WO2022230651A1 - 発電素子、エンコーダおよび磁性部材の製造方法 - Google Patents

発電素子、エンコーダおよび磁性部材の製造方法 Download PDF

Info

Publication number
WO2022230651A1
WO2022230651A1 PCT/JP2022/017527 JP2022017527W WO2022230651A1 WO 2022230651 A1 WO2022230651 A1 WO 2022230651A1 JP 2022017527 W JP2022017527 W JP 2022017527W WO 2022230651 A1 WO2022230651 A1 WO 2022230651A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
coil
magnetic member
power generation
generation element
Prior art date
Application number
PCT/JP2022/017527
Other languages
English (en)
French (fr)
Inventor
紳一郎 伊藤
優紀 田中
彰彦 渡辺
弘一 楠亀
慶一郎 額田
雄 西谷
幸広 金子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP22795565.5A priority Critical patent/EP4332512A1/en
Priority to CN202280030152.9A priority patent/CN117203503A/zh
Priority to JP2023517419A priority patent/JPWO2022230651A1/ja
Publication of WO2022230651A1 publication Critical patent/WO2022230651A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/4815Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals using a pulse wire sensor, e.g. Wiegand wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0304Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions adapted for large Barkhausen jumps or domain wall rotations, e.g. WIEGAND or MATTEUCCI effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/06Cores, Yokes, or armatures made from wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Definitions

