WO2024075465A1 - 発電素子、発電システムおよびエンコーダ - Google Patents

発電素子、発電システムおよびエンコーダ Download PDF

Info

Publication number
WO2024075465A1
WO2024075465A1 PCT/JP2023/032654 JP2023032654W WO2024075465A1 WO 2024075465 A1 WO2024075465 A1 WO 2024075465A1 JP 2023032654 W JP2023032654 W JP 2023032654W WO 2024075465 A1 WO2024075465 A1 WO 2024075465A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
generating element
magnetic field
power generating
power generation
Prior art date
Application number
PCT/JP2023/032654
Other languages
English (en)
French (fr)
Inventor
慎一 堤
雄 西谷
優紀 田中
和哉 片山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024075465A1 publication Critical patent/WO2024075465A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train

Definitions

  • This disclosure relates to a power generation element, a power generation system, and an encoder, and in particular to a power generation element that utilizes the large Barkhausen effect, and a power generation system and an encoder that include the same.
  • encoders for detecting motor rotation etc. that use a power generating element that utilizes the Large Barkhausen effect to detect rotation without using a battery are known (for example, Patent Document 1).
  • a power generating element has, for example, a configuration in which a coil is wound around a magnetic member that generates the Large Barkhausen effect.
  • a magnetic member that generates the Large Barkhausen effect experiences a sudden change in magnetic flux density due to a change in the external magnetic field, and the sudden change in magnetic flux density generates electric power in the coil wound around the magnetic member.
  • the encoder uses an electric signal generated by this electric power to detect motor rotation etc.
  • the present disclosure has been made to solve these problems, and aims to provide a power generation element that can reduce the variability in the amount of power generated, as well as a power generation system and an encoder that are equipped with the same.
  • the power generating element includes a magnetic member composite in which the magnetic members are bundled together, each of which has a large Barkhausen effect in response to a change in an external magnetic field, and a coil wound around the magnetic member composite.
  • Each of the magnetic members has a first magnetically sensitive portion and a second magnetically sensitive portion that is softer magnetic than the first magnetically sensitive portion.
  • the first magnetically sensitive portion is magnetized along the winding axis direction of the coil, and the magnetization direction does not change with changes in the direction of the external magnetic field.
  • the magnetic members include a first magnetic member in which the first magnetically sensitive portion is magnetized in a first direction, and a second magnetic member in which the first magnetically sensitive portion is magnetized in a second direction opposite to the first direction.
  • a power generation system includes a power generation element according to the above aspect, and a magnetic field application unit that applies a magnetic field to the power generation element and repeatedly reverses the direction of the magnetic field applied to the power generation element, and the power generation element generates power by reversing the direction of the magnetic field by the magnetic field application unit.
  • An encoder includes the power generation system of the above aspect, and the power generation element outputs the generated power by reversing the direction of the magnetic field by the magnetic field application unit.
  • This disclosure provides a power generation element that can reduce variation in the amount of power generated, as well as a power generation system and an encoder that include the same.
  • FIG. 1 is a diagram showing an example of a schematic BH curve of a magnetic member that produces a large Barkhausen effect.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of an encoder according to an embodiment.
  • FIG. 3 is a top view of a magnet in the encoder according to the embodiment.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a power generating element according to an embodiment.
  • FIG. 5 is a diagram showing an example of a schematic BH curve of the first magnetic member according to the embodiment.
  • FIG. 6 is a diagram showing an example of a schematic BH curve of the second magnetic member according to the embodiment.
  • FIG. 7 is a diagram in which the BH curve of the first magnetic member shown in FIG.
  • FIG. 8 is a schematic diagram showing a circuit used for measuring the amount of power generated by the power generating element.
  • FIG. 9 is a diagram showing the measurement results of the magnitude of power generation of the power generating element in Measurement Example 1.
  • FIG. 10 is a diagram showing the measurement results of the magnitude of power generation of the power generating element in Measurement Example 2.
  • FIG. 11 is a diagram for explaining the arrangement of a plurality of magnetic members in the magnetic member composite body according to the embodiment.
  • the magnetic member that produces the large Barkhausen effect is, for example, a composite magnetic wire, such as a Wiegand wire, in which the magnetic properties differ between the central portion and the peripheral portion in the radial direction.
  • a composite magnetic wire such as a Wiegand wire
  • the magnetic properties differ between the central portion and the peripheral portion in the radial direction.
  • the Wiegand wire one of the central portion and the peripheral portion is soft magnetic and the other is hard magnetic.
  • Figure 1 shows an example of a schematic BH curve of a magnetic member that produces the Great Barkhausen effect.
  • Figure 1 shows an example of a composite magnetic wire in which the outer periphery is softer than the central part as the magnetic member.
  • Figure 1 also shows a case in which the direction of the applied magnetic field changes in the longitudinal direction of the wire.
  • Figure 1 (1) to (6) also show schematic magnetic members with the magnetization direction indicated by arrows.
  • the dashed arrows indicate the magnetization direction of the outer periphery, which is soft magnetic
  • the solid arrows indicate the magnetization direction of the central part, which is hard magnetic. Note that in Figure 1, the arrows indicating the magnetization direction only indicate the magnetization direction, and the magnetization direction is indicated by arrows of the same size regardless of the magnitude of magnetization.
  • the magnetic flux density of the magnetic member changes suddenly, and power (power generation pulse) is generated in the coil wound around the magnetic member.
  • power power generation pulse
  • the magnetization direction of the central part is also reversed, as shown in (4) of Figure 1, and the magnetic member is magnetized in the opposite direction to (1) of Figure 1.
  • the direction of the magnetic field is changed as shown in (ii) of FIG. 1, and at the point surrounded by the dashed line Jb where the change in the magnetic field exceeds a threshold value, the magnetization direction of the outer periphery is suddenly reversed as shown in (5) and (6) of FIG. 1.
  • the power generation element can be used as an encoder.
  • the magnetization direction of the magnetic member is reversed twice with one round trip change in the direction of the magnetic field, so two power generation pulses are generated.
  • the power generated by the power generating pulse may vary. For example, when detecting 5,000 power generating pulses, a power generating pulse may be detected that has a difference of 10 times the standard deviation (so-called 10 ⁇ ) or more from the average power generating power.
  • this disclosure aims to provide a power generation element that can reduce the variation in the amount of power generated, and a power generation system and encoder that include the same.
  • each figure is a schematic diagram and is not necessarily an exact illustration. Therefore, the scale and the like are not necessarily the same in each figure. Furthermore, in each figure, the same reference numerals are used for configurations that are substantially the same as in other figures, and duplicate explanations are omitted or simplified.
  • FIG. 2 is a cross-sectional view showing the schematic configuration of the encoder 1 according to this embodiment.
  • FIG. 3 is a top view of the magnet 10 in the encoder 1 according to this embodiment.
  • the magnetic material composite 110 and coil 130 housed in the housing 190 of the power generating element 100 are shown in dashed lines.
  • FIG. 3 omits illustrations of the magnet 10, the rotating shaft 30, and the magnetic material composite 110 and coil 130 in the power generating element 100.
  • the encoder 1 shown in FIG. 2 is, for example, a rotary encoder used in combination with a motor such as a servo motor.
  • the encoder 1 is, for example, an absolute encoder that uses a power generation method.
  • the encoder 1 detects the rotation angle, amount of rotation, and number of rotations of a rotating shaft 30 of, for example, a motor, based on an electrical signal generated by a power generation element 100.
  • the encoder 1 includes a power generation system 5 including a magnet 10, a rotating plate 20, a substrate 40, and the power generation element 100, a control circuit 50, and a memory 60.
  • the power generation element 100 in the power generation system 5 generates power due to changes in the magnetic field formed by the magnet 10 as the magnet 10 rotates, and outputs the generated power as an electrical signal.
  • the rotating plate 20 is a plate-like member that rotates together with the rotating shaft 30, which is a drive unit of a motor or the like.
  • the center of one main surface of the rotating plate 20 is attached to the end of the rotating shaft 30 in the axial direction of the rotating shaft 30 (the direction in which the rotating shaft 30 extends).
  • the rotating plate 20 extends in a direction perpendicular to the axial direction of the rotating shaft 30.
  • the rotating plate 20 rotates around a rotation axis A that passes through the center of the rotating shaft 30 and extends along the axial direction of the rotating shaft 30.
  • the rotational movement of the rotating shaft 30 is synchronized with the rotational movement of the rotating device.
  • the planar shape of the rotating plate 20 is, for example, circular.
  • the rotating plate 20 is, for example, made of metal, resin, glass, ceramic, etc.
  • the rotating shaft 30 is rod-shaped, such as cylindrical.
  • the axis of the rotating shaft 30 and the rotation axis A are aligned.
  • the magnet 10 is an example of a magnetic field application unit that applies an external magnetic field to the power generating element 100.
  • the magnet 10 can also be said to be a magnetic field generating source that forms an external magnetic field for the power generating element 100.
  • the magnet 10 repeatedly reverses the direction of the magnetic field applied to the power generating element 100.
  • the magnet 10 is, for example, a plate-shaped magnet.
  • the magnet 10 faces the rotating plate 20 and is located on the main surface opposite the rotation axis 30 of the rotating plate 20.
  • a pair of magnets 10 is provided on the same main surface of the rotating plate 20.
  • the thickness direction of the rotating plate 20 and the thickness direction of the magnet 10 are the same and are the axial direction of the rotation axis 30.
  • the pair of magnets 10 rotate together with the rotating plate 20 around the rotation axis 30 as the center of rotation (i.e., the rotation axis A is the rotation axis).
  • the pair of magnets 10 rotate due to the rotation of the rotation axis 30, and the relative positional relationship between the pair of magnets 10 and the power generating element 100 changes, and the magnetic field from the pair of magnets 10 applied to the power generating element 100 also changes.
  • the rotation direction of the pair of magnets 10 is, for example, both clockwise and counterclockwise, but may be only one of clockwise and counterclockwise.
  • the pair of magnets 10 are arranged side by side with a gap between them on the same main surface of the rotating plate 20, sandwiching the rotation axis A of the rotating shaft 30.
  • the rotation axis A of the rotating shaft 30 is located between the pair of magnets 10, forming a space.
  • the pair of magnets 10 are also arranged symmetrically with respect to the rotation axis A.
  • the pair of magnets 10 have the same shape.
  • the pair of magnets 10 are arranged along the rotation direction of the rotating shaft 30.
  • the planar shape of each of the pair of magnets 10 is an arc shape along the rotation direction of the rotating shaft 30. Only one of the pair of magnets 10 may be provided on the main surface of the rotating plate 20.
  • the magnets 10 may also be magnets of other shapes, such as donut-shaped, disk-shaped, or rod-shaped magnets, as long as the magnetic field applied to the power generating element 100 can be changed.
  • the magnets 10 are, for example, permanent magnets, but may also be electromagnets.
  • each of the pair of magnets 10 are aligned in the direction in which the pair of magnets 10 are lined up.
  • the order of the south and north poles of each of the pair of magnets 10 is the same. In other words, each of the pair of magnets 10 is magnetized in the direction in which the pair of magnets 10 are lined up. Therefore, each of the pair of magnets 10 generates a magnetic field that is aligned in the direction in which the pair of magnets 10 are lined up.
  • one magnet 10 has a south pole arranged facing the rotation axis A, and the other magnet 10 has a north pole arranged facing the rotation axis A. Therefore, when the pair of magnets 10 rotate with the rotation of the rotation shaft 30 and the positions of the pair of magnets 10 are swapped, the direction of the magnetic field formed by the pair of magnets 10 is reversed. The rotation of such a pair of magnets 10 changes the magnetic field applied to the power generating element 100. Specifically, the rotation of the pair of magnets 10 repeatedly reverses the direction of the magnetic field applied to the power generating element 100.
  • the substrate 40 is positioned facing the surface of the rotating plate 20 on which the magnet 10 is arranged, with a gap between the rotating plate 20 and the magnet 10.
  • the rotating shaft 30, rotating plate 20, magnet 10, and substrate 40 are arranged in this order along the axial direction of the rotating shaft 30.
  • the substrate 40 does not rotate together with the magnet 10 and rotating plate 20.
  • the substrate 40 is plate-shaped with its thickness direction aligned in the axial direction of the rotating shaft 30.
  • the planar shape of the substrate 40 is, for example, circular. For example, when viewed from the axial direction of the rotating shaft 30, the centers of the rotating shaft 30, rotating plate 20, and substrate 40 are aligned and are located at the rotation axis A.
  • the substrate 40 is, for example, a wiring board, on which electronic components such as the power generating element 100, the control circuit 50, and the memory 60 are mounted.
  • the control circuit 50 and the memory 60 are mounted on the main surface of the substrate 40 facing the magnet 10
  • the power generating element 100 is mounted on the main surface of the substrate 40 opposite the main surface facing the magnet 10.
  • the substrate 40 is, for example, fixed to a case that constitutes part of the encoder 1 or a motor, etc.
  • the power generating element 100 is located on the main surface of the substrate 40 opposite the main surface facing the magnet 10. Therefore, when viewed from the power generating element 100, the substrate 40 is arranged in the same direction as the magnet 10.
  • the power generating element 100 is aligned with the magnet 10 and the rotating plate 20 along the axial direction of the rotation shaft 30.
  • the direction indicated by the arrow Z in which the magnet 10 and the rotating plate 20 are aligned with the power generating element 100 may be referred to as the "alignment direction".
  • the alignment direction is parallel to the axial direction of the rotation shaft 30 and parallel to a direction perpendicular to the main surface 11 of the magnet 10.
  • the power generating element 100 does not rotate with the magnet 10 and the rotating plate 20.
  • the power generating element 100 is provided on the other side of the substrate 40 as viewed from the rotating plate 20 in the axial direction of the rotating shaft 30.
  • the power generating element 100 is not overlapped with the rotation axis A, but is positioned offset from the rotation axis A.
  • the power generating element 100 overlaps with a position through which the magnet 10 passes when it rotates.
  • the power generating element 100 also extends along the main surface of the substrate 40 so as to extend tangentially to the direction of rotation of the magnet 10.
