WO2022230037A1 - コンデンサ基板ユニット及び電力変換装置 - Google Patents

コンデンサ基板ユニット及び電力変換装置 Download PDF

Info

Publication number
WO2022230037A1
WO2022230037A1 PCT/JP2021/016724 JP2021016724W WO2022230037A1 WO 2022230037 A1 WO2022230037 A1 WO 2022230037A1 JP 2021016724 W JP2021016724 W JP 2021016724W WO 2022230037 A1 WO2022230037 A1 WO 2022230037A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
negative
positive
capacitor
terminals
Prior art date
Application number
PCT/JP2021/016724
Other languages
English (en)
French (fr)
Inventor
宏明 高橋
優 岸和田
俊夫 渡邉
保彦 北村
尚吾 松岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180097017.1A priority Critical patent/CN117223210A/zh
Priority to PCT/JP2021/016724 priority patent/WO2022230037A1/ja
Priority to JP2023516887A priority patent/JP7459378B2/ja
Priority to DE112021007602.7T priority patent/DE112021007602T5/de
Publication of WO2022230037A1 publication Critical patent/WO2022230037A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output

Definitions

  • This application relates to a capacitor board unit and a power converter.
  • a power conversion device includes a power conversion unit that converts power by a switching operation of a switching element, which is a semiconductor element.
  • the power conversion device also includes a capacitor for smoothing a voltage in which an AC component is superimposed on a DC component.
  • Patent Document 1 As a capacitor board unit to which a large current is input from the outside, a configuration in which a capacitor is directly connected to a metal conductive plate has been disclosed (see Patent Document 1, for example).
  • the alternating current generated by the pulsation of the input voltage is superimposed on the direct current, so that the direct current component and the alternating current component flow simultaneously in the metal conductive plate.
  • the heat generation of the conductive plate and the heat generation of other components connected to the conductive plate increase. Since the conductive plates made of metal are excellent in heat conduction, the heat generated by them is directly transmitted to the capacitor, and the temperature of the capacitor rises. When the temperature of the capacitor rises, there is a problem that it causes deterioration and failure of the capacitor.
  • a direct current superimposed on an alternating current flows through a circuit board on which a capacitor is mounted, the heat generation of the circuit board increases. In order to suppress the heat generation of the circuit board, it is possible to thicken the conductive wiring pattern of the circuit board, or to provide a heat dissipation or cooling structure for the circuit board and the capacitor, but the capacitor board unit is complicated. and high cost.
  • an external device powered by the DC voltage of the DC power supply may be connected to the DC power supply side of the power converter equipped with the capacitor board unit.
  • the alternating current component that causes voltage pulsation should be smoothed in the capacitor board unit without flowing to the external device.
  • the direct current component and the alternating current component flow in the metal conductive plate while being superimposed, the alternating current component flowing out to the outside increases unless the impedance of the conductive plate is kept small. Become.
  • the amount of AC current components flowing out to the outside increases, there is a problem that the voltage ripple of the DC voltage increases. Voltage pulsation causes failures and malfunctions in external equipment that uses a DC voltage as a power supply.
  • the capacitor board unit disclosed in the present application includes a wiring board having wiring, at least one positive power supply terminal connected to the positive pole of a power supply, a plurality of positive load terminals connected to the positive poles of a plurality of loads, respectively, and A positive electrode bus bar having a plurality of positive electrode smoothing terminals connected to the wiring, at least one negative electrode power supply terminal connected to the negative electrode of the power source, and a plurality of negative loads connected to the negative electrodes of the plurality of loads, respectively.
  • a negative bus bar having a terminal and a plurality of negative smoothing terminals connected to the wiring; a positive capacitor terminal and a negative capacitor terminal; the positive capacitor terminal and the negative capacitor terminal being connected to the wiring; a plurality of capacitors, wherein the wiring includes a positive electrode wiring that connects the plurality of positive electrode smoothing terminals and the plurality of positive electrode capacitor terminals in series and in parallel, and a plurality of the negative electrode smoothing terminals and the plurality of the and a negative electrode capacitor terminal connected in series and in parallel with a DC resistance value of the positive bus bar from the positive power supply terminal to the positive load terminal, and the negative electrode from the negative power supply terminal to the negative load terminal.
  • the busbar side DC resistance value which is the sum of the DC resistance value of the busbar and the DC resistance value, is the DC resistance value between the positive power supply terminal and the positive load terminal via the plurality of positive electrode smoothing terminals and the positive electrode wiring.
  • the capacitor-side inductance value which is the inductance value between the positive load terminal and the negative load terminal, is the inductance value of the positive bus bar from the positive power supply terminal to the positive load terminal, and the inductance value of the positive bus bar from the positive power supply terminal to the negative load terminal. is smaller than the busbar-side inductance value which is the sum of the inductance value of the negative electrode busbar up to .
  • a power conversion device disclosed in the present application includes a capacitor substrate unit disclosed in the present application, and a power conversion unit connected between each of the plurality of positive load terminals and each of the plurality of negative load terminals. It is a thing.
  • the bus bar is the sum of the DC resistance value of the positive bus bar from the positive power supply terminal to the positive load terminal and the DC resistance value of the negative bus bar from the negative power supply terminal to the negative load terminal.
  • a positive wiring board side DC resistance value which is a DC resistance value between a positive power supply terminal and a positive load terminal via a plurality of positive electrode smoothing terminals and positive wiring, and a plurality of negative electrode smoothing terminals and the wiring board side DC resistance value that is the sum of the negative wiring board side DC resistance value that is the DC resistance value between the negative power supply terminal and the negative load terminal via the negative wiring, and a plurality of positive electrodes
  • the capacitor-side inductance value which is the inductance value between the positive load terminal and the negative load terminal via the smoothing terminal, positive wiring, multiple capacitors, negative wiring, and multiple negative smoothing terminals, is measured from the positive power supply terminal.
  • the power conversion device disclosed in the present application includes the capacitor substrate unit disclosed in the present application, and the power conversion unit connected between each of the plurality of positive load terminals and each of the plurality of negative load terminals. Therefore, the alternating current caused by the pulsation of the output voltage from the power conversion unit flows from the positive electrode smoothing terminal to the negative electrode smoothing terminal via the positive electrode wiring, the capacitor, and the negative electrode wiring. It is possible to suppress the alternating current component that flows out from.
  • FIG. 1 is a plan view showing a capacitor substrate unit according to Embodiment 1;
  • FIG. 2 is a side view showing the capacitor board unit according to Embodiment 1;
  • FIG. FIG. 2 is a diagram showing a main part of the capacitor board unit according to Embodiment 1;
  • 2 is a cross-sectional view of a wiring board of the capacitor board unit according to Embodiment 1;
  • FIG. 1 is a schematic diagram showing an outline of a power converter according to Embodiment 1;
  • FIG. 1 is a schematic circuit diagram of a capacitor substrate unit according to Embodiment 1;
  • FIG. 2 is an equivalent circuit diagram of the capacitor substrate unit according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing a direct current path in the equivalent circuit diagram of the capacitor substrate unit according to the first embodiment;
  • FIG. 3 is a diagram showing a path of alternating current in the equivalent circuit diagram of the capacitor substrate unit according to Embodiment 1;
  • Embodiment 1. 1 is a plan view showing a capacitor board unit 1 according to Embodiment 1
  • FIG. 2 is a side view showing the capacitor board unit 1
  • FIG. 4 is a cross-sectional view of the wiring board 30 of the capacitor board unit 1
  • FIG. 5 is a schematic diagram showing the outline of the power converter 500 according to the first embodiment
  • FIG. 7 is an equivalent circuit diagram of the capacitor board unit 1
  • FIG. 8 is a diagram showing the direct current path in the equivalent circuit diagram of the capacitor board unit
  • FIG. 9 is an equivalent circuit of the capacitor board unit 1. It is a figure which shows the path
  • the capacitor board unit 1 is mounted on a power conversion device 500 that converts desired power into DC or AC voltage.
  • the capacitor board unit 1 has a plurality of capacitors 10 and smoothes a voltage in which an AC component is superimposed on a DC component.
  • the power conversion device 500 includes a capacitor board unit 1 and a power conversion unit 200 as a load.
  • the capacitor board unit 1 has load terminals 23 connected to the capacitor board unit 1 .
  • the load terminals 23 have a plurality of positive load terminals 23 a connected to the positive poles of the power conversion unit 200 and a plurality of negative load terminals 23 b connected to the negative poles of the power conversion unit 200 .
  • the power conversion unit 200 is connected between each of the plurality of positive load terminals 23a and each of the plurality of negative load terminals 23b.
  • the power conversion unit 200 has a function of converting DC power into AC power, for example.
  • the capacitor board unit 1 has power terminals 22 connected to an external power supply 100 .
  • the power supply terminal 22 has a positive power supply terminal 22 a connected to the positive pole of the external power supply 100 and a negative power supply terminal 22 b connected to the negative pole of the external power supply 100 .
  • the power conversion device 500 converts the power of the external power supply 100 into DC or AC voltage and outputs it to the external device 300 .
  • the capacitor board unit 1 has one positive power supply terminal 22a and one negative power supply terminal 22b.
  • the configuration is not limited to this. may be provided.
  • the number of power conversion units 200 connected to the capacitor board unit 1 is not limited to three.
  • the capacitor board unit 1 includes, as shown in FIG. 1, a capacitor 10, a bus bar 20, and a wiring board 30 having wiring.
  • the capacitors 10 and the busbars 20 are mounted on the wiring board 30. As shown in FIG. are electrically connected via
  • the capacitor 10 is an electrical component that mainly has a so-called charging function of storing power and a function of discharging the stored power.
  • aluminum electrolytic capacitors, film capacitors, ceramic capacitors, or the like are used for the capacitors 10 of the capacitor board unit 1 .
  • Aluminum electrolytic capacitors have the highest capacitance per unit volume. Therefore, by connecting a plurality of aluminum electrolytic capacitors in parallel and using them, it is possible to realize a compact and large-capacity capacitor board unit 1 .
  • FIG. 1 shows a layout example in which 28 capacitors 10 are connected in parallel, but the number of capacitors 10 is not limited to this.
  • the capacitor 10 has a positive capacitor terminal 10a and a negative capacitor terminal 10b. As shown in FIG. 2, capacitor 10 is mounted on the surface of wiring board 30 . A positive capacitor terminal 10 a and a negative capacitor terminal 10 b (not shown in FIG. 2 ) are connected to the wiring of the wiring board 30 . A plurality of capacitors 10 are connected in parallel between the plurality of positive electrode smoothing terminals 24a and the plurality of negative electrode smoothing terminals 24b. By configuring in this way, it is possible to realize a compact and large-capacity capacitor substrate unit 1 . In this embodiment, 28 capacitors 10 are connected in parallel to the three positive terminals 24a and the three negative terminals 24b, but the number of capacitors is not limited to this.
  • the busbar 20 is a current path through which a direct current mainly flows.
  • the busbar 20 includes a positive busbar 20a and a negative busbar 20b, as shown in FIG.
  • the positive bus bar 20a includes at least one positive power supply terminal 22a connected to the positive electrode of the external power supply 100, a plurality of positive load terminals 23a connected to the positive electrodes of the plurality of power conversion units 200, and a plurality of positive load terminals 23a connected to the wiring. has a positive electrode smoothing terminal 24a (not shown in FIG. 1).
  • the negative bus bar 20b includes at least one negative power supply terminal 22b connected to the negative electrode of the external power supply 100, a plurality of negative load terminals 23b connected to each of the negative electrodes of the plurality of power conversion units 200, and a plurality of negative load terminals 23b connected to the wiring.
  • a positive power terminal 22a and a negative power terminal 22b constitute a power terminal 22, and a positive load terminal 23a and a negative load terminal 23b constitute a load terminal 23.
