WO2022228548A1 - 一种铝合金建筑模板及其制备方法 - Google Patents

一种铝合金建筑模板及其制备方法 Download PDF

Info

Publication number
WO2022228548A1
WO2022228548A1 PCT/CN2022/090245 CN2022090245W WO2022228548A1 WO 2022228548 A1 WO2022228548 A1 WO 2022228548A1 CN 2022090245 W CN2022090245 W CN 2022090245W WO 2022228548 A1 WO2022228548 A1 WO 2022228548A1
Authority
WO
WIPO (PCT)
Prior art keywords
building formwork
aluminum alloy
extrusion
temperature
alloy building
Prior art date
Application number
PCT/CN2022/090245
Other languages
English (en)
French (fr)
Inventor
高森田
阮涛涛
张永
丁幸宇
Original Assignee
广东坚美铝型材厂(集团)有限公司
佛山坚美铝业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东坚美铝型材厂(集团)有限公司, 佛山坚美铝业有限公司 filed Critical 广东坚美铝型材厂(集团)有限公司
Publication of WO2022228548A1 publication Critical patent/WO2022228548A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/003Cooling or heating of work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/02Cooling or heating of containers for metal to be extruded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/04Cooling or heating of press heads, dies or mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C35/00Removing work or waste from extruding presses; Drawing-off extruded work; Cleaning dies, ducts, containers, or mandrels
    • B21C35/02Removing or drawing-off work
    • B21C35/03Straightening the work
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the invention relates to the technical field of aluminum alloys, in particular to an aluminum alloy building formwork and a preparation method thereof.
  • the technical problem to be solved by the present invention is to provide an aluminum alloy building formwork, which has good mechanical properties and high extrusion efficiency.
  • the technical problem to be solved by the present invention is to provide a preparation method of an aluminum alloy building formwork.
  • the present invention provides a kind of aluminum alloy building formwork, which mainly consists of the following components by mass percentage:
  • Mg/Si 1.0-1.5
  • the content of Mg 2 Si phase in the finished aluminum alloy building template product is 1.3-1.7 wt %.
  • the tensile strength of the aluminum alloy building formwork is 300-330MPa
  • the yield strength is 275-295MPa
  • the elongation is 10-15%.
  • the present invention also discloses a preparation method of the above-mentioned aluminum alloy building formwork, which comprises:
  • step (3) the homogenization temperature is 560-580°C, and the homogenization time is 4-7h; after homogenization, strong wind cooling and/or water mist cooling are adopted.
  • step (4) the temperature of the extrusion die is 450-470°C, the temperature of the extrusion cylinder is 400-440°C, the temperature of the cast rod before extrusion is 480-500°C, and the building after extrusion Template rough blank temperature is 520-560 °C.
  • the extrusion speed is 8-10m/min, and the on-line strong wind cooling after extrusion.
  • step (5) the amount of straightening and stretching is 0.5-1.5%.
  • step (6) the aging temperature is 180-190° C., and the aging time is 4-6 h.
  • the aluminum alloy building formwork of the present invention reduces the quenching sensitivity of the aluminum alloy and improves its hardenability through reasonable formula adjustment;
  • the aluminum alloy building formwork maintains a high solid solubility, thereby endowing it with excellent mechanical properties.
  • the aluminum alloy building template of the present invention has a tensile strength of 300-330 MPa, a yield strength of 275-295 MPa, and an elongation of 10-15%, which can replace the 6061 alloy and 6082 alloy commonly used in the aluminum alloy building template.
  • the extrusion speed of the aluminum alloy building formwork of the present invention can reach 8-10 m/min, which is more than doubled compared with the ordinary aluminum formwork, and the production efficiency is effectively improved.
  • the present invention ensures the welding quality of building template profiles with cavities through reasonable adjustment of the formula, so that the high-speed extrusion process still has good welding quality; and burrs will not appear during the high-speed extrusion process. , rough lines and rotten phenomenon and other defects.
  • the homogenization time and aging time are short, and the production efficiency is high.
  • the alloy of the present invention contains a relatively high Fe content, which greatly facilitates recycling and reduces recycling costs.
  • Fig. 1 is a flow chart of a preparation method of an aluminum alloy building formwork of the present invention.
  • the invention provides an aluminum alloy building template, which is mainly composed of the following components by mass percentage: Si 0.4-1.0%, Mg 0.8-1.3%, Cu 0.05-0.2%, Mn 0.001-0.15%, Fe 0.2-0.7% , Zn ⁇ 0.25%, Cr 0.001-0.1%, Ti 0.03-0.15%, the balance is Al and inevitable impurities, and the content of the inevitable impurities is less than or equal to 0.15%.
