WO2022228492A1 - 一种修饰的肿瘤浸润淋巴细胞及其用途 - Google Patents

一种修饰的肿瘤浸润淋巴细胞及其用途 Download PDF

Info

Publication number
WO2022228492A1
WO2022228492A1 PCT/CN2022/089721 CN2022089721W WO2022228492A1 WO 2022228492 A1 WO2022228492 A1 WO 2022228492A1 CN 2022089721 W CN2022089721 W CN 2022089721W WO 2022228492 A1 WO2022228492 A1 WO 2022228492A1
Authority
WO
WIPO (PCT)
Prior art keywords
til
cell
functionally active
cells
increased
Prior art date
Application number
PCT/CN2022/089721
Other languages
English (en)
French (fr)
Inventor
刘雅容
孙静玮
金家辉
Original Assignee
苏州沙砾生物科技有限公司
珠海拓域生物科技有限公司
上海沙砾生物科技有限公司
珠海沙砾生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州沙砾生物科技有限公司, 珠海拓域生物科技有限公司, 上海沙砾生物科技有限公司, 珠海沙砾生物科技有限公司 filed Critical 苏州沙砾生物科技有限公司
Priority to CN202280007364.5A priority Critical patent/CN116406426A/zh
Publication of WO2022228492A1 publication Critical patent/WO2022228492A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/57Skin; melanoma

Definitions

  • the present application relates to the field of biomedicine, in particular to a modified tumor-infiltrating lymphocyte and use thereof.
  • Tumor therapy using adoptively autologously transferred tumor-infiltrating lymphocytes is an effective approach to treat patients with poor prognosis.
  • adoptive autologous transfer of tumor-infiltrating lymphocytes to treat tumors requires a large number of tumor-infiltrating lymphocytes, and at present, tumor-infiltrating lymphocytes from patients' tumors have weak ability to expand and weak ability to kill target cells.
  • the present application provides a modified tumor-infiltrating lymphocyte and use thereof, and specifically provides a robust and reliable method for culturing tumor-infiltrating lymphocytes, which can have one or more effects selected from the group consisting of: Improve the number of TIL cells, increase the secretion ability of TIL cells, increase the killing ability of TIL cells, increase the proportion of NK cells, change the proportion of TIL cells, increase the proportion of CD4 + cells, and reduce the proportion of CD8 + cells , increased the proportion of central memory T cells, decreased the proportion of regulatory T cells, increased the proportion of activated T cells, increased the proportion of tumor-specific T cells, and increased the proportion of stem-like T cells.
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), the method comprising: increasing the expression of interleukin-12 (IL-12) and/or functionally active fragments thereof of the TILs and/or Activity is enhanced and the TILs are co-cultured with feeder cells following exposure to T cell activators and/or T cell growth factors for a period of time.
  • TILs tumor-infiltrating lymphocytes
  • the method comprises: increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL after co-culturing the TIL with the feeder cells.
  • the method comprises: increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL prior to co-culturing the TIL with the feeder cells.
  • the method comprises: after the TIL is contacted with the T cell activator and/or the T cell growth factor and before the TIL is co-cultured with the feeder cells Increased expression and/or enhanced activity of IL-12 and/or functionally active fragments thereof of TIL.
  • the method comprises: substantially simultaneously causing the IL-12 and/or its functional activity of the TIL to be contacted with the T cell activator and/or the T cell growth factor
  • the fragment has increased expression and/or enhanced activity.
  • the method comprises: increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL at substantially the same time as the TIL is co-cultured with the feeder cell.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), the method comprising: increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TILs , wherein the TIL comprises a TIL obtained by co-culture with feeder cells after contact with a T cell activator and/or a T cell growth factor for a certain period of time.
  • TILs tumor-infiltrating lymphocytes
  • the present application also provides a method of culturing tumor-infiltrating lymphocytes (TILs), the method comprising: contacting the TILs with a feeder for a certain period of time after being contacted with a T cell activator and/or a T cell growth factor A co-culture of cells, wherein the TIL comprises a TIL obtained by increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL.
  • TILs tumor-infiltrating lymphocytes
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • TILs obtained with/or enhanced activity show improved TIL properties.
  • the improved TIL properties comprise one or more selected from the group consisting of increased number of TIL cells, increased proportion of viable cells, increased viability, improved proportion of T cell subsets, Increased cytokine secretion capacity, increased tumor cell killing capacity, increased T cell receptor (TCR) clonal diversity and increased TIL cell numbers in tissues and/or tumors.
  • the improved proportion of T cell subsets comprises one or more selected from the group consisting of: increased proportion of central memory T cells, decreased proportion of regulatory T cells, increased activated T cells ratio, increased proportion of tumor-specific T cells, and increased proportion of stem-like T cells.
  • said increasing the expression and/or activity of IL-12 and/or its functionally active fragment of said TIL comprises nucleic acid encoding said IL-12 and/or its functionally active fragment into the TIL.
  • the increasing expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL comprises introducing a vector comprising the nucleic acid into the TIL.
  • nucleic acid encoding the IL-12 and/or a functionally active fragment thereof is integrated into the genome of the TIL.
  • the vector comprises a viral vector.
  • the viral vector comprises a retroviral vector.
  • the retroviral vector comprises a lentiviral vector.
  • the IL-12 and/or functionally active fragment thereof comprises membrane-anchored IL-12 and/or secreted IL-12.
  • the IL-12 and/or functionally active fragment thereof comprises a p40 domain.
  • the p40 domain comprises the amino acid sequence set forth in SEQ ID NO:42.
  • the IL-12 and/or functionally active fragment thereof comprises a p35 domain.
  • the p35 domain comprises the amino acid sequence set forth in SEQ ID NO:55.
  • the p40 domain is directly or indirectly linked to the p35 domain.
  • the indirect linking comprises linking through a linker.
  • the linker comprises an amino acid sequence selected from the group consisting of: SEQ ID NO:43-49, (SEQ ID NO:50) l , (SEQ ID NO:51) m , (SEQ ID NO:51)m ID NO: 52) n , (SEQ ID NO: 53) p , and (SEQ ID NO: 54) q , and any combination of the foregoing, wherein l, m, n, p and q are each independently at least one.
  • the IL-12 and/or functionally active fragment thereof comprises a signal peptide domain.
  • the signal peptide domain comprises the amino acid sequence set forth in SEQ ID NO:41.
  • the signal peptide domain is linked directly or indirectly to the p40 domain.
  • the IL-12 and/or functionally active fragment thereof comprises a transmembrane domain.
  • the transmembrane domain and/or the transmembrane intracellular domain comprises the amino acid sequence set forth in any one of SEQ ID NOs: 56-61 and 66-70.
  • the transmembrane domain and/or the transmembrane intracellular domain is directly or indirectly linked to the signal peptide domain and/or the p35 domain.
  • the IL-12 and/or functionally active fragment thereof comprises an intracellular domain.
  • the intracellular domain comprises the amino acid sequence set forth in any one of SEQ ID NOs: 62-65.
  • the intracellular domain is directly or indirectly linked to the transmembrane domain.
  • the functionally active fragment of the IL-12 comprises the amino acid sequence set forth in SEQ ID NO: 42 and/or 55.
  • the IL-12 comprises the amino acid sequence set forth in any one of SEQ ID NOs: 34-40.
  • the increased expression of IL-12 and/or functionally active fragments thereof comprises increased synthesis and/or secretion of said IL-12 and/or functionally active fragments thereof.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • the proportion of cells expressing IL-12 and/or its functionally active fragments in TILs obtained by enhanced activity is increased.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • the proportion of cells expressing IL-12 and/or its functionally active fragments in the TIL obtained by the enhanced activity is increased by at least about 5%.
  • TILs obtained by increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL cells expressing IL-12 and/or functionally active fragments thereof The proportion is at least about 5% or more.
  • the method further comprises: subjecting the tumor tissue-derived TIL that has not been expanded in vitro through at least one stage of in vitro expansion, wherein in at least one stage of the in vitro expansion, the The TILs are co-cultured with the feeder cells.
  • the TIL is co-cultured with the feeder cells in a single stage of the in vitro expansion.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL is increased and the TIL is combined with the feeder in a single stage of the in vitro expansion Cell co-culture.
  • the TIL derived from tumor tissue and not expanded in vitro is subjected to a first stage of in vitro expansion and a second stage of in vitro expansion, and in the second stage of in vitro expansion, the The TILs are co-cultured with the feeder cells.
  • the first stage of in vitro expansion is performed for at least about 7 days.
  • the first stage of in vitro expansion is performed for about 7 days to about 14 days.
  • the second stage of in vitro expansion is performed for at least about 7 days.
  • the second stage of in vitro expansion is performed for about 7 days to about 14 days.
  • the TIL is co-cultured with the feeder cells at least about 2 hours after contact with the T cell activator and/or T cell growth factor.
  • the TIL is co-cultured with the feeder cells from about 6 hours to about 72 hours after contact with the T cell activator and/or the T cell growth factor.
  • the TIL is co-cultured with the feeder cells from about 12 hours to about 48 hours after contact with the T cell activator and/or the T cell growth factor.
  • the TIL is contacted with the T cell activator and/or the T cell growth factor for about 6 hours, about 12 hours, about 24 hours, about 48 hours, or about 72 hours after being contacted with the TIL.
  • the feeder cells are co-cultured.
  • the feeder cells comprise antigen presenting cells.
  • the feeder cells comprise one or more selected from the group consisting of peripheral mononuclear cells, dendritic cells and artificial antigen presenting cells.
  • the feeder cells are peripheral mononuclear cells.
  • the feeder cells are irradiated feeder cells.
  • co-culturing the TIL with the feeder cell comprises contacting the surface of the feeder cell with the surface of the TIL.
  • the co-cultivation of the TIL with the feeder cells comprises adding the feeder cells to the cell culture medium of the TIL.
  • the feeder cells are added to the cell culture medium of the TIL at a ratio of the feeder cells to the TIL from about 40:1 to about 400:1.
  • the method further comprises: subjecting the tumor tissue-derived TIL that has not been expanded in vitro through at least one stage of in vitro expansion, wherein in at least one stage of the in vitro expansion, the The TIL is contacted with the T cell activator.
  • the TIL is contacted with the T cell activator in a single stage of the in vitro expansion.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof of said TIL is increased and said TIL is combined with said TIL Cell Activator Contact.
  • the TIL derived from tumor tissue and not expanded in vitro is subjected to a first stage of in vitro expansion and a second stage of in vitro expansion, and in the second stage of in vitro expansion, the The TIL is contacted with the T cell activator.
  • the T cell activator comprises one or more selected from the group consisting of cluster of differentiation 80 (CD80), CD86, CD276, 4-1BB ligand (4-1BBL), CD27, CD30 , CD134, CD275, CD40, CD258, and their functionally active fragments.
  • the T cell activator comprises an agonist of one or more targets selected from the group consisting of CD3, CD28, Herpes Virus Entry Mediator (HVEM), CD40L, OX40 and 4-1BB.
  • HVEM Herpes Virus Entry Mediator
  • the T cell activator comprises a CD3 agonist and/or a CD28 agonist.
  • the T cell activator comprises a CD3 agonist.
  • the T cell activator comprises an anti-CD3 antibody and/or antigen-binding fragment thereof.
  • the T cell activator comprises a CD28 agonist.
  • the T cell activator comprises an antibody against CD28 and/or an antigen-binding fragment thereof, CD80 and/or a functionally active fragment thereof and/or CD86 and/or a functionally active fragment thereof.
  • the contacting the TIL with the T cell activator comprises one or more means selected from the group consisting of: (1) adding the T cell activator to a cell culture of the TIL (2) adding engineered cells expressing the T cell activator to the cell culture medium of the TIL; and (3) adding a solid-phase medium comprising the T cell activator to the TIL in the cell culture medium.
  • the initial concentration of each of the T cell activators in the cell culture medium of the TIL is each independently at least about 30 ng/mL.
  • the initial concentration of each of the T cell activators in the cell culture medium of the TIL is each independently about 30 ng/mL to about 300 ng/mL.
  • the solid phase medium has a diameter of about 500 nanometers to about 10 micrometers.
  • the solid phase medium has a diameter of from about 1 nanometer to about 500 nanometers.
  • the diameter of the solid medium is measured by transmission electron microscopy.
  • the solid phase medium comprises a polymer
  • the amount of each of the T cell activators contained in the solid medium is each independently at least about 25 ⁇ g per mg of the solid medium.
  • the solid phase medium comprising the T cell activator is added to the cell culture of the TIL at a ratio of the solid phase medium to the TIL of about 2:1 to about 1:2 base.
  • the solid phase medium comprising the T cell activator is added to the cell culture of the TIL at a ratio of the solid phase medium to the TIL of about 1:100 to about 1:2000 base.
  • the method further comprises: subjecting the tumor tissue-derived TIL that has not been expanded in vitro through at least one stage of in vitro expansion, wherein in at least one stage of the in vitro expansion, the The TIL is contacted with the T cell growth factor.
  • the TIL is contacted with the T cell growth factor in a single stage of the in vitro expansion.
  • the TIL is contacted with the T cell activator and the T cell growth factor in a single stage of the in vitro expansion.
  • the TIL derived from tumor tissue and not expanded in vitro is subjected to a first stage of in vitro expansion and a second stage of in vitro expansion, and in the second stage of in vitro expansion, the The TIL is contacted with T cell growth factor.
  • the TIL is contacted with the T cell activator and the T cell growth factor at substantially the same time.
  • the T cell growth factor is selected from one or more of the group consisting of IL-2, IL-7, IL-12, IL-15, IL-21, gamma interferon, and their functionally active fragments.
  • the T cell growth factor comprises IL-2 and/or a functionally active fragment thereof.
  • contacting the TIL with the T cell growth factor comprises adding the T cell growth factor to the cell culture medium of the TIL.
  • the initial concentration of each of the T cell growth factors in the cell culture medium of the TIL is each independently at least about 300 IU/mL.
  • the TIL is TIL derived from fragments of tumor tissue and/or TIL derived from cryopreservation resuscitation.
  • the fragments have a volume of about 1 cubic millimeter to about 27 cubic millimeters.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), comprising:
  • step (A) contacting the first TIL population derived from tumor tissue and not expanded in vitro with T cell growth factor, wherein the second TIL population is obtained through the step (A);
  • step (B) increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof in the second TIL population, and allowing the second TIL population to grow in the presence of T cell activators and/or T cells
  • the factors are co-cultured with feeder cells after exposure for a certain period of time, wherein the third TIL population is obtained through the step (B).
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), comprising:
  • the in vitro TIL population comprises a TIL population obtained by in vitro expansion of the first TIL population derived from tumor tissue and not expanded in vitro;
  • a third TIL population is obtained via step (B).
  • the in vitro TIL population comprises a TIL population obtained by contacting the first TIL population with a T cell growth factor.
  • the in vitro TIL population comprises a TIL population obtained from cryopreservation of the first TIL population.
  • the step (A) is performed for about 7 days to about 14 days.
  • the step (B) is performed for about 7 days to about 14 days.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), comprising:
  • step (A) contacting the first TIL population derived from tumor tissue and not expanded in vitro with T cell growth factor, wherein the second TIL population is obtained through the step (A);
  • step (B) increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the second TIL population, and combining the second TIL population with T cell activators and/or T cell growth factors contacting, wherein, the third TIL group is obtained through the step (B);
  • the third TIL population is co-cultured with feeder cells, wherein the fourth TIL population is obtained through the step (C).
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), comprising:
  • step (B) increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the second TIL population, and combining the second TIL population with T cell activators and/or T cell growth factors contacting, wherein, the third TIL group is obtained through the step (B);
  • the in vitro TIL population comprises a TIL population obtained by contacting the first TIL population with a T cell growth factor.
  • the in vitro TIL population comprises a TIL population obtained from cryopreservation of the first TIL population.
  • the step (A) is performed for about 7 days to about 14 days.
  • the step (B) is performed for about 0 days to about 8 days.
  • the step (C) is performed for about 5 days to about 14 days.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), comprising:
  • step (A) contacting the first TIL population derived from tumor tissue and not expanded in vitro with T cell growth factor, wherein the second TIL population is obtained through the step (A);
  • step (B) contacting the second TIL population with a T cell activator and/or a T cell growth factor, wherein a third TIL population is obtained through the step (B);
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), comprising:
  • the in vitro TIL population comprises a TIL population obtained by in vitro expansion of the first TIL population derived from tumor tissue and not expanded in vitro;
  • step (B) contacting the second TIL population with a T cell activator and/or a T cell growth factor, wherein the third TIL population is obtained through the step (B);
  • the fourth TIL population is co-cultured with feeder cells, wherein the fifth TIL population is obtained through the step (D).
  • the in vitro TIL population comprises a TIL population obtained by contacting the first TIL population with a T cell growth factor.
  • the in vitro TIL population comprises a TIL population obtained from cryopreservation of the first TIL population.
  • the step (A) is performed for about 7 days to about 14 days.
  • the step (B) is performed for about 0 days to about 4 days.
  • step (C) is performed for about 0 days to about 4 days.
  • the step (D) is performed for about 5 days to about 14 days.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • TILs obtained with/or enhanced activity show improved TIL properties.
  • the improved TIL properties comprise one or more selected from the group consisting of increased number of TIL cells, increased proportion of viable cells, increased viability, improved proportion of T cell subsets, Increased cytokine secretion capacity, increased tumor cell killing capacity, increased T cell receptor (TCR) clonal diversity and increased TIL cell numbers in tissues and/or tumors.
  • the improved proportion of T cell subsets comprises one or more selected from the group consisting of: increased proportion of central memory T cells, decreased proportion of regulatory T cells, increased activated T cells ratio, increased proportion of tumor-specific T cells, and increased proportion of stem-like T cells.
  • said increasing the expression and/or activity of IL-12 and/or its functionally active fragment of said TIL comprises nucleic acid encoding said IL-12 and/or its functionally active fragment into the TIL.
  • the increasing expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL comprises introducing a vector comprising the nucleic acid into the TIL.
  • nucleic acid encoding the IL-12 and/or a functionally active fragment thereof is integrated into the genome of the TIL.
  • the vector comprises a viral vector.
  • the viral vector comprises a retroviral vector.
  • the retroviral vector comprises a lentiviral vector.
  • the IL-12 and/or functionally active fragment thereof comprises membrane-anchored IL-12 and/or secreted IL-12.
  • the IL-12 and/or functionally active fragment thereof comprises a p40 domain.
  • the p40 domain comprises the amino acid sequence set forth in SEQ ID NO:42.
  • the IL-12 and/or functionally active fragment thereof comprises a p35 domain.
  • the p35 domain comprises the amino acid sequence set forth in SEQ ID NO:55.
  • the p40 domain is directly or indirectly linked to the p35 domain.
  • the indirect linking comprises linking through a linker.
  • the linker comprises an amino acid sequence selected from the group consisting of: SEQ ID NO:43-49, (SEQ ID NO:50) l , (SEQ ID NO:51) m , (SEQ ID NO:51)m ID NO: 52) n , (SEQ ID NO: 53) p , and (SEQ ID NO: 54) q , and any combination of the foregoing, wherein l, m, n, p and q are each independently at least one.
  • the IL-12 and/or functionally active fragment thereof comprises a signal peptide domain.
  • the signal peptide domain comprises the amino acid sequence set forth in SEQ ID NO:41.
  • the signal peptide domain is linked directly or indirectly to the p40 domain.
  • the IL-12 and/or functionally active fragment thereof comprises a transmembrane domain.
  • the transmembrane domain and/or the transmembrane intracellular domain comprises the amino acid sequence set forth in any one of SEQ ID NOs: 56-61 and 66-70.
  • the transmembrane domain and/or the transmembrane intracellular domain is directly or indirectly linked to the signal peptide domain and/or the p35 domain.
  • the IL-12 and/or functionally active fragment thereof comprises an intracellular domain.
  • the intracellular domain comprises the amino acid sequence set forth in any one of SEQ ID NOs: 62-65.
  • the intracellular domain is directly or indirectly linked to the transmembrane domain.
  • the functionally active fragment of the IL-12 comprises the amino acid sequence set forth in SEQ ID NO: 42 and/or 55.
  • the IL-12 comprises the amino acid sequence set forth in any one of SEQ ID NOs: 34-40.
  • the increased expression of said IL-12 and/or functionally active fragments thereof comprises increased synthesis and/or secretion of said IL-12 and/or functionally active fragments thereof.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • the proportion of cells expressing IL-12 and/or its functionally active fragments in TILs obtained by enhanced activity is increased.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • the proportion of cells expressing IL-12 and/or its functionally active fragments in the TIL obtained by the enhanced activity is increased by at least about 5%.
  • TILs obtained by increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL cells expressing IL-12 and/or functionally active fragments thereof The proportion is at least about 5% or more.
  • the TIL is co-cultured with the feeder cells at least about 2 hours after contact with the T cell activator and/or the T cell growth factor.
  • the TIL is co-cultured with the feeder cells from about 6 hours to about 72 hours after contact with the T cell activator and/or the T cell growth factor.
  • the TIL is co-cultured with the feeder cells from about 12 hours to about 48 hours after contact with the T cell activator and/or the T cell growth factor.
  • the TIL is contacted with the T cell activator and/or the T cell growth factor for about 6 hours, about 12 hours, about 24 hours, about 48 hours, or about 72 hours after being contacted with the TIL.
  • the feeder cells are co-cultured.
  • the feeder cells comprise antigen presenting cells.
  • the feeder cells comprise one or more selected from the group consisting of peripheral mononuclear cells, dendritic cells and artificial antigen presenting cells.
  • the feeder cells are peripheral mononuclear cells.
  • the feeder cells are irradiated feeder cells.
  • co-culturing the TIL with the feeder cell comprises contacting the surface of the feeder cell with the surface of the TIL.
  • the co-cultivation of the TIL with the feeder cells comprises adding the feeder cells to the cell culture medium of the TIL.
  • the feeder cells are added to the cell culture medium of the TIL at a ratio of the feeder cells to the TIL from about 40:1 to about 400:1.
  • the T cell activator comprises one or more selected from the group consisting of cluster of differentiation 80 (CD80), CD86, CD276, 4-1BB ligand (4-1BBL), CD27, CD30 , CD134, CD275, CD40, CD258, and their functionally active fragments.
  • the T cell activator comprises an agonist of one or more targets selected from the group consisting of CD3, CD28, Herpes Virus Entry Mediator (HVEM), CD40L, OX40 and 4-1BB.
  • HVEM Herpes Virus Entry Mediator
  • the T cell activator comprises a CD3 agonist and/or a CD28 agonist.
  • the T cell activator comprises a CD3 agonist.
  • the T cell activator comprises an anti-CD3 antibody and/or antigen-binding fragment thereof.
  • the T cell activator comprises a CD28 agonist.
  • the T cell activator comprises an antibody against CD28 and/or an antigen-binding fragment thereof, CD80 and/or a functionally active fragment thereof and/or CD86 and/or a functionally active fragment thereof.
  • the contacting the TIL with the T cell activator comprises one or more means selected from the group consisting of: (1) adding the T cell activator to a cell culture of the TIL (2) adding engineered cells expressing the T cell activator to the cell culture medium of the TIL; and (3) adding a solid-phase medium comprising the T cell activator to the TIL in the cell culture medium.
  • the initial concentration of each of the T cell activators in the cell culture medium of the TIL is each independently at least about 30 ng/mL.
  • the initial concentration of each of the T cell activators in the cell culture medium of the TIL is each independently about 30 ng/mL to about 300 ng/mL.
  • the solid phase medium has a diameter of about 500 nanometers to about 10 micrometers.
  • the solid phase medium has a diameter of from about 1 nanometer to about 500 nanometers.
  • the diameter of the solid medium is measured by transmission electron microscopy.
  • the solid phase medium comprises a polymer
  • the amount of each of the T cell activators contained in the solid medium is each independently at least about 25 ⁇ g per mg of the solid medium.
  • the solid phase medium comprising the T cell activator is added to the cell culture of the TIL at a ratio of the solid phase medium to the TIL of about 2:1 to about 1:2 base.
  • the solid phase medium comprising the T cell activator is added to the cell culture of the TIL at a ratio of the solid phase medium to the TIL of about 1:100 to about 1:2000 base.
  • the TIL is contacted with the T cell activator and the T cell growth factor at substantially the same time.
  • the T cell growth factor is selected from one or more of the group consisting of IL-2, IL-7, IL-12, IL-15, IL-21, gamma interferon, and their functionally active fragments.
  • the T cell growth factor comprises IL-2 and/or a functionally active fragment thereof.
  • contacting the TIL with the T cell growth factor comprises adding the T cell growth factor to the cell culture medium of the TIL.
  • the initial concentration of each of the T cell growth factors in the cell culture medium of the TIL is each independently at least about 300 IU/mL.
  • the TIL is TIL derived from fragments of tumor tissue and/or TIL derived from cryopreservation resuscitation.
  • the fragments have a volume of about 1 cubic millimeter to about 27 cubic millimeters.
  • TIL tumor-infiltrating lymphocytes
  • the method comprises: increasing the expression and/or activity of IL-12 and/or a functionally active fragment thereof of the TIL after contacting the TIL with a CD28 agonist.
  • the method comprises: increasing the expression and/or activity of IL-12 and/or a functionally active fragment thereof of the TIL prior to contacting the TIL with a CD28 agonist.
  • a method for culturing tumor-infiltrating lymphocytes comprising: increasing the expression and/or activity of IL-12 and/or a functionally active fragment thereof of the TIL, wherein the TIL comprises an agonist with CD28 TIL obtained by contacting the agent.
  • TILs tumor-infiltrating lymphocytes
  • the method comprising: contacting the TILs with a CD28 agonist, wherein the TILs comprise expressing IL-12 and/or functionally active fragments thereof of the TILs Increased and/or activity-enhanced TILs obtained.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • TILs obtained with/or enhanced activity show improved TIL properties.
  • the improved TIL properties comprise one or more selected from the group consisting of increased number of TIL cells, increased proportion of viable cells, increased viability, improved proportion of T cell subsets, Increased cytokine secretion capacity, increased tumor cell killing capacity, increased T cell receptor (TCR) clonal diversity and increased TIL cell numbers in tissues and/or tumors.
  • the improved proportion of T cell subsets comprises one or more selected from the group consisting of: increased proportion of central memory T cells, decreased proportion of regulatory T cells, increased activated T cells ratio, increased proportion of tumor-specific T cells, and increased proportion of stem-like T cells.
  • said TIL that has been contacted with said CD28 agonist during at least one in vitro expansion phase exhibits an improvement compared to a corresponding TIL that has not been contacted with said CD28 agonist during the in vitro expansion phase effect of gene editing.
  • the improved gene editing effect comprises increased gene knockout efficiency.
  • said increasing the expression and/or activity of IL-12 and/or its functionally active fragment of said TIL comprises nucleic acid encoding said IL-12 and/or its functionally active fragment into the TIL.
  • the increasing expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL comprises introducing a vector comprising the nucleic acid into the TIL.
  • nucleic acid encoding the IL-12 and/or a functionally active fragment thereof is integrated into the genome of the TIL.
  • the vector comprises a viral vector.
  • the viral vector comprises a retroviral vector.
  • the retroviral vector comprises a lentiviral vector.
  • the IL-12 and/or functionally active fragment thereof comprises membrane-anchored IL-12 and/or secreted IL-12.
  • the IL-12 and/or functionally active fragment thereof comprises a p40 domain.
  • the p40 domain comprises the amino acid sequence set forth in SEQ ID NO:42.
  • the IL-12 and/or functionally active fragment thereof comprises a p35 domain.
  • the p35 domain comprises the amino acid sequence set forth in SEQ ID NO:55.
  • the p40 domain is directly or indirectly linked to the p35 domain.
  • the indirect linking comprises linking through a linker.
  • the linker comprises an amino acid sequence selected from the group consisting of: SEQ ID NO:43-49, (SEQ ID NO:50) l , (SEQ ID NO:51) m , (SEQ ID NO:51)m ID NO: 52) n , (SEQ ID NO: 53) p , and (SEQ ID NO: 54) q , and any combination of the foregoing, wherein l, m, n, p and q are each independently at least one.
  • the IL-12 and/or functionally active fragment thereof comprises a signal peptide domain.
  • the signal peptide domain comprises the amino acid sequence set forth in SEQ ID NO:41.
  • the signal peptide domain is linked directly or indirectly to the p40 domain.
  • the IL-12 and/or functionally active fragment thereof comprises a transmembrane domain.
  • the transmembrane domain and/or the transmembrane intracellular domain comprises the amino acid sequence set forth in any one of SEQ ID NOs: 56-61 and 66-70.
  • the transmembrane domain and/or the transmembrane intracellular domain is directly or indirectly linked to the signal peptide domain and/or the p35 domain.
  • the IL-12 and/or functionally active fragment thereof comprises an intracellular domain.
  • the intracellular domain comprises the amino acid sequence set forth in any one of SEQ ID NOs: 62-65.
  • the intracellular domain is directly or indirectly linked to the transmembrane domain.
  • the functionally active fragment of the IL-12 comprises the amino acid sequence set forth in SEQ ID NO: 42 and/or 55.
  • the IL-12 comprises the amino acid sequence set forth in any one of SEQ ID NOs: 34-40.
  • the increased expression of IL-12 and/or functionally active fragments thereof comprises increased synthesis and/or secretion of said IL-12 and/or functionally active fragments thereof.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • the proportion of cells expressing IL-12 and/or its functionally active fragments in TILs obtained by enhanced activity is increased.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • the proportion of cells expressing IL-12 and/or its functionally active fragments in the TIL obtained by the enhanced activity is increased by at least about 5%.
  • TILs obtained by increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL cells expressing IL-12 and/or functionally active fragments thereof The proportion is at least about 5% or more.
  • TIL derived from tumor tissue and not expanded in vitro is subjected to at least one stage of in vitro expansion, wherein, in at least one stage of said in vitro expansion, said TIL is subjected to CD28 agonist exposure.
  • the TIL derived from tumor tissue and not expanded in vitro is subjected to a first stage of in vitro expansion and a second stage of in vitro expansion, and in the second stage of in vitro expansion , contacting the in vitro expanded TIL of the first stage with the CD28 agonist.
  • the first stage of in vitro expansion is performed for at least about 7 days.
  • the first stage of in vitro expansion is performed for about 7 days to about 14 days.
  • the second stage of in vitro expansion is performed for at least about 7 days.
  • the second stage of in vitro expansion is performed for about 7 days to about 14 days.
  • the CD28 agonist comprises an anti-CD28 antibody and/or an antigen-binding fragment thereof, CD80 and/or a functionally active fragment thereof, and/or CD86 and/or a functionally active fragment thereof.
  • the method further comprises: subjecting the tumor tissue-derived TIL that has not been expanded in vitro through at least one stage of in vitro expansion, wherein in at least one stage of the in vitro expansion, the The TIL is contacted with other T cell activators than the CD28 agonist.
  • the TIL is contacted with the other T cell activator in a single stage of the in vitro expansion.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof of said TIL is increased and said TIL is combined with said other T cell activator contacts.
  • the TIL derived from tumor tissue and not expanded in vitro is subjected to a first stage of in vitro expansion and a second stage of in vitro expansion, and in the second stage of in vitro expansion, the The TIL is contacted with the other T cell activator.
  • the TIL is contacted with the CD28 agonist and the other T cell activator at substantially the same time.
  • the other T cell activator comprises an agonist of one or more targets selected from the group consisting of CD3, HVEM, CD40L, OX40 and 4-1BB.
  • the other T cell activator comprises a CD3 agonist.
  • the other T cell activator comprises an anti-CD3 antibody and/or antigen-binding fragment thereof.
  • the contacting the TIL with the CD28 agonist and the other T cell activator comprises one or more means selected from the group consisting of: (1) contacting the CD28 agonist and the other T cell activator with adding the other T cell activator to the cell culture medium of the TIL; (2) adding the engineered cells expressing the CD28 agonist and the other T cell activator to the cell culture medium of the TIL; (3) A solid-phase medium containing the CD28 agonist and the other T cell activator is added to the cell culture medium of the TIL.
  • the initial concentration of the other T cell activator in the cell culture medium of the TIL is at least about 30 ng/mL.
  • the initial concentration of the other T cell activator in the cell culture medium of the TIL is from about 30 ng/mL to about 300 ng/mL.
  • the solid phase medium has a diameter of about 500 nanometers to about 10 micrometers.
  • the solid phase medium has a diameter of from about 1 nanometer to about 500 nanometers.
  • the diameter of the solid medium is measured by transmission electron microscopy.
  • the solid phase medium comprises a polymer
  • the solid phase medium comprises at least about 25 ⁇ g of the CD28 agonist and the other T cell activator per mg.
  • the solid phase medium comprising the CD28 agonist and the other T cell activator is added at a ratio of the solid phase medium to the TIL of about 2:1 to about 1:2 into the cell culture medium of the TIL.
  • the solid phase medium comprising the CD28 agonist and the other T cell activator is added at a ratio of the solid phase medium to the TIL of about 1:100 to about 1:2000 into the cell culture medium of the TIL.
  • the method further comprises: subjecting the tumor tissue-derived TIL that has not been expanded in vitro through at least one stage of in vitro expansion, wherein in at least one stage of the in vitro expansion, the The TILs were co-cultured with feeder cells after exposure to the CD28 agonist for a certain period of time.
  • the TIL is co-cultured with the feeder cells in a single stage of the in vitro expansion.
  • the TIL is contacted with a CD28 agonist and the TIL is co-cultured with the feeder cells in a single stage of the in vitro expansion.
  • the TIL derived from tumor tissue and not expanded in vitro is subjected to a first stage of in vitro expansion and a second stage of in vitro expansion, and in the second stage of in vitro expansion, the The TILs are co-cultured with the feeder cells.
  • the TIL is co-cultured with the feeder cells at least about 2 hours after contact with the CD28 agonist.
  • the TIL is co-cultured with the feeder cells from about 6 hours to about 72 hours after contact with the CD28 agonist.
  • the TIL is co-cultured with the feeder cells from about 12 hours to about 48 hours after contact with the CD28 agonist.
  • the TIL is co-cultured with the feeder cells about 6 hours, about 12 hours, about 24 hours, about 48 hours, or about 72 hours after being contacted with the CD28 agonist.
  • the feeder cells comprise antigen presenting cells.
  • the feeder cells comprise one or more selected from the group consisting of peripheral mononuclear cells, dendritic cells and artificial antigen presenting cells.
  • the feeder cells are peripheral mononuclear cells.
  • the feeder cells are irradiated feeder cells.
  • co-culturing the TIL with the feeder cell comprises contacting the surface of the feeder cell with the surface of the TIL.
  • the co-cultivation of the TIL with the feeder cells comprises adding the feeder cells to the cell culture medium of the TIL.
  • the feeder cells are added to the cell culture medium of the TIL at a ratio of the feeder cells to the TIL from about 40:1 to about 400:1.
  • the method further comprises: subjecting the tumor tissue-derived TIL that has not been expanded in vitro through at least one stage of in vitro expansion, wherein in at least one stage of the in vitro expansion, the The TIL is contacted with T cell growth factor.
  • the TIL is contacted with the T cell growth factor in a single stage of the in vitro expansion.
  • the TIL is contacted with the CD28 agonist and the T cell growth factor in a single stage of the in vitro expansion.
  • the TIL derived from tumor tissue and not expanded in vitro is subjected to a first stage of in vitro expansion and a second stage of in vitro expansion, and in the second stage of in vitro expansion, the The TIL is contacted with T cell growth factor.
  • the TIL is contacted with the CD28 agonist and the T cell growth factor at substantially the same time.
  • the T cell growth factor is selected from one or more of the group consisting of IL-2, IL-7, IL-12, IL-15, IL-21, gamma interferon, and their functionally active fragments.
  • the T cell growth factor comprises IL-2 and/or a functionally active fragment thereof.
  • contacting the TIL with the T cell growth factor comprises adding the T cell growth factor to the cell culture medium of the TIL.
  • the initial concentration of each of the T cell growth factors in the cell culture medium of the TIL is each independently at least about 300 IU/mL.
  • the TIL is TIL derived from fragments of tumor tissue and/or TIL derived from cryopreservation resuscitation.
  • the fragments have a volume of about 1 cubic millimeter to about 27 cubic millimeters.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), comprising:
  • step (A) contacting a first TIL population derived from tumor tissue and not expanded in vitro with a T cell growth factor, wherein a second TIL population is obtained through the step (A);
  • step (B) increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the second population of TILs, and contacting the TILs with a CD28 agonist, wherein the step (B) A third TIL group is obtained.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), comprising:
  • the in vitro TIL population comprises a TIL population obtained by in vitro expansion of the first TIL population derived from tumor tissue and not expanded in vitro;
  • the in vitro TIL population comprises a TIL population obtained by contacting the first TIL population with a T cell growth factor.
  • the in vitro TIL population comprises a TIL population obtained from cryopreservation of the first TIL population.
  • the step (A) is performed for about 7 days to about 14 days.
  • the step (B) is performed for about 7 days to about 14 days.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • TILs obtained with/or enhanced activity show improved TIL properties.
  • the improved TIL properties comprise one or more selected from the group consisting of increased number of TIL cells, increased proportion of viable cells, increased viability, improved proportion of T cell subsets, Increased cytokine secretion capacity, increased tumor cell killing capacity, increased T cell receptor (TCR) clonal diversity and increased TIL cell numbers in tissues and/or tumors.
  • the improved proportion of T cell subsets comprises one or more selected from the group consisting of: increased proportion of central memory T cells, decreased proportion of regulatory T cells, increased activated T cells ratio, increased proportion of tumor-specific T cells, and increased proportion of stem-like T cells.
  • said TIL that has been contacted with said CD28 agonist during at least one in vitro expansion phase exhibits an improvement compared to a corresponding TIL that has not been contacted with said CD28 agonist during the in vitro expansion phase effect of gene editing.
  • the improved gene editing effect comprises increased gene knockout efficiency.
  • said increasing the expression and/or activity of IL-12 and/or its functionally active fragment of said TIL comprises nucleic acid encoding said IL-12 and/or its functionally active fragment into the TIL.
  • said increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of said TIL comprises introducing a vector comprising said nucleic acid into said TIL.
  • nucleic acid encoding the IL-12 and/or a functionally active fragment thereof is integrated into the genome of the TIL.
  • the vector comprises a viral vector.
  • the viral vector comprises a retroviral vector.
  • the retroviral vector comprises a lentiviral vector.
  • the IL-12 and/or functionally active fragment thereof comprises membrane-anchored IL-12 and/or secreted IL-12.
  • the IL-12 and/or functionally active fragment thereof comprises a p40 domain.
  • the p40 domain comprises the amino acid sequence set forth in SEQ ID NO:42.
  • the IL-12 and/or functionally active fragment thereof comprises a p35 domain.
  • the p35 domain comprises the amino acid sequence set forth in SEQ ID NO:55.
  • the p40 domain is directly or indirectly linked to the p35 domain.
  • the indirect linking comprises linking through a linker.
  • the linker comprises an amino acid sequence selected from the group consisting of: SEQ ID NO:43-49, (SEQ ID NO:50) l , (SEQ ID NO:51) m , (SEQ ID NO:51)m ID NO: 52) n , (SEQ ID NO: 53) p , and (SEQ ID NO: 54) q , and any combination of the foregoing, wherein l, m, n, p and q are each independently at least one.
  • the IL-12 and/or functionally active fragment thereof comprises a signal peptide domain.
  • the signal peptide domain comprises the amino acid sequence set forth in SEQ ID NO:41.
  • the signal peptide domain is linked directly or indirectly to the p40 domain.
  • the IL-12 and/or functionally active fragment thereof comprises a transmembrane domain.
  • the transmembrane domain and/or the transmembrane intracellular domain comprises the amino acid sequence set forth in any one of SEQ ID NOs: 56-61 and 66-70.
  • the transmembrane domain and/or the transmembrane intracellular domain is directly or indirectly linked to the signal peptide domain and/or the p35 domain.
  • the IL-12 and/or functionally active fragment thereof comprises an intracellular domain.
  • the intracellular domain comprises the amino acid sequence set forth in any one of SEQ ID NOs: 62-65.
  • the intracellular domain is directly or indirectly linked to the transmembrane domain.
  • the functionally active fragment of the IL-12 comprises the amino acid sequence set forth in SEQ ID NO: 42 and/or 55.
  • the IL-12 comprises the amino acid sequence set forth in any one of SEQ ID NOs: 34-40.
  • the increased expression of IL-12 and/or functionally active fragments thereof comprises increased synthesis and/or secretion of said IL-12 and/or functionally active fragments thereof.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • the proportion of cells expressing IL-12 and/or its functionally active fragments in TILs obtained by enhanced activity is increased.
  • the expression and/or activity of IL-12 and/or functionally active fragments thereof are increased and/or increased in the TIL compared to TILs in which the expression and/or activity of IL-12 and/or functionally active fragments thereof are not altered.
  • the proportion of cells expressing IL-12 and/or its functionally active fragments in the TIL obtained by the enhanced activity is increased by at least about 5%.
  • TILs obtained by increasing the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TIL cells expressing IL-12 and/or functionally active fragments thereof The proportion is at least about 5% or more.
  • the CD28 agonist comprises an anti-CD28 antibody and/or an antigen-binding fragment thereof, CD80 and/or a functionally active fragment thereof, and/or CD86 and/or a functionally active fragment thereof.
  • the TIL is contacted with the CD28 agonist and the other T cell activator at substantially the same time.
  • the other T cell activator comprises an agonist of one or more targets selected from the group consisting of CD3, HVEM, CD40L, OX40 and 4-1BB.
  • the other T cell activator comprises a CD3 agonist.
  • the other T cell activator comprises an anti-CD3 antibody and/or antigen-binding fragment thereof.
  • the contacting the TIL with the CD28 agonist and the other T cell activator comprises one or more means selected from the group consisting of: (1) contacting the CD28 agonist and the other T cell activator with adding the other T cell activator to the cell culture medium of the TIL; (2) adding the engineered cells expressing the CD28 agonist and the other T cell activator to the cell culture medium of the TIL; (3) A solid-phase medium containing the CD28 agonist and the other T cell activator is added to the cell culture medium of the TIL.
  • the initial concentration of the other T cell activator in the cell culture medium of the TIL is at least about 30 ng/mL.
  • the initial concentration of the other T cell activator in the cell culture medium of the TIL is from about 30 ng/mL to about 300 ng/mL.
  • the solid phase medium has a diameter of about 500 nanometers to about 10 micrometers.
  • the solid phase medium has a diameter of from about 1 nanometer to about 500 nanometers.
  • the diameter of the solid medium is measured by transmission electron microscopy.
  • the solid phase medium comprises a polymer
  • the solid phase medium comprises at least about 25 ⁇ g of the CD28 agonist and the other T cell activator per mg.
  • the solid phase medium comprising the CD28 agonist and the other T cell activator is added at a ratio of the solid phase medium to the TIL of about 2:1 to about 1:2 into the cell culture medium of the TIL.
  • the solid phase medium comprising the CD28 agonist and the other T cell activator is added at a ratio of the solid phase medium to the TIL of about 1:100 to about 1:2000 into the cell culture medium of the TIL.
  • the TIL is co-cultured with the feeder cells at least about 2 hours after contact with the CD28 agonist.
  • the TIL is co-cultured with the feeder cells from about 6 hours to about 72 hours after contact with the CD28 agonist.
  • the TIL is co-cultured with the feeder cells from about 12 hours to about 48 hours after contact with the CD28 agonist.
  • the TIL is co-cultured with the feeder cells about 6 hours, about 12 hours, about 24 hours, about 48 hours, or about 72 hours after being contacted with the CD28 agonist.
  • the feeder cells comprise antigen presenting cells.
  • the feeder cells comprise one or more selected from the group consisting of peripheral mononuclear cells, dendritic cells and artificial antigen presenting cells.
