WO2022230672A1 - 細胞生死判定方法、細胞生死判定装置及び細胞生死判定システム - Google Patents

細胞生死判定方法、細胞生死判定装置及び細胞生死判定システム Download PDF

Info

Publication number
WO2022230672A1
WO2022230672A1 PCT/JP2022/017730 JP2022017730W WO2022230672A1 WO 2022230672 A1 WO2022230672 A1 WO 2022230672A1 JP 2022017730 W JP2022017730 W JP 2022017730W WO 2022230672 A1 WO2022230672 A1 WO 2022230672A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
image
life
death
cells
Prior art date
Application number
PCT/JP2022/017730
Other languages
English (en)
French (fr)
Inventor
翔太 亀井
隆史 守本
知之 下田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to AU2022263866A priority Critical patent/AU2022263866A1/en
Priority to KR1020237036082A priority patent/KR20230159871A/ko
Priority to JP2023517433A priority patent/JPWO2022230672A1/ja
Priority to CN202280030722.4A priority patent/CN117203525A/zh
Priority to EP22795586.1A priority patent/EP4317970A1/en
Publication of WO2022230672A1 publication Critical patent/WO2022230672A1/ja
Priority to US18/491,962 priority patent/US20240044773A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/025Displaying results or values with integrated means
    • B01L2300/027Digital display, e.g. LCD, LED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/012Red blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/144Imaging characterised by its optical setup
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N2015/1452Adjustment of focus; Alignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1497Particle shape

