリ(3-ヒドロキシアルカノエート)系発泡粒子の温度を10℃/分の昇温速度にて10℃から190℃まで昇温して、ポリ(3-ヒドロキシアルカノエート)系発泡粒子を融解した;(3)前記(2)の過程で得られたDSC曲線において、融解開始前の温度を表す点と融解終了後の温度を表す点とを直線で結びベースラインを作成した;(4)高温側の融解ピークまたは最も高温の融解ピークと隣の融解ピークとの間の極大点を通る直線を、X軸に対して垂直方向に引いた;(5)ベースラインと極大点を通る直線とDSC曲線とに囲まれる高温側の領域から算出される熱量を高温側熱量とした。
 (ポリ(3-ヒドロキシアルカノエート)系発泡粒子の平均セル径の測定)
 発泡粒子の平均セル径の測定方法は、以下の(1)~(5)の通りであった:(1)カミソリ(フェザー社製ハイステンレス両刃)を用いて、発泡粒子の中心を通るように当該発泡粒子を切断した;(2)得られた発泡粒子の切断面を、光学顕微鏡(キーエンス社製VHX-100)を用いて、倍率50倍にて観察した;(3)観察によって得られた画像において、当該発泡粒子の切断面の中心または略中心を通る直線を引いた;(4)(4-1)当該直線上に存在する気泡数nを測定し、(4-2)当該直線と当該発泡粒子表面との交点によって当該直線から切り取られた線分の長さを測定し、発泡粒子径Lとした;(5)以下の式により発泡粒子の平均セル径を算出した:
平均セル径(μm)=L/n。
 (ポリ(3-ヒドロキシアルカノエート)系発泡粒子の独立気泡率の測定)
 ポリ(3-ヒドロキシアルカノエート)系発泡粒子の独立気泡率の測定は、ASTMD2856-87の手順C(PROSEDURE C)に記載の方法に準拠して行った。まず、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、体積Vc(cm)を測定した。次いで、Vcを測定後の該発泡粒子の全量を、エタノールの入ったメスシリンダー中に沈め、メスシリンダーの水位上昇分(水没法)から、該発泡粒子の見掛け上の体積Va(cm)を求めた。該発泡粒子の独立気泡率は、100-(Va-Vc)×100/Va(%)より求めた。
 (ポリ(3-ヒドロキシアルカノエート)系発泡粒子の内圧の測定)
 ポリ(3-ヒドロキシアルカノエート)系発泡粒子の内圧の測定方法は、以下の(1)~(5)の通りであった:(1)加圧工程後のポリ(3-ヒドロキシアルカノエート)系発泡粒子の重量W1(g)を測定した;(2)当該発泡粒子を150℃、30分間加熱し、当該発泡粒子内の無機ガスを散逸させた;(3)無機ガスを散逸させたポリ(3-ヒドロキシアルカノエート)系発泡粒子について、再度、当該発泡粒子の重量W2(g)を測定した;(4)無機ガスを散逸させる前後のポリ(3-ヒドロキシアルカノエート)系発泡粒子の重量差(W1-W2)から無機ガスの重量(ΔW)を算出した;(5)理想気体の状態方程式(具体的には以下の式)よりポリ(3-ヒドロキシアルカノエート)系発泡粒子の内圧P(MPa)を算出した:
内圧P(MPa)=(1+ΔW/M×0.082×(273+T)×(ρd×1000/W2))/9.87:
前記の式において、Mは平均モル分子量、Tは加圧工程後のポリ(3-ヒドロキシアルカノエート)系発泡粒子の重量を測定した際の温度(室温)(℃)である。ρdは、加圧工程後のポリ(3-ヒドロキシアルカノエート)系発泡粒子(重量W1の発泡粒子)の見掛け密度(g/cm)である。
 (ポリ(3-ヒドロキシアルカノエート)系発泡成形体の発泡倍率の測定)