  • the feeder cells are peripheral mononuclear cells.
  • the feeder cells are irradiated feeder cells.
  • co-culturing the TIL with the feeder cell comprises contacting the surface of the feeder cell with the surface of the TIL.
  • the co-cultivation of the TIL with the feeder cells comprises adding the feeder cells to the cell culture medium of the TIL.
  • the feeder cells are added to the cell culture medium of the TIL at a ratio of the feeder cells to the TIL from about 40:1 to about 400:1.
  • the TIL is contacted with the CD28 agonist and the T cell growth factor at substantially the same time.
  • the T cell growth factor is selected from one or more of the group consisting of IL-2, IL-7, IL-12, IL-15, IL-21, gamma interferon, and their functionally active fragments.
  • the T cell growth factor comprises IL-2 and/or a functionally active fragment thereof.
  • contacting the TIL with the T cell growth factor comprises adding the T cell growth factor to the cell culture medium of the TIL.
  • the initial concentration of each of the T cell growth factors in the cell culture medium of the TIL is each independently at least about 300 IU/mL.
  • the TIL is TIL derived from fragments of tumor tissue and/or TIL derived from cryopreservation resuscitation.
  • the fragments have a volume of about 1 cubic millimeter to about 27 cubic millimeters.
  • the present application also provides a tumor-infiltrating lymphocyte (TIL) obtained by the method of the present application.
  • TIL tumor-infiltrating lymphocyte
  • the present application also provides a composition comprising the TIL of the present application.
  • the application also provides a pharmaceutical composition comprising the TIL of the application and/or the composition of the application, and optionally a pharmaceutically acceptable carrier.
  • the present application also provides a method of affecting tumor cell growth, comprising administering to a subject a TIL of the present application, a composition of the present application, and/or a pharmaceutical composition of the present application.
  • the present application also provides the use of the TIL of the present application, the composition of the present application and/or the pharmaceutical composition of the present application in preparing a medicament for preventing and/or treating tumors.
  • the tumor is a solid tumor.
  • the tumor is selected from one or more of the following groups: melanoma, ovarian cancer, cervical cancer, lung cancer, bladder cancer, breast cancer, head and neck cancer, pancreatic cancer, liver cancer, stomach cancer, gastric cancer Rectal cancer, and kidney cancer.
  • Figure 1 shows the IL-12 transduction efficiency of CD4 + cells in each group for TIL cells derived from Donor A.
  • Figure 2 shows the IL-12 transduction efficiency of CD8 + cells in each group for TIL cells derived from Donor A.
  • Figure 3 shows the normalized expansion rate of TIL cells in each group for TIL cells derived from Donor B.
  • Figure 4 shows the proliferation ability of TIL cells in each group for TIL cells derived from Donor C.
  • Figure 5 Figure 6, Figure 7 and Figure 8 respectively show, for TIL cells derived from donor D, the cytokines IL-2, IFN- ⁇ , TNF- ⁇ and TIL cells of each group after stimulation with CD3 antibody IL-10 secretion, respectively.
  • Figure 9 show, for TIL cells derived from Donor E, the cytokines IL-2, IL-6, TNF- ⁇ and IL of TIL cells in each group after transACT stimulation -10 secretion situation respectively.
  • Figure 13 Figure 14, Figure 15, Figure 16 and Figure 17 show, for TIL cells derived from donor F, the cytokines IFN- ⁇ , IL-2, TNF- ⁇ , IL- 6 and IL-10 secretion, respectively.
  • Figure 18, Figure 19 and Figure 20 respectively show the secretion of cytokines IFN- ⁇ , IL-6 and IL-10 of TIL cells in each group when TIL cells derived from donor G were cultured without IL-2 happening.
  • Figure 21 shows the test results of the killing ability of TIL cells derived from donor H co-cultured with tumor cells at an effector-target ratio of 0.3:1.
  • Figure 22 shows the test results of the killing ability of TIL cells derived from donor H co-cultured with tumor cells at an effector-target ratio of 1:1.
  • Figure 23 shows the results of cytokine IL-2 secretion by TIL cells derived from donor H co-cultured with tumor cells at an effector-target ratio of 1:1 or 1:3.
  • Figure 24 shows the results of cytokine IL-6 secretion by TIL cells derived from donor H co-cultured with tumor cells at an effector-target ratio of 1:1 or 1:3.
  • Figure 25 shows the results of cytokine IFN- ⁇ secretion by TIL cells derived from donor H co-cultured with tumor cells at an effector-target ratio of 1:1 or 1:3.
  • Figure 26 shows the results of cytokine IL-10 secretion by TIL cells derived from donor H co-cultured with tumor cells at an effector-target ratio of 1:1 or 1:3.
  • Figure 27 shows the results of cytokine TNF- ⁇ secretion by TIL cells derived from donor H co-cultured with tumor cells at an effector-target ratio of 1:1 or 1:3.
  • Figure 28 shows the diversity of CD8 + T cell TCR V[beta] clones at day 8 post-transduction for TIL cells derived from Donor I.
  • Figure 29 shows the diversity of CD8 + T cell TCR V[beta] clones at day 26 post-transduction for TIL cells derived from Donor I.
  • Figure 30 shows the diversity of CD4 + T cell TCR V[beta] clones at day 8 post-transduction for TIL cells derived from Donor I.
  • Figure 31 shows the diversity of CD4 + T cell TCR V[beta] clones at day 26 post-transduction for TIL cells derived from Donor I.
  • Figure 32, Figure 33, Figure 34, Figure 35 and Figure 36 show the number of T cells in each tissue and/or tumor on day 6 and day 21 after TIL cell injection, respectively.
  • Figure 37 shows the results of the analysis of the proliferation ability of TILs cultured with feeder cells for different feeding times.
  • Figures 38 and 39 show the ratio of CD45RA - CCR7 + central memory T cells (Tcm) of TIL cells cultured with feeder cells at 0, 24 or 48 hours after addition of OKT3 and IL-2 .
  • Figure 40 shows the ratio of CD4 + CD25 + Foxp3 + regulatory T cells (Treg) of TIL cells cultured after addition of feeder cell-cultured TILs 0 hours, 24 hours or 48 hours after addition of OKT3 and IL-2.
  • Figure 41 and Figure 42 show the proportion of activated T cells in TIL cells cultured by adding feeder cell-cultured TILs 0 hours, 24 hours, or 48 hours after addition of OKT3 and IL-2.
  • Figure 43 shows the ratio of CD103 + CD39 + tumor-specific T cells in TIL cells cultured after addition of feeder cell-cultured TILs 0, 24, or 48 hours after addition of OKT3 and IL-2.
  • Figure 44 shows the TCF1 + stem-like T cell ratio of TIL cells cultured with feeder cell-cultured TILs 0 hours, 24 hours, or 48 hours after addition of OKT3 and IL-2.
  • Figure 45 shows the results of proliferative analysis of the test group and the control group to which different forms of CD28 agonists were added.
  • Figure 46 and Figure 47 respectively show the proportion of T cell subsets of TIL cells cultured in the mixed antibody group and the control group for TILs derived from different donors.
  • Figure 48 and Figure 49 respectively show the proportion of T cell subsets of TIL cells cultured in the magnetic bead group and the control group for TILs derived from different donors.
  • Figure 50 shows the ratio of T cell subsets of TIL cells cultured in the nanomatrix group and the control group.
  • Figure 51 shows the cell killing ability of TIL cells cultured in the nanomatrix group and the control group.
  • Figure 52 shows the results of intracellular factor expression detection of TIL cells cultured in the mixed antibody group and the control group.
  • Figure 53, Figure 54, Figure 55 and Figure 56 respectively show the detection results of intracellular factor expression in TIL cells cultured by the magnetic bead group and the control group for TILs from different donors.
  • Figure 57 shows the detection results of intracellular factor expression in TIL cells cultured in the nanomatrix group and the control group.
  • Figure 58 shows the results of cytokine secretion detection of TIL cells cultured in the nanomatrix group and the control group.
  • Figure 59 shows the results of cytokine secretion detection after co-incubation of TIL cells cultured with tumor cells in the nanomatrix group and the control group.
  • Figure 60 and Figure 61 respectively show the results of gene knockout efficiency of TIL cells cultured in the nanomatrix group and the control group for TILs derived from different donors.
  • Figure 62, Figure 63 and Figure 64 respectively show the results of proliferative capacity analysis of experimental groups that were expanded in vitro in different ways during the terminal stimulation phase for TILs derived from different donors.
  • Figure 65 shows that TIL cells transduced with IL-12 can show greater serial killing ability.
  • Figure 66 shows that TIL cells transduced with IL-12 can exhibit greater tumor volume suppression ability.
  • Figure 67 shows that TIL cells transduced with IL-12 can display higher and longer-lasting IFN- ⁇ secretion capacity.
  • Figure 68 shows the amount of fluorescence after expansion of TIL cells in each group.
  • Figure 69 shows the test results of the killing ability of TIL cells co-cultured with tumor cells at an effect-to-target ratio of 3:1 after gene transduction of c-Jun (for example, transduction of the nucleic acid fragment encoding SEQ ID NO: 71).
  • Figure 70 shows the cytokine secretion detection results of TIL cells in each group. The results show that the gene-transduced c-Jun TIL cells of the present application can have higher cytokine secretion capacity.
  • Figure 71 shows the amount of fluorescence after expansion of TIL cells in each group.
  • Figure 72A shows the test results of the killing ability of TIL cells co-cultured with tumor cells at an effect-to-target ratio of 1:1 after gene transduction (for example, transduction of the nucleic acid fragment described in SEQ ID NO: 74).
  • Figure 72B shows the test results of the killing ability of TIL cells co-cultured with tumor cells at an effect-to-target ratio of 3:1 after gene transduction (for example, transduction of the nucleic acid fragment described in SEQ ID NO: 75).
  • Figure 73 shows the detection results of cytokine secretion of TIL cells in each group.
  • Figure 74A is a graph showing the results of cell proliferation ability of TIL cells cultured by adding feeder cell-cultured TILs 0 hours, 24 hours or 48 hours after addition of OKT3 and IL-2.
  • Figure 74B shows the results of the ratio of CD45RA - CCR7 + central memory T cells (Tcm) of TIL cells cultured with feeder cells at 0 hours, 24 hours or 48 hours after the addition of OKT3 and IL-2.
  • Figure 74C shows the TCF1 + stem-like T cell ratio of TIL cells cultured with feeder cells at 0, 24, or 48 hours after addition of OKT3 and IL-2.
  • Figure 74D shows the ratio of CD4 + CD25 + Foxp3 + regulatory T cells (Treg) of TIL cells cultured with feeder cells at 0, 24 or 48 hours after addition of OKT3 and IL-2.
  • Figure 74E shows the proportion of activated T cells (PD-1 + ) in TIL cells cultured with feeder cells at 0, 24 or 48 hours after addition of OKT3 and IL-2.
  • Figure 74F shows the ratio of CD103 + CD39 + tumor-specific T cells in TIL cells cultured with feeder cells at 0, 24, or 48 hours after addition of OKT3 and IL-2.
  • Figure 74G shows the ratio of activated T cells (CD28 + ) in TIL cells cultured with feeder cells at 0, 24 or 48 hours after addition of OKT3 and IL-2.
  • Figure 74H shows the proportion of activated T cells (41BB + ) of TIL cells cultured with feeder cells at 0, 24 or 48 hours after addition of OKT3 and IL-2.
  • Figure 74I shows the proportion of activated T cells (CD25 + ) in TIL cells cultured with feeder cells at 0, 24 or 48 hours after addition of OKT3 and IL-2.
  • Figure 74J shows the results of intracellular factor expression detection of TIL cells cultured by adding feeder cells at 0 hour, 24 hours or 48 hours after adding OKT3 and IL-2.
  • Figure 74K shows the results of cytokine secretion detection of TIL cells cultured with feeder cells at 0 hour, 24 hours or 48 hours after addition of OKT3 and IL-2.
  • Figure 74L shows the results of the cell proliferation ability of TIL cells cultured with feeder cells at 0 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, or 5 days after adding OKT3 and IL-2. picture.
  • Figure 74M shows CD8 + T cells of TIL cells cultured with feeder cells at 0, 6, 12, 24, 48, 72, or 5 days after addition of OKT3 and IL-2. Proportion.
  • Figure 74N shows the CD45RO + CD62L + of TIL cells cultured with feeder cells at 0 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, or 5 days after addition of OKT3 and IL-2. T cell ratio.
  • Figure 74O shows the proportion of NK T cells in TIL cells cultured with feeder cells at 0 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, or 5 days after addition of OKT3 and IL-2. .
  • Figure 74P shows the CD4 + CD25 + of TIL cells cultured with feeder cells at 0 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, or 5 days after addition of OKT3 and IL-2. Foxp3 + regulatory T cell (Treg) ratio.
  • Figure 74Q shows the results of the cell killing ability of TIL cells cultured by adding feeder cell-cultured TILs 48 hours after the addition of OKT3 and IL-2.
  • interleukin or “interleukin” generally refers to a cytokine.
  • interleukins can activate and regulate immune cells, mediate T cell and B cell activation, proliferation or differentiation, and can play an important role in inflammatory responses.
  • interleukins may encompass unprocessed interleukins, processed interleukins in any form, variants of interleukins, or substances comprising functionally active fragments of interleukins.
  • IL-12 generally refers to a type of cytokine.
  • IL-12 can be found at GenBank Accession Nos. P29459 or P29460.
  • the IL-12 protein of the present application may also encompass functionally active fragments thereof, not limited to substances comprising functionally active fragments of IL-12 produced after processing and/or modification that occurs in cells.
  • IL-12 of the present application may comprise functionally active fragments of IL-12 as well as other arbitrary domains.
  • the term "p40 domain” generally refers to a partial domain of a functionally active fragment of IL-12.
  • the p40 domain of the present application may encompass a portion of IL-12 with a molecular weight of approximately 40 kDa, not limited to materials comprising functionally active fragments of the p40 domain resulting from processing and/or modification occurring in cells.
  • the p40 domain can also be referred to as IL-12beta subunit or IL-12B, eg, the p40 domain can be found at GenBank Accession No. P29460.
  • the p40 domain-containing substance of the present application may have the function of IL-12 to modulate immune cells.
  • the p40 domain of the present application can form IL-12 or a fragment thereof together with the p35 domain, or can form IL-12 or a fragment thereof alone.
  • the term "p35 domain” generally refers to a partial domain of a functionally active fragment of IL-12.
  • the p35 domain of the present application may encompass a portion of IL-12 with a molecular weight of approximately 35 kDa, not limited to materials comprising functionally active fragments of p35 produced after processing and/or modification that occurs in cells.
  • the p35 domain can also be referred to as IL-12 ⁇ subunit or IL-12A, eg, the p35 domain can be found in GenBank Accession No. P29459.
  • a substance comprising a p35 domain of the present application may have the function of IL-12 to modulate immune cells.
  • the p35 domain of the present application can form IL-12 or a fragment thereof together with the p40 domain, or can form IL-12 or a fragment thereof alone.
  • transmembrane domain generally refers to the portion of the transmembrane domain that spans the cell membrane.
  • the portion located in the cell membrane can be, for example, the transmembrane region of various polypeptides.
  • Fragments of the transmembrane domain may comprise functionally active fragments, truncations and/or mutant variants of the wild-type transmembrane domain.
  • the transmembrane domain of the present application may have a function of binding a substance containing the transmembrane domain to a cell membrane.
  • intracellular domain generally refers to the intracellular portion located inside the cell membrane.
  • the intracellular domains of the present application may comprise functionally active fragments, truncations and/or mutant variants of wild-type intracellular domains.
  • the intracellular domains of the present application may not have any intracellular signaling function or may have any intracellular signaling function.
  • the intracellular domains of the present application may have the effect of imparting, maintaining and/or promoting overall structural stability.
  • transmembrane intracellular domain generally refers to a portion comprising a transmembrane domain and an intracellular domain.
  • the term "signal peptide domain” generally refers to short peptide chains that direct the transfer of newly synthesized proteins to the secretory pathway.
  • the signal peptide domains of the present application may comprise functionally active fragments, truncations and/or mutant variants of the wild-type signal peptide domains.
  • the signal peptide domain of the present application may have a function of directing the transmembrane transfer of a substance comprising the signal peptide domain.
  • the signal peptide domain of the present application can bind to a signal peptide-binding substance so that all or part of the signal peptide domain-containing substance is transferred to the extracellular region outside the cell membrane.
  • c-Jun generally refers to a transcription factor.
  • c-Jun may have the function of regulating gene expression.
  • the c-Jun of the present application can increase cellular and/or cell killing activity.
  • the c-Jun of the present application can play a key role in the growth, development, and differentiation of cells and tissues.
  • the NCBI Gene accession number for c-Jun may be 3725.
  • c-Jun may encompass unprocessed c-Jun, processed c-Jun in any form, variants of c-Jun, or substances comprising fragments of c-Jun.
  • microRNA generally refers to a small non-coding RNA molecule.
  • microRNAs can function to regulate gene expression.
  • the microRNAs of the present application can increase the proliferative capacity and/or cell killing activity of cells.
  • miR155 of the present application can play a key role in the growth, development, and differentiation of cells and tissues.
  • NCBI Gene accession number for miR155 may be 406947.
  • miR155 can encompass unprocessed miR155, processed miR155 in any form, variants of miR155, or substances comprising fragments of miR155.
  • CD80 generally refers to a cell stimulating molecule.
  • CD80 can be a ligand for CD28.
  • CD80 can be found at GenBank Accession No. P33681.
  • the CD80 protein of the present application may also encompass functionally active fragments thereof, and is not limited to substances comprising functionally active fragments of CD80 produced after processing and/or modification occurring in cells.
  • CD80 of the present application may comprise functionally active fragments of CD80 and other arbitrary domains.
  • CD86 generally refers to a cell stimulating molecule.
  • CD86 can be a ligand for CD28.
  • CD86 can be found in GenBank Accession No. P42081.
  • the CD86 protein of the present application may also encompass functionally active fragments thereof, not limited to substances comprising functionally active fragments of CD86 produced after processing and/or modification occurring in cells.
  • CD86 of the present application may comprise functionally active fragments of CD86 as well as other arbitrary domains.
  • membrane anchoring generally means that a substance can exist in a form localized to the cell membrane.
  • a membrane-anchored substance can mean that the substance can be distributed on the cell membrane.
  • the membrane-anchored substance can be partially or fully embedded in the cell membrane or on both sides.
  • membrane-anchored substances can penetrate the cell membrane, membrane-anchored substances can bind to components of the cell membrane through ionic bonds, hydrogen bonds, or other interactions, and membrane-anchored substances can also interact with other substances, indirectly with the membrane combine.
  • whether a substance is a membrane-anchored substance can be detected by flow cytometry or other methods of detecting cells.
  • a membrane-anchored substance may be present in a membrane-anchored form for a period of time and/or in a certain proportion.
  • secreted generally refers to a substance that can be localized outside the cell.
  • secreted substances can be transported to the extracellular space of the cell after being synthesized within the cell.
  • an enzyme-linked immunosorbent assay or other detection method can detect whether a substance is a secreted substance.
  • viral vector generally refers to a virus that can be used to deliver nucleic acids.
  • a viral vector can be used to infect a target cell, deliver a target nucleic acid into the target cell, and allow the target cell to express the gene encoded by the target nucleic acid.
  • the viral vector can be a lentiviral vector.
  • the term "retroviral vector” generally refers to a vector derived from at least a portion of a retroviral genome.
  • a retroviral vector can convert RNA to cDNA under the action of reverse transcriptase, and upon infection of a target cell, one or more transgenes contained within a heterologous nucleic acid sequence can be expressed in the target cell.
  • retroviral vectors including but not limited to lentiviral vectors, can be used in the clinic.
  • the term "lentiviral vector” generally refers to a vector derived from at least a portion of a lentiviral genome.
  • a lentiviral envelope protein can comprise a gene encoding an env protein or a portion thereof.
  • a host cell can be transfected with a transfer vector and one or more packaging vectors to generate a virus that can be used to infect a target cell to express in the target cell one or more of the nucleic acid sequences contained within the heterologous nucleic acid sequence a transgenic.
  • introducing generally refers to the incorporation of nucleic acid into a eukaryotic or prokaryotic cell.
  • introducing can refer to the incorporation of a heterologous or isolated nucleic acid into a eukaryotic or prokaryotic cell, wherein the nucleic acid can be incorporated into the genome (eg, chromosome, plasmid, plastid, or mitochondrial DNA) of the cell, converting to autonomous replication or transient expression (eg, transfected mRNA).
  • introduction can be accomplished by methods such as “infection”, “transfection”, “transformation” and “transduction”.
  • nucleic acids can be introduced into prokaryotic cells using a variety of methods, including electroporation, calcium phosphate precipitation, lipid-mediated transfection, and viral vector transduction.
  • the term "increased expression” generally refers to an increase in the level of expression of a product.
  • the cells synthesize the product in an increased amount.
  • the amount of the substance secreted by the cells increases.
  • the substance is a membrane-anchored substance, the proportion of cells whose cell membranes contain the substance increases, or the amount of the substance contained in the cell membrane increases.
  • the term "activity" generally refers to the biological function of a substance.
  • the activity of a cytokine can refer to the ability to affect cell activation, proliferation or differentiation.
  • T cell receptor generally refers to a complex of membrane proteins involved in the activation of T cells in response to presentation of an antigen.
  • the TCR may be responsible for recognizing antigens bound to major histocompatibility complex molecules.
  • TCRs can be composed of heterodimers of alpha ( ⁇ ) and beta ( ⁇ ) chains, or of gamma and delta ( ⁇ / ⁇ ) chains.
  • TCRs can exist in alpha/beta and gamma/delta forms, which are structurally similar but have unique anatomical locations and functions.
  • the TCR can be a modified TCR on any cell that expresses the TCR.
  • the type of TCR can be analyzed by a TCR subtype assay reagent.
  • clonal diversity generally refers to a substance having multiple clonotypes.
  • clonal diversity of TCRs can mean that TCRs can have different sequence structures and/or antigen recognition capabilities.
  • the diversity of TCRs is often distinguished by ⁇ -chain subtypes, which can include V ⁇ 23, V ⁇ 7.2, V ⁇ 5.2, V ⁇ 11, V ⁇ 16, V ⁇ 3, etc.
  • ⁇ -chain subtypes can include V ⁇ 23, V ⁇ 7.2, V ⁇ 5.2, V ⁇ 11, V ⁇ 16, V ⁇ 3, etc.
  • CD4 + cells generally refer to CD4-positive cells, which may be T cells, for example.
  • CD4 + cells can be used synonymously.
  • These cells can be identified by methods known in the art, such as by staining the cells with fluorescently labeled antibodies to CD4 and using fluorescence-activated cell sorting.
  • existing data can demonstrate that an increase in the proportion of CD4 + cells can increase the ability of the cell population to secrete IFN- ⁇ and/or TNF, and can enhance the tumor suppressor effect of the T cell population.
  • the art lacks a method to increase the proportion of CD4 + cells, the present application can provide a method to affect CD4 + cells proportional method.
  • CD8 + cells generally refer to CD8 positive cells, which may be T cells, for example.
  • CD8 + cells can be used synonymously. These cells can be identified by methods known in the art, such as by staining the cells with fluorescently labeled antibodies to CD8 and using fluorescence-activated cell sorting.
  • IC50 value or “IC50 value” generally refers to the concentration of a target that is required to obtain 50% inhibition of a biological process. IC50 values can be converted to absolute inhibition constants (Ki) using the Cheng-Prusoff equation (Biochem. Pharmacol. (1973) 22:3099).
  • K D value or “KD value” generally refers to the dissociation constant, which can be determined by surface plasmon resonance.
  • surface plasmon resonance analysis uses the BIAcore system (Pharmacia Biosensor, Piscataway, NJ) to measure ligands (substances immobilized on a biosensor matrix) and analytes (substances in solution) by surface plasmon resonance (SPR) ) in real-time binding interactions.
  • SPR surface plasmon resonance
  • Surface plasmon analysis can also be performed by immobilizing analytes (substances on a biosensor matrix) and presenting ligands.
  • the term "encoding” generally refers to the ability to directly or indirectly infer the structure or composition information of another type of molecule related to it from the structure or composition information of one molecule according to substantially determined rules.
  • the nucleotide sequence of an amino acid can be deduced from its sequence, e.g., from the properties of deoxyribonucleic acid to transcribe complementary nucleic acids, including nucleic acids that can be translated into polypeptides.
  • deoxyribonucleic acid can encode RNA transcribed from deoxyribonucleic acid.
  • Deoxyribonucleic acid can similarly encode polypeptides translated from RNA transcribed from deoxyribonucleic acid.
  • small molecule compound generally refers to peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, molecular weights less than about 10,000 g/mole organic or inorganic (ie, including heterologous organics and organometallic compounds), organic or inorganic having a molecular weight less than about 5,000 g/mole, organic or inorganic having a molecular weight less than about 1,000 g/mole, molecular weight less than about 500 grams per mole of organic or inorganic substances, as well as salts, esters and other pharmaceutically acceptable forms of such drugs.
  • organic or inorganic ie, including heterologous organics and organometallic compounds
  • NK cell is also referred to as "natural killer cell” and generally refers to a cell with large granules in the cytoplasm.
  • NK cells are developed from bone marrow lymphoid stem cells and can differentiate and develop depending on the bone marrow or thymus microenvironment.
  • the proportion of NK cells in TIL cells can be altered by the methods of the present application.
  • antibody generally refers to an immunoglobulin or fragment or derivative thereof, and encompasses any polypeptide that includes an antigen-binding site, whether produced in vitro or in vivo.
  • the term includes, but is not limited to, polyclonal, monoclonal, monospecific, multispecific, nonspecific, humanized, single-stranded, chimeric, synthetic, recombinant, hybrid , mutant and transplanted antibodies.
  • the term “antibody” also includes antibody fragments, such as Fab, F(ab')2, Fv, scFv, Fd, dAbs and other antibody fragments that retain antigen binding function (eg, specifically bind CD3). Typically, such fragments should include an antigen binding domain.
  • the basic 4-chain antibody unit is a heterotetrameric glycoprotein composed of two identical light (L) chains and two identical heavy (H) chains.
  • IgM antibody is composed of 5 basic heterotetrameric units and another polypeptide called J chain, and contains 10 antigen-binding sites, while IgA antibody includes 2-5 that can be combined with J chain to form multivalent Combined basic 4-chain unit.
  • the 4-chain unit is typically about 150,000 Daltons.
  • Each L chain is connected to the H chain by one covalent disulfide bond, while the two H chains are connected to each other by one or more disulfide bonds depending on the isotype of the H chain.
  • Each H and L chain also has regularly spaced intrachain disulfide bridges.
  • Each H chain has a variable domain (VH) at the N-terminus, followed by three constant domains (CH) for each of the alpha and gamma chains and four CH domains for the mu and epsilon isoforms.
  • Each L chain has a variable domain (VL) at the N-terminus and a constant domain at the other end.
  • VL corresponds to VH and CL corresponds to the first constant domain (CH1) of the heavy chain.
  • Particular amino acid residues are thought to form the interface between the light and heavy chain variable domains. The VH and VL pair together to form a single antigen binding site.
  • immunoglobulins from any vertebrate species can be classified into one of two distinct types, called kappa and lambda, based on the amino acid sequence of their constant domains. Based on the amino acid sequence of the heavy chain (CH) constant domains, immunoglobulins can be divided into different classes or isotypes. There are currently five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, with heavy chains designated alpha, delta, epsilon, gamma, and mu, respectively.
  • the term "antigen-binding fragment” generally refers to one or more polypeptide fragments that have the ability to specifically bind an antigen (eg, CD3).
  • the antigen-binding fragment may include Fab, Fab', F(ab) 2 , Fv fragment, F(ab') 2 , scFv, di-scFv and/or dAb.
  • solid phase medium generally refers to a solid phase material that binds a function.
  • the solid-phase medium in the present application may refer to a material that binds one or more substances in the medium and/or on the surface of the medium through covalent binding and/or non-covalent binding.
  • the solid-phase medium of the present application may refer to the binding of CD28 antibody or its antigen-binding fragment and CD3 antibody or its antigen-binding fragment in and/or on the surface of the medium through covalent binding and/or non-covalent binding.
  • Material for example, the solid phase medium of the present application may be a polymeric material.
  • the term "expression” generally refers to the process of transcription and/or translation that occurs within a cell of a gene encoding a polypeptide of interest.
  • the level of transcription of the gene encoding the polypeptide of interest in the host cell can be determined by measuring the amount of the corresponding mRNA present in the cell. For example, quantitative measurement of mRNA transcribed from a gene encoding a polypeptide of interest can be performed by PCR or by RNA hybridization.
  • the level of translation of the gene encoding the polypeptide of interest can be measured by a variety of methods, such as by ELISA, by polypeptide biological activity assays, or by Western blotting or radioimmunoassays.
  • the term "expression" may also generally refer to the process of transcription and/or translation in which the product occurs.
  • the expression of a cytokine can be the process by which a cell transcribes and/or translates the cytokine.
  • cytokine expression can be determined by detecting the amount of the corresponding mRNA present in the cell or by detecting the amount of the cytokine produced by the cell, or both.
  • stage in the terms “one stage in vitro expansion”, “single stage in vitro expansion”, or “first stage in vitro expansion” etc. generally refers to a period of expansion that TILs undergo in vitro process.
  • each stage can be divided by the change in the number of TIL cells, for example, when the number of TIL cells increases by at least about 1-fold, it can be considered that the TIL cells have entered the next stage of in vitro expansion.
  • TIL cells when the number of TIL cells increases by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold times, at least about 9 times, at least about 10 times, at least about 11 times, at least about 12 times, at least about 13 times, at least about 14 times, at least about 15 times, at least about 20 times, at least about 30 times, at least about 40 times At least about 50-fold, TIL cells can be considered to have entered the next stage of in vitro expansion. For example, each stage can also be divided by the conditions of TIL cell culture.
  • TIL cells when T cell activators and/or T cell growth factors are added or supplemented to the cell culture medium, TIL cells can be considered to have entered the next stage of in vitro expansion. For example, when TIL cells have been centrifuged and/or cell washed, TIL cells can be considered to have entered the next stage of in vitro expansion. For example, each stage can also be divided by the number of days in which the TIL cells are cultured.
  • TIL cells when TIL cells are cultured in vitro for about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 7 days, about 8 days, about 9 days, about 10 days, about 11 days , about 12 days, about 13 days, about 14 days, about 15 days, about 16 days, about 17 days, about 18 days, about 19 days, about 20 days, about 30 days, about 40 days, about 50 days or about After 100 days, TIL cells can be considered to have entered the next stage of in vitro expansion.
  • first stage in vitro expansion generally refers to the stage of expansion using T cell growth factors after primary TILs are obtained from tissue.
  • the tissue of the present application may be selected from the group consisting of tumor tissue and pleural effusion, which may be the pleural effusion of a patient with metastatic cancer.
  • the amplification of the present application may be autologous or allogeneic in vivo amplification, or may be in vitro amplification.
  • the first stage of in vitro expansion of the present application may also be referred to as the preREP (pre-rapid expansion) stage.
  • TILs derived from tumor tissue and not expanded in vitro can be referred to as the first TIL population.
  • the TILs obtained through the first-stage in vitro expansion in the culture method of the present application divided by the two-step method can be referred to as the second TIL population.
  • the term "second-stage in vitro expansion” generally refers to a stage in which tissue is removed from a subject and expanded, and then expanded again.
  • the number of TIL cells expanded in vitro in the second stage of the present application is increased, eg, can be increased by at least about 10-fold (or at least about 20, 30, 40, 50, compared to TILs expanded in vitro in the first stage). , 60, 70, 80, or 90-fold), or, for example, the number of cells can be increased by at least about 100-fold.
  • the second stage of in vitro expansion may differ from the culture conditions of the first stage of in vitro expansion, eg, the added culture substance may be different.
  • the second stage of in vitro expansion may also be referred to as the REP (rapid expansion) stage.
  • REP rapid expansion
  • the TILs obtained through the second-stage in vitro expansion in the culture method of the present application divided by the two-step method can be referred to as the third TIL population.
  • in vivo generally refers to an event that occurs in a subject.
  • in vitro generally refers to events that occur outside the body of a subject.
  • ex vivo generally refers to events involving treatment or surgery on cells, tissues and/or organs that have been removed from a subject.
  • the cells, tissues and/or organs can be returned to the subject's body by surgery or treatment.
  • secretion generally refers to the transfer of an expressed polypeptide or protein by a cell to the extracellular environment.
  • secretory capacity generally refers to the ability of a cell to express a polypeptide or protein and to transfer the polypeptide or protein of the present application to the extracellular environment.
  • irradiation generally refers to the treatment of a substance by means of radiation.
  • irradiating may refer to irradiating a substance with X-rays, alpha rays, beta rays, or gamma rays.
  • engineered cell generally refers to a cell that has been genetically modified by adding additional genetic material in the form of DNA or RNA to the total genetic material of the cell.
  • engineered cells can be genetically modified to express TILs of the T cell activators and/or T cell growth factors of the present application.
  • co-culture generally refers to the culturing of two or more different populations of cells with some degree of contact between them.
  • Contacting of two or more different populations of cells herein may, for example, be by direct contact, ie, direct physical contact of cells of one population with cells of another population.
  • indirect contact mediated by a shared culture medium may be used.
  • the shared medium of the present application may contain metabolites produced and released by at least one population of co-cultured cells and used to culture cells of another population.
  • the term "contacting" generally means that two or more substances of different types are brought into contact together in any order, in any manner, and for any length of time.
  • one or more feeder cells, T cell activators and/or T cell growth factors can be added to the medium of TIL cells by direct contact, for example, one or more feeder cells, T cell activators can be added Agents and/or T cell growth factors are added to and/or replaced with the medium of TIL cells, for example, a medium containing one or more feeder cells, T cell activators and/or T cell growth factors can be used For the cultivation of TIL cells; for example, metabolites produced and released by feeder cells can be used for culturing TIL cells, for example, by indirect contact.
  • the term "mixture” generally refers to a combination of two or more different substances.
  • the CD28 antibody or antigen-binding fragment thereof of the present application and the CD3 antibody or antigen-binding fragment thereof can be added to the cell culture medium as a mixture after mixing.
  • the terms “concurrently contacting”, “co-contacting”, “concurrently in contact with”, “simultaneously” and “co-contacting” generally refer to the administration of two or more substances to a subject and/or cell such that the substances both in the subject and/or in the context of the cell culture.
  • Simultaneous contacting can include simultaneous administration in different compositions, administration in different compositions at different times, or administration in a composition in which two or more active pharmaceutical ingredients are present.
  • “simultaneously contacting” as used herein may generally refer to substantially simultaneous contacting.
  • the term “expansion” generally refers to a several-fold increase in the number of cells over a period of time.
  • the number of cells can be increased by at least about 3 times (or 4, 5, 6, 7, 8 or 9 times), for example the number of cells can be increased by at least about 10 times (or 20, 30, 40, 50, 60, 70, 80- or 90-fold), or, for example, the number of cells can be increased by at least about 100-fold.
  • the term “expanded” generally means that the cells of the application have been expanded by one or more of the above.
  • polymer generally refers to a molecule consisting of separate chemical moieties linked together, which may be the same or different in this application.
  • polymer can refer to separate chemical moieties linked tail to tail to form a linear molecule, as well as separate chemical moieties linked together in branched (eg, "multi-armed” or "star") structures.
  • polymers can include, for example, polysaccharides, dextran, hydrogels, polyethylene glycol, or poloxamers.
  • Poloxamers are nonionic triblock copolymers with a central hydrophobic chain of polyoxypropylene (poly(propylene oxide)) pendant by two hydrophilic chains of polyoxyethylene (poly(ethylene oxide)).
  • the materials encompassed by this application can be formulated with, or administered with, any of the polymers described herein or known in the art.
  • chimeric antibody generally refers to an antibody in which the variable region of a murine antibody is fused with the constant region of a human antibody, which can alleviate the immune response induced by the murine antibody.
  • a hybridoma that secretes a mouse-specific monoclonal antibody can be established, and then the variable region gene can be cloned from the mouse hybridoma cell, and the constant region gene of the human antibody can be cloned according to the needs.
  • the human constant region gene is connected into a chimeric gene and inserted into an expression vector, and the chimeric antibody molecule can be expressed in a eukaryotic system or a prokaryotic system.
  • humanized antibody also known as CDR-grafted antibody
  • CDR-grafted antibody generally refers to the grafting of murine CDR sequences into the framework of human antibody variable regions, i.e. different Types of human germline antibody framework sequences produced in antibodies.
  • the heterologous reaction induced by chimeric antibodies can be overcome because they carry a large amount of murine protein components.
  • framework sequences can be obtained from public DNA databases or published references that include germline antibody gene sequences.
  • the germline DNA sequences of the human heavy and light chain variable region genes can be found in the "VBase" human germline sequence database.
  • monoclonal antibodies has gone through four stages, namely: murine monoclonal antibodies, chimeric monoclonal antibodies, humanized monoclonal antibodies and fully human monoclonal antibodies.
  • the antibodies or ligands described herein may be fully human monoclonal antibodies.
  • Related technologies for the preparation of fully human antibodies include: human hybridoma technology, EBV transformation of B lymphocytes, phage display technology, transgenic mouse antibody preparation technology, and single B cell antibody preparation technology.
  • CDR generally refers to one of the six hypervariable regions within the variable domain of an antibody that primarily contribute to antigen binding.
  • One of the most commonly used definitions of the 6 CDRs can be provided by Kabat E.A. et al., Chothia et al. and MacCallum et al.
  • the Kabat definition of CDRs can be applied to CDR1, CDR2 and CDR3 (CDR L1, CDR L2, CDR L3 or L1, L2, L3) of the light chain variable domains, as well as the heavy chain variable domains of CDR1, CDR2 and CDR3 (CDR H1, CDR H2, CDR H3 or H1, H2, H3).
  • anti-CD3 antibody generally refers to an antibody or variant thereof that targets CD3, such as a monoclonal antibody, including human, humanized, chimeric or murine antibodies, directed against T cells of mature T cells CD3 receptor among antigen receptors.
  • Anti-CD3 antibodies can include OKT-3.
  • Anti-CD3 antibodies can include SP34.
  • Anti-CD3 antibodies can also include other anti-CD3 antibodies including, for example, otelixizumab, teplizumab, and visilizumab.
  • IL-2 or "IL2” generally refers to the T cell growth factor known as interleukin 2, and includes all forms of IL-2, which may be included, for example, in this application in human and mammalian forms , conservative amino acid substitutions, glycoform modifications or variants, or active fragments thereof.
  • the GeneID encoding the IL-2 gene may be 3558.
  • the term "antigen-presenting cell”, “antigen-presenting cell”, or “APC” generally refers to an immunizing agent that displays on its surface a foreign antigen complexed with the major histocompatibility complex (MHC).
  • Systemic cells such as helper cells (eg, B cells, dendritic cells, etc.). T cells can recognize these complexes using their T cell receptors (TCRs).
  • TCRs T cell receptors
  • APCs can process and present antigens to T cells.
  • the antigen-presenting cells may comprise selected from the group consisting of peripheral mononuclear cells, dendritic cells, and artificial antigen-presenting cells.
  • TIL properties generally refers to the properties of TIL cells obtained by the culturing method of the present application. Changes in TIL properties can include: increased number of TIL cells, increased proportion of viable cells, increased viability, improved proportion of T cell subsets, increased cytokine secretion capacity, increased tumor cell killing capacity, increased T cells Receptor (TCR) clonal diversity and increased numbers of TIL cells in tissues and/or tumors, or any combination thereof. Variations of the present application may be increased or decreased.
  • an increase in the viability of TIL cells can refer to an increase in the time that TIL cells exist in the body.
  • increased viability can refer to an increase in the time a cell exists within a subject's tissue, such as tumor, spleen, bone marrow, lung tissue, and blood.
  • nanoparticle generally refers to at least one microscopic particle having a size of less than 100 nm.
  • nanoparticles typically have diameters in the range of 50 nm to 500 nm (ie, 0.05 ⁇ m to 0.5 ⁇ m); are structurally stable in physiological environments; and can accommodate smaller molecules (such as drugs or other bioactive agents), which can then be delivered to the desired site.
  • the nanoparticles of the present application may comprise a CD28 antibody or antigen-binding fragment thereof.
  • the nanoparticles of the present application may comprise a CD28 antibody or antigen-binding fragment thereof and a CD3 antibody or antigen-binding fragment thereof.
  • an anti-CD3 antibody can include OKT3.
  • an anti-CD28 antibody can include 15E8.
  • an artificial antigen-presenting cell generally refers to an artificially constructed immune cell for presenting exogenous antigens.
  • a complex of the histocompatibility complex MHC.
  • an isolated artificial antigen presenting cell may be included, which may comprise expression of HLA-A/B/C (the gene encoding the GeneID of which may be 3105, 3106 or 3107), CD64 (the gene encoding it GeneID can be 2209), CD80 (GeneID encoding it can be 941), ICOS-L (GeneID encoding it can be 23308) and CD58 (GeneID encoding it can be 965) cells, and can be modified To express more than one T cell activator, the above of the present application may include this number.
  • fusion protein generally refers to an amino acid sequence comprising a first polypeptide or protein or a fragment, analog or derivative thereof and a heterologous polypeptide or protein (ie, different from the first polypeptide or protein or of the amino acid sequence of a second polypeptide or protein or a fragment, analog or derivative thereof, or generally not part of the first polypeptide or protein or fragment, analog or derivative thereof) polypeptide or protein.
  • a fusion protein can comprise a prophylactic or therapeutic drug fused to a heterologous protein, polypeptide or peptide.
  • the heterologous proteins, polypeptides or peptides of the present application may or may not be different types of prophylactic or therapeutic drugs.
  • fusion protein may retain or increase the activity of the heterologous protein, polypeptide, or the original polypeptide or protein prior to protein fusion.
  • the fusion protein of the present application may be a fusion protein fused with a CD28 antibody or an antigen-binding fragment thereof and a CD3 antibody or an antigen-binding fragment thereof.
  • the term "killing ability" generally refers to killing target cells by contacting the cells of the present application with an effective amount of a substance.
  • the agents of the present application may be TIL cells. Killing of the present application may include killing cells by themselves or by promoting CDC, apoptosis, ADCC, and/or phagocytosis of other cells or substances, or by a combination of two or more of these mechanisms.
  • administration generally refers to the delivery of a substance to a subject in need thereof by any route known in the art.
  • Pharmaceutically acceptable carriers and formulations or compositions are also well known in the art. Routes of administration may include: intravenous, intramuscular, intradermal, subcutaneous, transdermal, mucosal, intratumoral and/or mucosal.
  • kit generally refers to two or more components packaged together in a container, receptacle or other container, one of which corresponds to the substance of this application.
  • TIL cells of the present application are included.
  • the term "subject” generally refers to cells or animals, which may be mammals such as humans, non-human primates (apes, gibbons, gorillas, chimpanzees, orangutans, macaques), domestic animals (dogs and cats), farm animals (poultry such as chickens and ducks, horses, cattle, goats, sheep, pigs) and laboratory animals (mice, rats, rabbits, guinea pigs).
  • Human subjects include fetal, neonatal, infant, adolescent and adult subjects.
  • Subjects include animal disease models, such as tumor animal models, and other animal models known to those of skill in the art.
  • feeder generally refers to a cultured cell that can be used to support the growth of another cell of interest.
  • at least one factor can be grown and secreted into the culture medium by in vitro growth.
  • feeder cells can include antigen-presenting cells.
  • the term "specifically binds” generally refers to binding substances that recognize a specific target substance, but do not substantially recognize or bind to other molecules in the sample.
  • a binding substance can specifically bind to a specific target substance of the present application from one species
  • the binding substance of the present application can also specifically bind to the target substance of the present application from one or more other species or homologous target substances. This interspecies reactivity itself may not alter the classification of the binding substance as specific.