  • Si and Mg are the main strengthening elements, which can combine to form the Mg 2 Si phase and optimize the mechanical properties of the aluminum alloy.
  • the content of Si is 0.4-1.0 wt %, exemplarily 0.5 wt %, 0.7 wt %, 0.85 wt % or 0.9 wt %, but not limited thereto.
  • the content of Mg is 0.8-1.3 wt %, exemplarily 0.9 wt %, 1.1 wt %, 1.2 wt % or 1.25 wt %, but not limited thereto.
  • the content of the Mg 2 Si phase in the aluminum alloy finished product is 1.3-1.7 wt %.
  • the aging strengthening effect is poor and the mechanical properties are insufficient;
  • excess Mg 2 Si will precipitate along the grain boundary, resulting in obvious intergranular corrosion tendency.
  • Cu has a certain strengthening effect, but it also increases the quenching sensitivity.
  • the content thereof is controlled to be 0.05-0.2 wt %; exemplary can be 0.07 wt %, 0.1 wt %, 0.13 wt % or 0.18 wt %, but not limited thereto.
  • Cu in this content range has a strengthening effect, and on the other hand, the alloy has a reasonable quenching sensitivity, that is, it can be quenched by a lower cooling intensity.
  • Fe can reduce the tendency of hot cracking during casting, but it will greatly weaken the extrusion performance, and it is easy to cause rough surface texture, burrs and even rotten defects on the product surface.
  • the Fe content is controlled to be 0.2-0.7 wt %, exemplarily 0.3 wt %, 0.45 wt %, 0.5 wt % or 0.6 wt %, but not limited thereto.
  • Mn and Cr can increase the recrystallization temperature and inhibit recrystallization, but also reduce the extrusion performance, which is easy to cause rough surface texture, burrs and even rotten defects on the product surface. Therefore, in the present invention, the content of Mn is controlled to be 0.001 to 0.15 wt %, and the content of Cr is controlled to be 0.001 to 0.1 wt %.
  • (Mn+Cr+Fe)/excess silicon should be controlled to be 1.3-2.5.
  • the excess silicon is the remaining Si after all Mg and Si form the Mg 2 Si phase.
  • Ti can promote the refinement of the ingot structure and form fine and uniform equiaxed crystals, thereby improving the extrusion performance.
  • the content of Ti is 0.03-0.15%, exemplarily 0.05wt%, 0.09wt%, 0.1wt%, 0.12wt%, but not limited thereto.
  • the preparation method of aluminum alloy building formwork in the present invention comprises the following steps:
  • the raw materials in the present invention include, but are not limited to: returned charge, pure aluminum ingot, Al-20% Mn master alloy, Al-20% Cr master alloy, Al-50% Cu master alloy, high-purity magnesium, high-purity silicon, Aluminum titanium boron wire (it is enough to control the Fe content in each raw material, generally there is no need to add Fe element specially, unless necessary, Fe can be appropriately added).
  • S2 includes:
  • the aluminum ingot is first added to the smelting furnace, and the smelting temperature is controlled at 720°C-750°C. After the aluminum ingot is completely melted, the return charge (return charge ⁇ 30%) is added, and the alloy raw materials are added in sequence according to the difficulty of metal melting. According to the order of high-purity silicon, Al-50%Cu master alloy, Al-20%Mn master alloy, Al-20%Cr master alloy, and finally high-purity magnesium is added. Since magnesium is easy to burn, 7% should be considered in the composition design. The amount of burning loss, when each ingredient is added, start the bottom-mounted electromagnetic stirring device to stir, so that the ingredients and temperature are uniform, and the stirring time is 10-15min.
  • the slag removal treatment is divided into primary slag removal and secondary slag removal.
  • the slag removal temperature is controlled at 720-750 °C before adding Mg for the first slag removal and after the Mg addition in the second slag removal.
  • a slag breaking agent should be sprinkled into the molten aluminum, so that the slag and aluminum can be completely separated, and the scum and other impurities on the surface of the molten aluminum should be removed with an iron rake, and the molten aluminum should be taken away as little as possible.
  • the refining temperature is 710-730° C.
  • the refining time is 15-20 minutes
  • high-purity argon gas is introduced into the refining process. After refining, let stand for 0.5-1h.
  • the DC casting method is used for casting.
  • the wire feeder is used to evenly feed the aluminum-titanium-boron wire to refine the crystal grains; at the same time, the online degassing, filtering and purification device is used to obtain a pure melt with few impurities.
  • the casting speed is controlled to be 35-55mm/min, and the casting temperature is 690-710°C.
  • the homogenization temperature is 560-580°C, exemplarily 562°C, 568°C, 570°C or 575°C, but not limited thereto.
  • the homogenization time is 4-7h, exemplarily, but not limited to, 4.5h, 5h, 6h or 6.5h.
  • strong wind + water mist cooling is used to eliminate intragranular segregation and casting stress, and obtain cast rods with uniform structure.
  • the temperature of the extrusion die is 450-470°C