  • the power generating element 100 generates power by changing the magnetic field formed by the magnet 10 as the magnet 10 rotates, specifically by reversing the direction of the magnetic field, and outputs the generated power.
  • the winding axis direction of the coil 130 of the power generating element 100 is the direction in which the power generating element 100 extends.
  • the winding axis direction of the coil 130 is the direction indicated by the arrow X in the figure.
  • the winding axis direction of the coil 130 indicated by the arrow X in the figure may be referred to simply as the "winding axis direction".
  • the power generating element 100 includes, for example, a magnetic material composite 110, a coil 130, terminals 181 and 182, and a housing 190.
  • the magnetic material composite 110 is a composite structure in which multiple magnetic materials, each of which produces a large Barkhausen effect, are bundled together, and a power generation pulse is generated in the coil 130 wound around the magnetic material composite 110. Details of the magnetic material composite 110 and the coil 130 will be described later.
  • the arrangement of the power generation element 100 is not particularly limited, and the power generation element 100 may be positioned in an area where the magnetic field generated by the magnet 10 is applied, and may be positioned so that a power generation pulse is generated by reversing the direction of the magnetic field caused by the rotation of the rotating shaft 30.
  • Terminals 181 and 182 are members for electrically connecting the power generating element 100 and the substrate 40. Terminals 181 and 182 are located at the end of the power generating element 100 that faces the substrate 40. The magnet 10 is arranged in the direction of terminals 181 and 182 when viewed from the power generating element 100. Terminal 181 is electrically connected to one end of the conductor that constitutes the coil 130, and terminal 182 is electrically connected to the other end of the conductor. In other words, the coil 130 and the substrate 40 are electrically connected via terminals 181 and 182.
  • the housing 190 houses and supports the magnetic member composite 110 and the coil 130.
  • the magnetic member composite 110 and the coil 130 are embedded in, for example, resin or the like within the housing 190.
  • the housing 190 also houses a portion of the terminals 181 and 182.
  • the power generating element 100 does not have ferrite beads at the end of the magnetic member composite 110 in the winding axis direction, for example, and the housing 190 does not house ferrite beads.
  • a typical power generating element has ferrite beads arranged at the end of a magnetic member such as a Wiegand wire, for example, but the power generating element 100 can generate stable power as described below even without the ferrite beads, and the power generating element 100 can be made smaller and less expensive.
  • the housing 190 is open toward the magnet 10 in the power generating element 100, for example.
  • the housing 190 is fixed to the substrate 40 by, for example, a fixing member or the like.
  • the control circuit 50 is located on the main surface of the substrate 40 facing the magnet 10.
  • the control circuit 50 is electrically connected to the power generating element 100.
  • the control circuit 50 acquires electrical signals such as power generating pulses generated by the power generating element 100, and detects (calculates) the rotation angle, amount of rotation, number of rotations, etc. of the rotating shaft 30 of a motor, etc. based on the acquired electrical signals.
  • the control circuit 50 is, for example, an IC (integrated circuit) package, etc.
  • the memory 60 is located on the main surface of the substrate 40 facing the magnet 10.
  • the memory 60 is connected to the control circuit 50.
  • the memory 60 is a non-volatile memory such as a semiconductor memory that stores the results detected by the control circuit 50.
  • FIG. 4 is a cross-sectional view showing the schematic configuration of the power generating element 100 according to this embodiment.
  • FIG. 4 shows a cross section taken along a plane passing through the winding axis R1 of the coil 130 and perpendicular to the rotation axis A.
  • terminals 181, 182, and housing 190 are omitted from FIG. 4.
  • the power generating element 100 includes a magnetic material composite 110 and a coil 130.
  • the magnetic member composite 110 has a plurality of magnetic members 120.
  • the plurality of magnetic members 120 are bundled together.
  • the positions of both ends of each of the plurality of magnetic members 120 in the winding axis direction are aligned with each other.
  • the multiple magnetic members 120 are bundled together so that their relative positions do not change. There are no particular limitations on the method for bundling the multiple magnetic members 120, and the multiple magnetic members 120 are bundled together by, for example, fixing them to each other by adhesive, bonding, welding, or the like.
  • the multiple magnetic members 120 may also be bundled together by being supported by the housing 190, or may be bundled together by the coil 130 or a band (not shown), etc.
  • the magnetic member 120 is a magnetic member that generates a large Barkhausen effect due to changes in the external magnetic field generated by the magnet 10 or the like.
  • the magnetic member 120 has a first magnetically sensitive portion 121 and a second magnetically sensitive portion 122 that has magnetic properties different from those of the first magnetically sensitive portion 121.
  • the second magnetically sensitive portion 122 has a lower coercive force and is soft magnetic than the first magnetically sensitive portion 121.
  • the magnetic member 120 is, for example, an elongated member whose longitudinal direction is the winding axis direction of the coil 130.
  • the cross-sectional shape of the magnetic member 120 cut in the radial direction is, for example, circular or elliptical, but may be other shapes such as rectangular or polygonal. In the winding axis direction, the length of the magnetic member 120 is, for example, longer than the length of the coil 130.
  • the magnetic member 120 is, for example, a composite magnetic wire such as a Wiegand wire, which has different magnetic properties between the central portion and the outer peripheral portion in the radial direction.
  • the central portion in the radial direction is the first magnetically sensitive portion 121 having a relatively high magnetic coercive force
  • the outer peripheral portion in the radial direction is the second magnetically sensitive portion 122 having a relatively low magnetic coercive force.
  • the first magnetically sensitive portion 121 and the second magnetically sensitive portion 122 each extend in the winding axis direction.
  • the first magnetically sensitive portion 121 and the second magnetically sensitive portion 122 are both elongated and extend in the winding axis direction.
  • the first magnetically sensitive portion 121 is wire-shaped and extends in the winding axis direction
  • the second magnetically sensitive portion 122 is cylindrical and extends in the winding axis direction.
  • the second magnetically sensitive portion 122 covers the surface that is the outer periphery of the first magnetically sensitive portion 121 when viewed from the winding axis direction, in other words, the surface that extends along the winding axis direction.
  • the first magnetically sensitive portion 121 and the second magnetically sensitive portion 122 are arranged in a direction intersecting (for example, perpendicular to) the winding axis direction, that is, in the radial direction of the magnetic member 120.
  • the magnetic member 120 is not limited to such a shape, and may be any magnetic member that generates a large Barkhausen effect by having the first magnetically sensitive portion 121 and the second magnetically sensitive portion 122 with different magnetic properties.
  • the center portion may be the second magnetically sensitive portion 122
  • the outer peripheral portion may be the first magnetically sensitive portion 121.
  • the magnetic member 120 may be a magnetic member having a structure in which thin films with different magnetic properties are laminated, for example.
  • the coercive force may not change suddenly between the first magnetically sensitive portion 121 and the second magnetically sensitive portion 122, and the coercive force may change gradually near the boundary between the first magnetically sensitive portion 121 and the second magnetically sensitive portion 122.
  • an intermediate layer having a coercive force between the coercive force of the first magnetic sensitive part 121 and the coercive force of the second magnetic sensitive part 122 may be present between the first magnetic sensitive part 121 and the second magnetic sensitive part 122.
  • the first magnetism-sensitive part 121 is magnetized along the winding axis direction.
  • the first magnetism-sensitive part 121 is magnetized by application of a magnetic field of 500 Oe or more.
  • the first magnetism-sensitive part 121 may be magnetized by application of a magnetic field of 1000 Oe or more, or may be magnetized by application of a magnetic field of 3000 Oe or more.
  • the magnetization direction of the first magnetism-sensitive part 121 does not change with a change in the direction of an external magnetic field formed by the magnet 10 or the like.
  • the magnetization direction and magnetization state of the first magnetism-sensitive part 121 do not substantially change with a change in the direction of the external magnetic field.
  • the first magnetism-sensitive part 121 may be saturated magnetized.
  • Oe is a unit of magnetic field strength called Oersted
  • 1 Oe (1/4 ⁇ ) ⁇ 10 3 A/m.
  • is the circular constant.
  • the multiple magnetic members 120 include a first magnetic member 120a and a second magnetic member 120b.
  • the first magnetic member 120a and the second magnetic member 120b have opposite magnetization directions. As shown in FIG. 4, the first magnetic member 120a is magnetized in a first direction indicated by an arrow B1. On the other hand, the second magnetic member 120b is magnetized in a second direction indicated by an arrow B2, which is opposite to the first direction.
  • the number of first magnetic members 120a and the number of second magnetic members 120b included in the multiple magnetic members 120 are the same. In the example shown in FIG. 4, the number of each of the first magnetic members 120a and the second magnetic members 120b is one, but the multiple magnetic members 120 may include multiple first magnetic members 120a and multiple second magnetic members 120b. This increases the magnetic flux change of the magnetic member composite 110, thereby increasing the amount of power generated by the power generating element 100.
  • the first magnetic member 120a and the second magnetic member 120b are bundled together in a plane perpendicular to the arrangement direction, aligned in a direction perpendicular to the winding axis direction.
  • the coil 130 is a coil in which the conducting wire constituting the coil 130 is wound around the magnetic member composite 110. Specifically, the coil 130 passes through the center of the magnetic member composite 110 and is wound along a winding axis R1 that extends in the longitudinal direction of the magnetic member composite 110 (the multiple magnetic members 120).
  • FIG. 5 is a diagram showing an example of a schematic BH curve of the first magnetic member 120a.
  • FIG. 6 is a diagram showing an example of a schematic BH curve of the second magnetic member 120b.
  • the magnetization directions of the first magnetic member 120a and the second magnetic member 120b are shown by solid and dashed arrows, respectively, as in FIG. 1.
  • the arrows showing the magnetization direction only show the magnetization direction, and the magnetization direction is shown by arrows of the same size regardless of the magnitude of the magnetization.
  • FIG. 7 is a diagram in which the BH curve of the first magnetic member 120a shown in FIG. 5 and the BH curve of the second magnetic member 120b shown in FIG. 6 are superimposed.
  • the magnetization direction of the first magnetic-sensitive part 121 does not change, so the first magnetic-sensitive part 121 and the second magnetic-sensitive part 122 are magnetized in opposite directions. Therefore, when the direction of the magnetic field changes as shown in FIG. 5(i), the magnetization direction of the second magnetic-sensitive part 122 reverses to become the same as the magnetization direction of the first magnetic-sensitive part 121, as shown in FIG. 5(2). In this case, a sudden reversal of the magnetization direction of the second magnetic-sensitive part 122, such as the area surrounded by the dashed line Ja in FIG. 1, is unlikely to occur, so a large Barkhausen jump does not occur.
  • the magnetization direction of the second magnetic-sensitive part 122 does not change due to the influence of the first magnetic-sensitive part 121 until the magnetic field changes to a certain extent.
  • the magnetization direction of the second magnetic-sensitive part 122 suddenly reverses, as shown in FIG. 5(3) and (4). This causes a sudden change in the magnetic flux density of the first magnetic member 120a (i.e., a large Barkhausen jump occurs), and power (power generation pulse) is generated in the coil 130 wound around the magnetic member composite body 110.
  • the first magnetically sensitive portion 121 is completely magnetized and the magnetization direction does not change, so a large Barkhausen jump occurs at one location surrounded by the dashed line Jb with one round-trip change in the direction of the magnetic field, and one power generation pulse is generated in the coil 130. Therefore, unlike conventional magnetic members, there is no variation between the two power generation pulses that occur with one round-trip change in the direction of the magnetic field. This reduces the variation in the power generation of the power generation element 100.
  • the first magnetically sensitive portion 121 is not completely magnetized, there is a possibility that there is an area in the first magnetically sensitive portion 121 that is difficult to magnetize by the external magnetic field formed by the magnet 10, etc., but since the first magnetically sensitive portion 121 is completely magnetized, this area is also magnetized, and the change in the magnetic flux density of the first magnetic member 120a in the large Barkhausen jump can be increased. Therefore, a stable power generation pulse can be generated by the large Barkhausen jump caused by the first magnetic member 120a.
  • the first magnetically sensitive portion 121 is completely magnetized and the magnetization direction does not change, so one large Barkhausen jump occurs with one round trip change in the direction of the magnetic field, generating one power generation pulse in the coil 130. Therefore, for the same reason as the first magnetic member 120a, a stable power generation pulse can also be generated by the large Barkhausen jump caused by the second magnetic member 120b.
  • the large Barkhausen jump occurs at the location surrounded by the dashed line Jb in the first magnetic member 120a
  • the large Barkhausen jump occurs at the location surrounded by the dashed line Ja in the second magnetic member 120b.
  • the magnetization direction of the second magnetic-sensitive portion 122 does not change due to the influence of the first magnetic-sensitive portion 121 until the magnetic field changes to a certain extent.
  • the magnetization direction of the second magnetic-sensitive portion 122 suddenly reverses, as shown in FIG. 6(2) and (3).
  • the magnetization direction of the first magnetic sensitive part 121 does not change, so the first magnetic sensitive part 121 and the second magnetic sensitive part 122 are magnetized in opposite directions. Therefore, when the direction of the magnetic field changes as shown in (ii) of FIG. 6, the magnetization direction of the second magnetic sensitive part 122 reverses to be the same as the magnetization direction of the first magnetic sensitive part 121, as shown in (1) of FIG. 6. In this case, a sudden reversal of the magnetization direction of the second magnetic sensitive part 122 is unlikely to occur, so a large Barkhausen jump does not occur.
  • first magnetic member 120a and the second magnetic member 120b only one large Barkhausen jump occurs for each of them with one round-trip change in the direction of the magnetic field.
  • the large Barkhausen jump occurs at different times, as shown in FIG. 7. Therefore, in the magnetic member composite 110, as with the conventional magnetic member shown in FIG. 1, two large Barkhausen jumps occur with one round-trip change in the direction of the magnetic field.
  • FIG. 8 is a schematic diagram showing a circuit used to measure the magnitude of power generation of the power generating element.
  • the power generating element 100 and the magnet 10 were arranged so as to have the positional relationship shown in FIG. 2 and FIG. 3, and the direction of the magnetic field from the magnet 10 applied to the power generating element 100 was repeatedly changed.