 ポリ(3-ヒドロキシアルカノエート)系発泡成形体の倍率の測定方法は、以下の(1)~(4)の通りであった:(1)デジタルノギス(ミツトヨ社製)を用いて、得られたポリ(3-ヒドロキシアルカノエート)系発泡成形体の縦方向(mm)、横方向(mm)、および厚さ方向の長さ(mm)を測定し、ポリ(3-ヒドロキシアルカノエート)系発泡成形体の体積V(cm)を算出した;(2)当該発泡成形体の重量W(g)を測定した;(3)下記の式に基づき、ポリ(3-ヒドロキシアルカノエート)系発泡成形体の密度ρを算出した:密度ρ(g/cm)=W/V;(4)下記の式に基づき、発泡成形体の発泡倍率を算出した:発泡倍率(倍)=樹脂粒子の比重/発泡成形体の密度ρ。
 ポリ(3-ヒドロキシアルカノエート)系発泡粒子の原料(P3HA-1~P3HA-7)は、以下の方法によって作製した。
 〔製造例1〕P3HA-1の作製
 国際公開番号2018/070492号に記載の方法にて、P3HA-1を作製した。この際、P3HA 100重量部に対して、水溶性高分子-1(クラレ社製クラレポバールPVA-205)を1.00重量部使用した。得られたP3HA-1は、(a)モノマー比率3HB/3HH=95/5(モル%/モル%)であり、かつ重量平均分子量が60万であるP3HB3HHと、(b)当該P3HB3HH100重量部に対して1.00重量部の水溶性高分子-1と、を含んでいた。
 〔製造例2〕P3HA-2の作製
 国際公開番号2018/070492号に記載の方法にて、P3HA-2を作製した。この際、P3HA 100重量部に対して、水溶性高分子-1の代わりに水溶性高分子-2(日油社製プロノン#208)を1.00重量部使用した。得られたP3HA-2は、(a)モノマー比率3HB/3HH=95/5(モル%/モル%)であり、かつ重量平均分子量が60万であるP3HB3HHと、(b)当該P3HB3HH100重量部に対して1.00重量部の水溶性高分子-2と、を含んでいた。
 〔製造例3〕P3HA-3の作製
 国際公開番号2018/070492号に記載の方法にて、P3HA-3を作製した。この際、P3HA 100重量部に対して、水溶性高分子-1の代わりに、水溶性高分子-2(日油社製プロノン#208)を1.00重量部と、水溶性高分子-3(信越化学工業社製メトローズMCE-4000)を0.50重量部とを使用した。得られたP3HA-3は、(a)モノマー比率3HB/3HH=95/5(モル%/モル%)であり、かつ重量平均分子量が60万であるP3HB3HHと、(b)当該P3HB3HH100重量部に対して1.00重量部の水溶性高分子-2と0.50重量部の水溶性高分子-3と、を含んでいた。
 〔製造例4〕P3HA-4の作製
 国際公開番号2018/070492号に記載の方法にて、P3HA-4を作製した。この際、P3HA 100重量部に対して、水溶性高分子-1の代わりに水溶性高分子-4(CLARIANT社製Emulsogen EPN 287)を1.00重量部使用した。得られたP3HA-4は、(a)モノマー比率3HB/3HH=95/5(モル%/モル%)であり、かつ重量平均分子量が60万であるP3HB3HHと、(b)当該P3HB3HH100重量部に対して1.00重量部の水溶性高分子-4と、を含んでいた。
 〔製造例5〕P3HA-5の作製
 国際公開番号2018/070492号に記載の方法にて、P3HA-5を作製した。この際、P3HA 100重量部に対して、水溶性高分子-1の代わりに水溶性高分子-5(CLARIANT社製Emulsogen EPA 073)を1.00重量部使用した。得られたP3HA-5は、(a)モノマー比率3HB/3HH=95/5(モル%/モル%)であり、かつ重量平均分子量が60万であるP3HB3HHと、(b)当該P3HB3HH100重量部に対して1.00重量部の水溶性高分子-5と、を含んでいた。
 〔製造例6〕P3HA-6の作製