  • the temperature of the extrusion cylinder is 400-440°C
  • the temperature of the cast rod before extrusion is 480-500°C
  • the temperature of the rough building template after extrusion is 480-500°C. is 520-560°C.
  • the extrusion speed is 8-10m/min. It should be noted that, limited by the alloy composition, the extrusion speed of the traditional 6061 aluminum template and 6082 aluminum template is only 3.5-4.0m/min.
  • straightening the rough building formwork on the cooling bed can effectively eliminate residual stress.
  • the stretching amount is 0.5-1.5%, exemplarily 0.6%, 0.8%, 1.1% or 1.3%, but not limited thereto.
  • the straightened building template blank is first sawed and cut into required dimensions, and then subjected to aging treatment.
  • the aging temperature is 180-190°C, exemplarily 182°C, 184°C, 188°C or 189°C, but not limited thereto.
  • the aging time is 4-6h, exemplarily 4.2h, 4.7h, 5h or 5.5h, but not limited thereto.
  • the required aging time of the aluminum alloy building template of the invention is short, and the production efficiency is high.
  • an aluminum alloy building template with a tensile strength of 300-330MPa, a yield strength of 275-295MPa and an elongation of 10-15% can be obtained.
  • the present embodiment provides a kind of aluminum alloy building formwork, and its formula is:
  • the extrusion speed is 9.5 m/min
  • the temperature of the extrusion die is 450 ° C
  • the temperature of the extrusion cylinder is 420 ° C
  • the extruding speed is 9.5 m/min.
  • the temperature of the cast rod is 500°C
  • the temperature of the rough building formwork after extrusion is 540°C
  • the online strong wind cooling after extrusion
  • the aging system is 190°C ⁇ 6h.
  • the present embodiment provides a kind of aluminum alloy building formwork, and its formula is:
  • the aging system is 185°C ⁇ 6h.
  • the present embodiment provides a kind of aluminum alloy building formwork, and its formula is:
  • the extrusion speed is 8.2 m/min
  • the temperature of the extrusion die is 460 °C
  • the temperature of the extrusion cylinder is 440 °C
  • the extrusion speed is 440 °C before extrusion.
  • the temperature of the cast rod is 500°C
  • the temperature of the rough building formwork after extrusion is 560°C
  • the online strong wind cooling after extrusion is 8.2 m/min
  • the aging system is 185°C ⁇ 4h.
  • the present embodiment provides a kind of aluminum alloy building formwork, and its formula is:
  • the extrusion speed is 9m/min
  • the temperature of the extrusion die is 470°C
  • the temperature of the extrusion cylinder is 440°C
  • the casting is performed before extrusion.
  • the temperature of the rod is 480°C
  • the temperature of the rough building formwork after extrusion is 550°C
  • the online strong wind cooling after extrusion
  • the aging system is 185°C ⁇ 4h.
  • the present embodiment provides a kind of aluminum alloy building formwork, and its formula is:
  • the aging system is 180°C ⁇ 4h.
  • the present embodiment provides a kind of aluminum alloy building formwork, and its formula is:
  • the extrusion speed is 9.5 m/min
  • the temperature of the extrusion die is 470 ° C
  • the temperature of the extrusion cylinder is 440 ° C
  • the extrusion speed is 9.5 m/min.
  • the temperature of the cast rod is 490°C
  • the temperature of the rough building formwork after extrusion is 560°C
  • the online strong wind cooling after extrusion
  • the aging system is 180°C ⁇ 5h.
  • This comparative example provides an aluminum alloy building formwork, and its formula is:
  • the extrusion speed is 4m/min
  • the temperature of the extrusion die is 470°C
  • the temperature of the extrusion cylinder is 440°C
  • the casting is performed before extrusion.
  • the temperature of the rod is 490 °C
  • the temperature of the rough building formwork after extrusion is 560 °C
  • the online strong wind cooling after extrusion is 490 °C
  • the aging system is 185°C ⁇ 9h.
  • This comparative example provides an aluminum alloy building formwork, and its formula is:
  • the extrusion speed is 4.5 m/min
  • the temperature of the extrusion die is 460 °C
  • the temperature of the extrusion cylinder is 450 °C
  • the extrusion speed is 4.5 m/min.
  • the temperature of the cast rod is 490°C
  • the temperature of the rough building formwork after extrusion is 570°C
  • the online strong wind cooling after extrusion
  • the aging system is 190°C ⁇ 9h.
  • This comparative example provides an aluminum alloy building formwork, and its formula is:
  • the extrusion speed is 9.8 m/min
  • the temperature of the extrusion die is 460°C
  • the temperature of the extrusion cylinder is 440°C
  • the extruding speed is 9.8 m/min.
  • the temperature of the cast rod is 490°C
  • the temperature of the rough building formwork after extrusion is 550°C
  • the online strong wind cooling after extrusion is 9.8 m/min.
  • the aging system is 180°C ⁇ 4h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Continuous Casting (AREA)