  • the magnetic member 120 used had the first magnetic sensitive portion 121 magnetized by applying a magnetic field of 5000 Oe.
  • the power generating element 100 was connected to a circuit as shown in FIG. 8. Specifically, the output of the power generating element 100 was connected to a full-wave rectifier circuit connected to a capacitor C and a resistor R.
  • the voltage V of the power generation pulse generated by the power generating element 100 after rectification was measured every time the direction of the external magnetic field was reversed, and the voltage V x time in the power generation pulse was defined as the magnitude of power generation.
  • the magnitude of power generation was measured 2500 times, and the average and minimum values of the magnitude of power generation measured 2500 times were derived.
  • the distance between the magnet 10 and the magnetic member composite 110 was measured based on the distance at which the magnetic field applied to the magnetic member composite 110 was 20 Oe. After that, the magnet 10 and the magnetic member composite 110 were brought closer to each other, shortening the distance by 1 mm at a time, and when the distance was shortened by 3 mm or 5 mm, the magnet 10 and the magnetic member composite 110 were turned back, and the distance was increased by 1 mm at a time and returned to the original distance.
  • Measurement Example 1 the measurement under the condition of shortening the distance by 3 mm from the reference distance and turning back
  • Measurement Example 2 the measurement under the condition of shortening the distance by 5 mm from the reference distance and turning back
  • the magnetic field applied to the magnetic member composite 110 is determined by the distance between the magnet 10 and the magnetic member composite 110, the magnetic field applied to the magnetic member composite 110 becomes larger as the distance becomes shorter. Therefore, in Measurement Examples 1 and 2, the magnetic field applied to the magnetic member composite 110 is gradually increased to a predetermined magnitude and then returned to the original magnetic field magnitude, while the magnitude of power generation is measured.
  • FIG. 9 is a diagram showing the measurement results of the magnitude of power generation of the power generating element 100 in Measurement Example 1.
  • FIG. 10 is a diagram showing the measurement results of the magnitude of power generation of the power generating element 100 in Measurement Example 2.
  • the horizontal axis indicates the difference in distance between the magnet 10 and the magnetic member composite 110 relative to the reference distance.
  • the vertical axis indicates the magnitude of power generation measured by the above method. E1 on the vertical axis is the guideline magnitude of power generation at which an electrical signal can be stably detected.
  • the circle plots indicate the average magnitude of power generation, and the triangle plots indicate the minimum magnitude of power generation.
  • FIGS. 9 the circle plots indicate the average magnitude of power generation, and the triangle plots indicate the minimum magnitude of power generation.
  • the plots connected by a solid line indicate the measurement results up to the point where the distance was shortened and the device turned back, and the plots connected by a dashed line indicate the measurement results after the device turned back.
  • the unit of the magnitude of power generation is arbitrary unit (a.u.).
  • the power generating element 100 can be used under conditions where a magnetic field of 60 Oe or more is applied to the magnetic material composite 110. For example, stable power generation is possible in an environment with a constant external magnetic field.
  • a magnetic field of 60 Oe or more is applied to the magnetic material composite 110.
  • stable power generation is possible in an environment with a constant external magnetic field.
  • by increasing the magnetic field applied when magnetizing the first magnetism-sensitive part 121 it is possible to make it difficult for the magnetization state of the first magnetism-sensitive part 121 to change.
  • Methods for stabilizing the magnetized state of the first magnetic-sensitive portion 121 of the magnetic member 120 include, for example, (1) increasing the length of the magnetic member 120, and (2) increasing the coercive force of the magnetic member 120 (first magnetic-sensitive portion 121).
  • the effect of the demagnetizing field of the magnetic member 120 when an external magnetic field is applied is reduced.
  • the magnetized state of the first magnetic-sensitive portion 121 is stabilized.
  • the demagnetizing field coefficient is likely to be 0.01 or less. Note that the demagnetizing field coefficient also changes depending on the thickness of the magnetic member 120, so the length of the magnetic member 120 may be set so that the demagnetizing field coefficient is 0.01 or less depending on the thickness of the magnetic member 120.
  • the coercive force of the magnetic member 120 (first magnetic-sensitive part 121) is increased, so that the magnetization state of the first magnetic-sensitive part 121 is less likely to change even if the external magnetic field becomes stronger.
  • an external magnetic field of the same magnitude as the environment in which the power generating element 100 is operated is applied to the magnetic material composite 110 manufactured under specified conditions. If the magnetization state of the first magnetically sensitive part 121 does not change due to the application of the external magnetic field, the power generating element 100 is manufactured using the magnetic material composite 110 as is. On the other hand, if the magnetization state of the first magnetically sensitive part 121 changes due to the application of the external magnetic field, the power generating element 100 is manufactured using the magnetic material composite 110 remanufactured by applying the above method (1) or (2).
  • the magnitude of power generation of the power generating element 100 may be measured as described above, or the BH curve of the magnetic material composite 110 or the magnetic material 120 may be measured. By using such a method, a power generating element 100 that can generate power more stably can be manufactured.
  • FIG. 11 is a diagram for explaining the arrangement of the plurality of magnetic members 120 in the magnetic member composite 110.
  • FIG. 11 shows examples of the arrangement of the first magnetic member 120a and the second magnetic member 120b when the number of the magnetic members 120 is 2, 4, 6, and 8.
  • FIG. 11 also shows the arrangement of the first magnetic member 120a and the second magnetic member 120b when the plurality of magnetic members 120 are viewed along the winding axis direction.
  • a dot pattern is applied to the second magnetic member 120b.
  • the more the arrangement is shown on the left side the better the power generation stability of the power generating element 100.
  • the multiple magnetic members 120 are arranged in a matrix with the column direction being the direction away from the magnet 10 that forms the external magnetic field, when viewed, for example, along the winding axis direction. Note that the multiple magnetic members 120 may have only one row or column. In other words, the multiple magnetic members 120 may be arranged in a line.
  • the power generation stability of the power generating element 100 is better when the multiple magnetic members 120 are arranged so that the first magnetic members 120a and the second magnetic members 120b are alternately arranged (for example, the arrangement of the first magnetic members 120 from the left side when the number of magnetic members 120 is four or more). This is because the repulsion between the magnetic poles of the first magnetic sensitive portion 121 magnetized in the opposite directions in the first magnetic member 120a and the second magnetic member 120b is suppressed, and the magnetization state of the first magnetic sensitive portion 121 is stabilized. In this case, for example, in all combinations of two adjacent magnetic members 120 in the multiple magnetic members 120, one magnetic member 120 is the first magnetic member 120a and the other magnetic member 120 is the second magnetic member 120b. In the multiple magnetic members 120, for example, the first magnetic members 120a and the second magnetic members 120b are not adjacent to each other in either the row direction or the column direction.
  • the power generation stability of the power generating element 100 is better when the number of first magnetic members 120a and second magnetic members 120b is an even number than when the number is an odd number. This is because it is easier to arrange multiple magnetic members 120 in such a way that the symmetry of the magnetization state of the entire magnetic member composite 110 is easily maintained.
  • the power generation stability of the power generating element 100 is better when the number of magnetic members 120 arranged in the column direction (direction away from the magnet 10) is less than or equal to the number of magnetic members 120 arranged in the row direction. This is because the number of magnetic members 120 arranged in the direction away from the magnet 10 is small (it does not exceed the number of magnetic members 120 arranged in the row direction), and differences in the magnitude of the magnetic field applied to the multiple magnetic members 120 are less likely to occur. Also, the number of magnetic members 120 arranged in the column direction may be less than the number of magnetic members 120 arranged in the row direction.
  • the power generating element includes a magnetic member composite 110 in which the magnetic members 120 are bundled together, each of which has a plurality of magnetic members 120 that generate a large Barkhausen effect in response to a change in an external magnetic field, and a coil 130 wound around the magnetic member composite 110.
  • Each of the magnetic members 120 has a first magnetic-sensitive portion 121 and a second magnetic-sensitive portion 122 that is softer magnetic than the first magnetic-sensitive portion 121.
  • the first magnetic-sensitive portion 121 is magnetized along the winding axis direction of the coil 130, and the magnetization direction does not change with a change in the direction of the external magnetic field.
  • the magnetic members 120 include a first magnetic member 120a in which the first magnetic-sensitive portion 121 is magnetized in a first direction, and a second magnetic member 120b in which the first magnetic-sensitive portion 121 is magnetized in a second direction opposite to the first direction.
  • the magnetization direction of the first magnetic-sensitive part 121 is constant regardless of the direction of the external magnetic field.
  • the magnetization direction of the second magnetic-sensitive part 122 changes suddenly to the opposite direction to the magnetization direction of the first magnetic-sensitive part 121, resulting in only one large Barkhausen jump. Therefore, unlike conventional magnetic members, there is no difference in the magnetization state of the first magnetic-sensitive part 121 in each of the two large Barkhausen jumps in one round trip change in the direction of the external magnetic field, and the magnitude of the power generation pulse does not vary.
  • the multiple magnetic members 120 of the magnetic member composite 110 include a first magnetic member 120a and a second magnetic member 120b in which the magnetization directions of the first magnetic sensitive portion 121 are opposite to each other, so that the magnetic member composite 110 can perform two large Barkhausen jumps with one round trip change in the direction of the external magnetic field, and the number of times the power generating element generates electricity can be maintained at the same number as when conventional magnetic members are used.
  • the power generating element according to the second aspect of the present disclosure is the power generating element according to the first aspect, and the multiple magnetic members 120 include multiple first magnetic members 120a and multiple second magnetic members 120b.
  • the power generating element according to the third aspect of the present disclosure is the power generating element according to the second aspect, and the multiple magnetic members 120 are arranged so that the first magnetic members 120a and the second magnetic members 120b are arranged alternately.
  • the power generating element according to the fourth aspect of the present disclosure is the power generating element according to the second or third aspect, in which the number of first magnetic members 120a and second magnetic members 120b is an even number.
  • the power generating element according to the fifth aspect of the present disclosure is a power generating element according to any one of the second to fourth aspects, in which the multiple magnetic members 120 are arranged in a matrix with the column direction being the direction away from the magnet 10 that forms the external magnetic field when viewed along the winding axis direction, and the number of magnetic members 120 arranged in the column direction is less than or equal to the number of magnetic members 120 arranged in the row direction.
  • the number of magnetic members 120 arranged in the direction away from the magnet 10 is small (it does not exceed the number of magnetic members 120 arranged in the row direction), and differences in the magnitude of the magnetic field applied to the multiple magnetic members 120 are unlikely to occur. This allows the power generating element to generate power more stably.
  • the power generating element according to the sixth aspect of the present disclosure is a power generating element according to any one of the first to fifth aspects, and does not include a ferrite bead disposed at the end of the magnetic member composite 110 in the winding axis direction.
  • the power generation system includes a power generation element according to any one of the first to sixth aspects, and a magnet 10 that applies a magnetic field to the power generation element and repeatedly reverses the direction of the magnetic field applied to the power generation element.
  • the power generation element generates power by reversing the direction of the magnetic field by the magnet 10.
  • a power generation system that includes the above-mentioned power generation elements can be realized that can reduce variation in the amount of power generated.
  • the power generation system according to the eighth aspect of the present disclosure is the power generation system according to the seventh aspect, in which the magnitude of the magnetic field applied to the magnetic member composite 110 of the power generation element is 20 Oe or more and 60 Oe or less.
  • the magnetization state of the first magnetically sensitive portion 121 is less affected by the applied magnetic field, allowing the power generating element to generate power more stably.
  • the encoder according to the ninth aspect of the present disclosure includes the power generation system according to the seventh or eighth aspect.
  • the power generation element outputs the power generated by reversing the direction of the magnetic field by the magnet 10.
  • the power generation element outputs power with reduced variation in the amount of power generated, making it possible to improve the detection accuracy of the encoder.
  • the power generating element 100 does not include ferrite beads, but this is not limited to the above.
  • the power generating element 100 may include ferrite beads at the ends of the magnetic member composite 110 to increase the magnetic collecting force from the magnet 10.
  • the power generating element 100 includes a magnetic member composite 110 in which multiple magnetic members 120 are bundled together, but this is not limited to the above.
  • the power generating element 100 may include one magnetic member 120 instead of the magnetic member composite 110.
  • the number of times power is generated by the power generating element 100 may be increased by increasing the number of magnetic poles of the magnet 10 that rotates together with the rotating shaft 30.
  • the position of the power generating element 100 is fixed, and the magnet 10 rotates due to the rotation of the rotating shaft 30, thereby repeatedly reversing the direction of the magnetic field applied to the power generating element 100, but this is not limited to the above.
  • the position of the magnet 10 may be fixed, and the power generating element 100 may rotate due to the rotation of the rotating shaft 30, thereby repeatedly reversing the direction of the magnetic field applied to the power generating element 100.
  • the power generation element, power generation system, and encoder disclosed herein are useful for devices and equipment that rotate or move linearly, such as motors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