 国際公開番号2018/070492号に記載の方法にて、P3HA-6を作製した。この際、P3HA 100重量部に対して、水溶性高分子-1(クラレ社製クラレポバールPVA-205)を0.05重量部使用した。得られたP3HA-6は、(a)モノマー比率3HB/3HH=95/5(モル%/モル%)であり、かつ重量平均分子量が60万であるP3HB3HHと、(b)当該P3HB3HH100重量部に対して0.05重量部の水溶性高分子-1と、を含んでいた。
 〔製造例7〕P3HA-7の作製
 国際公開番号2018/070492号に記載の噴霧乾燥の代わりに、流動層乾燥にて、P3HA-7を作製した。この際、水溶性高分子を使用しなかった。得られたP3HA-7は、モノマー比率3HB/3HH=95/5(モル%/モル%)のP3HB3HHであり、重量平均分子量は60万であった。得られたP3HA-7は、(a)モノマー比率3HB/3HH=95/5(モル%/モル%)であり、かつ重量平均分子量が60万であるP3HB3HHと、を含んでいた。
 〔製造例8〕P3HA-8の作製
 国際公開番号2018/070492号に記載の方法にて、P3HA-8を作製した。この際、P3HA 100重量部に対して、水溶性高分子-1の代わりに水溶性高分子-4(CLARIANT社製Emulsogen EPN 287)を0.50重量部使用した。得られたP3HA-8は、(a)モノマー比率3HB/3HH=89/11(モル%/モル%)であり、かつ重量平均分子量が58万であるP3HB3HHと、(b)当該P3HB3HH100重量部に対して0.50重量部の水溶性高分子-4と、を含んでいた。
 各製造例で用いたP3HAと水溶性高分子の種類および量とを、表1にまとめて記載した。
 〔実施例1〕
 (ポリ(3-ヒドロキシアルカノエート)系樹脂粒子の製造)
 P3HA-1を用い、P3HA-1が100.0重量部、気泡調整剤が0.10重量部、結晶核剤が1.0重量部、滑剤-1が0.10重量部、滑剤-2が0.10重量部となるように計量し、スーパーミキサー(カワタ社製SMV(G)-100)を用いて混合物とした。当該混合物を、二軸押出機(東芝機械社製TEM-26SX)を用いて、シリンダー設定温度130℃~160℃で溶融混練し、押出機の先端に取り付けたダイスのノズルから吐出させた。ノズルから吐出された180℃の溶融したP3HA系組成物を43℃で水冷後に、当該P3HA系組成物(100重量部)のストランド表面に水希釈した帯電防止剤を微量塗布した後、当該ストランドを切断した。得られたポリ(3-ヒドロキシアルカノエート)系樹脂粒子は、1粒当たりの重量が2.0mg、長さ/直径が1.5、Tmpが145℃、融解終了温度は152℃であった。また、樹脂粒子は、測定温度160℃、かつ荷重5kgfで測定したMFRが2.2g/10minであった。
 (ポリ(3-ヒドロキシアルカノエート)系発泡粒子の製造)
 得られたポリ(3-ヒドロキシアルカノエート)系樹脂粒子100重量部、純水200重量部、分散剤1.0重量部、分散助剤0.1重量部、および架橋剤2.0重量部を、攪拌下で耐圧容器内に仕込んだ。その後、二酸化炭素で通気を十分に行い耐圧容器内の酸素を除去した。次に、耐圧容器内に発泡剤として二酸化炭素を導入した。その後、耐圧容器内の分散液を129.5℃の発泡温度まで昇温した。その後、二酸化炭素を追加導入して3.3MPa(ゲージ圧)の発泡圧力まで昇圧し、該発泡温度付近、該発泡圧力付近で60分間保持した。その後、耐圧容器下部のバルブを開き、直径3.6mmの開口オリフィスを通して、耐圧容器内の分散液を大気圧下に放出し、ポリ(3-ヒドロキシアルカノエート)系発泡粒子を得た。該発泡粒子の表面に付着した分散剤を水希釈した洗浄剤と温水である程度除去し、80℃で乾燥した。この際、ポリ(3-ヒドロキシアルカノエート)系発泡粒子の静電気を抑えるために、水希釈した帯電防止剤を微量吹き付けた。得られたポリ(3-ヒドロキシアルカノエート)系発泡粒子は、発泡倍率が21倍、ゲル分率が69重量%、1粒当たりの重量が2.0mg、長さ/直径が0.9、セル径が260μm、独立気泡率が94%であった。ポリ(3-ヒドロキシアルカノエート)系発泡粒子の特性を表2および表3にまとめた。