Definitions

  • the present disclosure relates to a method for judging cell life and death, a device for judging cell life and death, and a system for judging cell life and death.
  • the present disclosure has been made in view of such circumstances, and a problem to be solved by one embodiment of the present disclosure is to provide a method for determining cell life and death using the optical properties of cells.
  • a problem to be solved by another embodiment of the present disclosure is to provide a cell life/death determination device using the above cell life/death determination method.
  • a problem to be solved by another embodiment of the present disclosure is to provide a cell life-and-death determination system including the cell life-and-death determination device.
  • the present disclosure includes the following aspects. ⁇ 1> Acquiring an image of the cell captured with a plurality of focal planes including the focal plane of the cell from the direction opposite to the light-irradiated side of the cell irradiated with light; Obtaining an image piece containing the central part and the peripheral part of the cell from each image; connecting the image pieces in order of the imaging direction of the focal plane to create a connected image for analysis; a step of extracting a feature amount from the concatenated image for analysis; and a step of judging whether a cell is alive or dead based on the feature amount of the concatenated image for analysis and a predetermined range of the feature amount;
  • a method for determining cell life and death comprising: ⁇ 2> The method for determining cell life and death according to ⁇ 1>, wherein the determination of cell life and death includes determining whether or not the cell is a target cell.
  • ⁇ 3> The cell according to ⁇ 1> or ⁇ 2>, wherein a machine learning device determines whether the cell is alive or dead based on the feature amount of a known reference connected image of the cell and the determination result of whether or not the cell is a living cell. method of judging life and death.
  • the feature amount of the concatenated image for analysis is selected from the group consisting of a feature amount related to lens effect of cells, a feature amount related to average refractive index of cells, a feature amount related to cell diameter, and a feature amount related to specific gravity of cells.
  • the method for determining cell life and death according to any one of ⁇ 1> to ⁇ 3>, including one or more.
  • ⁇ 5> The method for judging cell life and death according to any one of ⁇ 1> to ⁇ 4>, wherein a plurality of cells in a cell suspension are judged for life and death.
  • ⁇ 6> The cell viability determination method according to ⁇ 5>, comprising the step of determining the viable cell concentration of the cells in the cell suspension based on the results of the viability determination.
  • ⁇ 7> The method for judging cell life and death according to ⁇ 5> or ⁇ 6>, comprising the step of determining the cell viability of the cells in the cell suspension based on the result of the life and death judgment.
  • An image acquisition unit that acquires an image of a cell captured with a plurality of focal planes including the focal plane of the cell from the direction opposite to the side of the cell irradiated with light, an image piece acquisition unit that acquires an image piece including the central part and the peripheral part of a cell from each image; an analytical connected image creating unit that creates an analytical connected image by connecting image pieces in order of the imaging direction of the focal plane; A feature quantity extraction unit for extracting a feature quantity from the concatenated image for analysis; A cell life-and-death determination device.
  • the life-and-death determination unit is configured by a machine learning device, and performs life-and-death determination based on the feature amount of the known reference connected image of the cell and the determination result as to whether or not the cell is a live cell.
  • cell viability determination device according to. ⁇ 10> ⁇ 8> or ⁇ 9, comprising a viable cell concentration determination unit that determines the viable cell concentration of cells in the cell suspension based on the results of viability determination of a plurality of cells in the cell suspension.
  • cell viability determination device a viable cell concentration determination unit that determines the viable cell concentration of cells in the cell suspension based on the results of viability determination of a plurality of cells in the cell suspension.
  • the device for judging cell life and death according to ⁇ 10> comprising a cell viability determination unit that determines the cell viability of cells in the cell suspension based on the result of the life and death determination.
  • a cell viability determination unit that determines the cell viability of cells in the cell suspension based on the result of the life and death determination.
  • ⁇ 12> Equipped with a light source for emitting light, an imaging device for imaging cells, means for changing a focal plane, and the device for determining cell life and death according to any one of ⁇ 8> to ⁇ 11>.
  • cell viability determination system ⁇ 13>
  • the method according to ⁇ 12>, wherein the means for changing the focal plane is a stage movement mechanism that changes the distance between the cells and the imaging device by moving the stage on which the holding container holding the cells is placed. Cell viability determination system.
  • the cell viability determination system according to ⁇ 12>, wherein the means for changing the focal plane is an imaging device moving mechanism that moves the imaging device to change the distance between the cell and the imaging device.
  • the imaging device includes a liquid lens as means for changing the focal plane.
  • a cell viability determination method using optical properties of cells is provided.
  • a cell viability determination device using the above cell viability determination method is provided.
  • a cell life/death determination system comprising the cell life/death determination device described above.
  • FIG. 1 is a schematic diagram showing an example of a cell viability determination system.
  • FIG. 2 is a schematic diagram showing an example of a focal plane.
  • FIG. 3 is a schematic diagram showing an example of an image obtained by imaging a living cell while changing the focal plane.
  • FIG. 4 is a schematic diagram showing an example of an image obtained by imaging dead cells while changing the focal plane.
  • FIG. 5 is a schematic diagram showing an example of a connected image obtained from living cells.
  • FIG. 6 is a schematic diagram showing an example of a connected image obtained from dead cells.
  • FIG. 7 is a schematic diagram showing an example of processing in the learning phase and operation phase of the machine learner.
  • FIG. 1 is a schematic diagram showing an example of a cell viability determination system.
  • FIG. 2 is a schematic diagram showing an example of a focal plane.
  • FIG. 3 is a schematic diagram showing an example of an image obtained by imaging a living cell while changing the focal plane.
  • FIG. 4 is a schematic diagram showing an example of an
  • FIG. 8 is a flowchart showing an example of a life-or-death judgment flow of the life-or-death judgment process.
  • FIG. 9 is a block diagram showing an example of a control unit that constitutes a cell life/death determination device.
  • FIG. 10 is a block diagram showing an example of processing of the device for determining cell life and death.
  • a numerical range indicated using “to” means a range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • a combination of two or more preferred aspects is a more preferred aspect.
  • the amount of each component means the total amount of the multiple types of substances unless otherwise specified when there are multiple types of substances corresponding to each component.
  • the term "process” includes not only an independent process, but also if the intended purpose of the process is achieved, even if it cannot be clearly distinguished from other processes. .
  • the cell viability determination method includes: A step of acquiring an image of a cell captured with a plurality of focal planes including the focal plane of the cell from the direction opposite to the side of the cell irradiated with light (hereinafter referred to as "image acquisition step ”), a step of acquiring an image piece including the central part and the peripheral part of the cell from each image (hereinafter sometimes referred to as “image piece acquisition step”); a step of connecting the image pieces in order of the imaging direction of the focal plane to create a concatenated image for analysis (hereinafter sometimes referred to as a “concatenated image for analysis step”); A step of extracting a feature amount from the concatenated image for analysis (hereinafter sometimes referred to as a “feature amount extraction step”), and based on the feature amount of the concatenated image for analysis and a predetermined range of the feature amount, a step of judging cell life and death (hereinafter sometimes referred to as
  • Japanese National Publication of International Patent Application No. 2013-517460 describes that cells are imaged in different focal planes, and then the life and death of cells is judged based on the brightness of the image.
  • the technique disclosed in Japanese Patent Application Publication No. 2013-517460 may not be sufficient to determine whether cells are alive or dead.
  • the optical properties of cells are used to create and analyze a connected image from images of cells captured in different focal planes, thereby determining cell life and death. Is going.
  • living cells Since living cells are covered with cell membranes, they tend to be spherical in a cell suspension (this does not mean that they are completely spherical), and live cells are translucent. Therefore, living cells have the property of a spherical lens, which is called "lens effect". Therefore, when a living cell is irradiated with light, a focal point (hereinafter sometimes referred to as a “lens effect focal point") is formed in the direction opposite to the side of the living cell irradiated with light due to the lens effect. be done. When the living cell is imaged from the direction opposite to the side of the living cell on which the light is irradiated, an image including the focal point of the lens effect can be obtained at the focal plane of the living cell. Therefore, for living cells, a connected image created from images acquired in a plurality of focal planes including an in-focus plane contains information peculiar to living cells.
  • Dead cells do not have a spherical shape because the cell membrane has been ruptured, and the liquid medium of the cell suspension has flowed into the dead cells. Therefore, dead cells do not exhibit a lens effect. Therefore, even if a dead cell is irradiated with light, the focal point of the lens effect is not formed. It is not possible.
  • the connected image created from living cells has features unique to living cells. Therefore, it is possible to determine whether a cell is alive or dead based on the feature amount of the analytical connected image of the cell whose life or death is unknown and the predetermined range of the feature amount.
  • the cell life/death determination method by creating and analyzing a connected image, it is possible to appropriately determine cell life/death with further consideration of information on cell life/death.
  • the method for determining cell life and death according to the present disclosure uses the optical properties of cells as described above, it is possible to more easily determine the life and death of cells without using staining reagents.
  • Predetermined feature amount range means a threshold for distinguishing whether a cell is a living cell or not, and if the feature amount is within the above range, the cell is determined to be a living cell. can do.
  • the method for determining the “predetermined range of feature values” is not particularly limited, and may be determined appropriately so as to enable determination of cell life and death. In another embodiment, determination of whether a cell is alive or dead may be performed based on the feature amount of a known reference connected image of the cell and the determination result of whether or not the cell is a living cell. Such an aspect is preferable when judging whether a cell is alive or dead using a machine learning device.
  • Target cell means a specific type of cell that is subject to life-or-death determination, and may be, for example, a cell that is the target of cell culture or the like.
  • the concatenated image for analysis and the concatenated image for reference are sometimes simply called “concatenated image”.
  • the "target cell” may be simply referred to as "cell”.
  • the cell type is not particularly limited, and it is possible to determine the life and death of various living cells.
  • mesenchymal stem cells collected and isolated from living tissue may be used, and examples thereof include human synovium-derived mesenchymal stem cells.
  • Synovium-derived mesenchymal stem cells are also referred to as synovium-derived stem cells.
  • the conditions for creating the concatenated image for analysis shall be the same as the conditions for creating the concatenated image for reference, at least to the extent that determination of cell life and death and identification of cells is possible. Also, when comparing different analytical connected images, the conditions for creating these analytical connected images are the same as long as the comparison is at least possible with respect to determination of cell life and death and identification of cells.
  • Image acquisition process In the image acquisition step, an image of the cell captured in a plurality of focal planes including the focal plane of the cell is acquired from a direction opposite to the light-irradiated side of the cell.
  • Images of cells can be obtained by imaging the cell suspension with an imaging device.
  • the means for changing the focal plane is not particularly limited, and examples include a method for changing the distance between the cell and the imaging device. Further, as a method of capturing an image while keeping the distance between the cell and the imaging device constant, there is a method of changing the focal point of the liquid lens using an imaging device equipped with a liquid lens. The focal plane moves as the focal length changes.
  • a holding container 40 containing cells (cell suspension) C is arranged between the light source 10 and the imaging device 20, and the stage 30 on which the holding container 40 is placed is moved.
  • Cells may be imaged while changing the focal plane by changing the focal plane.
  • a holding container containing cells may be arranged between the light source and the imaging device, and the cells may be imaged while changing the focal plane by moving the imaging device.
  • a holding container containing cells is placed between the light source and the imaging device to change the focus of the liquid lens provided in the imaging device without moving the imaging device and the stage. Cells may be imaged while thus changing the focal plane.
  • the cells may be imaged while moving the focal plane from the light source 10 toward the imaging device 20 , or the cells may be imaged while changing the focal plane from the imaging device 20 toward the light source 10 .
  • the imaging device consists of a combination of an imaging lens and an area sensor.
  • the imaging lens may be a telecentric lens, a microscope objective, or the like.
  • the type of lens, aperture angle, magnification, and the like of the imaging device are not particularly limited, but they can affect the convergence and divergence of light in the combined image, so they may be appropriately selected so as to properly capture the image.
  • a CCD Charge-Coupled Device
  • a CMOS Complementary Metal Oxide Semiconductor
  • the resolution of the area sensor is preferably set such that, for example, one pixel is about 1 ⁇ m to 3 ⁇ m in consideration of the lens magnification.
  • the light source is not particularly limited, for example, an LED (Light Emitting Diode) can be used.
  • the light source irradiate parallel light.
  • the positions and number of multiple focal planes for imaging cells are not particularly limited as long as they include the focal planes of the cells, but it is preferable to set them so that condensed light and divergence of light can be seen in the combined image.
  • cells may be imaged while moving the focal plane over a wide range from below to above the holding container, including from the bottom to the top of the holding container.
  • the distance between adjacent focal planes is preferably constant.
  • the position of the stage 30 may be specified by an encoder, and cells may be imaged while moving at equal intervals.
  • the movement interval of the focal plane is, for example, about 0.01 mm.
  • the moving distance of the focal plane in the cell suspension is shorter than the moving distance of the stage due to the influence of the refractive index of the cell suspension. is preferred.
  • an image may be acquired by focusing on the bottom surface (or the vicinity thereof) of the holding container holding the cells and used as the reference plane.
  • the concatenated image can be created under the same conditions, which is useful for analysis of the concatenated image.
  • the liquid thickness can be about 0.1 mm and the cell concentration can be about 1 ⁇ 10 6 cells/ml. Any holding container may be used.
  • the cell suspension contains other substances (e.g., other cells, red blood cells, oil droplets, etc.)
  • image processing using image processing software will confirm that the diameter is within a predetermined range and the shape
  • a material having a circularity within a predetermined range may be selected in advance.
  • the cell C A plurality of images may be acquired by imaging the cell C from the direction opposite to the light irradiation side.
  • the focal plane Pn is the n -th focal plane in the direction of the imaging device 20 from the focal plane P0 of the cell C.
  • the focal plane P 1 ⁇ m is the m-th focal plane in the direction of the light source 10 from the focal plane P 0 of the cell C.
  • FIG. At least one of m and n is an integer of 1 or more, and m+n is an integer of 1 or more.
  • FIG. 2 shows an example where m is 2 or more and n is 4 or more.
  • the cell C is a living cell
  • the figure 3 live cell images I 7 to I ⁇ 2 are obtained.
  • the image I0 was taken at the in-focus plane P0 of the living cell, and the outline of the living cell is clear. In addition, in the center of the living cell, there is a focal point with an indistinct lens effect.
  • the image I1 is taken at the first focal plane P1 in the direction of the imaging device 20 from the focal plane P0 of the living cell, and the outline of the living cell is unclear.
  • focal plane P1 is an example of the focal plane of the focal point of the lens effect.
  • Image I2 and image I3 were taken from the live cell focal plane P0 toward the imaging device 20 at the second focal plane P2 and the third focal plane P3, respectively. Contours are vague. In addition, in the center of the living cell, there is a focal point with an indistinct lens effect.
  • Images I 4 to I 7 are respectively taken from the focal plane P 0 of the living cell in the direction of the imaging device 20 at the fourth focal plane P 4 to the seventh focal plane P 7 . Contours are vague. Also, no focal point of the lens effect is seen.
  • Image I -1 was taken from the living cell focal plane P 0 toward the light source 10 at the first focal plane P -1 , and the outline of the living cell is unclear. In addition, in the center of the living cell, there is a focal point with an indistinct lens effect.
  • Image I -2 was taken at the second focal plane P -2 in the direction of the light source 10 from the focal plane P 0 of the live cell, and the outline of the live cell is unclear. Also, no focal point of the lens effect is seen.
  • the outline of the living cell tends to become larger as the focal plane is further away from the focal plane P 0 of the living cell, as shown in, for example, images I7 to I - 2 .
  • the size of the focal point of the lens effect is, on the side where the focal point of the lens effect is formed (that is, the imaging device 20 side ), for example, as shown in the image I1 and the image I2 . There is a tendency that the farther the focal plane is from the focal plane P1 of the condensing point, the larger the focal plane becomes.
  • the size of the lens effect focal point becomes smaller, as shown in image I3 , and further away from the focal plane P3 At P4 , no focal point can be seen.
  • the size of the focal point of the lens effect is such that on the side opposite to the side where the focal point of the lens effect is formed (that is, on the side of the light source 10), for example, as shown in the image I -1 , the lens It tends to be smaller away from the focal plane P1 of the focus of the effect. Then, at the further distant focal plane P 1 ⁇ 2 , the focal point of the lens effect is no longer seen.
  • the cell is a dead cell, for example, by imaging the dead cell at a plurality of focal planes P7 to P-2 , including the focal plane P0 of the dead cell, while changing the focal plane, FIG. As shown in , image I'7 to image I' -2 of dead cells are obtained.
  • the image I'0 was taken at the focal plane P0 of the dead cells, and the outlines of the dead cells are clear.
  • Image I′ 1 was taken at the first focal plane P 1 in the direction of the imaging device 20 from the focal plane P 0 of the dead cells, and the outline of the dead cells is unclear.
  • Image I'2 is taken at the second focal plane P2 in the direction of imaging device 20 from the focal plane P0 of the dead cells, and the outline of the dead cells is unclear.
  • dead cells are opaque compared to live cells because the cell membrane is broken and light scatters on the outer peripheral surface of dead cells.
  • a phenomenon similar to the diffraction caused by a shielding object placed on the plane wave of light occurs, and near the center of the dead cell in the direction opposite to the side of the dead cell irradiated with light. A brightened area is formed.
  • a focal point of the diffracted light is present in the center of the dead cell in image I'2 , and the outline of the focal point is clear. That is, the focal plane P2 is an example of the focal plane of the condensing point of the diffracted light.
  • Images I′ 3 to I′ 7 are respectively taken from the focal plane P 0 of the dead cell in the direction of the imaging device 20 at the third focal plane P 3 to the seventh focal plane P 7 .
  • Cell outlines are unclear.
  • Image I' -1 and image I' -2 were taken at the first and second focal planes P -1 and P- 2 , respectively, in the direction of the light source 10 from the focal plane P 0 of the dead cells. dead cells, and the outline of dead cells is unclear.
  • the outline of dead cells tends to increase with increasing distance from the focal plane P 0 of the dead cells, as shown, for example, in images I 7 to I -2 .
  • the size of the focal point of the diffracted light for example, as shown in images I'7 to I'2 , increases with the distance from the focal plane P2 of the focal point of the diffracted light.
  • the condensing point of the lens effect and the condensing point of the diffracted light are sometimes simply called "condensing points”.
  • image piece acquisition process In the image piece acquisition step, an image piece including the central portion and the peripheral portion of the cell is acquired from each image obtained in the image acquisition step.
  • the image piece acquisition process may be performed, for example, by image processing using image processing software.
  • the position where the image piece is acquired from the cell image is not particularly limited as long as it includes the central part and the peripheral part of the cell.
  • the image piece preferably includes a portion where the length of the cell is the maximum (that is, a portion where the length of a straight line connecting any two points on the outline of the cell is the maximum).
  • image pieces S 7 to S ⁇ 2 including the portion where the length of the living cell is the maximum may be obtained, and the portion where the length of the dead cell is the maximum may be acquired.
  • Image strips S′ 7 through S′ ⁇ 2 may be obtained.
  • each image may be preprocessed prior to acquiring image slices from each image of cells.
  • preprocessing for example, concentric circles with different radii centering on the center of the cell are set in pixel units, and the average value of brightness on the circumference is obtained for each concentric circle, and the brightness on the circumference is the above average value.
  • There is a process of reconstructing an image of a cell by drawing a certain concentric circle that is, the brightness on the circumference is averaged and has the same radius as the original concentric circle. This makes it possible to obtain a symmetrical image with respect to the center of the cell. Therefore, when acquiring image fragments, it is possible to eliminate the influence of the direction in which the image fragments are cut out.
  • a symmetrical concatenated image (for example, as shown in FIGS. 5 and 6, a symmetrical concatenated image) can be obtained. It becomes easier to extract the feature amount from the connected image in the feature amount extraction step.
  • Step of creating linked images for analysis In the analysis connected image creation step, the image pieces obtained in the image piece acquisition step are connected in order of the imaging direction of the focal plane to create an analysis connection image.
  • the process of creating a connected image for analysis may be performed, for example, by image processing using image processing software.
  • the method of connecting the image pieces is not particularly limited as long as they are connected in order of the imaging direction of the focal plane. It is preferable to connect the image pieces so that the long sides of the image pieces are in contact with each other along a straight line connecting the centers of the cells of each image piece.
  • the image pieces S 7 to S ⁇ 2 of the living cells acquired from FIG. By concatenating along the lines, a concatenated image L for analysis of living cells is obtained. Also, for example, image pieces S′ 7 to S′ ⁇ 2 of dead cells obtained from FIG. are connected along a line connecting , a connected image L′ for analysis of dead cells is obtained.
  • Feature quantity extraction process In the feature quantity extraction step, a feature quantity is extracted from the analysis connected image obtained in the analysis connected image creation step.
  • the feature quantity extraction process may be performed, for example, by image processing using image processing software.
  • the connected image contains various information about the cells, and for example, feature quantities 1 to 11 below can be obtained.
  • the concatenated image contains information about cell viability based on the presence or absence of the focal point of the lens effect.
  • the merged image contains image slices of the cell's in-focus plane, where live cells have a lensing focal point, while dead cells have a lensing focal point. do not do.
  • the connected image L of the living cell shown in FIG. 5 has the focal point of the lens effect at the image piece S0 of the focal plane P0 of the living cell.
  • the connected image L' of the dead cells shown in FIG. 6 does not have the focal point of the lens effect on the image piece S'0 of the focal plane P0 of the dead cells. Therefore, it is possible to determine whether a cell is alive or dead based on the presence or absence of the focal point of the lens effect.
  • the brightness of the central portion of the image piece of the in-focus plane of the cell may be defined as the feature quantity 1, and based on the predetermined range of the feature quantity 1, the life or death of the cell may be determined. Accordingly, when the feature amount 1 is within the range described above, it can be determined that the cell is a living cell for the analysis connected image. Further, in another embodiment, life-and-death determination is performed based on the feature amount 1 of the concatenated image for analysis, the feature amount 1 of the known concatenated image for reference of the cell, and the determination result of whether or not the cell is a living cell. you can
  • the stitched image contains information about cell viability based on the starting position of the focal spot.
  • "Starting position of the focal point” means the focal plane of the focal point of the lens effect or the diffracted light.
  • the "starting position of the focal point” means the image piece in the focal plane of the lens effect or the focal point of the diffracted light.
  • the starting position of the focal point of the lens effect reflects the average refractive index of the cell.
  • the focal plane P1 of the lensing focal point is the starting position of the lensing focal point.
  • the focal plane P2 of the condensing point of the diffracted light is the starting position of the condensing point of the diffracted light.
  • the starting position of the focal point of the lens effect is closer to the cell than the starting position of the focal point of the diffracted light.
  • the focal point of the lens effect is formed by the light passing through the living cell and concentrating near the living cell, whereas the focal point of the diffracted light passes through the vicinity of the outer peripheral surface of the dead cell. This is because the emitted light is focused relatively far from the dead cells and formed. That is, the focal point of the lens effect formed in the living cell is closer to the cell than the focal point of the diffracted light formed in the dead cell.
  • the starting position of the focal point of the lens effect is close to the focal plane P 0 of the living cell.
  • the starting position of the focal point of the diffracted light is far from the focal plane P0 of the dead cell. Therefore, it is possible to determine whether a cell is alive or dead based on the starting position of the focal point.
  • the feature amount 2 may be obtained by specifying the start position of the focal point based on the distance based on the focal plane of the cell. For example, the length along the direction in which the image strips are joined between the image strip at the focal plane of the cell and the image strip at the start position of the focal point (i.e., the focal plane of the focal point) is characterized.
  • a predetermined feature amount 2 range may be used to determine the life or death of a cell. Thereby, when the feature quantity 2 is within the above range, it can be determined that the cell is a living cell for the analysis connected image.
  • life and death determination is performed based on the feature amount 2 of the concatenated image for analysis, the feature amount 2 of the known concatenated image for reference of the cell, and the determination result of whether or not the cell is a living cell. you can
  • the concatenated image contains information about cell viability based on the duration of the focal spot.
  • focal point duration is meant the distance from the starting position of the focal point of the lens effect or diffracted light to the focal plane where the focal point vanishes.
  • continuous length of the focal point is the shortest length from the image piece on the focal plane of the focal point of the lens effect or diffracted light to the image piece on the focal plane where the focal point disappears.
  • the focal point continues over focal planes further away from in-focus plane P0 than focal plane P4.
  • the condensed points of the lens effect have a continuous length of the condensed points. Also, for the focal point of the lens effect, the intensity of the light decreases at short distances due to divergence.
  • the blue component short wavelength component
  • the red component long wavelength component
  • the focal point of the diffracted light is formed by condensing the light passing through the vicinity of the outer peripheral surface of the dead cell, and the interference pattern changes over a relatively long distance depending on the distance from the dead cell. . Therefore, the focal point of the diffracted light has a continuous length of the focal point that is longer than the lens effect. That is, the live cell focal spot has a shorter focal spot duration than the dead cell focal spot.
  • the focal point of the lens effect is continuous from the image piece S 1 ⁇ 1 to the image piece S 3 .
  • the focal points of the diffracted light are continuous from the image piece S'2 to the image piece S7.
  • the duration of the focal spot of the live cell concatenated image L is shorter than the focal spot duration of the dead cell concatenated image L′. Therefore, it is possible to determine whether a cell is alive or dead based on the continuous length of the focal point.
  • the length along the direction in which the image pieces are connected is defined as the feature quantity 3, and based on the predetermined range of the feature quantity 3, cell life/death determination may be performed.
  • life-and-death determination is performed based on the feature amount 3 of the concatenated image for analysis, the feature amount 3 of the known concatenated reference image of the cell, and the determination result of whether or not the cell is a living cell. you can
  • the concatenated image contains information regarding cell identification based on the starting position of the focal spot.
  • the starting position of the focal point of the lens effect reflects the average refractive index of the cell, and other substances with different average refractive indices from the target cell (e.g., other cells, red blood cells, oil droplets, etc.) etc.), the starting position of the focal point is different from that of the target cell. Therefore, based on the starting position of the focal point, it is possible to determine whether or not the cell to be determined for life or death is the target cell.