  • the present disclosure relates to a power generation element, an encoder, and a method of manufacturing a magnetic member, and more particularly to a power generation element, an encoder, and a method of manufacturing a magnetic member using the large Barkhausen effect.
  • the operation may become unstable because the power generated by the power generating element is small.
  • the present disclosure has been made to solve such problems, and aims to provide a method of manufacturing a power generation element, an encoder, and a magnetic member that can increase power generation.
  • a power generation element includes a magnetic member that produces a large Barkhausen effect due to changes in an external magnetic field generated by a magnetic field source, and a coil wound around the magnetic member. and a ferrite member provided at an end of the magnetic member in parallel with the coil.
  • the ferrite member has a main body and a protruding part protruding from the main body.
  • the body portion is surrounded by imaginary planes assuming that the outer edge of the coil when viewed from the winding axis direction of the coil is extended to both sides in the winding axis direction of the coil, and It is positioned inside a columnar space sandwiched between two imaginary planes that are in contact with both ends of the magnetic member in the rotation axis direction and that are orthogonal to the winding axis direction of the coil.
  • the projecting portion is connected to the body portion and positioned outside the columnar space.
  • a power generation element includes a magnetic member that produces a large Barkhausen effect due to a change in an external magnetic field generated by a magnetic field generation source, a cylindrical ferrite member that includes the magnetic member, and the a coil wound on the ferrite member.
  • a power generation element includes a magnetic member that produces a large Barkhausen effect due to changes in an external magnetic field generated by a magnetic field generation source, a coil wound around the magnetic member, and the coil. and a ferrite member provided at an end of the magnetic member so as to be aligned with the coil along the winding axis direction.
  • the ferrite member is a resin molded body containing at least one of soft magnetic powder and hard magnetic powder, and resin.
  • a power generation element includes a magnetic member that produces a large Barkhausen effect due to a change in an external magnetic field generated by a magnetic field source, and a coil wound around the magnetic member. In the winding axis direction of the coil, the outer diameter of the ends of the coil is smaller than the outer diameter of the central portion of the coil.
  • a power generation element includes a magnetic member that produces a large Barkhausen effect due to a change in an external magnetic field generated by a magnetic field generation source, a first coil wound around the magnetic member, and a second coil arranged opposite to the first coil on the side opposite to the magnetic field generating source side of the first coil and wound along an axis parallel to the winding axis of the first coil; Prepare.
  • a power generation element includes a plate-shaped magnetic member that produces a large Barkhausen effect due to changes in an external magnetic field generated by a magnetic field generation source, a coil wound around the magnetic member, Prepare.
  • the magnetic member has a plurality of first magnetically sensitive layers and a plurality of second magnetically sensitive layers having a harder magnetism than the plurality of first magnetically sensitive layers, and the plurality of first magnetically sensitive layers and the plurality of The second magneto-sensitive layer means that the first magneto-sensitive layer and the second magneto-sensitive layer are alternately laminated along the direction intersecting with the winding axis direction of the coil, and the plurality of first magneto-sensitive layers are laminated.
  • the total thickness of the magnetic layers is greater than the total thickness of the plurality of second magnetically sensitive layers.
  • a power generation element includes a magnetic member that produces a large Barkhausen effect due to a change in an external magnetic field generated by a magnetic field source, and a coil wound around the magnetic member.
  • the magnetic member includes a composite magnetic wire having different magnetic properties between the central portion and the outer peripheral portion, and a coating layer that covers the outer periphery of the composite magnetic wire and is made of a soft magnetic material.
  • an encoder is any of the above aspects in which an electric signal is generated by a magnet that rotates together with a rotating shaft and a change in a magnetic field formed by the magnet due to the rotation of the magnet. and a power generation element according to
  • a method for manufacturing a magnetic member according to another aspect of the present disclosure is a method for manufacturing a magnetic member that is used in a power generation element and produces a large Barkhausen effect, comprising the steps of preparing a cylindrical magnetic body; and injecting a magnetic material having magnetic properties different from those of the magnetic body into the magnetic body.
  • a method for manufacturing a magnetic member according to another aspect of the present disclosure is a method for manufacturing a magnetic member that is used in a power generation element and produces a large Barkhausen effect, the method comprising: preparing a wire-shaped magnetic body; and coating the surface of the magnetic body with a magnetic material having magnetic properties different from those of the magnetic body.
  • the power generated by the power generation element can be increased.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an encoder according to Embodiment 1.
  • FIG. FIG. 2 is a top view of magnets in the encoder according to Embodiment 1.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the power generation element according to Embodiment 1.
  • FIG. 4 is a diagram showing an example of a schematic BH curve of a magnetic member that produces a large Barkhausen effect.
  • 5 is a cross-sectional view showing a schematic configuration of a power generation element according to Modification 1 of Embodiment 1.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a power generation element according to Modification 2 of Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an encoder according to Embodiment 1.
  • FIG. 2 is a top view of magnets in the encoder according to Embodiment 1.
  • FIG. 3 is a cross-sectional view showing a schematic
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a power generation element according to Modification 3 of Embodiment 1.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a power generation element according to Modification 4 of Embodiment 1.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of a power generation element according to Modification 5 of Embodiment 1.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a power generation element according to Modification 6 of Embodiment 1.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a power generation element according to Modification 7 of Embodiment 1.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of a power generation element according to Embodiment 2.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of a power generation element according to Modification 1 of Embodiment 2.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of a power generating element according to Embodiment 3.
  • FIG. 15 is a cross-sectional view showing a schematic configuration of a power generation element according to Embodiment 4.
  • FIG. 16 is a cross-sectional view showing a schematic configuration of a power generation element according to Embodiment 5.
  • FIG. 17A and 17B are a cross-sectional view and a top view showing a schematic configuration of a magnetic member according to Embodiment 6.
  • FIG. 18A and 18B are a cross-sectional view and a top view showing a schematic configuration of a magnetic member according to Modification 1 of Embodiment 6.
  • FIG. 19A and 19B are a cross-sectional view and a top view showing a schematic configuration of a magnetic member according to Modification 2 of Embodiment 6.
  • FIG. 20 is a cross-sectional view showing a schematic configuration of a power generation element according to Embodiment 7.
  • FIG. FIG. 21 is a flow chart of Example 1 of the magnetic member manufacturing method according to the seventh embodiment.
  • FIG. 22 is a flow chart of Example 2 of the magnetic member manufacturing method according to the seventh embodiment.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, scales and the like are not always the same in each drawing. Moreover, in each figure, the same code
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an encoder 1 according to this embodiment.
  • FIG. 2 is a top view of magnet 10 in encoder 1 according to the present embodiment. Note that in FIG. 1, the magnetic member 110 and the coil 130 housed in the housing 190 of the power generation element 100 are schematically indicated by dashed lines. For ease of viewing, FIG. 2 omits illustration of the magnet 10, the rotating shaft 30, and the power generating element 100 other than the magnetic member 110 and the coil 130. As shown in FIG.
  • the encoder 1 shown in FIG. 1 is, for example, a rotary encoder used in combination with a motor such as a servomotor. Further, the encoder 1 is, for example, a power-generating absolute encoder. The encoder 1 detects the rotation angle, the amount of rotation, the number of rotations, etc. of a rotating shaft 30 such as a motor based on the electric signal generated by the power generation element 100 .
  • the encoder 1 includes a magnet 10 , a rotating plate 20 , a substrate 40 , a control circuit 50 , a memory 60 and a power generation element 100 . In the encoder 1, the power generation element 100 generates an electric signal by a change in the magnetic field formed by the magnet 10 as the magnet 10 rotates.
  • the rotating plate 20 is a plate-shaped member that rotates together with a rotating shaft 30 such as a motor.
  • a central portion of one main surface of the rotating plate 20 is attached to an end portion of the rotating shaft 30 in the axial direction of the rotating shaft 30 (the direction in which the rotating shaft 30 extends).
  • the rotating plate 20 extends in a direction perpendicular to the axial direction of the rotating shaft 30 .
  • the rotating plate 20 rotates around the rotating shaft 30 .
  • the rotating motion of the rotary shaft 30 is synchronized with the rotating motion of the rotating device.
  • the plan view shape of the rotating plate 20 is, for example, circular.
  • the rotating plate 20 is made of metal, resin, glass, ceramic, or the like, for example.
  • the magnet 10 is a magnetic field generating source that forms an external magnetic field with respect to the power generation element 100 .
  • the magnet 10 is, for example, a plate-shaped magnet.
  • the magnet 10 faces the rotating plate 20 and is positioned on the main surface of the rotating plate 20 on the side opposite to the rotating shaft 30 side.
  • the thickness direction of the rotating plate 20 and the thickness direction of the magnet 10 are the same, and are the axial direction of the rotating shaft 30 .
  • the magnet 10 rotates together with the rotating plate 20 around the rotating shaft 30 .
  • the direction of rotation of the magnet 10 is, for example, both clockwise and counterclockwise, but may be either clockwise or counterclockwise.
  • the planar view shape of the magnet 10 is a circular shape with an open center, but it may be another shape such as a rectangle. Also, the magnet 10 does not have to be open.
  • the magnet 10 may be a magnet having another shape, such as a bar-shaped magnet, as long as it can change the magnetic field applied to the power generation element 100 .
  • the magnet 10 has a plurality of pairs of magnetic poles that are magnetized in the thickness direction, and the plurality of pairs of magnetic poles are arranged in the rotation direction of the magnet 10 .
  • FIG. 2 shows the magnetic poles on the main surface 11 side of the magnet 10 on the power generating element 100 side. Each pair of magnetic poles is magnetized such that the north pole and the south pole are reversed with respect to a pair of magnetic poles adjacent to each other in the rotation direction of the magnet 10 .
  • a plurality of magnetic poles are arranged in the rotation direction on the main surface 11 of the magnet 10 on the power generating element 100 side.
  • the plurality of magnetic poles includes at least one N pole and at least one S pole, and the N poles and S poles are alternately arranged along the direction of rotation.
  • the number of north poles is the same as the number of south poles.
  • a plurality of magnetic poles are arranged so that the N pole and the S pole face each other with the rotating shaft 30 interposed therebetween. That is, the N poles of the plurality of magnetic poles face the S poles with the rotating shaft 30 interposed therebetween, and the S poles of the plurality of magnetic poles face the N poles with the rotating shaft 30 interposed therebetween.
  • the S pole is positioned at a position shifted by 180 degrees from the N pole, and the N pole is positioned at a position shifted by 180 degrees from the S pole in the rotation direction of the magnet 10 .
  • the magnetic poles of the plurality of magnetic poles have the same size.
  • the magnetic field applied to the power generating element 100 changes.
  • the plurality of magnetic poles is two, including one north pole and one south pole. Therefore, when the magnet 10 makes one rotation together with the rotary shaft 30, the direction of the magnetic field applied to the power generation element 100 is reversed twice (one reciprocation).
  • the number of magnetic poles is not particularly limited, and may be four, or six or more. When the magnet 10 rotates once, the direction of the magnetic field applied to the power generation element 100 is reversed the number of times corresponding to the number of magnetic poles.
  • the substrate 40 is positioned on the magnet 10 side of the rotor plate 20 so as to face the rotor plate 20 and the magnets 10 with a gap therebetween. That is, along the axial direction of the rotating shaft 30, the rotating shaft 30, the rotating plate 20, the magnets 10, and the substrate 40 are arranged in this order. Substrate 40 does not rotate with magnet 10 and rotating plate 20 .
  • the substrate 40 has a plate shape whose thickness direction is the axial direction of the rotating shaft 30 .
  • the plan view shape of the substrate 40 is, for example, circular. For example, when viewed from the axial direction of the rotating shaft 30, the respective centers of the rotating shaft 30, the rotating plate 20, the magnet 10 and the substrate 40 are aligned.
  • the substrate 40 is, for example, a wiring substrate on which electronic components such as the power generating element 100, the control circuit 50 and the memory 60 are mounted.
  • the control circuit 50 and the memory 60 are mounted on the main surface of the substrate 40 on the side of the magnet 10
  • the power generation element 100 is mounted on the main surface of the substrate 40 opposite to the magnet 10.
  • the substrate 40 is fixed to, for example, a case (not shown) that constitutes a part of the encoder 1, motor, or the like.
  • the power generation element 100 is located on the main surface of the substrate 40 opposite to the magnet 10 side. Therefore, the substrate 40 side of the power generation element 100 is the magnet 10 side.
  • the power generating element 100 is aligned with the magnet 10 and the rotating plate 20 along the axial direction of the rotating shaft 30 .
  • the direction indicated by the arrow Z in which the magnet 10, the rotor plate 20, and the power generation element 100 are aligned may be referred to as the "alignment direction.”
  • the alignment direction is also the normal direction of the main surface 11 of the magnet 10 .
  • the power generation element 100 does not rotate together with the magnet 10 and the rotating plate 20 .
  • Power generating element 100 is provided so that at least a portion of power generating element 100 faces magnet 10 and rotating plate 20 in the axial direction of rotating shaft 30 . Moreover, the power generation element 100 extends along the main surface of the substrate 40 so as to extend in a direction intersecting (more specifically, perpendicular to) the radial direction of the magnet 10 .
  • the power generating element 100 generates electric power by changing the magnetic field formed by the magnet 10 due to the rotation of the magnet 10, and generates an electric signal.
  • the winding axis direction of the coil 130 of the power generation element 100 (longitudinal direction of the magnetic member 110) is the direction in which the power generation element 100 extends.
  • the winding axis direction of the coil 130 is the direction indicated by the arrow X in the figure. Henceforth, the winding axial direction of the coil 130 shown by the arrow X in a figure may only be called "winding axial direction.”
  • the power generating element 100 includes, for example, a magnetic member 110, a coil 130, a ferrite member 150 (not shown in FIGS. 1 and 2) shown in the cross-sectional view of FIG. .
  • the magnetic member 110 is a magnetic member that produces a large Barkhausen effect, and a power generation pulse is generated in a coil 130 wound around the magnetic member 110 .
  • the arrangement of the power generation element 100 is not particularly limited, and the power generation element 100 is positioned in an area to which the magnetic field generated by the magnet 10 is applied, and generates a power generation pulse according to the change in the magnetic field caused by the rotation of the rotating shaft 30. It should be arranged so that
  • the terminals 181 and 182 are members for electrically connecting the power generation element 100 and the substrate 40 .
  • the terminals 181 and 182 are located at the end of the power generating element 100 on the substrate 40 side.
  • a magnet 10 is arranged on the terminals 181 and 182 side of the power generation element 100 .
  • the terminal 181 is electrically connected to one end of the conductor wire forming the coil 130, and the terminal 182 is electrically connected to the other end of the conductor wire. That is, coil 130 and substrate 40 are electrically connected via terminals 181 and 182 .
  • the housing 190 accommodates and supports the magnetic member 110, the coil 130 and the ferrite member 150. Further, the housing 190 accommodates some of the terminals 181 and 182 .
  • the housing 190 is open on the magnet 10 side of the power generating element 100, for example.
  • the housing 190 is fixed to the substrate 40 by, for example, a fixing member (not shown) or the like.
  • the control circuit 50 is located on the main surface of the substrate 40 on the magnet 10 side.
  • the control circuit 50 is electrically connected to the power generation element 100 .
  • the control circuit 50 acquires electrical signals such as power generation pulses generated by the power generation element 100, and detects (calculates) the rotation angle, rotation amount, rotation speed, etc. of the rotating shaft 30 such as a motor based on the acquired electrical signals. do.
  • the control circuit 50 is, for example, an IC (integrated circuit) package or the like.
  • the memory 60 is located on the main surface of the substrate 40 on the magnet 10 side.
  • the memory 60 is connected with the control circuit 50 .
  • the memory 60 is a nonvolatile memory such as a semiconductor memory that stores the results detected by the control circuit 50 .
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the power generating element 100 according to this embodiment.
  • FIG. 3 shows a cross section cut along the alignment direction so as to pass through the winding axis R1 of the coil 130.
  • the terminals 181, 182 and housing 190 are omitted in FIG. These are the same in the drawings of each power generating element described below.
  • the power generation element 100 includes a magnetic member 110, a coil 130, and a ferrite member 150.
  • the magnetic member 110 is a magnetic member that produces a large Barkhausen effect due to changes in the external magnetic field formed by the magnet 10 and the like.
  • the magnetic member 110 is, for example, a composite magnetic wire, such as a Wiegand wire, which has different magnetic properties in the central portion and the outer peripheral portion in the radial direction.
  • a composite magnetic wire such as a Wiegand wire
  • one of the central portion and the outer peripheral portion is a hard magnetic portion
  • the other is a soft magnetic portion.
  • the central portion is a hard magnetic portion with a high coercive force
  • the outer peripheral portion is a soft magnetic portion with a lower coercive force than the central portion.
  • the soft magnetic portion covers the hard magnetic portion from the outside in the radial direction.
  • FIG. 4 is a diagram showing an example of a schematic BH curve of the magnetic member 110 that produces the large Barkhausen effect.
  • FIG. 4 shows an example in which a composite magnetic wire, the outer peripheral portion of which is softer in magnetism than the central portion, is used as the magnetic member 110 .
  • FIG. 4 is a diagram showing a case where the direction of the applied magnetic field changes in the longitudinal direction of the wire.
  • 4(1) to 4(6) schematically show the magnetic member 110 with the direction of magnetization indicated by an arrow.
  • the dashed arrow indicates the magnetization direction of the soft magnetic outer peripheral portion, and the solid arrow indicates the magnetization direction of the hard magnetic central portion.
  • the arrows indicating the directions of magnetization indicate only the directions of magnetization, and the directions of magnetization are indicated by arrows of the same magnitude regardless of the magnitude of magnetization.
  • the magnetic flux density of the magnetic member 110 abruptly changes, and electric power (power generation pulse) is generated in the coil 130 wound around the magnetic member.
  • the magnetization direction of the central portion is reversed as shown in FIG. 4(4), and the magnetic member 110 is magnetized in the direction opposite to that in FIG. 4(1).
  • the direction of the magnetic field is changed as shown in (ii) of FIG. , the magnetization direction of the outer peripheral portion is reversed at once.
  • the magnetic flux density of the magnetic member 110 changes abruptly, and electric power (power generation pulse) is generated again in the coil 130 wound around the magnetic member 110 .
  • Such behavior also occurs in a composite magnetic wire having a hard magnetic outer peripheral portion and a soft magnetic central portion.
  • the magnetic member 110 is a magnetic member that behaves as shown in FIG.
  • the magnetic member 110 is not limited to the composite magnetic wire, and may be any magnetic member that produces the large Barkhausen effect by having a hard magnetic portion and a soft magnetic portion with different magnetic properties.
  • the hard magnetic portion and the soft magnetic portion are arranged in a direction intersecting (for example, perpendicular to) the winding axis direction, and the hard magnetic portion and the soft magnetic portion exist so as to extend in the winding axis direction. This gives rise to the large Barkhausen effect.
  • the magnetic member 110 may be, for example, a magnetic member having a structure in which thin films with different magnetic properties are laminated.
  • the magnetic member 110 is, for example, an elongated member whose longitudinal direction is the winding axis direction of the coil 130 .
  • the cross-sectional shape of the magnetic member 110 cut in the radial direction is, for example, circular or elliptical, but may be other shapes such as rectangular or polygonal.
  • the length of the magnetic member 110 is longer than the length of the coil 130, for example.
  • the coil 130 is a coil in which a conductive wire forming the coil 130 is wound around the magnetic member 110 . Specifically, the coil 130 is wound along a winding axis R ⁇ b>1 passing through the center of the magnetic member 110 and extending in the longitudinal direction of the magnetic member 110 . Also, the coil 130 is located between the two ferrite members 150 .
  • the ferrite member 150 is provided at the end of the magnetic member 110 so as to be aligned with the coil 130 along the winding axis direction of the coil 130 .
  • two ferrite members 150 are provided on each end of the magnetic member 110 .
  • the two ferrite members 150 face each other across the coil 130 and have symmetrical shapes. Although one of the two ferrite members 150 will be mainly described below, the same description applies to the other.
  • the ferrite member 150 is a plate-shaped member with an opening 153 formed therein, and is, for example, a ferrite bead made of a soft magnetic material.
  • the ferrite member 150 is provided to collect the magnetic flux from the magnet 10, stabilize the magnetic flux in the magnetic member 110, and the like.