発電量のばらつきを低減可能な発電素子等を提供する。発電素子(100)は、各々が外部磁界の変化によって大バルクハウゼン効果を生じる複数の磁性部材(120)を有し、複数の磁性部材(120)が束ねられている磁性部材複合体(110)と、磁性部材複合体(110)に巻回されたコイル(130)と、を備える。複数の磁性部材(120)の各々は、第1感磁性部(121)と、第1感磁性部(121)よりも軟磁性である第2感磁性部(122)と、を有する。第1感磁性部(121)は、コイル(130)の巻回軸方向に沿って磁化しており、外部磁界の方向の変化によって磁化方向が変化しない。複数の磁性部材(120)は、第1感磁性部(121)が第1方向に磁化した第1磁性部材(120a)と、第1感磁性部(121)が第1方向とは逆方向の第2方向に磁化した第2磁性部材(120b)と、を含む。

Description

発電素子、発電システムおよびエンコーダ
 本開示は、発電素子、発電システムおよびエンコーダに関し、特に大バルクハウゼン効果を利用した発電素子、それを備えた発電システムおよびエンコーダに関する。
 従来、モータの回転等を検出するためのエンコーダにおいて、バッテリを用いずに回転を検出するために、大バルクハウゼン効果を利用した発電素子が用いられたエンコーダが知られている(例えば、特許文献1)。このような発電素子は、例えば、大バルクハウゼン効果を生じる磁性部材にコイルが巻回された構成を有する。大バルクハウゼン効果を生じる磁性部材は、外部磁界の変化によって磁束密度が急激に変化するため、磁束密度の急激な変化により磁性部材に巻回されたコイルに電力が生じる。エンコーダは、このような電力による電気信号を用いて、モータの回転等を検出する。
特開2012-198067号公報
 上述のエンコーダにおいて、発電素子によって発電される電力のばらつきが大きい場合には、精度良くモータの回転等を検出できない場合が生じる。
 本開示は、このような問題を解決するためになされたものであり、発電量のばらつきを低減可能な発電素子、それを備えた発電システムおよびエンコーダを提供することを目的とする。
 本開示の一態様に係る発電素子は、各々が外部磁界の変化によって大バルクハウゼン効果を生じる複数の磁性部材を有し、前記複数の磁性部材が束ねられている磁性部材複合体と、前記磁性部材複合体に巻回されたコイルと、を備える。前記複数の磁性部材の各々は、第1感磁性部と、前記第1感磁性部よりも軟磁性である第2感磁性部と、を有する。前記第1感磁性部は、前記コイルの巻回軸方向に沿って磁化しており、前記外部磁界の方向の変化によって磁化方向が変化しない。前記複数の磁性部材は、前記第1感磁性部が第1方向に磁化した第1磁性部材と、前記第1感磁性部が前記第1方向とは逆方向の第2方向に磁化した第2磁性部材と、を含む。
 また、本開示の他の一態様に係る発電システムは、上記態様の発電素子と、前記発電素子に磁界を印加し、かつ、前記発電素子に印加される前記磁界の向きを繰り返し反転させる磁界印加部と、を備え、前記発電素子は、前記磁界印加部による前記磁界の向きの反転により発電する。
 また、本開示の他の一態様に係るエンコーダは、上記態様の発電システムを備え、前記発電素子は、前記磁界印加部による前記磁界の向きの反転により発電した電力を出力する。
 本開示によれば、発電量のばらつきを低減可能な発電素子、それを備えた発電システムおよびエンコーダを提供できる。
図1は、大バルクハウゼン効果を生じる磁性部材の模式的なBH曲線の例を示す図である。 図2は、実施の形態に係るエンコーダの概略構成を示す断面図である。 図3は、実施の形態に係るエンコーダにおける磁石の上面図である。 図4は、実施の形態に係る発電素子の概略構成を示す断面図である。 図5は、実施の形態に係る第1磁性部材の模式的なBH曲線の例を示す図である。 図6は、実施の形態に係る第2磁性部材の模式的なBH曲線の例を示す図である。 図7は、図5に示される第1磁性部材のBH曲線と図6に示される第2磁性部材のBH曲線とを重ね合わせた図である。 図8は、発電素子の発電量の測定に用いた回路を示す模式図である。 図9は、測定例1における発電素子の発電の大きさの測定結果を示す図である。 図10は、測定例2における発電素子の発電の大きさの測定結果を示す図である。 図11は、実施の形態に係る磁性部材複合体における複数の磁性部材の配置を説明するための図である。
 (本開示の一態様を得るに至った経緯)
 上述の大バルクハウゼン効果を生じる磁性部材には、例えば、ウィーガンドワイヤなどの、径方向における中心部分と外周部分とで磁気特性の異なる複合磁気ワイヤが用いられる。ウィーガンドワイヤでは、中心部分および外周部分のうちの一方が軟磁性であり他方が硬磁性である。
 ここで、大バルクハウゼン効果について説明する。図1は、大バルクハウゼン効果を生じる磁性部材の模式的なBH曲線の例を示す図である。図1では、外周部分が中心部分よりも軟磁性である複合磁気ワイヤを磁性部材として用いた例が示されている。また、図1は、ワイヤの長手方向において、印加される磁界の方向が変化する場合の図である。また、図1の(1)から(6)には、磁化の方向を矢印で示した磁性部材が模式的に示されている。破線の矢印が軟磁性である外周部分の磁化の方向を示しており、実線の矢印が硬磁性である中心部分の磁化の方向を示している。なお、図1において、磁化の方向を示す矢印は、磁化の方向のみを示しており、磁化の大きさとは関係なく同じ大きさの矢印で磁化の方向が示されている。
 磁性部材の長手方向に沿って一定以上の大きさの磁界が磁性部材に印加されると、図1の(1)に示されるように、磁性部材の中心部分および外周部分は、同じ方向に磁化される。図1の(i)のように磁界の方向が変化しても、ある程度の磁界の変化までは、硬磁性の中心部分の影響で軟磁性の外周部分の磁化方向は変化しない。磁界の変化が閾値を超えた破線Jaで囲まれた箇所で、図1の(2)および(3)に示されるように、軟磁性の外周部分の磁化方向が一気に反転する。この現象は大バルクハウゼンジャンプとも呼ばれる。これにより、磁性部材の磁束密度が急激に変化し、磁性部材に巻回されたコイルに電力(発電パルス)が生じる。さらに磁界を変化させると、図1の(4)に示されるように、中心部分の磁化方向も逆転し、図1の(1)とは逆方向に磁性部材が磁化される。この場合も、図1の(ii)のように磁界の方向を変化させ、磁界の変化が閾値を超えた破線Jbで囲まれた箇所で、図1の(5)および(6)に示されるように、外周部分の磁化方向が一気に反転する。これにより、磁性部材の磁束密度が急激に変化し、磁性部材に巻回されたコイルに再び電力(発電パルス)が生じる。このような発電パルスを検出することで、発電素子をエンコーダに利用することができる。図1に示される例の場合、1往復の磁界の方向の変化で、磁性部材の磁化方向が2回反転するため、2回の発電パルスが生成する。
 このような磁性部材を用いる発電素子において、繰り返し発電パルスを検出する場合に、発電パルスにおける発電電力がばらつく場合が生じる。例えば、5000回の発電パルスを検出した場合、発電電力の平均値に対して、標準偏差の10倍(いわゆる10σ)以上の差がある発電電力の発電パルスが検出される場合もある。
 そこで、本開示では、上記問題を鑑み、発電量のばらつきを低減可能な発電素子、それを備えた発電システムおよびエンコーダを提供することを目的とする。
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置および接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺などは必ずしも一致していない。また、各図において、他の図と実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 また、本明細書において、平行などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 (実施の形態)
 以下、実施の形態に係るエンコーダ1、発電システム5および発電素子100について説明する。
 [構成]
 まず、本実施の形態に係るエンコーダ1、発電システム5および発電素子100の構成を説明する。
 図2は、本実施の形態に係るエンコーダ1の概略構成を示す断面図である。図3は、本実施の形態に係るエンコーダ1における磁石10の上面図である。なお、図2において、発電素子100の筐体190に収容されている磁性部材複合体110およびコイル130が破線で模式的に示されている。また、見やすさのため、図3においては、磁石10、回転軸30ならびに発電素子100における磁性部材複合体110およびコイル130以外の図示は省略されている。
 図2に示されるエンコーダ1は、例えば、サーボモータ等のモータと組み合わせて用いられるロータリーエンコーダである。また、エンコーダ1は、例えば、発電方式のアブソリュートエンコーダである。エンコーダ1は、発電素子100が生成する電気信号に基づいて、例えばモータ等の回転軸30の回転角、回転量および回転数等を検出する。エンコーダ1は、磁石10、回転板20、基板40および発電素子100を備える発電システム5と、制御回路50と、メモリ60と、を備える。エンコーダ1では、発電システム5における発電素子100が、磁石10が回転することによる、磁石10によって形成される磁界の変化によって発電し、発電した電力を電気信号として出力する。
 回転板20は、モータ等の駆動部である回転軸30とともに回転する板状の部材である。回転板20の一方の主面の中央部は、回転軸30の軸方向(回転軸30が延びる方向)における回転軸30の端部に取り付けられている。回転板20は、回転軸30の軸方向と直交する方向に延びる。回転板20は、回転軸30の中心を通り回転軸30の軸方向に沿って延びる回転軸線Aを回転軸として回転する。回転軸30の回転動作は、回転する機器の回転動作に同期している。回転板20の平面視形状は、例えば、円形である。回転板20は、例えば、金属製、樹脂製、ガラス製またはセラミック製等である。
 回転軸30は、円柱状等の棒状である。回転軸30の軸心と回転軸線Aとは、一致している。
 磁石10は、発電素子100に対して外部磁界を印加する磁界印加部の一例である。磁石10は、発電素子100に対して外部磁界を形成する磁界発生源であるとも言える。磁石10は、発電素子100に印加される磁界の向きを繰り返し反転させる。磁石10は、例えば、板状の磁石である。磁石10は、回転板20と対向し、回転板20の回転軸30とは反対の主面上に位置する。本実施の形態においては、一対の磁石10が回転板20の同一主面上に設けられている。回転板20の厚み方向および磁石10の厚み方向は同じであり、回転軸30の軸方向である。一対の磁石10は、回転板20と共に回転軸30を回転中心として(つまり、回転軸線Aを回転軸として)回転する。回転軸30の回転により、一対の磁石10が回転することで、一対の磁石10と発電素子100との相対的な位置関係が変化し、発電素子100に印加される一対の磁石10からの磁界も変化する。一対の磁石10の回転方向は、例えば、時計回りおよび反時計回りの両方であるが、時計回りおよび反時計回りのいずれか一方のみであってもよい。
 一対の磁石10は、回転軸30の回転軸線Aを挟み、かつ、回転板20の同一主面上で間隔を空けて並んで配置されている。つまり、一対の磁石10の間には、回転軸30の回転軸線Aが位置し、空間が形成されている。また、一対の磁石10は、回転軸線Aを挟んで対称に配置されている。一対の磁石10は、相互に同形状である。
 一対の磁石10は、回転軸30の回転方向に沿って配置されている。一対の磁石10の各々の平面視形状は、回転軸30の回転方向に沿う円弧状である。なお、一対の磁石10のうちの一方のみが回転板20の主面上に設けられていてもよい。また、磁石10は、発電素子100に印加する磁界を変化させることができれば、ドーナツ状、円盤状または棒状の磁石等、他の形状の磁石であってもよい。また、磁石10は、例えば、永久磁石であるが、電磁石であってもよい。