  • the starting position of the focal point may be specified as the feature quantity 4 based on the distance based on the focal plane of the cell.
  • the length along the direction in which the image strips are joined between the image strip at the focal plane of the cell and the image strip at the start position of the focal point i.e., the focal plane of the focal point
  • Quantity 4 and based on the predetermined range of the feature quantity 4 determination of life or death of the cell may be performed.
  • the characteristic value 4 of the analysis connected image is within the above range, it can be determined that the cell to be determined for life or death is the target cell.
  • life-and-death determination is performed based on the feature quantity 4 of the concatenated image for analysis, the feature quantity 4 of the known reference concatenated image of the cell, and the determination result of whether or not the cell is a living cell. you can
  • Feature quantity 4 may be the same as feature quantity 2.
  • the feature quantity 4 may be different from the feature quantity 2.
  • the feature quantity 4 is set so as to be more suitable for identifying cells, and the feature quantity 4 is set so as to be more suitable for judging whether cells are alive or dead. You may set the feature quantity 2 to .
  • the concatenated image contains information regarding cell identification based on the duration of the focal spot.
  • the duration of the focal point of the lens effect reflects the average refractive index of the cell, so other substances with different average refractive indices from the target cell (e.g., other cells, red blood cells, oil droplets, etc.) differ in the duration of the focal spot from the target cell. Therefore, it is possible to determine whether or not the cell to be determined for life or death is the target cell based on the duration of the focal point.
  • the length along the direction in which the image pieces are connected is defined as the feature value 5, and based on the predetermined range of the feature value 5, cell survival determination may be performed.
  • cell survival determination may be performed.
  • life-and-death determination is performed based on the feature amount 5 of the concatenated image for analysis, the feature amount 5 of the known concatenated image for reference of the cell, and the determination result of whether or not the cell is a living cell. you can
  • Feature quantity 5 may be the same as feature quantity 3.
  • the feature amount 5 may be different from the feature amount 3.
  • the feature amount 5 is set so as to be more suitable for identifying cells, and the feature amount 5 is set so as to be more suitable for determining whether cells are alive or dead.
  • a feature amount 3 may be set to .
  • red blood cells have a shape like a concave lens.
  • a light-condensing point is formed on the side, and a light-condensing point is also formed on the side irradiated with light.
  • erythrocytes may also differ from living cells in the starting position of focal spots and the duration of focal spots.
  • Concatenated images may contain information regarding cell identification based on cell size in the plane of focus.
  • the stitched image contains image pieces of the in-focus plane of the cell. Therefore, if the image piece of the in-focus plane of the cell contains the part where the length of the cell is the maximum (that is, the part where the length of the straight line connecting any two points on the outline of the cell is the maximum) , the length of the maximum portion can be used as the diameter of the cell. Then, for example, it is examined whether or not the diameter of the cell to be determined for life and death is about the same as the known diameter of the target cell, and if not, it is determined that the cell to be determined for life and death is not the target cell. can do. Therefore, based on the size of the cell in the in-focus plane, it is possible to determine whether or not the cell to be determined for life or death is the target cell.
  • the portion where the length of the cell is the maximum (that is, the portion where the length of the straight line connecting any two points on the outline of the cell is the maximum) ) is defined as the feature quantity 6, and based on a predetermined range of the feature quantity 6, determination of life or death of the cell may be performed.
  • the characteristic value 6 is within the above range, it can be determined that the cell to be determined for life or death is the target cell in the connected image for analysis.
  • life and death determination is performed based on the feature amount 6 of the concatenated image for analysis, the feature amount 6 of the known concatenated image for reference of the cell, and the determination result as to whether the cell is a living cell or not. you can
  • the merged image contains information regarding the identification of cells based on the position of the plane of focus.
  • a cell suspension containing target cells and other substances e.g., other cells, red blood cells, oil droplets, etc.
  • target cells and other substances e.g., other cells, red blood cells, oil droplets, etc.
  • the specific gravity of the cells is different from the specific gravity of the other substances, the cells and the other substances , there is a difference in how they sink (the degree of sinking) in the cell suspension, and the positions of the cells differ from the positions of other substances in the depth direction of the cell suspension. Therefore, when cells and other substances are imaged on the same focal plane and a connected image is created, the position of the image piece on the focal plane of the cell and the position of the image piece on the focal plane of the other substance (for example, , height in the connecting direction of the image pieces) are different.
  • the position of the image piece of the in-focus plane of the cell that is the target of life/death determination is comparable to the position of the image piece of the known in-focus plane of the target cell.
  • the feature value 7 is the length along the direction in which the image pieces are connected between the image piece of the focal plane and the image piece of the lowest focal plane of the cell that is the target of life-or-death determination. Based on the range of the feature value 7 obtained, determination of cell life and death may be performed. As a result, when the characteristic value 7 of the analysis connected image is within the above range, it can be determined that the cell to be determined for life or death is the target cell. Further, in another embodiment, life-and-death determination is performed based on the feature quantity 7 of the concatenated image for analysis, the feature quantity 7 of the known concatenated reference image of the cell, and the determination result of whether or not the cell is a living cell. you can
  • the connected image contains information regarding cell identification based on the connected shape of the focal points.
  • the “connected shape of condensing points” means the shape of a portion formed by connecting condensing points in a connected image.
  • the image of the portion where the focal points are connected is set as the feature amount 8
  • the feature amount 8 of the connected image for analysis and the feature amount 8 of the known connected image for reference of the cell are calculated by a machine learning device. It may be determined whether or not the cell to be determined for life or death is the target cell based on the result of determining whether or not the cell is a viable cell.
  • the connecting shape of the focal points is related to the size of the focal points in addition to the starting position of the focal points and the continuous length of the focal points. It reflects Therefore, other substances (eg, other cells, red blood cells, oil droplets, etc.) having a different average refractive index from the target cell have a different connection shape of the focal points from the target cell. Therefore, it is possible to determine whether or not the cell to be determined for life or death is the target cell based on the connected shape of the condensing points.
  • substances eg, other cells, red blood cells, oil droplets, etc.
  • the concatenated image may contain information regarding cell identification based on the color distribution of the foci.
  • the blue component short wavelength component
  • the red component long wavelength component
  • a distribution of colors can be seen.
  • the color distribution of the lensing focus reflects the average refractive index of the cell. Therefore, other substances (eg, other cells, red blood cells, oil droplets, etc.) having a different average refractive index from the target cell have a different color distribution of the focal point than the target cell. Therefore, based on the color distribution of the condensed points, it is possible to determine whether or not the cell to be determined for life or death is the target cell.
  • the color separation of the focal point of the lens effect as described above can be seen, showing a color distribution in which the vicinity of the cell is colored blue and the area relatively far away is colored red.
  • red blood cells for example, tend to have weak color separation at the focal points and appear relatively white due to their concave lens-like shape.
  • the image of the portion where the focal points are connected is set as the feature amount 9, and the feature amount 9 of the connected image for analysis and the feature amount 9 of the known connected image for reference of the cell are obtained by a machine learning device. It may be determined whether or not the cell to be determined for life or death is the target cell based on the result of determining whether or not the cell is a viable cell.
  • the merged image contains information regarding cell viability and cell identification, as described above. Therefore, based on the degree of matching between the analysis connected image and the reference connected image, it is possible to determine whether the cell is alive or dead, and whether or not the cell to be determined for life or death is the target cell. .
  • the concatenated image for analysis itself is used as a feature quantity 10
  • a machine learning device uses the feature quantity 10 of the concatenated image for analysis, the feature quantity 10 of a known reference concatenated image of a cell, and determination of whether or not it is a living cell. Based on the results, it may be determined whether or not the cells to be determined for life and death are viable cells and whether or not they are target cells.
  • Concatenated images contain life-or-death information based on the amount of lensing penetration of cells.
  • the “lens effect transmission amount” of a cell means the amount of light transmitted through the cell when the cell has a lens effect.
  • the "transmission amount of the lens effect” of the cell is the average brightness of the "multiple image pieces in the imaging direction" starting from the image piece of the focal plane of the cell when the cell has the lens effect, It means the weighted sum of the average brightness of "multiple image pieces in the direction of the light source” starting from the image piece on the focal plane of the cell.
  • the weighting factor is not particularly limited and may be set as appropriate.
  • the dead cells immediately after the cell membrane is broken, as an intermediate state they may have a focal point due to the lens effect, similar to the living cells. Since the dead cells scatter light on the outer peripheral surface due to the breakage of the cell membrane, the amount of transmission due to the lens effect is lower than that of the live cells. Therefore, it is possible to determine whether a cell is alive or dead based on the amount of light transmitted by the lens effect. It is assumed that the output of the light source is kept constant.
  • the average brightness of the image piece in the imaging direction with respect to the focal plane of the cell is, for example, the average brightness of the image piece S 0 on the focal plane P 0 to the image piece S n on the focal plane P n shown in FIG. .
  • the sum may be used as a feature quantity 11, and cell survival may be determined based on a predetermined range of the feature quantity 11.
  • a connected image is created for each color, and the average brightness of "multiple image pieces in the imaging direction" and " By combining the average luminosity of a plurality of image pieces in the direction of the light source from different colors, determination of life and death of cells may be performed.
  • a multi-wavelength light source e.g., white LED
  • an imaging device capable of spectroscopy e.g., RGB color camera
  • the feature amounts 1 to 11 described above are examples of feature amounts obtained from the connected images, and it is possible to determine the life and death of cells and identify cells based on other feature amounts.
  • Feature quantity 1 and feature quantity 11 relate to the lens effect of cells. Further, feature quantities 2 to 5 relate to the average refractive index of cells. Moreover, the feature value 6 relates to the diameter of the cell. Moreover, the feature value 7 relates to the specific gravity of cells. Also, the feature amount 8 and the feature amount 9 relate to the form of the connected image itself. Furthermore, the feature quantity 10 relates to all of the average refractive index of cells, the diameter of cells, and the specific gravity of cells. In this way, since many feature values can be obtained from the concatenated image, the concatenated image is effective not only for judging the life and death of cells but also for identifying cells.
  • the feature quantity used to determine the life and death of the cell is one or more selected from the group consisting of feature quantity 1 to feature quantity 11, that is, the feature quantity related to the lens effect of the cell, the feature quantity related to the average refractive index of the cell, the cell's It is preferable to include one or more selected from the group consisting of a feature amount related to diameter and a feature amount related to cell specific gravity.
  • life-and-death determination is performed based on the feature amount of the analysis connected image and a predetermined range of the feature amount. In another embodiment, determination of whether a cell is alive or dead may be performed based on the feature amount of a known reference connected image of the cell and the determination result of whether or not the cell is a living cell.
  • determination of whether or not a cell to be determined for life and death is a target cell can also be performed based on a predetermined range of feature values. , When determining whether or not the cell that is the target of life-and-death determination is the target cell, based on the feature amount of the known reference connected image of the target cell and the determination result of whether or not it is a live cell cells may be determined for viability.
  • Determining whether a cell is alive or dead can include determining whether the cell to be determined is a target cell, that is, identifying the cell.
  • Such an aspect includes, for example, a case where cell life-or-death determination is performed by the feature quantity 2 (or feature quantity 4) based on the starting position of the focal point, and the feature quantity 2 is also based on the starting position of the focal point.
  • the feature quantity 4 or the feature quantity 2
  • 4 or feature quantity 3
  • the feature value 10 based on the matching degree of the connected images is used, and in addition to the determination of life and death of the cell, determination of whether or not the cell that is the target of the determination of life and death is the target cell is also performed at the same time.
  • any one of feature amounts 1 to 3 and feature amount 11 may be used to determine whether a cell is alive or dead.
  • cell life-or-death determination may be performed by combining two or more of feature amounts 1 to 3 and feature amount 11.
  • Any one of the feature values 4 to 9 may be used to identify cells (that is, to determine whether or not a cell that is the target of life-and-death determination is a target cell). From the viewpoint of further improving the accuracy of cell identification, cell identification may be performed by combining two or more of the feature quantities 4 to 9. FIG.
  • determination and identification of cell life and death may be performed at the same time.
  • Cell viability determination (which in some embodiments may include cell identification) may be performed using a machine learning machine.
  • the machine learning device may be constructed by any one method of neural network, support vector machine and boosting. It is preferable that the machine learning device is constructed by a neural network and performs deep learning.
  • the teacher data consists of the known feature values of connected reference images of cells (hereinafter sometimes referred to as "learning feature values”) and the determination result of whether or not the cell is a live cell corresponding to the learning feature values ( hereinafter sometimes referred to as "correct life-or-death judgment result").
  • learning feature values are input to the machine learning device.
  • the machine learning device outputs learning life-or-death judgment results for the learning feature values. Based on this life-and-death determination result for learning and the correct life-and-death determination result, the loss calculation of the machine learner using a loss function is performed. Various coefficients of the machine learning device are updated according to the result of the loss calculation, and the machine learning device is updated according to the update settings.
  • the process is repeated while teaching data is exchanged.
  • the repetition of the above series of processes is terminated when the prediction accuracy of the learning life-death judgment result with respect to the correct life-death judgment result reaches a predetermined set level.
  • the machine learning device whose prediction accuracy has reached the set level in this way is used in the operation phase, and outputs a life-and-death determination result in response to the input of the feature amount of the connected image for analysis.
  • life-and-death determination may be performed for multiple cells in the cell suspension.
  • a connected image for analysis of target cells and other substances is created. Then, based on the feature amount of these concatenated images for analysis, the feature amount of the known concatenated reference image of the target cell, and the determination result of whether or not the target cell is a living cell, the target cell is identified and at the same time, the target cell life-or-death judgment may be performed.
  • target cells and other substances eg, other cells, red blood cells, oil droplets, etc.
  • the life-and-death determination flow shown in FIG. 8 is an example of identifying a target cell using feature quantities 4 to 7 and performing life-and-death determination using feature quantities 4 and 5 .
  • Step S10- One concatenated image for analysis is selected from a plurality of concatenated images for analysis (S10).
  • Step S12- It is determined whether or not the feature amount 6 (diameter size) of the analysis connected image is within a predetermined range of the feature amount 6 (S12). If the feature amount 6 of the analysis connected image is within the above range, it is determined that the cell may be the target cell, and the process proceeds to the next step (S14). If the feature quantity 6 of the analysis connected image is not within the above range, it is determined that the cell is not the target cell (S22).
  • Step S14- It is determined whether or not the feature amount 7 (the position of the in-focus plane) of the analysis connected image is within the range of the predetermined feature amount 7 (S14). If the feature value 7 of the analysis connected image is within the above range, it is determined that the cell may be the target cell, and the process proceeds to the next step (S16). If the feature amount 7 of the analysis connected image is not within the above range, it is determined that the cell is not the target cell (S22).
  • Step S16- It is determined whether or not the characteristic amount 4 (starting position of the condensing point) of the analysis connected image is within the range of the predetermined characteristic amount 4 (S16). If the feature value 4 of the analysis connected image is within the above range, it is determined that the target cell may be a living cell (hereinafter sometimes referred to as a "target living cell"), and the process proceeds to the next step (S18). If the characteristic value 4 of the analysis connected image is not within the above range, it is determined that the target cell is not a viable cell (S22).
  • Step S18- It is determined whether or not the characteristic amount 5 (continuation length of the condensing point) of the analysis connected image is within the range of the predetermined characteristic amount 5 (S18). If the feature value 5 of the combined image for analysis is within the above range, it is determined that the target cell is a viable cell (S20). If the feature value 5 of the analysis connected image is not within the above range, it is determined that the target cell is not a living cell (S22).
  • Step S20 If it is determined to be a viable target cell (S20), proceed to the next step (S24), and if determined not to be the target cell (S22), proceed to the next step (S26). .
  • Step S24- Count the number of connected images determined to be live cells of the target cell, and proceed to the next step (S28).
  • Step S26- Count the number of connected images determined to be non-live cells of the target cell, and proceed to the next step (S28).
  • Step S28- If there is an analysis connected image for which life or death has not been determined, the process returns to step S10, and if life or death determination has been performed for all the analysis connected images, the life or death determination flow ends.
  • the cell viability determination method includes a step of determining the viable cell concentration of cells in the cell suspension based on the results of the viability determination of a plurality of cells in the cell suspension (hereinafter referred to as "viable cell concentration determination step”). may be called).
  • the viable cell concentration of cells means the number of viable cells per unit volume [cells/ml].
  • the viable cell concentration of cells can be determined, for example, as follows.
  • a cell suspension is housed in a holding container, and all cells present between the bottom of the holding container and the liquid surface of the cell suspension (substances other than the target cells (e.g., , other cells, erythrocytes, oil droplets, etc.) are created to determine life and death, and the number of analysis connected images determined to be live cells is the number of live cells.
  • the number of viable cells is the product of the volume of the cell suspension used for measurement (that is, the area of the field of view and the height of the cell suspension (height from the bottom of the holding container to the liquid surface) ) to determine the viable cell concentration of the cells in the cell suspension.
  • the method for determining cell life and death according to the present disclosure can determine cell life and death, and can determine the viable cell concentration of cells.
  • the cell viability determination method includes a step of determining the cell viability of the cells in the cell suspension based on the results of viability determination of a plurality of cells in the cell suspension (hereinafter referred to as "cell viability determination step”). may be called).
  • the cell viability is the value obtained by dividing the number of viable cells by the total number of cells (the sum of the number of viable cells and the number of dead cells).
  • the number of analysis connected images determined to be living cells is the number of living cells, and the total number of analysis connection images (for example, steps S24 and S26) can be calculated as the total cell number.
  • the cell type contained in the cell suspension is only one type of target cell, so the cell viability obtained in this case is the ratio of the target viable cells to the total target cells. Become.
  • the cell life-and-death determination device includes: An image acquisition unit that acquires an image of a cell captured with a plurality of focal planes including the focal plane of the cell from the direction opposite to the side of the cell irradiated with light, an image piece acquisition unit that acquires an image piece including the central part and the peripheral part of a cell from each image; an analytical connected image creating unit that creates an analytical connected image by connecting image pieces in order of the imaging direction of the focal plane; A feature quantity extraction unit for extracting a feature quantity from the concatenated image for analysis; a life-and-death determination unit that determines the life and death of cells; Prepare.
  • the life-and-death determination unit may be composed of a machine learning device.
  • the cell viability determination device may include a viable cell concentration determination unit that determines the viable cell concentration of cells in the cell suspension based on the results of viability determination of a plurality of cells in the cell suspension.
  • the cell viability determination device may include a cell viability determination unit that determines the cell viability of cells in the cell suspension based on the results of viability determination of a plurality of cells in the cell suspension.
  • the image acquisition unit, the image piece acquisition unit, the analytical connected image creation unit, the feature extraction unit, the life/death determination unit, the viable cell concentration determination unit, and the cell viability determination unit in the cell life/death determination device are each an image of the cell life/death determination method. It corresponds to an acquisition process, an image piece acquisition process, an analytical connection image creation process, a feature quantity extraction process, a life/death determination process, a viable cell concentration determination process, and a cell viability determination process.
  • the cell viability determination device may operate as a cell viability determination system with other devices for acquiring images of cells at multiple focal planes.
  • a cell life/death determination system includes a light source that emits light, an imaging device that images cells, and means for changing a focal plane.
  • the means for changing the focal plane is not particularly limited, and may be, for example, a stage movement mechanism that changes the distance between the cells and the imaging device by moving the stage on which the holding container holding the cells is placed.
  • the cell life/death determination system 200 includes a light source that irradiates cells C with light, an imaging device 20 that images cells C, and a holding container 40 that holds cells (cell suspension) C. , a stage 30 (stage moving mechanism) that moves the holding container 40 to change the distance between the cell C and the imaging device 20, and the cell survival determination device 100 according to the present disclosure.
  • the means for changing the focal plane may be an imaging device moving mechanism that moves the imaging device to change the distance between the cell and the imaging device.
  • the imaging device may include a liquid lens as means for changing the focal plane.
  • the cell life/death determination system does not include such an imaging device or the like, and may include, for example, an external storage device in which cell images are stored. Images of cells may be obtained from
  • the cell life/death determination system may include an input device for inputting data and a display device for displaying cell life/death determination results.
  • a keyboard for example, can be used as the input device, and a monitor, for example, can be used as the display device.
  • the cell life/death determination device according to the present disclosure will be described more specifically, taking the cell life/death determination system 200 shown in FIG. 1 as an example.
  • FIG. 9 is a block diagram showing an example of the control unit 106 that constitutes the cell life/death determination device 100 shown in FIG.
  • a CPU (Central Processing Unit) 101 provided in the control unit 106 is a processor that controls the cell life/death determination system 200 as a whole.
  • the CPU 101 reads a system program stored in a ROM (Read Only Memory) 102 via a bus 105, and controls the entire cell life/death determination apparatus 100 according to the system program.
  • a RAM (Random Access Memory) 103 temporarily stores calculation data, display data for the display device 60, various data input via the input device 50, and the like.
  • non-volatile memory 104 for example, an SRAM (Static Random Access Memory), an SSD (Solid State Drive), or the like backed up by a battery (not shown) is used. Data obtained from the stage 30, data input from the input device 50, and the like are stored. Data, programs, and the like stored in the nonvolatile memory 104 may be developed in the RAM 103 when used. In addition, the ROM 102 is pre-written with various algorithms required for image analysis of image data acquired from the imaging device 20, system programs for executing other required processes, and the like.
  • SRAM Static Random Access Memory
  • SSD Solid State Drive
  • the result of determining whether the cell is alive or dead is output to the display device 60.
  • FIG. 10 is a block diagram showing an example of processing of the cell life/death determination device shown in FIG. Each functional block shown in FIG. 10 is implemented by CPU 101 provided in cell life/death determination apparatus 100 shown in FIG.
  • the control unit 106 controls the light source 10 , the imaging device 20 and the stage 30 based on the imaging program stored in the nonvolatile memory 104 to image the cells C.
  • the control unit 106 turns on the light source 10 to irradiate the cells C with light, moves the holding container 40 holding the cells (cell suspension) C, and drives the stage 30 so as to change the focal plane.
  • the control unit 106 commands the imaging device 20 to perform an imaging operation.
  • the control unit 106 images the cell on a plurality of focal planes including the focal plane of the cell from the direction opposite to the light-irradiated side of the cell irradiated with light, according to the imaging program.
  • control unit 106 and the imaging program is unnecessary.
  • the image acquisition unit 107 acquires images of cells captured by the imaging device 20 .
  • a plurality of images obtained by imaging one cell may be collectively managed as one set of image data group.
  • the image piece acquiring unit 108 performs image processing on the cell image acquired by the image acquiring unit 107, and acquires an image piece including the central part and the peripheral part of the cell from the cell image.
  • a plurality of image pieces obtained by imaging one cell may be collectively managed as one set of image piece data group.
  • the analysis connected image creation unit 109 performs image processing on the image pieces obtained by the image piece acquisition unit 108, connects the image pieces in order of the imaging direction of the focal plane, and creates an analysis connection image.
  • the feature quantity extraction unit 110 performs image processing on the analysis connected image obtained by the analysis connected image creation unit 109, and extracts a feature quantity from the analysis connected image.
  • the life-and-death determination unit 111 determines whether a cell is alive or dead based on the feature amount of the analysis connected image extracted by the feature amount extraction unit 110 and a predetermined range of the feature amount. In another embodiment, the life-and-death determination unit 111 compares the feature amount of the analysis connected image extracted by the feature amount extraction unit 110, the feature amount of the known reference connected image of the cell, and whether or not the cell is a living cell. Based on the determination result, the life and death determination of the cell is performed. The life-and-death determination unit 111 outputs the cell life-and-death determination result generated by the determination to the display device 60 .
  • the viable cell concentration determining unit 112 determines the viable cell concentration of cells based on the result of the life and death determination, that is, the number of analysis connected images determined to be viable cells.
  • the viable cell concentration determination unit 112 outputs the viable cell concentration of cells to the display device 60 .
  • the cell viability determination unit 113 determines the cell viability based on the results of life and death determination, that is, the number of analysis connected images determined to be living cells and the total number of analysis connected images.
  • the cell viability determination unit 113 outputs the cell viability to the display device 60 .
  • the life-death determination device As described above, by using the cell life-death determination device according to the present disclosure, the life-death determination of cells can be performed, and the viable cell concentration of cells can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Hematology (AREA)
  • Signal Processing (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Geometry (AREA)
  • Food Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