  • the bus bar 20 and the wiring board 30 are electrically and mechanically connected by the positive electrode smoothing terminal 24a and the negative electrode smoothing terminal 24b. Since the bus bar 20 and the wiring board 30 can be electrically and mechanically connected by reflow, the manufacturing process and costs are reduced, and the structure is simplified, so that the productivity of the capacitor board unit 1 can be improved.
  • the bus bar 20 is made of a copper material with low electrical resistivity and excellent conductivity.
  • the material of the bus bar 20 is not limited to copper, and there is no problem with other metal materials. Since copper is a material that can be easily machined, such as by cutting, cutting, bending, and drilling, complicated shapes can be easily produced. Moreover, press working using a mold can be adopted for the copper material. Since press working can process the copper material in a shorter time than machining, the manufacturing cost of the bus bar 20 can be suppressed.
  • the capacitor board unit 1 shown in FIG. 1 has three load terminals 23, the number may be one, or four or more.
  • An insulating member (not shown) is provided between the positive bus bar 20a and the negative bus bar 20b.
  • the insulating member prevents a short circuit between the positive bus bar 20a and the negative bus bar 20b.
  • the insulating member is, for example, insulating paper.
  • the positive bus bar 20 a , the negative bus bar 20 b , and the insulating member are integrally molded with the resin portion 21 .
  • Methods for integrating the resin portion 21 and the bus bar 20 include an insert molding method and an outsert molding method.
  • the resin portion 21 has a screw fastening hole for fastening the bus bar 20 to the wiring board 30 . Bus bar 20 and wiring board 30 are fastened using this hole and screw, and bus bar 20 and wiring board 30 are mechanically connected.
  • the resin portion 21 is fixed to the wiring substrate 30 at three points. By fixing the resin portion 21 to the wiring board 30 in this manner, the vibration resistance of the bus bar 20 can be improved. Also, the reliability of electrical connection between the bus bar 20 and the wiring board 30 can be improved.
  • the wiring board 30 is a general printed wiring board such as a glass composite board such as CEM-3 or a glass epoxy board such as FR-4.
  • a wiring layer 50 having wiring is laminated on the wiring substrate 30, and the wiring substrate 30 has a multilayer structure in which at least two wiring layers 50 including a front wiring layer and a back wiring layer are laminated.
  • the wiring board 30 is provided with screw fastening holes 40 for screw fastening to a housing or the like.
  • the wiring of the wiring board 30 includes a positive wiring 30a connecting the positive smoothing terminal 24a and the positive capacitor terminal 10a, and a negative wiring 30b connecting the negative smoothing terminal 24b and the negative capacitor terminal 10b. As shown in FIG.
  • the positive wiring layer forming the positive wiring 30a is configured so that the positive smoothing terminal 24a and the positive capacitor terminal 10a can be connected in parallel.
  • the smoothing terminal 24b and the negative capacitor terminal 10b are configured to be connected in parallel.
  • the load terminal 23 is omitted.
  • FIG. 6 shows an example in which five capacitors 10 are connected in parallel, the number of capacitors 10 is not limited to this.
  • the wiring board 30 includes a first positive electrode side wiring 31a to which n (n is an integer equal to or greater than 2) positive electrode smoothing terminals 24a are dispersedly connected, and positive electrode capacitor terminals 10a of a plurality of capacitors 10 are dispersedly connected. n portions of the first positive electrode side wiring 31a connected to the n pieces of positive electrode smoothing terminals 24a and n portions of the second positive electrode side wiring 31b connected to each other; a first negative electrode side wiring 32a to which n pieces of negative electrode smoothing terminals 24b are dispersedly connected; and negative electrode capacitor terminals 10b of a plurality of capacitors 10.
  • the first positive-side wiring 31a and the second positive-side wiring 31b are formed linearly and arranged in parallel with each other.
  • the first negative-side wiring 32a and the second negative-side wiring 32b are formed linearly and arranged in parallel with each other.
  • the wiring board 30 is not limited to a laminated structure, the wiring board 30 can be easily made to have a low inductance because the positive and negative patterns of the wiring layers are provided close to each other due to the laminated structure.
  • a glass composite board or a glass epoxy board it is possible to reduce the number of production processes by reflow, and the capacitor board unit 1 corresponding to a large current can be manufactured with more easily available general materials. Productivity of the unit 1 can be improved.
  • the capacitor 10 and the bus bar 20 are electrically connected to the positive wiring 30a or the negative wiring 30b provided in the wiring layer 50 on the surface of the wiring board 30 by solder 60, as shown in FIG. Although FIG. 3 shows the positive bus bar 20a, the same applies to the negative bus bar 20b.
  • a reflow method can be used as a method of electrically connecting with the solder 60 .
  • the components and the wiring layer 50 on the surface of the wiring board 30 can be electrically connected without penetrating the electrodes of the components to be mounted on the wiring board 30 to the back surface of the wiring board 30 .
  • the wiring board 30 of the present embodiment is, for example, a glass epoxy board having a multi-layer structure in which the wiring layers 50 are four layers.
  • the wiring board 30 includes, from the top, a pad (not shown), a solder resist 70, a wiring layer 50a on the surface, a prepreg 80, a second wiring layer 50b, a core material 90, a third wiring layer 50c, a prepreg 80, The wiring layer 50d on the rear surface and the solder resist 70 are laminated in this order.
  • the wiring layer 50a on the front surface, the wiring layer 50b on the second layer, the wiring layer 50c on the third layer, and the wiring layer 50d on the back surface are generally made of copper foil with a thickness of 35 ⁇ m or 70 ⁇ m. However, it is not particularly limited to this.
  • the thickness of the wiring layer 50 can be arbitrarily set together with the width of the wiring pattern in consideration of heat generation (temperature rise) assumed from the value of the current flowing through the wiring layer.
  • the positive bus bar 20a which is the portion surrounded by the dashed line, has a positive power supply terminal 22a, a positive load terminal 23a, and a positive smoothing terminal 24a.
  • the negative bus bar 20b which is the portion surrounded by the dashed line, has a negative power supply terminal 22b, a negative load terminal 23b, and a negative smoothing terminal 24b.
  • a capacitor 10 surrounded by a dotted line has a positive capacitor terminal 10a and a negative capacitor terminal 10b.
  • the positive electrode wiring 30a which is the portion surrounded by the two-dot chain line, connects the plurality of positive electrode smoothing terminals 24a and the plurality of positive electrode capacitor terminals 10a in series and parallel.
  • the negative electrode wiring 30b which is the portion surrounded by the two-dot chain line, connects the plurality of negative electrode smoothing terminals 24b and the plurality of negative electrode capacitor terminals 10b in series and parallel.
  • the positive bus bar 20a, the negative bus bar 20b, the positive wiring 30a, the negative wiring 30b, and the capacitor 10 all have DC resistance components and inductance components.
  • both the positive bus bar 20a and the negative bus bar 20b have a DC resistance component 20R and an inductance component 20L.
  • the positive wiring 30a and the negative wiring 30b both have a DC resistance component 30R and an inductance component 30L.
  • the capacitor 10 has a DC resistance component 10R and an inductance component 10L. Let the capacitance component of the capacitor 10 be 10C.
  • the DC resistance component 20R of the positive bus bar 20a and the negative bus bar 20b is represented by the electrical resistivity ⁇ ( ⁇ m) of the conductor ⁇ the length l (m) of the conductor/the cross-sectional area A (m 2 ) of the conductor.
  • the conductor is a material that constitutes the positive bus bar 20a and the negative bus bar 20b.
  • the conductor is copper, its electrical resistivity is approximately 1.68 ⁇ 10 ⁇ 8 ( ⁇ m).
  • the inductance component 20L of the positive bus bar 20a and the negative bus bar 20b is determined by the material and shape of the positive bus bar 20a and the negative bus bar 20b, the magnitude and direction of the flowing current, and is divided into a self-inductance component and a mutual inductance component.
  • the DC resistance component 30R of the positive wiring 30a and the negative wiring 30b is determined by the electrical resistivity of the material of the wiring formed on the wiring board 30, the length of the wiring, the cross-sectional area of the wiring, and the pattern of the wiring.
  • the inductance component 30L of the positive wiring 30a and the negative wiring 30b is determined by the material of the wiring formed on the wiring board 30, the length of the wiring, the cross-sectional area of the wiring, and the pattern of the wiring, as well as the magnitude and size of the current flowing through the wiring. determined by the direction of the current.
  • the DC resistance component 10R and the inductance component 10L of the capacitor 10 are called equivalent series resistance ESR (Equivalent series resistance) and equivalent series inductance ESL (Equivalent series inductance), respectively, and are components well known as an equivalent circuit of a single capacitor. .
  • the busbar-side DC resistance value which is the sum of the DC resistance value of the positive bus bar 20a from the positive power supply terminal 22a to the positive load terminal 23a and the DC resistance value of the negative bus bar 20b from the negative power supply terminal 22b to the negative load terminal 23b, is A positive wiring board side DC resistance value that is a DC resistance value between the positive power supply terminal 22a and the positive load terminal 23a via the plurality of positive electrode smoothing terminals 24a and the positive electrode wiring 30a, the plurality of negative electrode smoothing terminals 24b and It is smaller than the wiring board side DC resistance value which is the sum of the negative wiring board side DC resistance value which is the DC resistance value between the negative power supply terminal 22b and the negative load terminal 23b via the negative wiring 30b.
  • the DC resistance component 20R of the path from the positive power supply terminal 22a of the positive bus bar 20a to the positive load terminal 23a and the DC resistance component 20R of the path from the negative power supply terminal 22b of the negative bus bar 20b to the negative load terminal 23b of the negative bus bar 20b The sum of the DC resistance component 20R of the path is set to be as small as possible than the sum of the DC resistance component 30R of the positive wiring 30a and the negative wiring 30b. By setting in this way, the bus bar side DC resistance value becomes smaller than the wiring board side DC resistance value.
  • a DC resistance component 20R of the path from the positive power supply terminal 22a of the positive bus bar 20a to the positive load terminal 23a, and a DC resistance component 20R of the path from the negative power supply terminal 22b of the negative bus bar 20b to the negative load terminal 23b. is described as ⁇ 20R.
  • the sum of the DC resistance components 30R of the positive electrode wiring 30a and the negative electrode wiring 30b is described as ⁇ 30R. That is, the capacitor board unit 1 is set so that ⁇ 20R ⁇ 30R.
  • the sum of the DC resistance value from the positive power supply terminal 22a of the positive bus bar 20a to the positive load terminal 23a and the DC resistance value from the negative power supply terminal 22b to the negative load terminal 23b of the negative bus bar 20b is the DC resistance of the positive electrode wiring 30a. It is set to be as small as possible than the sum of the resistance value and the DC resistance value of the negative electrode wiring 30b.
  • ⁇ 20R between the load terminal 23 farthest from the power supply terminal 22 and the power supply terminal 22 is the largest. be.
  • the DC resistance component When the DC resistance component is set in this manner, the DC current supplied from the external power supply 100 flows from the positive electrode busbar 20a through the power conversion unit 200 to the negative electrode busbar as indicated by the thick arrow in FIG. 20b. Direct current is less likely to flow through the path (broken arrow in FIG. 8) to the positive load terminal 23a via the plurality of positive electrode smoothing terminals 24a and the positive electrode wiring 30a. Similarly, it becomes difficult to flow in the path (broken arrow in FIG. 8) leading to the negative power supply terminal 22b via the plurality of negative smoothing terminals 24b and the negative wiring 30b.
  • the decrease in capacitance due to aging and the increase in the equivalent series resistance value ESR are accelerated due to temperature rise. Even if an aluminum electrolytic capacitor is used as the capacitor 10, the temperature rise of the capacitor 10 can be prevented, so that deterioration of the aluminum electrolytic capacitor can be suppressed.
  • ⁇ 20R is preferably 1/30 or less of ⁇ 30R. If ⁇ 20R is 1/30 or less of ⁇ 30R, approximately 97% of the DC current will flow through the busbar 20 . Since only about 3% DC current flows through the positive wiring 30a, the capacitor 10, and the negative wiring 30b, heat generation in the positive wiring 30a, the capacitor 10, and the negative wiring 30b can be suppressed. Moreover, since the temperature rise of the capacitor 10 can be prevented, deterioration, failure, etc. of the capacitor 10 can be suppressed.
  • the copper foil wiring layer is formed with a thickness of 0.105 mm and a wiring width of 4 mm.