Abstract

本发明公开了一种铝合金建筑模板,其主要由以下质量百分比的成分组成:Si 0.4-1.0%,Mg 0.8-1.3%,Cu 0.05-0.2%,Mn 0.001-0.15%,Fe 0.2-0.7%,Zn≤0.25%,Cr 0.001-0.1%,Ti 0.03-0.15%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。相应的,本发明还公开了上述铝合金建筑模板的制备方法。本发明中铝合金建筑模板的力学性能优良,且挤压速度可达到8-10m/min,生产效率高。

Description

一种铝合金建筑模板及其制备方法 技术领域
本发明涉及铝合金技术领域,尤其涉及一种铝合金建筑模板及其制备方法。
背景技术
随着我国城市化的快速发展,建筑模板作为高层与超高层建筑的必不可少的施工材料和重要机具,对其使用寿命、质量与安全保证、材料回收利用等提出了更高的要求,而具有一系列优异特性的轻量化铝材作为理想的“绿色建筑”材料越来越受到建筑业的青睐,大有以铝代木、以铝代塑、以铝代钢的趋势,因而铝模板应运而生。铝模板应用较多的合金为6063、6061、6005及6082合金;其中应用最多的是6061合金模板,但6061合金模板料挤压速度低(≤5m/min),对于多空腔模板料还会出现内腔拖烂,表面毛刺问题,而且力学性能因淬透性不足而较低(可增大淬火冷却强度如穿水冷却提高淬透性,但会导致模板料大幅弯曲变形,无法满足加工及装配要求),对于这种承载结构件而言,具有足够高的强度才有更大的安全与质量保证。
发明内容
本发明所要解决的技术问题在于,提供一种铝合金建筑模板,其具有良好的力学性能,且挤压效率高。
本发明还要解决的技术问题在于,提供一种铝合金建筑模板的制备方法。
为了解决上述技术问题,本发明提供了一种铝合金建筑模板,其主要由以下质量百分比的成分组成:
Si 0.4-1.0%,Mg 0.8-1.3%,Cu 0.05-0.2%,Mn 0.001-0.15%,Fe 0.2-0.7%,Zn≤0.25%,Cr 0.001-0.1%,Ti 0.03-0.15%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。
作为上述技术方案的改进,Mg/Si=1.0-1.5,且铝合金建筑模板成品中Mg 2Si相的含量为1.3-1.7wt%。
作为上述技术方案的改进,铝合金模板成品中,所述Si以Mg 2Si相和过剩硅的形态存在,所述Mn、Cr、Fe的总含量:过剩硅的含量=1.3-2.5。
作为上述技术方案的改进,所述铝合金建筑模板的抗拉强度为300-330MPa,屈服强度为275-295MPa,延伸率为10-15%。
相应的,本发明还公开了一种上述的铝合金建筑模板的制备方法,其包括:
(1)按照比例准备各种原料备用;其中,以重量百分比计的原料配方如下:
Si 0.4-1.0%,Mg 0.8-1.3%,Cu 0.05-0.2%,Mn 0.001-0.15%,Fe 0.2-0.7%,Zn≤0.25%,Cr 0.001-0.1%,Ti 0.03-0.15%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;
(5)将所述建筑模板粗坯进行调直处理;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
作为上述技术方案的改进,步骤(3)中,均质温度为560-580℃,均质时间为4-7h;均质后采用强风冷却和/或水雾冷却。
作为上述技术方案的改进,步骤(4)中,挤压模具的温度为450-470℃,挤压筒温度为400-440℃,挤压前铸棒温度为480-500℃,挤压后建筑模板粗坯温度为520-560℃。
作为上述技术方案的改进,挤压速度为8-10m/min,挤压后在线强风冷却。
作为上述技术方案的改进,步骤(5)中,调直拉伸量为0.5-1.5%。
作为上述技术方案的改进,步骤(6)中,时效温度为180-190℃,时效时间为4-6h。
实施本发明,具有如下有益效果:
1.本发明的铝合金建筑模板,通过合理的配方调节,降低了铝合金淬火敏感性,提升了其淬透性;并配以熔炼铸造、均质、挤压、调直、时效等手段,使得铝合金建筑模板保持了较高的固溶度,从而赋予了其优良的力学性能。具体的,本发明的铝合金建筑模板的抗拉强度为300-330MPa,屈服强度为275-295MPa,延伸率为10-15%,可替代铝合金建筑模板中常用的6061合金和6082合金。
2.本发明的铝合金建筑模板的挤压速度可达到8~10m/min,较普通铝模板提升了一倍以上,有效提升了生产效率。
3.本发明通过配方的合理调节,保证了有空腔的建筑模板型材的焊合质量,使得采用高速挤压工艺时仍然具有良好的焊合质量;且高速挤压过程中也不会出现毛刺、纹粗和拖烂现象等缺陷。
4.本发明中均质时间、时效时间短,生产效率高。
5.本发明合金含有较高的Fe含量,也极大地便于回收利用,降低回收成本。
附图说明
图1是本发明一种铝合金建筑模板的制备方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。仅此声明,本发明在文中出现或即将出现的上、下、左、右、前、后、内、外等方位用词,仅以本发明的附图为基准,其并不是对本发明的具体限定。
本发明提供了一种铝合金建筑模板,其主要由以下质量百分比的成分组成:Si 0.4-1.0%,Mg 0.8-1.3%,Cu 0.05-0.2%,Mn 0.001-0.15%,Fe 0.2-0.7%,Zn≤0.25%,Cr 0.001-0.1%,Ti 0.03-0.15%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。
其中,Si、Mg是主要的强化元素,其可结合形成Mg 2Si相,优化铝合金的各项力学性能。Si的含量为0.4-1.0wt%,示例性的为0.5wt%、0.7wt%、0.85wt%或0.9wt%,但不限于此。Mg的含量为0.8-1.3wt%,示例性的为0.9wt%、1.1wt%、1.2wt%或1.25wt%,但不限于此。