光が照射された細胞の光が照射された側とは反対の方向から、細胞の合焦面を含む複数の焦点面で撮像された、細胞の画像を取得する工程、各画像から、細胞の中心部及び外周部を含む画像片を取得する工程、焦点面の撮像方向の順に画像片を連結して、解析用連結画像を作成する工程、解析用連結画像から特徴量を抽出する工程、及び解析用連結画像の特徴量と、予め定められた特徴量の範囲とに基づいて、細胞の生死判定を行う工程、を含む、細胞生死判定方法、細胞生死判定装置及び細胞生死判定システム。

Description

細胞生死判定方法、細胞生死判定装置及び細胞生死判定システム
 本開示は、細胞生死判定方法、細胞生死判定装置及び細胞生死判定システムに関する。
 細胞培養技術では、生細胞を用いることが必要であるため、播種に用いる細胞について生死判定が行われている。このような細胞生死判定に関する技術が、例えば、特表2013-517460号公報に開示されている。
 特表2013-517460号公報等を始めとして、細胞生死判定に関する技術が従来から検討されているが、十分でないのが現状である。
 本開示は、このような状況を鑑みてなされたものであり、本開示の一実施形態が解決しようとする課題は、細胞の光学的性質を利用した細胞生死判定方法を提供することである。
 本開示の他の実施形態が解決しようとする課題は、上記細胞生死判定方法を用いた細胞生死判定装置を提供することである。
 本開示の他の実施形態が解決しようとする課題は、上記細胞生死判定装置を備えた細胞生死判定システムを提供することである。
 本開示は、以下の態様を含む。
<1> 光が照射された細胞の光が照射された側とは反対の方向から、細胞の合焦面を含む複数の焦点面で撮像された、細胞の画像を取得する工程、
 各画像から、細胞の中心部及び外周部を含む画像片を取得する工程、
 焦点面の撮像方向の順に画像片を連結して、解析用連結画像を作成する工程、
 解析用連結画像から特徴量を抽出する工程、及び
 解析用連結画像の特徴量と、予め定められた特徴量の範囲とに基づいて、細胞の生死判定を行う工程、
を含む、細胞生死判定方法。
<2> 細胞の生死判定を行うことが、細胞が目的細胞であるか否かの判定を行うことを含む、<1>に記載の細胞生死判定方法。
<3> 機械学習器により、細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果にもとづいて、生死判定を行う、<1>又は<2>に記載の細胞生死判定方法。
<4> 解析用連結画像の特徴量が、細胞のレンズ効果に関する特徴量、細胞の平均屈折率に関する特徴量、細胞の径に関する特徴量、及び細胞の比重に関する特徴量からなる群から選択される1つ以上を含む、<1>~<3>のいずれか1つに記載の細胞生死判定方法。
<5> 細胞懸濁液中の複数の細胞について生死判定を行う、<1>~<4>のいずれか1つに記載の細胞生死判定方法。
<6> 上記生死判定の結果に基づいて、細胞懸濁液中の細胞の生細胞濃度を決定する工程を含む、<5>に記載の細胞生死判定方法。
<7> 上記生死判定の結果に基づいて、細胞懸濁液中の細胞の細胞生存率を決定する工程を含む、<5>又は<6>に記載の細胞生死判定方法。
<8> 光が照射された細胞の光が照射された側とは反対の方向から、細胞の合焦面を含む複数の焦点面で撮像された、細胞の画像を取得する画像取得部、
 各画像から、細胞の中心部及び外周部を含む画像片を取得する画像片取得部、
 焦点面の撮像方向の順に画像片を連結して、解析用連結画像を作成する解析用連結画像作成部、
 解析用連結画像から特徴量を抽出する特徴量抽出部、及び
 解析用連結画像の特徴量と、予め定められた特徴量の範囲とに基づいて、細胞の生死判定を行う生死判定部、
を備えた、細胞生死判定装置。
<9> 生死判定部が、機械学習器により構成されており、細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果に基づいて、生死判定を行う、<8>に記載の細胞生死判定装置。
<10> 細胞懸濁液中の複数の細胞の生死判定の結果に基づいて、細胞懸濁液中の細胞の生細胞濃度を決定する生細胞濃度決定部を備えた、<8>又は<9>に記載の細胞生死判定装置。
<11> 上記生死判定の結果に基づいて、細胞懸濁液中の細胞の細胞生存率を決定する細胞生存率決定部を備えた、<10>に記載の細胞生死判定装置。
<12> 光を照射する光源と、細胞を撮像する撮像装置と、焦点面を変化させる手段と、<8>~<11>のいずれか1つに記載の細胞生死判定装置と、を備えた、細胞生死判定システム。
<13> 焦点面を変化させる手段が、細胞を保持する保持容器を載置したステージを移動させて細胞と撮像装置との間の距離を変化させるステージ移動機構である、<12>に記載の細胞生死判定システム。
<14> 焦点面を変化させる手段が、撮像装置を移動させて細胞と撮像装置との間の距離を変化させる撮像装置移動機構である、<12>に記載の細胞生死判定システム。
<15> 焦点面を変化させる手段として、撮像装置が液体レンズを備えた、<12>に記載の細胞生死判定システム。
<16> 細胞がヒト滑膜由来間葉系幹細胞である<8>~<11>のいずれか1つに記載の細胞生死判定装置。
<17> 細胞がヒト滑膜由来間葉系幹細胞である<12>~<15>のいずれか1つに記載の細胞生死判定システムを用いた関節症治療剤の製造方法。
<18> <17>に記載の関節症治療剤の製造方法によって製造される関節症治療剤。
 本開示の一実施形態によれば、細胞の光学的性質を利用した細胞生死判定方法が提供される。
 本開示の他の実施形態によれば、上記細胞生死判定方法を用いた細胞生死判定装置が提供される。
 本開示の他の実施形態によれば、上記細胞生死判定装置を備えた細胞生死判定システムが提供される。
図1は、細胞生死判定システムの一例を示す模式的概略図である。 図2は、焦点面の一例を示す模式的概略図である。 図3は、焦点面を変化させながら生細胞を撮像して得られる画像の一例を示す模式的概略図である。 図4は、焦点面を変化させながら死細胞を撮像して得られる画像の一例を示す模式的概略図である。 図5は、生細胞から得られる連結画像の一例を示す模式的概略図である。 図6は、死細胞から得られる連結画像の一例を示す模式的概略図である。 図7は、機械学習器の学習フェーズ及び運用フェーズにおける処理の一例を示す概略図である。 図8は、生死判定工程の生死判定フローの一例を示すフロー図である。 図9は、細胞生死判定装置を構成する制御部の一例を示すブロック図である。 図10は、細胞生死判定装置の処理の一例を示すブロック図である。
 以下、本開示に係る細胞生死判定方法及び細胞生死判定装置の詳細を説明する。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。
 本開示において、「工程」という語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。
 以下の説明において参照する図面は、例示的、かつ、概略的に示されたものであり、本開示は、これらの図面に限定されない。同じ符号は、同じ構成要素を示す。また、図面の符号は省略することがある。
<細胞生死判定方法>
 本開示に係る細胞生死判定方法は、
 光が照射された細胞の光が照射された側とは反対の方向から、細胞の合焦面を含む複数の焦点面で撮像された、細胞の画像を取得する工程(以下、「画像取得工程」と呼ぶことがある)、
 各画像から、細胞の中心部及び外周部を含む画像片を取得する工程(以下、「画像片取得工程」と呼ぶことがある)、
 焦点面の撮像方向の順に画像片を連結して、解析用連結画像を作成する工程(以下、「解析用連結画像作成工程」と呼ぶことがある)、
 解析用連結画像から特徴量を抽出する工程(以下、「特徴量抽出工程」と呼ぶことがある)、及び
 解析用連結画像の特徴量と、予め定められた特徴量の範囲とに基づいて、細胞の生死判定を行う工程(以下、「生死判定工程」と呼ぶことがある)、を含む。
 細胞生死判定方法として、例えば、特表2013-517460号公報には、異なる焦点面で細胞を撮像した後、画像の明暗に基づいて、細胞の生死判定を行うことが記載されている。しかし、特表2013-517460号公報の技術では、細胞の生死判定を行うのに不十分であることがある。
 これに対して、本開示に係る細胞生死判定方法では、細胞の光学的性質を利用し、異なる焦点面で撮像した細胞の画像から連結画像を作成して解析することにより、細胞の生死判定を行っている。
 生細胞は、細胞膜で覆われているため、細胞懸濁液中で球状となる性質があり(なお、完全な球状を意味するものではない)、また、生細胞は、透光性を有する。そのため、生細胞は球状レンズとしての性質を有しており、これを「レンズ効果」という。
 よって、生細胞に光を照射すると、レンズ効果により、生細胞の光を照射する側とは反対の方向に集光点(以下、「レンズ効果の集光点」と呼ぶことがある)が形成される。生細胞の光を照射する側とは反対の方向から生細胞を撮像すると、生細胞の合焦面で、レンズ効果の集光点を含む画像を取得することができる。
 そのため、生細胞について、合焦面を含む複数の焦点面で取得した画像から作成された連結画像は、生細胞に特有の情報を含むものとなる。
 一方、死細胞は、細胞膜が破れているため球状とはならず、また、細胞懸濁液の液体媒質が死細胞に流入している。そのため、死細胞はレンズ効果を示さない。
 よって、死細胞に光を照射しても、レンズ効果の集光点は形成されず、死細胞の合焦面で死細胞を撮像しても、レンズ効果の集光点を含む画像を取得することはできない。
 以上のことから、生細胞から作成された連結画像は、死細胞から作成された連結画像とは異なり、生細胞に特有の特徴量を有する。そのため、生死が不明な細胞の解析用連結画像の特徴量と、予め定められた特徴量の範囲とに基づいて、細胞の生死判定を行うことができる。
 このように、本開示に係る細胞生死判定方法では、連結画像を作成して解析することにより、細胞の生死に関する情報をより考慮した上で、適切に細胞の生死判定を行うことができる。また、本開示に係る細胞生死判定方法は、上記のように細胞の光学的性質を利用しているため、染色試薬を用いることなく、より簡便に細胞の生死判定を行うことができる。
 「予め定められた特徴量の範囲」とは、細胞が生細胞であるか否かを区別するための閾値を意味し、特徴量が上記範囲内である場合、細胞が生細胞であると判定することができる。「予め定められた特徴量の範囲」の決定方法は特に限定されず、細胞の生死判定が可能であるように適切に決定してよい。
 他の実施形態において、細胞の生死判定は、細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果に基づいて行ってよい。このような態様は、機械学習器により細胞の生死判定を行う場合に好ましい。
 「目的細胞」とは、生死判定の対象とする特定の種類の細胞を意味し、例えば、細胞培養等の目的である細胞であってよい。
 解析用連結画像及び参照用連結画像を単に「連結画像」と呼ぶことがある。また、「目的細胞」を単に「細胞」と呼ぶことがある。
 細胞の種類は特に限定されず、種々の生細胞の生死判定を行うことができる。具体的には、生体組織から採取、単離された間葉系幹細胞であってもよく、例えば、ヒト滑膜由来間葉系幹細胞が挙げられる。尚、滑膜由来間葉系幹細胞は滑膜由来幹細胞とも呼称される。
 以下、各工程の詳細を説明する。
 解析用連結画像の作成条件(撮像条件等)は、特に断らない限り、少なくとも、細胞の生死判定及び細胞の識別が可能な限度で、参照用連結画像の作成条件と同一とする。また、異なる解析用連結画像同士を比較する場合にも、少なくとも、細胞の生死判定及び細胞の識別に関して比較が可能な限度で、これらの解析用連結画像の作成条件を同一とする。
[画像取得工程]
 画像取得工程では、光が照射された細胞の光が照射された側とは反対の方向から、細胞の合焦面を含む複数の焦点面で撮像された、細胞の画像を取得する。
 細胞の画像は、細胞懸濁液を撮像装置で撮像することにより取得することができる。
 焦点面を変化させる手段は特に限定されず、例えば、細胞と撮像装置との間の距離を変化させる方法が挙げられる。また、細胞と撮像装置との間の距離を一定としたまま撮像する方法として、液体レンズを搭載した撮像装置を用いて液体レンズの焦点を変化させる方法等が挙げられる。焦点距離の変化に応じて、焦点面が移動する。
 例えば、図1に示すように、光源10と撮像装置20との間に、細胞(細胞懸濁液)Cを収容した保持容器40を配置して、保持容器40を載置したステージ30を移動させることにより焦点面を変化させながら、細胞を撮像してよい。
 また、光源と撮像装置との間に、細胞(細胞懸濁液)を収容した保持容器を配置して、撮像装置を移動させることにより焦点面を変化させながら、細胞を撮像してよい。
 また、光源と撮像装置との間に、細胞(細胞懸濁液)を収容した保持容器を配置して、撮像装置及びステージを移動させることなく、撮像装置が備えた液体レンズの焦点を変化させることにより焦点面を変化させながら、細胞を撮像してよい。
 光源10から撮像装置20に向かって焦点面を移動させながら細胞を撮像してよく、撮像装置20から光源10に向かって焦点面を変化させながら細胞を撮像してもよい。
 撮像装置は、撮像レンズとエリアセンサーとの組み合わせからなる。撮像レンズは、テレセントリックレンズ、顕微鏡対物レンズ等であってよい。
 撮像装置のレンズの種類、開口角、倍率等は特に限定されないが、これらは連結画像における集光及び光の発散に影響し得るため、適切に撮像できるように適宜選択してよい。
 レンズの倍率が高い程視野が狭くなり、1視野当たりで撮像できる細胞懸濁液の量が少なくなるため、より多くの細胞懸濁液を測定対象とする観点から、倍率は、例えば、2倍~4倍程度とすることが好ましい。また、レンズの開口角は、狭い方が集光点の識別感度が高い傾向がある。
 撮像装置のエリアセンサーとしては、例えば、CCD(Charge-Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等を用いることができる。エリアセンサーの分解能は、レンズ倍率も考慮して、例えば、1ピクセルが1μm~3μm程度となる設定が好ましい。
 光源は特に限定されないが、例えば、LED(Light Emitting Diode)等が挙げられる。
 レンズ効果の観点から、光源は、平行光を照射するものであることが好ましい。
 細胞を撮像する複数の焦点面の位置及び数は、細胞の合焦面を含む限りは特に限定されないが、連結画像における集光及び光の発散が見られるように設定することが好ましい。
 例えば、保持容器の底面から上面までを含んで、保持容器の下方から上方の広い範囲に亘って焦点面を移動させながら、細胞を撮像してよい。
 隣接する焦点面間の距離は、一定であることが好ましい。例えば、図1に示すようなステージ30を用いる場合、ステージ30の位置をエンコーダで特定し、等間隔で移動させながら細胞を撮像してよい。
 焦点面の移動間隔は、例えば、0.01mm程度であることが好ましい。また、細胞懸濁液中での焦点面の移動距離は、細胞懸濁液の屈折率の影響により、ステージの移動距離より短くなるため、それを考慮して、ステージの移動距離を決定することが好ましい。
 焦点面を変化させる際の便宜のため、例えば、細胞を保持する保持容器の底面(又はその近傍)に焦点を合わせて画像を取得して基準面としてよい。
 また、基準面を定め、基準面から所定の範囲内で焦点面を移動させた連結画像を得ることにより、同一条件で連結画像を作成することができるため、連結画像の解析に有益である。
 保持容器としては、市販のカウンティングセル及び血球計算盤、これらに類似する構造を有する測定セルを使用することができる。保持容器に細胞懸濁液を収容した際、例えば、液厚が0.1mm程度で細胞濃度が1×10個/ml程度となり得るが、細胞濃度が更に低い場合には、液厚が大きくなる保持容器を用いてよい。
 例えば、細胞懸濁液に他の物質(例えば、他の細胞、赤血球、油滴等)が含まれる場合、画像処理ソフトを用いた画像処理により、径が所定の範囲内であり、かつ、形状の真円度が所定の範囲内である物質を予め選定してよい。目的細胞とは明らかに異なる物質を除外することで、細胞生死判定に要する全体の時間を短縮する効果が得られる。
 例えば、図2に示すように、細胞Cに光を照射し、焦点面を変化させながら、細胞Cの合焦面Pを含む複数の焦点面P~焦点面P-mで、細胞Cの光を照射する側とは反対の方向から細胞Cを撮像して、複数の画像を取得してよい。
 焦点面Pは、細胞Cの合焦面Pから、撮像装置20の方向にn番目の焦点面である。焦点面P-mは、細胞Cの合焦面Pから、光源10の方向にm番目の焦点面である。m及びnの少なくとも一方が1以上の整数であり、かつ、m+nが1以上の整数であればよく、図2は、mが2以上、かつ、nが4以上の例である。
 以下、細胞Cが生細胞である場合の例について説明する。
 細胞Cが生細胞である場合、例えば、焦点面を変化させながら、生細胞の合焦面Pを含む複数の焦点面P~焦点面P-2で生細胞を撮像することにより、図3に示すように、生細胞の画像I~画像I-2が得られる。
 画像Iは、生細胞の合焦面Pで撮像したものであり、生細胞の輪郭は明瞭である。また、生細胞の中心部には、輪郭が不明瞭なレンズ効果の集光点がある。
 画像Iは、生細胞の合焦面Pから撮像装置20の方向に1番目の焦点面Pで撮像したものであり、生細胞の輪郭は不明瞭である。また、生細胞の中心部には、レンズ効果の集光点があり、集光点の輪郭は明瞭である。すなわち、焦点面Pは、レンズ効果の集光点の合焦面の例である。
 画像I及び画像Iはそれぞれ、生細胞の合焦面Pから撮像装置20の方向に2番目の焦点面P及び3番目の焦点面Pで撮像したものであり、生細胞の輪郭は不明瞭である。また、生細胞の中心部には、輪郭が不明瞭なレンズ効果の集光点がある。
 画像I~画像Iはそれぞれ、生細胞の合焦面Pから撮像装置20の方向に4番目の焦点面P~7番目の焦点面Pで撮像したものであり、生細胞の輪郭は不明瞭である。また、レンズ効果の集光点は見られない。
 画像I-1は、生細胞の合焦面Pから光源10の方向に1番目の焦点面P-1で撮像したものであり、生細胞の輪郭は不明瞭である。また、生細胞の中心部には、輪郭が不明瞭なレンズ効果の集光点がある。
 画像I-2は、生細胞の合焦面Pから光源10の方向に2番目の焦点面P-2で撮像したものであり、生細胞の輪郭は不明瞭である。また、レンズ効果の集光点は見られない。
 生細胞の輪郭は、例えば、画像I~画像I-2に示すように、生細胞の合焦面Pから離れた焦点面である程、大きくなる傾向がある。
 レンズ効果の集光点の大きさは、レンズ効果の集光点が形成される側(すなわち、撮像装置20の側)では、例えば、画像I及び画像Iに示すように、レンズ効果の集光点の合焦面Pから離れた焦点面である程、大きくなる傾向がある。しかし、レンズ効果の集光点の合焦面Pから大きく離れた焦点面Pでは、画像Iに示すように、レンズ効果の集光点の大きさは小さくなり、更に離れた焦点面Pでは集光点が見られなくなる。
 また、レンズ効果の集光点の大きさは、レンズ効果の集光点が形成される側とは反対側(すなわち、光源10の側)では、例えば、画像I-1に示すように、レンズ効果の集光点の合焦面Pから離れると小さくなる傾向がある。そして、更に離れた焦点面P-2では、レンズ効果の集光点が見られなくなる。
 次に、細胞が死細胞である場合の例について説明する。
 細胞が死細胞である場合、例えば、焦点面を変化させながら、死細胞の合焦面Pを含む複数の焦点面P~焦点面P-2で死細胞を撮像することにより、図4に示すように、死細胞の画像I’~画像I’-2が得られる。
 画像I’は、死細胞の合焦面Pで撮像したものであり、死細胞の輪郭は明瞭である。
 画像I’は、死細胞の合焦面Pから撮像装置20の方向に1番目の焦点面Pで撮像したものであり、死細胞の輪郭は不明瞭である。
 画像I’は、死細胞の合焦面Pから撮像装置20の方向に2番目の焦点面Pで撮像したものであり、死細胞の輪郭は不明瞭である。また、死細胞は、細胞膜が破れており、死細胞の外周面で光の散乱が起こるため、生細胞と比較して不透明である。その結果、死細胞に光を照射すると、光の平面波に置かれた遮蔽物が起こす回折に類似した現象が起こり、死細胞の光を照射する側とは反対の方向の死細胞の中心付近に明るくなる部分が形成される。これは、回折光が重なった結果できたものである(以下、上記部分を「回折光の集光点」と呼ぶことがある)。画像I’の死細胞の中心部には、回折光の集光点があり、集光点の輪郭は明瞭である。すなわち、焦点面Pは、回折光の集光点の合焦面の例である。