  • the side DC resistance value can be reduced to 1/30 or less of the wiring board side DC resistance value.
  • the dimensional configuration example of the wiring and the bus bar 20 is not limited to this.
  • FIG. 7 A path of alternating current in the equivalent circuit of the capacitor substrate unit 1 shown in FIG. 7 will be described with reference to FIG.
  • An external power supply 100 which is a DC power supply, is connected between the positive power supply terminal 22a and the negative power supply terminal 22b in FIG. 7, and a power conversion unit 200 is connected between a set of positive load terminals 23a and negative load terminals 23b.
  • thick arrows indicate paths through which alternating current mainly flows.
  • the capacitor board unit 1 due to the pulsation of the voltage input to the capacitor board unit 1, periodic pulsating currents are generated in the current when the capacitor 10 is charged and discharged. Considering this periodic pulsating current as alternating current, the voltage output to power conversion unit 200 may fluctuate.
  • the capacitor board unit 1 according to the present embodiment suppresses variations in the output voltage caused by pulsation of the input voltage.
  • a positive load via a plurality of positive smoothing terminals 24a, a positive wiring 30a, a plurality of capacitors 10, a negative wiring 30b, and a plurality of negative smoothing terminals 24b.
  • the inductance value on the capacitor side which is the inductance value between the terminal 23a and the negative load terminal 23b, is the inductance value of the positive bus bar 20a from the positive power supply terminal 22a to the positive load terminal 23a, and the inductance value from the negative power supply terminal 22b to the negative load terminal 23b. is smaller than the busbar side inductance value which is the sum of the inductance value of the negative electrode busbar 20b.
  • the inductance component 20L of the path from the positive power supply terminal 22a of the positive bus bar 20a to the positive load terminal 23a and the inductance component 20L of the path from the negative power supply terminal 22b of the negative bus bar 20b to the negative load terminal 23b The sum of the inductance component 20L of the path is the sum of the inductance component 30L of the positive electrode wiring 30a and the negative electrode wiring 30b connected between the positive electrode smoothing terminal 24a and the negative electrode smoothing terminal 24b, and the inductance component 10L of the capacitor 10. It is set to be as large as possible than the sum.
  • the sum of the inductance component 20L of the path from the positive power supply terminal 22a of the positive bus bar 20a to the positive load terminal 23a and the inductance component 20L of the path from the negative power supply terminal 22b of the negative bus bar 20b to the negative load terminal 23b. is described as ⁇ 20L.
  • the sum of the inductance component 30L of the positive electrode wiring 30a and the negative electrode wiring 30b connected between the positive electrode smoothing terminal 24a and the negative electrode smoothing terminal 24b and the inductance component 10L of the capacitor 10 is expressed as ⁇ (30L+10L). do. That is, in the capacitor board unit 1, ⁇ 20L>> ⁇ (30L+10L) is set.
  • the sum of the inductance value from the positive power supply terminal 22a of the positive bus bar 20a to the positive load terminal 23a and the inductance value from the negative power supply terminal 22b to the negative load terminal 23b of the negative bus bar 20b is the sum of the inductance value from the positive smoothing terminal 24a to the negative load terminal 23b. It is set to be as large as possible than the sum of the inductance value of the positive electrode wiring 30a to the smoothing terminal 24b, the inductance value of the negative electrode wiring 30b, and the inductance value of the capacitor 10.
  • ⁇ 20L is preferably 20 times or more of ⁇ (30L+10L). If ⁇ 20L is 20 times or more of ⁇ (30L+10L), about 95% of the alternating current flows through the positive wiring 30a, the capacitor 10, and the negative wiring 30b. Since only about 5% of the alternating current flows through the path to the external power supply 100 via the busbar 20, fluctuations in the power supply voltage caused by pulsation of the output voltage can be suppressed.
  • the pulsation of the output voltage from the power conversion unit 200 causes Since the alternating current flows from the positive electrode smoothing terminal 24a to the negative electrode smoothing terminal 24b via the positive electrode wiring 30a, the capacitor 10, and the negative electrode wiring 30b, the alternating current component flowing out of the capacitor substrate unit 1 is reduced. can be significantly suppressed.
  • the sum of the inductance values of the positive wiring 30a and the negative wiring 30b in the capacitor side inductance value can be reduced to one-third or less of the bus bar side inductance value.
  • the positive electrode bus bar 20a includes n positive load terminals 23a connected to the positive electrodes of n (n is an integer equal to or greater than 2) power conversion units 200, and n positive load terminals. 23a are provided adjacent to each of n positive electrode smoothing terminals 24a.
  • the negative electrode bus bar 20b includes n negative load terminals 23b connected to the negative electrodes of the n power conversion units 200, and negative electrode smoothing terminals 23b provided adjacent to each of the n negative load terminals 23b. It has a terminal 24b. As shown in FIG.
  • the power conversion device 500 can reduce the DC current component even when a large current flows. Most of the current flows through the busbar 20 and does not flow through the wiring board 30 and the capacitor 10, so that the temperature rise of the capacitor 10 is suppressed, and deterioration and failure of the capacitor 10 can be suppressed. In addition, most of the alternating current component caused by the voltage pulsation of the power conversion unit 200 flows through the wiring board 30 and the capacitor 10 and does not flow through the external power supply 100, so that fluctuations in the power supply voltage caused by the pulsation can be suppressed. can be done. Therefore, it is possible to obtain the power conversion device 500 that suppresses the alternating current component that flows out to the outside. Also, since the alternating current component flowing out to the outside is suppressed, the device connected to the external power supply 100 can stably operate.
  • the load connected to the capacitor board unit 1 is not limited to the power conversion unit 200.
  • the capacitor board unit 1 may be used in a device other than the power conversion device 500 .
  • the capacitor board unit 1 has the DC resistance value of the positive bus bar 20a from the positive power supply terminal 22a to the positive load terminal 23a and the negative bus bar 20b from the negative power supply terminal 22b to the negative load terminal 23b.
  • the busbar side DC resistance value which is the sum of the DC resistance value of the positive electrode wiring, is the DC resistance value between the positive power supply terminal 22a and the positive load terminal 23a via the plurality of positive electrode smoothing terminals 24a and the positive electrode wiring 30a. It is the sum of the DC resistance on the substrate side and the DC resistance on the negative wiring board side, which is the DC resistance value between the negative power supply terminal 22b and the negative load terminal 23b via the plurality of negative smoothing terminals 24b and the negative wiring 30b.
  • a positive load terminal 23a which is smaller than a certain wiring board side DC resistance value and which passes through a plurality of positive electrode smoothing terminals 24a, a positive electrode wiring 30a, a plurality of capacitors 10, a negative electrode wiring 30b, and a plurality of negative electrode smoothing terminals 24b.
  • the inductance value of the positive bus bar 20a from the positive power supply terminal 22a to the positive load terminal 23a and the inductance value of the positive bus bar 20a from the positive power supply terminal 22b to the negative load terminal 23b Since it is smaller than the busbar side inductance value which is the sum of the inductance value of the busbar 20b, almost no DC current flows through the positive electrode wiring 30a, the capacitor 10, and the negative electrode wiring 30b, so that the temperature rise of the capacitor 10 can be suppressed. Since the alternating current caused by the pulsation of the output voltage from the power conversion unit 200 flows from the positive electrode smoothing terminal 24a through the positive electrode wiring 30a, the capacitor 10, and the negative electrode wiring 30b to the negative electrode smoothing terminal 24b. , the alternating current component flowing out of the capacitor board unit 1 can be suppressed.
  • the positive electrode bus bar 20a is adjacent to each of the n positive load terminals 23a connected to the positive electrodes of the n (n is an integer equal to or greater than 2) power conversion units 200, and the n positive load terminals 23a.
  • n negative load terminals 23b and n negative load terminals 23b each having n positive smoothing terminals 24a provided, and negative bus bars 20b connected to the negative electrodes of the n power conversion units 200, respectively.
  • the alternating current caused by the pulsation of the output voltage from the power conversion unit 200 is transferred from the positive electrode smoothing terminal 24a to the positive electrode wiring 30a, the capacitor 10, and the negative electrode wiring 30b to the negative electrode smoothing terminal 24b.
  • a wiring board 30 has a first positive electrode side wiring 31a to which n pieces of positive electrode smoothing terminals 24a are dispersedly connected, and a second positive electrode side wiring to which positive electrode capacitor terminals 10a of a plurality of capacitors 10 are dispersedly connected. 31b, and n pieces that connect the n portions connected to the n pieces of positive electrode smoothing terminals 24a in the first positive electrode side wiring 31a and the n dispersed portions in the second positive electrode side wiring 31b, respectively.
  • Negative wiring 32b, n portions connected to n negative smoothing terminals 24b in the first negative wiring 32a, and n distributed portions in the second negative wiring 32b are connected respectively.
  • n negative connection wirings 32c are provided, the inductance of the wiring board 30 can be reduced.
  • the first positive electrode side wiring 31a and the second positive electrode side wiring 31b are formed linearly and arranged in parallel with each other, and the first negative electrode side wiring 32a and the second negative electrode side wiring 32b are formed linearly. , when arranged in parallel with each other, the inductance of the wiring substrate 30 can be further reduced.
  • a compact and large-capacity capacitor board unit 1 can be realized.
  • the wiring layer 50 having wiring is laminated on the wiring substrate 30, the positive and negative patterns of the wiring layers are provided close to each other, so that the inductance of the wiring substrate 30 can be easily reduced. .
  • the alternating current caused by the pulsation of the output voltage from the power conversion unit 200 is smoothed from the positive electrode smoothing terminal 24a through the positive electrode wiring 30a, the capacitor 10, and the negative electrode wiring 30b. It is possible to make it easier to flow to the path leading to the terminal 24b.
  • the capacitor 10 is an aluminum electrolytic capacitor
  • the aluminum electrolytic capacitor has the largest capacity per unit volume
  • a small and large capacity capacitor board unit can be realized by connecting a plurality of aluminum electrolytic capacitors in parallel. 1 can be realized.
  • the positive bus bar 20a and the negative bus bar 20b are electrically and mechanically connected to the wiring board 30, the bus bar 20 and the wiring board 30 can be electrically and mechanically connected by reflow. is reduced and the structure is also simplified, the productivity of the capacitor board unit 1 can be improved.
  • the wiring board 30 is a glass composite board or a glass epoxy board with a multi-layer structure, the production process can be reduced by reflow, and the capacitor board unit 1 that can handle large currents with more readily available general materials. can be manufactured, the productivity of the capacitor board unit 1 can be improved.
  • a power conversion device 500 according to Embodiment 1 includes a capacitor board unit 1 disclosed in the present application, and a power conversion unit 200 connected between each of a plurality of positive load terminals 23a and each of a plurality of negative load terminals 23b. Therefore, the alternating current caused by the pulsation of the output voltage from the power conversion unit 200 flows from the positive electrode smoothing terminal 24a to the negative electrode smoothing terminal 24b via the positive electrode wiring 30a, the capacitor 10, and the negative electrode wiring 30b. Since the AC current flows through the path leading to it, it is possible to suppress the alternating current component flowing out from the power conversion device 500 to the outside.
  • Capacitor board unit 10 capacitor, 10a positive electrode capacitor terminal, 10b negative electrode capacitor terminal, 10L, 20L, 30L inductance component, 10R, 20R, 30R DC resistance component, 20 busbar, 20a positive electrode busbar, 20b negative electrode busbar, 21 resin part, 22 Power supply terminal 22a Positive power supply terminal 22b Negative power supply terminal 23 Load terminal 23a Positive load terminal 23b Negative load terminal 24a Positive smoothing terminal 24b Negative smoothing terminal 30 Wiring board 30a Positive wiring 30b Negative Wiring 31a First positive wiring 31b Second positive wiring 31c Positive connecting wiring 32a First negative wiring 32b Second negative wiring 32c Negative connecting wiring 40 Screw hole , 50 Wiring layer, 60 Solder, 70 Solder resist, 80 Prepreg, 90 Core material, 100 External power supply, 200 Power conversion unit, 300 External device, 500 Power converter