  • the ferrite member 150 is, for example, softer magnetic than the soft magnetic portion in the magnetic member 110, that is, has a lower coercive force.
  • the end of the magnetic member 110 is positioned within the opening 153 .
  • the opening 153 is a through hole penetrating the ferrite member 150 along the winding axis direction.
  • the ferrite member 150 has a body portion 151 and a projecting portion 152 .
  • the body part 151 is arranged inside the columnar space A.
  • the columnar space A is surrounded by imaginary planes when it is assumed that the outer edge of the coil 130 when viewed in the winding axis direction of the coil 130 is extended to both sides in the winding axis direction, and It is a space sandwiched between two imaginary planes that are in contact with both ends of the magnetic member 110 and perpendicular to the winding axis direction.
  • the columnar space A is in contact with both ends of the magnetic member 110 in the winding axis direction in the space inside the outer edge of the coil 130 when viewed in the winding axis direction of the coil 130 . It is a space sandwiched between two virtual planes orthogonal to .
  • the columnar space A has a rectangular cross section cut along the winding axis R1 and is a columnar space that circumscribes the magnetic member 110 and the coil 130 .
  • the opening 153 is provided, for example, in the central portion of the main body 151 when viewed from the winding axis direction.
  • the projecting portion 152 is connected to the body portion 151 .
  • the projecting portion 152 is positioned outside the columnar space A.
  • the projecting portion 152 is an example of a first projecting portion located outside the coil 130 in the direction orthogonal to the winding axis direction. Also, the protruding portion 152 is located on the opposite side of the coil 130 to the magnet 10 side.
  • dashed lines indicate an example of magnetic flux lines originating from the magnetic member 110 when the magnetic member 110 is magnetized by an external magnetic field (for example, a magnetic field formed by the magnet 10).
  • an external magnetic field for example, a magnetic field formed by the magnet 10.
  • magnetic flux passing outside the magnetic member 110 is emitted from the ferrite member 150 from one end side of the magnetic member 110 to the other end side.
  • Such a magnetic flux that is formed outside the magnetic member 110 from one end side to the other end side of the magnetic member 110 and that originates from the magnetic member 110 and that circulates around the outside of the magnetic member 110 is different from the inside of the magnetic member 110. Magnetic flux in the opposite direction.
  • the electromotive force in the coil 130 is opposite to the electromotive force generated by the change in the magnetic flux inside the magnetic member 110 . Power will be generated at the same time. Since the ferrite member 150 has protrusions 152, some of the magnetic flux exits the protrusions 152, as shown in FIG. Since the protruding portion 152 located outside the columnar space A protrudes away from the coil 130 , the magnetic flux emitted from the protruding portion 152 is less likely to pass through the coil 130 .
  • the ferrite member 150 having the protruding portion 152 the magnetic flux in the direction opposite to the inside of the magnetic member 110 passing through the coil 130 can be reduced. Therefore, the power generated in the coil 130 is increased, and the power generated by the power generation element 100 can be increased.
  • the ferrite member 150 is, for example, a resin molded body containing at least one of soft magnetic powder and hard magnetic powder, and resin. Since the ferrite member 150 is a resin molded body, the ferrite member 150 can be easily formed into a shape having the projecting portion 152 . In addition, such a resin molded body can easily form ferrite members having various shapes, which will be described later, and it is easy to increase the degree of freedom in the shape of the ferrite members compared to the case where the ferrite members are formed by conventional cutting or the like.
  • Materials for the soft magnetic powder include, for example, atomized powder and ferrite powder.
  • Materials for the hard magnetic powder include powders such as ferrite, neodymium magnets, Sm--Fe--N, and Baicaloy.
  • resins include nylon-based resins, polyamide-based resins, and polyphenylene sulfide-based resins.
  • the saturation magnetic flux density of the ferrite member 150 is higher than that of the magnetic member 110, for example. Also, the maximum residual magnetic flux density of the ferrite member 150 is greater than the maximum residual magnetic flux density of the magnetic member 110 . As a result, the magnetic flux collection effect of the ferrite member 150 can be enhanced.
  • the ferrite member 150 does not have to contain resin.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a power generating element 100a according to this modified example.
  • the encoder according to this modification includes, for example, a power generation element 100a instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 100a is different from the power generation element 100 in that the ferrite member 150a is provided instead of the ferrite member 150.
  • the ferrite member 150a has a body portion 151 arranged inside the columnar space A and a projecting portion 152a connected to the body portion 151 and arranged outside the columnar space A.
  • the projecting portion 152a is an example of a first projecting portion located outside the coil 130 in the direction perpendicular to the winding axis direction.
  • the projecting portion 152a is located on the opposite side of the coil 130 from the magnet 10 side.
  • a portion of the protruding portion 152a is located closer to the center of the coil 130 than the main body portion 151 in the winding axial direction of the coil 130 .
  • the projecting portion 152a covers a part of the coil 130 from the opposite side of the coil 130 to the magnet 10 side.
  • FIG. 5 shows an example of magnetic flux lines derived from the magnetic member 110 when the magnetic member 110 is magnetized by an external magnetic field. Since part of the protrusion 152a is positioned closer to the center of the coil 130 than the main body 151, the magnetic flux emitted from the protrusion 152a does not pass through the part of the coil 130 covered by the part of the protrusion 152a. . Therefore, the magnetic flux in the direction opposite to the inside of the magnetic member 110 passing through the coil 130 can be further reduced. Therefore, the power generated in the coil 130 is increased, and the power generated by the power generating element 100a can be increased.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a power generating element 100b according to this modified example.
  • the encoder according to this modification includes, for example, a power generation element 100b instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 100b differs from the power generation element 100 in that it includes a ferrite member 150b instead of the ferrite member 150. As shown in FIG. 6, the power generation element 100b differs from the power generation element 100 in that it includes a ferrite member 150b instead of the ferrite member 150. As shown in FIG. 6, the power generation element 100b differs from the power generation element 100 in that it includes a ferrite member 150b instead of the ferrite member 150. As shown in FIG.
  • the ferrite member 150b has a body portion 151 arranged inside the columnar space A and a projecting portion 152b connected to the body portion 151 and arranged outside the columnar space A.
  • the projecting portion 152b is an example of a first projecting portion located outside the coil 130 in the direction perpendicular to the winding axis direction.
  • the projecting portion 152b is located on the opposite side of the coil 130 from the magnet 10 side.
  • a portion of the projecting portion 152b is located closer to the center of the coil 130 than the body portion 151 in the winding axial direction of the coil 130, similarly to the projecting portion 152a.
  • the protruding portion 152b covers part of the coil 130 from the opposite side of the coil 130 to the magnet 10 side. Another part of the protruding portion 152b is located on the side opposite to the coil 130 side of the body portion 151 in the winding axis direction of the coil 130 . Another part of the protruding portion 152b is a portion that protrudes outward from the magnetic member 110 and the coil 130 along the winding axis direction.
  • FIG. 6 shows an example of magnetic flux lines derived from the magnetic member 110 when the magnetic member 110 is magnetized by an external magnetic field.
  • the same effect as that of the projecting portion 152a can be obtained.
  • the other part of the protruding part 152b is positioned on the opposite side of the body part 151 from the coil 130 side, the magnetic flux emitted from the other part of the protruding part 152b moves to a position farther from the coil 130. will pass. Therefore, the magnetic flux in the direction opposite to the inside of the magnetic member 110 passing through the coil 130 can be further reduced. Therefore, the power generated in the coil 130 is increased, and the power generated by the power generation element 100b can be increased.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a power generating element 100c according to this modified example.
  • the encoder according to this modification includes, for example, a power generation element 100c instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 100c is different from the power generation element 100 in that the ferrite member 150c is provided instead of the ferrite member 150.
  • the ferrite member 150c has a body portion 151 arranged inside the columnar space A and a projecting portion 152c connected to the body portion 151 and arranged outside the columnar space A.
  • the projecting portion 152c is an example of a first projecting portion positioned outside the coil 130 in the direction perpendicular to the winding axis direction.
  • the projecting portion 152c is positioned on the magnet 10 side of the coil 130 .
  • the projecting portion 152c is arranged closer to the magnet 10 than the main body portion 151, it is possible to collect more magnetic flux from the magnet 10 and increase the magnetic flux density when the magnetic member 110 is magnetized. can. Therefore, the change in the magnetic flux density in the magnetic member 110 becomes greater, the power generated in the coil 130 increases, and the power generated by the power generation element 100c can be increased.
  • the protrusion 152 c protrudes away from the coil 130 , so the magnetic flux emitted from the protrusion 152 c is less likely to pass through the coil 130 . Therefore, the effect of increasing the generated power similar to that of the power generation element 100 can be expected.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a power generating element 100d according to this modified example.
  • the encoder according to this modification includes, for example, a power generation element 100d instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 100d differs from the power generation element 100 in that it includes a ferrite member 150d instead of the ferrite member 150.
  • the ferrite member 150d has a body portion 151 arranged inside the columnar space A and a projecting portion 152d connected to the body portion 151 and arranged outside the columnar space A.
  • the projecting portion 152d is an example of a first projecting portion positioned outside the coil 130 in the direction perpendicular to the winding axis direction.
  • the projecting portion 152d is positioned on the magnet 10 side of the coil 130 .
  • a portion of the protruding portion 152d is located closer to the center of the coil 130 than the body portion 151 in the winding axial direction of the coil 130 .
  • the protruding portion 152d covers part of the coil 130 from the magnet 10 side of the coil 130 .
  • the projecting portion 152d is located closer to the magnet 10 than the main body portion 151, so that more magnetic flux from the magnet 10 is collected. Further, since a part of the projecting portion 152d is positioned so as to extend toward the center of the coil 130, more magnetic flux can be collected. Therefore, the power generated by the power generation element 100d can be increased.
  • the power generation element 100d can be expected to have the same effect of increasing the generated power as the power generation element 100a.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of a power generating element 100e according to this modified example.
  • the encoder according to this modification includes, for example, a power generation element 100e instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 100e is different from the power generation element 100 in that the ferrite member 150e is provided instead of the ferrite member 150.
  • the ferrite member 150e has a body portion 151 arranged inside the columnar space A and a projecting portion 152e connected to the body portion 151 and arranged outside the columnar space A.
  • the projecting portion 152e is an example of a first projecting portion located outside the coil 130 in the direction perpendicular to the winding axis direction.
  • the projecting portion 152e is positioned on the magnet 10 side of the coil 130 .
  • a portion of the protruding portion 152e is located closer to the center of the coil 130 than the main body portion 151 in the winding axial direction of the coil 130 .
  • the projecting portion 152e covers part of the coil 130 from the magnet 10 side of the coil 130 .
  • Another part of the protruding portion 152 e is located on the side opposite to the coil 130 side of the body portion 151 in the winding axial direction of the coil 130 .
  • Another part of the protruding portion 152e is a portion that protrudes outward from the magnetic member 110 and the coil 130 along the winding axis direction.
  • the projecting portion 152e is located closer to the magnet 10 than the main body portion 151, so that more magnetic flux from the magnet 10 is collected.
  • the power generated by the power generation element 100e can be increased.
  • the power generation element 100e can be expected to have the same effect of increasing the generated power as the power generation element 100b.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a power generating element 100f according to this modified example.
  • the encoder according to this modification includes, for example, a power generation element 100f instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 100f is different from the power generation element 100 in that the ferrite member 150f is provided instead of the ferrite member 150.
  • the ferrite member 150f has a body portion 151 arranged inside the columnar space A and a projecting portion 152f connected to the body portion 151 and arranged outside the columnar space A.
  • the projecting portion 152f is an example of a second projecting portion located outside the end portion of the magnetic member 110 in the winding axis direction.
  • the protruding portion 152f is positioned so as to extend from the main body portion 151 on the side opposite to the coil 130 side of the main body portion 151 along the winding axis direction.
  • the ferrite member 150f collects more magnetic flux from the magnet 10 and increases the magnetic flux density when the magnetic member 110 is magnetized. can be higher. Therefore, the power generated by the power generation element 100f can be increased with the same effect as the power generation element 100c.
  • the magnetic flux originating from the magnetic member 110 is also emitted from the projecting portion 152f, the magnetic flux emitted from the body portion 151 near the coil 130 is reduced, and the magnetic flux passing through the coil 130 in the direction opposite to the inside of the magnetic member 110 is reduced. be able to. Therefore, the power generated in the coil 130 is increased, and the power generated by the power generation element 100f can be increased.
  • Modification 7 of Embodiment 1 will be described.
  • the differences from the first embodiment and each modified example of the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a power generating element 100g according to this modified example.
  • the encoder according to this modification includes, for example, a power generation element 100g instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 100g is different from the power generation element 100 in that the ferrite member 150g is provided instead of the ferrite member 150. As shown in FIG. 11, the power generation element 100g is different from the power generation element 100 in that the ferrite member 150g is provided instead of the ferrite member 150. As shown in FIG. 11, the ferrite member 150g is provided instead of the ferrite member 150.
  • the ferrite member 150g has a body portion 151 arranged inside the columnar space A, and a projecting portion 152g connected to the body portion 151 and arranged outside the columnar space A.
  • An opening 153g is formed in the ferrite member 150g.
  • the opening 153g is provided, for example, in the central portion of the main body 151 when viewed from the winding axis direction.
  • the opening 153g is a bottomed hole which penetrates through the main body 151 and whose bottom is formed by the projecting portion 152g.
  • the end of the magnetic member 110 is positioned within the opening 153g.
  • the projecting portion 152g is an example of a second projecting portion located outside the end portion of the magnetic member 110 in the winding axis direction.
  • the protruding portion 152g extends from the body portion 151 along the winding axis direction on the opposite side of the body portion 151 to the coil 130 side.
  • the protrusion 152g covers the end of the magnetic member 110 from the outside in the winding axis direction.
  • the ferrite member 150g can collect more magnetic flux from the magnet 10 and further increase the magnetic flux density when the magnetic member 110 is magnetized. . Therefore, the power generated by the power generation element 100g can be increased with the same effect as the power generation element 100c.
  • the magnetic flux originating from the magnetic member 110 is also emitted from the projecting portion 152g, the magnetic flux emitted from the body portion 151 near the coil 130 is reduced, and the magnetic flux passing through the coil 130 in the direction opposite to the inside of the magnetic member 110 is reduced. be able to. Therefore, the power generated in the coil 130 is increased, and the power generated by the power generation element 100g can be increased.
  • Embodiment 2 Next, Embodiment 2 will be described. In the following description of the present embodiment, differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of the power generating element 200 according to this embodiment.
  • the encoder according to this embodiment includes, for example, a power generation element 200 instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 200 differs from the power generation element 100 in that it includes a ferrite member 250 instead of the ferrite member 150 .
  • the ferrite member 250 encloses the magnetic member 110 .
  • the ferrite member 250 has an opening 253 formed in the center of the ferrite member 250 when viewed from the winding axis direction, and the magnetic member 110 is positioned within the opening 253 .
  • the ferrite member 250 is a member having a tubular body portion 251 through which an opening 253 passes.
  • the length of the main body 251 in the winding axis direction is, for example, the same as the length of the magnetic member 110 .
  • the length of the body portion 251 in the winding axis direction may be longer or shorter than the length of the magnetic member 110 .
  • the body portion 251 covers the entire outer periphery of the magnetic member 110 when viewed from the winding axis direction.
  • the length of the body portion 251 is longer than the length of the coil 130 in the winding axis direction, for example.
  • the coil 130 is wound around the ferrite member 250 .
  • the coil 130, the ferrite member 250, and the magnetic member 110 are arranged in this order from the outside in the direction orthogonal to the winding axis direction.
  • the coil 130 is wound around the ferrite member 250 that covers the outer periphery of the magnetic member 110 when viewed from the winding axis direction. It is possible to collect more magnetic flux from Therefore, the magnetic flux density when the magnetic member 110 is magnetized can be further increased, and the power generated by the power generating element 200 can be increased.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of a power generating element 200a according to this modified example.
  • the encoder according to this modification includes, for example, a power generation element 200a instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 200a is different from the power generation element 200 in that the ferrite member 250a is provided instead of the ferrite member 250.
  • the ferrite member 250a has a cylindrical body portion 251 that encloses the magnetic member 110, and a first flange portion 255 and a second flange portion 256 provided at both ends of the body portion 251 in the winding axis direction. .
  • Coil 130 is positioned between first collar 255 and second collar 256 .
  • the first brim portion 255 is a plate that stands upright from one end of the body portion 251 in a direction perpendicular to the winding axis direction.
  • the second collar portion 256 is a plate that stands upright from the other end of the body portion 251 in a direction orthogonal to the winding axis direction.
  • the first collar portion 255 and the second collar portion 256 have, for example, the same shape.
  • the ferrite member 250 a has the first flange portion 255 and the second flange portion 256 in addition to the main body portion 251 , so that the surface area of the ferrite member 250 a is further increased, and the ferrite member 250 a receives the magnetic flux from the magnet 10 . can be collected more. Therefore, the magnetic flux density when the magnetic member 110 is magnetized can be further increased, and the power generated by the power generation element 200a can be increased.
  • Embodiment 3 Next, Embodiment 3 will be described. In the following description of the present embodiment, differences from the first and second embodiments will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 14 is a cross-sectional view showing a schematic configuration of the power generating element 300 according to this embodiment.
  • the encoder according to this embodiment includes, for example, a power generation element 300 instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 300 differs from the power generation element 100 in that it includes a coil 330 instead of the coil 130 and a ferrite member 350 instead of the ferrite member 150 .
  • the coil 330 is a coil in which a conductive wire forming the coil 330 is wound around the magnetic member 110 .
  • the outer diameter of the end portions of the coil 330 is smaller than the outer diameter of the central portion of the coil 330 .
  • the outer diameter is the outer diameter when viewed from the winding axis direction.
  • the ends and the central portion of the coil 330 refer to the ends and the central portion of the winding portion where the coil 330 is wound around the magnetic member 110 .
  • the number of turns per unit length at the ends of coil 330 is less than the number of turns per unit length at the central portion of coil 330 in the direction of the winding axis.
  • the coil 330 has the above-described relationship of the number of turns per unit length if the outer diameter of the end portions of the coil 330 is smaller than the outer diameter of the central portion of the coil 330 in the direction of the winding axis. It doesn't have to be.
  • the outer diameter of the ends of the coil 330 in the winding axis direction is reduced to the central portion of the coil 330. may be smaller than the outer diameter of the
  • the ferrite member 350 is the same as the ferrite member 150 except that it does not have the protrusion 152 .
  • the ferrite member 350 is a member of the ferrite member 150 that is configured from the main body portion 151 .
  • the ferrite member 350 is not limited to such an example, and may be, for example, any one of the ferrite members according to the first embodiment, each modification of the first embodiment, and the second embodiment. may
  • FIG. 14 shows an example of magnetic flux lines derived from the magnetic member 110 when the magnetic member 110 is magnetized by an external magnetic field.
  • the magnetic flux formed outside the magnetic member 110 from one end side to the other end side of the magnetic member 110 It is easy to pass through a position relatively close to 110.
  • the outer diameter of the ends of the coil 330 is smaller than the outer diameter of the central portion of the coil 330, so the coil 330 exists so as to avoid the magnetic flux formed outside the magnetic member 110 described above. It will be. Therefore, the magnetic flux in the opposite direction to the inside of the magnetic member 110 passing through the coil 330 can be reduced. Therefore, the power generated in the coil 330 increases, and the power generated by the power generation element 300 can be increased.