  • a binding substance that specifically binds to a target substance may also bind to a different allelic form of the target substance.
  • complete culture process generally refers to the complete process of starting cells from isolated tumor tissue from a patient, going through one or more expansions, and finally obtaining cells that can be administered to a subject. .
  • cell culture medium generally refers to a nutrient solution in which cells, such as mammalian cells, are grown.
  • the formulation of cell culture media is well known in the art.
  • the cell culture medium includes buffers, salts, carbohydrates, amino acids, vitamins and necessary trace elements.
  • the cell culture medium may or may not contain serum, peptone, and/or protein.
  • Cell culture media can be supplemented with additional components or increased concentrations of components such as amino acids, salts, sugars, vitamins, hormones, growth factors, buffers, antibiotics, lipids, trace elements, etc., depending on the cells to be cultured requirements and/or desired cell culture parameters.
  • the term "pharmaceutical composition” or “pharmaceutical formulation” generally refers to a preparation which may allow the biological activity of the active ingredient to be effective and which may be free of receptors for which the formulation will be administered. Additional components that are unacceptably toxic to the subject. Such formulations are sterile. "Pharmaceutically acceptable” excipients (carriers, additives) are those that can reasonably be administered to a subject mammal to provide an effective dose of the active ingredient used.
  • TIL tumor infiltrating lymphocytes
  • TILs can include, but are not limited to, CD8 + cytotoxic T cells (lymphocytes), Th1 and Th17 CD4 + T cells, natural killer cells, dendritic cells, and M1 macrophages.
  • TILs can include primary TILs and secondary TILs.
  • Primary TILs can be those TIL cells obtained from a subject tissue sample, and "secondary TILs” can be any of the TIL populations that have been expanded or expanded in the present application.
  • the tumor-infiltrating lymphocytes of the present application may not be isolated and purified, or may be mutually infiltrated with tumor cells.
  • a TIL in the present application may refer to a population of TILs.
  • central memory T cells generally refers to T cells that have long-term memory and are able to receive antigenic restimulation.
  • Central memory T cells can have a CD45RA - CCR7 + phenotype, for example, central memory T cells can be identified by CD45RA- and CCR7 + .
  • Central memory T cells can have stronger anti-tumor growth ability than ordinary T cells.
  • regulatory T cells generally refers to a subset of T cells that control autoimmune reactivity in the body. Regulatory T cells can have the phenotype of CD4 + CD25 + Foxp3 + , eg, regulatory T cells can be identified by CD4 + , CD25 + , and Foxp3 + . Regulatory T cells may have the ability to suppress the antitumor growth of T cells.
  • activated T cells generally refers to T cells that have been activated to have the ability to resist tumor growth.
  • Activated T cells may have the phenotype of PD1 + , LAG3 + or CD28 + , eg, activated T cells may be identified by PD1 + , LAG3 + or CD28 + .
  • Activated T cells may have the ability to resist tumor growth.
  • tumor-specific T cells generally refers to T cells that can specifically fight tumor growth.
  • Tumor-specific T cells can have a CD103 + CD39 + phenotype, eg, tumor-specific T cells can be identified by CD103 + and CD39 + .
  • Tumor-specific T cells may have a more specific anti-tumor growth ability than ordinary T cells.
  • stem-like T cells generally refers to a class of T cells that can have the potential to self-proliferate and/or differentiate.
  • Stem-like T cells can have a TCF1 + phenotype, for example, stem-like T cells can be identified by TCF1 + .
  • Tumor-specific T cells may have stronger and/or longer-term anti-tumor growth ability than normal T cells.
  • tumor fragments generally refers to tumor fragments that can be formed by mechanical disruption, enzymatic hydrolysis, and/or other disruption methods after tumor tissue is removed from a subject.
  • composition or “pharmaceutical composition” generally refers to at least one cell and at least one and optionally more than one other pharmaceutically acceptable chemical components such as carriers, stabilizers , a mixture of diluents, dispersing agents, suspending agents, thickening agents and/or excipients.
  • the term "pharmaceutically acceptable carrier” generally refers to one or more non-toxic materials that do not interfere with the active ingredient.
  • a pharmaceutically acceptable carrier may not interfere with the biological activity of the active ingredient; for example, a pharmaceutically acceptable carrier may not interfere with the effectiveness of the biological activity possessed by the active ingredient.
  • Such formulations may conventionally contain salts, buffers, preservatives, compatible carriers, and optionally other therapeutic agents.
  • Such pharmaceutically acceptable formulations may also contain compatible solid or liquid fillers, diluents or encapsulating substances suitable for administration to humans.
  • contemplated carriers, excipients, and/or additives may include, for example, flavoring agents, antimicrobial agents, sweeteners, antioxidants, antistatic agents, lipids , protein excipients (such as serum albumin, gelatin, casein), salt-forming counterions (such as sodium), and the like.
  • pharmaceutically acceptable carrier can be understood as a vector that does not include nucleic acid forms used in genetic engineering.
  • the term "functionally active fragment” generally refers to a fragment that has a partial region of a full-length protein or nucleic acid, but retains or partially retains the biological activity or function of the full-length protein or nucleic acid.
  • a functionally active fragment may retain or partially retain the ability of the full-length protein to bind another molecule.
  • a functionally active fragment of the growth factor IL-2 may retain or partially retain the biologically active function of full-length IL-2 that causes cell proliferation.
  • T cell activator generally refers to a substance that binds to the corresponding binding receptor on T cells and mediates T cell co-stimulatory responses.
  • T cell activators can be substances other than antigen receptors that are required by T cells to generate an effective immune response.
  • T cell activators may refer to T cell costimulatory molecules.
  • a T cell activator of the present application may comprise a variant, homologue or any substance comprising a functionally active fragment thereof.
  • T cell activators may include, but are not limited to, MHC class I molecules, TNF receptor proteins, immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocyte activation molecules (SLAM proteins), NK cell activation receptors, BTLA (the gene encoding it can be 151888), Toll ligand receptor, OX40 (the gene encoding it can be 7293), CD2 (the gene encoding it can be 914), CD7 (the gene encoding it can be GeneID 914) is 924), CD27 (the gene encoding it can be 939), CD28 (the gene encoding it can be 940), CD30 (the gene encoding it can be 943), CD40 (the gene encoding it can be 958) ), CDS, ICAM-1 (the GeneID encoding the gene can be 3383), LFA-1 (CD11a/CD18) (the GeneID encoding the gene can be 3689), 4-1BB (CD137) (the GeneID encoding the
  • T cell growth factor generally refers to a biologically active polypeptide or small molecule compound that causes cell proliferation.
  • the T cell growth factors of the present application may comprise variants, homologues or any substance comprising functionally active fragments thereof.
  • the T cell growth factor can be selected from one or more of the following group: IL-2 (the gene encoding it may be GeneID 3558), IL-4 (the gene encoding it may be 3565), IL-6 ( GeneID of the gene encoding it can be 3569), IL-7 (GeneID of the gene encoding it can be 3574), IL-10 (GeneID of the gene encoding it can be 3586), IL-12 (GeneID of the gene encoding it can be 3592 or 3593), IL-15 (the GeneID of the gene encoding it can be 3600), IL-21 (the GeneID of the gene encoding it can be 59067), TNF- ⁇ (the GeneID of the gene encoding it can be 100137091), gamma interferon ( The gene GeneID encoding it can be 3458) and so on.
  • IL-2 the gene encoding it may be GeneID 3558
  • IL-4 the gene encoding it may be 3565
  • IL-6 GeneID of the
  • substantially simultaneously generally means that the TIL can be in contact with two or more substances simultaneously during a period of time during the contacting process, but may not be limited to the fact that the TIL is always simultaneously with two or more substances during the entire contacting process touch.
  • substantially simultaneously can mean that the TIL can interact with at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95% over a period of time Each of two or more substances is in contact at the same time.
  • solid phase medium generally refers to a solid phase material that has a binding function.
  • the solid-phase medium in the present application may refer to a material that binds one or more substances in the medium and/or on the surface of the medium through covalent binding and/or non-covalent binding.
  • the solid phase medium of the present application can bind one or more T cell activators.
  • the solid-phase medium of the present application may refer to the binding of CD28 antibody or its antigen-binding fragment and CD3 antibody or its antigen-binding fragment in and/or on the surface of the medium through covalent binding and/or non-covalent binding.
  • the solid phase medium of the present application can be microspheres of about 500 nanometers to about 10 micrometers in diameter comprising the OKT3 antibody and the 15E8 antibody.
  • the solid phase medium of the present application may be a polymeric material.
  • the solid phase medium of the present application can be microspheres having a diameter of at least about 500 nanometers.
  • the solid phase medium of the present application may be a nanomatrix.
  • the solid phase medium of the present application may be a nanomatrix having a diameter of about 1 nanometer to about 500 nanometers comprising the OKT3 antibody and the 15E8 antibody.
  • the term "nanomatrix" generally refers to a material having a diameter of from about 1 nanometer to about 500 nanometers.
  • the nanomatrix can have a binding function, for example, the nanomatrix of the present application can bind one or more T cell activators.
  • the nanomatrix may comprise a polymer, for example, the nanomatrix of the present application may comprise a degradable polymer.
  • the nanomatrix may comprise polysaccharides, and/or dextran.
  • dendritic cells generally refers to antigen-presenting cells that are present in vivo, in vitro, ex vivo or in a host or subject or which can be derived from hematopoietic stem cells or monocytes. Dendritic cells and their precursors can be isolated from various lymphoid organs such as spleen, lymph nodes, as well as bone marrow and peripheral blood. The dendritic cells of the present application may have characteristic morphologies such as lamellae (lamellipodia) extending in multiple directions of the dendritic cell body. In general, dendritic cells can express high levels of MHC and co-stimulatory (eg B7-1 and B7-2) molecules. Dendritic cells can induce antigen-specific differentiation of T cells in vitro and are able to elicit primary T cell responses in vitro and in vivo.
  • MHC co-stimulatory
  • in vitro expansion generally refers to culturing to produce changes in the number of cells, and the expanded cells can also produce changes in the number and/or ratio of cells, changes in secretion capacity, changes in killing capacity or expression Changes in abilities, or any combination of them. Variations of the present application may be increased or decreased.
  • in vitro expansion can be for the purpose of expansion; in order to detect the function of TIL cells, such as detecting the ability of TIL cells to release cytokines, the operation steps performed on TIL cells (such as adding a one or more substances to detect the ability of TIL cells to release cytokines), which may not belong to the in vitro expansion of the present application.
  • peripheral mononuclear cells or “peripheral blood mononuclear cells” generally refers to cells in peripheral blood that have a single nucleus.
  • the peripheral blood mononuclear cells of the present application may include lymphocytes, monocytes and/or dendritic cells.
  • cytokine generally refers to a protein released by one cell population that acts as an intercellular regulator of another cell.
  • Cytokines of the present application may be lymphokines, monokines and polypeptide hormones.
  • Cytokines of the present application may include interleukins (ILs) such as IL-1, IL-1 ⁇ , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-15, IL-21, and/or IL-12.
  • ILs interleukins
  • the term cytokine may include proteins from natural sources or from recombinant cell culture, biologically active equivalents of native sequence cytokines, and functionally active fragments thereof.
  • the term “diameter” generally refers to the diameter of a cross-section of the substance of the application.
  • the term “diameter” generally refers to the largest diameter and/or the mean diameter of the largest cross-section of the substance of the present application.
  • the method of determining the diameter of the substance may be a method commonly used in the art, such as transmission electron microscopy.
  • tumor generally refers to any new pathological tissue proliferation.
  • the tumors of the present application may be benign or malignant.
  • the tumor of the present application may be solid or hematological.
  • the term “tumor” may be selected from one or more of the following group: melanoma, ovarian cancer, cervical cancer, lung cancer, bladder cancer, breast cancer, head and neck cancer, pancreatic cancer, liver cancer, stomach cancer, colorectal cancer, and kidney cancer .
  • tumor tissue generally refers to a sample from a tumor in a subject, including any solid tumor and/or any tissue that is not a solid tumor in a subject.
  • CD28 agonist generally refers to a compound that binds to the cell surface CD28 protein and elicits a response in the cell.
  • a CD28 agonist of the present application can be a small molecule preparation that binds CD28.
  • a CD28 agonist of the present application can be an antibody or antigen-binding fragment thereof that binds CD28.
  • the term "proportion of T cell subsets" generally refers to the proportion of TIL cells or TIL populations according to different T cell subsets.
  • different T cell subsets of the present application have different immune activity and/or differentiation capacity.
  • T cell subsets of the present application can be differentiated based on T cell surface markers.
  • central memory T cells can have a CD45RA - CCR7 + phenotype.
  • regulatory T cells can have a CD4 + CD25 + Foxp3 + phenotype.
  • activated T cells can have the phenotype of CD25 + , CD28 + , TIM3 + , PD1 + , or 41BB + .
  • tumor-specific T cells can have a CD103 + CD39 + phenotype.
  • stem-like T cells can have a TCF1 + phenotype.
  • the term "number of TIL cells” generally refers to the number of cells in the TIL cells of the present application.
  • the number of TIL cells may refer to the number of cells in the TIL population obtained at any stage of the present application.
  • the number of TIL cells can refer to the number of cells of the first TIL population derived from tumor tissue and not expanded in vitro.
  • the number of TIL cells can refer to the number of cells of the second TIL population expanded in vitro through the first stage.
  • the number of TIL cells can refer to the number of cells of the third TIL population expanded in vitro through the second stage.
  • the number of TIL cells can refer to the cells of TIL finally obtained by any one of the culturing methods of the present application.
  • the number of TIL cells can be measured by methods commonly used in the art, such as, but not limited to, manual cell counting with a cytometer and/or automated cell counter counting.
  • the terms “about” and “approximately” generally refer to within a statistically significant range of values. Such a range may be within an order of magnitude of a given value or range, may be within 50%, may be within 20%, may be within 10%, may be within 5%.
  • the permissible variation encompassed by the term “about” or “approximately” may depend on the particular system under study, and can be readily understood by one of ordinary skill in the art.
  • the terms “above,” “below,” “at most,” and “at least” may include this number.
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), the method may comprise: increasing the expression and/or activity of at least one cytokine of the TILs, and increasing the TILs in the Co-culture with feeder cells is followed by exposure to T cell activators and/or T cell growth factors for a period of time.
  • TILs tumor-infiltrating lymphocytes
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or its functionally active fragment.
  • the method may comprise increasing the expression and/or activity of at least one cytokine of the TIL after co-culturing the TIL with the feeder cells.
  • the method may comprise: after increasing the expression and/or activity of at least one cytokine of the TIL, co-culturing the TIL with the feeder cells.
  • the method may comprise exposing at least one of the TIL to the TIL after contacting the TIL with the T cell activator and/or the T cell growth factor and prior to co-culturing the TIL with the feeder cells Increased expression and/or activity of various cytokines.
  • the method may comprise increasing the expression and/or activity of at least one cytokine of the TIL at substantially the same time the TIL is contacted with the T cell activator and/or the T cell growth factor .
  • the method may comprise increasing the expression and/or activity of at least one cytokine of the TIL at substantially the same time as the TIL is co-cultured with the feeder cell.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), the method may comprise: increasing the expression and/or activity of at least one cytokine of the TILs, wherein the TILs TILs obtained from co-culture with feeder cells after exposure to T cell activators and/or T cell growth factors for a certain period of time are included.
  • TILs tumor-infiltrating lymphocytes
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or its functionally active fragment.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), the method may comprise: contacting the TILs with a feeder for a certain period of time after being contacted with a T cell activator and/or a T cell growth factor A co-culture of cells, wherein the TIL comprises a TIL obtained by increasing the expression and/or activity of at least one cytokine of the TIL.
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or its functionally active fragment.
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), the method may comprise: increasing the expression and/or activity of at least one cytokine of the TILs, and making the TILs The TIL is contacted with a CD28 agonist.
  • TILs tumor-infiltrating lymphocytes
  • the present application also provides a method for culturing tumor-infiltrating lymphocytes (TILs), the method may comprise: increasing the expression and/or activity of at least one cytokine of the TILs, wherein the TILs Contains TIL obtained by contact with a CD28 agonist.
  • TILs tumor-infiltrating lymphocytes
  • the present application also provides a method of culturing tumor-infiltrating lymphocytes (TILs), the method may comprise: contacting the TILs with a CD28 agonist, wherein the TILs comprise contacting at least one of the TILs TILs obtained with increased expression and/or activity of cytokines.
  • TILs tumor-infiltrating lymphocytes
  • the CD28 agonist comprises anti-CD28 antibodies and/or antigen-binding fragments thereof, CD80 and/or functionally active fragments thereof and/or CD86 and/or functionally active fragments thereof, and recombinant proteins of the above substances.
  • a TIL obtained by increasing the expression and/or activity of at least one cytokine of the TIL may exhibit improved TIL properties compared to a TIL in which the expression and/or activity of the cytokine is unchanged.
  • a TIL with unchanged cytokine expression and/or activity may refer to TIL cells derived from the same donor that have not had increased expression and/or enhanced activity of at least one cytokine of the TIL.
  • a TIL with unchanged cytokine expression and/or activity may refer to a TIL derived from the same donor that increases the expression and/or activity of the TIL other than cytokines (eg, green fluorescent protein) cell.
  • cytokines eg, green fluorescent protein
  • a corresponding TIL that does not increase the expression and/or activity of the at least one cytokine of the TIL may refer to at least one cytokine that has been isolated in the same manner from the same donor and that has not increased the TIL.
  • TIL cells with increased expression and/or enhanced activity may refer to the same tumor derived from the same donor and has not increased the expression and/or activity of the at least one cytokine of the TIL. TIL cells with increased expression and/or enhanced activity.
  • a corresponding TIL that has not resulted in increased expression and/or enhanced activity of at least one cytokine of the TIL may refer to a TIL derived from the same tumor source from the same donor that has been isolated in the same manner and has not been subjected to increased expression of at least one cytokine of the TIL.
  • TIL cells with increased expression and/or enhanced activity of a cytokine may refer to dividing TIL cells derived from the same donor into two groups, wherein one group has not increased the expression and/or activity of the TIL.
  • the TIL cells with increased expression and/or enhanced activity of at least one cytokine may be corresponding TILs that have not had increased expression and/or enhanced activity of at least one cytokine of the TIL.
  • a corresponding TIL that has not increased the expression and/or activity of at least one cytokine of the TIL may refer to dividing TIL cells derived from the same donor and isolated in the same manner into two groups, one of which has not been
  • the TIL cells that increase the expression and/or activity of the at least one cytokine of the TIL may be the corresponding TIL that did not increase the expression and/or activity of the at least one cytokine of the TIL.
  • a corresponding TIL that has not increased the expression and/or activity of at least one cytokine of the TIL may refer to dividing TIL cells derived from the same donor from the same tumor into two groups, one of which has not been
  • the TIL cells with increased expression and/or enhanced activity of the at least one cytokine of the TIL may be corresponding TILs that have not had the increased expression and/or enhanced activity of the at least one cytokine of the TIL.
  • a corresponding TIL that does not increase the expression and/or activity of at least one cytokine of the TIL may refer to dividing TIL cells from the same tumor source from the same donor and isolated in the same manner into two groups, One of the groups of TIL cells that did not increase the expression and/or activity of the at least one cytokine of the TIL may be the corresponding TIL that did not increase the expression and/or activity of the at least one cytokine of the TIL.
  • increased expression and/or enhanced activity of at least one cytokine may mean that natural cells may not express the cytokine, and after the treatment of the present application, the cells may express various forms of the cytokine, namely cytokines
  • the increased expression of can be such that natural cells switch from not expressing the cytokine to expressing a certain amount of the cytokine.
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or its functionally active fragment.
  • the improved TIL properties of the present application comprise one or more selected from the group consisting of: increased number of TIL cells, increased proportion of viable cells, increased viability, improved proportion of T cell subsets, increased cytokines Secretory capacity, increased tumor cell killing capacity, increased T cell receptor (TCR) clonal diversity and increased TIL cell numbers in tissues and/or tumors.
  • an increased number of TIL cells in a tissue and/or tumor in the present application may refer to a corresponding TIL that did not increase the expression and/or activity of at least one cytokine of the TIL during the in vitro expansion phase
  • the cells of the TIL of the present application that increase the expression and/or activity of at least one cytokine of the TIL in at least one in vitro expansion stage are in tumor tissue, blood tissue, bone marrow tissue, lung tissue and/or spleen tissue.
  • the number of T cells can be increased by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold, at least about 9-fold, at least about 10 times, at least about 11 times, at least about 12 times, at least about 13 times, at least about 14 times, at least about 15 times, at least about 20 times, at least about 30 times, at least about 40 times, or at least about 50 times .
  • an improved number of TIL cells in the present application refers to at least one in vitro expansion phase compared to a corresponding TIL that did not increase the expression and/or enhanced activity of at least one cytokine of the TIL during the in vitro expansion phase
  • the number of cells in the TIL of the present application that increases the expression and/or activity of at least one cytokine of the TIL can be increased by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, at least about 12 times, at least about 13 times, at least about 14 times, at least about 15 times, at least about 20 times, at least about 30 times, at least about 40 times, or at least about 50 times.
  • an increased number of TIL cells in the present application may refer to an in vitro expansion of at least one TIL compared to a corresponding TIL that did not increase the expression and/or activity of the at least one cytokine of the TIL during the in vitro expansion phase
  • the number of cells of the TIL of the present application that increases the expression and/or activity of the at least one cytokine of the TIL in the stage may increase by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about about 14%, at least about 13%, at least about 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%
  • the increased cytokine secretion capacity of the present application may refer to increased cytokine secretion capacity of TIL cells selected from the group consisting of CD107a, GZMB, IL-2, TNF- ⁇ and IFN- ⁇ .
  • the increased cytokine secretion capacity of the present application may refer to the expansion of at least one in vitro expansion of the TIL compared to the corresponding TIL that did not increase the expression and/or activity of the at least one cytokine of the TIL during the expansion phase in vitro.
  • the cytokine secretion capacity of the TILs of the present application that has increased the expression and/or activity of at least one cytokine of the TIL in the proliferative phase can be increased by at least about 1 times, at least about 2 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, at least about 12 times, at least about 13 times, at least about 14 times, at least about 15 times, at least about 20 times, at least about 30 times, at least about 40 times, or at least about 50 times.
  • the increased cytokine secretion capacity of the present application may refer to the expansion of at least one in vitro expansion of the TIL compared to the corresponding TIL that did not increase the expression and/or activity of the at least one cytokine of the TIL during the expansion phase in vitro.
  • the cytokine secretion capacity of the TILs of the present application that has increased the expression and/or activity of at least one cytokine of the TIL during the growth phase can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1%, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%.
  • the determination of the cytokine secretion capacity of TILs of the present application can be by measuring the cytokine expression capacity of TIL cells.
  • the cytokine secretion capacity of the TILs of the present application is determined by measuring the cytokine release capacity of TIL cells.
  • the cytokine secretion ability of the TIL of the present application is determined by the CBA method (Cytometric Bead Array).
  • the increased proportion of NK cells of the present application can be an increase in the proportion of NK cells in TIL cells.
  • the proportion of NK cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% , at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% , at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% , at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%.
  • the increased tumor cell killing ability of the present application may refer to the expansion of at least one in vitro TIL compared to the corresponding TIL that did not increase the expression and/or activity of at least one cytokine of the TIL during the in vitro expansion stage.
  • the tumor cell killing rate of the TIL of the present application that has increased the expression and/or activity of at least one cytokine of the TIL in the proliferative stage can be increased by at least about 1 times, at least about 2 times, at least about 3 times, at least about 4 times, at least about 5 times, at least about 6 times, at least about 7 times, at least about 8 times, at least about 9 times, at least about 10 times, at least about 11 times, at least about 12 times, at least about 13 times, at least about 14 times, at least about 15 times, at least about 20 times, at least about 30 times, at least about 40 times, or at least about 50 times.
  • the increased tumor cell killing ability of the present application may refer to the expansion of at least one in vitro TIL compared to the corresponding TIL that did not increase the expression and/or activity of at least one cytokine of the TIL during the in vitro expansion stage.
  • the tumor cell killing rate of the TIL of the present application that has increased the expression and/or activity of at least one cytokine of the TIL in the proliferative phase can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1%, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%.
  • the tumor cell killing rate of the TILs of the present application can be measured by CFSE and DAPI staining.
  • the tumor cell killing rate of the TILs of the present application can be measured by measuring Caspase-3/7 activity using the IncuCyte system.
  • tumor cell killing of TILs of the present application may refer to the ability of TILs to kill solid tumor cells.
  • tumor cell killing of TILs of the present application may refer to the ability of TILs to kill cervical cancer cells.
  • the increased T-cell receptor (TCR) clonal diversity of the present application can be included during long-term culture without increasing the expression and/or activity of at least one cytokine of the TIL during the in vitro expansion phase
  • the TIL cell population of the present application that has increased the expression and/or activity of at least one cytokine of the TIL during at least one in vitro expansion stage has more types of TCRs expressed, such as , can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about about
  • the improved proportion of T cell subsets of the present application may comprise one or more selected from the group consisting of: increased proportion of CD4 + cells, decreased proportion of CD8 + cells, increased proportion of central memory T cells, decreased regulatory proportion of sex T cells, increased proportion of activated T cells, increased proportion of tumor-specific T cells, and increased proportion of stem-like T cells.
  • the increased proportion of CD4 + cells of the present application can be an increase in the proportion of CD4 positive cells in TIL cells.
  • the proportion of CD4 + cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% %, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% %, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% %, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%.
  • the reduced proportion of CD8 + cells of the present application can be a decrease in the proportion of CD8 positive cells in TIL cells.
  • the proportion of CD8 + cells in TIL cells can be reduced by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% %, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% %, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% %, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%.
  • the increased proportion of central memory T cells of the present application can be an increase in the proportion of CD45RA - CCR7 + cells in TIL cells.
  • the proportion of central memory T cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1%, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%.
  • the reduced proportion of regulatory T cells of the present application can be a reduction in the proportion of CD4 + CD25 + Foxp3 + cells in TIL cells.
  • the proportion of regulatory T cells in TIL cells can be reduced by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1%, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%.
  • the increased proportion of activated T cells of the present application can be an increase in the proportion of CD25 + , CD28 + , TIM3 + , PD1 + or 41BB + cells in TIL cells.
  • the proportion of activated T cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% %, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% %, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% %, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least
  • the proportion of CD25 + cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% %, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% %, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% %, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%, or can be increased by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold , at least about 5 times, at least about 6 times, or can
  • the proportion of CD28 + cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% %, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% %, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% %, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%, or can be increased by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold , at least about 5 times, at least about 6 times, or can
  • the proportion of TIM3 + cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% %, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% %, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% %, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%, or can be increased by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold , at least about 5 times, at least about 6 times, at
  • the proportion of PD1 + cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% %, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% %, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% %, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%, or can be increased by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold , at least about 5 times, at least about 6 times, at
  • the proportion of 41BB + cells in TIL cells can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30% %, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11% %, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, at least about 4%, at least about 3%, at least about 2%, at least about 1% %, at least about 0.5%, at least about 0.4%, at least about 0.3%, at least about 0.2%, or at least about 0.1%, or can be increased by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold , at least about 5 times, at least about 6 times, or can
  • increasing the expression and/or activity of at least one cytokine of the TIL in the methods of the present application may comprise introducing a nucleic acid encoding the cytokine into the TIL.
  • the cytokine can be interleukin-12 (IL-12) and/or its functionally active fragments.
  • increasing the expression and/or activity of the at least one cytokine of the TIL in the methods of the present application may comprise introducing into the TIL a vector comprising the nucleic acid encoding one or more cytokines.
  • the nucleic acid encoding the cytokine in the methods of the present application can be integrated into the genome of the TIL.
  • the cytokine when the nucleic acid encoding the cytokine can be integrated into the genome of the TIL, the cytokine can be chronically and/or persistently expressed in the TIL.
  • the vector in the methods of the present application may comprise a viral vector.
  • the viral vector in the methods of the present application may comprise a retroviral vector.
  • the retroviral vector in the methods of the present application may comprise a lentiviral vector.
  • the cytokines in the methods of the present application may comprise interleukin (IL).
  • the cytokines in the methods of the present application may comprise interleukin-12 (IL-12) and/or functionally active fragments thereof.
  • the IL-12 in the methods of the present application can comprise membrane-anchored IL-12 and/or secreted IL-12.
  • the L-12 may comprise various domains.
  • the IL-12 of the present application may not be limited to include only the IL-12 domain.
  • an IL-12 domain of the present application may comprise a p40 domain and/or a p35 domain.
  • the IL-12 and/or functionally active fragments thereof described in the methods of the present application may include, but are not limited to, a p40 domain.
  • the p40 domain described in the methods of the present application may comprise the amino acid sequence shown in SEQ ID NO:42.
  • the IL-12 and/or functionally active fragments thereof described in the methods of the present application may include, but are not limited to, a p35 domain.
  • the role of the p35 domain of the present application can be linked with the p40 domain of the present application to construct the IL12 domain.
  • the p35 domain described in the methods of the present application may comprise the amino acid sequence set forth in SEQ ID NO:55.
  • the p40 domain in the methods of the present application can be linked directly or indirectly to the p35 domain.
  • indirect linkage described in the methods of the present application may include, but is not limited to, linkage via a linker.
  • the linker in the methods of the present application may comprise an amino acid sequence selected from the group consisting of: SEQ ID NO:43-49, (SEQ ID NO:50) l , (SEQ ID NO:51) m , ( SEQ ID NO: 52) n , (SEQ ID NO: 53) p , and (SEQ ID NO: 54) q , and any combination of the foregoing, wherein l, m, n, p and q can each independently be at least 1 .
  • l, m, n, p and q are the number of repeating units of the respective sequences, and when the sequence can be a repeating sequence, the number of repeating units represents the number of repeats of the sequence.
  • l can be 1, 2, 3, 4, 5, or 10
  • m can be 1, 2, 3, 4, 5, or 10
  • n can be 1, 2, 3, 4, 5, or 10
  • p can be 1, 2, 3, 4, 5, or 10
  • q can be 1, 2, 3, 4, 5, or 10.
  • the IL-12 described in the methods of the present application may include, but is not limited to, a signal peptide domain.
  • the signal peptide domain in the methods of the present application may comprise the amino acid sequence shown in SEQ ID NO:41.
  • the signal peptide domain can be linked directly or indirectly to the p40 domain in the methods of the present application.
  • the IL-12 described in the methods of the present application can include, but is not limited to, a transmembrane domain.
  • the transmembrane domain of the present application can allow the IL-12 of the present application to bind to the cell membrane.
  • the IL-12 described in the methods of the present application may include, but is not limited to, a transmembrane domain and an intracellular binding domain.
  • the transmembrane domain described in the methods of the present application may comprise the amino acid sequence set forth in any one of SEQ ID NOs: 56-61.
  • the transmembrane intracellular domain in the methods of the present application may comprise the amino acid sequence set forth in any one of SEQ ID NOs: 66-70.
  • the transmembrane domain can be linked directly or indirectly to the signal peptide domain in the methods of the present application.
  • the transmembrane domain can be linked directly or indirectly to the p35 domain in the methods of the present application.
  • the IL-12 described in the methods of the present application may include, but is not limited to, an intracellular domain.
  • the intracellular domain in the methods of the present application may comprise the amino acid sequence set forth in any one of SEQ ID NOs: 62-65.
  • the intracellular domain can be linked directly or indirectly to the transmembrane domain in the methods of the present application.
  • the functionally active fragment of IL-12 in the methods of the present application may comprise the amino acid sequence set forth in SEQ ID NO: 42 and/or 55.
  • the IL-12 described in the methods of the present application may comprise the amino acid sequence set forth in any one of SEQ ID NOs: 34-40.
  • increased expression of the cytokine in the methods of the present application may comprise increased synthesis and/or secretion of the cytokine.
  • cytokine-expressing cells in a TIL obtained by the methods of the present application by increasing the expression and/or activity of at least one cytokine in the TIL as compared to a TIL in which the expression and/or activity of the cytokine has not been altered
  • the ratio can be increased.
  • cytokine-expressing cells in a TIL obtained by the methods of the present application by increasing the expression and/or activity of at least one cytokine in the TIL as compared to a TIL in which the expression and/or activity of the cytokine has not been altered
  • the ratio can be increased by at least about 5% or more.
  • the proportion of cells expressing IL-12 and/or functionally active fragments thereof can be increased by at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, or at least about 5%.
  • the proportion of cells expressing IL-12 and/or functionally active fragments thereof can range from 0% to an observable proportion of cells.
  • the proportion of cells expressing IL-12 and/or functionally active fragments thereof can be increased to at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about About 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, at least about 5%, or at least about 1%.
  • the proportion of cells expressing IL-12 and/or functionally active fragments thereof can be detected by flow cytometry.
  • the proportion of cytokine-expressing cells in the TIL obtained by increasing the expression and/or activity of at least one cytokine of the TIL described in the method of the present application may be at least about 5% or more.
  • the proportion of cells expressing IL-12 and/or functionally active fragments thereof can be at least about 100%, at least about 90%, at least about 80%, at least about 70%, at least about 60%, at least about 50%, at least about 40%, at least about 30%, at least about 20%, at least about 19%, at least about 18%, at least about 17%, at least about 16%, at least about 15%, at least about 14%, at least about 13%, at least about 12%, at least about 11%, at least about 10%, at least about 9%, at least about 8%, at least about 7%, at least about 6%, or at least about 5%.
  • the proportion of cells expressing IL-12 and/or functionally active fragments thereof can be detected by flow cytometry.
  • the method of the present application may further comprise: subjecting TIL derived from tumor tissue and not expanded in vitro through at least one stage of in vitro expansion, wherein, in at least one stage of the in vitro expansion of the present application, the present application may be TILs were co-cultured with feeder cells.
  • the expression and/or activity of at least one cytokine of the TIL can be increased and co-cultured with the feeder cells of the application, eg, a single stage of the in vitro expansion of the application.
  • the amplification can refer to the in vitro amplification of the present application at the same stage, for example, it can be the same in the first stage of the in vitro amplification of the present application, the same in the second stage of the in vitro expansion of the present application, or the same in the third stage of the present application. Stage in vitro expansion, etc.
  • the expression and/or activity of at least one cytokine of the TIL can be increased and co-cultured with the feeder cells of the present application.
  • the expression and/or activity of at least one cytokine of the TIL can be increased and co-cultured with the feeder cells of the present application.
  • the expression and/or activity of at least one cytokine of the TIL can be increased and co-cultured with the feeder cells of the present application.
  • each stage of in vitro expansion can be divided by the change in the number of TIL cells.
  • the number of TIL cells increases by at least about 1-fold, it can be considered that the TIL cells have entered the next stage of in vitro expansion.
  • the number of TIL cells increases by at least about 1-fold, at least about 2-fold, at least about 3-fold, at least about 4-fold, at least about 5-fold, at least about 6-fold, at least about 7-fold, at least about 8-fold times, at least about 9 times, at least about 10 times, at least about 11 times, at least about 12 times, at least about 13 times, at least about 14 times, at least about 15 times, at least about 20 times, at least about 30 times, at least about 40 times At least about 50 times, at least about 100 times, at least about 200 times, at least about 500 times, or at least about 1000 times, TIL cells can be considered to have entered the next stage of in vitro expansion.
  • each stage of in vitro expansion can also be demarcated by changes in the conditions of TIL cell culture.
  • TIL cells when T cell activators and/or T cell growth factors are added or supplemented to the cell culture medium, TIL cells can be considered to have entered the next stage of in vitro expansion.
  • TIL cells when the cell culture medium is supplemented or supplemented with IL-2, TIL cells can be considered to have entered the next stage of in vitro expansion.
  • by increasing the expression and/or activity of at least one cytokine of the TIL it can be considered that the TIL cells have entered the next stage of in vitro expansion.
  • feeder cells are added or supplemented to the cell culture medium, TIL cells can be considered to have entered the next stage of in vitro expansion.
  • TIL cells when TIL cells are subjected to centrifugation and/or cell washing operations, TIL cells can be considered to have entered the next stage of in vitro expansion. For example, each stage can also be divided by the number of days in which the TIL cells are cultured.
  • TIL cells when TIL cells are cultured in vitro for about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 7 days, about 8 days, about 9 days, about 10 days, about 11 days , about 12 days, about 13 days, about 14 days, about 15 days, about 16 days, about 17 days, about 18 days, about 19 days, about 20 days, about 30 days, about 40 days, about 50 days or about After 100 days, TIL cells can be considered to have entered the next stage of in vitro expansion.
  • the second stage of in vitro expansion can be performed for at least about 7 days.
  • the second stage in vitro expansion can be performed for at least about 9 days.
  • the second stage in vitro expansion can be performed for up to about 14 days.
  • the second stage in vitro expansion can be performed for up to about 13 days.
  • the second stage in vitro expansion can be performed for about 7 days to about 14 days, about 9 days to about 14 days, about 7 days to about 13 days, or about 9 days to about 13 days.
  • the second stage in vitro expansion of the present application can be performed for at least about 9 days, at least about 10 days, at least about 11 days, at least about 12 days, at least about 13 days, or at least about 14 days.
  • the second stage in vitro expansion of the present application can be carried out for about 9 days to about 14 days
  • the second stage in vitro expansion of the present application can be carried out for about 9 days to about 14 days, about 10 days to about 14 days, About 11 days to about 14 days, about 12 days to about 14 days, about 13 days to about 14 days, about 9 days to about 13 days, about 10 days to about 13 days, about 11 days to about 13 days, about 12 days days to about 13 days, about 9 days to about 12 days, about 10 days to about 12 days, about 11 days to about 12 days, or about 10 days to about 11 days.
  • the second stage of in vitro expansion of the present application can be considered as the REP (rapid expansion protocol) stage.
  • the first stage of in vitro expansion can be performed for at least about 7 days.
  • the first stage of in vitro expansion can be performed for about 7 days to about 14 days.
  • the first stage in vitro expansion of the present application can be performed for at least about 7 days, at least about 8 days, at least about 9 days, at least about 10 days, at least about 11 days, at least about 12 days, at least about 13 days, or at least about 13 days. about 14 days.
  • the first stage of in vitro expansion of the present application can be performed for about 7 days to about 14 days, about 8 days to about 14 days, about 9 days to about 14 days, about 10 days to about 14 days, about 11 days to about 11 days 14 days, about 12 days to about 14 days, about 13 days to about 14 days, about 9 days to about 13 days, about 10 days to about 13 days, about 11 days to about 13 days, about 12 days to about 13 days , about 9 days to about 12 days, about 10 days to about 12 days, about 11 days to about 12 days, or about 10 days to about 11 days.
  • the first stage of in vitro expansion of the present application can be considered the preREP stage.
  • the number of days during which the second-stage in vitro expansion of the present application is performed can be calculated from the start time of the second-stage in vitro expansion. For example, when the second-stage in vitro expansion starts, it can be considered that the second-stage in vitro expansion has been carried out for about 0 days. For example, about 24 hours after the start of the second-stage in vitro expansion, it can be considered that the second-stage in vitro expansion has been carried out for about one day. For example, on the day when the second-stage in vitro expansion starts, it can be considered that the second-stage in vitro expansion has been carried out for about 0 days.
  • the number of days in which the second-stage in vitro expansion is performed in the present application can be calculated by the number of days in which the second-stage in vitro expansion is performed. For example, on the second day after the start of the second-stage in vitro expansion, it can be considered that the second-stage in vitro expansion has been carried out for about one day.
  • the culture method of the present application can be divided in a two-step division manner.
  • a first TIL population derived from tumor tissue and not expanded in vitro can be contacted with a T cell growth factor, wherein a second TIL population is obtained through said step (A);
  • all TIL populations can be brought into contact with a T cell growth factor.
  • the step (A) can be performed for about 7 days to about 14 days.
  • the step (B) can be performed for about 7 days to about 14 days.
  • the cultivation method of the present application can be divided into three steps.
  • a first TIL population derived from tumor tissue and not expanded in vitro can be contacted with a T cell growth factor, wherein a second TIL population is obtained through said step (A);
  • all TIL populations can be brought into contact with a T cell growth factor.
  • the expression of at least one cytokine of the second TIL population is increased and/or the activity is enhanced, and the second TIL population can be contacted with a T cell activator and/or a T cell growth factor, wherein after the step ( B) obtaining a third TIL population;
  • C co-culturing the third TIL population with feeder cells, wherein the fourth TIL population is obtained through the step (C).
  • the step (A) can be performed for about 7 days to about 14 days.
  • the step (B) can be performed for about 0 days to about 8 days.
  • the step (C) can be performed for about 5 days to about 14 days.
  • the cultivation method of the present application can be divided according to a four-step division method. For example, (A) a first TIL population derived from tumor tissue and not expanded in vitro can be contacted with a T cell growth factor, wherein a second TIL population is obtained through said step (A); (B) all TIL populations can be brought into contact with a T cell growth factor.
  • the second TIL group is contacted with a T cell activator and/or a T cell growth factor, wherein the third TIL group is obtained through the step (B); (C) can make at least one cell of the third TIL group The expression of the factor is improved and/or the activity is enhanced, wherein the fourth TIL population is obtained through the step (C); (D) the fourth TIL population can be co-cultured with feeder cells, wherein the step (D) ) to obtain the fifth TIL group.
  • the step (A) can be performed for about 7 days to about 14 days.
  • the step (B) can be performed for about 0 days to about 4 days.
  • the step (C) can be performed for about 0 days to about 4 days.
  • the step (D) can be performed for about 5 days to about 14 days.
  • step (A) of the culture method of the present application is to obtain a second TIL population from resuscitation and/or continued culturing of the in vitro TIL population.
  • the in vitro TIL population can comprise a TIL population obtained by in vitro expansion of a first TIL population derived from tumor tissue and not expanded in vitro.
  • the in vitro TIL population may comprise a TIL population obtained by contacting the first TIL population with a T cell growth factor.
  • the in vitro TIL population may comprise a TIL population obtained from cryopreservation of the first TIL population.
  • the in vitro TIL population may comprise a TIL population obtained by contacting the first TIL population with T cell growth factors and cryopreserving.
  • step (A) of the present application is to obtain a second TIL population from resuscitation and/or continued culturing of the in vitro TIL population, then step (A) can be performed for about 2 hours to about 4 days.
  • the TIL of the present application can be contacted with one or more T cell activators and/or one or more T cell growth factors of the present application for a certain period of time, and then contacted with the present application for a certain period of time. Apply feeder cell co-culture.
  • the certain period of time of the present application may be at least about 2 hours.
  • a certain time of the present application can be at least about 1 hour, at least about 2 hours, at least about 3 hours, at least about 4 hours, at least about 5 hours, at least about 6 hours, at least about 7 hours, at least about 8 hours, at least about about 9 hours, at least about 10 hours, at least about 11 hours, at least about 12 hours, at least about 13 hours, at least about 14 hours, at least about 15 hours, at least about 16 hours, at least about 17 hours, at least about 18 hours, at least about 18 hours About 19 hours, at least about 20 hours, at least about 21 hours, at least about 22 hours, at least about 23 hours, at least about 24 hours, at least about 36 hours, at least about 48 hours, at least about 60 hours, or at least about 72 hours.
  • the certain period of time of the present application may be from about 6 hours to about 72 hours.
  • a certain period of time of the present application may be about 6 hours to about 7 hours, about 6 hours to about 8 hours, about 6 hours to about 9 hours, about 6 hours to about 10 hours, about 6 hours to about 11 hours, about 6 hours to about 12 hours, about 6 hours to about 13 hours, about 6 hours to about 14 hours, about 6 hours to about 15 hours, about 6 hours to about 16 hours, about 6 hours to about 17 hours, about 6 hours to about 18 hours, about 6 hours to about 19 hours, about 6 hours to about 20 hours, about 6 hours to about 21 hours, about 6 hours to about 22 hours, about 6 hours to about 23 hours, about 6 hours to about 24 hours, about 6 hours to about 36 hours, about 6 hours to about 48 hours, about 6 hours to about 60 hours, or about 6 hours to about 72 hours.