 画像I’~画像I’はそれぞれ、死細胞の合焦面Pから撮像装置20の方向に3番目の焦点面P~7番目の焦点面Pで撮像したものであり、死細胞の輪郭は不明瞭である。また、死細胞の中心部には、輪郭が不明瞭な回折光の集光点がある。
 画像I’-1及び画像I’-2はそれぞれ、死細胞の合焦面Pから光源10の方向に1番目の焦点面P-1及び2番目の焦点面P-2で撮像したものであり、死細胞の輪郭は不明瞭である。
 死細胞の輪郭は、生細胞と同様に、例えば、画像I~画像I-2に示すように、死細胞の合焦面Pから離れた焦点面である程、大きくなる傾向がある。
 回折光の集光点の大きさは、例えば、画像I’~画像I’に示すように、回折光の集光点の合焦面Pから離れた焦点面である程、大きくなる傾向がある。
 以上のことは、図3及び図4を用いて説明した一例であり、細胞の球形度、大きさ等により、細胞の輪郭及び集光点の見え方が異なり得る。
 レンズ効果の集光点及び回折光の集光点を単に「集光点」と呼ぶことがある。
[画像片取得工程]
 画像片取得工程では、画像取得工程で得られた各画像から、細胞の中心部及び外周部を含む画像片を取得する。
 画像片取得工程は、例えば、画像処理ソフトを用いた画像処理により行ってよい。
 細胞の画像から画像片を取得する位置は、細胞の中心部及び外周部を含む限りは特に限定されない。
 画像片は、細胞の長さが最大となる部分(すなわち、細胞の輪郭上の任意の2点を結ぶ直線の長さが最大となる部分)を含むことが好ましい。
 例えば、図3に示すように、生細胞の長さが最大となる部分を含む画像片S~画像片S-2を取得してよく、また、死細胞の長さが最大となる部分を含む画像片S’~画像片S’-2を取得してよい。
 また、細胞の各画像から画像片を取得する前に、各画像に前処理を施してよい。前処理として、例えば、細胞の中心部を中心とする半径違いの同心円を画素単位で設定し、各同心円について、円周上の明度の平均値を求め、円周上の明度が上記平均値である同心円(すなわち、円周上の明度が平均化され、かつ、元の同心円と同一の半径を有する)を描くことにより、細胞の画像を再構築するという処理が挙げられる。これにより、細胞の中心部を中心として対称な画像を得ることができる。そのため、画像片を取得する際、画像片を切り出す方向による影響を除去することができる。
 このような前処理を施した画像から取得される画像片を用いることにより、対称な連結画像(例えば、図5及び図6のように、左右対称な連結画像)を得ることができ、後の特徴量抽出工程で、連結画像から特徴量を抽出することがより容易となる。
[解析用連結画像作成工程]
 解析用連結画像作成工程では、画像片取得工程で得られた各画像片を焦点面の撮像方向の順に連結して、解析用連結画像を作成する。
 解析用連結画像作成工程は、例えば、画像処理ソフトを用いた画像処理により行ってよい。
 画像片を連結する方法は、焦点面の撮像方向の順に連結する限りは特に限定されない。各画像片の細胞の中心部を結ぶ直線に沿って、画像片の長辺同士が接するように連結することが好ましい。
 例えば、図3から取得した生細胞の画像片S~画像片S-2を、図5に示すように、焦点面の撮像方向の順に、各画像片の生細胞の中心部を結ぶ線に沿って連結することにより、生細胞の解析用連結画像Lが得られる。
 また、例えば、図4から取得した死細胞の画像片S’~画像片S’-2を、図6に示すように、焦点面の撮像方向の順に、各画像片の死細胞の中心部を結ぶ線に沿って連結することにより、死細胞の解析用連結画像L’が得られる。
[特徴量抽出工程]
 特徴量抽出工程では、解析用連結画像作成工程で得られた解析用連結画像から特徴量を抽出する。
 特徴量抽出工程は、例えば、画像処理ソフトを用いた画像処理により行ってよい。
(連結画像から抽出される特徴量)
 連結画像は、細胞に関する様々な情報を含んでおり、例えば、以下の特徴量1~特徴量11を得ることができる。
-特徴量1-(レンズ効果の集光点の有無に基づく細胞の生死判定)
 連結画像は、レンズ効果の集光点の有無に基づく細胞の生死に関する情報を含む。
 連結画像は、細胞の合焦面の画像片を含んでおり、細胞の合焦面において、生細胞は、レンズ効果の集光点を有するが、死細胞は、レンズ効果の集光点を有しない。
 例えば、図5に示される生細胞の連結画像Lは、生細胞の合焦面Pの画像片Sにレンズ効果の集光点を有する。一方、例えば、図6に示される死細胞の連結画像L’は、死細胞の合焦面Pの画像片S’にレンズ効果の集光点を有しない。
 そのため、レンズ効果の集光点の有無に基づいて、細胞の生死判定を行うことができる。
 例えば、細胞の合焦面の画像片の中心部の輝度を特徴量1とし、予め定められた特徴量1の範囲に基づいて、細胞の生死判定を行ってよい。これにより、解析用連結画像について、特徴量1が上記範囲内である場合に、細胞が生細胞であると判定することができる。
 また、他の実施形態において、解析用連結画像の特徴量1と、細胞の既知の参照用連結画像の特徴量1及び生細胞であるか否かの判定結果とに基づいて、生死判定を行ってよい。
-特徴量2-(集光点の開始位置に基づく細胞の生死判定)
 連結画像は、集光点の開始位置に基づく細胞の生死に関する情報を含む。
 「集光点の開始位置」とは、レンズ効果又は回折光の集光点の合焦面を意味する。
 連結画像において、「集光点の開始位置」とは、レンズ効果又は回折光の集光点の合焦面の画像片を意味する。
 生細胞において、レンズ効果の集光点の開始位置は、細胞の平均屈折率を反映したものである。
 生細胞の場合、例えば、図3に示すように、レンズ効果の集光点の合焦面Pがレンズ効果の集光点の開始位置である。
 一方、死細胞の場合、例えば、図4に示すように、回折光の集光点の合焦面Pが回折光の集光点の開始位置である。
 例えば、図3及び図4に示すように、レンズ効果の集光点の開始位置は、回折光の集光点の開始位置よりも、細胞に近い。レンズ効果の集光点は、生細胞を透過した光が生細胞の近くに集光して形成したものであるのに対して、回折光の集光点は、死細胞の外周面近傍を通過した光が死細胞から比較的遠くに集光して形成したものであるためである。すなわち、生細胞において形成されるレンズ効果の集光点は、死細胞において形成される回折光の集光点と比較して、細胞に近い側に形成される。
 例えば、図5に示される生細胞の連結画像Lにおいて、レンズ効果の集光点の開始位置(合焦面P)の画像片Sは、生細胞の合焦面Pの画像片Sに隣接しており、レンズ効果の集光点の開始位置は、生細胞の合焦面Pに近い。
 一方、例えば、図6に示される死細胞の連結画像L’において、回折光の集光点の開始位置(合焦面P)の画像片S’は、死細胞の合焦面Pの画像片S’に隣接しておらず、回折光の集光点の開始位置は、死細胞の合焦面Pから遠い。
 そのため、集光点の開始位置に基づいて、細胞の生死判定を行うことができる。
 例えば、細胞の合焦面を基準とした距離により集光点の開始位置を特定して特徴量2としてよい。例えば、細胞の合焦面の画像片と、集光点の開始位置(すなわち、集光点の合焦面)の画像片との間の、画像片が連結した方向に沿った長さを特徴量2とし、予め定められた特徴量2の範囲に基づいて、細胞の生死判定を行ってよい。これにより、解析用連結画像について、特徴量2が上記範囲内である場合に、細胞が生細胞であると判定することができる。
 また、他の実施形態において、解析用連結画像の特徴量2と、細胞の既知の参照用連結画像の特徴量2及び生細胞であるか否かの判定結果とに基づいて、生死判定を行ってよい。
-特徴量3-(集光点の継続長さに基づく細胞の生死判定)
 連結画像は、集光点の継続長さに基づく細胞の生死に関する情報を含む。
 「集光点の継続長さ」とは、レンズ効果又は回折光の集光点の開始位置から集光点が消失する焦点面までの距離を意味する。
 連結画像において、「集光点の継続長さ」とは、レンズ効果又は回折光の集光点の合焦面の画像片から集光点が消失する焦点面の画像片までの最短の長さを意味する。
 生細胞において、レンズ効果の集光点の継続長さは、細胞の平均屈折率を反映したものである。
 生細胞の場合、例えば、図3に示すように、レンズ効果の集光点の開始位置(合焦面P)からレンズ効果の集光点が消失する焦点面Pまでの距離がレンズ効果の集光点の継続長さである。
 一方、死細胞の場合、例えば、図4に示すように、回折光の集光点の開始位置(合焦面P)から回折光の集光点が消失する焦点面までの距離が回折光の「集光点の継続長さ」である。図4には示されていないが、焦点面Pより更に合焦面Pから離れた焦点面に亘って、集光点が継続する。
 レンズ効果の集光点において、生細胞の中心に近い部分を透過した光である程、生細胞から離れた位置に集光し、生細胞の中心から離れた部分を透過した光である程、生細胞から近い位置に集光する。その結果、生細胞を透過する部分に応じて集光点が連なるため、レンズ効果の集光点は、集光点の継続長さを有する。また、レンズ効果の集光点について、光の強度は発散により短い距離で減少する。更に、生細胞に白色光を照射した場合には、青色の成分(短波長成分)は、赤色の成分(長波長成分)と比較して、細胞から近い位置に集光するため、波長の違いもレンズ効果の集光点の継続長さに寄与する。
 一方、回折光の集光点は、死細胞の外周面近傍を通過した光が集光して形成したものであり、死細胞からの距離による干渉パターンの変化が比較的長い距離に亘っている。そのため、回折光の集光点は、レンズ効果より長い集光点の継続長さを有している。すなわち、生細胞の集光点は、死細胞の集光点と比較して、集光点の継続長さが短い。
 例えば、図5に示される生細胞の連結画像Lにおいて、レンズ効果の集光点が画像片S-1から画像片Sにかけて連続している。
 一方、例えば、図6に示される死細胞の連結画像L’において、回折光の集光点が画像片S’から画像片Sにかけて連続している。
 図5及び図6に示すように、生細胞の連結画像Lの集光点の継続長さは、死細胞の連結画像L’の集光点の継続長さより短い。
 そのため、集光点の継続長さに基づいて、細胞の生死判定を行うことができる。
 例えば、集光点が連続した領域について、画像片を連結した方向に沿った長さを特徴量3とし、予め定められた特徴量3の範囲に基づいて、細胞の生死判定を行ってよい。これにより、解析用連結画像について、特徴量3が上記範囲内である場合に、細胞が生細胞であると判定することができる。
 また、他の実施形態において、解析用連結画像の特徴量3と、細胞の既知の参照用連結画像の特徴量3及び生細胞であるか否かの判定結果とに基づいて、生死判定を行ってよい。
-特徴量4-(集光点の開始位置に基づく細胞の識別)
 連結画像は、集光点の開始位置に基づく細胞の識別に関する情報を含む。
 生細胞において、レンズ効果の集光点の開始位置は、細胞の平均屈折率を反映したものであり、目的細胞とは平均屈折率が異なる他の物質(例えば、他の細胞、赤血球、油滴等)は、集光点の開始位置が目的細胞とは異なる。
 そのため、集光点の開始位置に基づいて、生死判定の対象である細胞が目的細胞であるか否かの判定を行うことができる。
 例えば、細胞の合焦面を基準とした距離により集光点の開始位置を特定して特徴量4としてよい。例えば、細胞の合焦面の画像片と、集光点の開始位置(すなわち、集光点の合焦面)の画像片との間の、画像片が連結した方向に沿った長さを特徴量4とし、予め定められた特徴量4の範囲に基づいて、細胞の生死判定を行ってよい。これにより、解析用連結画像について、特徴量4が上記範囲内である場合に、生死判定の対象である細胞が目的細胞であると判定することができる。
 また、他の実施形態において、解析用連結画像の特徴量4と、細胞の既知の参照用連結画像の特徴量4及び生細胞であるか否かの判定結果とに基づいて、生死判定を行ってよい。
 特徴量4は、特徴量2と同じであってよい。また、特徴量4は特徴量2と異なってもよく、例えば、細胞の識別を行うのにより適当であるように特徴量4を設定し、また、細胞の生死判定を行うのにより適当であるように特徴量2を設定してよい。
-特徴量5-(集光点の継続長さに基づく細胞の識別)
 連結画像は、集光点の継続長さに基づく細胞の識別に関する情報を含む。
 生細胞において、レンズ効果の集光点の継続長さは、細胞の平均屈折率を反映したものであるため、目的細胞とは平均屈折率が異なる他の物質(例えば、他の細胞、赤血球、油滴等)は、集光点の継続長さが目的細胞とは異なる。
 そのため、集光点の継続長さに基づいて、生死判定の対象である細胞が目的細胞であるか否かの判定を行うことができる。
 例えば、集光点が連続した領域について、画像片を連結した方向に沿った長さを特徴量5とし、予め定められた特徴量5の範囲に基づいて、細胞の生死判定を行ってよい。これにより、解析用連結画像について、特徴量5が上記範囲内である場合に、生死判定の対象である細胞が目的細胞であると判定することができる。
 また、他の実施形態において、解析用連結画像の特徴量5と、細胞の既知の参照用連結画像の特徴量5及び生細胞であるか否かの判定結果とに基づいて、生死判定を行ってよい。
 特徴量5は、特徴量3と同じであってよい。また、特徴量5は特徴量3と異なってもよく、例えば、細胞の識別を行うのにより適当であるように特徴量5を設定し、また、細胞の生死判定を行うのにより適当であるように特徴量3を設定してよい。
 特徴量4及び特徴量5に関し、例えば、赤血球は、生細胞とは異なり、凹レンズのような形状を有しているため、赤血球に光を照射した際、赤血球の光を照射する側とは反対側に集光点が形成され、更に、光を照射した側にも集光点が形成される。赤血球は、このような集光点の現れ方の違いに加えて、集光点の開始位置及び集光点の継続長さも生細胞とは異なり得る。
-特徴量6-(合焦面の細胞の大きさに基づく細胞の識別)
 連結画像は、合焦面の細胞の大きさに基づく細胞の識別に関する情報を含み得る。
 連結画像は、細胞の合焦面の画像片を含んでいる。そのため、細胞の合焦面の画像片が、細胞の長さが最大となる部分(すなわち、細胞の輪郭上の任意の2点を結ぶ直線の長さが最大となる部分)を含んでいる場合、上記最大となる部分の長さを細胞の径とすることができる。そして、例えば、生死判定の対象である細胞の径が、目的細胞の既知の径と同程度であるか否かを検討し、そうでない場合、生死判定の対象である細胞が目的細胞でないと判定することができる。
 そのため、合焦面の細胞の大きさに基づいて、生死判定の対象である細胞が目的細胞であるか否かの判定を行うことができる。
 例えば、生死判定の対象である細胞の合焦面の画像片について、細胞の長さが最大となる部分(すなわち、細胞の輪郭上の任意の2点を結ぶ直線の長さが最大となる部分)の長さを特徴量6とし、予め定められた特徴量6の範囲に基づいて、細胞の生死判定を行ってよい。これにより、解析用連結画像について、特徴量6が上記範囲内である場合に、生死判定の対象である細胞が目的細胞であると判定することができる。
 また、他の実施形態において、解析用連結画像の特徴量6と、細胞の既知の参照用連結画像の特徴量6及び生細胞であるか否かの判定結果とに基づいて、生死判定を行ってよい。
-特徴量7-(合焦面の位置に基づく細胞の識別)
 連結画像は、合焦面の位置に基づく細胞の識別に関する情報を含む。
 例えば、目的細胞と他の物質(例えば、他の細胞、赤血球、油滴等)とを含む細胞懸濁液において、細胞の比重が他の物質の比重と異なる場合、細胞と他の物質とでは、細胞懸濁液中での沈み方(沈む程度)に差があり、細胞懸濁液の深さ方向において、細胞の位置が他の物質の位置と異なる。そのため、細胞及び他の物質をそれぞれ同一の焦点面で撮像して連結画像を作成した際、細胞の合焦面の画像片の位置と、他の物質の合焦面の画像片の位置(例えば、画像片の連結方向の高さ)が異なる。そして、例えば、生死判定の対象である細胞の合焦面の画像片の位置が、目的細胞の既知の合焦面の画像片の位置と同程度であるか否かを検討し、そうでない場合、生死判定の対象である細胞が目的細胞でないと判定することができる。
 そのため、合焦面の位置に基づいて、生死判定の対象である細胞が目的細胞であるか否かの判定を行うことができる。
 例えば、生死判定の対象である細胞の合焦面の画像片と、最も下方の焦点面の画像片との間の、画像片を連結した方向に沿った長さを特徴量7とし、予め定められた特徴量7の範囲に基づいて、細胞の生死判定を行ってよい。これにより、解析用連結画像について、特徴量7が上記範囲内である場合に、生死判定の対象である細胞が目的細胞であると判定することができる。
 また、他の実施形態において、解析用連結画像の特徴量7と、細胞の既知の参照用連結画像の特徴量7及び生細胞であるか否かの判定結果とに基づいて、生死判定を行ってよい。
-特徴量8-(集光点の連結形状に基づく細胞の識別)
 連結画像は、集光点の連結形状に基づく細胞の識別に関する情報を含む。
 「集光点の連結形状」とは、連結画像において、集光点が連結して形成された部分の形状を意味する。
 例えば、解析用連結画像について、焦光点が連結した部分の画像を特徴量8とし、機械学習器により、解析用連結画像の特徴量8と、細胞の既知の参照用連結画像の特徴量8及び生細胞であるか否かの判定結果とに基づいて、生死判定の対象である細胞が目的細胞であるか否かを判定してよい。
 集光点の連結形状は、集光点の開始位置及び集光点の継続長さに加えて、集光点の大きさにも関係しており、更に、生細胞において、細胞の平均屈折率を反映したものである。従って、目的細胞とは平均屈折率が異なる他の物質(例えば、他の細胞、赤血球、油滴等)は、集光点の連結形状が目的細胞とは異なる。
 そのため、集光点の連結形状に基づいて、生死判定の対象である細胞が目的細胞であるか否かの判定を行うことができる。
-特徴量9-(集光点の色分布に基づく細胞の識別)
 連結画像は、集光点の色分布に基づく細胞の識別に関する情報を含み得る。
 生細胞に白色光を照射した場合、青色の成分(短波長成分)は、赤色の成分(長波長成分)と比較して、細胞から近い位置に集光するため、レンズ効果の集光点に色の分布が見られる。レンズ効果の集光点の色分布は、細胞の平均屈折率を反映したものである。従って、目的細胞とは平均屈折率が異なる他の物質(例えば、他の細胞、赤血球、油滴等)は、集光点の色分布が目的細胞とは異なる。
 そのため、集光点の色分布に基づいて、生死判定の対象である細胞が目的細胞であるか否かの判定を行うことができる。
 例えば、生細胞の場合、上記のようなレンズ効果の集光点の色の分離が見られ、細胞の近傍が青に着色し、比較的遠方で赤に着色するという色分布を示す。一方、例えば、赤血球は、凹レンズのような形状に起因して、集光点の色の分離は弱く、集光点は比較的白く見える傾向がある。
 例えば、解析用連結画像について、焦光点が連結した部分の画像を特徴量9とし、機械学習器により、解析用連結画像の特徴量9と、細胞の既知の参照用連結画像の特徴量9及び生細胞であるか否かの判定結果とに基づいて、生死判定の対象である細胞が目的細胞であるか否かを判定してよい。
-特徴量10-(連結画像の一致度に基づく細胞の生死判定及び識別)
 連結画像は、上述のように、細胞の生死判定及び細胞の識別に関する情報を含んでいる。そのため、解析用連結画像と参照用連結画像との一致度に基づいて、細胞の生死判定を行い、かつ、生死判定の対象である細胞が目的細胞であるか否かの判定を行うことができる。
 そこで、解析用連結画像そのものを特徴量10とし、機械学習器により、解析用連結画像の特徴量10と、細胞の既知の参照用連結画像の特徴量10及び生細胞であるか否かの判定結果とに基づいて、生死判定の対象である細胞が生細胞であるか否か、目的細胞であるか否かを判定してよい。
-特徴量11-(細胞のレンズ効果の透過量に基づく細胞の生死判定)
 連結画像は、細胞のレンズ効果の透過量に基づく生死に関する情報を含む。
 細胞の「レンズ効果の透過量」とは、細胞がレンズ効果を有する場合において、細胞を通過する光の透過量を意味する。