  • Embodiment 4 Next, Embodiment 4 will be described. In the following description of the present embodiment, differences from Embodiments 1 to 3 will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 15 is a cross-sectional view showing a schematic configuration of the power generating element 400 according to this embodiment.
  • the encoder according to this embodiment includes, for example, a power generation element 400 instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 400 differs from the power generation element 100 in that the ferrite member 350 is provided instead of the ferrite member 150 and that the magnetic member 460 and the coil 470 are further provided.
  • coil 130 is an example of a first coil
  • coil 470 is an example of a second coil.
  • the magnetic member 460 is a magnetic member that does not produce the large Barkhausen effect, unlike the magnetic member 110 .
  • the magnetic member 460 is not particularly limited as long as it is a ferromagnetic magnetic member used as a core material of a coil such as an iron core.
  • the magnetic member 460 positively collects the magnetic flux originating from the magnetization of the magnetic member 110 formed outside the magnetic member 110 from one end to the other end in the winding axial direction of the magnetic member 110 .
  • the magnetic member 460 is an elongated member whose longitudinal direction is the winding axis direction of the coil 130. As shown in FIG. Magnetic member 460 is arranged opposite to magnetic member 110 and coil 130 on the opposite side of magnetic member 110 and coil 130 from the magnet 10 side. The magnetic member 460 is placed on the coil 130 with the coil 470 wound thereon, for example.
  • the coil 470 is a coil in which a conductive wire forming the coil 470 is wound around the magnetic member 460 . Specifically, coil 470 is wound along winding axis R2 passing through the center of magnetic member 460 . The winding axis R2 is parallel to the winding axis R1. Coil 470 is arranged opposite to magnetic member 110 and coil 130 on the side opposite to magnet 10 side of magnetic member 110 and coil 130 . Coil 470 is mounted on coil 130, for example. The magnetic member 110, the coil 130, the magnetic member 460 and the coil 470 are arranged along the arrangement direction indicated by the arrow Z. As shown in FIG.
  • the magnetic member 460 and the coil 470 are arranged at positions where a magnetic field is formed by the magnetic member 110 magnetized by an external magnetic field such as the magnet 10 .
  • the magnetic member 460 and the coil 470 are positioned at positions through which the magnetic flux derived from the magnetic member 110 formed outside the magnetic member 110 from one end to the other end in the winding axial direction of the magnetic member 110 passes. placed in Therefore, the magnetic member 460 and the coil 470 are arranged at a position through which the magnetic flux in the opposite direction to the inside of the magnetic member 110 passes.
  • the coil 470 generates power together with the coil 130 due to changes in the magnetic flux of the magnetic member 110 .
  • the coil 130 and the coil 470 are electrically connected in series, for example.
  • the conducting wire forming the coil 130 and the conducting wire forming the coil 470 are electrically connected so that the currents generated in the coils 130 and 470 due to changes in the magnetic flux of the magnetic member 110 do not cancel each other out.
  • Connected in series For example, if the conductor wires of the coil 130 and the coil 470 are wound in opposite directions, the current flows in the same direction. They are connected in series by being connected to the conducting wire of the coil 470 pulled out from the end.
  • the conductor wires of the coil 130 and the coil 470 are wound in the same direction, the conductor wire of the coil 130 is drawn out from one end in the winding axis direction, and the conductor is drawn out from the same one end. They are connected in series by being connected to the conducting wire of the coil 470 . Conductive wires drawn from the ends of the coils 130 and 470 where the coils are not connected are connected to the terminals 181 and 182 . Coil 130 and coil 470 may be electrically connected in parallel.
  • the coil 470 also generates power at the same time as the coil 130 by the magnetic flux emitted from the magnetic member 110 when the magnetic member 110 is magnetized, so the power generated by the power generating element 400 can be increased.
  • Embodiment 5 Next, Embodiment 5 will be described. In the following description of the present embodiment, differences from Embodiments 1 to 4 will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 16 is a cross-sectional view showing a schematic configuration of the power generating element 500 according to this embodiment.
  • the encoder according to this embodiment includes, for example, a power generation element 500 instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element 500 differs from the power generation element 100 in that it includes a magnetic member 510 instead of the magnetic member 110 and a ferrite member 350 instead of the ferrite member 150. do.
  • the magnetic member 510 has a composite magnetic wire 511 having different magnetic properties between the central portion and the outer peripheral portion, and a coating layer 512 that covers the outer periphery of the composite magnetic wire 511 .
  • the magnetic member 510 is a magnetic member that produces a large Barkhausen effect due to changes in the external magnetic field.
  • the composite magnetic wire 511 is, for example, a Wiegand wire, as described above as the composite magnetic wire that can be used for the magnetic member 110 .
  • one of the central portion and the outer peripheral portion in the radial direction is a hard magnetic portion, and the other is a soft magnetic portion.
  • the coating layer 512 covers, for example, the entire radial surface of the composite magnetic wire 511 .
  • the coating layer 512 is composed of a soft magnetic material.
  • the coercive force of the coating layer 512 is, for example, equivalent to the coercive force of the soft magnetic portion in the composite magnetic wire 511 .
  • Examples of materials forming the coating layer 512 include Fe--Ni, Fe--Si, Fe--Si--Al, Fe--Si--B and Co--Fe--Si--B.
  • the coating layer 512 is formed using, for example, a sputtering method, a physical vapor deposition (PVD) method such as an ion plating method and a vacuum deposition method, a chemical vapor deposition (CVD) method, or a plating method.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Embodiment 6 Next, Embodiment 6 will be described. In the following description of the present embodiment, differences from the first to fifth embodiments will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 17A and 17B are diagrams showing a cross-sectional view and a top view showing a schematic configuration of the magnetic member 610 according to the present embodiment.
  • FIG. 17(a) is a cross-sectional view of the magnetic member 610
  • FIG. 17(b) is a top view of the magnetic member 610 viewed from above in FIG. 17(a).
  • FIG. 17(a) shows a cross section at the position indicated by line XVIIa-XVIIa in FIG. 17(b).
  • the encoder according to this embodiment includes, for example, a power generation element using a magnetic member 610 instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • the power generation element according to this embodiment includes, for example, a magnetic member 610 instead of the magnetic member 510 according to the fifth embodiment.
  • the magnetic member 610 according to the present embodiment may be used instead of the magnetic member according to any one of the first to fourth embodiments.
  • the magnetic member 610 has a plurality of first magnetically sensitive layers 611 and a plurality of second magnetically sensitive layers 612 having a harder magnetism than the plurality of first magnetically sensitive layers 611 .
  • the magnetic member 610 is a magnetic member that produces a large Barkhausen effect due to changes in an external magnetic field.
  • the plurality of first magnetically sensitive layers 611 and the plurality of second magnetically sensitive layers 612 alternately cross the winding axis direction indicated by arrow X ( Specifically, they are laminated along the direction perpendicular to each other.
  • the plurality of first magneto-sensitive layers 611 and the plurality of second magneto-sensitive layers 612 are laminated along the alignment direction indicated by the arrow Z. As shown in FIG.
  • the total thickness of the multiple first magnetically sensitive layers 611 is greater than the total thickness of the multiple second magnetically sensitive layers 612 .
  • each first magnetically sensitive layer 611 may be greater than the thickness of each second magnetically sensitive layer 612 .
  • the thickness of each of the plurality of first magneto-sensitive layers 611 is, for example, the same, but may be different from each other.
  • the thickness of each of the multiple second magneto-sensitive layers 612 may be, for example, the same, but may be different from each other.
  • the number of the plurality of first magnetically sensitive layers 611 and the number of the plurality of second magnetically sensitive layers 612 are three, but may be two or four or more. may Also, the number of the plurality of first magnetically sensitive layers 611 and the number of the plurality of second magnetically sensitive layers 612 may be different. For example, both the top and bottom of the magnetic member 610 may be the first magneto-sensitive layer 611 .
  • the shape of the magnetic member 610 when viewed from the stacking direction is, for example, a rectangular shape with substantially equal lengths and widths, but may be other shapes such as a circular shape or a polygonal shape.
  • the plurality of first magnetically sensitive layers 611 and the plurality of second magnetically sensitive layers 612 are formed by, for example, a PVD method such as a sputtering method, an ion plating method and a vacuum deposition method, a CVD method, or a plating method. It is layered by being
  • Examples of materials constituting the plurality of first magneto-sensitive layers 611 include Fe--Ni, Fe--Si, Fe--Si--Al, Fe--Si--B and Co--Fe--Si--B.
  • the material forming the plurality of second magnetically sensitive layers 612 is, for example, the same material as the material forming the plurality of first magnetically sensitive layers 611 .
  • the coercive force can be changed, and the plurality of magneto-sensitive layers can be formed.
  • a plurality of second magnetically sensitive layers 612 having a higher coercive force than the first magnetically sensitive layer 611 and being hard magnetic are formed.
  • the coercive force can be increased by changing the degree of vacuum, temperature, film forming speed, etc. as the film forming conditions. change.
  • the degree of vacuum is changed as a film formation condition, for example, in a specific degree of vacuum range, when forming a plurality of second magneto-sensitive layers 612, it is more difficult than when forming a plurality of first magneto-sensitive layers 611.
  • the coercive force of the plurality of second magneto-sensitive layers 612 can be increased by setting the conditions to a high degree of vacuum.
  • the material forming the plurality of second magnetically sensitive layers 612 may be different from the material forming the plurality of first magnetically sensitive layers 611 .
  • examples of the material forming the plurality of second magneto-sensitive layers 612 include Fe and Fe--Co.
  • the material constituting the plurality of second magnetically sensitive layers 612 is an alloy of the same combination of metals as the material constituting the plurality of first magnetically sensitive layers 611, and the plurality of first magnetically sensitive layers 611 is constituted by An alloy with a composition different from the material used may be used.
  • the total thickness of the plurality of first magnetically sensitive layers 611, which are softer than the plurality of second magnetically sensitive layers 612, is larger than that of the plurality of second magnetically sensitive layers 612; can increase the power generated by the power generating element using
  • the first magnetically sensitive layers 611 and the second magnetically sensitive layers 612 are alternately laminated, the first magnetically sensitive layers 611 and the second magnetically sensitive layers 612 are likely to interact with each other, resulting in a large Barkhausen effect. is more likely to occur, the generated power can be increased more effectively than simply increasing the thickness of the second magneto-sensitive layer 612 .
  • the power generation element may be provided with a plurality of magnetic members 610 .
  • the plurality of magnetic members 610 are used, for example, stacked.
  • FIG. 18A and 18B are diagrams showing a cross-sectional view and a top view showing a schematic configuration of a magnetic member 610a according to the present embodiment.
  • FIG. 18(a) is a cross-sectional view of the magnetic member 610a
  • FIG. 18(b) is a top view of the magnetic member 610a viewed from above in FIG. 18(a).
  • FIG. 18(a) shows a cross section at the position indicated by line XVIIIa-XVIIIa in FIG. 18(b).
  • a magnetic member 610a according to this modification is used, for example, instead of the magnetic member 610 according to the sixth embodiment.
  • the magnetic member 610a has a plurality of first magnetically sensitive layers 611a and a plurality of second magnetically sensitive layers 612a having a harder magnetism than the plurality of first magnetically sensitive layers 611a.
  • the magnetic member 610a is a magnetic member that produces a large Barkhausen effect when an external magnetic field changes.
  • the magnetic member 610a has the same configuration as the magnetic member 610, except that the shape of the magnetic member 610a is different when viewed from the stacking direction.
  • the shape of the magnetic member 610a when viewed from the stacking direction is a long rectangle.
  • the longitudinal direction of the magnetic member 610a is the same direction as the winding axis direction.
  • the longitudinal direction of the magnetic members 610a is, for example, a direction orthogonal to the alignment direction.
  • the length of the magnetic member 610a in the longitudinal direction is, for example, twice or more the length of the magnetic member 610a in the lateral direction.
  • the magnetic member 610a since the magnetic member 610a has an elongated shape when viewed from the stacking direction, it can be magnetized in the longitudinal direction. change can be increased. Therefore, the power generated in the coil 130 is increased, and the power generated by the power generation element using the magnetic member 610a can be increased.
  • FIG. 19A and 19B show a sectional view and a top view showing a schematic configuration of a magnetic member 610b according to the present embodiment.
  • FIG. 19 is a cross-sectional view of the magnetic member 610b
  • FIG. 19 is a top view of the magnetic member 610b seen from above in (a) of FIG.
  • FIG. 19(a) shows a cross section at the position indicated by line XIXa--XIXa in FIG. 19(b).
  • a magnetic member 610b according to this modification is used, for example, instead of the magnetic member 610 according to the sixth embodiment.
  • the magnetic member 610b has a plurality of first magnetically sensitive layers 611b and a plurality of second magnetically sensitive layers 612b having a harder magnetism than the plurality of first magnetically sensitive layers 611b.
  • the magnetic member 610b is a magnetic member that produces a large Barkhausen effect due to changes in the external magnetic field.
  • the magnetic member 610b has a configuration similar to that of the magnetic member 610, except that it has a different shape when viewed in the stacking direction.
  • the shape of the magnetic member 610b when viewed from the stacking direction has an elliptical outer shape.
  • the major axis of the ellipse of the magnetic member 610b extends in the winding axis direction.
  • the long axis of the ellipse of the magnetic member 610b extends, for example, in a direction orthogonal to the alignment direction.
  • the magnetic member 610b is formed with an opening 613b penetrating in the stacking direction through the central portion of the magnetic member 610b when viewed from the stacking direction.
  • the shape of the opening 613b when viewed from the stacking direction is elliptical, but may be other shapes such as a rectangle.
  • the major axis of the ellipse of the opening 613b extends in the winding axis direction.
  • the opening 613b has, for example, a similar shape to the outer periphery of the magnetic member 610b.
  • the width at the central portion is larger than the width at both ends in the direction of the winding axis.
  • the central portion is likely to be magnetized because a stronger magnetic field is applied, and the two end portions may be hardly magnetized.
  • the magnetization of the second magneto-sensitive layer 612b which is hard magnetism, is insufficient, the magnetization direction of the first magneto-sensitive layer 611b cannot be maintained until a large Barkhausen jump occurs. will occur mainly at the central portion of the magnetic member 610b.
  • the volume of the portion where the large Barkhausen jump occurs in the magnetic member 610b increases. Therefore, the power generated in the coil 130 is increased, and the power generated by the power generation element using the magnetic member 610b can be increased.
  • Embodiment 7 Next, Embodiment 7 will be described. In the following description of the present embodiment, differences from Embodiments 1 to 6 will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 20 is a cross-sectional view showing a schematic configuration of the power generating element 700 according to this embodiment.
  • the encoder according to this embodiment includes, for example, a power generation element 700 instead of the power generation element 100 of the encoder 1 according to the first embodiment.
  • power generation element 700 differs from power generation element 500 according to Embodiment 5 in that magnetic member 710 is provided instead of magnetic member 510 .
  • the magnetic member 710 has a first magnetically sensitive portion 711 and a second magnetically sensitive portion 712 having magnetic properties different from those of the first magnetically sensitive portion 711 .
  • the magnetic member 710 is a magnetic member that produces a large Barkhausen effect due to changes in the external magnetic field.
  • the cross-sectional shape of the magnetic member 710 cut in the radial direction is, for example, circular or elliptical, but may be other shapes such as rectangular or polygonal.
  • the magnetic member 710 is, for example, an elongated member whose longitudinal direction is the winding axis direction of the coil 130 .
  • the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 each extend in the winding axis direction.
  • the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 are both elongated and extend in the winding axis direction.
  • the first magnetically sensitive portion 711 has a wire shape extending in the direction of the winding axis
  • the second magnetically sensitive portion 712 has a tubular shape extending in the direction of the winding axis.
  • the second magnetism-sensitive portion 712 covers the outer circumference of the first magnetism-sensitive portion 711 when viewed from the winding axis direction, in other words, the surface extending along the winding axis direction.
  • the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 are arranged in a direction intersecting (for example, perpendicular to) the winding axis direction.
  • one of the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 is a hard magnetic portion having a higher coercive force than the other, and the other is a soft magnetic portion.
  • the first magnetically sensitive portion 711 may be a hard magnetic portion
  • the second magnetically sensitive portion 712 may be a hard magnetic portion.
  • the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 are made of, for example, different materials.
  • a material forming the hard magnetic portion for example, a magnetic material having a coercive force of 60 Oe or more can be used.
  • a material forming the soft magnetic portion for example, a magnetic material having a coercive force of 20 Oe or less can be used.
  • the magnetic member 710 used in the power generation element 700 is a magnetic member manufactured by any of the following manufacturing method examples.
  • FIG. 21 is a flow chart of the manufacturing method example 1 of the magnetic member 710 .
  • a cylindrical magnetic body is prepared (step S11).
  • the cylindrical magnetic body is a member that becomes the above-described second magnetism-sensitive portion 712, and is an elongated cylindrical body having an opening penetrating in the longitudinal direction.
  • Magnetic materials include, for example, magnetic powder and resin.
  • the magnetic member 710 is formed by insert molding so as to inject such a magnetic material into the inside (inside the opening) of the cylindrical magnetic body.
  • the magnetic member 710 may be formed by injecting a magnetic material composed of magnetic powder into a cylindrical magnetic body and sintering the magnetic powder.
  • the magnetic member 710 By forming the magnetic member 710 by such a manufacturing method, the magnetic member 710 can be manufactured by a simplified process without going through a process such as twisting the magnetic member under predetermined conditions.
  • the size of the soft magnetic portion which is one of the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712, can be easily adjusted, and the soft magnetic portion of an appropriate size (for example, the diameter of the hard magnetic portion is larger than that of the hard magnetic portion).
  • the power generated in the coil 130 can be increased, and the power generated by the power generation element 700 can be increased.
  • the magnetic characteristics may become uneven between the hard magnetic portion and the soft magnetic portion.
  • the magnetic properties of the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 can be determined depending on the material used. Therefore, the uniformity of the magnetic characteristics inside each of the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 is high, and the amount of change in the magnetic flux density of the magnetic member 710 in a large Barkhausen jump is stabilized. Therefore, variations in power generated by the power generation element 700 can be reduced.
  • FIG. 22 is a flow chart of Example 2 of the manufacturing method of the magnetic member 710 .
  • a wire-shaped magnetic body is prepared (step S21).
  • the wire-shaped magnetic body is a long wire that becomes the above-described first magneto-sensitive portion 711 .
  • the radial outer surface of the wire-shaped magnetic body is coated with a magnetic material having magnetic properties different from those of the magnetic body (step S22).
  • a magnetic material having magnetic properties different from those of the magnetic body step S22.
  • methods for coating the surface of a magnetic body with a magnetic material include sputtering, physical vapor deposition (PVD) such as ion plating and vacuum deposition, chemical vapor deposition (CVD), and plating. be done.
  • the magnetic member 710 By forming the magnetic member 710 by such a manufacturing method, the magnetic member 710 can be manufactured by a simplified process without going through a process such as twisting the magnetic member under predetermined conditions.
  • the size of the soft magnetic portion which is one of the first magnetism-sensitive portion 711 and the second magnetism-sensitive portion 712, can be easily adjusted, and the soft magnetism of an appropriate size can be obtained.
  • the power generated in the coil 130 can be increased, and the power generated by the power generation element 700 can be increased.
  • the magnetic properties of the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 can be determined by the materials used. Therefore, the uniformity of the magnetic characteristics inside each of the first magnetically sensitive portion 711 and the second magnetically sensitive portion 712 is high, and the amount of change in the magnetic flux density of the magnetic member 710 in a large Barkhausen jump is stabilized. Therefore, variations in power generated by the power generation element 700 can be reduced.
  • a rotary encoder used in combination with a motor has been described as an example, but the present invention is not limited to this.
  • the technology of the present disclosure can also be applied to linear encoders.
  • the power generation element, encoder, and the like according to the present disclosure are useful for equipment and devices that rotate or move linearly, such as motors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