Abstract

配線基板(30)と、正極電源端子(22a)、正極負荷端子(23a)、及び正極平滑用端子(24a)を有した正極バスバー(20a)と、負極電源端子(22b)、負極負荷端子(23b)、及び負極平滑用端子(24b)を有した負極バスバー(20b)と、正極コンデンサ端子(10a)及び負極コンデンサ端子(10b)を有した複数のコンデンサ(10)とを備え、配線は正極平滑用端子(24a)と正極コンデンサ端子(10a)とを直列かつ並列に接続する正極配線(30a)及び負極平滑用端子(24b)と負極コンデンサ端子(10b)とを直列かつ並列に接続する負極配線(30b)を有し、正極電源端子(22a)から正極負荷端子(23a)までの直流抵抗値と負極電源端子(22b)から負極負荷端子(23b)までの直流抵抗値との和が、複数の正極平滑用端子(24a)及び正極配線(30a)を経由した正極電源端子(22a)と正極負荷端子(23a)との間の直流抵抗値と、複数の負極平滑用端子(24b)及び負極配線(30b)を経由した負極電源端子(22b)と負極負荷端子(23b)との間の直流抵抗値との和よりも小さく、かつ、正極平滑用端子(24a)、配線、コンデンサ(10)、負極平滑用端子(24b)を経由した正極負荷端子(23a)と負極負荷端子(23b)との間のインダクタンス値が、正極電源端子(22a)から正極負荷端子(23a)まで、及び負極電源端子(22b)から負極負荷端子(23b)までのインダクタンス値の和よりも小さい。