优选的,在本发明中,控制Mg/Si=1~1.5;通过控制镁硅比,可使得Si以过剩硅和Mg 2Si相的形式存在,一方面可提高Mg 2Si的过饱和度,提高时效出强化能力;另一方面增加时效期间GP区的密度,以缩短峰时效时间。
优选的,在本发明中,铝合金成品中Mg 2Si相的含量为1.3~1.7wt%。当其含量<1.3wt%时,时效强化作用差,力学性能不足;当其含量>1.7wt%时,过量的Mg 2Si会沿着晶界析出,产生明显的晶间腐蚀倾向。
其中,Cu具有一定的强化作用,但其也会增加淬火敏感性。为此,控制其含量为0.05~0.2wt%;示例性的可为0.07wt%、0.1wt%、0.13wt%或0.18wt%,但不限于此。此含量范围的Cu一方面具有强化作用,另一方面也使得合金具有合理的淬火敏感性,即可通过较低的冷却强度即可淬透。
其中,Fe可降低铸造时热裂纹倾向,但其会大幅弱化挤压性能,容易引起产品表面纹粗、毛刺甚至拖烂缺陷。为此,控制Fe含量为0.2-0.7wt%,示例性的为0.3wt%、0.45wt%、0.5wt或0.6wt%,但不限于此。
Mn、Cr会提高再结晶温度,抑制再结晶,但也会降低挤压性能,容易引起产品表面纹粗、毛刺甚至拖烂缺陷。因此,本发明中,控制Mn含量为0.001~0.15wt%,Cr含量为0.001~0.1wt%。
进一步的,为了保证铝合金具备合理的挤压性能,应控制(Mn+Cr+Fe)/过剩硅=1.3~2.5。其中,过剩硅为全部Mg与Si形成Mg 2Si相后所剩余的Si。
其中,Ti可促使铸锭组织细化,形成细小均匀的等轴晶,从而改善挤出性能。具体的,Ti的含量为0.03-0.15%,示例性的为0.05wt%、0.09wt%、0.1wt%、0.12wt%,但不限于此。
相应的,为了有效提升本发明中铝合金建筑模板的各项性能,还需要结合生产工艺,具体如下:
参照图1,本发明中铝合金建筑模板的制备方法包括以下步骤:
S1:按照比例准备各种原料备用;
具体的,本发明中的原料包括但不限于:回炉料、纯铝锭、Al-20%Mn中间合金、Al-20%Cr中间合金、Al-50%Cu中间合金、高纯镁、高纯硅、铝钛硼丝(控制各原料中的Fe含量即可,一般无需专门添加Fe元素,除非有必要可适当添加Fe)。
S2:将原料混合熔铸后得到铝铸棒;
具体的,S2包括:
S21:将原料混合熔炼,并扒渣,得到第一合金液;
具体的,先将铝锭加入熔炼炉中,熔炼温度控制在720℃-750℃,待铝锭完全熔化后加入回炉料(回炉料<30%),按金属熔化难易程度依次添加合金原料,顺序按照高纯硅、Al-50%Cu中间合金、Al-20%Mn中间合金、Al-20%Cr中间合金,最后加入高纯镁,由于镁易烧损,因而在成分设计中应考虑7%的烧损量, 每一种成分添加时都启动底置式电磁搅拌装置进行搅拌,使成分、温度均匀,搅拌时间为10-15min。
其中,扒渣处理分为一次扒渣和二次扒渣,一次扒渣在加Mg之前,二次扒渣在加Mg之后,扒渣温度控制在720-750℃,使用扒渣车进行扒渣,扒渣前需向铝液中撒入打渣剂,使渣铝能完全分离,用铁耙扒掉铝液表面的浮渣和其他杂质,并保证尽可能少带走铝液。
S21:将第一合金液进行精炼静置,得到第二合金液;
具体的,精炼温度710-730℃,精炼时间15-20min,精炼过程中通入高纯氩气。精炼后静置0.5~1h。
S23:将第二合金液进行铸造,得到铸棒;
具体的,采用DC铸造方法进行铸造,铸造过程中利用喂丝机均匀投放铝钛硼丝,以细化晶粒;同时使用在线除气、过滤净化装置,以得到纯净、杂质少的熔液。铸造过程中控制铸造速度为35-55mm/min,铸造温度为690-710℃。
S3:将铸棒进行均质处理;
具体的,均质温度为560-580℃,示例性的为562℃、568℃、570℃或575℃,但不限于此。均质时间为4-7h,示例性的为4.5h、5h、6h或6.5h,但不限于此。均质后采用强风+水雾冷却,以消除晶内偏析及铸造应力,获得组织均匀的铸棒。
S4:将均质后的铸棒挤压,得到建筑模板粗坯;
具体的,在挤压过程中,挤压模具的温度为450-470℃,挤压筒温度为400-440℃,挤压前铸棒温度为480-500℃,挤压后建筑模板粗坯温度为520-560℃。挤压速度为8-10m/min,需要说明的是,受限于合金成分,传统的6061铝模板、6082铝模板的挤压速度仅为3.5-4.0m/min。
挤压后在线强风冷却,通过强风冷却可保证后续时效力学性能,具有更高的淬透性。
S5:将建筑模板粗坯进行调直处理;
具体的,在冷床上的对建筑模板粗坯进行调直处理,通过调直处理可有效消除残余应力。具体的,调直过程中,拉伸量为0.5~1.5%,示例性的为0.6%、0.8%、1.1%或1.3%,但不限于此。
S6:将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
具体的,先将调直后的建筑模板粗坯锯切成所需尺寸,然后进行时效处理。
其中,时效温度为180-190℃,示例性的为182℃、184℃、188℃或189℃,但不限于此。时效时间为4-6h,示例性的为4.2h、4.7h、5h或5.5h,但不限于此。本发明的铝合金建筑模板所需的时效时间较短,生产效率高。
综上,通过上述配方与工艺的综合调节,可得到抗拉强度为300-330MPa,屈服强度为275-295MPa,延伸率为10-15%的铝合金建筑模板。
下面以具体实施例进一步说明本发明:
实施例1
本实施例提供一种铝合金建筑模板,其配方为:
Si 0.9%,Mg 0.8%,Cu 0.15%,Mn 0.005%,Fe 0.6%,Zn 0.2%,Cr 0.04%,Ti 0.13%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为570℃,时间为6h;均质后强风冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为9.5m/min,挤压模具的温度为450℃,挤压筒温度为420℃,挤压前铸棒的温度为500℃,挤压后建筑模板粗坯的温度为540℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为1.1%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为190℃×6h。