 連結画像において、細胞の「レンズ効果の透過量」とは、細胞がレンズ効果を有する場合において、細胞の合焦面の画像片を起点とした「撮像方向の複数画像片」の平均明度と、細胞の合焦面の画像片を起点とした「光源方向の複数画像片」の平均明度との、重み付き和を意味する。重み係数は特に限定されず、適宜設定してよい。
 細胞膜が破れた直後の死細胞において、中間状態として、生細胞同様にレンズ効果による集光点を有することがある。この死細胞は、細胞膜が破れたことにより外周面で光の散乱が起こるため、レンズ効果の透過量は、生細胞に比較して低くなる。そのため、レンズ効果の透過量に基づいて、細胞の生死判定を行うことができる。なお、光源の出力は一定に管理されているものとする。
 細胞の合焦面に対して撮像方向の画像片の平均明度は、例えば、図2に示される合焦面Pの画像片S~焦点面Pの画像片Sの平均明度である。
 細胞の合焦面に対して光源方向の画像片の平均明度は、例えば、図2に示される合焦面Pの画像片S~焦点面P-mの画像片S-mの平均明度である(例えば、n=mが望ましい)。
 細胞の合焦面の画像片を起点とした「撮像方向の複数画像片」の平均明度と、細胞の合焦面を起点とした「光源方向の複数画像片」の平均明度との、重み付き和を特徴量11とし、予め定められた特徴量11の範囲に基づいて、細胞の生死判定を行ってよい。
 多波長光源(例えば、白色LED)および、分光可能な撮像装置(例えば、RGBカラーカメラ)の場合は、色毎に連結画像を作成し、「撮像方向の複数画像片」の平均明度と、「光源方向の複数画像片」の平均明度を、異なる色から組み合わせることで、細胞の生死判定を行ってよい。 
 以上に説明した特徴量1~特徴量11は、連結画像から得られる特徴量の一例であり、他の特徴量に基づいても、細胞の生死判定及び細胞の識別を行うことができる。
 特徴量1及び特徴量11は、細胞のレンズ効果に関するものである。また、特徴量2~特徴量5は、細胞の平均屈折率に関するものである。また、特徴量6は、細胞の径に関するものである。また、特徴量7は、細胞の比重に関するものである。また、特徴量8及び特徴量9は、連結画像そのものの形態に関するものである。更に、特徴量10は、細胞の平均屈折率、細胞の径及び細胞の比重の全てに関するものである。
 このように、連結画像からは、多くの特徴量を得ることができるため、連結画像は、細胞の生死判定のみならず、細胞の識別にも有効である。
 細胞の生死判定に用いられる特徴量は、特徴量1~特徴量11からなる群から選択される1つ以上、すなわち、細胞のレンズ効果に関する特徴量、細胞の平均屈折率に関する特徴量、細胞の径に関する特徴量、及び細胞の比重に関する特徴量からなる群から選択される1つ以上を含むことが好ましい。
[生死判定工程]
 生死判定工程では、解析用連結画像の特徴量と、予め定められた特徴量の範囲とに基づいて、細胞の生死判定を行う。他の実施形態において、細胞の生死判定は、細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果に基づいて行ってよい。
 細胞の生死判定に加えて、生死判定の対象である細胞が目的細胞であるか否かの判定も予め定められた特徴量の範囲に基づいて行うことができる
 また、細胞の生死判定に加えて、生死判定の対象である細胞が目的細胞であるか否かの判定も行う場合には、目的細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果とに基づいて、細胞の生死判定を行ってよい。
 細胞の生死判定を行うことは、生死判定の対象である細胞が目的細胞であるか否かの判定を行うこと、すなわち、細胞の識別を含み得る。
 そのような態様として、例えば、集光点の開始位置に基づく特徴量2(又は特徴量4)により細胞の生死判定を行う場合が挙げられ、特徴量2が同じく集光点の開始位置に基づく特徴量4(又は特徴量2)として機能することより、生死判定の対象である細胞が目的細胞であるか否かの判定も行われ得る。
 また、例えば、集光点の継続長さに基づく特徴量3(又は特徴量4)により細胞の生死判定を行う場合が挙げられ、特徴量3が同じく集光点の継続長さに基づく特徴量4(又は特徴量3)として機能することにより、生死判定の対象である細胞が目的細胞であるか否かの判定も行われ得る。
 更に、例えば、連結画像の一致度に基づく特徴量10を用いる場合が挙げられ、細胞の生死判定に加えて、生死判定の対象である細胞が目的細胞であるか否かの判定も同時に行われる。
 細胞の生死判定は、特徴量1~特徴量3、及び特徴量11のいずれか1つを用いて行ってよい。また、生死判定の精度をより向上させる観点から、細胞の生死判定は、特徴量1~特徴量3、及び特徴量11の2つ以上を組み合わせて行ってよい。
 細胞の識別(すなわち、生死判定の対象である細胞が目的細胞であるか否かの判定)は、特徴量4~特徴量9のいずれか1つを用いて行ってよい。細胞の識別の精度をより向上させる観点から、細胞の識別は、特徴量4~特徴量9の2つ以上を組み合わせて行ってよい。
 また、特徴量10を用いることにより、細胞の生死判定及び識別を同時に行ってよい。
(機械学習器)
 細胞の生死判定(ある態様において、細胞の識別を含み得る)は、機械学習器を用いて行ってよい。機械学習器は、ニューラルネットワーク、サポートベクターマシン及びブースティングのいずれか1つの手法によって構築されたものであってよい。機械学習器は、ニューラルネットワークにより構築され、深層学習を行ったものであることが好ましい。
 図7に示すように、学習フェーズにおいて、機械学習器は、教師データを与えられて学習する。教師データは、細胞の既知の参照用連結画像の特徴量(以下、「学習用特徴量」と呼ぶことがある)と、学習用特徴量に対応する生細胞であるか否かの判定結果(以下、正解生死判定結果」と呼ぶことがある)との組である。
 学習フェーズにおいて、機械学習器には、学習用特徴量が入力される。機械学習器は、学習用特徴量に対して学習用生死判定結果を出力する。この学習用生死判定結果及び正解生死判定結果に基づいて、損失関数を用いた機械学習器の損失演算がなされる。そして、損失演算の結果に応じて機械学習器の各種係数の更新設定がなされ、更新設定にしたがって機械学習器が更新される。
 機械学習器の学習フェーズにおいては、学習用特徴量の機械学習器への入力、機械学習器からの学習用生死判定結果の出力、損失演算、更新設定、及び機械学習器の更新という上記一連の処理が、教師データが交換されつつ繰り返し行われる。上記一連の処理の繰り返しは、正解生死判定結果に対する学習用生死判定結果の予測精度が、予め定められた設定レベルまで達した場合に終了される。こうして予測精度が設定レベルまで達した機械学習器が、運用フェーズで用いられ、解析用連結画像の特徴量の入力に対して、生死判定結果を出力する。
 生死判定工程において、細胞懸濁液中の複数の細胞について生死判定を行ってよい。
 例えば、細胞懸濁液中の複数の細胞について解析用連結画像を作成する。そして、これらの解析用連結画像の特徴量と、細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果とに基づいて、細胞の生死判定を行ってよい。
 また、例えば、目的細胞と他の物質(例えば、他の細胞、赤血球、油滴等)とを含む細胞懸濁液を用いて、目的細胞及び他の物質の解析用連結画像を作成する。そして、これらの解析用連結画像の特徴量と、目的細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果とに基づいて、目的細胞の識別と同時に、目的細胞の生死判定を行ってよい。
 生死判定工程の生死判定フローの一例について、図8に示されるフロー図を挙げて説明する。図8に示される生死判定フローは、特徴量4~特徴量7を用いて目的細胞の識別を行い、かつ、特徴量4及び特徴量5を用いて生死判定を行う例である。
-ステップS10-
 複数の解析用連結画像の中から、1つの解析用連結画像を選定する(S10)。
-ステップS12-
 解析用連結画像の特徴量6(径の大きさ)が、予め定められた特徴量6の範囲内であるか否か判定する(S12)。解析用連結画像の特徴量6が上記範囲内である場合には、目的細胞であり得るとして次のステップ(S14)に進む。
 解析用連結画像の特徴量6が上記範囲内でない場合には、目的細胞ではないと判定する(S22)。
-ステップS14-
 解析用連結画像の特徴量7(合焦面の位置)が、予め定められた特徴量7の範囲内であるか否か判定する(S14)。解析用連結画像の特徴量7が上記範囲内である場合には、目的細胞であり得るとして次のステップ(S16)に進む。
 解析用連結画像の特徴量7が上記範囲内でない場合には、目的細胞ではないと判定する(S22)。
-ステップS16-
 解析用連結画像の特徴量4(集光点の開始位置)が、予め定められた特徴量4の範囲内であるか否か判定する(S16)。解析用連結画像の特徴量4が上記範囲内である場合には、目的細胞の生細胞(以下、「目的生細胞」と呼ぶことがある)であり得るとして次のステップ(S18)に進む。
 解析用連結画像の特徴量4が上記範囲内でない場合には、目的細胞の生細胞ではないと判定する(S22)。
-ステップS18-
 解析用連結画像の特徴量5(集光点の継続長さ)が、予め定められた特徴量5の範囲内であるか否か判定する(S18)。解析用連結画像の特徴量5が上記範囲内である場合には、目的細胞の生細胞であると判定する(S20)。
 解析用連結画像の特徴量5が上記範囲内でない場合には、目的細胞の生細胞ではないと判定する(S22)。
-ステップS20、ステップS22-
 目的細胞の生細胞であると判定された場合(S20)には、次のステップ(S24)に進み、目的細胞ではないと判定された場合(S22)には、次のステップ(S26)に進む。
-ステップS24-
 目的細胞の生細胞であると判定された連結画像の数をカウントし、次のステップ(S28)に進む。
-ステップS26-
 目的細胞の生細胞ではないと判定された連結画像の数をカウントし、次のステップ(S28)に進む。
-ステップS28-
 生死が未判定の解析用連結画像がある場合には、ステップS10に戻り、全ての解析用連結画像について生死判定を行った場合には、生死判定フローを終了する。
[生細胞濃度決定工程]
 細胞生死判定方法は、細胞懸濁液中の複数の細胞の生死判定の結果に基づいて、細胞懸濁液中の細胞の生細胞濃度を決定する工程(以下、「生細胞濃度決定工程」と呼ぶことがある)を含んでよい。
 本開示において、細胞の生細胞濃度は、単位体積当たりの生細胞の数[個/ml]を意味する。
 細胞の生細胞濃度は、例えば、以下のようにして求めることができる。
 細胞懸濁液を保持容器に収容し、無作為に選択した視野について、保持容器の底部から細胞懸濁液の液面までの間に存在する全ての細胞(目的細胞以外の他の物質(例えば、他の細胞、赤血球、油滴等)も含み得る)の解析用連結画像を作成して生死判定を行い、生細胞であると判定された解析用連結画像の数を生細胞の数とする。細胞の生細胞の数を、測定に供した細胞懸濁液の体積(すなわち、上記視野の面積と、細胞懸濁液の高さ(保持容器の底面から液面までの高さ)との積)で除することにより、細胞懸濁液中の細胞の生細胞濃度を求めることができる。
 細胞の生細胞濃度を把握することにより、例えば、母液である細胞懸濁液を希釈して細胞培養に用いる際、必要な希釈液の量を求めることができる。これにより、細胞懸濁液を所望の濃度に調整して播種することが容易となる。
 以上のようにして、本開示に係る細胞生死判定方法により、細胞の生死判定を行うことができ、また、細胞の生細胞濃度を求めることができる。
[細胞生存率決定工程]
 細胞生死判定方法は、細胞懸濁液中の複数の細胞の生死判定の結果に基づいて、細胞懸濁液中の細胞の細胞生存率を決定する工程(以下、「細胞生存率決定工程」と呼ぶことがある)を含んでよい。
 細胞生存率は、生細胞の数を全細胞数(生細胞の数と死細胞の数との和)で除して得られる値である。
 細胞生存率は、生細胞であると判定された解析用連結画像の数(例えば、図8のステップS24)を生細胞の数とし、解析用連結画像の総数(例えば、図8のステップS24及びS26)を全細胞数として算出することができる。継代培養及び拡大培養では、細胞懸濁液に含まれる細胞種は目的細胞の1種類のみであるため、この場合に得られる細胞生存率は、全目的細胞に含まれる目的生細胞の割合となる。
<細胞生死判定装置、細胞生死判定システム>
 本開示に係る細胞生死判定装置は、
 光が照射された細胞の光が照射された側とは反対の方向から、細胞の合焦面を含む複数の焦点面で撮像された、細胞の画像を取得する画像取得部、
 各画像から、細胞の中心部及び外周部を含む画像片を取得する画像片取得部、
 焦点面の撮像方向の順に画像片を連結して、解析用連結画像を作成する解析用連結画像作成部、
 解析用連結画像から特徴量を抽出する特徴量抽出部、及び
 解析用連結画像の特徴量と、細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果とに基づいて、細胞の生死判定を行う生死判定部、
を備える。
 生死判定部は、機械学習器により構成されていてよい。
 細胞生死判定装置は、細胞懸濁液中の複数の細胞の生死判定の結果に基づいて、細胞懸濁液中の細胞の生細胞濃度を決定する生細胞濃度決定部を備えてよい。
 細胞生死判定装置は、細胞懸濁液中の複数の細胞の生死判定の結果に基づいて、細胞懸濁液中の細胞の細胞生存率を決定する細胞生存率決定部を備えてよい。
 細胞生死判定装置における画像取得部、画像片取得部、解析用連結画像作成部、特徴量抽出部、生死判定部、生細胞濃度決定部及び細胞生存率決定部はそれぞれ、細胞生死判定方法の画像取得工程、画像片取得工程、解析用連結画像作成工程、特徴量抽出工程、生死判定工程、生細胞濃度決定工程及び細胞生存率決定工程に対応する。
 細胞生死判定装置は、複数の焦点面で細胞の画像を取得するための他の装置を備えた細胞生死判定システムとして運用してよい。
 本開示に係る細胞生死判定システムは、光を照射する光源と、細胞を撮像する撮像装置と、焦点面を変化させる手段と、を備える。
 焦点面を変化させる手段は特に限定されず、例えば、細胞を保持する保持容器を載置したステージを移動させて細胞と撮像装置との間の距離を変化させるステージ移動機構であってよい。細胞生死判定システム200は、例えば、図1に示すように、細胞Cに光を照射する光源と、細胞Cを撮像する撮像装置20と、細胞(細胞懸濁液)Cを保持する保持容器40と、保持容器40を移動させて細胞Cと撮像装置20との間の距離を変化させるステージ30(ステージ移動機構)と、本開示に係る細胞生死判定装置100とを備えてよい。
 焦点面を変化させる手段は、撮像装置を移動させて細胞と撮像装置との間の距離を変化させる撮像装置移動機構であってよい。
 また、焦点面を変化させる手段として、撮像装置が液体レンズを備えていてよい。
 他の実施形態において、細胞生死判定システムは、このような撮像装置等を備えず、例えば、細胞の画像が保存された外部記憶装置を備えるものであってよく、細胞生死判定装置は外部記憶装置から細胞の画像を取得してもよい。
 細胞生死判定システムは、データを入力するための入力装置、及び細胞の生死判定結果等を表示するための表示装置を備えてよい。入力装置として、例えば、キーボードを用いることができ、表示装置として、例えば、モニターを用いることができる。
 以下、図1に示される細胞生死判定システム200を例として、本開示に係る細胞生死判定装置をより具体的に説明する。
 図9は、図1に示される細胞生死判定装置100を構成する制御部106の一例を示すブロック図である。制御部106が備えるCPU(Central Processing Unit)101は、細胞生死判定システム200を全体的に制御するプロセッサである。CPU101は、ROM(Read Only Memory)102に格納されたシステムプログラムを、バス105を介して読み出し、システムプログラムに従って細胞生死判定装置100の全体を制御する。RAM(Random Access Memory)103には一時的な計算データ、表示装置60への表示データ、入力装置50を介して入力された各種データ等が一時的に格納される。
 不揮発性メモリ104には、例えば図示しないバッテリでバックアップされたSRAM(Static Random Access Memory)、SSD(Solid State Drive)等を用い、光源10から取得されたデータ、撮像装置20から取得されたデータ、ステージ30から取得されたデータ、入力装置50から入力されたデータ等が記憶される。不揮発性メモリ104に記憶されたデータ、プログラム等は、利用時にはRAM103に展開されてもよい。また、ROM102には、撮像装置20から取得された画像データを画像解析のために必要とされる各種アルゴリズム、その他の必要とされる処理を実行するためのシステムプログラム等が予め書き込まれている。
 細胞の生死判定結果は、表示装置60に出力される。
 図10は、図1に示される細胞生死判定装置の処理の一例を示すブロック図である。図10に示した各機能ブロックは、図1に示される細胞生死判定装置100に備えられるCPU101がシステムプログラムを実行し、細胞生死判定システム200の各部の動作を制御することにより実現される。
 制御部106は、不揮発性メモリ104に記憶された撮像用プログラムに基づいて、光源10、撮像装置20及びステージ30を制御して、細胞Cを撮像する。制御部106は、光源10を点灯して細胞Cに光を照射し、細胞(細胞懸濁液)Cを保持する保持容器40を移動させて焦点面を変化させるようにステージ30を駆動する。制御部106は、所定の焦点面にステージ30を移動させた後、撮像装置20に対して撮像動作を指令する。制御部106は、撮像用プログラムに従って、光が照射された細胞の光が照射された側とは反対の方向から、細胞の合焦面を含む複数の焦点面で細胞を撮像する。
 なお、他の実施形態において、細胞生死判定システムに撮像装置等を備えさせずに、細胞の画像が保存された外部記憶装置から細胞の画像を取得する場合には、制御部106及び撮像用プログラムは不要である。
 画像取得部107は、撮像装置20が撮像した細胞の画像を取得する。画像取得部107が取得する細胞の画像は、1つの細胞を撮像して得られた複数の画像を1セットの画像データ群としてまとめて管理してよい。
 画像片取得部108は、画像取得部107で取得した細胞の画像に画像処理を行い、細胞の画像から細胞の中心部及び外周部を含む画像片を取得する。画像片取得部108が取得する画像片は、1つの細胞を撮像して得られた複数の画像片を1セットの画像片データ群としてまとめて管理してよい。
 解析用連結画像作成部109は、画像片取得部108で得られた画像片に画像処理を行い、焦点面の撮像方向の順に画像片を連結して、解析用連結画像を作成する。
 特徴量抽出部110は、解析用連結画像作成部109で得られた解析用連結画像に画像処理を行い、解析用連結画像から特徴量を抽出する。
 生死判定部111は、特徴量抽出部110で抽出された解析用連結画像の特徴量と、予め定められた特徴量の範囲に基づいて、細胞の生死判定を行う。他の実施形態において、生死判定部111は、特徴量抽出部110で抽出された解析用連結画像の特徴量と、細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果とに基づいて、細胞の生死判定を行う。生死判定部111は、判定により生成された細胞の生死判定結果を表示装置60に出力する。
 生細胞濃度決定部112は、生死判定結果、すなわち、生細胞であると判定された解析用連結画像の数に基づいて、細胞の生細胞濃度を決定する。生細胞濃度決定部112は、細胞の生細胞濃度を表示装置60に出力する。
 細胞生存率決定部113は、生死判定結果、すなわち、生細胞であると判定された解析用連結画像の数と解析用連結画像の総数と基づいて、細胞生存率を決定する。細胞生存率決定部113は、細胞生存率を表示装置60に出力する。
 その他の詳細については、細胞生死判定方法について上述した通りである。
 以上のようにして、本開示に係る細胞生死判定装置を用いることにより、細胞の生死判定を行うことができ、また、細胞の生細胞濃度を求めることができる。
 2021年4月28日に出願された日本国特許出願2021-076026号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (15)