 (ポリ(3-ヒドロキシアルカノエート)系発泡成形体の製造)
 得られたポリ(3-ヒドロキシアルカノエート)系発泡粒子を80℃に加温した耐圧容器内に仕込み、空気で加圧処理することによって、ポリ(3-ヒドロキシアルカノエート)系発泡粒子の内圧を0.15MPa(絶対圧)とした。該発泡粒子を成形機(DAISEN社製EP-900L-M5)の縦370mm×横320mm×厚み60mmの金型内に充填した。次に、圧力0.15MPa(ゲージ圧)の水蒸気によって、ポリ(3-ヒドロキシアルカノエート)系発泡粒子を5秒~10秒間加熱して、ポリ(3-ヒドロキシアルカノエート)系発泡成形体を得た後、当該発泡成形体を75℃で乾燥した。ポリ(3-ヒドロキシアルカノエート)系発泡成形体に関する評価結果を、表2および表3にまとめた。
 〔実施例2~5、比較例1~3〕
 使用するポリ(3-ヒドロキシアルカノエート)系樹脂、および水性高分子を表2および表3に示すように変更したこと以外は実施例1と同様にして、ポリ(3-ヒドロキシアルカノエート)系樹脂粒子、ポリ(3-ヒドロキシアルカノエート)系発泡粒子、および、ポリ(3-ヒドロキシアルカノエート)系発泡成形体を作製し、実施例1と同様の評価を実施した。評価結果を、表2および表3にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 〔考察〕
 表1~表3より、以下のことがわかる:
 (1)実施例1~5から、ポリ(3-ヒドロキシアルカノエート)系樹脂と、少量の非イオン性の水溶性高分子とを用いてポリ(3-ヒドロキシアルカノエート)系発泡粒子を作製すれば、一回の発泡処理によって、発泡倍率の高いポリ(3-ヒドロキシアルカノエート)系発泡粒子が得られることがわかる;
 (2)比較例1では、ポリ(3-ヒドロキシアルカノエート)系樹脂と、少量のイオン性の水溶性高分子とを用いてポリ(3-ヒドロキシアルカノエート)系発泡粒子を作製したが、この場合には、ポリ(3-ヒドロキシアルカノエート)系樹脂粒子を作製する際の溶融混練時に熱分解が促進され、当該樹脂粒子のMFRが非常に高くなった。その結果、比較例1では、ポリ(3-ヒドロキシアルカノエート)系発泡粒子の発泡倍率を高くすることはできたが、独立気泡率が低いため、良好なポリ(3-ヒドロキシアルカノエート)系発泡成形体を得ることができなかった;
 (3)比較例2では、ポリ(3-ヒドロキシアルカノエート)系樹脂と、非常に少量(0.05重量)のイオン性の水溶性高分子とを用いてポリ(3-ヒドロキシアルカノエート)系発泡粒子を作製したが、この場合には、ポリ(3-ヒドロキシアルカノエート)系発泡粒子の発泡倍率を高くすることができなかった;
 (4)比較例3では、水溶性高分子を用いずにポリ(3-ヒドロキシアルカノエート)系発泡粒子を作製したが、この場合には、ポリ(3-ヒドロキシアルカノエート)系発泡粒子の発泡倍率を高くすることができなかった。
 本発明は、包装用緩衝材(例えば、冷蔵庫、冷凍庫、エアコンディショナー本体やその室外機、洗濯機、空気清浄器、加湿器、炊飯器、電子レンジ、オーブン、トースター、扇風機、蓄電池用ユニット等の家電包装用緩衝材、トランスミッション、ルーフ、フード、ドア、電池、エンジン等の自動車物品包装用緩衝材等)、自動車部材(例えば、バンパー芯材、ヘッドレスト、ラゲージボックス、ツールボックス、フロアスペーサー、シート芯材、チャイルドシート芯材、サンバイザー芯材、二―パッド等)、断熱材(例えば、定温保管用容器、定温輸送用容器等)、鋳造模型用途、農産箱、魚箱、建築材料および土木材料等の分野で好適に利用することができる。