Description

コンデンサ基板ユニット及び電力変換装置
 本願は、コンデンサ基板ユニット及び電力変換装置に関するものである。
 パワーエレクトロニクスの分野においては、AC/DCコンバータ、DC―DCコンバータ、及びインバータなどの電力変換装置が用いられている。電力変換装置は、半導体素子であるスイッチング素子のスイッチング動作により電力を変換する電力変換ユニットを備える。また、電力変換装置は、直流成分に交流成分が重畳された電圧を平滑化するためのコンデンサを備えている。電力変換装置が備えるコンデンサの構成としては、例えば複数のコンデンサ素子を基板に配置した基板ユニットがある。電力変換装置の高出力化の要求に対してスイッチング素子から出力される電流が増大する場合、コンデンサ基板ユニットの許容電流を増やす技術が必要となる。
 外部から大電流が入力されるコンデンサ基板ユニットとしては、金属製の導電板に直接コンデンサが接続される構成が開示されている(例えば、特許文献1参照)。
特開2001-352767号公報
 上記特許文献1におけるコンデンサ基板ユニットでは、入力電圧の脈動により生じる交流電流が直流電流に重畳されるため、金属製の導電板に直流電流成分と交流電流成分とが同時に流れる。開示されたコンデンサ基板ユニットにおいて電流を増加させると、導電板の発熱及び導電板に接続された他の部品の発熱が大きくなる。金属製の導電板は熱伝導に優れているため、それらの発熱に起因した熱がコンデンサに直接伝わるため、コンデンサの温度は上昇する。コンデンサの温度が上昇すると、コンデンサの劣化、及び故障などの原因になるという課題があった。また、コンデンサを実装した回路基板に交流電流の重畳した直流電流が流れることで回路基板の発熱が大きくなる。回路基板の発熱を抑制するためには、回路基板の導電配線パターンを厚くする場合、または回路基板、及びコンデンサに対して放熱、もしくは冷却の構造を設ける場合などがあるが、コンデンサ基板ユニットが複雑かつ高コストになる。
 一方、コンデンサ基板ユニットを備えた電力変換装置の直流電源側には、直流電源の直流電圧を電源とする外部機器が接続される場合がある。その場合、外部機器に対して、電力変換装置の動作により直流電圧に重畳される交流成分によって生じた電圧脈動を所定値未満に抑える必要がある。電圧脈動の原因となる交流電流成分が外部機器に流れずに、コンデンサ基板ユニットにおいて平滑化されることが理想的である。開示されたコンデンサ基板ユニットにおいては金属製の導電板に直流電流成分と交流電流成分とが重畳されて流れるため、導電板のインピーダンスが小さく抑えられないと外部へ流出する交流電流成分が増えることになる。外部へ流出する交流電流成分が増えると、直流電圧の電圧脈動が大きくなってしまうという課題があった。直流電圧を電源とする外部機器において、電圧脈動は故障及び誤動作の原因となる。
 そこで、本願は、コンデンサの温度上昇を抑制しつつ、外部へ流出する交流電流成分を抑制したコンデンサ基板ユニットを得ること、及び外部へ流出する交流電流成分を抑制した電力変換装置を得ることを目的とする。
 本願に開示されるコンデンサ基板ユニットは、配線を有した配線基板と、電源の正極に接続される少なくとも一つの正極電源端子、複数の負荷の正極のそれぞれに接続される複数の正極負荷端子、及び前記配線に接続された複数の正極平滑用端子を有した正極バスバーと、前記電源の負極に接続される少なくとも一つの負極電源端子、複数の前記負荷の負極のそれぞれに接続される複数の負極負荷端子、及び前記配線に接続された複数の負極平滑用端子を有した負極バスバーと、正極コンデンサ端子、及び負極コンデンサ端子を有し、前記正極コンデンサ端子、及び前記負極コンデンサ端子が前記配線に接続された複数のコンデンサと、を備え、前記配線は、複数の前記正極平滑用端子と複数の前記正極コンデンサ端子とを直列かつ並列に接続する正極配線、及び複数の前記負極平滑用端子と複数の前記負極コンデンサ端子とを直列かつ並列に接続する負極配線を有し、前記正極電源端子から前記正極負荷端子までの前記正極バスバーの直流抵抗値と、前記負極電源端子から前記負極負荷端子までの前記負極バスバーの直流抵抗値との和であるバスバー側直流抵抗値が、複数の前記正極平滑用端子及び前記正極配線を経由した、前記正極電源端子と前記正極負荷端子との間の直流抵抗値である正極配線基板側直流抵抗値と、複数の前記負極平滑用端子及び前記負極配線を経由した、前記負極電源端子と前記負極負荷端子との間の直流抵抗値である負極配線基板側直流抵抗値との和である配線基板側直流抵抗値よりも小さく、かつ、複数の前記正極平滑用端子、前記正極配線、複数の前記コンデンサ、前記負極配線、及び複数の前記負極平滑用端子を経由した、前記正極負荷端子と前記負極負荷端子との間のインダクタンス値であるコンデンサ側インダクタンス値が、前記正極電源端子から前記正極負荷端子までの前記正極バスバーのインダクタンス値と、前記負極電源端子から前記負極負荷端子までの前記負極バスバーのインダクタンス値との和であるバスバー側インダクタンス値よりも小さいものである。
 本願に開示される電力変換装置は、本願に開示されたコンデンサ基板ユニットと、複数の前記正極負荷端子のそれぞれと複数の前記負極負荷端子のそれぞれとの間に接続された電力変換ユニットとを備えたものである。
 本願に開示されるコンデンサ基板ユニットによれば、正極電源端子から正極負荷端子までの正極バスバーの直流抵抗値と、負極電源端子から負極負荷端子までの負極バスバーの直流抵抗値との和であるバスバー側直流抵抗値が、複数の正極平滑用端子及び正極配線を経由した、正極電源端子と正極負荷端子との間の直流抵抗値である正極配線基板側直流抵抗値と、複数の負極平滑用端子及び負極配線を経由した、負極電源端子と負極負荷端子との間の直流抵抗値である負極配線基板側直流抵抗値との和である配線基板側直流抵抗値よりも小さく、かつ、複数の正極平滑用端子、正極配線、複数のコンデンサ、負極配線、及び複数の負極平滑用端子を経由した、正極負荷端子と負極負荷端子との間のインダクタンス値であるコンデンサ側インダクタンス値が、正極電源端子から正極負荷端子までの正極バスバーのインダクタンス値と、負極電源端子から負極負荷端子までの負極バスバーのインダクタンス値との和であるバスバー側インダクタンス値よりも小さいため、正極配線、コンデンサ、及び負極配線にはほとんど直流電流が流れないのでコンデンサの温度上昇を抑制することができ、正極負荷端子と負極負荷端子に接続された負荷からの出力電圧の脈動に起因する交流電流は正極平滑用端子から正極配線、コンデンサ、及び負極配線を経由して負極平滑用端子に至る経路に流れるのでコンデンサ基板ユニットから外部へ流出する交流電流成分を抑制することができる。
 本願に開示される電力変換装置によれば、本願に開示されたコンデンサ基板ユニットと、複数の正極負荷端子のそれぞれと複数の負極負荷端子のそれぞれとの間に接続された電力変換ユニットとを備えているため、電力変換ユニットからの出力電圧の脈動に起因する交流電流は正極平滑用端子から正極配線、コンデンサ、及び負極配線を経由して負極平滑用端子に至る経路に流れるので、電力変換装置から外部へ流出する交流電流成分を抑制することができる。
実施の形態1に係るコンデンサ基板ユニットを示す平面図である。 実施の形態1に係るコンデンサ基板ユニットを示す側面図である。 実施の形態1に係るコンデンサ基板ユニットの要部を示す図である。 実施の形態1に係るコンデンサ基板ユニットの配線基板の断面図である。 実施の形態1に係る電力変換装置の概略を示す模式図である。 実施の形態1に係るコンデンサ基板ユニットの概略回路図である。 実施の形態1に係るコンデンサ基板ユニットの等価回路図である。 実施の形態1に係るコンデンサ基板ユニットの等価回路図における直流電流の経路を示す図である。 実施の形態1に係るコンデンサ基板ユニットの等価回路図における交流電流の経路を示す図である。
 以下、本願の実施の形態によるコンデンサ基板ユニット及び電力変換装置を図に基づいて説明する。なお、各図において同一、または相当部材、部位については同一符号を付して説明する。
実施の形態1.
 図1は実施の形態1に係るコンデンサ基板ユニット1を示す平面図、図2はコンデンサ基板ユニット1を示す側面図、図3はコンデンサ基板ユニット1の要部を示す図で、配線基板30とコンデンサ10及びバスバー20との接続を示す概略図、図4はコンデンサ基板ユニット1の配線基板30の断面図、図5は実施の形態1に係る電力変換装置500の概略を示す模式図、図6はコンデンサ基板ユニットの概略回路図、図7はコンデンサ基板ユニット1の等価回路図、図8はコンデンサ基板ユニット1の等価回路図における直流電流の経路を示す図、図9はコンデンサ基板ユニット1の等価回路図における交流電流の経路を示す図である。コンデンサ基板ユニット1は、所望の電力を直流または交流電圧に変換する電力変換装置500に搭載される。コンデンサ基板ユニット1は、複数のコンデンサ10を有し、直流成分に交流成分が重畳された電圧を平滑化する。
<電力変換装置500>
 電力変換装置500は、図5に示すように、コンデンサ基板ユニット1と負荷である電力変換ユニット200とを備える。コンデンサ基板ユニット1は、コンデンサ基板ユニット1に接続される負荷端子23を有する。負荷端子23は、電力変換ユニット200の正極に接続される複数の正極負荷端子23a、及び電力変換ユニット200の負極に接続される複数の負極負荷端子23bを有する。電力変換ユニット200は、複数の正極負荷端子23aのそれぞれと複数の負極負荷端子23bのそれぞれとの間に接続される。電力変換ユニット200は、例えば直流電力を交流電力に変換する機能を備えている。コンデンサ基板ユニット1は、外部電源100に接続される電源端子22を有する。電源端子22は、外部電源100の正極に接続される正極電源端子22a、及び外部電源100の負極に接続される負極電源端子22bを有する。電力変換装置500は、外部電源100の電力を直流または交流電圧に変換して外部機器300に出力する。本実施の形態では、コンデンサ基板ユニット1が一つの正極電源端子22aと一つの負極電源端子22bを有した構成を示したがこれに限るものではなく、複数の正極電源端子22aと負極電源端子22bを備える構成でも構わない。また、コンデンサ基板ユニット1に接続される電力変換ユニット200の個数も3つに限るものではない。
<コンデンサ基板ユニット1>
 コンデンサ基板ユニット1は、図1に示すように、コンデンサ10と、バスバー20と、配線を有した配線基板30とを備える。本実施の形態のコンデンサ基板ユニット1においては、コンデンサ10及びバスバー20は配線基板30に実装されており、図6に示すように、コンデンサ10とバスバー20とは配線基板30に形成された配線を介して電気的に接続されている。
 コンデンサ10は、主に電力を蓄えるいわゆる充電する機能と、蓄えられた電力を放電する機能とを有する電気部品である。一般的に、アルミ電解コンデンサ、フィルムコンデンサ、またはセラミックコンデンサなどがコンデンサ基板ユニット1のコンデンサ10に用いられる。本実施の形態では、コンデンサ10にアルミ電解コンデンサを用いた場合について説明する。アルミ電解コンデンサは、単位体積あたりの容量が最も大きいコンデンサである。そのため、アルミ電解コンデンサ複数個を並列に接続して使用することで、小型かつ大容量なコンデンサ基板ユニット1を実現することができる。図1は、コンデンサ10を28個並列に接続した場合のレイアウト例を示しているが、コンデンサ10の個数はこれに限るものではない。
 コンデンサ10は、正極コンデンサ端子10a、及び負極コンデンサ端子10bを有する。図2に示すように、配線基板30の表面にコンデンサ10が実装される。正極コンデンサ端子10a及び負極コンデンサ端子10b(図2において図示せず)が配線基板30の配線に接続される。複数の正極平滑用端子24aと、複数の負極平滑用端子24bとの間に、複数のコンデンサ10が並列接続されている。このように構成することで、小型かつ大容量なコンデンサ基板ユニット1を実現することができる。本実施の形態では、3つの正極平滑用端子24aと3つの負極平滑用端子24bに、28個のコンデンサ10が並列接続されているが、それぞれの個数はこれに限るものではない。
 バスバー20は、主に直流電流を流す電流経路である。バスバー20は、図1に示すように、正極バスバー20aと負極バスバー20bとを備える。正極バスバー20aは、外部電源100の正極に接続される少なくとも一つの正極電源端子22a、複数の電力変換ユニット200の正極のそれぞれに接続される複数の正極負荷端子23a、及び配線に接続された複数の正極平滑用端子24a(図1において図示せず)を有する。負極バスバー20bは、外部電源100の負極に接続される少なくとも一つの負極電源端子22b、複数の電力変換ユニット200の負極のそれぞれに接続される複数の負極負荷端子23b、及び配線に接続された複数の負極平滑用端子24b(図1において図示せず)を有する。正極電源端子22aと負極電源端子22bとで電源端子22が構成され、正極負荷端子23aと負極負荷端子23bとで負荷端子23が構成される。正極平滑用端子24a及び負極平滑用端子24bにより、バスバー20と配線基板30とは電気的かつ機械的に接続される。リフローによりバスバー20と配線基板30とを電気的かつ機械的に接続できるので、加工工程及び費用が削減され、構造も簡略化されるため、コンデンサ基板ユニット1の生産性を向上させることができる。
 バスバー20は、電気抵抗率が小さく導電性に優れた銅材が用いられる。バスバー20の材料は銅に限るものではなく、その他の金属材料でも何ら問題はない。銅材は切断、切削、曲げ、穴あけなどの機械加工が容易な材料であるため、複雑な形状を容易に作製することができる。また、銅材には金型を用いたプレス加工を採用することができる。プレス加工は機械加工に比べて短時間で銅材を加工できるため、バスバー20の製造コストを抑制することができる。なお、図1に示すコンデンサ基板ユニット1は負荷端子23を3つ備えているが、1つであってもよく、4つ以上であっても構わない。