  • a certain time of the present application may be about 12 hours to about 13 hours, about 12 hours to about 14 hours, about 12 hours to about 15 hours, about 12 hours to about 16 hours, about 12 hours to about 17 hours, about 12 hours to about 18 hours, about 12 hours to about 19 hours, about 12 hours to about 20 hours, about 12 hours to about 21 hours, about 12 hours to about 22 hours, about 12 hours to about 23 hours, about 12 hours To about 24 hours, from about 12 hours to about 36 hours, from about 12 hours to about 48 hours, from about 12 hours to about 60 hours, or from about 12 hours to about 72 hours.
  • a certain period of time in the present application may be about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 5 hours, about 6 hours, about 7 hours, about 8 hours, about 9 hours, about 10 hours, about 11 hours, about 12 hours, about 13 hours, about 14 hours, about 15 hours, about 16 hours, about 17 hours, about 18 hours, about 19 hours, about 20 hours, about 21 hours, about 22 hours, about 23 hours , about 24 hours, about 36 hours, about 48 hours, about 60 hours, or about 72 hours.
  • the feeder cells of the present application may comprise antigen-presenting cells.
  • the feeder cells of the present application may comprise one or more selected from the group consisting of peripheral mononuclear cells, dendritic cells, and artificial antigen presenting cells.
  • the feeder cells of the present application can be peripheral mononuclear cells.
  • the feeder cells of the present application can be irradiated feeder cells.
  • the feeder cells of the present application may be isolated artificial antigen-presenting cells (aAPCs), and the artificial antigen-presenting cells of the present application may comprise cells expressing HLA-A/B/C, CD64, CD80, ICOS-L and/or CD58 , and can be modified to express more than one T cell activator of the present application.
  • the feeder cells of the present application can be irradiated, eg, can be gamma irradiated, or can be X-ray irradiated.
  • co-culturing the TIL of the present application with the feeder cell of the present application may comprise contacting the surface of the feeder cell of the present application with the surface of the TIL of the present application.
  • co-culturing the TIL of the present application with the feeder cell of the present application comprises adding the feeder cell of the present application to the cell culture medium of the TIL of the present application.
  • the present application can add the present application feeder cells to the cell culture medium of the present application TILs at a ratio of the present application feeder cells to the present application TILs of about 40:1 to about 400:1.
  • the present application can be at about 40:1 to about 400:1, at about 40:1 to about 300:1, at about 40:1 to about 200:1, at about 40:1 to about 100:1, at about about 40:1-about 90:1, about 40:1-about 80:1, about 40:1-about 70:1, about 40:1-about 60:1, about 40:1-about 50:1, about 50:1-about 400:1, about 60:1-about 400:1, about 70:1-about 400:1, about 80:1-about 400:1, about 90:1 to about 400:1, at about 100:1 to about 400:1, at about 200:1 to about 400:1, or at about 300:1 to about 400:1 feeder cells of the present application and the present application
  • the ratio of TIL, the feeder cells of the present application are added to the cell culture medium of the
  • the method of the present application may further comprise: subjecting TIL derived from tumor tissue and not expanded in vitro through at least one stage of in vitro expansion, wherein in at least one stage of in vitro expansion of the present application, the TIL of the present application is subjected to Contact with one or more T cell activators.
  • the TIL in a single stage of the in vitro expansion of the present application, is contacted with the one or more T cell activators.
  • a T cell activator can comprise an agonist of one or more targets selected from the group consisting of CD3, CD28, HVEM, CD40L, OX40, and 4-1BB.
  • the TIL in a single stage of the in vitro expansion, is increased in expression and/or activity of at least one cytokine and contacted with one or more T cell activators of the present application.
  • the TIL in the first stage of the in vitro expansion of the present application, can be increased in expression and/or activity of at least one cytokine and contacted with one or more T cell activators of the present application.
  • the TIL in the second stage of in vitro expansion of the present application, can be increased in expression and/or activity of at least one cytokine and contacted with one or more T cell activators of the present application.
  • the TIL in the third stage of the in vitro expansion of the present application, can be increased in expression and/or activity of at least one cytokine and contacted with one or more T cell activators of the present application.
  • the increased expression and/or enhanced activity of the at least one cytokine of the TIL and the interaction of the TIL with one or more of the T cells of the present application can be substantially simultaneously Activator contact.
  • the expression and/or activity of at least one cytokine of the TIL can be increased first, for example, 2 hours in advance, 4 hours in advance, 8 hours in advance, 12 hours in advance, 24 hours in advance, or 48 hours in advance, etc., and then contact with one or more T cell activators of the present application.
  • the TILs of the present application can be first contacted with one or more T cell activators of the present application, for example, 2 hours in advance, 4 hours in advance, 8 hours in advance , 12 hours in advance, 24 hours in advance, or 48 hours in advance, etc., and then increase the expression and/or activity of at least one cytokine of the TIL.
  • the increased expression and/or enhanced activity of at least one cytokine of the TIL and the activation of the TIL by contacting one or more of the T cells of the present application can be substantially simultaneously agent contact.
  • the increased expression and/or enhanced activity of at least one cytokine of the TIL and the activation of the TIL by contacting one or more of the T cells of the present application can be substantially simultaneously agent contact.
  • the increased expression and/or activity of the at least one cytokine of the TIL and the activation of the TIL by contacting one or more of the T cells of the present application can be substantially simultaneously agent contact.
  • the T cell activator of the present application may comprise one or more selected from the group consisting of CD80, CD86, B7-H3, 4-1BBL, CD27, CD30, CD134, B7h, CD40, LIGHT, and their functions active fragment.
  • a T cell activator of the present application may comprise an agonist of one or more targets selected from the group consisting of CD3, CD28, HVEM, CD40L, OX40, and 4-1BB.
  • T cell activators of the present application may comprise antibodies selected from the group consisting of CD3, CD28, HVEM, CD40L, OX40, and 4-1BB, and antigen-binding fragments thereof.
  • the T cell activator of the present application may comprise a CD3 agonist.
  • the T cell activator of the present application may comprise an anti-CD3 antibody and/or an antigen-binding fragment thereof, such as OKT3 from Miltenyi Biotech and SP34 from BD.
  • a T cell activator of the present application may comprise a CD28 agonist.
  • the T cell activator of the present application may comprise an anti-CD28 antibody and/or an antigen-binding fragment thereof, such as Merck's 15E8, the T cell activator of the present application may comprise CD80 and/or a functionally active fragment thereof and/or CD86 and/or its functionally active fragments, and recombinant proteins of the above substances.
  • the T cell activator of the present application may comprise an anti-CD3 antibody and/or an antigen-binding fragment thereof, such as may comprise the light chain VL and heavy chain VH of OKT3 of Miltenyi Biotech, and may comprise the light chain VL and heavy chain of SP34 of BD. chain VH.
  • a T cell activator of the present application may comprise a CD28 agonist.
  • the T cell activator of the present application may comprise an anti-CD28 antibody and/or antigen-binding fragment thereof, eg, may comprise the light chain VL and heavy chain VH of Merck's 15E8.
  • the T cell activator of the present application may comprise an anti-CD3 antibody and/or an antigen-binding fragment thereof, for example, may comprise the light chain LCDR1-3 and heavy chain HCDR1-3 of OKT3 of Miltenyi Biotech, may comprise the light chain of SP34 of BD Chain LCDR1-3 and heavy chain HCDR1-3, the anti-CD3 antibody and/or antigen-binding fragment thereof of the present application may have CD3-binding ability.
  • a T cell activator of the present application may comprise a CD28 agonist.
  • the T cell activator of the present application may comprise an anti-CD28 antibody and/or antigen-binding fragment thereof, such as may comprise the light chain LCDR1-3 and heavy chain HCDR1-3 of Merck's 15E8, the anti-CD28 antibody of the present application and /or an antigen-binding fragment thereof may have CD28 binding ability.
  • the antibody or antigen-binding protein thereof of the present application comprises at least one CDR in the VH of the variable region of the antibody heavy chain.
  • the application CDRs may be defined according to IMGT nomenclature, the application CDRs may be defined according to Chothia, or the application CDRs may be defined according to Kabat.
  • the CD3 agonist of the present application can be a CD3 antibody or an antigen binding protein thereof.
  • the antibody or antigen-binding protein thereof of the present application comprises at least one CDR in the VH of the variable region of the antibody heavy chain.
  • the application CDRs may be defined according to IMGT nomenclature, the application CDRs may be defined according to Chothia, or the application CDRs may be defined according to Kabat.
  • the antibody of the present application or its antigen-binding protein may comprise HCDR1, and the HCDR1 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 2 and 12; the CDRs of the present application may be defined according to the IMGT nomenclature; The CDRs of the present application may be defined according to Kabat; for example, the antigen binding proteins of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise HCDR2, and the HCDR2 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 3 and 13; the CDRs of the present application may be defined according to the IMGT nomenclature; The CDRs of the present application may be defined according to Kabat; for example, the antigen binding proteins of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise HCDR3, and the HCDR3 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 4 and 14;
  • the CDRs of the present application may be defined according to the IMGT nomenclature;
  • the CDRs of the present application may be defined according to Kabat; for example, the antigen binding proteins of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise HCDR1-3, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 2 and 12, and the HCDR2 of the present application may comprise SEQ ID NO: 3
  • the amino acid sequence shown in any one of and 13, and the application HCDR3 may comprise the amino acid sequence shown in any one of SEQ ID NOs: 4 and 14;
  • the application CDRs may be defined according to the IMGT nomenclature; the application CDRs Can be as defined by Kabat; for example, an antigen binding protein of the present application can have CD3 binding capacity.
  • the antibody of the present application or its antigen-binding protein may comprise the same HCDR1-3 as OKT3, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 2, and the HCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 3
  • the amino acid sequence of HCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 4; the CDRs of the present application may be defined according to the IMGT nomenclature; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same HCDR1-3 as SP34, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 12, and the HCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 13
  • the amino acid sequence of HCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 14; the CDRs of the present application may be defined according to Kabat; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application comprises at least one CDR in the variable region VL of the antibody light chain.
  • the present CDRs may be defined according to IMGT nomenclature, or the present CDRs may be defined according to Kabat.
  • the antibody of the present application or its antigen-binding protein may comprise LCDR1, and LCDR1 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 5 and 15;
  • the present application CDRs may be defined according to the IMGT nomenclature;
  • the CDRs of the present application may be defined according to Kabat; for example, the antigen binding proteins of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise LCDR2, and LCDR2 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 6 and 16;
  • the present application CDRs may be defined according to the IMGT nomenclature;
  • the CDRs of the present application may be defined according to Kabat; for example, the antigen binding proteins of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise LCDR3, and LCDR3 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 7 and 17; the present CDRs may be defined according to the IMGT nomenclature; The CDRs of the present application may be defined according to Kabat; for example, the antigen binding proteins of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise LCDR1-3, wherein LCDR1 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 5 and 15, and LCDR2 of the present application may comprise SEQ ID NO: 6
  • the amino acid sequence shown in any one of and 16 and the application LCDR3 may comprise the amino acid sequence shown in any one of SEQ ID NOs: 7 and 17;
  • the application CDRs may be defined according to the IMGT nomenclature;
  • the application CDRs Can be as defined by Kabat; for example, an antigen binding protein of the present application can have CD3 binding capacity.
  • the antibody of the present application or its antigen-binding protein may comprise the same LCDR1-3 as OKT3, wherein the LCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 5, and the LCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 6
  • the amino acid sequence of , and LCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 7; the CDRs of the present application may be defined according to the IMGT nomenclature; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same LCDR1-3 as SP34, wherein the LCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 15, and the LCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 16
  • the amino acid sequence of , and LCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 17; the CDRs of the present application may be defined according to Kabat; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise HCDR1-3 and LCDR1-3, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 2 and 12, and the HCDR2 of the present application may comprise SEQ ID NO: 2 and 12.
  • the HCDR3 of the present application may comprise the amino acid sequence shown in any one of SEQ ID NO: 4 and 14, and the LCDR1 of the present application may comprise the amino acid sequence of SEQ ID NO: 5 and 15
  • the amino acid sequence shown in any one, LCDR2 of the present application can comprise the amino acid sequence shown in any one of SEQ ID NO: 6 and 16, and LCDR3 of the present application can comprise the amino acid sequence shown in any one of SEQ ID NO: 7 and 17.
  • the amino acid sequence shown; the CDRs of the present application may be defined according to the IMGT nomenclature; the CDRs of the present application may be defined according to Kabat; for example, the antigen-binding proteins of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same HCDR1-3 and LCDR1-3 as OKT3, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 2, and the HCDR2 of the present application may comprise the amino acid sequence of SEQ ID NO: : the amino acid sequence shown in 3, the application HCDR3 can include the amino acid sequence shown in SEQ ID NO: 4, the application LCDR1 can include the amino acid sequence shown in SEQ ID NO: 5, the application LCDR2 can include SEQ ID NO: 6
  • the amino acid sequence shown, and LCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 7; the CDRs of the present application may be defined according to the IMGT nomenclature; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same HCDR1-3 as SP34, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 12, and the HCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 13
  • the amino acid sequence of HCDR3 of the present application can include the amino acid sequence shown in SEQ ID NO: 14, LCDR1 of the present application can include the amino acid sequence shown in SEQ ID NO: 15, and LCDR2 of the present application can include the amino acid sequence shown in SEQ ID NO: 16 Sequence, and LCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 17;
  • the CDRs of the present application may be defined according to Kabat; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a heavy chain variable region VH, and the VH of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 8 and 18; for example, The antigen-binding protein of the present application may have CD3-binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VH as OKT3, and the VH of the present application may comprise the amino acid sequence shown in SEQ ID NO: 8; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VH as SP34, and the VH of the present application may comprise the amino acid sequence shown in SEQ ID NO: 18; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a light chain variable region VL, and the VL of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 9 and 19; for example, The antigen-binding protein of the present application may have CD3-binding ability.
  • the antibody of the present application or the antigen-binding protein thereof may comprise the same VL as OKT3, and the VL of the present application may comprise the amino acid sequence shown in SEQ ID NO: 9; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or the antigen-binding protein thereof may comprise the same VL as SP34, and the VL of the present application may comprise the amino acid sequence shown in SEQ ID NO: 19; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a heavy chain variable region VH and a light chain variable region VL, and the application VH may comprise any one of SEQ ID NOs: 8 and 18.
  • the amino acid sequence shown, the VL of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 9 and 19; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VH and VL as OKT3, and the VH of the present application may comprise the amino acid sequence shown in SEQ ID NO: 8, and the VL of the present application may comprise the amino acid sequence shown in SEQ ID NO: 9
  • the amino acid sequence of ; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VH and VL as SP34, and the VH of the present application may comprise the amino acid sequence shown in SEQ ID NO: 18, and the VL of the present application may comprise the amino acid sequence shown in SEQ ID NO: 19
  • the amino acid sequence of for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a heavy chain, and the heavy chain of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 10 and 20;
  • the antigen binding protein may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same heavy chain as OKT3, and the heavy chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 10; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same heavy chain as SP34, and the heavy chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 20; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a light chain, and the light chain of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 11 and 21;
  • the antigen binding protein may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same light chain as OKT3, and the light chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 11; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same light chain as SP34, and the light chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 21; for example, the antigen-binding protein of the present application may have CD3 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a heavy chain and a light chain
  • the heavy chain of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 10 and 20, the present application
  • the light chain may comprise the amino acid sequence shown in any one of SEQ ID NOs: 11 and 21; for example, the antigen binding protein of the present application may have CD3 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same heavy chain and light chain as OKT3, and the heavy chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 10, and the light chain of the present application may comprise SEQ ID NO: : the amino acid sequence shown in 11; for example, the antigen-binding protein of the present application may have CD3-binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same heavy chain and light chain as SP34, and the heavy chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 20, and the light chain of the present application may comprise SEQ ID NO: : the amino acid sequence shown in 21; for example, the antigen-binding protein of the present application may have CD3-binding ability.
  • the CD28 agonist of the present application may be a CD28 antibody or an antigen binding protein thereof.
  • the antibody or antigen-binding protein thereof of the present application comprises at least one CDR in the VH of the variable region of the antibody heavy chain.
  • the present CDRs may be defined according to IMGT nomenclature, or the present CDRs may be defined according to Kabat.
  • the antibody of the present application or its antigen-binding protein may comprise HCDR1, and the HCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 22; the CDRs of the present application may be defined according to the IMGT nomenclature; the CDRs of the present application may be defined according to As defined by Kabat; for example, an antigen binding protein of the present application may have CD28 binding capacity.
  • the antibody of the present application or its antigen-binding protein may comprise HCDR2, and the HCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 23; the CDRs of the present application may be defined according to the IMGT nomenclature; the CDRs of the present application may be defined according to As defined by Kabat; for example, an antigen binding protein of the present application may have CD28 binding capacity.
  • the antibody of the present application or its antigen-binding protein may comprise HCDR3, and the HCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 24;
  • the CDRs of the present application may be defined according to the IMGT nomenclature;
  • the CDRs of the present application may be defined according to As defined by Kabat; for example, an antigen binding protein of the present application may have CD28 binding capacity.
  • the antibody of the present application or its antigen-binding protein can comprise HCDR1-3, wherein the HCDR1 of the present application can comprise the amino acid sequence shown in SEQ ID NO: 22, and the HCDR2 of the present application can comprise the amino acid sequence shown in SEQ ID NO: 23, And the HCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 24; the CDRs of the present application may be defined according to the IMGT nomenclature; the CDRs of the present application may be defined according to Kabat; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same HCDR1-3 as 15E8, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 22, and the HCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 23
  • the amino acid sequence of HCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 24; the CDRs of the present application may be defined according to the IMGT nomenclature; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody or antigen-binding protein thereof of the present application comprises at least one CDR in the variable region VL of the antibody light chain.
  • the present CDRs may be defined according to IMGT nomenclature, or the present CDRs may be defined according to Kabat.
  • the antibody of the present application or its antigen-binding protein may comprise LCDR1, and LCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 25; the CDRs of the present application may be defined according to the IMGT nomenclature; the CDRs of the present application may be defined according to As defined by Kabat; for example, an antigen binding protein of the present application may have CD28 binding capacity.
  • the antibody of the present application or its antigen-binding protein may comprise LCDR2, and LCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 26; the CDRs of the present application may be defined according to the IMGT nomenclature; the CDRs of the present application may be defined according to As defined by Kabat; for example, an antigen binding protein of the present application may have CD28 binding capacity.
  • the antibody of the present application or its antigen-binding protein may comprise LCDR3, and LCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 27; the CDRs of the present application may be defined according to the IMGT nomenclature; the CDRs of the present application may be defined according to As defined by Kabat; for example, an antigen binding protein of the present application may have CD28 binding capacity.
  • the antibody of the present application or its antigen-binding protein can comprise LCDR1-3, wherein LCDR1 of the present application can comprise the amino acid sequence shown in SEQ ID NO: 25, LCDR2 of the present application can comprise the amino acid sequence shown in SEQ ID NO: 26, And LCDR3 of this application can comprise the amino acid sequence shown in SEQ ID NO: 27; CDR of this application can be defined according to IMGT nomenclature; CDR of this application can be defined according to Kabat;
  • the antigen-binding protein of this application can have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same LCDR1-3 as 15E8, wherein the LCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 25, and the LCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 26
  • the amino acid sequence of , and LCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 27; the CDRs of the present application may be defined according to the IMGT nomenclature; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise HCDR1-3 and LCDR1-3, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 22, and the HCDR2 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 23
  • the amino acid sequence of the present application, HCDR3 can include the amino acid sequence shown in SEQ ID NO: 24, the application LCDR1 can include the amino acid sequence shown in SEQ ID NO: 25, and the application LCDR2 can include the amino acid sequence shown in SEQ ID NO: 30 Sequence, and LCDR3 of the present application can comprise the amino acid sequence shown in SEQ ID NO: 26;
  • the CDRs of the present application can be defined according to the IMGT nomenclature;
  • the CDRs of the present application can be defined according to Kabat; for example, the antigen-binding proteins of the present application can be Has CD28 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise the same HCDR1-3 and LCDR1-3 as 15E8, wherein the HCDR1 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 22, and the HCDR2 of the present application may comprise the amino acid sequence of SEQ ID NO: : the amino acid sequence shown in 23, the application HCDR3 can include the amino acid sequence shown in SEQ ID NO: 24, the application LCDR1 can include the amino acid sequence shown in SEQ ID NO: 25, the application LCDR2 can include SEQ ID NO: 26
  • the amino acid sequence shown, and LCDR3 of the present application may comprise the amino acid sequence shown in SEQ ID NO: 27; the CDRs of the present application may be defined according to the IMGT nomenclature; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a heavy chain variable region VH, and the VH of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 28 and 29; for example, The antigen-binding protein of the present application may have CD28-binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VH as a 15E8, and the VH of the present application may comprise the amino acid sequence shown in SEQ ID NO: 28; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VH as another 15E8, and the VH of the present application may comprise the amino acid sequence shown in SEQ ID NO: 29; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody or antigen-binding protein of the present application may comprise a light chain variable region VL, and the VL of the present application may comprise the amino acid sequence shown in SEQ ID NO: 30; for example, the antigen-binding protein of the present application Can have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VL as 15E8, and the VL of the present application may comprise the amino acid sequence shown in SEQ ID NO: 30; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a heavy chain variable region VH and a light chain variable region VL, and the application VH may comprise any one of SEQ ID NOs: 28 and 29.
  • the amino acid sequence shown, the VL of the present application may comprise the amino acid sequence shown in SEQ ID NO: 30; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VH and VL as a 15E8, and the VH of the present application may comprise the amino acid sequence shown in SEQ ID NO: 28, and the VL of the present application may comprise SEQ ID NO: 30
  • the amino acid sequence shown; for example, the antigen binding protein of the present application may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same VH and VL as another 15E8, and the VH of the present application may comprise the amino acid sequence shown in SEQ ID NO: 29, and the VL of the present application may comprise SEQ ID NO: The amino acid sequence shown in 30; for example, the antigen-binding protein of the present application may have CD28-binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a heavy chain, and the heavy chain of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 31 and 32;
  • the antigen binding protein may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same heavy chain as a 15E8, and the heavy chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 31; for example, the antigen-binding protein of the present application may have CD28 binding capacity.
  • the antibody of the present application or its antigen-binding protein may comprise the same heavy chain as another 15E8, and the heavy chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 32; for example, the antigen-binding protein of the present application may Has CD28 binding ability.
  • the antibody or antigen-binding protein of the present application may comprise a light chain, and the light chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 33; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same light chain as 15E8, and the light chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 33; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody or antigen-binding protein thereof of the present application may comprise a heavy chain and a light chain
  • the heavy chain of the present application may comprise the amino acid sequence shown in any one of SEQ ID NOs: 31 and 32
  • the present application The light chain may comprise the amino acid sequence shown in SEQ ID NO: 33; for example, the antigen binding protein of the present application may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same heavy chain and light chain as a 15E8, and the heavy chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 31, and the light chain of the present application may comprise SEQ ID NO: 31
  • the amino acid sequence shown in ID NO: 33; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • the antibody of the present application or its antigen-binding protein may comprise the same heavy chain and light chain as another 15E8, and the heavy chain of the present application may comprise the amino acid sequence shown in SEQ ID NO: 32, and the light chain of the present application may comprise The amino acid sequence shown in SEQ ID NO: 33; for example, the antigen-binding protein of the present application may have CD28 binding ability.
  • contacting the TIL of the present application with the one or more T cell activators of the present application may comprise one or more means selected from the group consisting of: (1) adding the T cell activator of the present application to the present application (2) adding the engineered cells expressing the T cell activator of the present application to the cell culture medium of the TIL of the present application; (3) adding the solid containing the T cell activator of the present application to the cell culture medium of the TIL of the present application; Phase medium is added to the cell culture medium of the TILs of this application.
  • contacting a TIL of the present application with one or more T cell activators of the present application may comprise adding a solid phase medium comprising the T cell activator of the present application to the cell culture medium of the TIL of the present application.
  • contacting a TIL of the present application with one or more T cell activators of the present application may comprise adding a solid phase medium comprising the CD28 antibody of the present application and the CD3 antibody of the present application to the cell culture medium of the TIL of the present application.
  • the initial concentration of the T cell activator in the cell culture medium of the TIL of the present application may be at least about 30 ng/mL.
  • the initial concentration of the CD28 antibody of the present application in the cell culture medium of the TIL of the present application can be at least about 30 ng/mL;
  • the initial concentration of the CD3 antibody of the present application in the cell culture medium of the TIL of the present application can be at least about 30ng/mL.
  • the selection of the initial concentration of the CD28 antibody of the present application can be independent of the selection of the initial concentration of the CD3 antibody of the present application; for example, the initial concentration of the CD28 antibody of the present application and the CD3 antibody of the present application in the cell culture medium of the TIL of the present application Any combination is possible.
  • the initial concentration of the CD28 antibody of the present application in the cell culture medium of the TIL of the present application can be arbitrarily selected from about 30 ng/mL to about 300 ng/mL.
  • the initial concentration of the CD3 antibody of the present application in the cell culture medium of the TIL of the present application can be arbitrarily selected from about 30 ng/mL to about 300 ng/mL.
  • the initial concentration of the CD28 antibody of the present application in the cell culture medium of the TIL of the present application can be arbitrarily selected from about 30 ng/mL to about 300 ng/mL, and the initial concentration of the CD3 antibody of the present application in the cell culture medium of the TIL of the present application
  • the concentration can be arbitrarily selected from about 30 ng/mL to about 300 ng/mL, and the selection of the initial concentration of the CD28 antibody of the present application can be independent of the selection of the initial concentration of the CD3 antibody of the present application.
  • the solid phase medium of the present application may have a diameter of about 500 nanometers to about 10 micrometers.
  • the diameter of the solid phase medium of the present application can be measured by transmission electron microscopy.
  • the diameter of the solid phase medium of the present application may be from about 1 nanometer to about 500 nanometers.
  • the solid phase medium of the present application may have a diameter of about 100 nanometers to about 500 nanometers.
  • the solid phase medium of the present application may have a diameter of about 200 nanometers to about 500 nanometers.
  • the diameter of the solid phase medium of the present application can be measured by transmission electron microscopy.
  • the solid phase medium of the present application may comprise a polymer.
  • the solid phase medium of the present application may comprise dextran.
  • the solid phase medium of the present application contains at least about 25 ⁇ g of the T cell activator of the present application per mg.
  • the solid phase medium comprising the T cell activator of the present application is added to the cell culture medium of the TIL of the present application at a ratio of the solid phase medium of the present application to the TIL of the present application of about 1:100 to about 1:2000.
  • the solid phase medium comprising the T cell activator of the present application is added to the cell culture medium of the TIL of the present application at a ratio of the solid phase medium of the present application to the TIL of the present application at a ratio of about 2:1 to about 1:2.
  • the TIL of the present application may be included in the ratio of the solid phase medium of the present application to the TIL of the present application in a ratio of about 2:1 to about 1:2.
  • the solid phase medium of the cell activator is added to the cell culture medium of the TIL of the present application.
  • the diameter of the solid phase medium of the present application is about 100 nanometers to about 500 nanometers, it may be about 2:1 to about 1:2, about 2:1 to about 1:1, or about 1:1 - a ratio of about 1:2 of the application's solid phase medium to the application's TILs, the solid phase medium comprising the application's T cell activators, such as CD3 agonists and/or CD28 agonists, is added to the cell culture medium of the application's TILs middle.
  • the solid phase medium comprising the application's T cell activators such as CD3 agonists and/or CD28 agonists
  • the TIL of the present application may be contained in the ratio of the solid phase medium of the present application to the TIL of the present application in a ratio of about 1:100 to about 1:2000.
  • the solid phase medium of the cell activator is added to the cell culture medium of the TIL of the present application.
  • the diameter of the solid phase medium of the present application when the diameter of the solid phase medium of the present application is about 100 nanometers to about 500 nanometers, it can be about 1:100-about 1:2000, about 1:200-about 1:2000, about 1:300- About 1:2000, about 1:400-about 1:2000, about 1:500-about 1:2000, about 1:600-about 1:2000, about 1:700-about 1:2000, about About 1:800-about 1:2000, about 1:900-about 1:2000, about 1:1000-about 1:2000, about 1:1200-about 1:2000, about 1:1400-about 1 :2000, at about 1:1600-about 1:2000, or at a ratio of about 1:1800-about 1:2000 of the present application's solid phase medium to the present application's TIL, for example, the CD28 agonist and CD3 agonist of the present application can be included
  • the solid phase medium of the agent is added to the cell culture medium of the TIL of the present application.
  • the method of the present application may further comprise: subjecting TIL derived from tumor tissue and not expanded in vitro through at least one stage of in vitro expansion, wherein in at least one stage of in vitro expansion of the present application, the TIL of the present application is subjected to Contact with one or more T cell growth factors.
  • the TIL of the present application in a single stage of the in vitro expansion of the present application, can be contacted with the T cell activator of the present application and with one or more T cell growth factors of the present application.
  • the TIL of the present application in the first stage of the in vitro expansion of the present application, can be contacted with the T cell activator of the present application and with one or more T cell growth factors of the present application.
  • the TIL of the present application in the second stage of the in vitro expansion of the present application, can be contacted with the T cell activator of the present application and with one or more T cell growth factors of the present application.
  • the TIL of the present application in the third stage in vitro expansion of the present application, can be contacted with the T cell activator of the present application and with one or more T cell growth factors of the present application.
  • the increased expression and/or enhanced activity of the at least one cytokine of the TIL and the contacting of the TIL with the T cell growth factor can be substantially simultaneously performed in a single stage of the in vitro expansion of the present application.
  • the increased expression and/or enhanced activity of the at least one cytokine of the TIL and the contacting of the TIL with the T cell growth factor can be substantially simultaneously performed in a single stage of the in vitro expansion of the present application.
  • the expression and/or activity of at least one cytokine of the TIL can be increased first, for example, 2 hours in advance, 4 hours in advance, 8 hours in advance, 12 hours in advance, 24 hours in advance, or 48 hours in advance, etc., the TIL of the present application is then contacted with one or more T cell growth factors of the present application.
  • the TILs of the present application can be first contacted with one or more T cell growth factors of the present application, for example, 2 hours in advance, 4 hours in advance, 8 hours in advance , 12 hours in advance, 24 hours in advance, or 48 hours in advance, etc., and then increase the expression and/or activity of at least one cytokine of the TIL.
  • the increased expression and/or activity of at least one cytokine of the TIL and the contacting of the TIL with the T cell growth factor can be substantially simultaneously performed.
  • the increased expression and/or enhanced activity of at least one cytokine of the TIL and the contacting of the TIL with the T cell growth factor can be performed substantially simultaneously.
  • the increased expression and/or enhanced activity of at least one cytokine of the TIL and the contacting of the TIL with the T cell growth factor can be substantially simultaneously.
  • the T cell growth factors of the present application may be selected from one or more of the following group: IL-2, IL-7, IL-12, IL-15, IL-21, gamma interferon, and their functional activities Fragment.
  • the T cell growth factors of the present application may comprise IL-2 and/or functionally active fragments thereof.
  • functionally active fragments of IL-2 can comprise fragments of IL-2 known in the art that can bind to the IL-2 receptor of T cells.
  • contacting a TIL of the present application with one or more T cell growth factors of the present application may comprise adding the T cell growth factors of the present application to the cell culture medium of the TIL of the present application.
  • the initial concentration of the T cell growth factor of the present application in the cell culture medium of the TIL of the present application can be at least about 300 IU/mL.
  • the initial concentration of IL-2 of the present application in the cell culture medium of the TIL of the present application can be at least about 350 IU/mL, at least about 400 IU/mL, at least about 500 IU/mL, at least about 600 IU/mL, at least about 700 IU/mL , at least about 800IU/mL, at least about 900IU/mL, at least about 1000IU/mL, at least about 1100IU/mL, at least about 1200IU/mL, at least about 1300IU/mL, at least about 1400IU/mL, at least about 1500IU/mL, at least about About 2000IU/mL, at least about 2500IU/mL, at least about 2600IU/mL, at least about 2700IU/mL, at least about 2800IU/mL, at least about 2900IU/mL, at least about 3000IU/mL, at least about 3100IU/mL, at least about 3200IU /mL, at least about 3300IU/
  • the TILs of the present application may be TILs derived from fragments of tumor tissue of the present application.
  • TILs of the present application can be obtained by processing tumor tissue into tumor fragments.
  • the tumor fragments of the present application are about 1-27 cubic millimeters in volume.
  • tumor fragments of the present application have a volume of about 1 cubic millimeter, about 2 cubic millimeters, about 3 cubic millimeters, about 4 cubic millimeters, about 5 cubic millimeters, about 6 cubic millimeters, about 7 cubic millimeters, about 8 cubic millimeters , about 9 mm3, about 10 mm3, about 11 mm3, about 12 mm3, about 13 mm3, about 15 mm3, about 17 mm3, about 19 mm3, about 20 mm3, about 21 mm3 , about 23 cubic millimeters, about 24 cubic millimeters, about 25 cubic millimeters, about 26 cubic millimeters, or about 27 cubic millimeters.
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which can comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with a T cell growth factor , wherein the second TIL population is obtained through the step (A); (B) the expression and/or activity of at least one cytokine of the TIL is increased and/or the activity of the TIL is enhanced, and the second TIL population is associated with T cells.
  • the activator and/or T cell growth factor is contacted for a certain period of time and then co-cultured with feeder cells, wherein the third TIL population is obtained through the step (B).
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or functionally active fragments thereof.
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) resuscitating and/or continuing to culture an in vitro TIL population to obtain a second TIL population, wherein the in vitro TIL population comprising a TIL population obtained by in vitro expansion of a first TIL population, the first TIL population being a TIL population derived from tumor tissue and not expanded in vitro; (B) expressing at least one cytokine of the TIL Improve and/or enhance the activity, and make the second TIL population co-culture with feeder cells after contacting with T cell activator and/or T cell growth factor for a certain time, wherein the third TIL population is obtained through the step (B) TIL group.
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or functionally active fragments thereof.
  • a TIL population derived from tumor tissue and not expanded in vitro at a certain time and/or a certain location can be contacted with T cell growth factors to obtain an in vitro TIL population, and on the one hand, the in vitro TIL population can be further cultured , and perform step (B), on the other hand, the in vitro TIL population can be cryopreserved first, and when necessary, the in vitro TIL population can be recovered, and step (B) can be performed.
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which can comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with a T cell growth factor , wherein the second TIL population is obtained through the step (A); (B) the expression and/or activity of IL-12 and/or functionally active fragments thereof of the TILs are increased and/or the activity thereof is enhanced, and the second TILs are The population is co-cultured with feeder cells after being contacted with the T cell activator and/or T cell growth factor for a certain period of time, wherein a third TIL population is obtained through said step (B).
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or functionally active fragments thereof.
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which can comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with a T cell growth factor , wherein the second TIL population is obtained through the step (A); (B) the proportion of TIL cells expressing IL-12 and/or its functionally active fragments in the TIL is increased by at least 5%, and the second TIL population is increased by at least 5%.
  • the TIL population is co-cultured with feeder cells after being contacted with the T cell activator and/or T cell growth factor for a certain period of time, wherein a third TIL population is obtained through the step (B).
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or functionally active fragments thereof.
  • the first-stage in vitro amplification of the present application can be arbitrarily replaced with step (A) in the method of the above aspect.
  • the second-stage in vitro amplification of the present application can be arbitrarily replaced with step (B) in the method of the above aspect.
  • the TILs expanded in vitro in the first stage of the present application can be arbitrarily replaced with the second TIL population obtained by step (A) in the method of the above aspect.
  • the TILs expanded in vitro in the second stage of the present application can be arbitrarily replaced with the third TIL population obtained by step (B) in the method of the above aspect.
  • the third-stage in vitro amplification of the present application can be arbitrarily replaced with any additional step (C) in the method of the above aspect.
  • the TILs expanded in vitro in the third stage of the present application can be arbitrarily replaced with the fourth TIL population obtained by any additional step (C) in the method of the above aspect.
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) a first population of TILs derived from tumor tissue and not expanded in vitro and a plurality of T cells growth factor contact; wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with a variety of T cell growth factors, with a variety of T cell activators, so that the The expression and/or activity of at least one cytokine of the TIL is increased, and the TIL is co-cultured with the feeder cells; wherein, a third TIL population is obtained through the step (B).
  • the cytokine of the present application can be interleukin-12 (IL-12) and/or functionally active fragments thereof.
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) a first population of TILs derived from tumor tissue and not expanded in vitro and a plurality of T cells growth factor contact; wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with a variety of T cell growth factors, with a variety of T cell activators, so that the The expression of IL-12 and/or its functionally active fragment of the TIL is increased and/or the activity is enhanced, and the TIL is co-cultured with feeder cells; wherein, a third TIL population is obtained through the step (B).
  • TILs tumor-infiltrating lymphocytes
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) a first population of TILs derived from tumor tissue and not expanded in vitro and a plurality of T cells growth factor contact; wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with a variety of T cell growth factors, with a variety of T cell activators, so that the The proportion of TIL cells expressing IL-12 and/or its functionally active fragments in the TILs is increased by at least 5%, and the TILs are co-cultured with feeder cells; wherein the third TIL population is obtained through the step (B).
  • TILs tumor-infiltrating lymphocytes
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) a first population of TILs derived from tumor tissue and not expanded in vitro and a plurality of T cells growth factor contact; wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with a variety of T cell growth factors, with a variety of T cell activators, so that the The proportion of TIL cells expressing IL-12 and/or its functionally active fragments in the TILs is increased by at least 5%, and the TILs are co-cultured with feeder cells after at least 2 hours; Three TIL clusters.
  • TILs tumor-infiltrating lymphocytes
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) a first population of TILs derived from tumor tissue and not expanded in vitro and a plurality of T cells growth factor contact; wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with a variety of T cell growth factors, with a variety of T cell activators, so that the the proportion of TIL cells expressing IL-12 and/or functionally active fragments thereof in said TIL is increased by at least 5%, and said TIL is co-cultured with feeder cells, which may comprise peripheral mononuclear cells, after at least 2 hours, The feeder cells are added to the cell culture medium of the TIL; wherein the third TIL population is obtained through the step (B).
  • TILs tumor-infiltrating lymphocytes
  • the present application provides a method for culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) a first population of TILs derived from tumor tissue and not expanded in vitro and a plurality of T cells growth factor contact; wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with a variety of T cell growth factors, with a variety of T cell activators, so that the the proportion of TIL cells expressing IL-12 and/or functionally active fragments thereof in said TIL is increased by at least 5%, and said TIL is co-cultured with feeder cells, which may comprise peripheral mononuclear cells, after at least 2 hours,
  • the feeder cells can be added to the TIL cell culture medium at a ratio of about 40: 1 to about 400: 1 of the feeder cells to the TIL; wherein the step (B) obtains the first step.
  • TILs tumor-infiltrating lymphocytes
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with IL-2 wherein, the second group of TILs is obtained through the step (A); (B) the second group of TILs can be contacted with IL-2, contacted with a variety of T cell activators, and IL-2 can be expressed in the TILs 12 and/or functionally active fragments thereof have an increased proportion of TIL cells of at least 5%, and the TILs are co-cultured with feeder cells, which may comprise peripheral mononuclear cells, at about 40:1 after at least 2 hours - a ratio of said feeder cells to said TILs of about 400:1, said feeder cells being added to the cell culture medium of said TILs; wherein a third TIL population is obtained through said step (B).
  • TILs tumor-infiltrating lymphocytes
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with IL-2 , the initial concentration of the IL-2 in the cell culture medium of the TIL can be at least about 300 IU/mL; wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be made The population of TILs is contacted with IL-2, which may be at an initial concentration of at least about 300 IU/mL in the cell culture medium of the TIL, with CD3 antibody, which is present in the cell culture medium of the TIL.
  • TILs tumor-infiltrating lymphocytes
  • An initial concentration of at least about 30 ng/mL increases the proportion of TIL cells in the TIL expressing IL-12 and/or functionally active fragments thereof by at least 5%, and the TIL is co-cultured with feeder cells after at least 2 hours, so that
  • the feeder cells may comprise peripheral mononuclear cells, and the feeder cells may be added to the cell culture medium of the TILs at a ratio of the feeder cells to the TILs of about 40:1 to about 400:1; wherein , the third TIL group is obtained through the step (B).
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with IL-2 wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with IL-2, contacted with a nanomatrix comprising CD3 antibody and CD28 antibody, and the TIL can be The proportion of TIL cells expressing IL-12 and/or its functionally active fragments is increased by at least 5%, and the TILs are co-cultured with feeder cells; wherein the third TIL population is obtained through the step (B).
  • TILs tumor-infiltrating lymphocytes
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with IL-2 wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with IL-2, contacted with a nanomatrix comprising CD3 antibody and CD28 antibody, and the nanomatrix has The diameter may be about 1 nanometer to about 500 nanometers, and each mg of the nanomatrix may contain about 25 ⁇ g of CD3 antibody and CD28 antibody, respectively, and the proportion of TIL cells expressing IL-12 and/or its functionally active fragment in the TIL At least 5% increase, and the TILs are co-cultured with feeder cells; wherein a third TIL population is obtained through the step (B).
  • TILs tumor-infiltrating lymphocytes
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with IL-2 wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be contacted with IL-2, contacted with a nanomatrix comprising CD3 antibody and CD28 antibody, and the nanomatrix has The diameter may be about 1 nanometer to about 500 nanometers, and each mg of the nanomatrix may contain about 25 ⁇ g of CD3 antibody and CD28 antibody, respectively, and the nanomatrix and the TIL may be in a ratio of about 1:100 to about 1:2000.
  • TILs tumor-infiltrating lymphocytes
  • the proportion of TIL is added to the cell culture medium of the TIL, the proportion of TIL cells expressing IL-12 and/or its functionally active fragments in the TIL is increased by at least 5%, and the TIL is co-cultured with feeder cells; wherein , the third TIL group is obtained through the step (B).
  • the application provides a method of culturing tumor-infiltrating lymphocytes (TILs), which may comprise: (A) contacting a first population of TILs derived from tumor tissue and not expanded in vitro with IL-2 , the initial concentration of the IL-2 in the cell culture medium of the TIL can be at least about 300 IU/mL; wherein, the second TIL population is obtained through the step (A); (B) the second TIL population can be made
  • the population of TILs is contacted with IL-2, which may be at an initial concentration of at least about 300 IU/mL in the cell culture medium of the TILs, with a nanomatrix comprising CD3 antibody and CD28 antibody, the nanomatrix of The diameter may be about 1 nanometer to about 500 nanometers, and each mg of the nanomatrix may contain about 25 ⁇ g of CD3 antibody and CD28 antibody, respectively, and the nanomatrix and the TIL may be in a ratio of about 1:100 to about 1:2000.
  • the proportion of TIL cells was added to the cell culture medium of the TIL, the proportion of TIL cells expressing IL-12 and/or its functionally active fragments in the TIL was increased by at least 5%, and the TIL was co-cultured with feeder cells.
  • the feeder cells may comprise peripheral mononuclear cells, and the feeder cells may be added to the cell culture medium of the TILs at a ratio of the feeder cells to the TILs of about 40:1 to about 400:1; wherein , the third TIL group is obtained through the step (B).
  • the present application provides a method of culturing tumor-infiltrating lymphocytes (TILs).
  • TILs tumor-infiltrating lymphocytes
  • the method for obtaining TIL cells from the subject's tissue sample can be that the patient obtains an in situ tumor sample or a metastatic tumor sample through surgery, and the weight can be at least about 1 g, or multiple pieces of tissue can be combined.