発電電力を増大できる発電素子、エンコーダおよび磁性部材の製造方法を提供する。発電素子(100)は、大バルクハウゼン効果を生じる磁性部材(110)と、磁性部材(110)に巻回されたコイル(130)と、コイル(130)の巻回軸方向に沿ってコイル(130)と並ぶように、磁性部材(110)の端部に設けられたフェライト部材(150)と、を備える。フェライト部材(150)は、柱状空間(A)の内側に位置する本体部(151)と、本体部(151)に繋がり、柱状空間(A)の外側に位置する突出部(152)と、を有する。柱状空間(A)は、コイル(130)の巻回軸方向から見た場合のコイル(130)の外縁をコイル(130)の巻回軸方向の両側に延ばしたと仮定したときの仮想面に囲まれ、コイル(130)の巻回軸方向における磁性部材(110)の両端にそれぞれ接し当該巻回軸方向と直交する2つの仮想面に挟まれる。

Description

発電素子、エンコーダおよび磁性部材の製造方法
 本開示は、発電素子、エンコーダおよび磁性部材の製造方法に関し、特に大バルクハウゼン効果を利用した発電素子、エンコーダおよび磁性部材の製造方法に関する。
 従来、モータの回転等を検出するためのエンコーダにおいて、バッテリを用いずに回転を検出するために、大バルクハウゼン効果を利用した発電素子が用いられたエンコーダが知られている(例えば、特許文献1)。このような発電素子は、例えば、大バルクハウゼン効果を生じる磁性部材にコイルが巻回された構成を有する。大バルクハウゼン効果を生じる磁性部材は、外部磁界の変化によって磁束密度が急激に変化するため、磁束密度の急激な変化により磁性部材に巻回されたコイルに電力が生じる。エンコーダは、このような電力による電気信号を用いて、モータの回転等を検出する。
特開2012-198067号公報
 上述のエンコーダにおいて、発電素子によって発電される電力が小さいために、動作が不安定になる場合がある。
 本開示は、このような問題を解決するためになされたものであり、発電電力を増大できる発電素子、エンコーダおよび磁性部材の製造方法を提供することを目的とする。
 上記目的を達成するために、本開示の一態様に係る発電素子は、磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、前記磁性部材に巻回されたコイルと、前記コイルと並んで、前記磁性部材の端部に設けられたフェライト部材と、を備える。前記フェライト部材は、本体部と、前記本体部から突出した突出部と、を有する。前記本体部は、前記コイルの巻回軸方向から見た場合の前記コイルの外縁を前記コイルの巻回軸方向の両側に延ばしたと仮定したときの仮想面に囲まれ、かつ、前記コイルの巻回軸方向における前記磁性部材の両端にそれぞれ接し前記コイルの巻回軸方向と直交する2つの仮想面に挟まれた柱状空間の内側に位置する。前記突出部は、前記本体部に繋がり、前記柱状空間の外側に位置する。
 また、本開示の他の一態様に係る発電素子は、磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、前記磁性部材を内包する筒状のフェライト部材と、前記フェライト部材に巻回されたコイルと、を備える。
 また、本開示の他の一態様に係る発電素子は、磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、前記磁性部材に巻回されたコイルと、前記コイルの巻回軸方向に沿って前記コイルと並ぶように、前記磁性部材の端部に設けられたフェライト部材と、を備える。前記フェライト部材は、軟磁性粉末および硬磁性粉末のうちの少なくとも一方と、樹脂とを含む樹脂成形体である。
 また、本開示の他の一態様に係る発電素子は、磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、前記磁性部材に巻回されたコイルと、を備える。前記コイルの巻回軸方向において、前記コイルの端部の外周径は、前記コイルの中央部の外周径よりも小さい。
 また、本開示の他の一態様に係る発電素子は、磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、前記磁性部材に巻回された第1コイルと、前記第1コイルの前記磁界発生源側とは反対側に、前記第1コイルと対向して配置され、前記第1コイルの巻回軸と平行な軸に沿って巻回された第2コイルと、を備える。
 また、本開示の他の一態様に係る発電素子は、磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる板状の磁性部材と、前記磁性部材に巻回されたコイルと、を備える。前記磁性部材は、複数の第1感磁性層と前記複数の第1感磁性層よりも硬磁性である複数の第2感磁性層とを有し、前記複数の第1感磁性層と前記複数の第2感磁性層とは、第1感磁性層と第2感磁性層とが交互に、前記コイルの巻回軸方向と交差する方向に沿って積層されており、前記複数の第1感磁性層の合計の厚さは、前記複数の第2感磁性層の合計の厚さよりも大きい。
 また、本開示の他の一態様に係る発電素子は、磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、前記磁性部材に巻回されたコイルと、を備える。前記磁性部材は、中心部分と外周部分とで異なる磁気特性を有する複合磁気ワイヤと、前記複合磁気ワイヤの外周を被覆し、軟磁性材料で構成される被覆層とを有する。
 また、本開示の他の一態様に係るエンコーダは、回転軸とともに回転する磁石と、前記磁石が回転することによる、前記磁石によって形成される磁界の変化によって電気信号を生成する上記態様のいずれかに係る発電素子と、を備える。
 また、本開示の他の一態様に係る磁性部材の製造方法は、発電素子に用いられ、大バルクハウゼン効果を生じる磁性部材の製造方法であって、筒状の磁性体を準備する工程と、前記磁性体の内部に、前記磁性体と異なる磁気特性を有する磁性材料を注入する工程と、を含む。
 また、本開示の他の一態様に係る磁性部材の製造方法は、発電素子に用いられ、大バルクハウゼン効果を生じる磁性部材の製造方法であって、ワイヤ状の磁性体を準備する工程と、前記磁性体の表面を、前記磁性体と異なる磁気特性を有する磁性材料で被覆する工程と、を含む。
 本開示によれば、発電素子の発電電力を増大できる。
図1は、実施の形態1に係るエンコーダ概略構成を示す断面図である。 図2は、実施の形態1に係るエンコーダにおける磁石の上面図である。 図3は、実施の形態1に係る発電素子の概略構成を示す断面図である。 図4は、大バルクハウゼン効果を生じる磁性部材の模式的なBH曲線の例を示す図である。 図5は、実施の形態1の変形例1に係る発電素子の概略構成を示す断面図である。 図6は、実施の形態1の変形例2に係る発電素子の概略構成を示す断面図である。 図7は、実施の形態1の変形例3に係る発電素子の概略構成を示す断面図である。 図8は、実施の形態1の変形例4に係る発電素子の概略構成を示す断面図である。 図9は、実施の形態1の変形例5に係る発電素子の概略構成を示す断面図である。 図10は、実施の形態1の変形例6に係る発電素子の概略構成を示す断面図である。 図11は、実施の形態1の変形例7に係る発電素子の概略構成を示す断面図である。 図12は、実施の形態2に係る発電素子の概略構成を示す断面図である。 図13は、実施の形態2の変形例1に係る発電素子の概略構成を示す断面図である。 図14は、実施の形態3に係る発電素子の概略構成を示す断面図である。 図15は、実施の形態4に係る発電素子の概略構成を示す断面図である。 図16は、実施の形態5に係る発電素子の概略構成を示す断面図である。 図17は、実施の形態6に係る磁性部材の概略構成を示す断面図および上面図を示す図である。 図18は、実施の形態6の変形例1に係る磁性部材の概略構成を示す断面図および上面図を示す図である。 図19は、実施の形態6の変形例2に係る磁性部材の概略構成を示す断面図および上面図を示す図である。 図20は、実施の形態7に係る発電素子の概略構成を示す断面図である。 図21は、実施の形態7に係る磁性部材の製造方法例1のフローチャートである。 図22は、実施の形態7に係る磁性部材の製造方法例2のフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置および接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺などは必ずしも一致していない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 (実施の形態1)
 実施の形態1に係るエンコーダ1および発電素子100について説明する。
 図1は、本実施の形態に係るエンコーダ1の概略構成を示す断面図である。図2は、本実施の形態に係るエンコーダ1における磁石10の上面図である。なお、図1において、発電素子100の筐体190に収容されている磁性部材110およびコイル130が破線で模式的に示されている。また、見やすさのため、図2においては、磁石10、回転軸30ならびに発電素子100における磁性部材110およびコイル130以外の図示は省略されている。
 図1に示されるエンコーダ1は、例えば、サーボモータ等のモータと組み合わせて用いられるロータリーエンコーダである。また、エンコーダ1は、例えば、発電方式のアブソリュートエンコーダである。エンコーダ1は、発電素子100が生成する電気信号に基づいて、例えばモータ等の回転軸30の回転角、回転量および回転数等を検出する。エンコーダ1は、磁石10と、回転板20と、基板40と、制御回路50と、メモリ60と、発電素子100とを備える。エンコーダ1では、発電素子100が、磁石10が回転することによる、磁石10によって形成される磁界の変化によって電気信号を生成する。
 回転板20は、モータ等の回転軸30とともに回転する板状の部材である。回転板20の一方の主面の中央部は、回転軸30の軸方向(回転軸30が延びる方向)における回転軸30の端部に取り付けられている。回転板20は、回転軸30の軸方向と直交する方向に延びる。回転板20は、回転軸30を回転中心として回転する。回転軸30の回転動作は、回転する機器の回転動作に同期している。回転板20の平面視形状は、例えば、円形である。回転板20は、例えば、金属製、樹脂製、ガラス製またはセラミック製等である。
 磁石10は、発電素子100に対して外部磁界を形成する磁界発生源である。磁石10は、例えば、板状の磁石である。磁石10は、回転板20と対向し、回転板20の回転軸30側とは反対側の主面上に位置する。回転板20の厚み方向および磁石10の厚み方向は同じであり、回転軸30の軸方向である。磁石10は、回転板20と共に回転軸30を回転中心として回転する。磁石10の回転方向は、例えば、時計回りおよび反時計回りの両方であるが、時計回りおよび反時計回りのいずれか一方のみであってもよい。磁石10の平面視形状は、中央部が開口した円形状であるが、矩形等の別の形状であってもよい。また、磁石10は、開口していなくてもよい。また、磁石10は、発電素子100に印加する磁界を変化させることができれば、棒状の磁石等、他の形状の磁石であってもよい。
 磁石10は、厚み方向に着磁されている一対の磁極を複数有しており、複数の一対の磁極は、磁石10の回転方向に並んでいる。図2においては、磁石10の発電素子100側の面である主面11側の磁極が示されている。各一対の磁極は、磁石10の回転方向に隣り合う一対の磁極に対してN極とS極とが反転するように着磁されている。
 磁石10において、複数の磁極が、磁石10の発電素子100側の主面11において回転方向に並ぶ。複数の磁極は、少なくとも1つのN極と少なくとも1つのS極とを含み、N極とS極とが回転方向に沿って交互に並んでいる。磁石10の複数の磁極において、N極の数とS極の数とは同じである。
 複数の磁極は、回転軸30を挟んでN極とS極とが対向するように並んでいる。つまり、複数の磁極のうちのN極は、回転軸30を挟んでS極と対向し、複数の磁極のうちのS極は、回転軸30を挟んでN極と対向している。複数の磁極では、磁石10の回転方向において、N極と180度ずれた位置にS極が位置し、S極と180度ずれた位置にN極が位置する。回転軸30の軸方向から見た場合に、複数の磁極の各磁極の大きさは、等しい。このような磁石10が回転することにより、発電素子100に印加される磁界が変化する。図2に示される例では、複数の磁極は2つであり、1つのN極と1つのS極とを含む。そのため、磁石10が回転軸30と共に1回転すると、発電素子100に印加される磁界の方向が2回反転(1往復)する。複数の磁極の数は、特に制限されず4つであってもよく、6つ以上であってもよい。磁石10が1回転すると、発電素子100に印加される磁界の方向は、複数の磁極の数の回数だけ反転する。
 基板40は、回転板20の磁石10側において、回転板20および磁石10と間隔を空けて対向するように位置する。つまり、回転軸30の軸方向に沿って、回転軸30、回転板20、磁石10および基板40は、この順で並ぶ。基板40は、磁石10および回転板20とともに回転しない。基板40は、回転軸30の軸方向を厚み方向とする板状である。基板40の平面視形状は、例えば、円形状である。例えば、回転軸30の軸方向から見た場合に、回転軸30、回転板20、磁石10および基板40それぞれの中心は一致する。
 基板40は、例えば、配線基板であり、発電素子100、制御回路50およびメモリ60等の電子部品等が実装される。図1に示される例では、基板40の磁石10側の主面に制御回路50およびメモリ60が実装されており、基板40の磁石10とは反対側の主面に発電素子100が実装されている。基板40は、例えば、エンコーダ1またはモータ等の一部を構成するケース(不図示)に固定される。
 発電素子100は、基板40の磁石10側とは反対側の主面上に位置する。そのため、発電素子100における基板40側が、磁石10側である。発電素子100は、回転軸30の軸方向に沿って、磁石10および回転板20と並んでいる。以降、磁石10および回転板20と発電素子100とが並ぶ、矢印Zで示される方向を「並び方向」と称する場合がある。並び方向は、磁石10の主面11の法線方向でもある。発電素子100は、磁石10および回転板20と共に回転しない。発電素子100は、少なくとも一部が回転軸30の軸方向において磁石10および回転板20と対向するように設けられている。また、発電素子100は、磁石10の径方向と交差(具体的には直交)する方向に延びるように、基板40の主面に沿って延在する。発電素子100は、磁石10が回転することによる、磁石10によって形成される磁界の変化によって発電し、電気信号を生成する。発電素子100のコイル130の巻回軸方向(磁性部材110の長手方向)が、発電素子100が延在する方向である。コイル130の巻回軸方向は、図中の矢印Xで示される方向である。以降、図中の矢印Xで示されるコイル130の巻回軸方向を、単に「巻回軸方向」と称する場合がある。
 発電素子100は、例えば、磁性部材110と、コイル130と、図3の断面図に示すフェライト部材150(図1および図2では図示省略)と、端子181、182と、筐体190とを備える。
 磁性部材110、コイル130およびフェライト部材150の詳細については後述する。磁性部材110は大バルクハウゼン効果を生じる磁性部材であり、磁性部材110に巻回されたコイル130に発電パルスが生じる。なお、発電素子100の配置は、特に制限されず、発電素子100は、磁石10によって発生する磁界が印加される領域に位置し、回転軸30が回転することによる磁界の変化によって発電パルスを生成するように配置されればよい。
 端子181、182は、発電素子100と基板40とを電気的に接続するための部材である。端子181、182は、発電素子100における基板40側の端部に位置する。発電素子100における端子181、182側に、磁石10が配置されている。端子181は、コイル130を構成する導線の一端に電気的に接続され、端子182は当該導線の他端に電気的に接続される。つまり、コイル130と基板40とは、端子181、182を介して電気的に接続されている。
 筐体190は、磁性部材110、コイル130およびフェライト部材150を収容し、これらを支持している。また、筐体190は、端子181、182の一部を収容する。筐体190は、例えば、発電素子100における磁石10側に開口している。筐体190は、例えば、図示の省略されている固定部材等によって、基板40に固定されている。
 制御回路50は、基板40の磁石10側の主面上に位置する。制御回路50は、発電素子100と電気的に接続されている。制御回路50は、発電素子100が生成する発電パルス等の電気信号を取得し、取得した電気信号に基づいて、モータ等の回転軸30の回転角、回転量および回転数等を検出(算出)する。制御回路50は、例えば、IC(集積回路)パッケージ等である。
 メモリ60は、基板40の磁石10側の主面上に位置する。メモリ60は、制御回路50と接続されている。メモリ60は、制御回路50が検出した結果を保存する半導体メモリ等の不揮発メモリである。
 次に、本実施の形態に係る発電素子100の詳細について説明する。
 図3は、本実施の形態に係る発電素子100の概略構成を示す断面図である。図3は、コイル130の巻回軸R1を通るように、並び方向に沿って切断した場合の断面を示している。なお、見やすさのため、図3において、端子181、端子182および筐体190の図示は省略されている。これらは、以下で説明する各発電素子の図においても同様である。
 図3に示されるように、発電素子100は、磁性部材110と、コイル130と、フェライト部材150とを備える。
 磁性部材110は、磁石10等が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材である。磁性部材110は、例えば、ウィーガンドワイヤ等の径方向における中心部分と外周部分とで異なる磁気特性を有する複合磁気ワイヤである。複合磁気ワイヤにおいて、中心部分および外周部分のうち、一方が硬磁性部であり、他方が軟磁性部である。本実施の形態では、例えば、複合磁気ワイヤにおいて、中心部分は保磁力が高い硬磁性部であり、外周部分は中心部分よりも保磁力が低い軟磁性部である。軟磁性部は、径方向の外側から硬磁性部を被覆している。
 ここで、大バルクハウゼン効果について説明する。図4は、大バルクハウゼン効果を生じる磁性部材110の模式的なBH曲線の例を示す図である。図4では、外周部分が中心部分よりも軟磁性である複合磁気ワイヤを磁性部材110として用いた例が示されている。また、図4は、ワイヤの長手方向において、印加される磁界の方向が変化する場合の図である。また、図4の(1)から(6)には、磁化の方向を矢印で示した磁性部材110が模式的に示されている。破線の矢印が軟磁性である外周部分の磁化の方向を示しており、実線の矢印が硬磁性である中心部分の磁化の方向を示している。なお、図4において、磁化の方向を示す矢印は、磁化の方向のみを示しており、磁化の大きさとは関係なく同じ大きさの矢印で磁化の方向が示されている。
 磁性部材110の長手方向に沿って一定以上の強さの磁界が磁性部材110に印加されると、図4の(1)に示されるように、磁性部材110の中心部分および外周部分は、同じ方向に磁化される。図4の(i)のように磁界の方向が変化しても、ある程度の磁界の変化までは、硬磁性の中心部分の影響で軟磁性の外周部分の磁化方向は変化しない。磁界の変化が閾値を超えた破線Jaで囲まれた箇所で、図4の(2)および(3)に示されるように、軟磁性の外周部分の磁化方向が一気に反転する。この現象は大バルクハウゼンジャンプとも呼ばれる。これにより、磁性部材110の磁束密度が急激に変化し、磁性部材に巻回されたコイル130に電力(発電パルス)が生じる。さらに磁界を変化させると、図4の(4)に示されるように、中心部分の磁化方向も逆転し、図4の(1)とは逆方向に磁性部材110が磁化する。この場合も、図4の(ii)のように磁界の方向を変化させ、磁界の変化が閾値を超えた破線Jbで囲まれた箇所で、図4の(5)および(6)に示されるように、外周部分の磁化方向が一気に反転する。これにより、磁性部材110の磁束密度が急激に変化し、磁性部材110に巻回されたコイル130に再び電力(発電パルス)が生じる。このような挙動は、外周部分が硬磁性であり、中心部分が軟磁性である複合磁気ワイヤでも生じる。
 このように、磁性部材110には、図4に示されるような挙動を示す磁性部材が用いられる。なお、磁性部材110は、複合磁気ワイヤに限らず、異なる磁気特性の硬磁性部と軟磁性部とを有することで大バルクハウゼン効果を生じる磁性部材であればよい。磁性部材110では、例えば、硬磁性部と軟磁性部とが巻回軸方向と交差(例えば直交)する方向に並び、硬磁性部と軟磁性部とが巻回軸方向に延びるように存在することで、大バルクハウゼン効果が生じる。磁性部材110は、例えば、磁気特性の異なる薄膜が積層された構造を有する磁性部材であってもよい。
 再び、図3を参照し、磁性部材110は、例えば、コイル130の巻回軸方向が長手方向である長尺状の部材である。磁性部材110の径方向に切断した断面形状は、例えば、円状または楕円状であるが、矩形状または多角形状等の他の形状であってもよい。巻回軸方向において、磁性部材110の長さは、例えば、コイル130の長さより長い。
 コイル130は、コイル130を構成する導線が磁性部材110に巻回されているコイルである。具体的には、コイル130は、磁性部材110の中心を通り、磁性部材110の長手方向に延びる巻回軸R1に沿って巻回されている。また、コイル130は、2つのフェライト部材150の間に位置する。
 フェライト部材150は、コイル130の巻回軸方向に沿ってコイル130と並ぶように、磁性部材110の端部に設けられている。本実施の形態においては、2つのフェライト部材150が、磁性部材110の両端部にそれぞれ1つずつ設けられている。2つのフェライト部材150は、コイル130を挟んで対向し、対称な形状である。以下では、主に、2つのフェライト部材150のうちの一方について説明するが、同様の説明が他方にも適用される。
 フェライト部材150は、開口部153が形成された板状の部材であり、例えば、軟磁性材料で構成されるフェライトビーズである。フェライト部材150は、磁石10からの磁束の集磁、および、磁性部材110における磁束の安定化等のために設けられている。フェライト部材150は、例えば、磁性部材110における軟磁性部よりも軟磁性である、つまり、保磁力が低い。磁性部材110の端部は、開口部153内に位置する。開口部153は、巻回軸方向に沿ってフェライト部材150を貫通する貫通穴である。
 フェライト部材150は、本体部151と突出部152とを有する。
 本体部151は、柱状空間Aの内側に配置される。柱状空間Aは、コイル130の巻回軸方向から見た場合のコイル130の外縁を当該巻回軸方向の両側に延ばしたと仮定したときの仮想面に囲まれ、かつ、当該巻回軸方向における磁性部材110の両端にそれぞれ接し当該巻回軸方向と直交する2つの仮想面に挟まれた空間である。換言すると、柱状空間Aは、コイル130の巻回軸方向から見た場合のコイル130の外縁の内側の空間のうち、当該巻回軸方向における磁性部材110の両端にそれぞれ接し当該巻回軸方向と直交する2つの仮想面に挟まれた空間である。また、柱状空間Aは、巻回軸R1を通るように切断した断面が矩形であり、磁性部材110とコイル130とに外接する柱状の空間である。開口部153は、例えば、巻回軸方向から見た場合の本体部151の中央部に設けられる。
 突出部152は、本体部151に繋がる。突出部152は、柱状空間Aの外側に位置する。突出部152は、巻回軸方向と直交する方向において、コイル130よりも外側に位置する第1突出部の一例である。また、突出部152は、コイル130の磁石10側とは反対側に位置する。