 一対の磁石10の各々のN極およびS極は、一対の磁石10が並ぶ方向に沿って並んでいる。一対の磁石10それぞれのS極とN極との並び順は同じである。つまり、一対の磁石10の各々は、一対の磁石10が並ぶ方向に着磁されている。そのため、一対の磁石10の各々は、一対の磁石10が並ぶ方向に沿った磁界を発生させる。
 一対の磁石10のうち、一方の磁石10において回転軸線Aに面してS極が配置され、他方の磁石10において回転軸線Aに面してN極が配置される。そのため、回転軸30の回転によって、一対の磁石10が回転して、一対の磁石10の位置が互いに入れ替わると、一対の磁石10が形成する磁界の向きは反転する。このような一対の磁石10が回転することにより、発電素子100に印加される磁界が変化する。具体的には、一対の磁石10が回転することにより、発電素子100に印加される磁界の向きが繰り返し反転する。
 基板40は、回転板20の磁石10を配置した面に対し、回転板20および磁石10と間隔を空けて対向するように位置する。つまり、回転軸30の軸方向に沿って、回転軸30、回転板20、磁石10および基板40は、この順で並ぶ。基板40は、磁石10および回転板20とともに回転しない。基板40は、回転軸30の軸方向を厚み方向とする板状である。基板40の平面視形状は、例えば、円形状である。例えば、回転軸30の軸方向から見た場合に、回転軸30、回転板20および基板40それぞれの中心は一致し、回転軸線Aの位置である。
 基板40は、例えば、配線基板であり、発電素子100、制御回路50およびメモリ60等の電子部品等が実装される。図2に示される例では、基板40の磁石10と対向する主面に制御回路50およびメモリ60が実装されており、基板40の磁石10と対向する主面とは反対側の主面に発電素子100が実装されている。基板40は、例えば、エンコーダ1またはモータ等の一部を構成するケースに固定される。
 発電素子100は、基板40の磁石10と対向する主面とは反対側の主面上に位置する。そのため、発電素子100からみて基板40は、磁石10と同じ方向に配置される。発電素子100は、回転軸30の軸方向に沿って、磁石10および回転板20と並んでいる。以降、磁石10および回転板20と発電素子100とが並ぶ、矢印Zで示される方向を「並び方向」と称する場合がある。本実施の形態においては、並び方向は、回転軸30の軸方向に平行および磁石10の主面11に垂直な方向に平行である。発電素子100は、磁石10および回転板20と共に回転しない。
 発電素子100は、回転軸30の軸方向において回転板20からみて基板40の向こう側に設けられている。発電素子100は、回転軸30の軸方向から見た場合に、回転軸線Aと重ならず、回転軸線Aとずれた位置に配置されている。発電素子100は、回転軸30の軸方向から見た場合に、磁石10が回転した際に通る位置と重なる。また、発電素子100は、磁石10の回転方向の接線方向に延びるように、基板40の主面に沿って延在する。
 発電素子100は、磁石10が回転することによる、磁石10によって形成される磁界の変化、具体的には磁界の向きの反転によって発電し、発電した電力を出力する。発電素子100のコイル130の巻回軸方向が、発電素子100が延在する方向である。コイル130の巻回軸方向は、図中の矢印Xで示される方向である。以降、図中の矢印Xで示されるコイル130の巻回軸方向を、単に「巻回軸方向」と称する場合がある。
 発電素子100は、例えば、磁性部材複合体110と、コイル130と、端子181、182と、筐体190とを備える。
 磁性部材複合体110は、それぞれが大バルクハウゼン効果を生じる複数の磁性部材が束ねられた複合構造体であり、磁性部材複合体110に巻回されたコイル130に発電パルスが生じる。磁性部材複合体110およびコイル130の詳細については後述する。なお、発電素子100の配置は、特に制限されず、発電素子100は、磁石10によって発生する磁界が印加される領域に位置し、回転軸30が回転することによる磁界の向きの反転によって発電パルスを生成するように配置されればよい。
 端子181、182は、発電素子100と基板40とを電気的に接続するための部材である。端子181、182は、発電素子100において基板40に面する端部に位置する。発電素子100からみて端子181、182の方向に、磁石10が配置されている。端子181は、コイル130を構成する導線の一端に電気的に接続され、端子182は当該導線の他端に電気的に接続される。つまり、コイル130と基板40とは、端子181、182を介して電気的に接続されている。
 筐体190は、磁性部材複合体110およびコイル130を収容し、これらを支持している。磁性部材複合体110およびコイル130は、例えば、筐体190内で樹脂等に包埋されている。また、筐体190は、端子181、182の一部を収容する。また、発電素子100は、例えば、巻回軸方向における磁性部材複合体110の端部にフェライトビーズを備えておらず、筐体190は、フェライトビーズを収容していない。一般的な発電素子は、例えば、ウィーガンドワイヤ等の磁性部材の端部に配置されるフェライトビーズを備えるが、発電素子100は、フェライトビーズを備えていなくても、後述するように安定的な発電が可能であり、発電素子100の小型化および低コスト化が可能である。筐体190は、例えば、発電素子100において磁石10に向かって開口している。筐体190は、例えば、固定部材等によって、基板40に固定されている。
 制御回路50は、基板40の磁石10に対向する主面上に位置する。制御回路50は、発電素子100と電気的に接続されている。制御回路50は、発電素子100が生成する発電パルス等の電気信号を取得し、取得した電気信号に基づいて、モータ等の回転軸30の回転角、回転量および回転数等を検出(算出)する。制御回路50は、例えば、IC(集積回路)パッケージ等である。
 メモリ60は、基板40の磁石10に対向する主面上に位置する。メモリ60は、制御回路50と接続されている。メモリ60は、制御回路50が検出した結果を保存する半導体メモリ等の不揮発メモリである。
 次に、本実施の形態に係る発電素子100の詳細について説明する。
 図4は、本実施の形態に係る発電素子100の概略構成を示す断面図である。図4は、コイル130の巻回軸R1を通るように、かつ回転軸線Aに垂直な面で切断した場合の断面を示している。なお、見やすさのため、図4において、端子181、端子182および筐体190の図示は省略されている。
 図4に示されるように、発電素子100は、磁性部材複合体110と、コイル130とを備える。
 磁性部材複合体110は、複数の磁性部材120を有する。磁性部材複合体110において、複数の磁性部材120は束ねられている。複数の磁性部材120のそれぞれは、巻回軸方向における両端の位置が互いに揃っている。
 複数の磁性部材120は、互いの位置関係が変化しないように束ねられる。複数の磁性部材120を束ねる方法は特に制限されず、複数の磁性部材120は、例えば、接着、接合または溶接等により互いが固定されることで束ねられる。また、複数の磁性部材120は、それぞれが筐体190に支持されることで束ねられていてもよく、コイル130または図示されていないバンド等によって束ねられていてもよい。
 磁性部材120は、磁石10等が形成する外部磁界の変化によって大バルクハウゼン効果を生じる磁性部材である。磁性部材120は、第1感磁性部121と、第1感磁性部121と磁気特性の異なる第2感磁性部122と、を有する。第2感磁性部122は、第1感磁性部121よりも保磁力が低く軟磁性である。磁性部材120は、例えば、コイル130の巻回軸方向が長手方向である長尺状の部材である。磁性部材120の径方向に切断した断面形状は、例えば、円状または楕円状であるが、矩形状または多角形状等の他の形状であってもよい。巻回軸方向において、磁性部材120の長さは、例えば、コイル130の長さより長い。
 磁性部材120は、例えば、ウィーガンドワイヤ等の径方向における中心部分と外周部分とで異なる磁気特性を有する複合磁気ワイヤである。本実施の形態では、磁性部材120において、例えば、径方向の中心部分は相対的に保磁力が高い第1感磁性部121であり、径方向の外周部分は相対的に保磁力が低い第2感磁性部122である。第1感磁性部121および第2感磁性部122は、それぞれ、巻回軸方向に延在する。第1感磁性部121および第2感磁性部122は、共に巻回軸方向に延びる長尺状である。詳細には、第1感磁性部121は、巻回軸方向に延びるワイヤ状であり、第2感磁性部122は、巻回軸方向に延びる筒状である。第2感磁性部122は、巻回軸方向から見た場合の第1感磁性部121の外周となる表面、言い換えると、巻回軸方向に沿って延びる表面を被覆する。第1感磁性部121と第2感磁性部122とは、巻回軸方向と交差(例えば直交)する方向、つまり、磁性部材120の径方向に並ぶ。なお、磁性部材120は、このような形状に限らず、異なる磁気特性の第1感磁性部121と第2感磁性部122とを有することで大バルクハウゼン効果を生じる磁性部材であればよい。例えば、磁性部材120において、中心部分が第2感磁性部122であり、外周部分が第1感磁性部121であってもよい。また、磁性部材120は、例えば、磁気特性の異なる薄膜が積層された構造を有する磁性部材であってもよい。また、第1感磁性部121と第2感磁性部122との間で急激に保磁力が変化していなくてもよく、第1感磁性部121と第2感磁性部122との境界近傍では徐々に保磁力が変化していてもよい。また、例えば、第1感磁性部121の保磁力と第2感磁性部122の保磁力との間の保磁力を有する中間層が第1感磁性部121と第2感磁性部122との間に存在していてもよい。
 第1感磁性部121は、巻回軸方向に沿って磁化している。例えば、第1感磁性部121は、500Oe以上の磁場が印加されたことにより磁化されている。第1感磁性部121は、1000Oe以上の磁場が印加されたことにより磁化されてもよく、3000Oe以上の磁場が印加されたことにより磁化されてもよい。第1感磁性部121は、磁石10等が形成する外部磁界の方向の変化によって磁化方向が変化しない。例えば、第1感磁性部121は、発電素子100に60Oe以下の外部磁界が印加されている場合に、外部磁界の方向の変化によって磁化方向および磁化状態が実質的に変化しない。また、第1感磁性部121は、飽和着磁していてもよい。なお、ここでOeはエルステッド(oersted)という磁界の強さの単位であり、1Oe=(1/4π)・10A/mである。なお、πは円周率である。
 複数の磁性部材120は、第1磁性部材120aと第2磁性部材120bとを含む。第1磁性部材120aと第2磁性部材120bとは磁化方向が逆向きである。図4に示されるように、第1磁性部材120aは、矢印B1で示される第1方向に磁化している。一方、第2磁性部材120bは、矢印B2で示される、第1方向とは逆方向の第2方向に磁化している。
 複数の磁性部材120に含まれる第1磁性部材120aの数と第2磁性部材120bの数とは同じである。図4で示される例では、第1磁性部材120aおよび第2磁性部材120bそれぞれの数は、1つであるが、複数の磁性部材120は、第1磁性部材120aおよび第2磁性部材120bをそれぞれ複数含んでいてもよい。これにより、磁性部材複合体110の磁束変化が大きくなるため、発電素子100の発電量を増大できる。
 図4で示される例では、第1磁性部材120aと第2磁性部材120bとは、並び方向に垂直な面において、巻回軸方向に直交する方向に沿って並んで束ねられている。
 コイル130は、コイル130を構成する導線が磁性部材複合体110に巻回されているコイルである。具体的には、コイル130は、磁性部材複合体110の中心を通り、磁性部材複合体110(複数の磁性部材120)の長手方向に延びる巻回軸R1に沿って巻回されている。
 [磁性部材複合体の磁気特性]