  • Tumor tissue is transported in a sample transport solution, such as a commercially commonly used tumor tissue transport solution, tumor tissue preservation solution or tumor tissue transport solution, at about 2-8 degrees, and processed within 48 hours.
  • Tissue pieces can be mechanically disrupted to a size of approximately 1-27 mm3 each, transferred into a gas permeable culture bag or Grex, and added with T cell serum-free medium at a concentration of 300-9000 IU/mL (for example, it can be 1000-9000 IU/mL, For example, 6000 IU/mL) of IL-2 can be cultured for about 3-14 days.
  • the harvested TIL cells can be frozen and then resuscitated, or the cells in the medium can be directly collected and transferred into a gas permeable culture bag, or Grex, or Xuri equipment.
  • the T cell serum-free medium can be supplemented with the CD28 antibody and CD3 antibody of this application.
  • CD3 antibody and CD28 antibody magnetic beads comprising CD3 antibody and CD28 antibody (e.g. Dynabeads) and/or nanomatrix (e.g. transACT) comprising CD3 antibody and CD28 antibody, at a concentration of 300-9000 IU/mL (e.g. can be 1000-9000 IU/mL , for example, IL-2 of 6000 IU/mL), and transduction with a retrovirus carrying IL-12 and/or its functionally active fragments makes the TIL express IL-12 and/or its functionally active fragments.
  • the proportion of TIL cells is increased by at least 5%.
  • irradiated PBMCs are added (TIL and PBMC in a ratio of about 1:40 to about 1:400), and expanded and cultured for about 3-14 days.
  • Cells in the culture medium can be collected, washed, cryopreserved, and assayed using a cell processing system.
  • the final product CD3 ratio can be greater than 80%, the cell viability can be greater than 50%, and the T cells greater than 80% can be memory effector T cells and effector T cells.
  • IFN- ⁇ may be secreted upon stimulation, and/or may be characterized by an up-regulated proportion of activated T cells.
  • the present application provides a tumor-infiltrating lymphocyte (TIL), and the TIL of the present application can be cultured according to the culture method of the present application.
  • TIL tumor-infiltrating lymphocyte
  • the TIL provided by the present application may comprise one or one batch of the TIL obtained by culturing the culture method of the present application.
  • the TILs provided in the present application may comprise multiple or multiple batches of TILs cultured by the culturing method of the present application and combined in any ratio.
  • TILs expanded using the methods of the present application can be administered to a patient as a pharmaceutical composition.
  • the pharmaceutical composition may be a suspension of TIL in sterile buffer.
  • TILs expanded using the PBMCs of the present application can be administered by any suitable route known in the art.
  • T cells can be administered as a single intra-arterial or intravenous infusion, which can last about 30 to 60 minutes. Other suitable routes of administration may include intraperitoneal, intrathecal and intralymphatic administration.
  • any suitable dose of TIL can be administered.
  • the tumor is a melanoma
  • from about 2.3 x 109 to about 13.7 x 1010 TILs can be administered.
  • about 1 ⁇ 10 9 to about 12 ⁇ 10 10 TILs can be administered.
  • about 1.2 ⁇ 10 10 to about 4.3 ⁇ 10 10 TILs can be administered.
  • about 3 ⁇ 10 10 to about 12 ⁇ 10 10 TILs can be administered.
  • about 4 ⁇ 10 10 to about 10 ⁇ 10 10 TILs can be administered.
  • about 5 ⁇ 10 10 to about 8 ⁇ 10 10 TILs can be administered.
  • about 6 ⁇ 10 10 to about 8 ⁇ 10 10 TILs can be administered. In some embodiments, about 7 ⁇ 10 10 to about 8 ⁇ 10 10 TILs can be administered. In some embodiments, the therapeutically effective dose may be from about 2.3 ⁇ 10 9 to about 13.7 ⁇ 10 10 . In some embodiments, a therapeutically effective dose may be from about 1 x 109 to about 12 x 1010 TILs. In some embodiments, the therapeutically effective dose may be from about 1.2 ⁇ 10 10 to about 4.3 ⁇ 10 10 TILs. In some embodiments, the therapeutically effective dose may be from about 3 ⁇ 10 10 to about 12 ⁇ 10 10 TILs. In some embodiments, a therapeutically effective dose may be from about 4 ⁇ 10 10 to about 10 ⁇ 10 10 TILs.
  • the therapeutically effective dose may be from about 5 ⁇ 10 10 to about 8 ⁇ 10 10 TILs. In some embodiments, a therapeutically effective dose can be from about 6 ⁇ 10 10 to about 8 ⁇ 10 10 TILs. In some embodiments, the therapeutically effective dose may be from about 7 ⁇ 10 10 to about 8 ⁇ 10 10 TILs.
  • the amount of TIL provided in the compositions of the present application can be about 1 ⁇ 10 6 , about 2 ⁇ 10 6 , about 3 ⁇ 10 6 , about 4 ⁇ 10 6 , about 5 ⁇ 10 6 , about 6 ⁇ 10 6 , approx. 7 ⁇ 10 6 , approx. 8 ⁇ 10 6 , approx. 9 ⁇ 10 6 , approx. 1 ⁇ 10 7 , approx. 2 ⁇ 10 7 , approx. 3 ⁇ 10 7 , approx. 4 ⁇ 10 7 , approx. 5 ⁇ 10 7 , approx. 6 ⁇ 10 7 , approx. 7 ⁇ 10 7 , approx. 8 ⁇ 10 7 , approx. 9 ⁇ 10 7 , approx. 1 ⁇ 10 8 , approx. 2 ⁇ 10 8 , approx.
  • the amount of TIL provided in the compositions of the present application may range from about 1 ⁇ 10 6 to 5 ⁇ 10 6 , about 5 ⁇ 10 6 to 1 ⁇ 10 7 , about 1 ⁇ 10 7 to 5 ⁇ 10 7 , approx. 5 ⁇ 10 7 to 1 ⁇ 10 8 , approx. 1 ⁇ 10 8 to 5 ⁇ 10 8 , approx. 5 ⁇ 10 8 to 1 ⁇ 10 9 , approx.
  • the concentration of TIL provided in the compositions of the present application may be less than, for example, about 100%, about 90%, about 80%, about 70%, about 60%, about 50%, about 40% of the composition , about 30%, about 20%, about 19%, about 18%, about 17%, about 16%, about 15%, about 14%, about 13%, about 12%, about 11%, about 10%, about 9%, about 8%, about 7%, about 6%, about 5%, about 4%, about 3%, about 2%, about 1%, about 0.5%, about 0.4%, about 0.3%, about 0.2% , about 0.1%, about 0.09%, about 0.08%, about 0.07%, about 0.06%, about 0.05%, about 0.04%, about 0.03%, about 0.02%, about 0.01%, about 0.009%, about 0.008%, about 0.007%, about 0.006%, about 0.005%, about 0.004%, about 0.003%, about 0.002%, about 0.001%, about 0.0009%, about 0.0008%, about
  • the concentration of TIL provided in the composition of the present application can be greater than about 90%, about 80%, about 70%, about 60%, about 50%, about 40%, about 30%, about 20%, about 19.75%, about 19.50%, about 19.25%, about 19%, about 18.75%, about 18.50%, about 18.25%, about 18%, about 17.75%, about 17.50%, about 17.25%, about 17 %, about 16.75%, about 16.50%, about 16.25%, about 16%, about 15.75%, about 15.50%, about 15.25%, about 15%, about 14.75%, about 14.50%, about 14.25%, about 14%, about 13.75%, about 13.50%, about 13.25%, about 13%, about 12.75%, about 12.50%, about 12.25%, about 12%, about 11.75%, about 11.50%, about 11.25%, about 11%, about 10.75 %, about 10.50%, about 10.25%, about 10%, about 9.75%, about 9.50%, about 9.25%, about 9%
  • the TILs provided in the compositions of the present application may be provided in concentrations ranging from about 0.0001% to about 50%, about 0.001% to about 40%, about 0.01% to about 30%, about 0.02% of the composition to about 29%, about 0.03% to about 28%, about 0.04% to about 27%, about 0.05% to about 26%, about 0.06% to about 25%, about 0.07% to about 24%, about 0.08% to about 23%, about 0.09% to about 22%, about 0.1% to about 21%, about 0.2% to about 20%, about 0.3% to about 19%, about 0.4% to about 18%, about 0.5% to about 17% , about 0.6% to about 16%, about 0.7% to about 15%, about 0.8% to about 14%, about 0.9% to about 12%, or about 1% to about 10% w/w, w/v, or v /v.
  • the TILs provided in the compositions of the present application may be provided in concentrations ranging from about 0.001% to about 10%, about 0.01% to about 5%, about 0.02% to about 4.5%, about 0.03% of the composition to about 4%, about 0.04% to about 3.5%, about 0.05% to about 3%, about 0.06% to about 2.5%, about 0.07% to about 2%, about 0.08% to about 1.5%, about 0.09% to about 1%, or from about 0.1% to about 0.9% w/w, w/v or v/v.
  • the amount of TIL provided in the compositions of the present application may be equal to or less than about 10 g, about 9.5 g, about 9.0 g, about 8.5 g, about 8.0 g, about 7.5 g, about 7.0 g, about 6.5 g g, about 6.0g, about 5.5g, about 5.0g, about 4.5g, about 4.0g, about 3.5g, about 3.0g, about 2.5g, about 2.0g, about 1.5g, about 1.0g, about 0.95g, about 0.9g, about 0.85g, about 0.8g, about 0.75g, about 0.7g, about 0.65g, about 0.6g, about 0.55g, about 0.5g, about 0.45g, about 0.4g, about 0.35g, about 0.3 g, about 0.25g, about 0.2g, about 0.15g, about 0.1g, about 0.09g, about 0.08g, about 0.07g, about 0.06g, about 0.05g, about 0.04g, about 0.03g, about 0.
  • the amount of TIL provided in the compositions of the present application can be greater than about 0.0001 g, about 0.0002 g, about 0.0003 g, about 0.0004 g, about 0.0005 g, about 0.0006 g, about 0.0007 g, about 0.0008 g , about 0.0009g, about 0.001g, about 0.0015g, about 0.002g, about 0.0025g, about 0.003g, about 0.0035g, about 0.004g, about 0.0045g, about 0.005g, about 0.0055g, about 0.006g, about 0.0065g, about 0.007g, about 0.0075g, about 0.008g, about 0.0085g, about 0.009g, about 0.0095g, about 0.01g, about 0.015g, about 0.02g, about 0.025g, about 0.03g, about 0.035g , about 0.04g, about 0.045g, about 0.05g, about 0.055g, about 0.06g,
  • the TIL can be administered in a single dose. Such administration can be by injection, eg, intravenous injection. In some embodiments, the TIL can be administered in multiple doses. The dosage can be one, two, three, four, five, six or more than six times per year. Dosing can be once a month, once every two weeks, once a week or once every 2 days. In some embodiments, the administration of TIL can be continuous.
  • the application provides a pharmaceutical composition.
  • it may comprise a TIL of the present application and/or a composition of the present application, together with a pharmaceutically acceptable carrier.
  • the present application provides a kit, which can include T cell activators, T cell growth factors and/or feeder cells used in the method for culturing tumor-infiltrating lymphocytes (TILs) of the present application and a method for culturing tumors described in the present application. Instructions for the steps of the infiltrating lymphocyte (TIL) method.
  • the present application provides a kit, and the kit of the present application may comprise the TIL of the present application and/or the pharmaceutical composition of the present application.
  • the present application provides a method of affecting tumor cell growth, which can include administering to a subject a TIL of the present application and/or a pharmaceutical composition of the present application.
  • affecting tumor growth can comprise a reduction in the volume of the tumor to, for example, about 99%, about 95%, about 90%, about 80%, about 70%, about 60%, about 50%, about 40% of the volume before administration %, about 30%, about 20%, about 19%, about 18%, about 17%, about 16%, about 15%, about 14%, about 13%, about 12%, about 11%, about 10%, about 9%, about 8%, about 7%, about 6%, about 5%, about 4%, about 3%, about 2%, about 1%, about 0.5%, about 0.4%, about 0.3%, about 0.2 % or about 0.1%.
  • the present application provides the application of the TIL of the present application and/or the pharmaceutical composition of the present application in the preparation of a medicament, and the medicament of the present application can be used for the prevention and/or treatment of tumors.
  • the tumors of the present application are selected from solid tumors.
  • the tumor of the present application can be selected from one or more of the following group: melanoma, ovarian cancer, cervical cancer, lung cancer, bladder cancer, breast cancer, head and neck cancer, pancreatic cancer, liver cancer, gastric cancer, Rectal cancer, and kidney cancer.
  • the present application provides a method of preventing and/or treating tumors, which may include administering the TIL of the present application and/or the pharmaceutical composition of the present application to a subject.
  • the tumors of the present application are selected from solid tumors.
  • the tumor of the present application can be selected from one or more of the following group: melanoma, ovarian cancer, cervical cancer, lung cancer, bladder cancer, breast cancer, head and neck cancer, pancreatic cancer, liver cancer, gastric cancer, Rectal cancer, and kidney cancer.
  • the present application provides a TIL of the present application and/or a pharmaceutical composition of the present application, which can be used for preventing and/or treating tumors.
  • the tumors of the present application are selected from solid tumors.
  • the tumor of the present application can be selected from one or more of the following group: melanoma, ovarian cancer, cervical cancer, lung cancer, bladder cancer, breast cancer, head and neck cancer, pancreatic cancer, liver cancer, gastric cancer, Rectal cancer, and kidney cancer.
  • TIL transcription factors Increased expression and/or activity of TIL transcription factors and/or functionally active fragments thereof
  • TILs tumor-infiltrating lymphocytes
  • the method comprising: increasing the expression and/or activity of transcription factors and/or functionally active fragments of the TILs, and allowing the TILs to interact with The T cell activator and/or T cell growth factor are co-cultured with feeder cells after exposure for a certain period of time.
  • the method comprises: after co-culturing the TIL with the feeder cell, increasing the expression and/or activity of the transcription factor of the TIL and/or its functionally active fragment enhanced.
  • the method according to any one of technical solutions 1-3 comprising: after the TIL is contacted with the T cell activator and/or the T cell growth factor and after the TIL is contacted with the T cell activator and/or the T cell growth factor.
  • the expression and/or activity of the transcription factor and/or functionally active fragment thereof of the TIL is increased prior to the co-cultivation of the feeder cells.
  • the method according to any one of technical solutions 1-4 comprising: making the TIL substantially simultaneously when the TIL is contacted with the T cell activator and/or the T cell growth factor. The expression and/or activity of the transcription factor and/or its functionally active fragment is increased.
  • TIL tumor-infiltrating lymphocytes
  • TILs tumor-infiltrating lymphocytes
  • the method comprising: co-culturing the TILs with feeder cells after contacting with a T cell activator and/or a T cell growth factor for a certain period of time, wherein the TILs comprise TILs obtained by increasing the expression and/or activity of transcription factors and/or functionally active fragments thereof of said TILs.
  • the improved TIL properties comprise one or more selected from the group consisting of: increased number of TIL cells, increased proportion of viable cells, increased viability, improved T cells Subpopulation ratio, increased cytokine secretion capacity, increased tumor cell killing capacity, increased T cell receptor (TCR) clonal diversity and increased TIL cell numbers in tissues and/or tumors.
  • the improved proportion of T cell subsets comprises one or more selected from the group consisting of: increased central memory T cell proportion, decreased regulatory T cell proportion, increased increased proportion of activated T cells, increased proportion of tumor-specific T cells, and increased proportion of stem-like T cells.
  • the viral vector comprises a retroviral vector.
  • the retroviral vector comprises a lentiviral vector.
  • nucleotide sequence encoding the transcription factor is selected from the group consisting of SEQ ID NO:72 and SEQ ID NO:73.
  • feeder cells comprise antigen-presenting cells.
  • feeder cells comprise one or more selected from the group consisting of peripheral mononuclear cells, dendritic cells and artificial antigen presenting cells.
  • feeder cells are peripheral mononuclear cells.
  • T cell activator comprises one or more selected from the group consisting of cluster of differentiation 80 (CD80), CD86, CD276, 4-1BB ligand. body (4-1BBL), CD27, CD30, CD134, CD275, CD40, CD258, and functionally active fragments thereof.
  • described T cell activator comprises the agonist of one or more targets selected from following group: CD3, CD28, herpes virus enter medium (HVEM). ), CD40L, OX40 and 4-1BB.
  • targets selected from following group: CD3, CD28, herpes virus enter medium (HVEM).
  • HVEM herpes virus enter medium
  • CD40L CD40L
  • OX40 4-1BB.
  • T cell activator comprises a CD3 agonist and/or a CD28 agonist.
  • T cell activator comprises an anti-CD3 antibody and/or an antigen-binding fragment thereof.
  • T cell activator comprises an anti-CD28 antibody and/or its antigen-binding fragment, CD80 and/or its functionally active fragment and/or CD86 and/or or a functionally active fragment thereof.
  • the contacting of the TIL with the T cell activator comprises one or more modes selected from the group consisting of: (1) subjecting the T cell to an activator is added to the cell culture medium of the TIL; (2) engineered cells expressing the T cell activator are added to the cell culture medium of the TIL; and (3) the T cell is activated
  • the solid phase medium of the agent is added to the cell culture medium of the TIL.
  • each T cell activator in the cell culture medium of the TIL is independently at least about 30 ng/mL.
  • phase medium comprising the T cell activator is added at a ratio of about 1:100 to about 1:2000 of the solid phase medium to the TIL.
  • Phase medium is added to the cell culture medium of the TIL.
  • TIL derived from tumor tissue and not expanded in vitro is subjected to the first stage of in vitro expansion and the second stage of in vitro expansion, and the In the second stage of in vitro expansion, the TILs are contacted with T cell growth factors.
  • T cell growth factor is selected from one or more of the following groups: IL-2, IL-7, IL-12, IL-15, IL-21, gamma interferon, and functionally active fragments thereof.
  • T cell growth factor comprises IL-2 and/or a functionally active fragment thereof.
  • contacting the TIL with the T cell growth factor comprises adding the T cell growth factor to a cell culture medium of the TIL.
  • TIL is TIL derived from fragments of tumor tissue and/or TIL derived from recovery after cryopreservation.
  • TILs tumor-infiltrating lymphocytes
  • step (A) contacting the first TIL population derived from tumor tissue and not expanded in vitro with T cell growth factor, wherein the second TIL population is obtained through the step (A);
  • step (B) increasing the expression and/or activity of transcription factors and/or functionally active fragments thereof in the second TIL population, and enabling the second TIL population to interact with T cell activators and/or T cell growth factors; After contacting for a certain period of time, it is co-cultured with feeder cells, wherein the third TIL population is obtained through the step (B).
  • TILs tumor-infiltrating lymphocytes
  • step (B) increasing the expression and/or activity of transcription factors and/or functionally active fragments thereof of the second TIL population, and enabling the second TIL population to interact with T cell activators and/or T cell growth factors After contacting for a certain period of time, it is co-cultured with feeder cells, wherein the third TIL population is obtained through the step (B).
  • the in vitro TIL population comprises a TIL population obtained by contacting the first TIL population with T cell growth factors.
  • the in vitro TIL population comprises a TIL population obtained by cryopreservation of the first TIL population.
  • step (A) is performed for about 7 days to about 14 days.
  • step (B) is performed for about 7 days to about 14 days.
  • TILs tumor-infiltrating lymphocytes
  • step (A) contacting the first TIL population derived from tumor tissue and not expanded in vitro with T cell growth factor, wherein the second TIL population is obtained through the step (A);
  • step (B) increasing the expression and/or activity of transcription factors and/or functionally active fragments thereof of the second population of TILs, and contacting the second population of TILs with T cell activators and/or T cell growth factors , wherein, the third TIL group is obtained through the step (B);
  • TILs tumor-infiltrating lymphocytes
  • step (B) increasing the expression and/or activity of transcription factors and/or functionally active fragments thereof of the second population of TILs, and contacting the second population of TILs with T cell activators and/or T cell growth factors , wherein, the third TIL group is obtained through the step (B);
  • the in vitro TIL population comprises a TIL population obtained by contacting the first TIL population with T cell growth factors.
  • the in vitro TIL population comprises a TIL population obtained by cryopreservation of the first TIL population.
  • step (A) is performed for about 7 days to about 14 days.
  • step (B) is performed for about 0 days to about 8 days.
  • step (C) is performed for about 5 days to about 14 days.
  • TILs tumor-infiltrating lymphocytes
  • step (A) contacting the first TIL population derived from tumor tissue and not expanded in vitro with T cell growth factor, wherein the second TIL population is obtained through the step (A);
  • step (B) contacting the second TIL population with a T cell activator and/or a T cell growth factor, wherein a third TIL population is obtained through the step (B);
  • TILs tumor-infiltrating lymphocytes
  • step (B) contacting the second TIL population with a T cell activator and/or a T cell growth factor, wherein a third TIL population is obtained through the step (B);
  • the in vitro TIL population comprises a TIL population obtained by contacting the first TIL population with T cell growth factors.
  • the in vitro TIL population comprises a TIL population obtained by cryopreservation of the first TIL population.
  • step (A) is carried out for about 7 days to about 14 days.
  • step (B) is performed for about 0 days to about 4 days.
  • step (C) is carried out for about 0 days to about 4 days.
  • step (D) is performed for about 5 days to about 14 days.
  • the improved TIL properties comprise one or more selected from the group consisting of: increased number of TIL cells, increased proportion of viable cells, increased viability, improved T cells Subpopulation ratio, increased cytokine secretion capacity, increased tumor cell killing capacity, increased T cell receptor (TCR) clonal diversity and increased TIL cell numbers in tissues and/or tumors.
  • the improved proportion of T cell subsets comprises one or more selected from the group consisting of: increased central memory T cell proportion, decreased regulatory T cell proportion, increased increased proportion of activated T cells, increased proportion of tumor-specific T cells, and increased proportion of stem-like T cells.
  • the method according to technical scheme 101, wherein the increasing expression and/or activity of the transcription factor and/or functionally active fragment thereof of the TIL comprises introducing a vector comprising the nucleic acid into the TIL.
  • the viral vector comprises a retroviral vector.
  • the retroviral vector comprises a lentiviral vector.
  • the nucleotide sequence encoding the transcription factor is selected from the group consisting of: SEQ ID NO:72 and SEQ ID NO:73.
  • the transcription factor and/or activity of the TIL is changed.
  • the proportion of cells expressing transcription factors and/or functionally active fragments thereof in the TIL obtained by increasing the expression and/or activity of the functionally active fragments thereof is increased by at least about 5% or more.
  • feeder cells comprise one or more selected from the group consisting of peripheral mononuclear cells, dendritic cells and artificial antigen presenting cells.
  • T cell activator comprises one or more selected from the group consisting of cluster of differentiation 80 (CD80), CD86, CD276, 4-1BB ligand. body (4-1BBL), CD27, CD30, CD134, CD275, CD40, CD258, and functionally active fragments thereof.
  • described T cell activator comprises the agonist of one or more targets selected from following group: CD3, CD28, herpes virus enters mediator (HVEM). ), CD40L, OX40 and 4-1BB.
  • targets selected from following group: CD3, CD28, herpes virus enters mediator (HVEM).
  • HVEM herpes virus enters mediator
  • T cell activator comprises a CD3 agonist and/or a CD28 agonist.
  • T cell activator comprises an anti-CD3 antibody and/or an antigen-binding fragment thereof.
  • T cell activator comprises an anti-CD28 antibody and/or its antigen-binding fragment, CD80 and/or its functionally active fragment and/or CD86 and/or or a functionally active fragment thereof.
  • the contacting of the TIL with the T cell activator comprises one or more modes selected from the group consisting of: (1) subjecting the T cell to an activator is added to the cell culture medium of the TIL; (2) engineered cells expressing the T cell activator are added to the cell culture medium of the TIL; and (3) the T cell is activated
  • the solid phase medium of the agent is added to the cell culture medium of the TIL.
  • each T cell activator in the cell culture medium of the TIL is each independently at least about 30 ng/mL.
  • the initial concentration of each T cell activator in the cell culture medium of the TIL is independently about 30ng/mL-about 300ng/mL. mL.
  • the amount of each of the T cell activators contained in the solid phase medium is each independently at least about 25 ⁇ g per mg of the solid phase medium.
  • T cell growth factor is selected from one or more of the following group: IL-2, IL-7, IL-12, IL-15, IL-21, gamma interferon, and functionally active fragments thereof.
  • T cell growth factor comprises IL-2 and/or a functionally active fragment thereof.
  • contacting the TIL with the T cell growth factor comprises adding the T cell growth factor to a cell culture medium of the TIL.
  • TIL is TIL derived from fragments of tumor tissue and/or TIL derived from recovery after cryopreservation.
  • TIL tumor-infiltrating lymphocytes
  • the method according to technical scheme 150 comprising: after contacting the TIL with a CD28 agonist, increasing the expression and/or activity of the transcription factor and/or functionally active fragment thereof of the TIL.
  • the method according to any one of technical solutions 150-151 comprising: prior to contacting the TIL with a CD28 agonist, increasing the expression of the transcription factor of the TIL and/or its functionally active fragment and/or increased activity.
  • TILs tumor-infiltrating lymphocytes
  • the method comprising: increasing the expression and/or activity of transcription factors and/or functionally active fragments thereof of the TILs, wherein the TILs comprise an association with CD28 TIL obtained from agonist exposure.
  • TIL tumor-infiltrating lymphocytes
  • the improved TIL properties comprise one or more selected from the group consisting of: increased number of TIL cells, increased proportion of viable cells, increased viability, improved T cells Subpopulation ratio, increased cytokine secretion capacity, increased tumor cell killing capacity, increased T cell receptor (TCR) clonal diversity and increased TIL cell numbers in tissues and/or tumors.
  • the method according to technical scheme 156, wherein the improved proportion of T cell subsets comprises one or more selected from the group consisting of: increased proportion of central memory T cells, decreased proportion of regulatory T cells, increased increased proportion of activated T cells, increased proportion of tumor-specific T cells, and increased proportion of stem-like T cells.
  • the method according to technical scheme 160, wherein the increasing expression and/or activity of the transcription factor and/or functionally active fragment thereof of the TIL comprises introducing a vector comprising the nucleic acid into the TIL.