 絶縁部材(図示せず)が正極バスバー20aと負極バスバー20bとの間に設けられる。絶縁部材は、正極バスバー20aと負極バスバー20bとの短絡を防止する。絶縁部材は、例えば、絶縁紙である。正極バスバー20a、負極バスバー20b、及び絶縁部材は、樹脂部21で一体成形される。樹脂部21とバスバー20とを一体とする方法としては、インサートモールド方式、アウトサートモールド方式などがある。樹脂部21は、バスバー20を配線基板30に締結するためのねじ締結用の穴を有している。この穴とねじとを用いてバスバー20と配線基板30とを締結して、バスバー20と配線基板30とは機械的に接続される。ここでは、3か所で樹脂部21は配線基板30に固定される。このように樹脂部21を配線基板30に固定することで、バスバー20の耐振性を向上させることができる。また、バスバー20と配線基板30との電気的な接続の信頼性を向上させることができる。
 配線基板30は、CEM-3などのガラスコンポジット基板またはFR-4などのガラスエポキシ基板などの一般的なプリント配線基板である。配線基板30には配線を有した配線層50が積層して設けられ、配線基板30は表面の配線層および裏面の配線層を含む少なくとも2層以上の配線層50を積層した多層構造を有する。配線基板30は、筐体などにねじで締結するためのねじ締結穴40を備える。配線基板30の配線は、正極平滑用端子24aと正極コンデンサ端子10aとを接続する正極配線30a、及び負極平滑用端子24bと負極コンデンサ端子10bとを接続する負極配線30bを有する。正極配線30aを形成する正極配線層は、図6に示すように、正極平滑用端子24aと正極コンデンサ端子10aとを並列接続可能に構成されており、負極配線30bを形成する負極配線層は負極平滑用端子24bと負極コンデンサ端子10bとを並列接続可能に構成されている。図6では、負荷端子23は省略している。図6では5つのコンデンサ10を並列接続した例を示しているが、コンデンサ10の個数はこれに限るものではない。
 配線基板30は、n個(nは、2以上の整数)の正極平滑用端子24aが分散して接続された第1の正極側配線31aと、複数のコンデンサ10の正極コンデンサ端子10aが分散して接続された第2の正極側配線31bと、第1の正極側配線31aにおけるn個の正極平滑用端子24aに接続されたn個の部分と第2の正極側配線31bにおけるn個の分散した部分とをそれぞれ接続するn個の正極側接続配線31cと、n個の負極平滑用端子24bが分散して接続された第1の負極側配線32aと、複数のコンデンサ10の負極コンデンサ端子10bが分散して接続された第2の負極側配線32bと、第1の負極側配線32aにおけるn個の負極平滑用端子24bに接続されたn個の部分と第2の負極側配線32bにおけるn個の分散した部分とをそれぞれ接続するn個の負極側接続配線32cと、を備えている。このようにコンデンサ10を並列に接続する配線を備えることで、配線基板30の低インダクタンス化を図ることができる。
 第1の正極側配線31a及び第2の正極側配線31bは、直線状に形成され、互いに並列して配置される。第1の負極側配線32a及び第2の負極側配線32bは、直線状に形成され、互いに並列して配置されている。このように配線をマトリクス状に構成することで、配線基板30の低インダクタンス化をさらに図ることができる。
 配線基板30は積層構造に限るものではないが、積層構造とすることで配線層の正負のパターンが近接して設けられるので、容易に配線基板30を低インダクタンス化することができる。ガラスコンポジット基板またはガラスエポキシ基板を用いることで、リフローにより生産工程の削減が可能であり、より入手性のよい一般的な材料で大電流に対応するコンデンサ基板ユニット1が製造可能なため、コンデンサ基板ユニット1の生産性を向上させることができる。
 コンデンサ10及びバスバー20は、図3に示すように、配線基板30の表面の配線層50に設けられた正極配線30aまたは負極配線30bにはんだ60により電気的に接続される。図3では正極バスバー20aについて示したが、負極バスバー20bについても同様である。はんだ60により電気的に接続する方法として、リフロー方式を用いることができる。リフロー方式では、配線基板30に実装する部品の電極などを配線基板30の裏面まで貫通させずに、部品と配線基板30の表面の配線層50とを電気的に接続することができる。ただし、リフロー方式に対応した部材及び部品を選定する必要がある。リフロー方式以外に配線基板30に部材及び部品などを実装する方法として、フロー方式がある。フロー方式の場合、配線基板30に実装する部材、部品、及び配線基板30などはフロー方式に対応した部材及び部品を選定する必要がある。配線基板30に部材及び部品などを実装する方法として、必要に応じてリフロー方式またはフロー方式、あるいはその両方を選択することが可能である。
 本実施の形態の配線基板30は、図4に示すように、例えば配線層50が4層の多層構造のガラスエポキシ基板である。配線基板30は、上部からパッド(図示せず)、ソルダーレジスト70、表面の配線層50a、プリプレグ80、2層目の配線層50b、コア材90、3層目の配線層50c、プリプレグ80、裏面の配線層50d、ソルダーレジスト70の順で積層されている。表面の配線層50a、2層目の配線層50b、3層目の配線層50c、及び裏面の配線層50dは、厚さが35μmまたは70μmの銅箔で構成されているのが一般的であるが、とくにこれに限定されるものではない。配線層50の厚さは配線層に流れる電流値から想定される発熱(温度上昇)を考慮して、配線パターンの幅とともに任意に設定できる。
<コンデンサ基板ユニット1の等価回路>
 コンデンサ基板ユニット1の等価回路を、図7を用いて説明する。図7では28個のコンデンサを全て図示せずに一部を省略し、3個のコンデンサのみを示している。破線で囲まれた部分である正極バスバー20aは、正極電源端子22a、正極負荷端子23a、及び正極平滑用端子24aを有する。同様に破線で囲まれた部分である負極バスバー20bは、負極電源端子22b、負極負荷端子23b、及び負極平滑用端子24bを有する。点線で囲まれた部分であるコンデンサ10は、正極コンデンサ端子10a、及び負極コンデンサ端子10bを有する。二点鎖線で囲まれた部分である正極配線30aは、複数の正極平滑用端子24aと複数の正極コンデンサ端子10aとを直列かつ並列に接続する。同様に二点鎖線で囲まれた部分である負極配線30bは、複数の負極平滑用端子24bと複数の負極コンデンサ端子10bとを直列かつ並列に接続する。
 正極バスバー20a、負極バスバー20b、正極配線30a、負極配線30b、及びコンデンサ10は、すべて直流抵抗成分及びインダクタンス成分を有している。図7に示すように、正極バスバー20a及び負極バスバー20bは、共に直流抵抗成分20R及びインダクタンス成分20Lを有している。正極配線30a及び負極配線30bは、共に直流抵抗成分30R及びインダクタンス成分30Lを有している。コンデンサ10は、直流抵抗成分10R及びインダクタンス成分10Lを有している。コンデンサ10の容量成分を10Cとする。なお、図7において、複数の位置に記載した直流抵抗成分10R、20R、30R、並びにインダクタンス成分10L、20L、30Lは、実際にはそれぞれの位置によってその値は異なっている。
 正極バスバー20a及び負極バスバー20bの直流抵抗成分20Rは、導体の電気抵抗率ρ(Ω・m)×導体の長さl(m)/導体の断面積A(m)で表される。ここで導体とは正極バスバー20a及び負極バスバー20bを構成する素材であり、例えば導体が銅であればその電気抵抗率は約1.68×10-8(Ω・m)である。正極バスバー20a及び負極バスバー20bのインダクタンス成分20Lは、正極バスバー20a及び負極バスバー20bの素材、形状、流れる電流の大きさおよびその電流の向きによって決まり、自己インダクタンス成分と相互インダクタンス成分とに分けられる。
 正極配線30a及び負極配線30bの直流抵抗成分30Rは、配線基板30に形成された配線の素材の電気抵抗率、配線の長さ、配線の断面積および配線のパターンで決まる。正極配線30a及び負極配線30bのインダクタンス成分30Lは、配線基板30に形成された配線の素材、配線の長さ、配線の断面積および配線のパターンに加えて、その配線を流れる電流の大きさおよびその電流の向きによって決まる。
 コンデンサ10の直流抵抗成分10R及びインダクタンス成分10Lは、それぞれ等価直列抵抗ESR(Equivalent series resistance)及び等価直列インダクタンスESL(Equivalent series Inductance)と呼ばれ、コンデンサ単体の等価回路としてよく知られた成分である。
<コンデンサ基板ユニット1の等価回路における直流電流の経路>
 図7に示したコンデンサ基板ユニット1の等価回路における直流電流の経路を、図8を用いて説明する。図7の正極電源端子22aと負極電源端子22bとの間に直流電源である外部電源100が接続され、1組の正極負荷端子23aと負極負荷端子23bとの間に電力変換ユニット200が接続される。図8では、電源端子22から最も離れた負荷端子23に電力変換ユニット200が接続されている。図8において、太線の矢印は主に直流電流が流れる経路を示している。
 正極電源端子22aから正極負荷端子23aまでの正極バスバー20aの直流抵抗値と、負極電源端子22bから負極負荷端子23bまでの負極バスバー20bの直流抵抗値との和であるバスバー側直流抵抗値が、複数の正極平滑用端子24a及び正極配線30aを経由した、正極電源端子22aと正極負荷端子23aとの間の直流抵抗値である正極配線基板側直流抵抗値と、複数の負極平滑用端子24b及び負極配線30bを経由した、負極電源端子22bと負極負荷端子23bとの間の直流抵抗値である負極配線基板側直流抵抗値との和である配線基板側直流抵抗値よりも小さい。本実施の形態のコンデンサ基板ユニット1においては、正極バスバー20aの正極電源端子22aから正極負荷端子23aまでの経路の有する直流抵抗成分20Rと負極バスバー20bの負極電源端子22bから負極負荷端子23bまでの経路の有する直流抵抗成分20Rとの和が、正極配線30a及び負極配線30bの直流抵抗成分30Rの和よりも極力小さくなるように設定されている。このように設定することで、バスバー側直流抵抗値は配線基板側直流抵抗値よりも小さくなる。
 これ以降、正極バスバー20aの正極電源端子22aから正極負荷端子23aまでの経路の有する直流抵抗成分20Rと、負極バスバー20bの負極電源端子22bから負極負荷端子23bまでの経路の有する直流抵抗成分20Rとの和を、Σ20Rと記載する。また、正極配線30a及び負極配線30bの直流抵抗成分30Rの和を、Σ30Rと記載する。つまり、コンデンサ基板ユニット1において、Σ20R<<Σ30Rとなるように設定されている。言い換えると、正極バスバー20aの正極電源端子22aから正極負荷端子23aまでの直流抵抗値と負極バスバー20bの負極電源端子22bから負極負荷端子23bまでの直流抵抗値との和が、正極配線30aの直流抵抗値と負極配線30bの直流抵抗値の和よりも極力小さく設定されている。複数の負荷端子23の中で、電源端子22から最も離れた負荷端子23と電源端子22との間におけるΣ20Rが最も大きくなるが、この最も大きいΣ20Rにおいて、Σ20R<<Σ30Rとなるように設定される。
 このように直流抵抗成分が設定されていると、図8に示した太線の矢印のように、外部電源100から供給される直流電流は、正極バスバー20aから電力変換ユニット200を経由して負極バスバー20bへ至る経路に流れる。直流電流は、複数の正極平滑用端子24a及び正極配線30aを経由して正極負荷端子23aに至る経路(図8に示した破線の矢印)には流れにくくなる。同様に、複数の負極平滑用端子24b及び負極配線30bを経由して負極電源端子22bに至る経路(図8に示した破線の矢印)には流れにくくなる。この場合、直流の大電流に起因した発熱は正極バスバー20a及び負極バスバー20b、またはバスバー20に接続された部品で発生するが、正極配線30a、コンデンサ10、及び負極配線30bにはほとんど直流電流が流れないのでこれらの箇所では発熱はほとんど発生しない。バスバー20及びバスバー20に接続された部品で発熱が発生しても、コンデンサ10は配線基板30の配線を介してバスバー20に接続されているので、バスバー20などでの発熱によるコンデンサ10への熱の影響は小さい。そのため、コンデンサ10の温度上昇を防ぐことができる。コンデンサ10の温度上昇を防ぐことができるので、コンデンサ10の劣化、故障などを抑制することができる。
 本実施の形態で用いるアルミ電解コンデンサは、経年変化による容量の低下及び直列等価抵抗値ESRの上昇が温度上昇に起因して加速される。コンデンサ10にアルミ電解コンデンサを用いた場合でもコンデンサ10の温度上昇を防ぐことができるので、アルミ電解コンデンサの劣化を抑制することができる。
 具体的には、Σ20RはΣ30Rの30分の1以下であることが好ましい。Σ20RがΣ30Rの30分の1以下であれば、直流電流の約97%がバスバー20に流れることになる。正極配線30a、コンデンサ10、及び負極配線30bには約3%の直流電流しか流れないため、正極配線30a、コンデンサ10、及び負極配線30bにおける発熱を抑制することができる。また、コンデンサ10の温度上昇を防ぐことができるので、コンデンサ10の劣化、故障などを抑制することができる。
 以下、具体例について説明する。配線長とバスバーの長さが等しい場合、銅箔の配線層の厚みを0.105mm、配線幅を4mmで形成して、銅材のバスバー20の断面積を13mmで形成することで、バスバー側直流抵抗値を配線基板側直流抵抗値の30分の1以下にできる。配線とバスバー20の寸法構成例はこれに限るものではない。
<コンデンサ基板ユニット1の等価回路における交流電流の経路>
 図7に示したコンデンサ基板ユニット1の等価回路における交流電流の経路を、図9を用いて説明する。図7の正極電源端子22aと負極電源端子22bとの間に直流電源である外部電源100が接続され、1組の正極負荷端子23aと負極負荷端子23bとの間に電力変換ユニット200が接続される。図9において、太線の矢印は主に交流電流が流れる経路を示している。