 次に、磁性部材複合体110における大バルクハウゼン効果について説明する。図5は、第1磁性部材120aの模式的なBH曲線の例を示す図である。図6は、第2磁性部材120bの模式的なBH曲線の例を示す図である。図5および図6にはそれぞれ、図1と同様に、第1磁性部材120aおよび第2磁性部材120bにおける磁化の方向がそれぞれ実線および破線の矢印で示されている。なお、図5および図6において、磁化の方向を示す矢印は、磁化の方向のみを示しており、磁化の大きさとは関係なく同じ大きさの矢印で磁化の方向が示されている。また、図7は、図5に示される第1磁性部材120aのBH曲線と図6に示される第2磁性部材120bのBH曲線とを重ね合わせた図である。
 図5の(1)に示されるように、第1磁性部材120aでは、第1感磁性部121の磁化方向と逆方向の磁界が印加されても、第1感磁性部121の磁化方向は変化しないため、第1感磁性部121と第2感磁性部122とは逆方向に磁化する。そのため、図5の(i)のように磁界の方向が変化すると、図5の(2)に示されるように、第2感磁性部122の磁化方向が第1感磁性部121の磁化方向と同じになるように反転する。この場合には、図1の破線Jaで囲まれた箇所のような、第2感磁性部122の磁化方向の急激な反転が生じにくいため、大バルクハウゼンジャンプは生じない。
 一方、図5の(2)に示される状態から、図5の(ii)のように磁界の方向が変化すると、ある程度の磁界の変化までは、第1感磁性部121の影響で第2感磁性部122の磁化方向は変化しない。磁界の変化が閾値を超えた破線Jbで囲まれた箇所で、図5の(3)および(4)に示されるように、第2感磁性部122の磁化方向が一気に反転する。これにより、第1磁性部材120aの磁束密度が急激に変化し(つまり、大バルクハウゼンジャンプが生じ)、磁性部材複合体110に巻回されたコイル130に電力(発電パルス)が生じる。
 従来の磁性部材では、図1に示されるように、1往復の磁界の方向の変化で、破線Jaおよび破線Jbでそれぞれ囲まれた2箇所で大バルクハウゼンジャンプが生じ、コイルに2回の発電パルスが生成する。そのため、2回の発電パルスは、逆方向の磁界の変化に起因するため、磁性部材の磁化状態に偏りが生じると、2回の発電パルスの発電量にもばらつきが生じる。例えば、外部磁界の影響で、図1の(2)における硬磁性部の磁化の大きさと、図1の(5)における硬磁性部の磁化の大きさとが異なると、大バルクハウゼンジャンプにおける磁束密度の変化量が、破線Jaで囲まれた箇所と破線Jbで囲まれた箇所とで差が生じる。
 これに対して、第1磁性部材120aでは、第1感磁性部121が完全に磁化されていて、磁化方向が変化しないため、1往復の磁界の方向の変化で、破線Jbで囲まれた1箇所で大バルクハウゼンジャンプが生じ、コイル130に1回の発電パルスが生成する。そのため、従来の磁性部材のように、1往復の磁界の方向の変化で生じる2回の発電パルスの間のばらつきが生じない。よって、発電素子100の発電電力のばらつきを低減できる。また、第1感磁性部121が完全に磁化されていない場合には、磁石10等が形成する外部磁界では磁化しにくい領域が第1感磁性部121に存在する可能性があるものの、第1感磁性部121が完全に磁化されていることで、当該領域も磁化され、大バルクハウゼンジャンプでの第1磁性部材120aの磁束密度の変化を大きくできる。よって、第1磁性部材120aによる大バルクハウゼンジャンプによって、安定した発電パルスを生成できる。
 また、図6に示されるように、第2磁性部材120bでも、第1磁性部材120aと同様に、第1感磁性部121が完全に磁化されていて、磁化方向が変化しないため、1往復の磁界の方向の変化で、1回の大バルクハウゼンジャンプが生じて、コイル130に1回の発電パルスが生成する。そのため、第1磁性部材120aと同様の理由で、第2磁性部材120bによる大バルクハウゼンジャンプによっても、安定した発電パルスを生成できる。ただし、第1磁性部材120aでは破線Jbで囲まれた箇所で大バルクハウゼンジャンプが生じたのに対して、第2磁性部材120bでは破線Jaで囲まれた箇所で大バルクハウゼンジャンプが生じる。
 具体的には、図6の(1)に示されるように、第2磁性部材120bに第1感磁性部121の磁化方向と同じ方向に磁場が印加された状態から、図6の(i)のように磁界の方向が変化すると、ある程度の磁界の変化までは、第1感磁性部121の影響で第2感磁性部122の磁化方向は変化しない。磁界の変化が閾値を超えた破線Jaで囲まれた箇所で、図6の(2)および(3)に示されるように、第2感磁性部122の磁化方向が一気に反転する。これにより、第2磁性部材120bの磁束密度が急激に変化し(つまり、大バルクハウゼンジャンプが生じ)、磁性部材複合体110に巻回されたコイル130に電力(発電パルス)が生じる。このように、図5の(i)と図6の(i)とでは、磁界の方向の変化は同じであるが、第1磁性部材120aでは大バルクハウゼンジャンプが生じないのに対して、第2磁性部材120bでは大バルクハウゼンジャンプが生じる。
 第2磁性部材120bでは、図6の(4)に示されるように、第1感磁性部121の磁化方向と逆方向の磁界が印加されても、第1感磁性部121の磁化方向は変化しないため、第1感磁性部121と第2感磁性部122とは逆方向に磁化する。そのため、図6の(ii)のように磁界の方向が変化すると、図6の(1)に示されるように、第2感磁性部122の磁化方向が第1感磁性部121の磁化方向と同じになるように反転する。この場合には、第2感磁性部122の磁化方向の急激な反転が生じにくいため、大バルクハウゼンジャンプは生じない。このように、図5の(ii)と図6の(ii)とでは、磁界の方向の変化は同じであるが、第1磁性部材120aでは大バルクハウゼンジャンプが生じるのに対して、第2磁性部材120bでは大バルクハウゼンジャンプが生じない。その結果、第1磁性部材120aと第2磁性部材120bとでは、それぞれ1回の磁束密度の変化の安定した大バルクハウゼンジャンプが生じるため、従来の磁性部材に比べて安定した発電が可能となり、発電量がばらつきにくい発電素子100を実現できる。
 また、第1磁性部材120aおよび第2磁性部材120bでは、1往復の磁界の方向の変化で、それぞれ1回ずつしか大バルクハウゼンジャンプが生じないが、第1磁性部材120aと第2磁性部材120bとで第1感磁性部121の磁化方向が逆方向であるために、図7に示されるように、異なるタイミングで大バルクハウゼンジャンプが生じる。よって、図1で示される従来の磁性部材と同様に、磁性部材複合体110では、1往復の磁界の方向の変化で、2回の大バルクハウゼンジャンプが生じていることになる。
 [外部磁界の影響について]
 次に、本実施の形態に係る発電素子100を用いて発電する場合の外部磁界の影響について説明する。具体的には、発電素子100と磁石10との距離を変えることによって外部磁界の大きさを変化させた場合の発電の大きさを測定した結果について説明する。
 図8は、発電素子の発電の大きさの測定に用いた回路を示す模式図である。発電素子100の発電の大きさの測定においては、図2および図3に示されるような位置関係になるように発電素子100と磁石10とを配置して、発電素子100に印加する磁石10からの磁界の方向を繰り返し変化させた。この際、磁性部材120には、5000Oeの磁界を印加することで第1感磁性部121を磁化させた磁性部材120を用いた。また、図8に示されるような回路に発電素子100を接続した。具体的には、発電素子100の出力を、キャパシタCおよび抵抗Rに接続された全波整流回路に接続した。外部磁界の向きの反転ごとに発電素子100による発電パルスの整流後電圧Vを測定し、発電パルスにおける電圧V×時間を発電の大きさとした。発電の大きさは、2500回測定し、測定された2500回の発電の大きさの平均値および最低値を導出した。
 また、磁石10と磁性部材複合体110との距離ついては、磁性部材複合体110に印加される磁界の大きさが20Oeとなる距離を基準として測定を開始した。その後、磁石10と磁性部材複合体110とを近づけて1mmずつ距離を短くしていき、3mmまたは5mm短くした時点で引き返し、1mmずつ距離を長くして再び元の距離に戻した。以下では、基準の距離から3mm短くして引き返した条件で測定した場合を測定例1とし、基準の距離から5mm短くして引き返した条件で測定した場合を測定例2とする。磁石10と磁性部材複合体110との距離により磁性部材複合体110に印加される磁界の大きさが決定するため、距離が短いほど磁性部材複合体110に印加される磁界が大きくなる。そのため、測定例1および測定例2では、磁性部材複合体110に印加される磁界を所定の大きさまで徐々に大きくした後に元の磁界の大きさに戻す操作を行いながら発電の大きさを測定しているとも言える。
 図9は、測定例1における発電素子100の発電の大きさの測定結果を示す図である。図10は、測定例2における発電素子100の発電の大きさの測定結果を示す図である。図9および図10において、横軸は、基準の距離に対する磁石10と磁性部材複合体110との距離の差を示す。図9および図10において、縦軸は、上記の方法で測定された発電の大きさを示す。また、この縦軸におけるE1は、電気信号を安定的に検出できる目安の発電の大きさである。また、図9および図10において、丸のプロットは、発電の大きさの平均値を示し、三角のプロットは発電の大きさの最低値を示す。また、図9および図10において、実線でつながれたプロットは、距離を短くして引き返すまでの測定結果を示し、破線でつながれたプロットは引き返した後の測定結果を示す。なお、図9および図10において、発電の大きさの単位は、任意単位(arbitrary unit、a.u.)である。
 図9および図10に示されるように、測定例1および測定例2のどちらにおいても、磁石10と磁性部材複合体110との距離を近づけて引き返す前(実線でつながれたプロット)では、発電の大きさの平均値(丸のプロット)と最低値(三角のプロット)とにほとんど差が無く、発電素子100の発電量のばらつきが小さいことがわかる。また、発電の大きさがE1を下回ることもなかった。これは、上述のように、1往復の磁界の方向の変化で、1つの磁性部材120につき、従来のような2回ではなく、1回の大バルクハウゼンジャンプが生じて発電が安定化するためであると考えられる。
 また、図9に示されるように、磁石10と磁性部材複合体110との距離を基準の距離から3mm短くしたのちに引き返した測定例1では、磁石10と磁性部材複合体110との距離を短くして引き返した後(破線でつながれたプロット)も発電の大きさの平均値(丸のプロット)と最低値(三角のプロット)とにほとんど差が無く、かつ、引き返す前後での発電の大きさにもほとんど差がなかった。磁石10と磁性部材複合体110との距離が基準の距離から3mm短い距離の場合に磁性部材複合体110に印加される磁界の大きさは、60Oeであった。そのため、磁性部材複合体110に印加される磁界の大きさが20Oe以上60Oe以下である場合には、磁界の大きさが変動しても発電素子100が安定的に発電可能である。
 一方、図10に示されるように、磁石10と磁性部材複合体110との距離を基準の距離から5mm短くしたのちに引き返した測定例2では、磁石10と磁性部材複合体110との距離を短くして引き返した後(破線でつながれたプロット)は、磁界の大きさが小さくなるほど発電の大きさの平均値(丸のプロット)と最低値(三角のプロット)との差が大きくなり、発電素子100の発電量にばらつきが生じた。また、磁石10と磁性部材複合体110との距離を短くして引き返した後(破線でつながれたプロット)は、引き返す前(実線でつながれたプロット)よりも発電の大きさが低下した。これは、所定の大きさ以上の磁界が磁性部材複合体110の磁性部材120に印加されることで、磁化していた第1感磁性部121の磁化状態に変化が生じ、より小さい磁界の条件では発電素子100の発電の大きさおよび安定性が低下したと考えられる。ただし、発電素子100は、磁性部材複合体110に60Oe以上の磁界が印加される条件では使用できないわけではなく、例えば、一定の外部磁界の環境であれば、安定して発電は可能である。また、第1感磁性部121の磁化させる際に印加する磁界を大きくすることで、第1感磁性部121の磁化状態を変化させにくくすることもできる。