  • the viral vector comprises a retroviral vector.
  • the retroviral vector comprises a lentiviral vector.
  • nucleotide sequence encoding the transcription factor is selected from the group consisting of: SEQ ID NO:72 and SEQ ID NO:73.
  • TIL derived from tumor tissue and not expanded in vitro is subjected to at least one stage of in vitro expansion, wherein in at least one stage of the in vitro expansion In in vitro expansion, the TIL is contacted with a CD28 agonist.
  • CD28 agonist comprises an antibody against CD28 and/or an antigen-binding fragment thereof, CD80 and/or a functionally active fragment thereof, and/or CD86 and/or or a functionally active fragment thereof.
  • the method according to any one of technical solutions 150-180 further comprising: subjecting TIL derived from tumor tissue and not expanded in vitro through at least one stage of in vitro expansion, wherein in at least one During the in vitro expansion phase, the TIL is contacted with other T cell activators than the CD28 agonist.
  • described other T cell activator comprises the agonist of one or more targets selected from following group: CD3, HVEM, CD40L, OX40 and 4 -1BB.
  • any one of technical solutions 181-188, wherein the contacting of the TIL with the CD28 agonist and the other T cell activator comprises one or more ways selected from the group consisting of: ( 1) adding the CD28 agonist and the other T cell activators to the cell culture medium of the TIL; (2) adding the engineered cells expressing the CD28 agonist and the other T cell activators into the cell culture medium of the TIL; (3) adding the solid-phase medium containing the CD28 agonist and the other T cell activators to the cell culture medium of the TIL.
  • the initial concentration of the other T cell activator in the cell culture medium of the TIL is at least about 30 ng/mL.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

提供一种修饰的肿瘤浸润淋巴细胞及其用途,涉及一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含使所述TIL的一种或多种目标基因,例如白介素-12和/或其功能活性片段的表达提高和/或活性增强。还涉及使用肿瘤浸润淋巴细胞预防和/或治疗肿瘤的方法。

Description

一种修饰的肿瘤浸润淋巴细胞及其用途 技术领域
本申请涉及生物医药领域,具体的涉及一种修饰的肿瘤浸润淋巴细胞及其用途。
背景技术
使用过继性自体转移肿瘤浸润淋巴细胞治疗肿瘤是一种治疗预后不良患者的有效方法。但是过继性自体转移肿瘤浸润淋巴细胞治疗肿瘤需要大量的肿瘤浸润淋巴细胞,而且目前来自患者肿瘤的肿瘤浸润淋巴细胞的扩增能力弱,杀伤靶细胞的能力不强。
因此如何提供一种稳健可靠的肿瘤浸润淋巴细胞的培养方法是亟待解决的问题。
发明内容
本申请提供了一种修饰的肿瘤浸润淋巴细胞及其用途,具体提供一种稳健可靠的肿瘤浸润淋巴细胞的培养方法,所述培养方法可以具有选自以下组的一种或多种的效果:使TIL细胞的数量改善,使TIL细胞的分泌能力提高,使TIL细胞的杀伤能力提高,使NK细胞比例增加,改变TIL细胞的比例,使CD4 +细胞的比例增加,使CD8 +细胞的比例降低,使中心记忆T细胞比例增加,使调节性T细胞的比例降低,使活化T细胞比例增加,使肿瘤特异性T细胞比例增加,和使干细胞样T细胞比例增加。
一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的白介素-12(IL-12)和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养。
在一种实施方式中,所述方法包含:使所述TIL与所述饲养细胞共培养之后,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
在一种实施方式中,所述方法包含:使所述TIL与所述饲养细胞共培养之前,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
在一种实施方式中,所述方法包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触之后且在所述TIL与所述饲养细胞共培养之前使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
在一种实施方式中,所述方法包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触基本上同时使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增 强。
在一种实施方式中,所述方法包含:在所述TIL与所述饲养细胞共培养基本上同时使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强,其中所述TIL包含与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养获得的TIL。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中所述TIL包含使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
在一种实施方式中,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
在一种实施方式中,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
在一种实施方式中,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将编码所述IL-12和/或其功能活性片段的核酸引入所述TIL中。
在一种实施方式中,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
在一种实施方式中,其中编码所述IL-12和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
在一种实施方式中,其中所述载体包含病毒载体。
在一种实施方式中,其中所述病毒载体包含逆转录病毒载体。
在一种实施方式中,其中所述逆转录病毒载体包含慢病毒载体。
在一种实施方式中,所述IL-12和/或其功能活性片段包含膜锚定的IL-12和/或分泌的 IL-12。
在一种实施方式中,所述IL-12和/或其功能活性片段包含p40结构域。
在一种实施方式中,所述p40结构域包含如SEQ ID NO:42所示的氨基酸序列。
在一种实施方式中,所述IL-12和/或其功能活性片段包含p35结构域。
在一种实施方式中,所述p35结构域包含如SEQ ID NO:55所示的氨基酸序列。
在一种实施方式中,所述p40结构域与所述p35结构域直接或间接连接。
在一种实施方式中,所述间接连接包含通过连接子连接。
在一种实施方式中,所述连接子包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q各自独立地至少为1。
在一种实施方式中,所述IL-12和/或其功能活性片段包含信号肽结构域。
在一种实施方式中,所述信号肽结构域包含如SEQ ID NO:41所示的氨基酸序列。
在一种实施方式中,所述信号肽结构域与所述p40结构域直接或间接连接。
在一种实施方式中,所述IL-12和/或其功能活性片段包含跨膜结构域。
在一种实施方式中,所述跨膜结构域和/或跨膜胞内结构域包含如SEQ ID NO:56-61和66-70中任一项所示的氨基酸序列。
在一种实施方式中,所述跨膜结构域和/或跨膜胞内结构域与所述信号肽结构域和/或所述p35结构域直接或间接连接。
在一种实施方式中,所述IL-12和/或其功能活性片段包含胞内结构域。
在一种实施方式中,所述胞内结构域包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。
在一种实施方式中,所述胞内结构域与所述跨膜结构域直接或间接连接。
在一种实施方式中,所述IL-12的所述功能活性片段包含如SEQ ID NO:42和/或55所示的氨基酸序列。
在一种实施方式中,所述IL-12包含如SEQ ID NO:34-40中任一项所示的氨基酸序列。
在一种实施方式中,所述IL-12和/或其功能活性片段的表达提高包含所述IL-12和/或其功能活性片段的合成和/或分泌提高。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相 比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高至少约5%以上。
在一种实施方式中,所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达IL-12和/或其功能活性片段的细胞比例为至少约5%以上。
在一种实施方式中,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述饲养细胞共培养。
在一种实施方式中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述饲养细胞共培养。
在一种实施方式中,所述第一阶段体外扩增进行至少约7天。
在一种实施方式中,所述第一阶段体外扩增进行约7天至约14天。
在一种实施方式中,所述第二阶段体外扩增进行至少约7天。
在一种实施方式中,所述第二阶段体外扩增进行约7天至约14天。
在一种实施方式中,使所述TIL在与T细胞激活剂和/或T细胞生长因子接触至少约2小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时至约72小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约12小时至约48小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
在一种实施方式中,所述饲养细胞包含抗原呈递细胞。
在一种实施方式中,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树 突状细胞和人工抗原呈递细胞。
在一种实施方式中,所述饲养细胞为外周单个核细胞。
在一种实施方式中,所述饲养细胞为经过辐照的饲养细胞。
在一种实施方式中,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
在一种实施方式中,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
在一种实施方式中,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
在一种实施方式中,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂接触。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂接触。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述T细胞激活剂接触。
在一种实施方式中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述T细胞激活剂接触。
在一种实施方式中,所述T细胞激活剂包含选自以下组的一种或多种:分化簇80(CD80)、CD86、CD276、4-1BB配体(4-1BBL)、CD27、CD30、CD134、CD275、CD40、CD258、以及它们的功能活性片段。
在一种实施方式中,所述T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、疱疹病毒进入介质(HVEM)、CD40L、OX40和4-1BB。
在一种实施方式中,所述T细胞激活剂包含CD3激动剂和/或CD28激动剂。
在一种实施方式中,所述T细胞激活剂包含CD3激动剂。
在一种实施方式中,所述T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
在一种实施方式中,所述T细胞激活剂包含CD28激动剂。
在一种实施方式中,所述T细胞激活剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段。
在一种实施方式中,所述使TIL与所述T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;和(3)将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为至少约30ng/mL。
在一种实施方式中,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为约30ng/mL-约300ng/mL。
在一种实施方式中,所述固相介质的直径为约500纳米至约10微米。
在一种实施方式中,所述固相介质的直径为约1纳米至约500纳米。
在一种实施方式中,所述固相介质的直径通过透射电子显微镜测量。
在一种实施方式中,所述固相介质包含聚合物。
在一种实施方式中,每mg所述固相介质中包含的每一种所述T细胞激活剂的量各自独立地至少为约25μg。
在一种实施方式中,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂以及所述T细胞生长因子接触。
在一种实施方式中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与T细胞生长因子接触。
在一种实施方式中,使所述TIL基本上同时与所述T细胞激活剂以及所述T细胞生长因子接触。
在一种实施方式中,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
在一种实施方式中,所述T细胞生长因子包含IL-2和/或其功能活性片段。
在一种实施方式中,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
在一种实施方式中,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
在一种实施方式中,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
在一种实施方式中,所述碎片的体积为约1立方毫米至约27立方毫米。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。
在一种实施方式中,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
在一种实施方式中,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
在一种实施方式中,所述步骤(A)进行约7天至约14天。
在一种实施方式中,所述步骤(B)进行约7天至约14天。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL群。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL群。
在一种实施方式中,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
在一种实施方式中,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
在一种实施方式中,所述步骤(A)进行约7天至约14天。
在一种实施方式中,所述步骤(B)进行约0天至约8天。
在一种实施方式中,所述步骤(C)进行约5天至约14天。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;
(D)使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
使所述第三TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;
使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。
在一种实施方式中,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
在一种实施方式中,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
在一种实施方式中,所述步骤(A)进行约7天至约14天。
在一种实施方式中,所述步骤(B)进行约0天至约4天。
在一种实施方式中,所述步骤(C)进行约0天至约4天。
在一种实施方式中,所述步骤(D)进行约5天至约14天。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
在一种实施方式中,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
在一种实施方式中,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
在一种实施方式中,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将编码所述IL-12和/或其功能活性片段的核酸引入所述TIL中。
在一种实施方式中,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
在一种实施方式中,其中编码所述IL-12和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
在一种实施方式中,其中所述载体包含病毒载体。
在一种实施方式中,其中所述病毒载体包含逆转录病毒载体。
在一种实施方式中,其中所述逆转录病毒载体包含慢病毒载体。
在一种实施方式中,所述IL-12和/或其功能活性片段包含膜锚定的IL-12和/或分泌的IL-12。
在一种实施方式中,所述IL-12和/或其功能活性片段包含p40结构域。
在一种实施方式中,所述p40结构域包含如SEQ ID NO:42所示的氨基酸序列。
在一种实施方式中,所述IL-12和/或其功能活性片段包含p35结构域。
在一种实施方式中,所述p35结构域包含如SEQ ID NO:55所示的氨基酸序列。
在一种实施方式中,所述p40结构域与所述p35结构域直接或间接连接。
在一种实施方式中,所述间接连接包含通过连接子连接。
在一种实施方式中,所述连接子包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q各自独立地至少为1。
在一种实施方式中,所述IL-12和/或其功能活性片段包含信号肽结构域。
在一种实施方式中,所述信号肽结构域包含如SEQ ID NO:41所示的氨基酸序列。
在一种实施方式中,所述信号肽结构域与所述p40结构域直接或间接连接。
在一种实施方式中,所述IL-12和/或其功能活性片段包含跨膜结构域。
在一种实施方式中,所述跨膜结构域和/或跨膜胞内结构域包含如SEQ ID NO:56-61和66-70中任一项所示的氨基酸序列。
在一种实施方式中,所述跨膜结构域和/或跨膜胞内结构域与所述信号肽结构域和/或所述p35结构域直接或间接连接。
在一种实施方式中,所述IL-12和/或其功能活性片段包含胞内结构域。
在一种实施方式中,所述胞内结构域包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。
在一种实施方式中,所述胞内结构域与所述跨膜结构域直接或间接连接。
在一种实施方式中,所述IL-12的所述功能活性片段包含如SEQ ID NO:42和/或55所示的氨基酸序列。
在一种实施方式中,所述IL-12包含如SEQ ID NO:34-40中任一项所示的氨基酸序列。
在一种实施方式中,所述IL-12和/或其功能活性片段的表达提高包含所述IL-12和/或其 功能活性片段的合成和/或分泌提高。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高至少约5%以上。
在一种实施方式中,所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达IL-12和/或其功能活性片段的细胞比例为至少约5%以上。
在一种实施方式中,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触至少约2小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时至约72小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约12小时至约48小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
在一种实施方式中,所述饲养细胞包含抗原呈递细胞。
在一种实施方式中,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
在一种实施方式中,所述饲养细胞为外周单个核细胞。
在一种实施方式中,所述饲养细胞为经过辐照的饲养细胞。
在一种实施方式中,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
在一种实施方式中,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
在一种实施方式中,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
在一种实施方式中,所述T细胞激活剂包含选自以下组的一种或多种:分化簇80(CD80)、CD86、CD276、4-1BB配体(4-1BBL)、CD27、CD30、CD134、CD275、 CD40、CD258、以及它们的功能活性片段。
在一种实施方式中,所述T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、疱疹病毒进入介质(HVEM)、CD40L、OX40和4-1BB。
在一种实施方式中,所述T细胞激活剂包含CD3激动剂和/或CD28激动剂。
在一种实施方式中,所述T细胞激活剂包含CD3激动剂。
在一种实施方式中,所述T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
在一种实施方式中,所述T细胞激活剂包含CD28激动剂。
在一种实施方式中,所述T细胞激活剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段。
在一种实施方式中,所述使TIL与所述T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;和(3)将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为至少约30ng/mL。
在一种实施方式中,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为约30ng/mL-约300ng/mL。
在一种实施方式中,所述固相介质的直径为约500纳米至约10微米。
在一种实施方式中,所述固相介质的直径为约1纳米至约500纳米。
在一种实施方式中,所述固相介质的直径通过透射电子显微镜测量。
在一种实施方式中,所述固相介质包含聚合物。
在一种实施方式中,每mg所述固相介质中包含的每一种所述T细胞激活剂的量各自独立地至少为约25μg。
在一种实施方式中,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,使所述TIL基本上同时与所述T细胞激活剂以及所述T细胞生长因子接触。
在一种实施方式中,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL- 12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
在一种实施方式中,所述T细胞生长因子包含IL-2和/或其功能活性片段。
在一种实施方式中,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
在一种实施方式中,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
在一种实施方式中,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
在一种实施方式中,所述碎片的体积为约1立方毫米至约27立方毫米。
一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触。
在一种实施方式中,所述方法包含:使所述TIL与CD28激动剂接触之后,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
在一种实施方式中,所述方法包含:使所述TIL与CD28激动剂接触之前,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强,其中所述TIL包含与CD28激动剂接触获得的TIL。
一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL与CD28激动剂接触,其中所述TIL包含使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
在一种实施方式中,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
在一种实施方式中,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤 特异性T细胞比例,和增加的干细胞样T细胞比例。
在一种实施方式中,与在体外扩增阶段未曾与所述CD28激动剂接触的相应TIL相比,在至少一个体外扩增阶段中与所述CD28激动剂接触过的所述TIL显示出改善的基因编辑效果。
在一种实施方式中,所述改善的基因编辑效果包含提高的基因敲除效率。
在一种实施方式中,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将编码所述IL-12和/或其功能活性片段的核酸引入所述TIL中。
在一种实施方式中,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
在一种实施方式中,其中编码所述IL-12和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
在一种实施方式中,其中所述载体包含病毒载体。
在一种实施方式中,其中所述病毒载体包含逆转录病毒载体。
在一种实施方式中,其中所述逆转录病毒载体包含慢病毒载体。
在一种实施方式中,所述IL-12和/或其功能活性片段包含膜锚定的IL-12和/或分泌的IL-12。
在一种实施方式中,所述IL-12和/或其功能活性片段包含p40结构域。
在一种实施方式中,所述p40结构域包含如SEQ ID NO:42所示的氨基酸序列。
在一种实施方式中,所述IL-12和/或其功能活性片段包含p35结构域。
在一种实施方式中,所述p35结构域包含如SEQ ID NO:55所示的氨基酸序列。
在一种实施方式中,所述p40结构域与所述p35结构域直接或间接连接。
在一种实施方式中,所述间接连接包含通过连接子连接。
在一种实施方式中,所述连接子包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q各自独立地至少为1。
在一种实施方式中,所述IL-12和/或其功能活性片段包含信号肽结构域。
在一种实施方式中,所述信号肽结构域包含如SEQ ID NO:41所示的氨基酸序列。
在一种实施方式中,所述信号肽结构域与所述p40结构域直接或间接连接。
在一种实施方式中,所述IL-12和/或其功能活性片段包含跨膜结构域。
在一种实施方式中,所述跨膜结构域和/或跨膜胞内结构域包含如SEQ ID NO:56-61和66-70中任一项所示的氨基酸序列。
在一种实施方式中,所述跨膜结构域和/或跨膜胞内结构域与所述信号肽结构域和/或所述p35结构域直接或间接连接。
在一种实施方式中,所述IL-12和/或其功能活性片段包含胞内结构域。
在一种实施方式中,所述胞内结构域包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。
在一种实施方式中,所述胞内结构域与所述跨膜结构域直接或间接连接。
在一种实施方式中,所述IL-12的所述功能活性片段包含如SEQ ID NO:42和/或55所示的氨基酸序列。
在一种实施方式中,所述IL-12包含如SEQ ID NO:34-40中任一项所示的氨基酸序列。
在一种实施方式中,所述IL-12和/或其功能活性片段的表达提高包含所述IL-12和/或其功能活性片段的合成和/或分泌提高。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高至少约5%以上。
在一种实施方式中,所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达IL-12和/或其功能活性片段的细胞比例为至少约5%以上。
在一种实施方式中,其中,使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与CD28激动剂接触。
在一种实施方式中,其中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使经所述第一阶段体外扩增的TIL与所述CD28激动剂接触。
在一种实施方式中,所述第一阶段体外扩增进行至少约7天。
在一种实施方式中,所述第一阶段体外扩增进行约7天至约14天。
在一种实施方式中,所述第二阶段体外扩增进行至少约7天。
在一种实施方式中,所述第二阶段体外扩增进行约7天至约14天。
在一种实施方式中,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段、和/或CD86和/或其功能活性片段。
在一种实施方式中,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述CD28激动剂之外的其它T细胞激活剂接触。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与所述其它T细胞激活剂接触。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述其它T细胞激活剂接触。
在一种实施方式中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述其它T细胞激活剂接触。
在一种实施方式中,使所述TIL基本上同时与所述CD28激动剂以及所述其它T细胞激活剂接触。
在一种实施方式中,所述其它T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、HVEM、CD40L、OX40和4-1BB。
在一种实施方式中,所述其它T细胞激活剂包含CD3激动剂。
在一种实施方式中,所述其它T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
在一种实施方式中,所述使TIL与所述CD28激动剂以及所述其它T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述CD28激动剂以及所述其它T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述CD28激动剂以及所述其它T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;(3)将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为至少约30ng/mL。
在一种实施方式中,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为约30ng/mL-约300ng/mL。
在一种实施方式中,所述固相介质的直径为约500纳米至约10微米。
在一种实施方式中,所述固相介质的直径为约1纳米至约500纳米。
在一种实施方式中,所述固相介质的直径通过透射电子显微镜测量。
在一种实施方式中,所述固相介质包含聚合物。
在一种实施方式中,每mg所述固相介质包含至少约25μg的所述CD28激动剂以及所述其它T细胞激活剂。
在一种实施方式中,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL在与CD28激动剂接触一定时间之后与饲养细胞共培养。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与CD28激动剂接触且使所述TIL与所述饲养细胞共培养。
在一种实施方式中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述CD28激动剂接触至少约2小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述CD28激动剂接触约6小时至约72小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述CD28激动剂接触约12小时至约48小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述CD28激动剂接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
在一种实施方式中,所述饲养细胞包含抗原呈递细胞。
在一种实施方式中,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
在一种实施方式中,所述饲养细胞为外周单个核细胞。
在一种实施方式中,所述饲养细胞为经过辐照的饲养细胞。
在一种实施方式中,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
在一种实施方式中,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
在一种实施方式中,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
在一种实施方式中,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与T细胞生长因子接触。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
在一种实施方式中,在单个阶段的所述体外扩增中,使所述TIL与所述CD28激动剂以及所述T细胞生长因子接触。
在一种实施方式中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与T细胞生长因子接触。
在一种实施方式中,使所述TIL基本上同时与所述CD28激动剂以及所述T细胞生长因子接触。
在一种实施方式中,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
在一种实施方式中,所述T细胞生长因子包含IL-2和/或其功能活性片段。
在一种实施方式中,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
在一种实施方式中,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
在一种实施方式中,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
在一种实施方式中,所述碎片的体积为约1立方毫米至约27立方毫米。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经 所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触,其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触,其中,经所述步骤(B)得到第三TIL群。
在一种实施方式中,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
在一种实施方式中,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
在一种实施方式中,所述步骤(A)进行约7天至约14天。
在一种实施方式中,所述步骤(B)进行约7天至约14天。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
在一种实施方式中,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
在一种实施方式中,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
在一种实施方式中,与在体外扩增阶段未曾与所述CD28激动剂接触的相应TIL相比,在至少一个体外扩增阶段中与所述CD28激动剂接触过的所述TIL显示出改善的基因编辑效果。
在一种实施方式中,所述改善的基因编辑效果包含提高的基因敲除效率。
在一种实施方式中,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将编码所述IL-12和/或其功能活性片段的核酸引入所述TIL中。
在一种实施方式中,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/ 或活性增强包含将包含所述核酸的载体引入所述TIL中。
在一种实施方式中,其中编码所述IL-12和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
在一种实施方式中,其中所述载体包含病毒载体。
在一种实施方式中,其中所述病毒载体包含逆转录病毒载体。
在一种实施方式中,其中所述逆转录病毒载体包含慢病毒载体。
在一种实施方式中,所述IL-12和/或其功能活性片段包含膜锚定的IL-12和/或分泌的IL-12。
在一种实施方式中,所述IL-12和/或其功能活性片段包含p40结构域。
在一种实施方式中,所述p40结构域包含如SEQ ID NO:42所示的氨基酸序列。
在一种实施方式中,所述IL-12和/或其功能活性片段包含p35结构域。
在一种实施方式中,所述p35结构域包含如SEQ ID NO:55所示的氨基酸序列。
在一种实施方式中,所述p40结构域与所述p35结构域直接或间接连接。
在一种实施方式中,所述间接连接包含通过连接子连接。
在一种实施方式中,所述连接子包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q各自独立地至少为1。
在一种实施方式中,所述IL-12和/或其功能活性片段包含信号肽结构域。
在一种实施方式中,所述信号肽结构域包含如SEQ ID NO:41所示的氨基酸序列。
在一种实施方式中,所述信号肽结构域与所述p40结构域直接或间接连接。
在一种实施方式中,所述IL-12和/或其功能活性片段包含跨膜结构域。
在一种实施方式中,所述跨膜结构域和/或跨膜胞内结构域包含如SEQ ID NO:56-61和66-70中任一项所示的氨基酸序列。
在一种实施方式中,所述跨膜结构域和/或跨膜胞内结构域与所述信号肽结构域和/或所述p35结构域直接或间接连接。
在一种实施方式中,所述IL-12和/或其功能活性片段包含胞内结构域。
在一种实施方式中,所述胞内结构域包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。
在一种实施方式中,所述胞内结构域与所述跨膜结构域直接或间接连接。
在一种实施方式中,所述IL-12的所述功能活性片段包含如SEQ ID NO:42和/或55所示的氨基酸序列。
在一种实施方式中,所述IL-12包含如SEQ ID NO:34-40中任一项所示的氨基酸序列。
在一种实施方式中,所述IL-12和/或其功能活性片段的表达提高包含所述IL-12和/或其功能活性片段的合成和/或分泌提高。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高。
在一种实施方式中,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高至少约5%以上。
在一种实施方式中,所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达IL-12和/或其功能活性片段的细胞比例为至少约5%以上。
在一种实施方式中,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段、和/或CD86和/或其功能活性片段。
在一种实施方式中,使所述TIL基本上同时与所述CD28激动剂以及所述其它T细胞激活剂接触。
在一种实施方式中,所述其它T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、HVEM、CD40L、OX40和4-1BB。
在一种实施方式中,所述其它T细胞激活剂包含CD3激动剂。
在一种实施方式中,所述其它T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
在一种实施方式中,所述使TIL与所述CD28激动剂以及所述其它T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述CD28激动剂以及所述其它T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述CD28激动剂以及所述其它T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;(3)将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为至少约30ng/mL。
在一种实施方式中,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为 约30ng/mL-约300ng/mL。
在一种实施方式中,所述固相介质的直径为约500纳米至约10微米。
在一种实施方式中,所述固相介质的直径为约1纳米至约500纳米。
在一种实施方式中,所述固相介质的直径通过透射电子显微镜测量。
在一种实施方式中,所述固相介质包含聚合物。
在一种实施方式中,每mg所述固相介质包含至少约25μg的所述CD28激动剂以及所述其它T细胞激活剂。
在一种实施方式中,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
在一种实施方式中,使所述TIL在与所述CD28激动剂接触至少约2小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述CD28激动剂接触约6小时至约72小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述CD28激动剂接触约12小时至约48小时之后与所述饲养细胞共培养。
在一种实施方式中,使所述TIL在与所述CD28激动剂接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
在一种实施方式中,所述饲养细胞包含抗原呈递细胞。
在一种实施方式中,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
在一种实施方式中,所述饲养细胞为外周单个核细胞。
在一种实施方式中,所述饲养细胞为经过辐照的饲养细胞。
在一种实施方式中,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
在一种实施方式中,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
在一种实施方式中,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
在一种实施方式中,使所述TIL基本上同时与所述CD28激动剂以及所述T细胞生长因子接触。
在一种实施方式中,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
在一种实施方式中,所述T细胞生长因子包含IL-2和/或其功能活性片段。
在一种实施方式中,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
在一种实施方式中,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
在一种实施方式中,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
在一种实施方式中,所述碎片的体积为约1立方毫米至约27立方毫米。
在另一方面,本申请还提供一种肿瘤浸润淋巴细胞(TIL),所述TIL经过本申请的方法获得。
在另一方面,本申请还提供一种组合物,其包含本申请的TIL。
在另一方面,本申请还提供一种药物组合物,其包含本申请的TIL和/或本申请的组合物,以及任选地药学上可接受的载体。
在另一方面,本申请还提供一种影响肿瘤细胞生长的方法,包含向受试者施用本申请的TIL、本申请的组合物和/或本申请的药物组合物。
在另一方面,本申请还提供本申请的TIL、本申请的组合物和/或本申请的药物组合物在制备药物中的应用,所述药物用于预防和/或治疗肿瘤。
根据本申请的应用,其中,所述肿瘤为实体瘤。
根据本申请的应用,其中,所述肿瘤选自以下组的一种或多种:黑色素瘤、卵巢癌、宫颈癌、肺癌、膀胱癌、乳腺癌、头颈癌、胰腺癌、肝癌、胃癌、结直肠癌、和肾癌。
本领域技术人员能够从下文的详细描述中容易地洞察到本申请的其它方面和优势。下文的详细描述中仅显示和描述了本申请的示例性实施方式。如本领域技术人员将认识到的,本申请的内容使得本领域技术人员能够对所公开的具体实施方式进行改动而不脱离本申请所涉及发明的精神和范围。相应地,本申请的附图和说明书中的描述仅仅是示例性的,而非为限制性的。
附图说明
本申请所涉及的发明的具体特征如所附权利要求书所显示。通过参考下文中详细描述的示例性实施方式和附图能够更好地理解本申请所涉及发明的特点和优势。对附图简要说明如下:
图1显示的是,对于来源于供者A的TIL细胞,各组中CD4 +细胞的IL-12转导效率。
图2显示的是,对于来源于供者A的TIL细胞,各组中CD8 +细胞的IL-12转导效率。
图3显示的是,对于来源于供者B的TIL细胞,各组TIL细胞的标准化扩增率。
图4显示的是,对于来源于供者C的TIL细胞,各组TIL细胞的增殖能力。
图5、图6、图7和图8分别显示的是,对于来源于供者D的TIL细胞,各组TIL细胞在CD3抗体刺激后的细胞因子IL-2、IFN-γ、TNF-α和IL-10分别的分泌情况。
图9、图10、图11和图12分别显示的是,对于来源于供者E的TIL细胞,各组TIL细胞在transACT刺激后的细胞因子IL-2、IL-6、TNF-α和IL-10分别的分泌情况。
图13、图14、图15、图16和图17分别显示的是,对于来源于供者F的TIL细胞,各组TIL细胞的细胞因子IFN-γ、IL-2、TNF-α、IL-6和IL-10分别的分泌情况。
图18、图19和图20分别显示的是,对于来源于供者G的TIL细胞撤去IL-2进行培养,各组TIL细胞的细胞因子IFN-γ、IL-6和IL-10分别的分泌情况。
图21显示的是,对于来源于供者H的TIL细胞,以效靶比0.3:1与肿瘤细胞共培养的杀伤能力检测结果。
图22显示的是,对于来源于供者H的TIL细胞,以效靶比1:1与肿瘤细胞共培养的杀伤能力检测结果。
图23显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子IL-2分泌情况结果。
图24显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子IL-6分泌情况结果。
图25显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子IFN-γ分泌情况结果。
图26显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子IL-10分泌情况结果。
图27显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子TNF-α分泌情况结果。
图28显示的是,对于来源于供者I的TIL细胞,转导后的第8天的CD8 +T细胞TCR Vβ克隆的多样性。
图29显示的是,对于来源于供者I的TIL细胞,转导后的第26天的CD8 +T细胞TCR Vβ克隆的多样性。
图30显示的是,对于来源于供者I的TIL细胞,转导后的第8天的CD4 +T细胞TCR Vβ克隆的多样性。
图31显示的是,对于来源于供者I的TIL细胞,转导后的第26天的CD4 +T细胞TCR Vβ克隆的多样性。
图32,图33,图34,图35和图36分别显示的是,注射TIL细胞后第6天和第21天各个组织和/或肿瘤中T细胞的数量。
图37显示的是,饲养细胞不同添加时间培养的TIL的增殖能力分析结果。
图38和图39显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD45RA -CCR7 +中心记忆T细胞(Tcm)比例。
图40显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD4 +CD25 +Foxp3 +调节性T细胞(Treg)比例。
图41和图42显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞比例。
图43显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD103 +CD39 +肿瘤特异性T细胞比例。
图44显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的TCF1 +干细胞样T细胞比例。
图45显示的是,添加不同形式的CD28激动剂的试验组以及对照组的增殖能力分析结果。
图46和图47分别显示的是,对于不同供者来源的TIL,混合抗体组与对照组培养所得的TIL细胞的T细胞亚群比例。
图48和图49分别显示的是,对于不同供者来源的TIL,磁珠组与对照组培养所得的TIL细胞的T细胞亚群比例。
图50显示的是,纳米基质组与对照组培养所得的TIL细胞的T细胞亚群比例。
图51显示的是,纳米基质组与对照组培养所得的TIL细胞的细胞杀伤能力。
图52显示的是,混合抗体组与对照组培养所得的TIL细胞的胞内因子表达检测结果。
图53、图54、图55和图56分别显示的是,对于不同供者来源的TIL,磁珠组与对照组培养所得的TIL细胞的胞内因子表达检测结果。
图57显示的是,纳米基质组与对照组培养所得的TIL细胞的胞内因子表达检测结果。
图58显示的是,纳米基质组与对照组培养所得的TIL细胞的细胞因子分泌检测结果。
图59显示的是,纳米基质组与对照组培养所得的TIL细胞与肿瘤细胞共同孵育后的细胞因子分泌检测结果。
图60和图61分别显示的是,对于不同供者来源的TIL,纳米基质组与对照组培养所得的TIL细胞的基因敲除效率结果。
图62、图63和图64分别显示的是,对于不同供者来源的TIL,在终末刺激阶段中,以不同方式进行体外扩增的试验组的增殖能力分析结果。
图65显示的是,转导IL-12的TIL细胞可以显示出更强的连续杀伤能力。
图66显示的是,转导IL-12的TIL细胞可以显示出更强的肿瘤体积抑制能力。
图67显示的是,转导IL-12的TIL细胞可以显示出更高和更为持久的IFN-γ分泌能力。
图68显示的是,各组TIL细胞的扩增后的荧光量。
图69显示的是,基因转导c-Jun(例如转导编码SEQ ID NO:71所述的核酸片段)后的TIL细胞以效靶比3:1与肿瘤细胞共培养的杀伤能力检测结果。
图70显示的是,各组TIL细胞的细胞因子分泌检测结果。结果表明,本申请的基因转导c-Jun的TIL细胞可以具有更高的细胞因子分泌能力。
图71显示的是,各组TIL细胞的扩增后的荧光量。
图72A显示的是,基因转导(例如转导SEQ ID NO:74所述的核酸片段)后的TIL细胞以效靶比1:1与肿瘤细胞共培养的杀伤能力检测结果。图72B显示的是,基因转导(例如转导SEQ ID NO:75所述的核酸片段)后的TIL细胞以效靶比3:1与肿瘤细胞共培养的杀伤能力检测结果。
图73显示的是,各组TIL细胞的细胞因子分泌检测结果。
图74A显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的细胞增殖能力结果图。
图74B显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD45RA -CCR7 +中心记忆T细胞(Tcm)比例结果图。
图74C显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的TCF1 +干细胞样T细胞比例。
图74D显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD4 +CD25 +Foxp3 +调节性T细胞(Treg)比例。
图74E显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞(PD-1 +)比例。
图74F显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD103 +CD39 +肿瘤特异性T细胞比例。
图74G显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞(CD28 +)比例。
图74H显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞(41BB +)比例。
图74I显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞(CD25 +)比例。
图74J显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的胞内因子表达检测结果。
图74K显示的是加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的细胞因子分泌检测结果。
图74L显示的是加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的细胞增殖能力结果图。
图74M显示的是加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD8 +T细胞比例。
图74N显示的是加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD45RO +CD62L +T细胞比例。
图74O显示的是加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的NK T细胞比例。
图74P显示的是加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD4 +CD25 +Foxp3 +调节性T细胞(Treg)比例。
图74Q显示的是加入OKT3和IL-2的48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的细胞杀伤能力结果。
具体实施方式
以下由特定的具体实施例说明本申请发明的实施方式,熟悉此技术的人士可由本说明书所公开的内容容易地了解本申请发明的其他优点及效果。
术语定义
在本申请中,术语“白介素”或“白细胞介素”通常是指一种细胞因子。例如,白介素可以激活与调节免疫细胞,介导T细胞、B细胞活化、增殖或分化,以及可以在炎症反应中起重要作用。本申请中,白介素可以涵盖未加工的白介素、任何形式加工的白介素、白介素的变体或包含白介素的功能活性片段的物质。
在本申请中,术语“白介素-12”或“IL-12”通常是指细胞因子的一种。例如,IL-12可以见于GenBank登记号P29459或P29460。本申请的IL-12蛋白还可以涵盖其功能活性片段,不限于在细胞中发生的加工和/或修饰后产生的包含IL-12的功能活性片段的物质。例如,本申请的IL-12可以包含IL-12的功能活性片段以及其它任意的结构域。
在本申请中,术语“p40结构域”通常是指IL-12的功能活性片段的部分结构域。例如,本申请的p40结构域可以涵盖IL-12的分子量约为40kDa的部分,不限于在细胞中发生的加工和/或修饰后产生的包含p40结构域的功能活性片段的物质。例如,p40结构域也可以称为IL-12β亚单位或IL-12B,例如,p40结构域可以见于GenBank登记号P29460。例如,本申请包含p40结构域的物质可以具有IL-12调节免疫细胞的功能。例如,本申请p40结构域可以与p35结构域一同组成IL-12或其片段,也可以单独组成IL-12或其片段。
在本申请中,术语“p35结构域”通常是指一种IL-12的功能活性片段的部分结构域。例如,本申请的p35结构域可以涵盖IL-12的分子量约为35kDa的部分,不限于在细胞中发生的加工和/或修饰后产生的包含p35的功能活性片段的物质。例如,p35结构域也可以称为IL-12α亚单位或IL-12A,例如,p35结构域可以见于GenBank登记号P29459。例如,本申请包含p35结构域的物质可以具有IL-12调节免疫细胞的功能。例如,本申请p35结构域可以与p40结构域一同组成IL-12或其片段,也可以单独组成IL-12或其片段。
在本申请中,术语“跨膜结构域”通常是指跨膜结构域横跨细胞膜的部分。例如,位于细胞膜中的部分,例如可以是各种多肽的跨膜区。跨膜结构域的片段可以包含野生型跨膜结构域的功能活性片段、截短体和/或突变变体。例如,本申请跨膜结构域可以具有使包含跨膜结构域的物质结合于细胞膜的功能。
在本申请中,术语“胞内结构域”通常是指位于细胞膜内侧的胞内部分。例如,本申请的胞内结构域可以包含野生型胞内结构域的功能活性片段、截短体和/或突变变体。例如,本申请的胞内结构域可以不具有任何胞内信号传递功能或可以具有任意胞内信号传递功能。例如,本申请的胞内结构域可以具有使得、维持和/或促进整体结构稳定性的作用。
在本申请中,术语“跨膜胞内结构域”通常是指包含跨膜结构域与胞内结构域的部分。
在本申请中,术语“信号肽结构域”通常是指引导新合成的蛋白质向分泌通路转移的短肽链。例如,本申请的信号肽结构域可以包含野生型信号肽结构域的功能活性片段、截短体和/或突变变体。例如,本申请的信号肽结构域可以具有引导包含信号肽结构域的物质跨膜转移的功能。例如,本申请的信号肽结构域可以与信号肽结合物质结合,使得包含信号肽结构域的物质的全部或部分转移到细胞膜外侧的胞外区域。
在本申请中,术语“c-Jun”通常是指一种转录因子。例如,c-Jun可以具有调节基因表达的功能。例如,本申请的c-Jun可以提高细胞的和/或细胞杀伤活性。例如,本申请的c-Jun可以在细胞和组织的生长、发育、分化中起关键作用。例如,c-Jun的NCBI Gene登录号可以是3725。本申请中,c-Jun可以涵盖未加工的c-Jun、任何形式加工的c-Jun、c-Jun的变体或包含c-Jun的片段的物质。
在本申请中,术语“微小RNA”通常是指一种小的非编码RNA分子。例如,微小RNA可以具有调节基因表达的功能。例如,本申请的微小RNA可以提高细胞的增殖能力和/或细胞杀伤活性。例如,本申请的miR155可以在细胞和组织的生长、发育、分化中起关键作用。例如,miR155的NCBI Gene登录号可以是406947。本申请中,miR155可以涵盖未加工的miR155、任何形式加工的miR155、miR155的变体或包含miR155的片段的物质。
在本申请中,术语“CD80”通常是指一种细胞刺激分子。例如,CD80可以是CD28的配体。例如,CD80可以见于GenBank登记号P33681。本申请的CD80蛋白还可以涵盖其功能活性片段,不限于在细胞中发生的加工和/或修饰后产生的包含CD80的功能活性片段的物质。例如,本申请的CD80可以包含CD80的功能活性片段以及其它任意的结构域。
在本申请中,术语“CD86”通常是指一种细胞刺激分子。例如,CD86可以是CD28的配体。例如,CD86可以见于GenBank登记号P42081。本申请的CD86蛋白还可以涵盖其功能活性片段,不限于在细胞中发生的加工和/或修饰后产生的包含CD86的功能活性片段的物质。例如,本申请的CD86可以包含CD86的功能活性片段以及其它任意的结构域。
在本申请中,术语“膜锚定”通常是指一种物质可以以定位于细胞膜的形式存在。例如,膜锚定的物质可以是指该物质可以分布在细胞膜上。例如,膜锚定的物质可以部分或全部镶 嵌在细胞膜中或内外两侧。例如,膜锚定的物质可以贯穿细胞膜,膜锚定的物质可以通过离子键、氢键或其它相互作用与细胞膜的成分相结合,膜锚定的物质也可以与其它物质相互作用,间接与膜结合。例如,可以通过细胞流式仪或其它检测细胞的方法检测一种物质是否是膜锚定的物质。例如,膜锚定的物质可以在一段时间内和/或以一定比例以膜锚定的形式存在。
在本申请中,术语“分泌”通常是指一种物质可以定位于细胞的胞外。例如,分泌的物质可以在细胞内合成之后,被运送到细胞的胞外空间。例如,可以通过酶联免疫吸附剂测定或其它检测方法检测一种物质是否是分泌的物质。
在本申请中,术语“病毒载体”通常是指可以用于递送核酸的病毒。例如,病毒载体可以用于感染靶细胞,将目标核酸递送到靶细胞内,可以使得靶细胞可以表达目标核酸编码的基因。例如,病毒载体可以是慢病毒载体。
在本申请中,术语“逆转录病毒载体”通常是指衍生自逆转录病毒基因组的至少一部分的载体。例如,逆转录病毒载体可以在逆转录酶的作用下将RNA转变成cDNA,在感染靶细胞后,可以在该靶细胞内表达包含在异源核酸序列内的一个或多个转基因。例如,可以在临床中可以使用逆转录病毒载体,也可以使用包括但不限于慢病毒载体。在本申请中,术语“慢病毒载体”通常是指衍生自慢病毒基因组的至少一部分的载体。例如,慢病毒包膜蛋白可以包含编码env蛋白或其部分的基因。例如,可以用转移载体和一个或多个包装载体对宿主细胞进行转染,以产生病毒,该病毒可以用于感染靶细胞来在该靶细胞内表达包含在异源核酸序列内的一个或多个转基因。