 コンデンサ基板ユニット1において、コンデンサ基板ユニット1に入力される電圧の脈動に起因して、コンデンサ10の充電及び放電の際に電流に周期的な脈流が発生する。この周期的な脈流を交流電流と考えると、電力変換ユニット200に出力される電圧が変動する場合がある。本実施の形態におけるコンデンサ基板ユニット1は、入力電圧の脈動に起因する出力電圧の変動を抑制するものである。
 複数の正極負荷端子23a及び負極負荷端子23bのそれぞれについて、複数の正極平滑用端子24a、正極配線30a、複数のコンデンサ10、負極配線30b、及び複数の負極平滑用端子24bを経由した、正極負荷端子23aと負極負荷端子23bとの間のインダクタンス値であるコンデンサ側インダクタンス値が、正極電源端子22aから正極負荷端子23aまでの正極バスバー20aのインダクタンス値と、負極電源端子22bから負極負荷端子23bまでの負極バスバー20bのインダクタンス値との和であるバスバー側インダクタンス値よりも小さい。本実施の形態のコンデンサ基板ユニット1においては、正極バスバー20aの正極電源端子22aから正極負荷端子23aまでの経路が有するインダクタンス成分20Lと、負極バスバー20bの負極電源端子22bから負極負荷端子23bまでの経路が有するインダクタンス成分20Lとの和が、正極平滑用端子24aと負極平滑用端子24bとの間に接続されている正極配線30a及び負極配線30bのインダクタンス成分30Lとコンデンサ10のインダクタンス成分10Lとの和よりも極力大きくなるように設定されている。
 これ以降、正極バスバー20aの正極電源端子22aから正極負荷端子23aまでの経路の有するインダクタンス成分20Lと、負極バスバー20bの負極電源端子22bから負極負荷端子23bまでの経路の有するインダクタンス成分20Lとの和を、Σ20Lと記載する。また、正極平滑用端子24aと負極平滑用端子24bとの間に接続されている正極配線30a及び負極配線30bのインダクタンス成分30Lとコンデンサ10のインダクタンス成分10Lとの和を、Σ(30L+10L)と記載する。つまり、コンデンサ基板ユニット1において、Σ20L>>Σ(30L+10L)となるように設定されている。言い換えると、正極バスバー20aの正極電源端子22aから正極負荷端子23aまでのインダクタンス値と負極バスバー20bの負極電源端子22bから負極負荷端子23bまでのインダクタンス値との和が、正極平滑用端子24aから負極平滑用端子24bまでの正極配線30aのインダクタンス値と負極配線30bのインダクタンス値とコンデンサ10のインダクタンス値との和よりも極力大きく設定されている。
 このようにインダクタンス成分が設定されていると、図9に示した太線の矢印のように、電力変換ユニット200からの出力電圧の脈動に起因する交流電流は、正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路に流れる。交流電流は、正極バスバー20aから外部電源100を経由して負極バスバー20bへ至る経路(図9に示した破線の矢印)には流れにくくなる。そのため、入力電圧の脈動に起因した交流電流は外部電源100にはほとんど流れないので、出力電圧の脈動に起因する電源電圧の変動を抑制することができる。よって、外部へ流出する交流電流成分を抑制したコンデンサ基板ユニット1を得ることができる。
 具体的には、Σ20LはΣ(30L+10L)の20倍以上であることが好ましい。Σ20LがΣ(30L+10L)の20倍以上であれば、交流電流の約95%は正極配線30a、コンデンサ10、及び負極配線30bに流れることになる。バスバー20を経由した外部電源100への経路には約5%の交流電流しか流れないため、出力電圧の脈動に起因する電源電圧の変動を抑制することができる。
 なお、コンデンサ側インダクタンス値における正極配線30a、及び負極配線30bのそれぞれのインダクタンス値の和が、バスバー側インダクタンス値の3分の1以下である場合、電力変換ユニット200からの出力電圧の脈動に起因する交流電流は正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路にさらに流れるのでコンデンサ基板ユニット1から外部へ流出する交流電流成分を顕著に抑制することができる。配線とバスバー20の寸法構成を上述した構成とすることで、コンデンサ側インダクタンス値における正極配線30a、及び負極配線30bのそれぞれのインダクタンス値の和をバスバー側インダクタンス値の3分の1以下にできる。
 本実施の形態では、正極バスバー20aは、n個(nは、2以上の整数)の電力変換ユニット200の正極のそれぞれに接続されるn個の正極負荷端子23a、及びn個の正極負荷端子23aのそれぞれに隣接して設けられたn個の正極平滑用端子24aを有する。また、負極バスバー20bは、n個の電力変換ユニット200の負極のそれぞれに接続されるn個の負極負荷端子23b、及びn個の負極負荷端子23bのそれぞれに隣接して設けられた負極平滑用端子24bを有する。図7に示すように、正極平滑用端子24aと負極平滑用端子24bをこのように配置することで、電力変換ユニット200からの出力電圧の脈動に起因する交流電流は正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路に流れやすくなる。交流電流が正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路に流れやすくなるため、出力電圧の脈動に起因する電源電圧の変動を顕著に抑制することができる。
 Σ20R<<Σ30R、かつΣ20L>>Σ(30L+10L)となるように設定されたコンデンサ基板ユニット1を電力変換装置500に用いることで、電力変換装置500は、大電流が流れた場合でも直流電流成分の大部分がバスバー20に流れて配線基板30及びコンデンサ10には流れないので、コンデンサ10の温度上昇が抑制され、コンデンサ10の劣化、故障などを抑制することができる。また、電力変換ユニット200の電圧の脈動に起因する交流電流成分の大部分が配線基板30及びコンデンサ10に流れ、外部電源100には流れないので、脈動に起因する電源電圧の変動を抑制することができる。よって、外部へ流出する交流電流成分を抑制した電力変換装置500を得ることができる。また、外部へ流出する交流電流成分が抑制されるので、外部電源100に接続された装置は安定して動作することができる。
 なお、コンデンサ基板ユニット1に接続される負荷は電力変換ユニット200に限るものではない。電力変換装置500とは異なる装置にコンデンサ基板ユニット1を用いても構わない。
 以上のように、実施の形態1によるコンデンサ基板ユニット1は、正極電源端子22aから正極負荷端子23aまでの正極バスバー20aの直流抵抗値と、負極電源端子22bから負極負荷端子23bまでの負極バスバー20bの直流抵抗値との和であるバスバー側直流抵抗値が、複数の正極平滑用端子24a及び正極配線30aを経由した正極電源端子22aと正極負荷端子23aとの間の直流抵抗値である正極配線基板側直流抵抗値と、複数の負極平滑用端子24b及び負極配線30bを経由した負極電源端子22bと負極負荷端子23bとの間の直流抵抗値である負極配線基板側直流抵抗値との和である配線基板側直流抵抗値よりも小さく、かつ、複数の正極平滑用端子24a、正極配線30a、複数のコンデンサ10、負極配線30b、及び複数の負極平滑用端子24bを経由した、正極負荷端子23aと負極負荷端子23bとの間のインダクタンス値であるコンデンサ側インダクタンス値が、正極電源端子22aから正極負荷端子23aまでの正極バスバー20aのインダクタンス値と、負極電源端子22bから負極負荷端子23bまでの負極バスバー20bのインダクタンス値との和であるバスバー側インダクタンス値よりも小さいため、正極配線30a、コンデンサ10、及び負極配線30bにはほとんど直流電流が流れないので、コンデンサ10の温度上昇を抑制することができ、電力変換ユニット200からの出力電圧の脈動に起因する交流電流は正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路に流れるので、コンデンサ基板ユニット1から外部へ流出する交流電流成分を抑制することができる。
 正極バスバー20aがn個(nは、2以上の整数)の電力変換ユニット200の正極のそれぞれに接続されるn個の正極負荷端子23a、及びn個の正極負荷端子23aのそれぞれに隣接して設けられたn個の正極平滑用端子24aを有し、負極バスバー20bがn個の電力変換ユニット200の負極のそれぞれに接続されるn個の負極負荷端子23b、及びn個の負極負荷端子23bのそれぞれに隣接して設けられた負極平滑用端子24bを有している場合、電力変換ユニット200からの出力電圧の脈動に起因する交流電流を正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路に流れやすくすることができる。
 配線基板30がn個の正極平滑用端子24aが分散して接続された第1の正極側配線31aと、複数のコンデンサ10の正極コンデンサ端子10aが分散して接続された第2の正極側配線31bと、第1の正極側配線31aにおけるn個の正極平滑用端子24aに接続されたn個の部分と第2の正極側配線31bにおけるn個の分散した部分とをそれぞれ接続するn個の正極側接続配線31cと、n個の負極平滑用端子24bが分散して接続された第1の負極側配線32aと、複数のコンデンサ10の負極コンデンサ端子10bが分散して接続された第2の負極側配線32bと、第1の負極側配線32aにおけるn個の負極平滑用端子24bに接続されたn個の部分と第2の負極側配線32bにおけるn個の分散した部分とをそれぞれ接続するn個の負極側接続配線32cとを備えている場合、配線基板30の低インダクタンス化を図ることができる。
 第1の正極側配線31a及び第2の正極側配線31bが直線状に形成され、互いに並列して配置され、第1の負極側配線32a及び第2の負極側配線32bが直線状に形成され、互いに並列して配置されている場合、配線基板30の低インダクタンス化をさらに図ることができる。
 複数の正極平滑用端子24aと、複数の負極平滑用端子24bとの間に、複数のコンデンサ10が並列接続されている場合、小型かつ大容量なコンデンサ基板ユニット1を実現することができる。また、配線基板30は配線を有した配線層50が積層して設けられている場合、配線層の正負のパターンが近接して設けられるので、容易に配線基板30を低インダクタンス化することができる。配線基板30を低インダクタンス化することで、電力変換ユニット200からの出力電圧の脈動に起因する交流電流は正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路に流れやすくすることができる。
 バスバー側直流抵抗値が配線基板側直流抵抗値の30分の1以下である場合、正極配線30a、コンデンサ10、及び負極配線30bにはほとんど直流電流が流れないので、正極配線30a、コンデンサ10、及び負極配線30bにおける発熱を顕著に抑制することができる。コンデンサ側インダクタンス値における正極配線30a、及び負極配線30bのそれぞれのインダクタンス値の和が、バスバー側インダクタンス値の3分の1以下である場合、電力変換ユニット200からの出力電圧の脈動に起因する交流電流は正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路にさらに流れるので、コンデンサ基板ユニット1から外部へ流出する交流電流成分を顕著に抑制することができる。
 コンデンサ10がアルミ電解コンデンサである場合、アルミ電解コンデンサは単位体積あたりの容量が最も大きいコンデンサであるため、アルミ電解コンデンサ複数個を並列に接続して使用することで小型かつ大容量なコンデンサ基板ユニット1を実現することができる。また、正極バスバー20a及び負極バスバー20bが配線基板30に電気的かつ機械的に接続されている場合、リフローによりバスバー20と配線基板30とを電気的かつ機械的に接続できるので、加工工程及び費用が削減され、構造も簡略化されるため、コンデンサ基板ユニット1の生産性を向上させることができる。また、配線基板30が多層構造のガラスコンポジット基板またはガラスエポキシ基板である場合、リフローにより生産工程の削減が可能であり、より入手性のよい一般的な材料で大電流に対応するコンデンサ基板ユニット1が製造可能なため、コンデンサ基板ユニット1の生産性を向上させることができる。
 実施の形態1による電力変換装置500は、本願に開示されたコンデンサ基板ユニット1と、複数の正極負荷端子23aのそれぞれと複数の負極負荷端子23bのそれぞれとの間に接続された電力変換ユニット200とを備えているため、電力変換ユニット200からの出力電圧の脈動に起因する交流電流は正極平滑用端子24aから正極配線30a、コンデンサ10、及び負極配線30bを経由して負極平滑用端子24bに至る経路に流れるので、電力変換装置500から外部へ流出する交流電流成分を抑制することができる。
 また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 コンデンサ基板ユニット、10 コンデンサ、10a 正極コンデンサ端子、10b 負極コンデンサ端子、10L、20L、30L インダクタンス成分、10R、20R、30R 直流抵抗成分、20 バスバー、20a 正極バスバー、20b 負極バスバー、21 樹脂部、22 電源端子、22a 正極電源端子、22b 負極電源端子、23 負荷端子、23a 正極負荷端子、23b 負極負荷端子、24a 正極平滑用端子、24b 負極平滑用端子、30 配線基板、30a 正極配線、30b 負極配線、31a 第1の正極側配線、31b 第2の正極側配線、31c 正極側接続配線、32a 第1の負極側配線、32b 第2の負極側配線、32c 負極側接続配線、40 ねじ締結穴、50 配線層、60 はんだ、70 ソルダーレジスト、80 プリプレグ、90 コア材、100 外部電源、200 電力変換ユニット、300 外部機器、500 電力変換装置