  1.  光が照射された細胞の前記光が照射された側とは反対の方向から、前記細胞の合焦面を含む複数の焦点面で撮像された、前記細胞の画像を取得する工程、
     各前記画像から、前記細胞の中心部及び外周部を含む画像片を取得する工程、
     前記焦点面の撮像方向の順に画像片を連結して、解析用連結画像を作成する工程、
     前記解析用連結画像から特徴量を抽出する工程、及び
     前記解析用連結画像の前記特徴量と、予め定められた特徴量の範囲とに基づいて、前記細胞の生死判定を行う工程、
    を含む、細胞生死判定方法。
  2.  前記細胞の生死判定を行うことが、前記細胞が目的細胞であるか否かの判定を行うことを含む、請求項1に記載の細胞生死判定方法。
  3.  機械学習器により、前記細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果に基づいて、前記生死判定を行う、請求項1又は請求項2に記載の細胞生死判定方法。
  4.  前記解析用連結画像の前記特徴量が、前記細胞のレンズ効果に関する特徴量、前記細胞の平均屈折率に関する特徴量、前記細胞の径に関する特徴量、及び前記細胞の比重に関する特徴量からなる群から選択される1つ以上を含む、請求項1~請求項3のいずれか1項に記載の細胞生死判定方法。
  5.  細胞懸濁液中の複数の前記細胞について前記生死判定を行う、請求項1~請求項4のいずれか1項に記載の細胞生死判定方法。
  6.  前記生死判定の結果に基づいて、前記細胞懸濁液中の前記細胞の生細胞濃度を決定する工程を含む、請求項5に記載の細胞生死判定方法。
  7.  前記生死判定の結果に基づいて、前記細胞懸濁液中の前記細胞の細胞生存率を決定する工程を含む、請求項5又は請求項6に記載の細胞生死判定方法。
  8.  光が照射された細胞の前記光が照射された側とは反対の方向から、前記細胞の合焦面を含む複数の焦点面で撮像された、前記細胞の画像を取得する画像取得部、
     各前記画像から、前記細胞の中心部及び外周部を含む画像片を取得する画像片取得部、
     前記焦点面の撮像方向の順に画像片を連結して、解析用連結画像を作成する解析用連結画像作成部、
     前記解析用連結画像から特徴量を抽出する特徴量抽出部、及び
     前記解析用連結画像の前記特徴量と、予め定められた特徴量の範囲とに基づいて、前記細胞の生死判定を行う生死判定部、
    を備えた、細胞生死判定装置。
  9.  前記生死判定部が、機械学習器により構成されており、前記細胞の既知の参照用連結画像の特徴量及び生細胞であるか否かの判定結果に基づいて、前記生死判定を行う、請求項8に記載の細胞生死判定装置。
  10.  細胞懸濁液中の複数の前記細胞の前記生死判定の結果に基づいて、前記細胞懸濁液中の前記細胞の生細胞濃度を決定する生細胞濃度決定部を備えた、請求項8又は請求項9に記載の細胞生死判定装置。
  11.  前記生死判定の結果に基づいて、前記細胞懸濁液中の前記細胞の細胞生存率を決定する細胞生存率決定部を備えた、請求項10に記載の細胞生死判定装置。
  12.  前記光を照射する光源と、前記細胞を撮像する撮像装置と、前記焦点面を変化させる手段と、請求項8~請求項11のいずれか1項に記載の細胞生死判定装置と、を備えた、細胞生死判定システム。
  13.  前記焦点面を変化させる前記手段が、前記細胞を保持する保持容器を載置したステージを移動させて前記細胞と前記撮像装置との間の距離を変化させるステージ移動機構である、請求項12に記載の細胞生死判定システム。
  14.  前記焦点面を変化させる前記手段が、前記撮像装置を移動させて前記細胞と前記撮像装置との間の距離を変化させる撮像装置移動機構である、請求項12に記載の細胞生死判定システム。
  15.  前記焦点面を変化させる前記手段として、前記撮像装置が液体レンズを備えた、請求項12に記載の細胞生死判定システム。
PCT/JP2022/017730 2021-04-28 2022-04-13 細胞生死判定方法、細胞生死判定装置及び細胞生死判定システム WO2022230672A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2022263866A AU2022263866A1 (en) 2021-04-28 2022-04-13 Cell life/death determining method, cell life/death determining device, and cell life/death determining system
KR1020237036082A KR20230159871A (ko) 2021-04-28 2022-04-13 세포 생사 판정 방법, 세포 생사 판정 장치 및 세포 생사 판정 시스템
JP2023517433A JPWO2022230672A1 (ja) 2021-04-28 2022-04-13
CN202280030722.4A CN117203525A (zh) 2021-04-28 2022-04-13 细胞生死判定方法、细胞生死判定装置及细胞生死判定系统
EP22795586.1A EP4317970A1 (en) 2021-04-28 2022-04-13 Cell life/death determining method, cell life/death determining device, and cell life/death determining system
US18/491,962 US20240044773A1 (en) 2021-04-28 2023-10-23 Cell life-and-death determination method, cell life-and-death determination device, and cell life-and-death determination system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076026 2021-04-28
JP2021-076026 2021-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/491,962 Continuation US20240044773A1 (en) 2021-04-28 2023-10-23 Cell life-and-death determination method, cell life-and-death determination device, and cell life-and-death determination system