 図3には、磁性部材110が外部磁界(例えば、磁石10によって形成される磁界)によって磁化された場合の、磁性部材110に由来する磁束線の一例が破線で示されている。磁性部材110の端部にフェライト部材150が設けられている場合、磁性部材110の一端側から他端側に向かって磁性部材110の外側を通る磁束がフェライト部材150から出る。このような、磁性部材110の一端側から他端側に向かって磁性部材110の外側に形成され、磁性部材110に由来する磁性部材110の外側を周る磁束は、磁性部材110の内部とは逆方向の磁束である。そのため、磁性部材110の外側に形成される磁性部材110に由来する磁束がコイル130中を通ると、コイル130には、磁性部材110の内部の磁束の変化による起電力とは、逆向きの起電力が同時に生じることになる。フェライト部材150は、突出部152を有しているため、図3に示されるように、磁束の一部が突出部152から出る。柱状空間Aの外側に位置する突出部152は、コイル130から離れるように突出しているため、突出部152から出る磁束は、コイル130中を通りにくくなる。そのため、突出部152を有するフェライト部材150が設けられることで、コイル130中を通る磁性部材110の内部とは逆方向の磁束を減らすことができる。よって、コイル130に生じる電力が増え、発電素子100の発電電力を増大できる。
 フェライト部材150は、例えば、軟磁性粉末および硬磁性粉末のうちの少なくとも一方と、樹脂とを含む樹脂成形体である。フェライト部材150が樹脂成形体であることにより、突出部152を有するような形状のフェライト部材150を容易に形成できる。また、このような樹脂成形体は、後述する各種形状のフェライト部材を容易に形成でき、従来の切削加工等によってフェライト部材を形成する場合と比べて、フェライト部材の形状の自由度を高めやすい。
 軟磁性粉末の材料としては、例えば、アトマイズ粉末およびフェライト粉末等が挙げられる。また、硬磁性粉末の材料としては、フェライト、ネオジウム系磁石、Sm-Fe-Nおよびバイカロイ等の粉末が挙げられる。樹脂としては、例えば、ナイロン系樹脂、ポリアミド系樹脂およびポリフェニレンスルフィド系樹脂等が挙げられる。
 フェライト部材150の飽和磁束密度は、例えば、磁性部材110の飽和磁束密度よりも大きい。また、フェライト部材150の最大の残留磁束密度は、磁性部材110の最大の残留磁束密度よりも大きい。これにより、フェライト部材150の集磁の効果を高めることができる。
 なお、フェライト部材150は、樹脂を含んでいなくてもよい。
 [変形例1]
 次に、実施の形態1の変形例1について説明する。以下の本変形例の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図5は、本変形例に係る発電素子100aの概略構成を示す断面図である。本変形例に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子100aを備える。
 図5に示されるように、発電素子100aは、発電素子100と比較して、フェライト部材150の代わりにフェライト部材150aを備える点で相違する。
 フェライト部材150aは、柱状空間Aの内側に配置される本体部151と、本体部151に繋がり、柱状空間Aの外側に配置される突出部152aとを有する。突出部152aは、巻回軸方向と直交する方向において、コイル130よりも外側に位置する第1突出部の一例である。突出部152aは、コイル130の磁石10側とは反対側に位置する。
 突出部152aの一部は、コイル130の巻回軸方向において、本体部151よりもコイル130の中心側に位置する。突出部152aは、コイル130における磁石10側とは反対側からコイル130の一部を覆っている。
 図5には、図3と同様に、磁性部材110が外部磁界によって磁化された場合の、磁性部材110に由来する磁束線の一例が破線で示されている。突出部152aの一部が本体部151よりもコイル130の中心側に位置することで、突出部152aの一部に覆われている部分のコイル130には、突出部152aから出る磁束が通らなくなる。そのため、コイル130中を通る磁性部材110の内部とは逆方向の磁束をより減らすことができる。よって、コイル130に生じる電力が増え、発電素子100aの発電電力を増大できる。
 [変形例2]
 次に、実施の形態1の変形例2について説明する。以下の本変形例の説明において、実施の形態1および実施の形態1の変形例1との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図6は、本変形例に係る発電素子100bの概略構成を示す断面図である。本変形例に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子100bを備える。
 図6に示されるように、発電素子100bは、発電素子100と比較して、フェライト部材150の代わりにフェライト部材150bを備える点で相違する。
 フェライト部材150bは、柱状空間Aの内側に配置される本体部151と、本体部151に繋がり、柱状空間Aの外側に配置される突出部152bとを有する。突出部152bは、巻回軸方向と直交する方向において、コイル130よりも外側に位置する第1突出部の一例である。突出部152bは、コイル130の磁石10側とは反対側に位置する。
 突出部152bの一部は、突出部152aと同様に、コイル130の巻回軸方向において、本体部151よりもコイル130の中心側に位置する。突出部152bは、コイル130における磁石10側とは反対側からコイル130の一部を覆っている。また、突出部152bの他の一部は、コイル130の巻回軸方向において、本体部151のコイル130側とは反対側に位置する。突出部152bの他の一部は、巻回軸方向に沿って、磁性部材110およびコイル130よりも外側に突出している部分である。
 図6には、図3と同様に、磁性部材110が外部磁界によって磁化された場合の、磁性部材110に由来する磁束線の一例が破線で示されている。突出部152bの一部が本体部151よりもコイル130の中心側に位置することで、突出部152aと同様の効果が得られる。また、突出部152bの他の一部が、本体部151のコイル130側とは反対側に位置することで、突出部152bの他の一部から出る磁束は、よりコイル130から離れた位置を通ることになる。そのため、コイル130中を通る磁性部材110の内部とは逆方向の磁束をより減らすことができる。よって、コイル130に生じる電力が増え、発電素子100bの発電電力を増大できる。
 [変形例3]
 次に、実施の形態1の変形例3について説明する。以下の本変形例の説明において、実施の形態1および実施の形態1の各変形例との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図7は、本変形例に係る発電素子100cの概略構成を示す断面図である。本変形例に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子100cを備える。
 図7に示されるように、発電素子100cは、発電素子100と比較して、フェライト部材150の代わりにフェライト部材150cを備える点で相違する。
 フェライト部材150cは、柱状空間Aの内側に配置される本体部151と、本体部151に繋がり、柱状空間Aの外側に配置される突出部152cとを有する。突出部152cは、巻回軸方向と直交する方向において、コイル130よりも外側に位置する第1突出部の一例である。突出部152cは、コイル130の磁石10側に位置する。
 突出部152cは、本体部151よりも磁石10に近い位置に配置されているため、磁石10からの磁束をより多く集磁し、磁性部材110が磁化される際の磁束密度をより高めることができる。そのため、磁性部材110における磁束密度の変化がより大きくなり、コイル130に生じる電力が増え、発電素子100cの発電電力を増大できる。
 また、突出部152cは、突出部152と同様に、コイル130から離れるように突出しているため、突出部152cから出る磁束は、コイル130中を通りにくくなる。よって、発電素子100と同様の発電電力の増大の効果も期待できる。
 [変形例4]
 次に、実施の形態1の変形例4について説明する。以下の本変形例の説明において、実施の形態1および実施の形態1の各変形例との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図8は、本変形例に係る発電素子100dの概略構成を示す断面図である。本変形例に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子100dを備える。
 図8に示されるように、発電素子100dは、発電素子100と比較して、フェライト部材150の代わりにフェライト部材150dを備える点で相違する。
 フェライト部材150dは、柱状空間Aの内側に配置される本体部151と、本体部151に繋がり、柱状空間Aの外側に配置される突出部152dとを有する。突出部152dは、巻回軸方向と直交する方向において、コイル130よりも外側に位置する第1突出部の一例である。突出部152dは、コイル130の磁石10側に位置する。
 突出部152dの一部は、コイル130の巻回軸方向において、本体部151よりもコイル130の中心側に位置する。突出部152dは、コイル130における磁石10側からコイル130の一部を覆っている。
 突出部152dは、突出部152cと同様に本体部151よりも磁石10に近い位置に配置されているため、磁石10からの磁束をより多く集磁する。また、突出部152dの一部がコイル130の中心側に延びるように位置するため、さらに多くの磁束を集磁できる。よって、発電素子100dの発電電力を増大できる。
 また、突出部152dは、突出部152aと同様の形状でコイル130よりも外側に位置するため、突出部152dから出る磁束は、コイル130中を通りにくくなる。よって、発電素子100dでは、発電素子100aと同様の発電電力の増大の効果も期待できる。
 [変形例5]
 次に、実施の形態1の変形例5について説明する。以下の本変形例の説明において、実施の形態1および実施の形態1の各変形例との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図9は、本変形例に係る発電素子100eの概略構成を示す断面図である。本変形例に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子100eを備える。
 図9に示されるように、発電素子100eは、発電素子100と比較して、フェライト部材150の代わりにフェライト部材150eを備える点で相違する。
 フェライト部材150eは、柱状空間Aの内側に配置される本体部151と、本体部151に繋がり、柱状空間Aの外側に配置される突出部152eとを有する。突出部152eは、巻回軸方向と直交する方向において、コイル130よりも外側に位置する第1突出部の一例である。突出部152eは、コイル130の磁石10側に位置する。
 突出部152eの一部は、コイル130の巻回軸方向において、本体部151よりもコイル130の中心側に位置する。突出部152eは、コイル130における磁石10側からコイル130の一部を覆っている。また、突出部152eの他の一部は、コイル130の巻回軸方向において、本体部151のコイル130側とは反対側に位置する。突出部152eの他の一部は、巻回軸方向に沿って、磁性部材110およびコイル130よりも外側に突出している部分である。
 突出部152eは、突出部152cと同様に本体部151よりも磁石10に近い位置に配置されているため、磁石10からの磁束をより多く集磁する。また、突出部152eの一部および他の一部が巻回軸方向に沿って延びるように位置するため、さらに多くの磁束を集磁できる。よって、発電素子100eの発電電力を増大できる。
 また、突出部152eは、突出部152bと同様の形状でコイル130よりも外側に位置するため、突出部152eから出る磁束は、コイル130中を通りにくくなる。よって、発電素子100eでは、発電素子100bと同様の発電電力の増大の効果も期待できる。
 [変形例6]
 次に、実施の形態1の変形例6について説明する。以下の本変形例の説明において、実施の形態1および実施の形態1の各変形例との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図10は、本変形例に係る発電素子100fの概略構成を示す断面図である。本変形例に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子100fを備える。
 図10に示されるように、発電素子100fは、発電素子100と比較して、フェライト部材150の代わりにフェライト部材150fを備える点で相違する。
 フェライト部材150fは、柱状空間Aの内側に配置される本体部151と、本体部151に繋がり、柱状空間Aの外側に配置される突出部152fとを有する。突出部152fは、巻回軸方向において、磁性部材110の端部よりも外側に位置する第2突出部の一例である。突出部152fは、巻回軸方向に沿って、本体部151のコイル130側とは反対側に本体部151から延びるように位置する。
 突出部152fが、磁性部材110の端部よりも外側に延びていることで、フェライト部材150fは、磁石10からの磁束をより多く集磁し、磁性部材110が磁化される際の磁束密度をより高めることができる。よって、発電素子100cと同様の効果で、発電素子100fの発電電力を増大できる。
 また、磁性部材110に由来する磁束が突出部152fからも出るため、コイル130に近い本体部151から出る磁束が減り、コイル130中を通る、磁性部材110の内部とは逆方向の磁束を減らすことができる。よって、コイル130に生じる電力が増え、発電素子100fの発電電力を増大できる。
 [変形例7]
 次に、実施の形態1の変形例7について説明する。以下の本変形例の説明において、実施の形態1および実施の形態1の各変形例との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図11は、本変形例に係る発電素子100gの概略構成を示す断面図である。本変形例に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子100gを備える。
 図11に示されるように、発電素子100gは、発電素子100と比較して、フェライト部材150の代わりにフェライト部材150gを備える点で相違する。
 フェライト部材150gは、柱状空間Aの内側に配置される本体部151と、本体部151に繋がり、柱状空間Aの外側に配置される突出部152gとを有する。フェライト部材150gには、開口部153gが形成されている。開口部153gは、例えば、巻回軸方向から見た場合の本体部151の中央部に設けられる。また、開口部153gは、本体部151を貫通し、突出部152gにより底部が形成されている有底穴である。磁性部材110の端部は、開口部153g内に位置する。
 突出部152gは、巻回軸方向において、磁性部材110の端部よりも外側に位置する第2突出部の一例である。突出部152gは、巻回軸方向に沿って、本体部151のコイル130側とは反対側に本体部151から延びている。突出部152gは、巻回軸方向の外側から磁性部材110の端部を覆っている。
 突出部152gが、磁性部材110の端部を覆うことで、フェライト部材150gは、磁石10からの磁束をより多く集磁し、磁性部材110が磁化される際の磁束密度をより高めることができる。よって、発電素子100cと同様の効果で、発電素子100gの発電電力を増大できる。
 また、磁性部材110に由来する磁束が突出部152gからも出るため、コイル130に近い本体部151から出る磁束が減り、コイル130中を通る、磁性部材110の内部とは逆方向の磁束を減らすことができる。よって、コイル130に生じる電力が増え、発電素子100gの発電電力を増大できる。
 (実施の形態2)
 次に、実施の形態2について説明する。以下の本実施の形態の説明において、実施の形態1との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図12は、本実施の形態に係る発電素子200の概略構成を示す断面図である。本実施の形態に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子200を備える。
 図12に示されるように、発電素子200は、発電素子100と比較して、フェライト部材150の代わりにフェライト部材250を備える点で相違する。
 フェライト部材250は、磁性部材110を内包する。具体的には、フェライト部材250は、巻回軸方向から見た場合のフェライト部材250の中心に開口部253が形成されており、開口部253内に磁性部材110が位置する。フェライト部材250は、開口部253が貫通する筒状の本体部251を有する部材である。
 巻回軸方向において、本体部251の長さは、例えば、磁性部材110の長さと同じである。巻回軸方向において、本体部251の長さは、磁性部材110の長さより長くてもよく、短くてもよい。本体部251は、例えば、巻回軸方向から見た場合の磁性部材110の外周を全て被覆する。また、巻回軸方向において、本体部251の長さは、例えば、コイル130の長さよりも長い。
 発電素子200において、コイル130は、フェライト部材250に巻回されている。発電素子200では、巻回軸方向と直交する方向において、外側からコイル130、フェライト部材250および磁性部材110の順で並んでいる。
 発電素子200では、巻回軸方向から見た場合の磁性部材110の外周を被覆するフェライト部材250にコイル130が巻回されるため、フェライト部材250の表面積が大きくなり、フェライト部材250が磁石10からの磁束をより多く集磁することができる。よって、磁性部材110が磁化される際の磁束密度をより高めることができ、発電素子200の発電電力を増大できる。
 [変形例1]
 次に、実施の形態2の変形例1について説明する。以下の本変形例の説明において、実施の形態1および実施の形態2との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図13は、本変形例に係る発電素子200aの概略構成を示す断面図である。本変形例に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子200aを備える。
 図13に示されるように、発電素子200aは、発電素子200と比較して、フェライト部材250の代わりにフェライト部材250aを備える点で相違する。
 フェライト部材250aは、磁性部材110を内包する筒状の本体部251と、巻回軸方向における本体部251の両端に設けられた鍔状の第1鍔部255および第2鍔部256とを有する。コイル130は、第1鍔部255と第2鍔部256との間に位置する。
 第1鍔部255は、本体部251の一方の端部から、巻回軸方向と直交する方向に立設する板体である。第2鍔部256は、本体部251の他方の端部から、巻回軸方向と直交する方向に立設する板体である。第1鍔部255と第2鍔部256とは、例えば、同じ形状である。
 このように、フェライト部材250aが本体部251に加えて、第1鍔部255および第2鍔部256を有することで、フェライト部材250aの表面積がさらに大きくなり、フェライト部材250aが磁石10からの磁束をより多く集磁することができる。よって、磁性部材110が磁化される際の磁束密度をより高めることができ、発電素子200aの発電電力を増大できる。
 (実施の形態3)
 次に、実施の形態3について説明する。以下の本実施の形態の説明において、実施の形態1および実施の形態2との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図14は、本実施の形態に係る発電素子300の概略構成を示す断面図である。本実施の形態に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子300を備える。
 図14に示されるように、発電素子300は、発電素子100と比較して、コイル130の代わりにコイル330を備える点、および、フェライト部材150の代わりにフェライト部材350を備える点で相違する。
 コイル330は、コイル330を構成する導線が磁性部材110に巻回されているコイルである。巻回軸方向において、コイル330の端部の外周径は、コイル330の中央部の外周径よりも小さい。本明細書において、外周径とは、巻回軸方向から見た場合の外周径である。また、コイル330の端部および中央部とは、コイル330が磁性部材110に巻回されている巻回部における端部および中央部を意味する。本実施の形態では、巻回軸方向において、コイル330の端部の単位長さ当たりの巻き数は、コイル330の中央部の単位長さ当たりの巻き数よりも少ない。なお、コイル330は、巻回軸方向において、コイル330の端部の外周径が、コイル330の中央部の外周径よりも小さければ、上述の単位長さ当たりの巻き数の関係を有していなくてもよい。例えば、磁性部材110の形状を変更する、または、磁性部材110とコイルとの間にスペーサ等を設ける等によって、巻回軸方向において、コイル330の端部の外周径が、コイル330の中央部の外周径よりも小さくなっていてもよい。
 フェライト部材350は、突出部152を有していない以外は、フェライト部材150と同じである。つまり、フェライト部材350は、フェライト部材150のうち、本体部151から構成される部材である。なお、フェライト部材350は、このような例に限らず、例えば、上記の実施の形態1、実施の形態1の各変形例、および、実施の形態2に係るフェライト部材のうちのいずれかであってもよい。
 図14には、図3と同様に、磁性部材110が外部磁界によって磁化された場合の、磁性部材110に由来する磁束線の一例が破線で示されている。図14に示されるように、巻回軸方向における磁性部材110の両端部の近傍では、磁性部材110の一端側から他端側に向かって磁性部材110の外側に形成される磁束が、磁性部材110に比較的近い位置を通りやすい。巻回軸方向において、コイル330の端部の外周径は、コイル330の中央部の外周径よりも小さいため、上述の磁性部材110の外側に形成される磁束を避けるようにコイル330が存在することになる。そのため、コイル330中を通る磁性部材110の内部とは逆方向の磁束を減らすことができる。よって、コイル330に生じる電力が増え、発電素子300の発電電力を増大できる。
 (実施の形態4)
 次に、実施の形態4について説明する。以下の本実施の形態の説明において、実施の形態1から実施の形態3との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図15は、本実施の形態に係る発電素子400の概略構成を示す断面図である。本実施の形態に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子400を備える。
 図15に示されるように、発電素子400は、発電素子100と比較して、フェライト部材150の代わりにフェライト部材350を備える点、および、磁性部材460およびコイル470をさらに備える点で相違する。本実施の形態において、コイル130は第1コイルの一例であり、コイル470は第2コイルの一例である。
 磁性部材460は、磁性部材110と異なり、大バルクハウゼン効果を生じない磁性部材である。磁性部材460は、鉄心等のコイルの芯材として用いられる強磁性の磁性部材であれば、特に制限されない。磁性部材460は、磁性部材110の巻回軸方向における一端部から他端部に向かって磁性部材110の外側に形成される磁性部材110の磁化に由来する磁束を積極的に集磁する。