 

Claims (13)

  1.  ポリ(3-ヒドロキシアルカノエート)系発泡粒子であって、
     ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、および、非イオン性の水溶性高分子(B)を含み、
     前記非イオン性の水溶性高分子(B)の含有量は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して0.10重量部~5.00重量部であり、
     前記ポリ(3-ヒドロキシアルカノエート)系発泡粒子の独立気泡率が、90%以上である、ポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  2.  前記非イオン性の水溶性高分子(B)が、疎水基を有するものである、請求項1に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  3.  前記非イオン性の水溶性高分子(B)が、生分解性のものである、請求項1または2に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  4.  前記非イオン性の水溶性高分子(B)が、ポリアルキレンオキシド、ポリビニルアルコール、およびセルロース誘導体からなる群より選択される少なくとも1つである、請求項1~3の何れか1項に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  5.  前記非イオン性の水溶性高分子(B)の含有量は、前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)100重量部に対して0.10重量部~1.00重量部である、請求項4に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  6.  前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)が、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、およびポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)からなる群より選択される少なくとも1つである、請求項1~5の何れか1項に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  7.  前記ポリ(3-ヒドロキシアルカノエート)系樹脂(A)は、3-ヒドロキシブチレート単位とコモノマー単位とを有する共重合体であり、
     前記共重合体における全繰り返し単位100モル%中の3HB単位とコモノマー単位との比率(3HB単位/コモノマー単位)が、99/1(mol%/mol%)~85/15(mol%/mol%)である、請求項1~6の何れか1項に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  8.  見掛け密度が20g/L~67g/Lである、請求項1~7の何れか1項に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  9.  高温側熱量が0.1J/g~20.0J/gである、請求項1~8の何れか1項に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  10.  セル径が50μm~500μmである、請求項1~9の何れか1項に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  11.  ゲル分率が30重量%以上である、請求項1~10の何れか1項に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子。
  12.  請求項1~11の何れか1項に記載のポリ(3-ヒドロキシアルカノエート)系発泡粒子からなる、ポリ(3-ヒドロキシアルカノエート)系発泡成形体。
  13.  発泡倍率が25倍以上である、請求項12に記載のポリ(3-ヒドロキシアルカノエート)系発泡成形体。
PCT/JP2022/018379 2021-04-28 2022-04-21 ポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体 WO2022230746A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280030718.8A CN117242127A (zh) 2021-04-28 2022-04-21 聚(3-羟基烷酸酯)类发泡粒子及聚(3-羟基烷酸酯)类发泡成型体
JP2023517475A JPWO2022230746A1 (ja) 2021-04-28 2022-04-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-076760 2021-04-28
JP2021076760 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230746A1 true WO2022230746A1 (ja) 2022-11-03