Claims (12)

  1.  配線を有した配線基板と、
     電源の正極に接続される少なくとも一つの正極電源端子、複数の負荷の正極のそれぞれに接続される複数の正極負荷端子、及び前記配線に接続された複数の正極平滑用端子を有した正極バスバーと、
     前記電源の負極に接続される少なくとも一つの負極電源端子、複数の前記負荷の負極のそれぞれに接続される複数の負極負荷端子、及び前記配線に接続された複数の負極平滑用端子を有した負極バスバーと、
     正極コンデンサ端子、及び負極コンデンサ端子を有し、前記正極コンデンサ端子、及び前記負極コンデンサ端子が前記配線に接続された複数のコンデンサと、を備え、
     前記配線は、複数の前記正極平滑用端子と複数の前記正極コンデンサ端子とを直列かつ並列に接続する正極配線、及び複数の前記負極平滑用端子と複数の前記負極コンデンサ端子とを直列かつ並列に接続する負極配線を有し、
     前記正極電源端子から前記正極負荷端子までの前記正極バスバーの直流抵抗値と、前記負極電源端子から前記負極負荷端子までの前記負極バスバーの直流抵抗値との和であるバスバー側直流抵抗値が、複数の前記正極平滑用端子、及び前記正極配線を経由した、前記正極電源端子と前記正極負荷端子との間の直流抵抗値である正極配線基板側直流抵抗値と、複数の前記負極平滑用端子、及び前記負極配線を経由した、前記負極電源端子と前記負極負荷端子との間の直流抵抗値である負極配線基板側直流抵抗値との和である配線基板側直流抵抗値よりも小さく、かつ、
     複数の前記正極平滑用端子、前記正極配線、複数の前記コンデンサ、前記負極配線、及び複数の前記負極平滑用端子を経由した、前記正極負荷端子と前記負極負荷端子との間のインダクタンス値であるコンデンサ側インダクタンス値が、前記正極電源端子から前記正極負荷端子までの前記正極バスバーのインダクタンス値と、前記負極電源端子から前記負極負荷端子までの前記負極バスバーのインダクタンス値との和であるバスバー側インダクタンス値よりも小さいコンデンサ基板ユニット。
  2.  前記正極バスバーは、n個(nは、2以上の整数)の前記負荷の正極のそれぞれに接続されるn個の前記正極負荷端子、及びn個の前記正極負荷端子のそれぞれに隣接して設けられたn個の正極平滑用端子を有し、
     前記負極バスバーは、n個の前記負荷の負極のそれぞれに接続されるn個の前記負極負荷端子、及びn個の前記負極負荷端子のそれぞれに隣接して設けられた前記負極平滑用端子を有した請求項1に記載のコンデンサ基板ユニット。
  3.  前記配線基板は、n個の前記正極平滑用端子が分散して接続された第1の正極側配線と、複数の前記コンデンサの前記正極コンデンサ端子が分散して接続された第2の正極側配線と、前記第1の正極側配線におけるn個の前記正極平滑用端子に接続されたn個の部分と前記第2の正極側配線におけるn個の分散した部分とをそれぞれ接続するn個の正極側接続配線と、n個の前記負極平滑用端子が分散して接続された第1の負極側配線と、複数の前記コンデンサの前記負極コンデンサ端子が分散して接続された第2の負極側配線と、前記第1の負極側配線におけるn個の前記負極平滑用端子に接続されたn個の部分と前記第2の負極側配線におけるn個の分散した部分とをそれぞれ接続するn個の負極側接続配線と、を備えている請求項2に記載のコンデンサ基板ユニット。
  4.  前記第1の正極側配線及び前記第2の正極側配線は、直線状に形成され、互いに並列して配置され、
     前記第1の負極側配線及び前記第2の負極側配線は、直線状に形成され、互いに並列して配置されている請求項3に記載のコンデンサ基板ユニット。
  5.  複数の前記正極平滑用端子と、複数の前記負極平滑用端子との間に、複数の前記コンデンサが並列接続されている請求項1から4のいずれか1項に記載のコンデンサ基板ユニット。
  6.  前記配線基板は、前記配線を有した配線層が積層して設けられている請求項1から5のいずれか1項に記載のコンデンサ基板ユニット。
  7.  前記バスバー側直流抵抗値が、前記配線基板側直流抵抗値の30分の1以下である請求項1から6のいずれか1項に記載のコンデンサ基板ユニット。
  8.  前記コンデンサ側インダクタンス値における前記正極配線、及び前記負極配線のそれぞれのインダクタンス値の和が、前記バスバー側インダクタンス値の3分の1以下である請求項1から7のいずれか1項に記載のコンデンサ基板ユニット。
  9.  前記コンデンサは、アルミ電解コンデンサである請求項1から8のいずれか1項に記載のコンデンサ基板ユニット。
  10.  前記正極バスバー及び前記負極バスバーは、前記配線基板に電気的かつ機械的に接続されている請求項1から9のいずれか1項に記載のコンデンサ基板ユニット。
  11.  前記配線基板は、多層構造のガラスコンポジット基板またはガラスエポキシ基板である請求項1から10のいずれか1項に記載のコンデンサ基板ユニット。
  12.  請求項1から11のいずれか1項に記載のコンデンサ基板ユニットと、
     複数の前記正極負荷端子のそれぞれと複数の前記負極負荷端子のそれぞれとの間に接続された電力変換ユニットと、を備えた電力変換装置。
PCT/JP2021/016724 2021-04-27 2021-04-27 コンデンサ基板ユニット及び電力変換装置 WO2022230037A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180097017.1A CN117223210A (zh) 2021-04-27 2021-04-27 电容器基板单元及功率转换装置
PCT/JP2021/016724 WO2022230037A1 (ja) 2021-04-27 2021-04-27 コンデンサ基板ユニット及び電力変換装置
JP2023516887A JP7459378B2 (ja) 2021-04-27 2021-04-27 コンデンサ基板ユニット及び電力変換装置
DE112021007602.7T DE112021007602T5 (de) 2021-04-27 2021-04-27 Kondensatorplatineneinheit und Leistungsumwandlungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016724 WO2022230037A1 (ja) 2021-04-27 2021-04-27 コンデンサ基板ユニット及び電力変換装置

Publications (1)

Publication Number Publication Date
WO2022230037A1 true WO2022230037A1 (ja) 2022-11-03

Family

ID=83846796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016724 WO2022230037A1 (ja) 2021-04-27 2021-04-27 コンデンサ基板ユニット及び電力変換装置

Country Status (4)

Country Link
JP (1) JP7459378B2 (ja)
CN (1) CN117223210A (ja)
DE (1) DE112021007602T5 (ja)
WO (1) WO2022230037A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198852A (ja) * 1997-09-16 1999-04-09 Fuji Electric Co Ltd 電力変換装置
JP2006060967A (ja) * 2004-08-23 2006-03-02 Nippon Chemicon Corp 接続体、電子部品の接続構造、及び電子部品装置
JP5338154B2 (ja) * 2007-07-06 2013-11-13 日産自動車株式会社 電力変換装置
JP2015035862A (ja) * 2013-08-08 2015-02-19 トヨタ自動車株式会社 電力変換装置
JP2015162527A (ja) * 2014-02-26 2015-09-07 株式会社村田製作所 積層型フィルムコンデンサ、コンデンサ内蔵バスバー、電力変換システム、積層型フィルムコンデンサの製造方法及びコンデンサ内蔵バスバーの製造方法
US10084310B1 (en) * 2016-02-08 2018-09-25 National Technology & Engineering Solutions Of Sandia, Llc Low-inductance direct current power bus
JP6432381B2 (ja) * 2015-02-13 2018-12-05 株式会社デンソー 電力変換装置
JP2019096737A (ja) * 2017-11-22 2019-06-20 日本ケミコン株式会社 電解コンデンサモジュール、フィルタ回路および電力変換器
JP6631212B2 (ja) * 2015-12-07 2020-01-15 株式会社村田製作所 積層コンデンサの実装構造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198852A (ja) * 1997-09-16 1999-04-09 Fuji Electric Co Ltd 電力変換装置
JP2006060967A (ja) * 2004-08-23 2006-03-02 Nippon Chemicon Corp 接続体、電子部品の接続構造、及び電子部品装置
JP5338154B2 (ja) * 2007-07-06 2013-11-13 日産自動車株式会社 電力変換装置
JP2015035862A (ja) * 2013-08-08 2015-02-19 トヨタ自動車株式会社 電力変換装置
JP2015162527A (ja) * 2014-02-26 2015-09-07 株式会社村田製作所 積層型フィルムコンデンサ、コンデンサ内蔵バスバー、電力変換システム、積層型フィルムコンデンサの製造方法及びコンデンサ内蔵バスバーの製造方法
JP6432381B2 (ja) * 2015-02-13 2018-12-05 株式会社デンソー 電力変換装置
JP6631212B2 (ja) * 2015-12-07 2020-01-15 株式会社村田製作所 積層コンデンサの実装構造
US10084310B1 (en) * 2016-02-08 2018-09-25 National Technology & Engineering Solutions Of Sandia, Llc Low-inductance direct current power bus
JP2019096737A (ja) * 2017-11-22 2019-06-20 日本ケミコン株式会社 電解コンデンサモジュール、フィルタ回路および電力変換器

Also Published As

Publication number Publication date
JP7459378B2 (ja) 2024-04-01
DE112021007602T5 (de) 2024-02-29
CN117223210A (zh) 2023-12-12
JPWO2022230037A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
US8351216B2 (en) Layered structure connection and assembly
WO2015145679A1 (ja) 電力変換ユニット、電力変換装置、及び電力変換装置の製造方法
US10720851B2 (en) Printed circuit board power cell with isolation and medium voltage multi-cell power supply
WO2016047164A1 (ja) 電力変換ユニットおよび電力変換装置
KR102097330B1 (ko) 복합 전자부품 및 그 실장 기판
CN111865100A (zh) 电力转换装置
US4975824A (en) Power converter circuit board
CN103036221B (zh) 母线电容模块及功率单元
WO2022230037A1 (ja) コンデンサ基板ユニット及び電力変換装置
US4979090A (en) Power converter circuit board
US10305391B2 (en) Inverter
EP3300462B1 (en) Capacitor dc-link arrangement
CN114513922A (zh) 一种夹层结构的电源模块
CN114496955A (zh) 电力变换装置
JP2017112682A (ja) 3レベル電力変換装置
CN211529802U (zh) 一种集成连接铜排的多个电容并联一体化电容器
JP2021089969A (ja) 電力用半導体装置
CN112586100A (zh) 中间回路装置和逆变器
CN111937290A (zh) 电力转换装置和电容器模块
CN203691757U (zh) 一种印制板
JP2015018856A (ja) 半導体パワーモジュール
CN215378486U (zh) 电池备份单元
US20240136936A1 (en) Power Conversion Apparatus
JP7360089B2 (ja) 電池配線モジュール
JPWO2022230037A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516887

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18282914

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021007602

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939199

Country of ref document: EP

Kind code of ref document: A1