实施例2
本实施例提供一种铝合金建筑模板,其配方为:
Si 0.8%,Mg 1.1%,Cu 0.2%,Mn 0.1%,Fe 0.4%,Zn 0.05%,Cr 0.1%,Ti 0.05%,不可避免杂质0.15%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为575℃,时间为6h;均质后强风冷却+水雾冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为8m/min,挤压模具的温度为460℃,挤压筒温度为430℃,挤压前铸棒的温度为480℃,挤压后建筑模板粗坯的温度为550℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为0.8%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为185℃×6h。
实施例3
本实施例提供一种铝合金建筑模板,其配方为:
Si 0.6%,Mg 0.85%,Cu 0.15%,Mn 0.08%,Fe 0.22%,Zn 0.15%,Cr 0.03%,Ti 0.08%,不可避免杂质0.15%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为580℃,时间为5h;均质后强风冷却+水雾冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为8.2m/min,挤压模具的温度为460℃,挤压筒温度为440℃,挤压前铸棒的温度为500℃,挤压后建筑模板粗坯的温度为560℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为1.4%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为185℃×4h。
实施例4
本实施例提供一种铝合金建筑模板,其配方为:
Si 0.65%,Mg 0.9%,Cu 0.1%,Mn 0.05%,Fe 0.2%,Zn 0.02%,Cr 0.05%,Ti 0.05%,不可避免杂质0.12%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为560℃,时间为5h;均质后强风冷却+水雾冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为9m/min,挤压模具的温度为470℃,挤压筒温度为440℃,挤压前铸棒的温度为480℃,挤压后建筑模板粗坯的温度为550℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为0.7%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为185℃×4h。
实施例5
本实施例提供一种铝合金建筑模板,其配方为:
Si 0.75%,Mg 1.0%,Cu 0.1%,Mn 0.01%,Fe 0.25%,Zn 0.04%,Cr 0.02%,Ti 0.06%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为580℃,时间为5h;均质后强风冷却+水雾冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为9.8m/min,挤压模具的温度为460℃,挤压筒温度为440℃,挤压前铸棒的温度为490℃,挤压后建筑模板粗坯的温度为550℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为1.0%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为180℃×4h。
实施例6
本实施例提供一种铝合金建筑模板,其配方为:
Si 0.7%,Mg 0.85%,Cu 0.18%,Mn 0.01%,Fe 0.25%,Zn 0.05%,Cr 0.01%,Ti 0.08%,不可避免杂质0.2%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为580℃,时间为5h;均质后强风冷却+水雾冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为9.5m/min,挤压模具的温度为470℃,挤压筒温度为440℃,挤压前铸棒的温度为490℃,挤压后建筑模板粗坯的温度为560℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为1.0%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为180℃×5h。
对比例1
本对比例提供一种铝合金建筑模板,其配方为:
Si 0.9%,Mg 1.5%,Cu 0.1%,Mn 0.05%,Fe 0.1%,Zn 0.3%,Cr 0.05%,Ti 0.1%,不可避免杂质0.1%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为580℃,时间为7h;均质后强风冷却+水雾冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为4m/min,挤压模具的温度为470℃,挤压筒温度为440℃,挤压前铸棒的温度为490℃,挤压后建筑模板粗坯的温度为560℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为0.3%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为185℃×9h。