 磁性部材460は、磁性部材110と同様に、コイル130の巻回軸方向が長手方向である長尺状の部材である。磁性部材460は、磁性部材110およびコイル130の磁石10側とは反対側に、磁性部材110およびコイル130に対向して配置されている。磁性部材460は、例えば、コイル470が巻回された状態で、コイル130上に載置される。
 コイル470は、コイル470を構成する導線が磁性部材460に巻回されているコイルである。具体的には、コイル470は、磁性部材460の中心を通る巻回軸R2に沿って巻回されている。巻回軸R2は、巻回軸R1と平行である。コイル470は、磁性部材110およびコイル130の磁石10側とは反対側に、磁性部材110およびコイル130に対向して配置されている。コイル470は、例えば、コイル130上に載置される。磁性部材110、コイル130、磁性部材460およびコイル470は、矢印Zで示される並び方向に沿って並んでいる。
 磁性部材460およびコイル470は、磁石10等の外部磁界によって磁化された磁性部材110による磁界が形成される位置に配置される。具体的には、磁性部材460およびコイル470は、磁性部材110の巻回軸方向における一端部から他端部に向かって磁性部材110の外側に形成される磁性部材110に由来する磁束が通る位置に配置される。そのため、磁性部材460およびコイル470は、磁性部材110の内部とは逆方向の磁束が通る位置に配置される。これにより、磁性部材110の磁束の変化によって、コイル470がコイル130と共に発電する。
 コイル130とコイル470とは、例えば、電気的に直列に接続される。具体的には、コイル130を構成する導線と、コイル470を構成する導線とが、磁性部材110の磁束の変化によってコイル130およびコイル470それぞれに発生する電流が互いに打ち消し合わないように電気的に直列に接続される。例えば、コイル130とコイル470との導線の巻き付け方向が反対向きである場合、同じ方向に電流が流れるため、巻回軸方向における一方側の端部から引き出されるコイル130の導線と、他方側の端部から引き出されるコイル470の導線とが接続されることで、直列に接続される。また、例えば、コイル130とコイル470との導線の巻き付け方向が同じ向きである場合、巻回軸方向における一方側の端部から引き出されるコイル130の導線と、同じ一方側の端部から引き出されるコイル470の導線とが接続されることで、直列に接続される。コイル130およびコイル470それぞれでコイル同士を接続していない側の端部から引き出される導線が、端子181および端子182に接続される。なお、コイル130とコイル470とは、電気的に並列に接続されてもよい。
 このような構成により、発電素子400において、磁性部材110が磁化されることにより磁性部材110から発せられる磁束によって、コイル130と同時にコイル470も発電するため、発電素子400の発電電力を増大できる。一方、単にコイル130の巻き数を増やすことでコイル130の発電量を増やすことも考えられるが、コイル130が太くなると、磁性部材110の外側の磁性部材110の内部とは逆方向の磁束が通る位置にもコイル130の導線が存在することになる。そのため、コイル130の一部に磁性部材110の内部とは逆方向の磁束が通ると、磁性部材110の内部の磁束の変化による起電力とは、逆向きの起電力が同時に生じることになり、発電量を効果的に増やすことができない。そのため、発電素子400のように、コイル470がコイル130と共に発電することで、コイル130の起電力を打ち消すことなく、効果的に発電電力を増大することができる。
 (実施の形態5)
 次に、実施の形態5について説明する。以下の本実施の形態の説明において、実施の形態1から実施の形態4との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図16は、本実施の形態に係る発電素子500の概略構成を示す断面図である。本実施の形態に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子500を備える。
 図16に示されるように、発電素子500は、発電素子100と比較して、磁性部材110の代わりに磁性部材510を備える点、および、フェライト部材150の代わりにフェライト部材350を備える点で相違する。
 磁性部材510は、中心部分と外周部分とで異なる磁気特性を有する複合磁気ワイヤ511と、複合磁気ワイヤ511の外周を被覆する被覆層512とを有する。磁性部材510は、外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材である。複合磁気ワイヤ511は、例えば、ウィーガンドワイヤであり、上述した磁性部材110に用いられうる複合磁気ワイヤとして説明した通りである。複合磁気ワイヤにおいて、径方向における中心部分および外周部分のうち、一方が硬磁性部であり、他方が軟磁性部である。
 被覆層512は、例えば、複合磁気ワイヤ511の径方向の表面の全面を覆う。被覆層512は、軟磁性材料で構成される。被覆層512の保磁力は、例えば、複合磁気ワイヤ511における軟磁性部の保磁力と同等である。被覆層512を構成する材料としては、例えば、Fe-Ni、Fe-Si、Fe-Si-Al、Fe-Si-BおよびCo-Fe-Si-B等が挙げられる。
 被覆層512は、例えば、スパッタリング法、イオンプレーティング法および真空蒸着法等の物理蒸着(PVD)法、化学蒸着(CVD)法、もしくは、メッキ法等を用いて形成される。
 上述のように、大バルクハウゼンジャンプは、複合磁気ワイヤ511の軟磁性部の磁化方向が急激に反転することによって生じる。そのため、軟磁性部の磁束が大きいほど、大バルクハウゼンジャンプでの磁束密度の変化は大きくなり、大バルクハウゼンジャンプに伴うコイル130の発電も大きくなる。そのため、磁性部材510では、被覆層512が複合磁気ワイヤ511の軟磁性部と共に磁化が急激に反転することで、コイル130に生じる電力が増え、発電素子500の発電電力を増大できる。
 (実施の形態6)
 次に、実施の形態6について説明する。以下の本実施の形態の説明において、実施の形態1から実施の形態5との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図17は、本実施の形態に係る磁性部材610の概略構成を示す断面図および上面図を示す図である。具体的には、図17の(a)は、磁性部材610の断面図であり、図17の(b)は、図17の(a)における上側から見た磁性部材610の上面図である。図17の(a)には、図17の(b)におけるXVIIa-XVIIa線で示される位置での断面が示されている。本実施の形態に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに磁性部材610を用いた発電素子を備える。本実施の形態に係る発電素子は、例えば、実施の形態5に係る磁性部材510の代わりに、磁性部材610を備える。なお、本実施の形態に係る磁性部材610は、実施の形態1から実施の形態4のいずれかに係る磁性部材の代わりに用いられてもよい。
 図17に示されるように、磁性部材610は、複数の第1感磁性層611と、複数の第1感磁性層611よりも硬磁性である複数の第2感磁性層612とを有する。磁性部材610は、外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材である。
 複数の第1感磁性層611と複数の第2感磁性層612とは、第1感磁性層611と第2感磁性層612とが交互に、矢印Xで示される巻回軸方向と交差(具体的には直交)する方向に沿って積層されている。図示されている例では、複数の第1感磁性層611と複数の第2感磁性層612とは、矢印Zで示される並び方向に沿って積層されている。
 複数の第1感磁性層611の合計の厚さは、複数の第2感磁性層612の合計の厚さよりも大きい。
 また、各第1感磁性層611の厚さは、各第2感磁性層612の厚さよりも大きくてもよい。また、複数の第1感磁性層611のそれぞれの厚さは、例えば、同じであるが、互いに異なっていてもよい。同様に、複数の第2感磁性層612のそれぞれの厚さは、例えば、同じであるが、互いに異なっていてもよい。
 また、図示されている例では、複数の第1感磁性層611および複数の第2感磁性層612の数は、それぞれ3層であるが、2層であってもよく、4層以上であってもよい。また、複数の第1感磁性層611の数と複数の第2感磁性層612の数は、異なっていてもよい。例えば、磁性部材610における最上部と最下部の両方が第1感磁性層611であってもよい。
 積層方向から見た場合の磁性部材610の形状は、例えば、縦横の長さがほぼ同等の矩形状であるが、円形状または多角形状等の他の形状であってもよい。
 複数の第1感磁性層611および複数の第2感磁性層612は、例えば、スパッタリング法、イオンプレーティング法および真空蒸着法等のPVD法、CVD法、もしくは、メッキ法等を用いて成膜されることで積層される。
 複数の第1感磁性層611を構成する材料としては、例えば、Fe-Ni、Fe-Si、Fe-Si-Al、Fe-Si-BおよびCo-Fe-Si-B等が挙げられる。
 複数の第2感磁性層612を構成する材料は、例えば、複数の第1感磁性層611を構成する材料と同じ材料で構成される。例えば、複数の第1感磁性層611の成膜時と、複数の第2感磁性層612の成膜時とで、異なる成膜条件で成膜することで、保磁力を変化させ、複数の第1感磁性層611よりも保磁力が高く硬磁性である複数の第2感磁性層612を形成する。例えば、スパッタリング法によって複数の第1感磁性層611および複数の第2感磁性層612を成膜する場合、成膜条件として真空度、温度および成膜速度等を変化させることで、保磁力を変化させる。成膜条件として真空度を変化させる場合、例えば、特定の真空度の範囲では、複数の第2感磁性層612を成膜する場合に、複数の第1感磁性層611の成膜時よりも真空度が高い条件とすることで複数の第2感磁性層612の保磁力を高くできる。
 また、複数の第2感磁性層612を構成する材料は、複数の第1感磁性層611を構成する材料と異なる材料であってもよい。この場合の複数の第2感磁性層612を構成する材料としては、例えば、FeおよびFe-Co等が挙げられる。また、複数の第2感磁性層612を構成する材料には、複数の第1感磁性層611を構成する材料と同じ組み合わせの金属の合金であって、複数の第1感磁性層611を構成する材料と異なる組成の合金が用いられてもよい。
 以上のような構成を有する磁性部材610では、複数の第1感磁性層611が、複数の第2感磁性層612よりも軟磁性であるため、上述の大バルクハウゼン効果の説明のように、外部磁界の変化によって、複数の第1感磁性層611の磁化方向が急激に反転することで、磁性部材610に巻回されたコイル130に発電パルスが生じる。磁性部材610においては、複数の第2感磁性層612よりも軟磁性である複数の第1感磁性層611の合計の厚さが大きいために、コイル130に生じる電力が大きくなり、磁性部材610を用いた発電素子の発電電力を増大できる。また、第1感磁性層611と第2感磁性層612とが交互に積層されていることで、第1感磁性層611と第2感磁性層612とが相互作用しやすく、大バルクハウゼン効果が生じやすくなるため、単に第2感磁性層612を厚くするよりも効果的に発電電力を増大できる。
 また、発電素子には、複数の磁性部材610が設けられてもよい。複数の磁性部材610は、例えば、積層されて用いられる。
 [変形例1]
 次に、実施の形態6の変形例1について説明する。以下の本変形例の説明において、実施の形態1から実施の形態6との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図18は、本実施の形態に係る磁性部材610aの概略構成を示す断面図および上面図を示す図である。具体的には、図18の(a)は、磁性部材610aの断面図であり、図18の(b)は、図18の(a)における上側から見た磁性部材610aの上面図である。図18の(a)には、図18の(b)におけるXVIIIa-XVIIIa線で示される位置での断面が示されている。本変形例に係る磁性部材610aは、例えば、実施の形態6に係る磁性部材610の代わりに用いられる。
 図18に示されるように、磁性部材610aは、複数の第1感磁性層611aと、複数の第1感磁性層611aよりも硬磁性である複数の第2感磁性層612aとを有する。磁性部材610aは、外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材である。磁性部材610aは、積層方向から見た形状が異なる点以外は、磁性部材610と同様の構成である。
 積層方向から見た場合の磁性部材610aの形状は、長尺状の矩形である。磁性部材610aの長手方向は、巻回軸方向と同じ方向である。また、磁性部材610aの長手方向は、例えば、並び方向と直交する方向である。積層方向から見た場合、磁性部材610aの長手方向の長さは、例えば、磁性部材610aの短手方向の長さの2倍以上である。
 このように、積層方向から見た場合の磁性部材610aの形状が長尺状であることで、長手方向に磁化させることができるため、大バルクハウゼンジャンプが生じる際の磁化方向の逆転による磁束密度の変化を大きくすることができる。よって、コイル130に生じる電力が大きくなり、磁性部材610aを用いた発電素子の発電電力を増大できる。
 [変形例2]
 次に、実施の形態6の変形例2について説明する。以下の本変形例の説明において、実施の形態1から実施の形態6との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図19は、本実施の形態に係る磁性部材610bの概略構成を示す断面図および上面図を示す図である。具体的には、図19の(a)は、磁性部材610bの断面図であり、図19の(b)は、図19の(a)における上側から見た磁性部材610bの上面図である。図19の(a)には、図19の(b)におけるXIXa-XIXa線で示される位置での断面が示されている。本変形例に係る磁性部材610bは、例えば、実施の形態6に係る磁性部材610の代わりに用いられる。
 図19に示されるように、磁性部材610bは、複数の第1感磁性層611bと、複数の第1感磁性層611bよりも硬磁性である複数の第2感磁性層612bとを有する。磁性部材610bは、外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材である。磁性部材610bは、積層方向から見た形状が異なる点以外は、磁性部材610と同様の構成である。
 積層方向から見た場合の磁性部材610bの形状は、外形が楕円状である。磁性部材610bの楕円における長軸は、巻回軸方向に延びる。また、磁性部材610bの楕円における長軸は、例えば、並び方向と直交する方向に延びる。
 また、磁性部材610bには、積層方向から見た場合の磁性部材610bの中央部を積層方向に貫通する開口部613bが形成されている。積層方向から見た場合の開口部613bの形状は、楕円状であるが、矩形等の他の形状であってもよい。開口部613bの楕円における長軸は、巻回軸方向に延びる。積層方向から見た場合、開口部613bは、例えば、磁性部材610bの外周と相似形である。
 このように、積層方向から見た場合の磁性部材610bの楕円状であることで、巻回軸方向において、両端部の幅よりも、中央部の幅の方が大きくなる。通常、外部磁界によって磁性部材610bが磁化される場合、中央部の方が強い磁場が印加されるために磁化されやすく、両端部はほとんど磁化されない可能性がある。特に、硬磁性である第2感磁性層612bの磁化が不十分であると、大バルクハウゼンジャンプが生じるまでに第1感磁性層611bの磁化方向を保持することができず、大バルクハウゼンジャンプは、主に磁性部材610bの中央部で生じることになる。そのため、強い磁場が印加されやすい磁性部材610bの中央部の幅が大きくなることで、磁性部材610bにおいて大バルクハウゼンジャンプが生じる部分の体積が増える。よって、コイル130に生じる電力が大きくなり、磁性部材610bを用いた発電素子の発電電力を増大できる。
 (実施の形態7)
 次に、実施の形態7について説明する。以下の本実施の形態の説明において、実施の形態1から実施の形態6との相違点を中心に説明し、共通点の説明を省略または簡略化する。
 図20は、本実施の形態に係る発電素子700の概略構成を示す断面図である。本実施の形態に係るエンコーダは、例えば、実施の形態1に係るエンコーダ1の発電素子100の代わりに発電素子700を備える。
 図20に示されるように、発電素子700は、実施の形態5に係る発電素子500と比較して、磁性部材510の代わりに磁性部材710を備える点で相違する。
 磁性部材710は、第1感磁性部711と、第1感磁性部711と磁気特性の異なる第2感磁性部712とを有する。磁性部材710は、外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材である。磁性部材710の径方向に切断した断面形状は、例えば、円状または楕円状であるが、矩形状または多角形状等の他の形状であってもよい。磁性部材710は、例えば、コイル130の巻回軸方向が長手方向である長尺状の部材である。
 第1感磁性部711および第2感磁性部712は、それぞれ、巻回軸方向に延在する。第1感磁性部711および第2感磁性部712は、共に巻回軸方向に延びる長尺状である。詳細には、第1感磁性部711は、巻回軸方向に延びるワイヤ状であり、第2感磁性部712は、巻回軸方向に延びる筒状である。第2感磁性部712は、巻回軸方向から見た場合の第1感磁性部711の外周となる表面、言い換えると、巻回軸方向に沿って延びる表面を被覆する。第1感磁性部711と第2感磁性部712とは、巻回軸方向と交差(例えば直交)する方向に並ぶ。
 本実施の形態においては、第1感磁性部711および第2感磁性部712のうち、一方は他方よりも保磁力が高い硬磁性部であり、他方が軟磁性部である。磁性部材710において、第1感磁性部711が硬磁性部であってもよく、第2感磁性部712が硬磁性部であってもよい。第1感磁性部711と第2感磁性部712とは、例えば、異なる材料で構成される。硬磁性部を構成する材料としては、例えば、保磁力が60Oe以上である磁性材料が挙げられる。また、軟磁性部を構成する材料としては、例えば、保磁力が20Oe以下である磁性材料が挙げられる。
 発電素子700に用いられる磁性部材710は、以下の製造方法例のいずれかで製造された磁性部材である。
 [製造方法例1]
 まず、磁性部材710の製造方法例1について説明する。図21は、磁性部材710の製造方法例1のフローチャートである。
 図21に示されるように、製造方法例1において、まず、筒状の磁性体を準備する(ステップS11)。筒状の磁性体は、上述の第2感磁性部712となる部材であり、長手方向に貫通する開口部を有する長尺状の筒体である。
 次に、筒状の磁性体の内部に、当該磁性体と異なる磁気特性を有する磁性材料を注入する(ステップS12)。これにより、上述の第1感磁性部711が形成される。磁性材料は、例えば、磁性粉末と樹脂とを含む。磁性部材710は、このような磁性材料を筒状の磁性体の内部(開口部内)に注入するようにインサート成形されることで形成される。また、磁性部材710は、磁性粉末で構成される磁性材料を筒状の磁性体の内部に注入し、磁性粉末を焼結することで形成されてもよい。
 このような製造方法によって磁性部材710が形成されることで、所定の条件で磁性部材を捻る等の工程を経ずに、簡素化した工程で磁性部材710を製造できる。
 また、第1感磁性部711および第2感磁性部712のうちの一方である軟磁性部の大きさを容易に調整でき、適切な大きさの軟磁性部(例えば、硬磁性部よりも径方向断面の断面積が大きい軟磁性部)とすることで、コイル130に生じる電力を大きくでき、発電素子700の発電電力を増大できる。
 また、磁性部材を捻ることによって硬磁性部と軟磁性部とを形成する場合、硬磁性部および軟磁性部では、磁気特性が不均一になる可能性がある。磁性部材710では、用いる材料によって第1感磁性部711および第2感磁性部712の磁気特性を決定できる。そのため、第1感磁性部711および第2感磁性部712それぞれの内部での磁気特性の均一性が高く、大バルクハウゼンジャンプにおける磁性部材710の磁束密度の変化量が安定化する。よって、発電素子700の発電電力のばらつきを低減できる。
 [製造方法例2]
 次に、磁性部材710の製造方法例2について説明する。図22は、磁性部材710の製造方法例2のフローチャートである。
 図22に示されるように、製造方法例2において、まず、ワイヤ状の磁性体を準備する(ステップS21)。ワイヤ状の磁性体は、上述の第1感磁性部711となる長尺状のワイヤである。
 次に、ワイヤ状の磁性体の径方向の外側面となる表面を、当該磁性体と異なる磁気特性を有する磁性材料で被覆する(ステップS22)。これにより、上述の第2感磁性部712が形成される。磁性体の表面を磁性材料で被覆する方法としては、例えば、スパッタリング法、イオンプレーティング法および真空蒸着法等の物理蒸着(PVD)法、化学蒸着(CVD)法、もしくは、メッキ法等が挙げられる。
 このような製造方法によって磁性部材710が形成されることで、所定の条件で磁性部材を捻る等の工程を経ずに、簡素化した工程で磁性部材710を製造できる。
 また、製造方法例1の場合と同様に、第1感磁性部711および第2感磁性部712のうちの一方である軟磁性部の大きさを容易に調整でき、適切な大きさの軟磁性部とすることで、コイル130に生じる電力を大きくでき、発電素子700の発電電力を増大できる。さらに、用いる材料によって第1感磁性部711および第2感磁性部712の磁気特性を決定できる。そのため、第1感磁性部711および第2感磁性部712それぞれの内部での磁気特性の均一性が高く、大バルクハウゼンジャンプにおける磁性部材710の磁束密度の変化量が安定化する。よって、発電素子700の発電電力のばらつきを低減できる。
 (その他の実施の形態)
 以上、本開示に係る発電素子およびエンコーダについて、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。上記の各実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で異なる実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 例えば、上記実施の形態では、モータと組み合わせて用いられるロータリーエンコーダを例にとって説明したが、これに限らない。本開示の技術は、リニアエンコーダにも適用することができる。
 本開示に係る発電素子およびエンコーダ等は、モータ等の回転または直線移動する機器や装置等に有用である。
1 エンコーダ
10 磁石
20 回転板
30 回転軸
40 基板
50 制御回路
60 メモリ
100、100a、100b、100c、100d、100e、100f、100g、200、200a、300、400、500、700 発電素子
110、460、510、610、610a、610b、710 磁性部材
130、330、470 コイル
150、150a、150b、150c、150d、150e、150f、150g、250、250a、350 フェライト部材
151、251 本体部
152、152a、152b、152c、152d、152e、152f、152g 突出部
153、153g、253、613b 開口部
181、182 端子
190 筐体
255 第1鍔部
256 第2鍔部
511 複合磁気ワイヤ
512 被覆層
611、611a、611b 第1感磁性層
612、612a、612b 第2感磁性層
711 第1感磁性部
712 第2感磁性部
A 柱状空間
R1、R2 巻回軸