在本申请中,术语“引入”通常是指将核酸掺入真核或原核细胞中。例如,引入可以是指将异源或分离的核酸掺入真核或原核细胞中,其中该核酸可以掺入细胞的基因组(例如,染色体、质粒、质体或线粒体DNA)中,转变为自主复制子或瞬时表达(例如,转染的mRNA)。例如,引入可以通过“感染”、“转染”、“转化”和“转导”等方法实现。例如,可采用各种方法将核酸引入原核细胞中,包括电穿孔、磷酸钙沉淀、脂质介导、病毒载体转导的转染。
在本申请中,术语“表达提高”通常是指产物表达量的提高。例如,细胞合成该产物的量提高。例如,当该物质为分泌的物质时,细胞分泌该物质的量提高。例如,当该物质为膜锚定的物质时,细胞膜包含该物质的细胞比例提高,或者细胞膜包含的该物质的量提高。
在本申请中,术语“活性”通常是指物质的生物学功能。例如,细胞因子的活性可以是指对于细胞活化、增殖或分化的影响能力。
在本申请中,术语“T细胞受体”或“TCR”通常是指响应于抗原的呈递参与T细胞的活化的膜蛋白的复合体。TCR可以负责识别结合至主要组织相容性复合体分子的抗原。TCR可以由alpha(α)和beta(β)链的异二聚体组成,或由gamma和delta(γ/δ)链构成。TCR可以以α/β和γ/δ形式存在,其是结构上相似的,但是具有独特的解剖学位置和功能。例如,TCR可以是在表达TCR的任何细胞上被修饰的TCR。例如,TCR的种类可以通过TCR亚型分析试剂进行分析。
在本申请中,术语“克隆多样性”通常是指某种物质具有多种克隆型。例如,TCR的克隆多样性可以是指TCR可以具有不同序列结构和/或抗原识别能力。例如,TCR具有的多样性常用β链亚型来区分,可以包括Vβ 23、Vβ 7.2、Vβ 5.2、Vβ 11、Vβ 16、Vβ 3等,当一个T细胞群具有更多的β链亚型时,可以认为该T细胞群具有更高的克隆多样性。
在本申请中,“CD4 +细胞”通常是指CD4阳性的细胞,例如可以是T细胞。术语“CD4 +细胞”,“CD4阳性细胞”可以同义使用。这些细胞可通过本领域知道的方法来鉴定,例如通过用荧光标记的针对CD4的抗体对细胞染色和使用荧光激活细胞分选。例如,已有的数据可以证明,CD4 +细胞比例的提高可以使得细胞群分泌IFN-γ和/或TNF的能力提高,并可以提高T细胞群的促进肿瘤抑制的效果。例如,请见Tay,R.E.,Richardson,E.K.等人(2020).Cancer Gene Therapy,1-13.但是,本领域缺少一种提高CD4 +细胞比例的方法,本申请可以提供一种影响CD4 +细胞比例的方法。
在本申请中,“CD8 +细胞”通常是指CD8阳性的细胞,例如可以是T细胞。术语“CD8 +细胞”,“CD8阳性细胞”可以同义使用。这些细胞可通过本领域知道的方法来鉴定,例如通过用荧光标记的针对CD8的抗体对细胞染色和使用荧光激活细胞分选。
在本申请中,术语“IC 50值”或“IC50值”通常是指目标物获得生物学过程50%抑制需要的浓度。可以使用Cheng-Prusoff方程(Biochem.Pharmacol.(1973)22:3099)将IC50值换算成绝对抑制常数(Ki)。
在本申请中,术语“K D值”或“KD值”通常是指解离常数,其可通过表面等离子体共振进行测定。通常,表面等离子体共振分析使用BIAcore系统(Pharmacia Biosensor,Piscataway,NJ),通过表面等离子体共振(SPR),测量配体(固定化于生物传感器基质上的物质)和分析物(溶液中的物质)之间的实时结合相互作用。也可以通过固定化分析物(生物传感器基质上的物质)和呈递配体,进行表面等离子体分析。
在本申请中,术语“编码”通常是指能够根据基本上确定的规则,由一种分子的结构或组成信息,直接或间接推断出与其相关的另一类分子的结构或组成信息。例如,可以根据氨基 酸的序列推断出其核苷酸序列,例如根据脱氧核糖核酸转录互补核酸的特性,包括能翻译成多肽的核酸。例如,脱氧核糖核酸可编码从脱氧核糖核酸转录的RNA。脱氧核糖核酸可类似地编码从脱氧核糖核酸所转录的RNA翻译的多肽。
在本申请中,术语“小分子化合物”通常是指肽、肽模拟物、氨基酸、氨基酸类似物、多核苷酸、多核苷酸类似物、核苷酸、核苷酸类似物、分子量小于约10,000克/摩尔的有机或无机物(即包括异源有机物和有机金属化合物)、分子量小于约5,000克/摩尔的有机或无机物、分子量小于约1,000克/摩尔的有机或无机物、分子量小于约500克/摩尔的有机或无机物,以及这类药物的盐、酯和其它药学上可接受的形式。
在本申请中,术语“NK细胞”也称为“自然杀伤细胞”,通常是指一种细胞质中具有大颗粒的细胞。NK细胞由骨髓淋巴样干细胞发育而成,可以依赖于骨髓或胸腺微环境分化、发育。在本申请中,TIL细胞中的NK细胞的比例可以通过本申请的方法加以改变。
在本申请中,术语“抗体”通常指免疫球蛋白或其片段或其衍生物,涵盖包括抗原结合位点的任何多肽,无论其是在体外还是体内产生的。该术语包括但不限于多克隆的、单克隆的、单特异性的、多特异性的、非特异性的、人源化的、单链的、嵌合的、合成的、重组的、杂化的、突变的和移植的抗体。除非另外被术语“完整的”修饰,如在“完整的抗体”中,为了本申请的目的,术语“抗体”也包括抗体片段,比如Fab、F(ab')2、Fv、scFv、Fd、dAb和保持抗原结合功能(例如,特异性结合CD3)的其它抗体片段。通常,这样的片段应当包括抗原结合结构域。基本的4链抗体单元是由两个相同的轻(L)链和两个相同的重(H)链组成的异四聚体糖蛋白。IgM抗体由5个基本的异四聚体单元与另外一个称为J链的多肽组成,且含有10个抗原结合位点,而IgA抗体包括2-5个可以与J链相结合聚合形成多价组合的基本4链单元。就IgG而言,4链单元一般为约150,000道尔顿。每个L链通过一个共价二硫键与H链连接,而两个H链通过一个或多个取决于H链同种型的二硫键相互连接。每个H和L链还具有规则间隔的链内二硫化桥键。每个H链在N末端具有可变结构域(VH),对于α和γ链各自继之以三个恒定结构域(CH)、对于μ和ε同种型继之以四个CH结构域。每个L链在N末端具有可变结构域(VL),在其另一端具有恒定结构域。VL与VH对应,且CL与重链的第一恒定结构域(CH1)相对应。特定的氨基酸残基被认为在轻链和重链可变结构域之间形成界面。VH和VL配对一起形成单个抗原结合位点。来自任何脊椎动物物种的L链可以基于其恒定结构域的氨基酸序列被分为两种明显不同的类型中的一种,称为κ和λ。根据重链(CH)恒定结构域的氨基酸序列,可以将免疫球蛋白分为不同的类别或同种型。目前存在五类免疫球蛋白:IgA、IgD、IgE、IgG和IgM,具有分别被命名为α、δ、ε、γ和μ的重链。
在本申请中,术语“抗原结合片段”通常指具有特异结合抗原(例如,CD3)能力的一个或多个多肽片段。在本申请中,所述抗原结合片段可以包括Fab,Fab’,F(ab) 2、Fv片段、F(ab’) 2,scFv,di-scFv和/或dAb。
在本申请中,术语“固相介质”或“介质”通常是指结合功能的固相材料。例如,本申请固相介质可以是指通过共价结合和/或非共价结合的作用,将一种或一种以上的物质结合在介质内和/或介质表面的材料。例如,本申请的固相介质可以是指通过共价结合和/或非共价结合的作用将CD28抗体或其抗原结合片段以及CD3抗体或其抗原结合片段结合在介质内和/或介质表面的材料。例如,本申请的固相介质可以是聚合物材料。
在本申请中,术语“表达”通常是指编码目标多肽的基因在细胞内发生的转录和/或翻译过程。可以通过测量存在于细胞中的相应mRNA的量来确定宿主细胞中编码目标多肽的基因的转录水平。例如,可通过PCR或通过RNA杂交对编码目标多肽的基因转录的mRNA进行定量测量。可以通过多种方法测量编码目标多肽的基因的翻译水平,例如通过ELISA,通过多肽生物活性测试,或通过蛋白质印迹或放射免疫测试法。在本申请中,术语“表达”通常也可以是指产物发生的转录和/或翻译过程。例如,细胞因子的表达可以是细胞转录和/或翻译该细胞因子的过程。例如,细胞因子的表达可以通过检测存在于细胞中的相应mRNA的量或检测通过细胞生产的该细胞因子的量,或两者进行确定。
在本申请中,术语“一个阶段的体外扩增”、“单个阶段的体外扩增”、或“第一阶段体外扩增”等中的“阶段”通常是指TIL在体外经过的一段扩增过程。例如,每一个阶段之间可以是通过TIL细胞数量的变化来划分的,例如,当TIL细胞的数量增加至少约1倍时,可以认为TIL细胞进入了下一个阶段的体外扩增。在一些实施方式中,当TIL细胞的数量增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍时,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,每一个阶段之间也可以是通过TIL细胞培养的条件来划分的。例如,当细胞培养基中添加了或补充添加了T细胞激活剂和/或T细胞生长因子后,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,当TIL细胞进行了离心和/或细胞洗涤后,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,每一个阶段之间也可以是通过TIL细胞培养的天数来划分的。例如,当TIL细胞体外培养约1天、约2天、约3天、约4天、约5天、约6天、约7天、约8天、约9天、约10天、约11天、约12天、 约13天、约14天、约15天、约16天、约17天、约18天、约19天、约20天、约30天、约40天、约50天或约100天后,可以认为TIL细胞进入了下一个阶段的体外扩增。
在本申请中,术语“第一阶段体外扩增”通常是指从组织中获得初级TIL后,使用T细胞生长因子进行扩增的阶段。例如,本申请的组织可以选自以下组:肿瘤组织和胸腔积液,本申请的胸腔积液可以是有转移癌的患者的胸腔积液。例如,本申请的扩增可以是自体或者异体进行的体内扩增,或者可以是体外扩增。本申请的第一阶段体外扩增也可以称为preREP(快速扩增前)阶段。例如,源自肿瘤组织且未经体外扩增的TIL可以称为第一TIL群。例如,在两步骤法划分的本申请的培养方式中经过第一阶段体外扩增获得的TIL可以称为第二TIL群。
在本申请中,术语“第二阶段体外扩增”通常是指从受试者体内取出的组织并进行扩增后,再次进行扩增的阶段。例如,与经第一阶段体外扩增的TIL相比,本申请的经第二阶段体外扩增的TIL细胞数量增加,例如,可以增加至少约10倍(或至少约20、30、40、50、60、70、80或90倍),或者例如细胞的数量可以增加至少约100倍。例如,第二阶段体外扩增可以与第一阶段体外扩增的培养条件不同,例如加入的培养物质可以不同。例如,在两步骤法划分的本申请的培养方式中第二阶段体外扩增也可以称为REP(快速扩增)阶段。例如,在两步骤法划分的本申请的培养方式中经过第二阶段体外扩增获得的TIL可以称为第三TIL群。
在本申请中,术语“体内”通常是指发生在受试者体内的事件。
在本申请中,术语“体外”通常是指在受试者体外发生的事件。
在本申请中,术语“离体”通常是指涉及对已从受试者体内移除的细胞、组织和/或器官进行治疗或进行手术的事件。例如,该细胞、组织和/或器官可以通过手术或治疗方法返回到受试者的身体。
在本申请中,术语“分泌”通常是指细胞将表达的多肽或蛋白转移到细胞外环境。
在本申请中,术语“分泌能力”通常是指细胞表达多肽或蛋白并将本申请的多肽或蛋白转移到细胞外环境的能力。
在本申请中,术语“辐照”通常是指通过射线对物质进行的处理。例如,例如,辐照可以是指通过X射线、α射线、β射线或γ射线对物质进行辐照。
在本申请中,术语“工程化细胞”通常是指将DNA或RNA形式的额外遗传物质加入细胞的总遗传物质而被基因修饰的细胞。例如,工程化细胞可以经过基因修饰以表达本申请的T细胞激活剂和/或T细胞生长因子的TIL。
在本申请中,术语“共培养”通常是指将两个或更多个不同群体的细胞在它们之间有一定程度的接触的情况下培养。本申请的两个或更多个不同群体的细胞的“接触”,例如可以通过直接接触,即其中一个群体的细胞与另一个群体的细胞直接物理接触。或者例如可以通过共用培养基所介导的间接接触。本申请的共用的培养基可以含有由共培养细胞的至少一个群体所产生和释放的代谢产物,并用于培养另一个群体的细胞。
在本申请中,术语“接触”通常是指两个或更多个不同类型的物质以任何顺序、任何方式以及任何时长接触在一起。例如可以通过直接接触,例如可以将一种或多种饲养细胞、T细胞激活剂和/或T细胞生长因子加入TIL细胞的培养基,例如可以将包含一种或多种饲养细胞、T细胞激活剂和/或T细胞生长因子的培养基加入和/或替换TIL细胞的培养基,例如,可以将包含一种或多种饲养细胞、T细胞激活剂和/或T细胞生长因子的培养基用于TIL细胞的培养;例如可以通过间接接触,例如可以将饲养细胞产生和释放的代谢产物,用于培养TIL细胞。
在本申请中,术语“混合物”通常是指两个或更多个不同物质的组合。例如,本申请的CD28抗体或其抗原结合片段以及CD3抗体或其抗原结合片段可以在混合后作为混合物加入细胞培养基。
在本申请中,术语“同时接触”、“共同接触”、“与...接触同时”、“同时”和“共同”通常是指向受试者和/或细胞施用两种以上物质,使得物质同时存在于受试者和/或细胞培养的环境中。同时接触可以包括以不同的组合物同时施用、以不同的组合物在不同时间施用,或以其中存在两种以上活性药物成分的组合物施用。例如,本申请中“同时接触”通常可以是指基本上同时接触。
在本申请中,术语“扩增”通常是指在一段时间内细胞的数量增加若干倍。例如细胞的数量可以增加至少约3倍(或4、5、6、7、8或9倍),例如细胞的数量可以增加至少约10倍(或20、30、40、50、60、70、80或90倍),或者例如细胞的数量可以增加至少约100倍。在本申请中,术语“经扩增”通常是指本申请的细胞经过上述一种或多种扩增。
在本申请中,术语“聚合物”通常是指由连接在一起的单独化学部分组成的分子,本申请的聚合物部分可相同或不同。例如,术语“聚合物”可以指尾尾相连而形成线性分子的单独化学部分,以及以分支(如“多臂”或“星型”)结构形式连接在一起的单独化学部分。例如聚合物可以包括例如多糖、葡聚糖、水凝胶、聚乙二醇、或泊洛沙姆。泊洛沙姆是非离子三嵌段共聚物,其具有聚氧丙烯(聚(环氧丙烷))中央疏水链,侧连两条聚氧乙烯(聚(环氧乙烷)) 亲水链。本申请包含的物质可以与本文所描述的或本领域已知的任何聚合物一起配制,或与它们一起给予。
在本申请中,术语“嵌合抗体(chimeric antibody)”通常是指鼠源性抗体的可变区与人抗体的恒定区融合而成的抗体,可以减轻鼠源性抗体诱发的免疫应答反应。建立嵌合抗体,可以建立分泌鼠源性特异性单抗的杂交瘤,然后从鼠杂交瘤细胞中克隆可变区基因,可以根据需要克隆人抗体的恒定区基因,将鼠可变区基因与人恒定区基因连接成嵌合基因后插入表达载体中,可以在真核系统或原核系统中表达嵌合抗体分子。
在本申请中,术语“人源化抗体(humanized antibody)”,也称为CDR移植抗体(CDR-grafted antibody),通常是指将鼠的CDR序列移植到人的抗体可变区框架,即不同类型的人种系抗体框架序列中产生的抗体。可以克服嵌合抗体由于携带大量鼠蛋白成分,从而诱导的异源性反应。此类构架序列可以从包括种系抗体基因序列的公共DNA数据库或公开的参考文献获得。如人重链和轻链可变区基因的种系DNA序列可以在“VBase”人种系序列数据库。
在本申请中,术语“全人源抗体”、“全人抗体”或“完全人源抗体”,也称“全人源单克隆抗体”,其抗体的可变区和恒定区可以都是人源的,去除免疫原性和毒副作用。单克隆抗体的发展经历了四个阶段,分别为:鼠源性单克隆抗体、嵌合性单克隆抗体、人源化单克隆抗体和全人源单克隆抗体。本申请所述抗体或配体可以为全人源单克隆抗体。全人抗体制备的相关技术可以为:人杂交瘤技术、EBV转化B淋巴细胞技术、噬菌体显示技术(phage display)、转基因小鼠抗体制备技术(transgenic mouse)和单个B细胞抗体制备技术等。
在本申请中,术语“CDR”通常是指抗体的可变结构域内主要促成抗原结合的6个高变区之一。所述6个CDR的最常用的定义之一可以由Kabat E.A.等人,Chothia等人和MacCallum等人提供。如本申请中使用的,CDR的Kabat定义可以应用于轻链可变结构域的CDR1、CDR2和CDR3(CDR L1、CDR L2、CDR L3或L1、L2、L3),以及重链可变结构域的CDR1、CDR2和CDR3(CDR H1、CDR H2、CDR H3或H1、H2、H3)。
在本申请中,术语“抗CD3抗体”通常是指靶向CD3的抗体或其变体,例如单克隆抗体,包括人、人源化、嵌合或鼠抗体,其针对成熟T细胞的T细胞抗原受体中的CD3受体。抗CD3抗体可以包括OKT-3。抗CD3抗体可以包括SP34。抗CD3抗体还可以包括其他抗CD3抗体包括例如otelixizumab、teplizumab和visilizumab。
在本申请中,术语“IL-2”或“IL2”通常是指称为白细胞介素2的T细胞生长因子,并包括所有形式的IL-2,可以包括在例如本申请中人和哺乳动物形式、保守性氨基酸取代、糖型修饰或变体,或其活性片段。编码IL-2基因的GeneID可以为3558。
在本申请中,术语“抗原呈递细胞”、“抗原递呈细胞”、或“APC”通常是指,在其表面上展示与主要组织相容性复合物(MHC)复合的外源抗原的免疫系统细胞,如辅助细胞(例如,B细胞、树突细胞等)。T细胞可以使用其T细胞受体(TCR)识别这些复合物。APC可以加工抗原并将其递呈至T细胞。例如,抗原呈递细胞可以包括选自以下组:外周单个核细胞,树突状细胞,和人工抗原呈递细胞。
在本申请中,术语“TIL特性”通常是指TIL细胞经过本申请培养方法获得的特性。TIL特性的变化可以包含:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量,或它们的任何组合。本申请的变化可以是提高或者降低。
在本申请中,术语“存续”通常是指细胞在受试者体内的存在。例如,TIL细胞存续能力的增加,可以是指TIL细胞在体内存在的时间增加。例如,存续能力增加可以是指细胞在受试者组织内,例如肿瘤、脾脏、骨髓、肺组织及血液中存在的时间的增加。
在本申请中,术语“纳米颗粒”通常是指至少一个尺寸小于100nm的微观颗粒。通常,纳米颗粒具有50nm至500nm(即0.05μm至0.5μm)范围内的直径;在生理环境中结构稳定;且可以容纳更小的分子(如药物或其他生物活性剂),然后可以将该分子递送至希望的部位。例如,本申请的纳米颗粒可以包含CD28抗体或其抗原结合片段。例如,本申请的纳米颗粒可以包含CD28抗体或其抗原结合片段以及CD3抗体或其抗原结合片段。例如,抗CD3抗体可以包括OKT3。例如,抗CD28抗体可以包括15E8。
在本申请中,术语“人工抗原呈递细胞”通常是指人工构建的用于呈递外源抗原的免疫细胞,例如,呈递外源抗原的方式可以是人工抗原呈递细胞的表面包含外源抗原与主要组织相容性复合物(MHC)的复合物。在一个实施方案中,可以包括分离的人工抗原呈递细胞(aAPC),其可以包含表达HLA-A/B/C(编码其的基因GeneID可以为3105、3106或3107)、CD64(编码其的基因GeneID可以为2209)、CD80(编码其的基因GeneID可以为941)、ICOS-L(编码其的基因GeneID可以为23308)和CD58(编码其的基因GeneID可以为965)的细胞,并可以被修饰以表达一种以上T细胞激活剂,本申请的以上可以包含本数。
在本申请中,术语“融合蛋白”通常是指含有第一多肽或蛋白质或其片段、类似物或衍生物的氨基酸序列和异源多肽或蛋白质(即,不同于第一多肽或蛋白质或其片段、类似物或衍生物的第二多肽或蛋白质或其片段、类似物或衍生物,或者通常不是第一多肽或蛋白质或其片段、类似物或衍生物的一部分)的氨基酸序列的多肽或蛋白质。在某些情形中,融合蛋白可包 含与异源蛋白、多肽或肽融合的预防性或治疗性药物。其中,本申请的异源蛋白、多肽或肽可以是或不是不同类型的预防性或治疗性药物。例如,可将具有免疫调节活性的两种不同蛋白质、多肽或肽融合到一起形成融合蛋白。在某些情形中,与异源蛋白、多肽或蛋白质融合前的初始多肽或蛋白质的活性相比,融合蛋白可以保留或提高了活性。例如,本申请的融合蛋白可以是融合了CD28抗体或其抗原结合片段以及CD3抗体或其抗原结合片段的融合蛋白。
在本申请中,术语“杀伤能力”通常是指通过使本申请的细胞接触有效量的物质从而杀伤靶细胞来实现。在一个实施方案中,本申请的物质可以是TIL细胞。本申请的杀伤可以包括通过自身或者促进其它细胞或物质的CDC、凋亡、ADCC、和/或吞噬作用,或通过两种或更多种这些机制的组合以杀伤细胞。
在本申请中,术语“施用”通常是指通过本领域已知的任意途径,将物质递送给有此需要的受试者。药用载体和制剂或组合物也是本领域众所周知的。给药途径可以包括:静脉内的、肌肉内的、真皮内的、皮下的、透皮的、粘膜的、瘤内的和/或粘膜的。
在本申请中,术语“试剂盒”通常是指一起被包装在容器、接受器或其它容器中的两种或更多种组分,其中一种对应于本申请的物质。例如,包含本申请的TIL细胞。
在本申请中,术语“受试者”通常是指细胞或动物,可以是哺乳动物,诸如人、非人灵长类动物(猿、长臂猿、大猩猩、黑猩猩、猩猩、猕猴)、家畜(狗和猫)、农场动物(家禽如鸡和鸭、马、牛、山羊、绵羊、猪)和实验动物(小鼠、大鼠、兔、豚鼠)。人受试者包括胎儿、新生儿、婴儿、青少年和成人受试者。受试者包括动物疾病模型,例如肿瘤动物模型,和本领域技术人员已知的其它动物模型。
在本申请中,术语“饲养细胞(feeder)”通常是指可以用于支持培养另一种所关注的细胞生长的培养细胞。例如,可以通过体外生长和分泌至少一种因子至培养基。例如,饲养细胞可以包括抗原呈递细胞。
在本申请中,术语“特异性结合”通常是指识别特异性靶点物质,但是基本不识别或结合样品中其它分子的结合物质。例如,如果一种结合物质可以特异性结合来自一个物种的本申请的特异性靶点物质,则本申请的结合物质还可以特异性结合来自其它的一个或多个物种的本申请的靶点物质或同源靶点物质。这种种间反应性本身可以不会改变结合物质作为特异性的分类。在某些情形中,特异性结合至靶点物质的结合物质还可以结合至靶点物质的不同等位形式。
在本申请中,术语“完整的培养过程”通常是指将细胞从患者体内分离的肿瘤组织中分离开始,经过一次或一次以上的扩增,最终获得可以施用于受试者的细胞的完整过程。
在本申请中,术语“细胞培养基”通常是指细胞例如哺乳动物细胞在其中生长的营养液。细胞培养基的配制在本领域中是熟知的。典型地,细胞培养基包括缓冲液、盐、碳水化合物、氨基酸、维生素以及必要的微量元素。细胞培养基可以含有或不含有血清、蛋白胨、和/或蛋白质。细胞培养基可以补充有另外的组分或浓度增加的组分,如氨基酸、盐、糖、维生素、激素、生长因子、缓冲液、抗生素、脂质、微量元素等,这取决于有待培养的细胞的要求和/或所希望的细胞培养参数。
在本申请中,术语“药物组合物”或“药物制剂”通常是指一种制备物,本申请的制备物可以允许有效成分的生物活性有效,并且可以不含有对于将会施用该制剂的受试者不可接受地有毒的额外组分。这类制剂是无菌的。“可药用的”赋形剂(载体、添加物)是可以合理地施用至受试哺乳动物以提供有效剂量的所用有效成分的那些赋形剂。
在本申请中,术语“肿瘤浸润淋巴细胞”或“TIL”通常是指最初作为白细胞获得的细胞群,本申请的细胞已经离开受试者的血流并迁移到肿瘤中。TIL可以包括但不限于CD8 +细胞毒性T细胞(淋巴细胞)、Th1和Th17 CD4 +T细胞、天然杀伤细胞、树突细胞和M1巨噬细胞。TIL可以包括初级TIL和次级TIL。“初级TIL”可以是从受试者组织样品获得的那些TIL细胞,“次级TIL”可以是本申请中已扩增或经扩增的任何TIL群。在一些实施方式中,本申请的肿瘤浸润淋巴细胞可以是未经分离纯化的,或者可以是与肿瘤细胞相互浸润的。例如,本申请的TIL可以是指TIL群。
在本申请中,术语“中心记忆T细胞”通常是指具有长期记忆性的,并能够接受抗原再刺激的T细胞。中心记忆T细胞可以具有CD45RA -CCR7 +的表型,例如可以是通过CD45RA -和CCR7 +来鉴定中心记忆T细胞。中心记忆T细胞可以相比普通T细胞具有更强的抗肿瘤生长的能力。
在本申请中,术语“调节性T细胞”通常是指一类控制体内自身免疫反应性的T细胞亚群。调节性T细胞可以具有CD4 +CD25 +Foxp3 +的表型,例如可以是通过CD4 +、CD25 +和Foxp3 +来鉴定调节性T细胞。调节性T细胞可以具有抑制T细胞的抗肿瘤生长的能力。
在本申请中,术语“活化T细胞”通常是指经过活化而可以具有抗肿瘤生长的能力的T细胞。活化T细胞可以具有PD1 +、LAG3 +或CD28 +的表型,例如可以是通过PD1 +、LAG3 +或CD28 +来鉴定活化T细胞。活化T细胞可以具有抗肿瘤生长的能力。
在本申请中,术语“肿瘤特异性T细胞”通常是指可以特异性抗肿瘤生长的T细胞。肿瘤特异性T细胞可以具有CD103 +CD39 +的表型,例如,可以是通过CD103 +和CD39 +来鉴定肿瘤特异性T细胞。肿瘤特异性T细胞可以相比普通T细胞具有更特异性的抗肿瘤生长的能力。
在本申请中,术语“干细胞样T细胞”通常是指可以具有自我增殖和/或分化的潜能的一类T细胞。干细胞样T细胞可以具有TCF1 +的表型,例如可以是通过TCF1 +来鉴定干细胞样T细胞。肿瘤特异性T细胞可以相比普通T细胞具有更强和/或更长期的抗肿瘤生长的能力。
在本申请中,术语肿瘤“碎片”通常是指从受试者体内取出肿瘤组织后,可以通过机械破碎、酶解和/或其它破碎方法,形成的肿瘤碎片。
在本申请中,术语“组合物”或“药物组合物”通常是指至少一种细胞以及至少一种和任选多于一种的其他药学上可接受的化学组分如运载体、稳定剂、稀释剂、分散剂、助悬剂、增稠剂和/或赋形剂的混合物。
在本申请中,术语“药学上可接受的载体”通常是指不干扰活性成分的一种或多种非毒性材料。例如,药学上可接受的载体可以不干扰扰活性成分的生物活性;例如,药学上可接受的载体可以不干扰扰活性成分所具有的生物活性的有效性。这类制剂常规地可以含有盐、缓冲剂、防腐剂、相容的载体、以及任选地其他治疗剂。这类药学上可接受的制剂还可以含有适合于给予人的相容的固体或液体填料、稀释剂或包封物质。可以用于在此所描述的配制品中的其他设想的载体、赋形剂、和/或添加剂可以包括:例如,调味剂、抗微生物剂、增甜剂、抗氧化剂、抗静电剂、脂质、蛋白质赋形剂(如血清白蛋白、明胶、酪蛋白)、成盐平衡离子(如钠)等等。适合用于在此所描述的配制品中的这些和另外已知的药物载体、赋形剂和/或添加剂是本领域中已知的。本申请中,“药学上可接受的载体(carrier)”可以理解为不包含基因工程用到的核酸形式的载体(vector)。
在本申请中,术语“功能活性片段”通常是指具有全长蛋白质或核酸的部分区域,但保留或部分保留全长蛋白质或核酸的生物活性或功能的片段。例如,功能活性片段可以保留或部分保留全长蛋白质结合另一种分子的能力。例如,生长因子IL-2的功能活性片段,可以保留或部分保留全长IL-2的引起细胞增殖的生物活性功能。
在本申请中,术语“T细胞激活剂”通常是指与T细胞上的相应结合受体结合,并介导T细胞共刺激反应的物质。T细胞激活剂可以是T细胞产生有效免疫应答所需的除抗原受体之外的物质。T细胞激活剂可以是指T细胞共刺激分子。例如,本申请的T细胞激活剂可以包含其变体、同源物或包含其功能活性片段的任何物质。T细胞激活剂可以包括但不限于MHC  I类分子、TNF受体蛋白、免疫球蛋白样蛋白、细胞因子受体、整联蛋白、信号淋巴细胞活化分子(SLAM蛋白)、NK细胞活化受体、BTLA(编码其的基因GeneID可以为151888)、Toll配体受体、OX40(编码其的基因GeneID可以为7293)、CD2(编码其的基因GeneID可以为914)、CD7(编码其的基因GeneID可以为924)、CD27(编码其的基因GeneID可以为939)、CD28(编码其的基因GeneID可以为940)、CD30(编码其的基因GeneID可以为943)、CD40(编码其的基因GeneID可以为958)、CDS、ICAM-1(编码其的基因GeneID可以为3383)、LFA-1(CD11a/CD18)(编码其的基因GeneID可以为3689)、4-1BB(CD137)(编码其的基因GeneID可以为3604)、B7-H3(编码其的基因GeneID可以为80381)、ICOS(CD278)(编码其的基因GeneID可以为29851)、GITR(编码其的基因GeneID可以为8784)、BAFFR(编码其的基因GeneID可以为115650)、LIGHT(编码其的基因GeneID可以为8740)、HVEM(LIGHTR)(编码其的基因GeneID可以为8764)、KIRDS2、SLAMF7(编码其的基因GeneID可以为57823)、NKp80(KLRF1)(编码其的基因GeneID可以为51348)、NKp44(编码其的基因GeneID可以为9436)、NKp30(编码其的基因GeneID可以为259197)、NKp46(编码其的基因GeneID可以为9437)、CD19(编码其的基因GeneID可以为930)、CD4(编码其的基因GeneID可以为920)、CD8α(编码其的基因GeneID可以为925)、CD8β(编码其的基因GeneID可以为926)、IL-2Rβ、IL-2Rγ、IL7Rα(编码其的基因GeneID可以为)、ITGA4(编码其的基因GeneID可以为3676)、VLA1(编码其的基因GeneID可以为3672)、CD49a(编码其的基因GeneID可以为3672)、IA4(编码其的基因GeneID可以为3732)、CD49D(编码其的基因GeneID可以为3676)、ITGA6(编码其的基因GeneID可以为3655)、VLA-6(编码其的基因GeneID可以为3655)、CD49f(编码其的基因GeneID可以为3655)、ITGAD(编码其的基因GeneID可以为3681)、CD11d(编码其的基因GeneID可以为3681)、ITGAE(编码其的基因GeneID可以为3682)、CD103(编码其的基因GeneID可以为3682)、ITGAL(编码其的基因GeneID可以为3683)、CD11a(编码其的基因GeneID可以为3683)、LFA-1(编码其的基因GeneID可以为3683)、ITGAM(编码其的基因GeneID可以为3684)、CD11b(编码其的基因GeneID可以为3684)、ITGAX(编码其的基因GeneID可以为3687)、CD11c(编码其的基因GeneID可以为3687)、ITGB1(编码其的基因GeneID可以为3688)、CD29(编码其的基因GeneID可以为3688)、ITGB2(编码其的基因GeneID可以为3689)、CD18(编码其的基因GeneID可以为3689)、LFA-1(编码其的基因GeneID可以为3689)、ITGB7(编码其的基因GeneID可以为3695)、NKG2D(编码其的基因GeneID可以为22914)、NKG2C(编码其的基因GeneID可以为3822)、TNFR2(编码其的基因GeneID可以为7133)、TRANCE/RANKL(编码其的基因GeneID可以为8600)、DNAM1(CD226)(编码其的基 因GeneID可以为10666)、SLAMF4(CD244、2B4)(编码其的基因GeneID可以为51744)、CD84(编码其的基因GeneID可以为8832)、CD96(Tactile)(编码其的基因GeneID可以为10225)、CEACAM1(编码其的基因GeneID可以为634)、CRTAM(编码其的基因GeneID可以为56253)、Ly9(CD229)(编码其的基因GeneID可以为4063)、CD160(BY55)(编码其的基因GeneID可以为11126)、PSGL1(编码其的基因GeneID可以为6404)、CD100(SEMA4D)(编码其的基因GeneID可以为10507)、CD69(编码其的基因GeneID可以为969)、SLAMF6(NTB-A、Ly108)(编码其的基因GeneID可以为114836)、SLAM(SLAMF1、CD150、IPO-3)(编码其的基因GeneID可以为6504)、BLAME(SLAMF8)(编码其的基因GeneID可以为56833)、SELPLG(CD162)(编码其的基因GeneID可以为6404)、LTBR(编码其的基因GeneID可以为4055)、LAT(编码其的基因GeneID可以为27040)、GADS(编码其的基因GeneID可以为9402)、SLP-76(编码其的基因GeneID可以为3937)、PAG/Cbp(编码其的基因GeneID可以为55824)、CD19a、和特异性结合CD3的配体、特异性结合CD28的配体、特异性结合HVEM的配体、特异性结合CD40L的配体、特异性结合OX40的配体、和特异性结合4-1BB的配体。共刺激胞内信号传导结构域可以是指T细胞激活剂的胞内部分。胞内信号传导结构域可以包含从中衍生的分子的完整胞内部分或完整天然胞内信号传导结构域或其功能性片段。
在本申请中,术语“T细胞生长因子”通常是指引起细胞增殖的生物活性多肽或小分子化合物。例如,本申请的T细胞生长因子可以包含其变体、同源物或包含其功能活性片段的任何物质。例如,T细胞生长因子可以选自以下组的一种或多种:IL-2(编码其的基因GeneID可以为3558)、IL-4(编码其的基因GeneID可以为3565)、IL-6(编码其的基因GeneID可以为3569)、IL-7(编码其的基因GeneID可以为3574)、IL-10(编码其的基因GeneID可以为3586)、IL-12(编码其的基因GeneID可以为3592或3593)、IL-15(编码其的基因GeneID可以为3600)、IL-21(编码其的基因GeneID可以为59067)、TNF-α(编码其的基因GeneID可以为100137091)、γ干扰素(编码其的基因GeneID可以为3458)等等。
在本申请中,术语“基本上同时”通常是指接触过程的一段时间内TIL可以与两种以上的物质同时接触,但是可以不限于在整个接触过程中TIL总是与两种以上的物质同时接触。例如,基本上同时可以是指一段时间内TIL可以与至少10%、20%、30%、40%、50%、60%、70%、75%、80%、85%、90%、95%的两种以上的物质的每种物质同时接触。
在本申请中,术语“固相介质”或“介质”通常是指具有结合功能的固相材料。例如,本申请固相介质可以是指通过共价结合和/或非共价结合的作用,将一种或一种以上的物质结合在介质内和/或介质表面的材料。例如,本申请的固相介质可以结合一种或一种以上的T细胞激活 剂。例如,本申请的固相介质可以是指通过共价结合和/或非共价结合的作用将CD28抗体或其抗原结合片段以及CD3抗体或其抗原结合片段结合在介质内和/或介质表面的材料。例如,本申请的固相介质可以是包含OKT3抗体和15E8抗体的直径为约500纳米至约10微米的微球。例如,本申请的固相介质可以是聚合物材料。例如,本申请的固相介质可以是直径至少约500纳米的微球。例如,本申请的固相介质可以是纳米基质。例如,本申请的固相介质可以是包含OKT3抗体和15E8抗体的直径为约1纳米至约500纳米的纳米基质。
在本申请中,术语“纳米基质”通常是指一种直径在约1纳米到约500纳米的材料。在本申请中,纳米基质可以具有结合功能,例如,本申请的纳米基质可以结合一种或一种以上的T细胞激活剂。在本申请中,纳米基质可以包含聚合物,例如,本申请的纳米基质可以包含可降解聚合物。在本申请中,纳米基质可以包含多糖、和/或葡聚糖。
在本申请中,术语“树突状细胞”通常是指存在于体内、体外、离体或宿主或受试者内的或可衍生自造血干细胞或单核细胞的抗原递呈细胞。树突状细胞及其前体可以从各种淋巴器官例如脾脏、淋巴结以及骨髓和外周血分离。本申请的树突状细胞可以具有特征形态,例如在树突细胞体的多个方向上延伸的薄层(板状伪足)。通常,树突细胞可以表达高水平的MHC和共刺激(例如B7-1和B7-2)分子。树突状细胞可以在体外诱导T细胞的抗原特异性分化,并且能够在体外和体内引发原代T细胞应答。
在本申请中,术语“体外扩增”通常是指经过培养以产生细胞的数量的变化,经扩增的细胞也可以产生细胞的数量和/或比例变化,分泌能力变化,杀伤能力变化或表达能力的变化,或它们的任何组合。本申请的变化可以是提高或者降低。在本申请中,体外扩增可以是为了扩增目的;为了检测TIL细胞的功能,例如检测TIL细胞释放细胞因子能力,而对TIL细胞进行的操作步骤(例如向TIL细胞的培养基中加入一种或一种以上物质以检测TIL细胞释放细胞因子能力),可以不属于本申请的体外扩增。
在本申请中,术语“外周单个核细胞”或“外周血单个核细胞”通常是指外周血中具有单个核的细胞。例如,在本申请中,本申请的外周血单个核细胞可以包括淋巴细胞、单核细胞和/或树突状细胞。
在本申请中,术语“细胞因子”通常是指由一个细胞群释放的对另一个细胞起细胞间调节剂作用的蛋白。本申请的细胞因子可以是淋巴细胞因子(lymphokines)、单核细胞因子(monokines)和多肽激素。本申请的细胞因子可以包括白细胞介素(ILs)如IL-1、IL-1α、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-15、IL-21、和/或IL-12。在本申请中,术语细胞因子可以包括来自天然来源或来自重组细胞培养物的蛋白,天然序列细胞 因子的生物活性等价物,以及其功能活性片段。
在本申请中,术语“直径”通常是指本申请物质的截面的直径。例如,当本申请的物质不是球形时,则术语“直径”通常是指本申请物质的最大截面的最大直径和/或平均直径。确定物质的直径的方法可以是本领域通用的方法,例如透射电子显微镜。
在本申请中,术语“肿瘤”通常是指任何新的病理性的组织增生。本申请的肿瘤可能是良性的,也可能是恶性的。本申请的肿瘤可能是实体的,也可能是血液的。术语“肿瘤”可以选自以下组的一种或多种:黑色素瘤、卵巢癌、宫颈癌、肺癌、膀胱癌、乳腺癌、头颈癌、胰腺癌、肝癌、胃癌、结直肠癌、和肾癌。
在本申请中,术语“肿瘤组织”通常是指来自对象中的肿瘤,包括对象中的任何实体肿瘤和/或非实体肿瘤的任何组织的样品。
在本申请中,术语“CD28激动剂”通常是指结合细胞表面CD28蛋白并且在细胞中引发应答的化合物。例如,本申请的CD28激动剂可以是结合CD28的小分子制剂。例如,本申请的CD28激动剂可以是结合CD28的抗体或其抗原结合片段。
在本申请中,术语“T细胞亚群比例”通常是指根据不同T细胞亚群占TIL细胞或TIL群中的比例。例如,本申请不同的T细胞亚群具有不同的免疫活性和/或分化能力。例如,本申请的T细胞亚群可以根据T细胞表面标志物进行区分。例如,中心记忆T细胞可以具有CD45RA -CCR7 +的表型。例如,调节性T细胞可以具有CD4 +CD25 +Foxp3 +的表型。例如,活化T细胞可以具有CD25 +、CD28 +、TIM3 +、PD1 +或41BB +的表型。例如,肿瘤特异性T细胞可以具有CD103 +CD39 +的表型。例如,干细胞样T细胞可以具有TCF1 +的表型。
在本申请中,术语“TIL细胞数量”通常是指本申请的TIL细胞中细胞数量。在本申请中,TIL细胞数量可以是指本申请任一阶段获得的TIL群中的细胞数量。例如,TIL细胞数量可以是指源自肿瘤组织且未经体外扩增的第一TIL群的细胞数量。例如,TIL细胞数量可以是指经第一阶段体外扩增的第二TIL群的细胞数量。例如,TIL细胞数量可以是指经第二阶段体外扩增的第三TIL群的细胞数量。例如,TIL细胞数量可以是指本申请任意一种培养方法最终获得的TIL的细胞。在本申请中,TIL细胞数量可以通过本领域常用的方法测量,例如可以包括但不限于细胞计数板手动细胞计数和/或自动细胞计数器计数。
在本申请中,术语“约”和“大约”通常是指在统计上有意义的数值范围内。这样的范围可以在给定值或范围的一个数量级内,可以包括在50%内,可以包括在20%内,可以包括在10%内,可以包括在5%内。术语“约”或“大约”所包含的可允许变化可以取决于所研究的特定系统,并且本领域普通技术人员可以容易地理解。术语“以上”、“以下”、“至多”和“至少”可以包括本 数。
发明详述
一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法可以包含:使所述TIL的至少一种细胞因子的表达提高和/或活性增强,且使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养。其中,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
例如,所述方法可以包含:使所述TIL与所述饲养细胞共培养之后,使所述TIL的至少一种细胞因子的表达提高和/或活性增强。例如,所述方法可以包含:使所述TIL的至少一种细胞因子的表达提高和/或活性增强之后,使所述TIL与所述饲养细胞共培养。例如,所述方法可以包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触之后且在所述TIL与所述饲养细胞共培养之前使所述TIL的至少一种细胞因子的表达提高和/或活性增强。
例如,所述方法可以包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强。
例如,所述方法可以包含:在所述TIL与所述饲养细胞共培养基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强。
另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法可以包含:使所述TIL的至少一种细胞因子的表达提高和/或活性增强,其中所述TIL包含与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养获得的TIL。其中,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法可以包含:使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中所述TIL包含使所述TIL的至少一种细胞因子的表达提高和/或活性增强获得的TIL。其中,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法可以包含:使所述TIL的至少一种细胞因子的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触。
另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法可以包含:使所述TIL的至少一种细胞因子的表达提高和/或活性增强,其中所述TIL包含与CD28激动剂接触获得的TIL。
另一方面,本申请还提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法可以包含: 使所述TIL与CD28激动剂接触,其中所述TIL包含使所述TIL的至少一种细胞因子的表达提高和/或活性增强获得的TIL。
例如,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段,以及上述物质的重组蛋白。
例如,与细胞因子的表达和/或活性未改变的TIL相比,使所述TIL的至少一种细胞因子的表达提高和/或活性增强获得的TIL可以显示出改善的TIL特性。例如,细胞因子的表达和/或活性未改变的TIL可以是指源自同一供体的且未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的TIL细胞。例如,细胞因子的表达和/或活性未改变的TIL可以是指源自同一供体的且使所述TIL的细胞因子以外的物质(例如绿色荧光蛋白)的表达提高和/或活性增强的TIL细胞。
例如,未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL可以是指源自同一供体的经过同样方式分离的且未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的TIL细胞。例如,未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL可以是指源自同一供体的同一肿瘤来源的且未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的TIL细胞。例如,未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL可以是指源自同一供体的同一肿瘤来源的经过同样方式分离的且未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的TIL细胞。例如,未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL可以是指将源自同一供体的TIL细胞分为两组,其中一组未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的TIL细胞可以为未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL。例如,未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL可以是指将源自同一供体的经过同样方式分离的TIL细胞分为两组,其中一组未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的TIL细胞可以为未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL。例如,未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL可以是指将源自同一供体的同一肿瘤来源的TIL细胞分为两组,其中一组未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的TIL细胞可以为未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL。例如,未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL可以是指将源自同一供体的同一肿瘤来源的经过同样方式分离的TIL细胞分为两组,其中一组未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的TIL细胞可以为未曾使所述TIL的至少一种细胞 因子的表达提高和/或活性增强的相应TIL。例如,至少一种细胞因子的表达提高和/或活性增强可以是指天然的细胞可以不表达该细胞因子,经过本申请的处理,可以使得该细胞表达各种形式的该细胞因子,即细胞因子的表达提高可以是使天然细胞从不表达该细胞因子转变为表达一定量的该细胞因子。其中,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
例如,本申请的改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
例如,本申请的提高的组织和/或肿瘤中TIL细胞数量可以是指与在体外扩增阶段未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL相比,在至少一个体外扩增阶段中使所述TIL的至少一种细胞因子的表达提高和/或活性增强的本申请TIL的细胞在肿瘤组织、血液组织、骨髓组织、肺组织和/或脾组织的T细胞数量可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。
例如,本申请的改善的TIL细胞数量是指与在体外扩增阶段未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL相比,在至少一个体外扩增阶段中使所述TIL的至少一种细胞因子的表达提高和/或活性增强的本申请TIL的细胞数量可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。例如,改善的TIL细胞数量可以表现为TIL细胞活率的增加。例如,本申请的增加的TIL细胞数量可以是指与在体外扩增阶段未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL相比,在至少一个体外扩增阶段中使所述TIL的至少一种细胞因子的表达提高和/或活性增强的本申请TIL的细胞数量可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至 少约0.3%、至少约0.2%、或至少约0.1%。
例如,本申请的提高的细胞因子分泌能力可以是指TIL细胞的选自以下组的细胞因子分泌能力提高:CD107a、GZMB、IL-2、TNF-α和IFN-γ。例如,本申请的提高的细胞因子分泌能力可以是指与在体外扩增阶段未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL相比,在至少一个体外扩增阶段中使所述TIL的至少一种细胞因子的表达提高和/或活性增强过的本申请TIL的细胞因子分泌能力可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。例如,本申请的提高的细胞因子分泌能力可以是指与在体外扩增阶段未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL相比,在至少一个体外扩增阶段中使所述TIL的至少一种细胞因子的表达提高和/或活性增强过的本申请TIL的细胞因子分泌能力可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%。例如,本申请的TIL的细胞因子分泌能力的测定可以是通过测量TIL细胞的细胞因子表达能力。例如,本申请的TIL的细胞因子分泌能力通过测量TIL细胞的细胞因子释放能力以测定。例如,本申请的TIL的细胞因子分泌能力是通过CBA法(Cytometric Bead Array)测定。
例如,本申请的增加的NK细胞比例可以是TIL细胞中NK细胞的比例的增加。例如,在TIL细胞中NK细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%。
例如,本申请的提高的肿瘤细胞杀伤能力可以是指与在体外扩增阶段未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL相比,在至少一个体外扩增阶段中使所述TIL的至少一种细胞因子的表达提高和/或活性增强过的本申请TIL的肿瘤细胞杀伤率可 以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。例如,本申请的提高的肿瘤细胞杀伤能力可以是指与在体外扩增阶段未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL相比,在至少一个体外扩增阶段中使所述TIL的至少一种细胞因子的表达提高和/或活性增强过的本申请TIL的肿瘤细胞杀伤率可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%。例如,本申请的TIL的肿瘤细胞杀伤率可以通过CFSE和DAPI染色法测量。例如,本申请的TIL的肿瘤细胞杀伤率可以通过使用IncuCyte系统测量Caspase-3/7活性测量。例如,本申请的TIL的肿瘤细胞杀伤可以是指TIL杀伤实体瘤细胞的能力。例如,本申请的TIL的肿瘤细胞杀伤可以是指TIL杀伤宫颈癌细胞的能力。
例如,本申请的提高的T细胞受体(TCR)克隆多样性可以包含在长期培养的过程中,与在体外扩增阶段未曾使所述TIL的至少一种细胞因子的表达提高和/或活性增强的相应TIL相比,在至少一个体外扩增阶段中使所述TIL的至少一种细胞因子的表达提高和/或活性增强过的本申请TIL细胞群中表达的TCR的种类更多,例如,可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%。
例如,本申请的改善的T细胞亚群比例可以包含选自以下组的一种或多种:增加的CD4 +细胞比例,降低的CD8 +细胞比例,增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
例如,本申请的增加的CD4 +细胞比例可以是TIL细胞中CD4阳性细胞的比例的增加。例如,在TIL细胞中CD4 +细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约 19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%。
例如,本申请的降低的CD8 +细胞比例可以是TIL细胞中CD8阳性细胞的比例的降低。例如,在TIL细胞中CD8 +细胞比例可以降低至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%。
例如,本申请的增加的中心记忆T细胞比例可以是TIL细胞中CD45RA -CCR7 +细胞的比例的增加。例如,在TIL细胞中中心记忆T细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%。
例如,本申请的减少的调节性T细胞的比例可以是TIL细胞中CD4 +CD25 +Foxp3 +细胞的比例的减少。例如,在TIL细胞中调节性T细胞比例可以减少至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%。
例如,本申请的增加的活化T细胞比例可以是TIL细胞中CD25 +、CD28 +、TIM3 +、PD1 +或41BB +细胞的比例的增加。例如,在TIL细胞中活化T细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约 8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%,或可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。例如,在TIL细胞中CD25 +细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%,或可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。例如,在TIL细胞中CD28 +细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%,或可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。例如,在TIL细胞中TIM3 +细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%,或可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、 至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。例如,在TIL细胞中PD1 +细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%,或可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。例如,在TIL细胞中41BB +细胞比例可以增加至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、至少约4%、至少约3%、至少约2%、至少约1%、至少约0.5%、至少约0.4%、至少约0.3%、至少约0.2%、或至少约0.1%,或可以增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、或者至少约50倍。
例如,本申请的方法中所述使所述TIL的至少一种细胞因子的表达提高和/或活性增强可以包含将编码所述细胞因子的核酸引入所述TIL中。其中,细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
例如,本申请的方法中所述使所述TIL的至少一种细胞因子的表达提高和/或活性增强可以包含将包含所述核酸的载体引入所述TIL中,所述核酸编码一种或多种细胞因子。例如,本申请的方法中编码所述细胞因子的核酸可以被整合到所述TIL的基因组中。例如,当编码所述细胞因子的核酸可以被整合到所述TIL的基因组时,所述细胞因子可以长期和/或持续在所述TIL中表达。
例如,本申请的方法中所述载体可以包含病毒载体。例如,本申请的方法中所述病毒载体可以包含逆转录病毒载体。例如,本申请的方法中所述逆转录病毒载体可以包含慢病毒载体。
例如,本申请的方法中所述细胞因子可以包含白介素(IL)。例如,本申请的方法中所述细胞因子可以包含白介素-12(IL-12)和/或其功能活性片段。
例如,本申请的方法中所述IL-12可以包含膜锚定的IL-12和/或分泌的IL-12。例如,所述L-12可以包含多种结构域。例如,本申请的IL-12中可以不限于只包含IL-12结构域。例如,本申请的IL-12结构域可以包含p40结构域和/或p35结构域。
例如,本申请的方法中所述IL-12和/或其功能活性片段可以包含但不限于p40结构域。例如,本申请的方法中所述p40结构域可以包含如SEQ ID NO:42所示的氨基酸序列。
例如,本申请的方法中所述IL-12和/或其功能活性片段可以包含但不限于p35结构域。例如,本申请的p35结构域的作用可以是和本申请的p40结构域连接用于构建IL12结构域。例如,本申请的方法中所述p35结构域可以包含如SEQ ID NO:55所示的氨基酸序列。
例如,本申请的方法中所述p40结构域可以与所述p35结构域直接或间接连接。例如,本申请的方法中所述间接连接可以包含但不限于通过连接子连接。例如,本申请的方法中所述连接子可以包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q可以各自独立地至少为1。例如,l、m、n、p和q为各自序列的重复单元数,当该序列可以为重复序列时,重复单元数表示该序列重复的个数。例如,l可以为1、2、3、4、5、或10,m可以为1、2、3、4、5、或10,n可以为1、2、3、4、5、或10,p可以为1、2、3、4、5、或10,q可以为1、2、3、4、5、或10。
例如,本申请的方法中所述IL-12可以包含但不限于信号肽结构域。例如,本申请的方法中所述信号肽结构域可以包含如SEQ ID NO:41所示的氨基酸序列。例如,本申请的方法中所述信号肽结构域可以与所述p40结构域直接或间接连接。
例如,本申请的方法中所述IL-12可以包含但不限于跨膜结构域。例如,本申请的跨膜结构域可以使得本申请的IL-12可以结合在细胞膜上。例如,本申请的方法中所述IL-12可以包含但不限于跨膜结构域与胞内结合域。例如,本申请的方法中所述跨膜结构域可以包含如SEQ ID NO:56-61中任一项所示的氨基酸序列。例如,本申请的方法中所述跨膜胞内结构域可以包含如SEQ ID NO:66-70中任一项所示的氨基酸序列。例如,本申请的方法中所述跨膜结构域可以与所述信号肽结构域直接或间接连接。例如,本申请的方法中所述跨膜结构域可以与所述p35结构域直接或间接连接。
例如,本申请的方法中所述IL-12可以包含但不限于胞内结构域。例如,本申请的方法中所述胞内结构域可以包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。例如,本申请的 方法中所述胞内结构域可以与所述跨膜结构域直接或间接连接。
例如,本申请的方法中所述IL-12的所述功能活性片段可以包含如SEQ ID NO:42和/或55所示的氨基酸序列。
例如,本申请的方法中所述IL-12可以包含如SEQ ID NO:34-40中任一项所示的氨基酸序列。
例如,本申请的方法中所述细胞因子的表达提高可以包含所述细胞因子的合成和/或分泌提高。
例如,本申请的方法中与细胞因子的表达和/或活性未改变的TIL相比,使所述TIL的至少一种细胞因子的表达提高和/或活性增强获得的TIL中表达细胞因子的细胞比例可以提高。
例如,本申请的方法中与细胞因子的表达和/或活性未改变的TIL相比,使所述TIL的至少一种细胞因子的表达提高和/或活性增强获得的TIL中表达细胞因子的细胞比例可以提高至少约5%以上。例如,表达IL-12和/或其功能活性片段的细胞比例可以提高至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、或至少约5%。例如,表达IL-12和/或其功能活性片段的细胞比例可以从0%到可以观测的细胞比例。例如,表达IL-12和/或其功能活性片段的细胞比例可以提高到至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、或至少约1%。例如,表达IL-12和/或其功能活性片段的细胞比例可以通过细胞流式仪进行检测。
例如,本申请的方法中所述TIL的至少一种细胞因子的表达提高和/或活性增强获得的TIL中表达细胞因子的细胞比例可以为至少约5%以上。例如,表达IL-12和/或其功能活性片段的细胞比例可以为至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、或至少约5%。例如,表达IL-12和/或其功能活性片段的细胞比例可以通过细胞流式仪进行检测。
例如,本申请的方法还可以包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个 阶段的体外扩增,其中,在至少一个阶段的本申请体外扩增中,可以使本申请TIL与饲养细胞共培养。
例如,在单个阶段的本申请体外扩增中,可以使所述TIL的至少一种细胞因子的表达提高和/或活性增强且与本申请饲养细胞共培养,例如,单个阶段的本申请体外扩增可以指在同一个阶段的本申请的体外扩增,例如,可以同在本申请的第一阶段体外扩增、同在本申请的第二阶段体外扩增、或同在本申请的第三阶段体外扩增等。
例如,本申请的第一阶段体外扩增中,可以使所述TIL的至少一种细胞因子的表达提高和/或活性增强且与本申请饲养细胞共培养。例如,本申请的在本申请第二阶段体外扩增中,可以使所述TIL的至少一种细胞因子的表达提高和/或活性增强且与本申请饲养细胞共培养。例如,本申请的在本申请第三阶段体外扩增中,可以使所述TIL的至少一种细胞因子的表达提高和/或活性增强且与本申请饲养细胞共培养。
例如,每一个阶段体外扩增之间可以是通过TIL细胞数量的变化来划分的,例如,当TIL细胞的数量增加至少约1倍时,可以认为TIL细胞进入了下一个阶段的体外扩增。在一些实施方式中,当TIL细胞的数量增加至少约1倍、至少约2倍、至少约3倍、至少约4倍、至少约5倍、至少约6倍、至少约7倍、至少约8倍、至少约9倍、至少约10倍、至少约11倍、至少约12倍、至少约13倍、至少约14倍、至少约15倍、至少约20倍、至少约30倍、至少约40倍、至少约50倍、至少约100倍、至少约200倍、至少约500倍、或者至少约1000倍时,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,每一个阶段的体外扩增之间也可以是通过TIL细胞培养的条件的变化来划分的。例如,当细胞培养基中添加了或补充添加了T细胞激活剂和/或T细胞生长因子后,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,当细胞培养基中添加了或补充添加了IL-2后,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,使所述TIL的至少一种细胞因子的表达提高和/或活性增强,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,当细胞培养基中添加了或补充添加了饲养细胞后,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,当TIL细胞进行了离心和/或细胞洗涤的操作后,可以认为TIL细胞进入了下一个阶段的体外扩增。例如,每一个阶段之间也可以是通过TIL细胞培养的天数来划分的。例如,当TIL细胞体外培养约1天、约2天、约3天、约4天、约5天、约6天、约7天、约8天、约9天、约10天、约11天、约12天、约13天、约14天、约15天、约16天、约17天、约18天、约19天、约20天、约30天、约40天、约50天或约100天后,可以认为TIL细胞进入了下一个阶段的体外扩增。
例如,所述第二阶段体外扩增可以进行至少约7天。例如,所述第二阶段体外扩增可以 进行至少约9天。例如,所述第二阶段体外扩增可以进行至多约14天。例如,所述第二阶段体外扩增可以进行至多约13天。例如,所述第二阶段体外扩增可以进行约7天至约14天、约9天至约14天、约7天至约13天或约9天至约13天。例如,本申请的第二阶段体外扩增可以进行至少约9天、至少约10天、至少约11天、至少约12天、至少约13天、或至少约14天。例如,本申请的第二阶段体外扩增可以进行约9天至约14天,例如,本申请的第二阶段体外扩增可以进行约9天至约14天、约10天至约14天、约11天至约14天、约12天至约14天、约13天至约14天、约9天至约13天、约10天至约13天、约11天至约13天、约12天至约13天、约9天至约12天、约10天至约12天、约11天至约12天、或约10天至约11天。例如,本申请的第二阶段体外扩增可以认为是REP(rapid expansion protocol)阶段。