对比例2
本对比例提供一种铝合金建筑模板,其配方为:
Si 0.9%,Mg 0.7%,Cu 0.5%,Mn 0.18%,Fe 0.5%,Zn 0.3%,Cr 0.07%,Ti 0.1%,不可避免杂质0.15%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为570℃,时间为8h;均质后强风冷却+水雾冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为4.5m/min,挤压模具的温度为460℃,挤压筒温度为450℃,挤压前铸棒的温度为490℃,挤压后建筑模板粗坯的温度为570℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为0.53%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为190℃×9h。
对比例3
本对比例提供一种铝合金建筑模板,其配方为:
Si 0.9%,Mg 0.7%,Cu 0.5%,Mn 0.18%,Fe 0.5%,Zn 0.3%,Cr 0.07%,Ti 0.1%,不可避免杂质0.15%,余量为Al。
其制备方法为:
(1)按照比例准备各种原料备用;
(2)将原料混合熔铸后得到铸棒;
(3)将所述铸棒进行均质处理;其中,均质温度为580℃,时间为5h;均质后强风冷却+水雾冷却;
(4)将均质后的铸棒挤压,得到建筑模板粗坯;其中,挤压速度为9.8m/min,挤压模具的温度为460℃,挤压筒温度为440℃,挤压前铸棒的温度为490℃,挤压后建筑模板粗坯的温度为550℃,挤压后在线强风冷却;
(5)将所述建筑模板粗坯进行调直处理,调直量为1.0%;
(6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
其中,时效制度为180℃×4h。
将实施例1-6、对比例1-3的铝合金建筑模板做测试,结果如下:
Figure PCTCN2022090245-appb-000001
Figure PCTCN2022090245-appb-000002
以上所述是发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种铝合金建筑模板,其特征在于,其主要由以下质量百分比的成分组成:Si 0.4-1.0%,Mg 0.8-1.3%,Cu 0.05-0.2%,Mn 0.001-0.15%,Fe 0.2-0.7%,Zn≤0.25%,Cr 0.001-0.1%,Ti 0.03-0.15%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%。
  2. 如权利要求1所述的铝合金建筑模板,其特征在于,Mg/Si=1.0-1.5,且铝合金建筑模板成品中Mg 2Si相含量为1.3-1.7wt%。
  3. 如权利要求1所述的铝合金建筑模板,其特征在于,铝合金模板成品中,所述Si以Mg 2Si相和过剩硅的形态存在,所述Mn、Cr、Fe的总含量:过剩硅的含量=1.3-2.5。
  4. 如权利要求1-3任一项所述的铝合金建筑模板,其特征在于,所述铝合金建筑模板的抗拉强度为300-330MPa,屈服强度为275-295MPa,延伸率为10-15%。
  5. 如权利要求1-4任一项所述的铝合金建筑模板的制备方法,其特征在于,包括:
    (1)按照比例准备各种原料备用;其中,以重量百分比计的原料配方如下:
    Si 0.4-1.0%,Mg 0.8-1.3%,Cu 0.05-0.2%,Mn 0.001-0.15%,Fe 0.2-0.7%,Zn≤0.25%,Cr 0.001-0.1%,Ti 0.03-0.15%,余量为Al和不可避免的杂质,所述不可避免杂质的含量≤0.15%;
    (2)将原料混合熔铸后得到铸棒;
    (3)将所述铸棒进行均质处理;
    (4)将均质后的铸棒挤压,得到建筑模板粗坯;
    (5)将所述建筑模板粗坯进行调直处理;
    (6)将调直后的建筑模板粗坯进行时效处理,即得铝合金建筑模板成品。
  6. 如权利要求5所述的铝合金建筑模板的制备方法,其特征在于,步骤(3)中,均质温度为560-580℃,均质时间为4-7h;均质后采用强风冷却和/或水雾冷却。
  7. 如权利要求5所述的铝合金建筑模板的制备方法,其特征在于,步骤(4)中,挤压模具的温度为450-470℃,挤压筒温度为400-440℃,挤压前铸棒温度为480-500℃,挤压后建筑模板粗坯温度为520-560℃。
  8. 如权利要求7所述的铝合金建筑模板的制备方法,其特征在于,挤压速度为8-10m/min,挤压后在线强风冷却。
  9. 如权利要求5所述的铝合金建筑模板的制备方法,其特征在于,步骤(5)中,调直拉伸量为0.5-1.5%。
  10. 如权利要求5所述的铝合金建筑模板的制备方法,其特征在于,步骤(6)中,时效温度为180-190℃,时效时间为4-6h。
PCT/CN2022/090245 2021-04-30 2022-04-29 一种铝合金建筑模板及其制备方法 WO2022228548A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110479947.5A CN113234972A (zh) 2021-04-30 2021-04-30 一种铝合金建筑模板及其制备方法
CN202110479947.5 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022228548A1 true WO2022228548A1 (zh) 2022-11-03