Publications (1)

Publication Number Publication Date
WO2022230672A1 true WO2022230672A1 (ja) 2022-11-03

Family

ID=83848131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017730 WO2022230672A1 (ja) 2021-04-28 2022-04-13 細胞生死判定方法、細胞生死判定装置及び細胞生死判定システム

Country Status (8)

Country Link
US (1) US20240044773A1 (ja)
EP (1) EP4317970A1 (ja)
JP (1) JPWO2022230672A1 (ja)
KR (1) KR20230159871A (ja)
CN (1) CN117203525A (ja)
AU (1) AU2022263866A1 (ja)
TW (1) TW202248634A (ja)
WO (1) WO2022230672A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184579A (ja) * 1992-01-10 1993-07-27 Fujitsu Ltd 光学的バイオアッセイ方法及び装置
JP2013517460A (ja) 2010-01-12 2013-05-16 バイオ−ラド ラボラトリーズ インコーポレイテッド 複数の焦点面を用いた細胞特性決定
JP2015210212A (ja) * 2014-04-28 2015-11-24 横河電機株式会社 細胞生死判定システム、細胞生死判定方法
JP2016192923A (ja) * 2015-03-31 2016-11-17 株式会社ニコン 判定装置、判定システム、判定プログラム、細胞の製造方法、及び細胞
WO2017082048A1 (ja) * 2015-11-10 2017-05-18 株式会社Screenホールディングス 分類器構成方法およびこれを用いた細胞の生死判定方法
JP2021076026A (ja) 2019-11-05 2021-05-20 株式会社豊田自動織機 内燃機関の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184579A (ja) * 1992-01-10 1993-07-27 Fujitsu Ltd 光学的バイオアッセイ方法及び装置
JP2013517460A (ja) 2010-01-12 2013-05-16 バイオ−ラド ラボラトリーズ インコーポレイテッド 複数の焦点面を用いた細胞特性決定
JP2015210212A (ja) * 2014-04-28 2015-11-24 横河電機株式会社 細胞生死判定システム、細胞生死判定方法
JP2016192923A (ja) * 2015-03-31 2016-11-17 株式会社ニコン 判定装置、判定システム、判定プログラム、細胞の製造方法、及び細胞
WO2017082048A1 (ja) * 2015-11-10 2017-05-18 株式会社Screenホールディングス 分類器構成方法およびこれを用いた細胞の生死判定方法
JP2021076026A (ja) 2019-11-05 2021-05-20 株式会社豊田自動織機 内燃機関の制御装置

Also Published As

Publication number Publication date
KR20230159871A (ko) 2023-11-22
CN117203525A (zh) 2023-12-08
EP4317970A1 (en) 2024-02-07
AU2022263866A1 (en) 2023-11-09
US20240044773A1 (en) 2024-02-08
JPWO2022230672A1 (ja) 2022-11-03
TW202248634A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP6479676B2 (ja) 流体サンプル中の粒子の分類のためのシステム及び方法
US10921234B2 (en) Image forming cytometer
WO2017082048A1 (ja) 分類器構成方法およびこれを用いた細胞の生死判定方法
JP7232771B2 (ja) 判別方法、学習方法、判別装置及びコンピュータプログラム
JP6986083B2 (ja) レンズレス撮像によるサンプル内の粒子の計数方法
CN110389021A (zh) 透镜图像产生系统及屈光能力和厚度确定与缺陷检测方法
US20220034785A1 (en) Cell sorting device and method
US20210049346A1 (en) Systems and methods for classifying activated t cells
CN110709749B (zh) 组合式明视场和相衬显微镜系统及配备其的图像处理设备
WO2016080442A1 (ja) 品質評価方法及び品質評価装置
US20230314782A1 (en) Sample observation device and sample observation method
EP4247153A1 (en) Optical technique for analyzing insects, shrimp and fish
US20220254182A1 (en) Optical technique for analyzing insects, shrimp and fish
WO2022230672A1 (ja) 細胞生死判定方法、細胞生死判定装置及び細胞生死判定システム
JP2023506417A (ja) サンプルのオフフォーカス顕微鏡画像
KR100457777B1 (ko) 바이오 형광 측정용 마이크로 측정시스템
WO2022230673A1 (ja) 細胞培養装置及び生細胞濃度調整方法
JPH07286954A (ja) 細胞自動分類装置
JP7288141B2 (ja) 顕微鏡画像撮像方法および顕微鏡画像撮像装置
Uhl et al. Adaptation of Chlamydomonas phototaxis: I. A light‐scattering apparatus for measuring the phototactic rate of microorganisms with high time resolution
JP6978562B2 (ja) 試料観察装置及び試料観察方法
JP6754408B2 (ja) 試料観察装置及び試料観察方法
RU2797528C1 (ru) Учет ошибок при оптических измерениях
EP4390376A1 (en) An improved method for performing fluorescence measurement on a sample
Grimes Image processing and analysis methods in quantitative endothelial cell biology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795586

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517433

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237036082

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036082

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: AU2022263866

Country of ref document: AU

Ref document number: 2022263866

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202280030722.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022795586

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022263866

Country of ref document: AU

Date of ref document: 20220413

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022795586

Country of ref document: EP

Effective date: 20231026

NENP Non-entry into the national phase

Ref country code: DE