 また、第1感磁性部121の磁化状態を安定化しやすい磁性部材120を用いて発電素子100を製造することで、発電素子100を安定的に動作させることが可能な外部磁界の範囲を大きくすることができる。磁性部材120の第1感磁性部121の磁化状態を安定化させる方法としては、例えば、(1)磁性部材120の長さを長くする方法、および、(2)磁性部材120(第1感磁性部121)の保磁力を高くする方法などが挙げられる。
 (1)の方法では、磁性部材120の長さが長くなることで、外部磁界が印加された磁性部材120の反磁界による影響が小さくなる。その結果、第1感磁性部121の磁化状態が安定化する。例えば、磁性部材120の長さを7mm以上にすることで、第1感磁性部121の磁化状態が安定化しやすい。磁性部材120の長さを7mm以上にすることで、反磁界係数が0.01以下になりやすい。なお、反磁界係数は磁性部材120の太さでも変化するため、磁性部材120の太さに応じて、反磁界係数が0.01以下になるような磁性部材120の長さにしてもよい。
 また、(2)の方法では、磁性部材120(第1感磁性部121)の保磁力が高まることで、外部磁界が大きくなっても、第1感磁性部121の磁化状態が変化しにくくなる。
 例えば、発電素子100の製造において、所定の条件で作製した磁性部材複合体110に対して、発電素子100を動作させる環境と同じ大きさの外部磁界を印加する。外部磁界の印加によって第1感磁性部121の磁化状態に変化が無ければ、そのままの磁性部材複合体110を用いて発電素子100を製造する。一方、外部磁界の印加によって第1感磁性部121の磁化状態に変化がある場合には、上記の(1)または(2)の方法を適用して作製し直した磁性部材複合体110を用いて発電素子100を製造する。第1感磁性部121の磁化状態の変化の判定には、上記のように発電素子100の発電の大きさを測定してもよいし、磁性部材複合体110または磁性部材120のBHカーブを測定してもよい。このような方法により、より安定的に発電できる発電素子100を製造できる。
 [磁性部材の配置]
 次に、磁性部材複合体110における複数の磁性部材120の配置について説明する。図11は、磁性部材複合体110における複数の磁性部材120の配置を説明するための図である。具体的には、図11には、磁性部材120の数が2、4、6および8である場合の第1磁性部材120aおよび第2磁性部材120bの配置の例が示されている。また、図11では、複数の磁性部材120を巻回軸方向に沿って見た場合の第1磁性部材120aおよび第2磁性部材120bの配置が示されている。また、図11では、第1磁性部材120aと第2磁性部材120bとを区別するため、第2磁性部材120bには網点の模様を付している。また、図11において、左側に示されている配置ほど発電素子100の発電安定性が良好である。
 図11に示されるように、複数の磁性部材120は、例えば、巻回軸方向に沿って見た場合に、外部磁界を形成する磁石10から離れる方向を列方向とする行列状に配置される。なお、複数の磁性部材120の行および列の一方は1つであってもよい。つまり、複数の磁性部材120は、ライン状に並んでいてもよい。
 また、図11に示されるように、複数の磁性部材120は、第1磁性部材120aと第2磁性部材120bとが交互に並ぶように配置(例えば、磁性部材120の数が4以上の場合の左側から2つまでの例の配置)される方が、発電素子100の発電安定性が良好である。これは、第1磁性部材120aと第2磁性部材120bとで逆方向に磁化している第1感磁性部121の磁極同士の反発が抑制され、第1感磁性部121の磁化状態が安定化するためである。この場合、例えば、複数の磁性部材120における全ての隣接する2つの磁性部材120の組み合わせで、一方の磁性部材120が第1磁性部材120aであり、他方の磁性部材120が第2磁性部材120bである。複数の磁性部材120において、例えば、行方向および列方向のいずれにおいても、第1磁性部材120a同士、および第2磁性部材120b同士は隣り合わない。
 また、図11に示されるように、第1磁性部材120aおよび第2磁性部材120bがそれぞれ複数である場合(磁性部材120の数が4以上の場合)、第1磁性部材120aおよび第2磁性部材120bのそれぞれの数は偶数である方が、奇数である場合よりも発電素子100の発電安定性が良好である。これは、磁性部材複合体110全体の磁化状態の対称性が保ちやすい複数の磁性部材120の配置が容易になるためである。
 また、図11に示されるように、列方向(磁石10から離れる方向)に並ぶ磁性部材120の数は、行方向に並ぶ磁性部材120の数以下である方が発電素子100の発電安定性が良好である。これは、磁石10から離れる方向に並ぶ磁性部材120の数が少なく(行方向に並ぶ磁性部材120の数を超えることがなく)、複数の磁性部材120同士で印加される磁界の大きさに差が生じにくいためである。また、列方向に並ぶ磁性部材120の数は、行方向に並ぶ磁性部材120の数より少なくてもよい。
 [まとめ]
 以上のように、本開示の第1態様に係る発電素子は、各々が外部磁界の変化によって大バルクハウゼン効果を生じる複数の磁性部材120を有し、複数の磁性部材120が束ねられている磁性部材複合体110と、磁性部材複合体110に巻回されたコイル130と、を備える。複数の磁性部材120の各々は、第1感磁性部121と、第1感磁性部121よりも軟磁性である第2感磁性部122と、を有する。第1感磁性部121は、コイル130の巻回軸方向に沿って磁化しており、外部磁界の方向の変化によって磁化方向が変化しない。複数の磁性部材120は、第1感磁性部121が第1方向に磁化した第1磁性部材120aと、第1感磁性部121が第1方向とは逆方向の第2方向に磁化した第2磁性部材120bと、を含む。
 このように、磁性部材複合体110が有する磁性部材120の第1感磁性部121が磁化されていることにより、外部磁界の方向によらず第1感磁性部121の磁化方向が一定になる。その結果、1往復の外部磁界の方向の変化でも、第2感磁性部122の磁化方向が第1感磁性部121の磁化方向とは逆向きになるように急激に変化することによって生じる大バルクハウゼンジャンプが1回になる。そのため、従来の磁性部材のような、1往復の外部磁界の方向の変化での2回の大バルクハウゼンジャンプそれぞれでの第1感磁性部121の磁化状態に差が生じて、発電パルスの大きさがばらつくことが生じない。その結果、大バルクハウゼンジャンプによってコイル130に生じる発電パルスの大きさが安定化する。よって、発電量のばらつきを低減可能な発電素子を実現できる。また、磁性部材複合体110の複数の磁性部材120は、第1感磁性部121の磁化方向が互いに逆向きである第1磁性部材120aと第2磁性部材120bとを含むため、磁性部材複合体110としては、1往復の外部磁界の方向の変化で2回の大バルクハウゼンジャンプが可能であり、発電素子の発電回数も従来の磁性部材を用いた場合と同じ回数を維持できる。
 本開示の第2態様に係る発電素子は、第1態様に係る発電素子であって、複数の磁性部材120は、第1磁性部材120aおよび第2磁性部材120bをそれぞれ複数含む。
 これにより、大バルクハウゼンジャンプにおける磁束密度の変化を大きくできる。そのため、発電素子は、発電量を増大させて、より安定的に発電が可能になる。
 本開示の第3態様に係る発電素子は、第2態様に係る発電素子であって、複数の磁性部材120は、第1磁性部材120aと第2磁性部材120bとが交互に並ぶように配置される。
 これにより、第1磁性部材120aと第2磁性部材120bとで逆方向に磁化している第1感磁性部121の磁極同士の反発が抑制され、第1感磁性部121の磁化状態が安定化する。そのため、発電素子は、より安定的に発電が可能になる。
 本開示の第4態様に係る発電素子は、第2態様または第3態様に係る発電素子であって、第1磁性部材120aおよび第2磁性部材120bのそれぞれの数は偶数である。
 これにより、磁性部材複合体110全体の磁化状態の対称性が保ちやすい複数の磁性部材120の配置が容易になる。そのため、発電素子は、より安定的に発電が可能になる。
 本開示の第5態様に係る発電素子は、第2態様から第4態様のいずれか1つに係る発電素子であって、複数の磁性部材120は、巻回軸方向に沿って見た場合に、外部磁界を形成する磁石10から離れる方向を列方向とする行列状に配置され、複数の磁性部材120において、列方向に並ぶ磁性部材120の数は、行方向に並ぶ磁性部材120の数以下である。
 これにより、磁石10から離れる方向に並ぶ磁性部材120の数が少なく(行方向に並ぶ磁性部材120の数を超えることがなく)、複数の磁性部材120同士で印加される磁界の大きさに差が生じにくい。そのため、発電素子は、より安定的に発電が可能になる。
 本開示の第6態様に係る発電素子は、第1態様から第5態様のいずれか1つに係る発電素子であって、巻回軸方向における磁性部材複合体110の端部に配置されるフェライトビーズを備えない。
 これにより、発電素子の小型化および低コスト化が可能になる。
 本開示の第7態様に係る発電システムは、第1態様から第6態様のいずれか1つに係る発電素子と、当該発電素子に磁界を印加し、かつ、当該発電素子に印加される磁界の向きを繰り返し反転させる磁石10と、を備える。当該発電素子は、磁石10による磁界の向きの反転により発電する。
 これにより、上記の発電素子を備えるため、発電量のばらつきを低減可能な発電システムを実現できる。
 本開示の第8態様に係る発電システムは、第7態様に係る発電システムであって、上記発電素子の磁性部材複合体110に印加される磁界の大きさは、20Oe以上60Oe以下である。
 これにより、第1感磁性部121の磁化状態が印加される磁界によって影響を受けにくくなるため、発電素子がより安定的に発電できる。
 また、本開示の第9態様に係るエンコーダは、第7態様または第8態様に係る発電システムを備える。上記発電素子は、磁石10による磁界の向きの反転により発電した電力を出力する。
 これにより、発電量のばらつきが低減可能な上記発電素子の電力が出力されるため、エンコーダの検出精度を高めることが可能になる。
 (その他の実施の形態)
 以上、本開示に係る発電素子、発電システムおよびエンコーダについて、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 上記実施の形態では、発電素子100は、フェライトビーズを備えていなかったがこれに限らない。発電素子100は、磁石10からの集磁力を高めるために、磁性部材複合体110の端部にフェライトビーズを備えていてもよい。
 また、上記実施の形態では、発電素子100は、複数の磁性部材120が束ねられた磁性部材複合体110を備えたが、これに限らない。1往復での磁界の方向の変化での発電回数が減ってもよい用途の場合には、発電素子100は、磁性部材複合体110の代わりに1つの磁性部材120を備えていてもよい。例えば、回転軸30と共に回転する磁石10の磁極の数を増やすことで、発電素子100の発電回数を増やしてもよい。
 また、上記実施の形態では、発電素子100の位置が固定され、磁石10が回転軸30の回転によって回転することで、発電素子100に印加される磁界の向きが繰り返し反転したが、これに限らない。磁石10の位置が固定され、発電素子100が回転軸30の回転によって回転することで、発電素子100に印加される磁界の向きが繰り返し反転してもよい。
 また、例えば、上記実施の形態では、モータと組み合わせて用いられるロータリーエンコーダを例にとって説明したが、これに限らない。本開示の技術は、リニアエンコーダにも適用することができる。
 本開示に係る発電素子、発電システムおよびエンコーダは、モータ等の回転または直線移動する機器や装置等に有用である。
1 エンコーダ
5 発電システム
10 磁石
20 回転板
30 回転軸
40 基板
50 制御回路
60 メモリ
100 発電素子
110 磁性部材複合体
120 磁性部材
120a 第1磁性部材
120b 第2磁性部材
121 第1感磁性部
122 第2感磁性部
130 コイル
181、182 端子
190 筐体