Family

ID=77131573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090245 WO2022228548A1 (zh) 2021-04-30 2022-04-29 一种铝合金建筑模板及其制备方法

Country Status (2)

Country Link
CN (1) CN113234972A (zh)
WO (1) WO2022228548A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113234972A (zh) * 2021-04-30 2021-08-10 广东坚美铝型材厂(集团)有限公司 一种铝合金建筑模板及其制备方法
CN113862526B (zh) * 2021-08-11 2022-10-28 广东华昌集团有限公司 一种用于建筑幕墙的铝型材及其制备方法
CN113737066A (zh) * 2021-08-11 2021-12-03 广东华昌集团有限公司 一种铝导电轨型材及其制备方法
CN113913651A (zh) * 2021-08-27 2022-01-11 慈溪市宜美佳铝业有限公司 一种可挤压性优良的铝合金材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174337A (ja) * 2009-01-30 2010-08-12 Honda Motor Co Ltd 鍛造用Al−Mg−Si系合金ビレット
CN103103419A (zh) * 2013-01-28 2013-05-15 广东台澳特种铝材有限公司 用于建筑铝模板的铝合金
CN106756325A (zh) * 2016-12-30 2017-05-31 中山瑞泰铝业有限公司 一种Al‑Mg‑Si‑Cu合金及其制备方法和应用
CN108118210A (zh) * 2017-11-28 2018-06-05 中铝材料应用研究院有限公司 一种铝合金及其挤压型材的加工方法
CN113234972A (zh) * 2021-04-30 2021-08-10 广东坚美铝型材厂(集团)有限公司 一种铝合金建筑模板及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063740B1 (fr) * 2017-03-10 2019-03-15 Constellium Issoire Elements de chambres a vide en alliage d’aluminium stables a haute temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174337A (ja) * 2009-01-30 2010-08-12 Honda Motor Co Ltd 鍛造用Al−Mg−Si系合金ビレット
CN103103419A (zh) * 2013-01-28 2013-05-15 广东台澳特种铝材有限公司 用于建筑铝模板的铝合金
CN106756325A (zh) * 2016-12-30 2017-05-31 中山瑞泰铝业有限公司 一种Al‑Mg‑Si‑Cu合金及其制备方法和应用
CN108118210A (zh) * 2017-11-28 2018-06-05 中铝材料应用研究院有限公司 一种铝合金及其挤压型材的加工方法
CN113234972A (zh) * 2021-04-30 2021-08-10 广东坚美铝型材厂(集团)有限公司 一种铝合金建筑模板及其制备方法

Also Published As

Publication number Publication date
CN113234972A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022228548A1 (zh) 一种铝合金建筑模板及其制备方法
CN101716704B (zh) 一种Al-Mg-Er系焊丝及其制备工艺
CN101880803B (zh) 汽车车身板用Al-Mg系铝合金及其制造方法
CN104745902B (zh) 自行车用高强度Al‑Mg‑Si‑Cu合金及其加工工艺
CN109881058B (zh) 一种Al-Zn-Cu-Mg大规格扁铸锭的制备方法
CN107385290A (zh) 一种具有优异氧化效果的高强度铝合金及其制备方法和应用
WO2021184827A1 (zh) 一种再生变形铝合金熔体的复合处理方法
CN103484736A (zh) 一种超高强6000系铝合金及其制备方法
WO2023125263A1 (zh) 铝合金改性用复合稀土合金及其制备方法
CN101880802A (zh) 汽车车身板用Al-Mg系高镁铝合金及其制造方法
CN111826561A (zh) Al-Zn-Mg-Cu合金及制备工艺
CN111187951A (zh) 一种铝镁钪锆钛合金及其制备方法
WO2023035831A1 (zh) 一种挤压用铝合金及其制备方法
CN114231802A (zh) 锻造铝合金轮毂用稀土铝合金棒材及其制备方法
CN112430767A (zh) 一种大规格空心铸锭及铸锭方法
CN103255323A (zh) 一种Al-Mg-Zn-Cu合金及其制备方法
WO2023050808A1 (zh) 用于汽车防撞梁的铝合金及其制备方法
CN112760532A (zh) 一种装卸转运平台用铝合金型材及其制备方法
CN114250387B (zh) 一种铝合金及其制备方法
CN111471878A (zh) 一种4004铝合金铸锭的熔铸工艺
CN113862533B (zh) 一种铝合金及其制备方法
CN114672698A (zh) 耐热铝合金单线及其制造方法
CN112410594A (zh) 一种钎焊复合材料用4343铝合金皮材的制造方法
CN116005047B (zh) 用于焊接和增材制造的铝合金丝材及其制备方法
CN219402895U (zh) 一种Al-Zn-Mg-Cu合金焊丝的制造设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795018

Country of ref document: EP

Kind code of ref document: A1