Family

ID=83847072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018379 WO2022230746A1 (ja) 2021-04-28 2022-04-21 ポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体

Country Status (3)

Country Link
JP (1) JPWO2022230746A1 (ja)
CN (1) CN117242127A (ja)
WO (1) WO2022230746A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258453A (ja) * 1994-02-09 1995-10-09 Novamont Spa 生分解性プラスチック材料製発泡製品とその製造方法
JP2010229407A (ja) * 2009-03-06 2010-10-14 Tokyo Institute Of Technology 樹脂組成物
JP2012082333A (ja) * 2010-10-13 2012-04-26 Tosoh Corp 発泡用生分解性樹脂組成物および発泡成形品
JP2012241166A (ja) * 2011-05-23 2012-12-10 Kaneka Corp ポリ(3−ヒドロキシアルカノエート)系予備発泡粒子および型内発泡成形体
JP5383489B2 (ja) * 2007-06-27 2014-01-08 株式会社カネカ 生分解性脂肪族ポリエステル系発泡粒子及びその成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258453A (ja) * 1994-02-09 1995-10-09 Novamont Spa 生分解性プラスチック材料製発泡製品とその製造方法
JP5383489B2 (ja) * 2007-06-27 2014-01-08 株式会社カネカ 生分解性脂肪族ポリエステル系発泡粒子及びその成形体
JP2010229407A (ja) * 2009-03-06 2010-10-14 Tokyo Institute Of Technology 樹脂組成物
JP2012082333A (ja) * 2010-10-13 2012-04-26 Tosoh Corp 発泡用生分解性樹脂組成物および発泡成形品
JP2012241166A (ja) * 2011-05-23 2012-12-10 Kaneka Corp ポリ(3−ヒドロキシアルカノエート)系予備発泡粒子および型内発泡成形体

Also Published As

Publication number Publication date
JPWO2022230746A1 (ja) 2022-11-03
CN117242127A (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
JP5014127B2 (ja) ポリヒドロキシアルカノエート樹脂発泡粒子、およびその成形体と該樹脂発泡粒子の製造方法
JP7123980B2 (ja) ポリ(3-ヒドロキシアルカノエート)系発泡粒子およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
WO2021002092A1 (ja) ポリ(3-ヒドロキシアルカノエート)系発泡粒子およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
WO2022054870A1 (ja) ポリ(3-ヒドロキシアルカノエート)系発泡粒子又はポリ(3-ヒドロキシアルカノエート)系発泡成形体の製造方法
JP5121447B2 (ja) 熱可塑性樹脂発泡粒子およびその成形体
JP5121446B2 (ja) ポリヒドロキシアルカノエート樹脂発泡粒子の製造方法
JP5408877B2 (ja) ポリヒドロキシアルカノエート樹脂発泡粒子、及びその成形体と該樹脂発泡粒子の製造方法
US20090192236A1 (en) Foamed polyhydroxyalkanoate resin particles
JP2012241166A (ja) ポリ(3−ヒドロキシアルカノエート)系予備発泡粒子および型内発泡成形体
WO2022230746A1 (ja) ポリ(3-ヒドロキシアルカノエート)系発泡粒子、およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
JP2022102730A (ja) ポリ(3-ヒドロキシアルカノエート)系発泡粒子およびポリ(3-ヒドロキシアルカノエート)系発泡成形体
JP2022104389A (ja) ポリ(3-ヒドロキシアルカノエート)系発泡成形体の製造方法
WO2023189102A1 (ja) 脂肪族ポリエステル系発泡粒子の製造方法
WO2024090332A1 (ja) 脂肪族ポリエステル系発泡粒子の製造方法
WO2023188942A1 (ja) ポリ(3-ヒドロキシアルカノエート)系樹脂発泡粒子
JP2023148083A (ja) ポリ(3-ヒドロキシアルカノエート)系樹脂発泡粒子およびその製造方法
JP2023047823A (ja) ポリ(3-ヒドロキシアルカノエート)系発泡粒子の製造方法およびポリ(3-ヒドロキシアルカノエート)系発泡成形体の製造方法
JP2022102731A (ja) ポリ(3-ヒドロキシアルカノエート)系発泡粒子およびポリ(3-ヒドロキシアルカノエート)系発泡成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795659

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517475

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280030718.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18557541

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795659

Country of ref document: EP

Kind code of ref document: A1