Claims (9)

  1.  各々が外部磁界の変化によって大バルクハウゼン効果を生じる複数の磁性部材を有し、前記複数の磁性部材が束ねられている、磁性部材複合体と、
     前記磁性部材複合体に巻回されたコイルと、を備え、
     前記複数の磁性部材の各々は、第1感磁性部と、前記第1感磁性部よりも軟磁性である第2感磁性部と、を有し、
     前記第1感磁性部は、前記コイルの巻回軸方向に沿って磁化しており、前記外部磁界の方向の変化によって磁化方向が変化せず、
     前記複数の磁性部材は、前記第1感磁性部が第1方向に磁化した第1磁性部材と、前記第1感磁性部が前記第1方向とは逆方向の第2方向に磁化した第2磁性部材と、を含む、
     発電素子。
  2.  前記複数の磁性部材は、前記第1磁性部材および前記第2磁性部材をそれぞれ複数含む、
     請求項1に記載の発電素子。
  3.  前記複数の磁性部材は、前記第1磁性部材と前記第2磁性部材とが交互に並ぶように配置される、
     請求項2に記載の発電素子。
  4.  前記第1磁性部材および前記第2磁性部材のそれぞれの数は偶数である、
     請求項2に記載の発電素子。
  5.  前記複数の磁性部材は、前記巻回軸方向に沿って見た場合に、前記外部磁界を形成する磁界発生源から離れる方向を列方向とする行列状に配置され、
     前記複数の磁性部材において、列方向に並ぶ磁性部材の数は、行方向に並ぶ磁性部材の数以下である、
     請求項2に記載の発電素子。
  6.  前記巻回軸方向における前記磁性部材複合体の端部に配置されるフェライトビーズを備えない、
     請求項1に記載の発電素子。
  7.  請求項1から6のいずれか1項に記載の発電素子と、
     前記発電素子に磁界を印加し、かつ、前記発電素子に印加される前記磁界の向きを繰り返し反転させる磁界印加部と、を備え、
     前記発電素子は、前記磁界印加部による前記磁界の向きの反転により発電する、
     発電システム。
  8.  前記発電素子の前記磁性部材複合体に印加される前記磁界の大きさは、20Oe以上60Oe以下である、
     請求項7に記載の発電システム。
  9.  請求項7に記載の発電システムを備え、
     前記発電素子は、前記磁界印加部による前記磁界の向きの反転により発電した電力を出力する、
     エンコーダ。
PCT/JP2023/032654 2022-10-04 2023-09-07 発電素子、発電システムおよびエンコーダ WO2024075465A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022159989 2022-10-04
JP2022-159989 2022-10-04

Publications (1)

Publication Number Publication Date
WO2024075465A1 true WO2024075465A1 (ja) 2024-04-11

Family

ID=90607832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032654 WO2024075465A1 (ja) 2022-10-04 2023-09-07 発電素子、発電システムおよびエンコーダ

Country Status (1)

Country Link
WO (1) WO2024075465A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287470A (ja) * 1999-03-30 2000-10-13 Akira Matsushita 複合磁性体の起電力発生装置
WO2016021074A1 (ja) * 2014-08-08 2016-02-11 ヒロセ電機株式会社 回転検出装置
WO2022230652A1 (ja) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 発電素子、エンコーダ、磁性部材の製造方法および信号取得方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287470A (ja) * 1999-03-30 2000-10-13 Akira Matsushita 複合磁性体の起電力発生装置
WO2016021074A1 (ja) * 2014-08-08 2016-02-11 ヒロセ電機株式会社 回転検出装置
WO2022230652A1 (ja) * 2021-04-26 2022-11-03 パナソニックIpマネジメント株式会社 発電素子、エンコーダ、磁性部材の製造方法および信号取得方法

Similar Documents

Publication Publication Date Title
JP5108176B2 (ja) 磁気感受性プローブ位置センサ
JP6107942B2 (ja) 磁気電流センサおよび電流測定方法
US7586283B2 (en) Magnetic encoder device and actuator
JP2003042709A (ja) 角度センサ
US11994415B2 (en) Encoder system for a drive
WO2022230651A1 (ja) 発電素子、エンコーダおよび磁性部材の製造方法
JP2005164531A (ja) 磁歪式トルクセンサ
WO2008016198A1 (en) 3 axis thin film fluxgate
WO2022230652A1 (ja) 発電素子、エンコーダ、磁性部材の製造方法および信号取得方法
JP4947250B2 (ja) 角度検出装置
US5128614A (en) Compound core element having a pair of uniaxial anisotropic ferromagnetic cell components with different coercive field strength for a thin film sensor
JP2019090789A (ja) 回転検出装置
JP2011033373A (ja) 回転角度検出装置
JPWO2022230651A5 (ja)
JPWO2022230652A5 (ja)
US11913813B2 (en) Power generation element, magnetic sensor, encoder, and motor
JP2007225536A (ja) 回転運動検出装置
JP2012063203A (ja) 磁気センサ
WO2024075465A1 (ja) 発電素子、発電システムおよびエンコーダ
JP3400641B2 (ja) 直線変位検出装置
WO2024202919A1 (ja) 発電素子、発電システム、及びエンコーダ
WO2023079838A1 (ja) 発電素子、発電システムおよびエンコーダ
WO2024084701A1 (ja) 発電素子、発電モジュール、回転数検出器及び発電機
JPH05126513A (ja) 角度検出器
JP2011022075A (ja) 磁気センサの部品配置構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874594

Country of ref document: EP

Kind code of ref document: A1