Claims (22)

  1.  磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、
     前記磁性部材に巻回されたコイルと、
     前記コイルと並ぶように、前記磁性部材の端部に設けられたフェライト部材と、を備え、
     前記フェライト部材は、本体部と、前記本体部から突出した突出部と、を有し、
     前記本体部は、前記コイルの巻回軸方向から見た場合の前記コイルの外縁を前記コイルの巻回軸方向の両側に延ばしたと仮定したときの仮想面に囲まれ、かつ、前記コイルの巻回軸方向における前記磁性部材の両端にそれぞれ接し前記コイルの巻回軸方向と直交する2つの仮想面に挟まれた柱状空間の内側に位置し、
     前記突出部は、前記本体部に繋がり、かつ前記柱状空間の外側に位置する、
     発電素子。
  2.  前記突出部は、前記コイルの巻回軸方向と直交する方向において、前記コイルよりも外側に位置する第1突出部を含む、
     請求項1に記載の発電素子。
  3.  前記第1突出部の一部は、前記コイルの巻回軸方向において、前記本体部よりも前記コイルの中心側に位置する、
     請求項2に記載の発電素子。
  4.  前記第1突出部は、前記コイルの前記磁界発生源側とは反対側に位置する、
     請求項2または3に記載の発電素子。
  5.  前記第1突出部は、前記コイルの前記磁界発生源側に位置する、
     請求項2または3に記載の発電素子。
  6.  前記突出部は、前記コイルの巻回軸方向に沿って、前記本体部から前記コイルの反対側に延びる第2突出部を含む、
     請求項1から5のいずれか1項に記載の発電素子。
  7.  磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、
     前記磁性部材を内包する筒状のフェライト部材と、
     前記フェライト部材に巻回されたコイルと、を備える、
     発電素子。
  8.  前記フェライト部材は、前記磁性部材を内包する筒状の本体部と、前記コイルの巻回軸方向における前記本体部の両端に設けられた鍔状の第1鍔部および第2鍔部とを有し、
     前記コイルは、前記第1鍔部と前記第2鍔部との間に位置する、
     請求項7に記載の発電素子。
  9.  前記フェライト部材は、軟磁性粉末および硬磁性粉末のうちの少なくとも一方と、樹脂とを含む樹脂成形体である、
     請求項1から8のいずれか1項に記載の発電素子。
  10.  磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、
     前記磁性部材に巻回されたコイルと、
     前記コイルの巻回軸方向に沿って前記コイルと並ぶように、前記磁性部材の端部に設けられたフェライト部材と、を備え、
     前記フェライト部材は、軟磁性粉末および硬磁性粉末のうちの少なくとも一方と、樹脂とを含む樹脂成形体である、
     発電素子。
  11.  前記フェライト部材の飽和磁束密度は、前記磁性部材の飽和磁束密度よりも大きい、
     請求項1から10のいずれか1項に記載の発電素子。
  12.  前記フェライト部材の最大の残留磁束密度は、前記磁性部材の最大の残留磁束密度よりも大きい、
     請求項1から11のいずれか1項に記載の発電素子。
  13.  磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、
     前記磁性部材に巻回されたコイルと、を備え、
     前記コイルの巻回軸方向において、前記コイルの端部の外周径は、前記コイルの中央部の外周径よりも小さい、
     発電素子。
  14.  前記コイルの巻回軸方向において、前記コイルの端部の単位長さ当たりの巻き数は、前記コイルの中央部の単位長さ当たりの巻き数よりも少ない、
     請求項13に記載の発電素子。
  15.  磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、
     前記磁性部材に巻回された第1コイルと、
     前記第1コイルの前記磁界発生源側とは反対側に、前記第1コイルと対向して配置され、前記第1コイルの巻回軸と平行な軸に沿って巻回された第2コイルと、を備える、
     発電素子。
  16.  磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる板状の磁性部材と、
     前記磁性部材に巻回されたコイルと、を備え、
     前記磁性部材は、複数の第1感磁性層と前記複数の第1感磁性層よりも硬磁性である複数の第2感磁性層とを有し、
     前記複数の第1感磁性層と前記複数の第2感磁性層とは、第1感磁性層と第2感磁性層とが交互に、前記コイルの巻回軸方向と交差する方向に沿って積層されており、
     前記複数の第1感磁性層の合計の厚さは、前記複数の第2感磁性層の合計の厚さよりも大きい、
     発電素子。
  17.  積層方向から見た場合に前記磁性部材の形状は、長尺状である、
     請求項16に記載の発電素子。
  18.  積層方向から見た場合に前記磁性部材の形状は、楕円状である、
     請求項16に記載の発電素子。
  19.  磁界発生源が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材と、
     前記磁性部材に巻回されたコイルと、を備え、
     前記磁性部材は、中心部分と外周部分とで異なる磁気特性を有する複合磁気ワイヤと、前記複合磁気ワイヤの外周を被覆し、軟磁性材料で構成される被覆層とを有する、
     発電素子。
  20.  回転軸とともに回転する磁石と、
     前記磁石が回転することによる、前記磁石によって形成される磁界の変化によって電気信号を生成する請求項1から19のいずれか1項に記載の発電素子と、を備える、
     エンコーダ。
  21.  発電素子に用いられ、大バルクハウゼン効果を生じる磁性部材の製造方法であって、
     筒状の磁性体を準備する工程と、
     前記磁性体の内部に、前記磁性体と異なる磁気特性を有する磁性材料を注入する工程と、を含む、
     磁性部材の製造方法。
  22.  発電素子に用いられ、大バルクハウゼン効果を生じる磁性部材の製造方法であって、
     ワイヤ状の磁性体を準備する工程と、
     前記磁性体の表面を、前記磁性体と異なる磁気特性を有する磁性材料で被覆する工程と、を含む、
     磁性部材の製造方法。
PCT/JP2022/017527 2021-04-26 2022-04-11 発電素子、エンコーダおよび磁性部材の製造方法 WO2022230651A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22795565.5A EP4332512A1 (en) 2021-04-26 2022-04-11 Power-generating element, encoder, and method for producing magnetic member
CN202280030152.9A CN117203503A (zh) 2021-04-26 2022-04-11 发电元件、编码器以及磁性构件的制造方法
JP2023517419A JPWO2022230651A1 (ja) 2021-04-26 2022-04-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-073976 2021-04-26
JP2021073976 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022230651A1 true WO2022230651A1 (ja) 2022-11-03

Family

ID=83847510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017527 WO2022230651A1 (ja) 2021-04-26 2022-04-11 発電素子、エンコーダおよび磁性部材の製造方法

Country Status (4)

Country Link
EP (1) EP4332512A1 (ja)
JP (1) JPWO2022230651A1 (ja)
CN (1) CN117203503A (ja)
WO (1) WO2022230651A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282194A (ja) * 1997-04-09 1998-10-23 Mitsubishi Electric Corp 磁気センサ及び感磁性ワイヤ用鉄−ニッケル系合金線材
JPH11150450A (ja) * 1997-11-14 1999-06-02 Hirose Cherry Precision:Kk パルス信号発生装置
JP2006073974A (ja) * 2004-09-03 2006-03-16 Taiji Takemura 磁気センサ
JP2006352750A (ja) * 2005-06-20 2006-12-28 Denso Corp アンテナコイル、それを用いた共振アンテナ及びカード型無線機
JP2012198067A (ja) 2011-03-18 2012-10-18 Hirose Electric Co Ltd 回転運動または周回運動を検出する運動検出装置
JP2016504906A (ja) * 2012-12-28 2016-02-12 ラブリオーラ, ドナルド・ピィ, ザ・セカンドLabriola, Donald P., Ii 多極カウントモータのための一体型多回転絶対位置センサ
JP2016144335A (ja) * 2015-02-03 2016-08-08 浜松光電株式会社 起電力発生装置
WO2016170648A1 (ja) * 2015-04-23 2016-10-27 三菱電機株式会社 回転検出装置および回転検出装置の製造方法
US20190148043A1 (en) * 2016-04-08 2019-05-16 Thomas Theil Wiegand wire arrangement and method for the production thereof
WO2020250439A1 (ja) * 2019-06-14 2020-12-17 三菱電機株式会社 回転数検出器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282194A (ja) * 1997-04-09 1998-10-23 Mitsubishi Electric Corp 磁気センサ及び感磁性ワイヤ用鉄−ニッケル系合金線材
JPH11150450A (ja) * 1997-11-14 1999-06-02 Hirose Cherry Precision:Kk パルス信号発生装置
JP2006073974A (ja) * 2004-09-03 2006-03-16 Taiji Takemura 磁気センサ
JP2006352750A (ja) * 2005-06-20 2006-12-28 Denso Corp アンテナコイル、それを用いた共振アンテナ及びカード型無線機
JP2012198067A (ja) 2011-03-18 2012-10-18 Hirose Electric Co Ltd 回転運動または周回運動を検出する運動検出装置
JP2016504906A (ja) * 2012-12-28 2016-02-12 ラブリオーラ, ドナルド・ピィ, ザ・セカンドLabriola, Donald P., Ii 多極カウントモータのための一体型多回転絶対位置センサ
JP2016144335A (ja) * 2015-02-03 2016-08-08 浜松光電株式会社 起電力発生装置
WO2016170648A1 (ja) * 2015-04-23 2016-10-27 三菱電機株式会社 回転検出装置および回転検出装置の製造方法
US20190148043A1 (en) * 2016-04-08 2019-05-16 Thomas Theil Wiegand wire arrangement and method for the production thereof
WO2020250439A1 (ja) * 2019-06-14 2020-12-17 三菱電機株式会社 回転数検出器

Also Published As

Publication number Publication date
CN117203503A (zh) 2023-12-08
EP4332512A1 (en) 2024-03-06
JPWO2022230651A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
JP5108176B2 (ja) 磁気感受性プローブ位置センサ
JP6107942B2 (ja) 磁気電流センサおよび電流測定方法
US20100188078A1 (en) Magnetic sensor with concentrator for increased sensing range
JP2014522227A (ja) アクチュエータとアクチュエータのヨーク内に埋め込まれたセンサとを備えた小型位置決めアセンブリ
JP7109713B1 (ja) 発電素子、磁気センサ、エンコーダおよびモータ
US5243248A (en) Electric motor having a low loss magnetic flux return path
JP2022016380A (ja) 駆動装置のエンコーダシステム
JP6154310B2 (ja) レゾルバ
KR101533228B1 (ko) 고정자 및 이를 구비한 스위치드 릴럭턴스 모터
WO2022230652A1 (ja) 発電素子、エンコーダ、磁性部材の製造方法および信号取得方法
WO2022230651A1 (ja) 発電素子、エンコーダおよび磁性部材の製造方法
JPWO2022230652A5 (ja)
JPWO2022230651A5 (ja)
JP6968296B2 (ja) 着磁装置、着磁方法、およびモータの製造方法
JP5740250B2 (ja) 永久磁石式回転電機
WO2024075465A1 (ja) 発電素子、発電システムおよびエンコーダ
WO2023079838A1 (ja) 発電素子、発電システムおよびエンコーダ
JP2012016173A (ja) 振動発電機
WO2009126188A2 (en) Electro-mechanical system
JPH06258155A (ja) 歪検出装置および歪検出ユニット
WO2018078847A1 (ja) ロータリソレノイド
US20220236045A1 (en) Rotation sensing device
CN114530960B (zh) 马达
JP2009268330A (ja) コアレスモータ
JP2022114342A (ja) 回転検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517419

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280030152.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022795565

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795565

Country of ref document: EP

Effective date: 20231127