例如,所述第一阶段体外扩增可以进行至少约7天。例如,所述第一阶段体外扩增可以进行约7天至约14天。例如,本申请的第一阶段体外扩增可以进行至少约7天、至少约8天、至少约9天、至少约10天、至少约11天、至少约12天、至少约13天、或至少约14天。例如,本申请的第一阶段体外扩增可以进行约7天至约14天、约8天至约14天、约9天至约14天、约10天至约14天、约11天至约14天、约12天至约14天、约13天至约14天、约9天至约13天、约10天至约13天、约11天至约13天、约12天至约13天、约9天至约12天、约10天至约12天、约11天至约12天、或约10天至约11天。例如,本申请的第一阶段体外扩增可以认为是preREP阶段。
例如,本申请第二阶段体外扩增进行的天数可以是从第二阶段体外扩增的开始时刻进行计算。例如,第二阶段体外扩增开始的当时,可以认为是第二阶段体外扩增进行了约0天。例如,第二阶段体外扩增开始后进行了约24小时,可以认为是第二阶段体外扩增进行了约1天。例如,第二阶段体外扩增开始的当天,可以认为是第二阶段体外扩增进行了约0天。例如,本申请第二阶段体外扩增进行的天数可以是通过第二阶段体外扩增进行的天数进行计算。例如,第二阶段体外扩增开始后的第二天,可以认为是第二阶段体外扩增进行了约1天。
例如,本申请培养方法可以按照两步骤划分方式进行划分。例如,(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群的至少一种细胞因子的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。例如,所述步骤(A)可以进行约7天至约14天。例如,所述步骤(B)可以进行约7天至约14天。
例如,本申请培养方法可以按照三步骤划分方式进行划分。例如,(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群的至少一种细胞因子的表达提高和/或活性增强,且可以使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;(C)可以使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL群。例如,所述步骤(A)可以进行约7天至约14天。例如,所述步骤(B)可以进行约0天至约8天。例如,所述步骤(C)可以进行约5天至约14天。
例如,本申请培养方法可以按照四步骤划分方式进行划分。例如,(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;(C)可以使所述第三TIL群的至少一种细胞因子的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;(D)可以使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。例如,所述步骤(A)可以进行约7天至约14天。例如,所述步骤(B)可以进行约0天至约4天。例如,所述步骤(C)可以进行约0天至约4天。例如,所述步骤(D)可以进行约5天至约14天。
例如,本申请的培养方式的步骤(A)是从复苏和/或继续培养体外TIL群得到第二TIL群。例如,所述体外TIL群可以包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群。例如,所述体外TIL群可以包含由所述第一TIL群接触T细胞生长因子获得的TIL群。例如,所述体外TIL群可以包含由所述第一TIL群冷冻保存获得的TIL群。例如,所述体外TIL群可以包含由所述第一TIL群接触T细胞生长因子且冷冻保存获得的TIL群。例如,当本申请的步骤(A)为是从复苏和/或继续培养体外TIL群得到第二TIL群时,此时步骤(A)可以进行约2小时至约4天。
例如,在单个阶段的本申请体外扩增中,可以使本申请TIL与本申请一种或多种T细胞激活剂和/或一种或多种T细胞生长因子接触一定时间之后,再与本申请饲养细胞共培养。例如,本申请的一定时间可以为至少约2小时。例如,本申请的一定时间可以为至少约1小时、至少约2小时、至少约3小时、至少约4小时、至少约5小时、至少约6小时、至少约7小时、至少约8小时、至少约9小时、至少约10小时、至少约11小时、至少约12小时、至少约13小时、至少约14小时、至少约15小时、至少约16小时、至少约17小时、至少约18小时、至少约19小时、至少约20小时、至少约21小时、至少约22小时、至少约23小时、至少约24小时、至少约36小时、至少约48小时、至少约60小时或至少约72小时。例如, 本申请的一定时间可以为约6小时至约72小时。例如,本申请的一定时间可以为约6小时到约7小时、约6小时到约8小时、约6小时到约9小时、约6小时到约10小时、约6小时到约11小时、约6小时到约12小时、约6小时到约13小时、约6小时到约14小时、约6小时到约15小时、约6小时到约16小时、约6小时到约17小时、约6小时到约18小时、约6小时到约19小时、约6小时到约20小时、约6小时到约21小时、约6小时到约22小时、约6小时到约23小时、约6小时到约24小时、约6小时到约36小时、约6小时到约48小时、约6小时到约60小时或约6小时到约72小时。例如,本申请的一定时间可以为约12小时到约13小时、约12小时到约14小时、约12小时到约15小时、约12小时到约16小时、约12小时到约17小时、约12小时到约18小时、约12小时到约19小时、约12小时到约20小时、约12小时到约21小时、约12小时到约22小时、约12小时到约23小时、约12小时到约24小时、约12小时到约36小时、约12小时到约48小时、约12小时到约60小时或约12小时到约72小时。例如,本申请的一定时间可以为约1小时、约2小时、约3小时、约4小时、约5小时、约6小时、约7小时、约8小时、约9小时、约10小时、约11小时、约12小时、约13小时、约14小时、约15小时、约16小时、约17小时、约18小时、约19小时、约20小时、约21小时、约22小时、约23小时、约24小时、约36小时、约48小时、约60小时或约72小时。
例如,本申请的饲养细胞可以包含抗原呈递细胞。例如,本申请的饲养细胞可以包含选自以下组的一种或多种:外周单个核细胞,树突状细胞,和人工抗原呈递细胞。例如,本申请的饲养细胞可以为外周单个核细胞。例如,本申请的饲养细胞可以为经过辐照的饲养细胞。例如,本申请的饲养细胞可以为分离的人工抗原呈递细胞(aAPC),本申请的人工抗原呈递细胞可以包含表达HLA-A/B/C、CD64、CD80、ICOS-L和/或CD58的细胞,并可以被修饰以表达一种以上本申请的T细胞激活剂。例如,本申请的饲养细胞可以经过辐照,例如,可以经过伽马射线辐照,或可以经过X射线辐照。
例如,本申请的TIL与本申请的饲养细胞共培养可以包含使本申请的饲养细胞的表面与本申请的TIL的表面相接触。例如,本申请的TIL与本申请的饲养细胞共培养包含将本申请的饲养细胞添加至本申请的TIL的细胞培养基中。
例如,本申请可以以约40:1-约400:1的本申请饲养细胞与本申请TIL的比例,将本申请饲养细胞添加至本申请TIL的细胞培养基中。例如,本申请可以以约40:1-约400:1、以约40:1-约300:1、以约40:1-约200:1、以约40:1-约100:1、以约40:1-约90:1、以约40:1-约80:1、以约40:1-约70:1、以约40:1-约60:1、以约40:1-约50:1、以约50:1-约400:1、以约60:1-约400:1、 以约70:1-约400:1、以约80:1-约400:1、以约90:1-约400:1、以约100:1-约400:1、以约200:1-约400:1、或以约300:1-约400:1的本申请饲养细胞与本申请TIL的比例,将本申请饲养细胞添加至本申请TIL的细胞培养基中。
例如,本申请的方法还可以包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的本申请体外扩增中,使本申请TIL与一种或多种T细胞激活剂接触。
例如,在单个阶段的本申请的体外扩增中,使所述TIL与所述一种或多种T细胞激活剂接触。例如,T细胞激活剂可以包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、HVEM、CD40L、OX40和4-1BB。例如,在单个阶段的所述体外扩增中,使所述TIL的至少一种细胞因子的表达提高和/或活性增强且与本申请的一种或多种T细胞激活剂接触。例如,在本申请第一阶段体外扩增中,可以使所述TIL的至少一种细胞因子的表达提高和/或活性增强且与本申请的一种或多种T细胞激活剂接触。例如,在本申请第二阶段体外扩增中,可以使所述TIL的至少一种细胞因子的表达提高和/或活性增强且与本申请的一种或多种T细胞激活剂接触。例如,在本申请第三阶段体外扩增中,可以使所述TIL的至少一种细胞因子的表达提高和/或活性增强且与本申请的一种或多种T细胞激活剂接触。
例如,在单个阶段的本申请的体外扩增中,可以基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL与本申请的一种或多种T细胞激活剂接触。例如,在单个阶段的本申请的体外扩增中,可以先使所述TIL的至少一种细胞因子的表达提高和/或活性增强,例如,可以提前2小时、提前4小时、提前8小时、提前12小时、提前24小时、或提前48小时等,再与本申请的一种或多种T细胞激活剂接触。例如,在单个阶段的本申请的体外扩增中,可以使本申请的TIL先与本申请的一种或多种T细胞激活剂接触,例如,可以提前2小时、提前4小时、提前8小时、提前12小时、提前24小时、或提前48小时等,再使所述TIL的至少一种细胞因子的表达提高和/或活性增强。
例如,在本申请第一阶段体外扩增中,可以基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL接触本申请的一种或多种T细胞激活剂接触。例如,在本申请第二阶段体外扩增中,可以基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL接触本申请的一种或多种T细胞激活剂接触。例如,在本申请第三阶段体外扩增中,可以基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL接触本申请的一种或多种T细胞激活剂接触。
例如,本申请的T细胞激活剂可以包含选自以下组的一种或多种:CD80、CD86、B7-H3、 4-1BBL、CD27、CD30、CD134、B7h、CD40、LIGHT、以及它们的功能活性片段。例如,本申请的T细胞激活剂可以包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、HVEM、CD40L、OX40和4-1BB。例如,本申请的T细胞激活剂可以包含选自以下组:CD3、CD28、HVEM、CD40L、OX40和4-1BB的抗体以及它们的抗原结合片段。例如,本申请的T细胞激活剂可以包含CD3激动剂。例如,本申请的T细胞激活剂可以包含抗CD3的抗体和/或其抗原结合片段,例如可以是Miltenyi Biotech的OKT3,可以是BD的SP34。例如,本申请的T细胞激活剂可以包含CD28激动剂。例如,本申请的T细胞激活剂可以包含抗CD28的抗体和/或其抗原结合片段,例如可以是Merck的15E8,本申请的T细胞激活剂可以包含CD80和/或其功能活性片段和/或CD86和/或其功能活性片段,以及上述物质的重组蛋白。
例如,本申请的T细胞激活剂可以包含抗CD3的抗体和/或其抗原结合片段,例如可以包含Miltenyi Biotech的OKT3的轻链VL和重链VH,可以包含BD的SP34的轻链VL和重链VH。例如,本申请的T细胞激活剂可以包含CD28激动剂。例如,本申请的T细胞激活剂可以包含抗CD28的抗体和/或其抗原结合片段,例如可以包含Merck的15E8的轻链VL和重链VH。例如,本申请的T细胞激活剂可以包含抗CD3的抗体和/或其抗原结合片段,例如可以包含Miltenyi Biotech的OKT3的轻链LCDR1-3和重链HCDR1-3,可以包含BD的SP34的轻链LCDR1-3和重链HCDR1-3,本申请的抗CD3的抗体和/或其抗原结合片段可以具有CD3结合能力。例如,本申请的T细胞激活剂可以包含CD28激动剂。例如,本申请的T细胞激活剂可以包含抗CD28的抗体和/或其抗原结合片段,例如可以包含Merck的15E8的轻链LCDR1-3和重链HCDR1-3,本申请的抗CD28的抗体和/或其抗原结合片段可以具有CD28结合能力。在本申请中,本申请抗体或其抗原结合蛋白包含抗体重链可变区VH中的至少一个CDR。本申请CDR可以是根据IMGT命名法定义的,本申请CDR可以是根据Chothia定义的,或本申请CDR可以是根据Kabat定义的。
例如,本申请的CD3激动剂可以为CD3抗体或其抗原结合蛋白。
在本申请中,本申请抗体或其抗原结合蛋白包含抗体重链可变区VH中的至少一个CDR。本申请CDR可以是根据IMGT命名法定义的,本申请CDR可以是根据Chothia定义的,或本申请CDR可以是根据Kabat定义的。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR1,且本申请HCDR1可以包含SEQ ID NO:2和12中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR2,且本申请HCDR2可以包含SEQ ID NO:3和13中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR3,且本申请HCDR3可以包含SEQ ID NO:4和14中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:2和12中任一项所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:3和13中任一项所示的氨基酸序列,且本申请HCDR3可以包含SEQ ID NO:4和14中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的HCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:2所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:3所示的氨基酸序列,且本申请HCDR3可以包含SEQ ID NO:4所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的HCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:12所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:13所示的氨基酸序列,且本申请HCDR3可以包含SEQ ID NO:14所示的氨基酸序列;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
在本申请中,本申请抗体或其抗原结合蛋白包含抗体轻链可变区VL中的至少一个CDR。本申请CDR可以是根据IMGT命名法定义的,或本申请CDR可以是根据Kabat定义的。
例如,本申请的抗体或其抗原结合蛋白可以包含LCDR1,且本申请LCDR1可以包含SEQ ID NO:5和15中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含LCDR2,且本申请LCDR2可以包含SEQ ID NO:6和16中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的; 本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含LCDR3,且本申请LCDR3可以包含SEQ ID NO:7和17中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含LCDR1-3,其中本申请LCDR1可以包含SEQ ID NO:5和15中任一项所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:6和16中任一项所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:7和17中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的LCDR1-3,其中本申请LCDR1可以包含SEQ ID NO:5所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:6所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:7所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的LCDR1-3,其中本申请LCDR1可以包含SEQ ID NO:15所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:16所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:17所示的氨基酸序列;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR1-3和LCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:2和12中任一项所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:3和13中任一项所示的氨基酸序列,本申请HCDR3可以包含SEQ ID NO:4和14中任一项所示的氨基酸序列,本申请LCDR1可以包含SEQ ID NO:5和15中任一项所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:6和16中任一项所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:7和17中任一项所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的HCDR1-3和LCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:2所示的氨基酸序列,本申请HCDR2可以包含 SEQ ID NO:3所示的氨基酸序列,本申请HCDR3可以包含SEQ ID NO:4所示的氨基酸序列,本申请LCDR1可以包含SEQ ID NO:5所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:6所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:7所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的HCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:12所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:13所示的氨基酸序列,本申请HCDR3可以包含SEQ ID NO:14所示的氨基酸序列,本申请LCDR1可以包含SEQ ID NO:15所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:16所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:17所示的氨基酸序列;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含重链可变区VH,且本申请VH可包含SEQ ID NO:8和18中任一项所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的VH,且本申请VH可包含SEQ ID NO:8所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的VH,且本申请VH可包含SEQ ID NO:18所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含轻链可变区VL,且本申请VL可包含SEQ ID NO:9和19中任一项所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的VL,且本申请VL可包含SEQ ID NO:9所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的VL,且本申请VL可包含SEQ ID NO:19所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含重链可变区VH和轻链可变区VL,且本申请VH可包含SEQ ID NO:8和18中任一项所示的氨基酸序列,本申请VL 可包含SEQ ID NO:9和19中任一项所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的VH和VL,且本申请VH可包含SEQ ID NO:8所示的氨基酸序列,本申请VL可包含SEQ ID NO:9所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的VH和VL,且本申请VH可包含SEQ ID NO:18所示的氨基酸序列,本申请VL可包含SEQ ID NO:19所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含重链,且本申请重链可包含SEQ ID NO:10和20中任一项所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的重链,且本申请重链可包含SEQ ID NO:10所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的重链,且本申请重链可包含SEQ ID NO:20所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含轻链,且本申请轻链可包含SEQ ID NO:11和21中任一项所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的轻链,且本申请轻链可包含SEQ ID NO:11所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的轻链,且本申请轻链可包含SEQ ID NO:21所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含重链和轻链,且本申请重链可包含SEQ ID NO:10和20中任一项所示的氨基酸序列,本申请轻链可包含SEQ ID NO:11和21中任一项所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与OKT3相同的重链和轻链,且本申请 重链可包含SEQ ID NO:10所示的氨基酸序列,本申请轻链可包含SEQ ID NO:11所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与SP34相同的重链和轻链,且本申请重链可包含SEQ ID NO:20所示的氨基酸序列,本申请轻链可包含SEQ ID NO:21所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD3结合能力。
在一种实施方式中,本申请的CD28激动剂可以为CD28抗体或其抗原结合蛋白。
在本申请中,本申请抗体或其抗原结合蛋白包含抗体重链可变区VH中的至少一个CDR。本申请CDR可以是根据IMGT命名法定义的,或本申请CDR可以是根据Kabat定义的。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR1,且本申请HCDR1可以包含SEQ ID NO:22所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR2,且本申请HCDR2可以包含SEQ ID NO:23所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR3,且本申请HCDR3可以包含SEQ ID NO:24所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:22所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:23所示的氨基酸序列,且本申请HCDR3可以包含SEQ ID NO:24所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与15E8相同的HCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:22所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:23所示的氨基酸序列,且本申请HCDR3可以包含SEQ ID NO:24所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
在本申请中,本申请抗体或其抗原结合蛋白包含抗体轻链可变区VL中的至少一个CDR。本申请CDR可以是根据IMGT命名法定义的,或本申请CDR可以是根据Kabat定义的。
例如,本申请的抗体或其抗原结合蛋白可以包含LCDR1,且本申请LCDR1可以包含SEQ  ID NO:25所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含LCDR2,且本申请LCDR2可以包含SEQ ID NO:26所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含LCDR3,且本申请LCDR3可以包含SEQ ID NO:27所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含LCDR1-3,其中本申请LCDR1可以包含SEQ ID NO:25所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:26所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:27所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与15E8相同的LCDR1-3,其中本申请LCDR1可以包含SEQ ID NO:25所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:26所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:27所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含HCDR1-3和LCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:22所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:23所示的氨基酸序列,本申请HCDR3可以包含SEQ ID NO:24所示的氨基酸序列,本申请LCDR1可以包含SEQ ID NO:25所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:30所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:26所示的氨基酸序列;本申请CDR可以是根据IMGT命名法定义的;本申请CDR可以是根据Kabat定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与15E8相同的HCDR1-3和LCDR1-3,其中本申请HCDR1可以包含SEQ ID NO:22所示的氨基酸序列,本申请HCDR2可以包含SEQ ID NO:23所示的氨基酸序列,本申请HCDR3可以包含SEQ ID NO:24所示的氨基酸序列,本申请LCDR1可以包含SEQ ID NO:25所示的氨基酸序列,本申请LCDR2可以包含SEQ ID NO:26所示的氨基酸序列,且本申请LCDR3可以包含SEQ ID NO:27所示的氨 基酸序列;本申请CDR可以是根据IMGT命名法定义的;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含重链可变区VH,且本申请VH可包含SEQ ID NO:28和29中任一项所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与一种15E8相同的VH,且本申请VH可包含SEQ ID NO:28所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与另一种15E8相同的VH,且本申请VH可包含SEQ ID NO:29所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含轻链可变区VL,且本申请VL可包含SEQ ID NO:30所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与15E8相同的VL,且本申请VL可包含SEQ ID NO:30所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含重链可变区VH和轻链可变区VL,且本申请VH可包含SEQ ID NO:28和29中任一项所示的氨基酸序列,本申请VL可包含SEQ ID NO:30所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与一种15E8相同的VH和VL,且本申请VH可包含SEQ ID NO:28所示的氨基酸序列,本申请VL可包含SEQ ID NO:30所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与另一种15E8相同的VH和VL,且本申请VH可包含SEQ ID NO:29所示的氨基酸序列,本申请VL可包含SEQ ID NO:30所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含重链,且本申请重链可包含SEQ ID NO:31和32中任一项所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与一种15E8相同的重链,且本申请重链可包含SEQ ID NO:31所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与另一种15E8相同的重链,且本申请重链可包含SEQ ID NO:32所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含轻链,且本申请轻链可包含SEQ ID NO:33所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与15E8相同的轻链,且本申请轻链可包含SEQ ID NO:33所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
在一种实施方式中,本申请的抗体或其抗原结合蛋白可以包含重链和轻链,且本申请重链可包含SEQ ID NO:31和32中任一项所示的氨基酸序列,本申请轻链可包含SEQ ID NO:33所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与一种15E8相同的重链和轻链,且本申请重链可包含SEQ ID NO:31所示的氨基酸序列,本申请轻链可包含SEQ ID NO:33所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,本申请的抗体或其抗原结合蛋白可以包含与另一种15E8相同的重链和轻链,且本申请重链可包含SEQ ID NO:32所示的氨基酸序列,本申请轻链可包含SEQ ID NO:33所示的氨基酸序列;例如,本申请的抗原结合蛋白可以具有CD28结合能力。
例如,使本申请的TIL与本申请的一种或多种T细胞激活剂接触可以包含选自以下组的一种或多种方式:(1)将本申请的T细胞激活剂添加至本申请的TIL的细胞培养基中;(2)将表达本申请的T细胞激活剂的工程化细胞添加至本申请的TIL的细胞培养基中;(3)将包含本申请的T细胞激活剂的固相介质添加至本申请的TIL的细胞培养基中。例如,使本申请的TIL与本申请的一种或多种T细胞激活剂接触可以包含将包含本申请的T细胞激活剂的固相介质添加至本申请的TIL的细胞培养基中。例如,使本申请的TIL与本申请的一种或多种T细胞激活剂接触可以包含将包含本申请的CD28抗体与CD3抗体的固相介质添加至本申请的TIL的细胞培养基中。
例如,所述T细胞激活剂在本申请TIL的细胞培养基中的初始浓度可以为至少约30ng/mL。 例如,本申请的CD28抗体在本申请TIL的细胞培养基中的初始浓度可以为至少约30ng/mL;例如,本申请的CD3抗体在本申请TIL的细胞培养基中的初始浓度可以为至少约30ng/mL。例如,本申请的CD28抗体初始浓度的选择可以与本申请的CD3抗体初始浓度的选择相互独立;例如,本申请的CD28抗体与本申请的CD3抗体在本申请TIL的细胞培养基中的初始浓度可以任意组合。例如,本申请的CD28抗体在本申请TIL的细胞培养基中的初始浓度可以任意选自约30ng/mL-约300ng/mL。例如,本申请的CD3抗体在本申请TIL的细胞培养基中的初始浓度可以任意选自约30ng/mL-约300ng/mL。例如,本申请的CD28抗体在本申请TIL的细胞培养基中的初始浓度可以任意选自约30ng/mL-约300ng/mL,且本申请的CD3抗体在本申请TIL的细胞培养基中的初始浓度可以任意选自约30ng/mL-约300ng/mL,本申请的CD28抗体初始浓度的选择可以与本申请的CD3抗体初始浓度的选择相互独立。例如,本申请的固相介质的直径可以为约500纳米至约10微米。例如,本申请的固相介质的直径可以通过透射电子显微镜测量。例如,本申请的固相介质的直径可以为约1纳米至约500纳米。例如,本申请的固相介质的直径可以为约100纳米至约500纳米。例如,本申请的固相介质的直径可以为约200纳米至约500纳米。例如,本申请的固相介质的直径可以通过透射电子显微镜测量。
例如,本申请的固相介质可以包含聚合物。例如,本申请的固相介质可以包含葡聚糖。
例如,每mg本申请的固相介质包含至少约25μg的本申请的T细胞激活剂。
例如,以约1:100-约1:2000的本申请固相介质与本申请TIL的比例,将包含本申请T细胞激活剂的固相介质添加至本申请TIL的细胞培养基中。例如,以约2:1-约1:2的本申请固相介质与本申请TIL的比例,将包含本申请T细胞激活剂的固相介质添加至本申请TIL的细胞培养基中。
例如,当本申请的固相介质的直径为约100纳米至约500纳米时,可以以约2:1-约1:2的本申请固相介质与本申请TIL的比例,将包含本申请T细胞激活剂的固相介质添加至本申请TIL的细胞培养基中。例如,当本申请的固相介质的直径为约100纳米至约500纳米时,可以以约2:1-约1:2、以约2:1-约1:1、或以约1:1-约1:2的本申请固相介质与本申请TIL的比例,将包含本申请T细胞激活剂,例如CD3激动剂和/或CD28激动剂的固相介质添加至本申请TIL的细胞培养基中。
例如,当本申请的固相介质的直径为约100纳米至约500纳米时,可以以约1:100-约1:2000的本申请固相介质与本申请TIL的比例,将包含本申请T细胞激活剂的固相介质添加至本申请TIL的细胞培养基中。例如,当本申请的固相介质的直径为约100纳米至约500纳 米时,可以以约1:100-约1:2000、以约1:200-约1:2000、以约1:300-约1:2000、以约1:400-约1:2000、以约1:500-约1:2000、以约1:600-约1:2000、以约1:700-约1:2000、以约1:800-约1:2000、以约1:900-约1:2000、以约1:1000-约1:2000、以约1:1200-约1:2000以约1:1400-约1:2000、以约1:1600-约1:2000、或以约1:1800-约1:2000的本申请固相介质与本申请TIL的比例,例如可以将包含本申请CD28激动剂和CD3激动剂的固相介质添加至本申请TIL的细胞培养基中。
例如,本申请的方法还可以包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的本申请体外扩增中,使本申请TIL与一种或多种T细胞生长因子接触。
例如,在单个阶段的本申请体外扩增中,可以使本申请的TIL与本申请的T细胞激活剂接触且与本申请的一种或多种T细胞生长因子接触。例如,在本申请第一阶段体外扩增中,可以使本申请的TIL与本申请的T细胞激活剂接触且与本申请的一种或多种T细胞生长因子接触。例如,在本申请第二阶段体外扩增中,可以使本申请的TIL与本申请的T细胞激活剂接触且与本申请的一种或多种T细胞生长因子接触。例如,在本申请第三阶段体外扩增中,可以使本申请的TIL与本申请的T细胞激活剂接触且与本申请的一种或多种T细胞生长因子接触。
例如,在单个阶段的本申请体外扩增中,可以基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL与T细胞生长因子接触。例如,在单个阶段的本申请的体外扩增中,可以基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL与T细胞生长因子接触。例如,在单个阶段的本申请的体外扩增中,可以先使所述TIL的至少一种细胞因子的表达提高和/或活性增强,例如,可以提前2小时、提前4小时、提前8小时、提前12小时、提前24小时、或提前48小时等,再使本申请的TIL与本申请的一种或多种T细胞生长因子接触。例如,在单个阶段的本申请的体外扩增中,可以使本申请的TIL先与本申请的一种或多种T细胞生长因子接触,例如,可以提前2小时、提前4小时、提前8小时、提前12小时、提前24小时、或提前48小时等,再使所述TIL的至少一种细胞因子的表达提高和/或活性增强。
例如,在本申请第一阶段体外扩增中,可以基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL与T细胞生长因子接触。例如,在本申请第二阶段体外扩增中,可以基本上同时使所述TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL与T细胞生长因子接触。例如,在本申请第三阶段体外扩增中,可以基本上同时使所述 TIL的至少一种细胞因子的表达提高和/或活性增强以及使TIL与T细胞生长因子接触。
例如,本申请的T细胞生长因子可以选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。例如,本申请的T细胞生长因子可以包含IL-2和/或其功能活性片段。例如,IL-2的功能活性片段可以包含本领域已知的可以与T细胞的IL-2受体结合的IL-2的片段。
例如,本申请的TIL与本申请一种或多种T细胞生长因子接触可以包含将本申请T细胞生长因子添加至本申请TIL的细胞培养基中。例如,本申请的T细胞生长因子在本申请TIL的细胞培养基中的初始浓度可以为至少约300IU/mL。例如,本申请IL-2在本申请TIL的细胞培养基中的初始浓度可以为至少约350IU/mL、至少约400IU/mL、至少约500IU/mL、至少约600IU/mL、至少约700IU/mL、至少约800IU/mL、至少约900IU/mL、至少约1000IU/mL、至少约1100IU/mL、至少约1200IU/mL、至少约1300IU/mL、至少约1400IU/mL、至少约1500IU/mL、至少约2000IU/mL、至少约2500IU/mL、至少约2600IU/mL、至少约2700IU/mL、至少约2800IU/mL、至少约2900IU/mL、至少约3000IU/mL、至少约3100IU/mL、至少约3200IU/mL、至少约3300IU/mL、至少约3400IU/mL、至少约3500IU/mL、至少约4000IU/mL、至少约4500IU/mL、至少约5000IU/mL、至少约5500IU/mL、至少约6000IU/mL、至少约6500IU/mL、至少约7000IU/mL、至少约7500IU/mL、至少约8000IU/mL、至少约8500IU/mL、或至少约9000IU/mL。
例如,本申请的TIL可以为源自本申请的肿瘤组织的碎片的TIL。例如,可以通过将肿瘤组织处理成肿瘤碎片获得本申请的TIL。例如,本申请的肿瘤碎片的体积约为1-27立方毫米。例如,本申请的肿瘤碎片的体积约为约1立方毫米、约2立方毫米、约3立方毫米、约4立方毫米、约5立方毫米、约6立方毫米、约7立方毫米、约8立方毫米、约9立方毫米、约10立方毫米、约11立方毫米、约12立方毫米、约13立方毫米、约15立方毫米、约17立方毫米、约19立方毫米、约20立方毫米、约21立方毫米、约23立方毫米、约24立方毫米、约25立方毫米、约26立方毫米或约27立方毫米。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;(B)使所述TIL的至少一种细胞因子的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。例如,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由第一TIL群体外扩增获得的TIL群,所述第一TIL群为源自肿瘤组织且未经体外扩增的TIL群;(B)使所述TIL的至少一种细胞因子的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。例如,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
例如,可以先将在一定的时间和/或一定位置的源自肿瘤组织且未经体外扩增的TIL群与T细胞生长因子接触,得到体外TIL群,一方面可以继续培养所述体外TIL群,进行步骤(B),另一方面可以先冷冻保存所述体外TIL群,在有需要的时候复苏所述体外TIL群,进行步骤(B)。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;(B)使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。例如,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;(B)使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。例如,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
例如本申请的术语中,本申请的第一阶段体外扩增可以与以上方面的方法中的步骤(A)任意替换使用。例如本申请的术语中,本申请的第二阶段体外扩增可以与以上方面的方法中的步骤(B)任意替换使用。例如本申请的术语中,本申请的经第一阶段体外扩增的TIL可以与经以上方面的方法中步骤(A)得到的第二TIL群任意替换使用。例如本申请的术语中,本申请的经第二阶段体外扩增的TIL可以与经以上方面的方法中步骤(B)得到的第三TIL群任意替换使用。例如本申请的术语中,如有需要,本申请的第三阶段体外扩增可以与以上方面的方法中任意增加的步骤(C)任意替换使用。例如本申请的术语中,如有需要,本申请的经第三阶段体外扩增的TIL可以与经以上方面的方法中任意增加的步骤(C)得到的第四TIL 群任意替换使用。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与多种T细胞生长因子接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与多种T细胞生长因子接触、与多种T细胞激活剂接触、使所述TIL的至少一种细胞因子的表达提高和/或活性增强,且使所述TIL与饲养细胞共培养;其中,经所述步骤(B)得到第三TIL群。例如,本申请的细胞因子可以是白介素-12(IL-12)和/或其功能活性片段。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与多种T细胞生长因子接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与多种T细胞生长因子接触、与多种T细胞激活剂接触、使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与饲养细胞共培养;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与多种T细胞生长因子接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与多种T细胞生长因子接触、与多种T细胞激活剂接触、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且使所述TIL与饲养细胞共培养;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与多种T细胞生长因子接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与多种T细胞生长因子接触、与多种T细胞激活剂接触、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且在至少2小时后使所述TIL与饲养细胞共培养;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与多种T细胞生长因子接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与多种T细胞生长因子接触、与多种T细胞激活剂接触、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且在至少2小时后使所述TIL与饲养细胞共培养,所述饲养细胞可以包含外周单个核细胞,将所述饲养细胞添加至所述TIL的细胞培养基中;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与多种T细胞生长因子接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与多种T细胞生长因子接触、与多种T细胞激活剂接触、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且在至少2小时后使所述TIL与饲养细胞共培养,所述饲养细胞可以包含外周单个核细胞,可以以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与IL-2接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与IL-2接触、与多种T细胞激活剂接触、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且在至少2小时后使所述TIL与饲养细胞共培养,所述饲养细胞可以包含外周单个核细胞,可以以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与IL-2接触,所述IL-2在所述TIL的细胞培养基中的初始浓度可以为至少约300IU/mL;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与IL-2接触,所述IL-2在所述TIL的细胞培养基中的初始浓度可以为至少约300IU/mL、与CD3抗体接触,CD3抗体在所述TIL的细胞培养基中的初始浓度至少约30ng/mL、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且在至少2小时后使所述TIL与饲养细胞共培养,所述饲养细胞可以包含外周单个核细胞,可以以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与IL-2接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与IL-2接触、与包含CD3抗体以及CD28抗体的纳米基质接触、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且使所述TIL与饲养细胞共培养;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与IL-2接触;其中,经所述步骤(A)得 到第二TIL群;(B)可以使所述第二TIL群与IL-2接触、与包含CD3抗体以及CD28抗体的纳米基质接触,所述纳米基质的直径可以为约1纳米至约500纳米,每mg所述纳米基质可以分别包含CD3抗体以及CD28抗体各为约25μg、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且使所述TIL与饲养细胞共培养;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与IL-2接触;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与IL-2接触、与包含CD3抗体以及CD28抗体的纳米基质接触,所述纳米基质的直径可以为约1纳米至约500纳米,每mg所述纳米基质可以分别包含CD3抗体以及CD28抗体各为约25μg,可以以约1:100-约1:2000的所述纳米基质与所述TIL的比例添加至所述TIL的细胞培养基中、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且使所述TIL与饲养细胞共培养;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法,其可以包含:(A)可以使源自肿瘤组织且未经体外扩增的第一TIL群与IL-2接触,所述IL-2在所述TIL的细胞培养基中的初始浓度可以为至少约300IU/mL;其中,经所述步骤(A)得到第二TIL群;(B)可以使所述第二TIL群与IL-2接触,所述IL-2在所述TIL的细胞培养基中的初始浓度可以为至少约300IU/mL、与包含CD3抗体以及CD28抗体的纳米基质接触,所述纳米基质的直径可以为约1纳米至约500纳米,每mg所述纳米基质可以分别包含CD3抗体以及CD28抗体各为约25μg,可以以约1:100-约1:2000的所述纳米基质与所述TIL的比例添加至所述TIL的细胞培养基中、使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,且使所述TIL与饲养细胞共培养,所述饲养细胞可以包含外周单个核细胞,可以以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中;其中,经所述步骤(B)得到第三TIL群。
在另一方面,本申请提供一种培养肿瘤浸润淋巴细胞(TIL)的方法。从受试者组织样品获得的TIL细胞的方法可以是患者手术取得原位肿瘤样本或转移肿瘤样本,重量可以至少约1g,也可以多块组织合并。肿瘤组织在样本运输液,例如可以是商业常用的肿瘤组织运输液、肿瘤组织保存液或肿瘤组织转运液,内约2-8度运输,48小时内处理。组织块可以机械破碎至每块约1-27立方毫米大小,转移入透气培养袋或Grex中,加入T细胞无血清培养基和浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2培养 约3-14天。可以将收获的TIL细胞冻存后再复苏,也可以直接收集培养基中细胞,转移入透气培养袋、或Grex、或Xuri设备,T细胞无血清培养基可以添加本申请的CD28抗体、CD3抗体以及CD28抗体、包含CD3抗体以及CD28抗体的磁珠(例如Dynabeads)和/或包含CD3抗体以及CD28抗体的纳米基质(例如transACT)、浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2,以及用携带IL-12和/或其功能活性片段的逆转录病毒进行转导使所述TIL中表达IL-12和/或其功能活性片段的TIL细胞比例提高至少5%,活化本申请的TIL一定时间后,添加辐照PBMC(TIL与PBMC按照比率约1:40-约1:400),扩增培养约3-14天。可以使用细胞处理系统收集培养基中细胞,清洗冻存,并检测。最终产品CD3比例可以大于80%,细胞活率可以大于50%,大于80%的T细胞可以为记忆效应T细胞和效应T细胞。经刺激后可以分泌IFN-γ,和/或可以具有活化T细胞比例上调的特征。
一方面,本申请提供一种肿瘤浸润淋巴细胞(TIL),本申请的TIL可以根据本申请的培养方法培养得到。例如,本申请提供的TIL可以包含一种或一个批次的本申请的培养方法培养得到TIL。例如,本申请提供的TIL可以包含多种或多个批次的本申请的培养方法培养得到并以任意比例组合的TIL。
在一些实施方式中,可以将使用本申请方法扩增的TIL作为药物组合物施用于患者。在一些实施方式中,药物组合物可以是TIL在无菌缓冲液中的悬液。使用本申请的PBMC扩增的TIL可以通过本领域已知的任何合适途径施用。在一些实施方式中,T细胞可以以单次动脉内或静脉内输注施用,输注可以持续约30至60分钟。其他合适的施用途径可以包括腹膜内、鞘内和淋巴管内施用。
在一些实施方式中,可以施用任何合适剂量的TIL。在一些实施方式中,例如当肿瘤是黑色素瘤时,可以施用约2.3×10 9至约13.7×10 10个TIL。在一些实施方式中,可以施用约1×10 9至约12×10 10个TIL。在一些实施方式中,可以施用约1.2×10 10至约4.3×10 10个TIL。在一些实施方式中,可以施用约3×10 10至约12×10 10个TIL。在一些实施方式中,可以施用约4×10 10至约10×10 10个TIL。在一些实施方式中,可以施用约5×10 10至约8×10 10个TIL。在一些实施方式中,可以施用约6×10 10至约8×10 10个TIL。在一些实施方式中,可以施用约7×10 10至约8×10 10个TIL。在一些实施方式中,治疗有效剂量可以为约2.3×10 9至约13.7×10 10。在一些实施方式中,治疗有效剂量可以为约1×10 9至约12×10 10个TIL。在一些实施方式中,治疗有效剂量可以为约1.2×10 10至约4.3×10 10个TIL。在一些实施方式中,治疗有效剂量可以为约3×10 10至约12×10 10个TIL。在一些实施方式中,治疗有效剂量可以为约4×10 10至约10×10 10个TIL。 在一些实施方式中,治疗有效剂量可以为约5×10 10至约8×10 10个TIL。在一些实施方式中,治疗有效剂量可以为约6×10 10至约8×10 10个TIL。在一些实施方式中,治疗有效剂量可以为约7×10 10至约8×10 10个TIL。
在一些实施方式中,本申请的组合物中提供的TIL的数量可以为约1×10 6、约2×10 6、约3×10 6、约4×10 6、约5×10 6、约6×10 6、约7×10 6、约8×10 6、约9×10 6、约1×10 7、约2×10 7、约3×10 7、约4×10 7、约5×10 7、约6×10 7、约7×10 7、约8×10 7、约9×10 7、约1×10 8、约2×10 8、约3×10 8、约4×10 8、约5×10 8、约6×10 8、约7×10 8、约8×10 8、约9×10 8、约1×10 9、约2×10 9、约3×10 9、约4×10 9、约5×10 9、约6×10 9、约7×10 9、约8×10 9、约9×10 9、约1×10 10、约2×10 10、约3×10 10、约4×10 10、约5×10 10、约6×10 10、约7×10 10、约8×10 10、约9×10 10、约1×10 11、约2×10 11、约3×10 11、约4×10 11、约5×10 11、约6×10 11、约7×10 11、约8×10 11、约9×10 11、约1×10 12、约2×10 12、约3×10 12、约4×10 12、约5×10 12、约6×10 12、约7×10 12、约8×10 12、约9×10 12、约1×10 13、约2×10 13、约3×10 13、约4×10 13、约5×10 13、约6×10 13、约7×10 13、约8×10 13,或约9×10 13。在一些实施方式中,本申请的组合物中提供的TIL数量的范围可以为约1×10 6至5×10 6、约5×10 6至1×10 7、约1×10 7至5×10 7、约5×10 7至1×10 8、约1×10 8至5×10 8、约5×10 8至1×10 9、约1×10 9至5×10 9、约5×10 9至1×10 10、约1×10 10至5×10 10、约5×10 10至1×10 11、约5×10 11至1×10 12、约1×10 12至5×10 12,或约5×10 12至1×10 13
在一些实施方式中,本申请的组合物中提供的TIL的浓度可以小于组合物的例如约100%、约90%、约80%、约70%、约60%、约50%、约40%、约30%、约20%、约19%、约18%、约17%、约16%、约15%、约14%、约13%、约12%、约11%、约10%、约9%、约8%、约7%、约6%、约5%、约4%、约3%、约2%、约1%、约0.5%、约0.4%、约0.3%、约0.2%、约0.1%、约0.09%、约0.08%、约0.07%、约0.06%、约0.05%、约0.04%、约0.03%、约0.02%、约0.01%、约0.009%、约0.008%、约0.007%、约0.006%、约0.005%、约0.004%、约0.003%、约0.002%、约0.001%、约0.0009%、约0.0008%、约0.0007%、约0.0006%、约0.0005%、约0.0004%、约0.0003%、约0.0002%,或约0.0001%w/w、w/v或者v/v。
在一些实施方式中,本申请的组合物中提供的TIL的浓度可以大于组合物的约90%、约80%、约70%、约60%、约50%、约40%、约30%、约20%、约19.75%、约19.50%、约19.25%、约19%、约18.75%、约18.50%、约18.25%、约18%、约17.75%、约17.50%、约17.25%、约17%、约16.75%、约16.50%、约16.25%、约16%、约15.75%、约15.50%、约15.25%、约15%、约14.75%、约14.50%、约14.25%、约14%、约13.75%、约13.50%、 约13.25%、约13%、约12.75%、约12.50%、约12.25%、约12%、约11.75%、约11.50%、约11.25%、约11%、约10.75%、约10.50%、约10.25%、约10%、约9.75%、约9.50%、约9.25%、约9%、约8.75%、约8.50%、约8.25%、约8%、约7.75%、约7.50%、约7.25%、约7%、约6.75%、约6.50%、约6.25%、约6%、约5.75%、约5.50%、约5.25%、约5%、约4.75%、约4.50%、约4.25%、约4%、约3.75%、约3.50%、约3.25%、约3%、约2.75%、约2.50%、约2.25%、约2%、约1.75%、约1.50%、约125%、约1%、约0.5%、约0.4%、约0.3%、约0.2%、约0.1%、约0.09%、约0.08%、约0.07%、约0.06%、约0.05%、约0.04%、约0.03%、约0.02%、约0.01%、约0.009%、约0.008%、约0.007%、约0.006%、约0.005%、约0.004%、约0.003%、约0.002%、约0.001%、约0.0009%、约0.0008%、约0.0007%、约0.0006%、约0.0005%、约0.0004%、约0.0003%、约或0.0002%,或者约0.0001%w/w、w/v或v/v。
在一些实施方式中,本申请的组合物中提供的TIL的浓度范围可以为组合物的约0.0001%至约50%、约0.001%至约40%、约0.01%至约30%、约0.02%至约29%、约0.03%至约28%、约0.04%至约27%、约0.05%至约26%、约0.06%至约25%、约0.07%至约24%、约0.08%至约23%、约0.09%至约22%、约0.1%至约21%、约0.2%至约20%、约0.3%至约19%、约0.4%至约18%、约0.5%至约17%、约0.6%至约16%、约0.7%至约15%、约0.8%至约14%、约0.9%至约12%,或约1%至约10%w/w、w/v或者v/v。
在一些实施方式中,本申请的组合物中提供的TIL的浓度范围可以为组合物的约0.001%至约10%、约0.01%至约5%、约0.02%至约4.5%、约0.03%至约4%、约0.04%至约3.5%、约0.05%至约3%、约0.06%至约2.5%、约0.07%至约2%、约0.08%至约1.5%、约0.09%至约1%、或约0.1%至约0.9%w/w、w/v或者v/v。
在一些实施方式中,本申请的组合物中提供的TIL的量可以等于或小于约10g、约9.5g、约9.0g、约8.5g、约8.0g、约7.5g、约7.0g、约6.5g、约6.0g、约5.5g、约5.0g、约4.5g、约4.0g、约3.5g、约3.0g、约2.5g、约2.0g、约1.5g、约1.0g、约0.95g、约0.9g、约0.85g、约0.8g、约0.75g、约0.7g、约0.65g、约0.6g、约0.55g、约0.5g、约0.45g、约0.4g、约0.35g、约0.3g、约0.25g、约0.2g、约0.15g、约0.1g、约0.09g、约0.08g、约0.07g、约0.06g、约0.05g、约0.04g、约0.03g、约0.02g、约0.01g、约0.009g、约0.008g、约0.007g、约0.006g、约0.005g、约0.004g、约0.003g、约0.002g、约0.001g、约0.0009g、约0.0008g、约0.0007g、约0.0006g、约0.0005g、约0.0004g、约0.0003g、约0.0002g,或者约0.0001g。
在一些实施方式中,本申请的组合物中提供的TIL的量可以大于约0.0001g、约0.0002g、 约0.0003g、约0.0004g、约0.0005g、约0.0006g、约0.0007g、约0.0008g、约0.0009g、约0.001g、约0.0015g、约0.002g、约0.0025g、约0.003g、约0.0035g、约0.004g、约0.0045g、约0.005g、约0.0055g、约0.006g、约0.0065g、约0.007g、约0.0075g、约0.008g、约0.0085g、约0.009g、约0.0095g、约0.01g、约0.015g、约0.02g、约0.025g、约0.03g、约0.035g、约0.04g、约0.045g、约0.05g、约0.055g、约0.06g、约0.065g、约0.07g、约0.075g、约0.08g、约0.085g、约0.09g、约0.095g、约0.1g、约0.15g、约0.2g、约0.25g、约0.3g、约0.35g、约0.4g、约0.45g、约0.5g、约0.55g、约0.6g、约0.65g、约0.7g、约0.75g、约0.8g、约0.85g、约0.9g、约0.95g、约1g、约1.5g、约2g、约2.5g、约3g、约3.5g、约4g、约4.5g、约5g、约5.5g、约6g、约6.5g、约7g、约7.5g、约8g、约8.5g、约9g、约9.5g,或者约10g。
在一些实施方式中,TIL可以单剂量施用。此种施用可以通过注射,例如可以静脉内注射。在一些实施方式中,TIL可以多剂量施用。剂量可以是每年一次、两次、三次、四次、五次、六次或超过六次。剂量可以是每月一次、每两周一次、每周一次或每2天一次。在一些实施方式中,TIL的施用可以连续施用。
一方面,本申请提供一种药物组合物。在一些实施方式中,其可以包含本申请的TIL和/或本申请的组合物,与药学上可接受的载体。
一方面,本申请提供一种试剂盒,本申请的试剂盒可以包含本申请培养肿瘤浸润淋巴细胞(TIL)方法的T细胞激活剂、T细胞生长因子和/或饲养细胞与记载本申请培养肿瘤浸润淋巴细胞(TIL)方法的步骤的说明书。一方面,本申请提供一种试剂盒,本申请试剂盒可以包含本申请的TIL和/或本申请的药物组合物。
一方面,本申请提供一种影响肿瘤细胞生长的方法,可以包括向受试者施用本申请的TIL和/或本申请的药物组合物。在一些实施方式中,影响肿瘤生长可以包含肿瘤的体积减少到施用前的例如约99%、约95%、约90%、约80%、约70%、约60%、约50%、约40%、约30%、约20%、约19%、约18%、约17%、约16%、约15%、约14%、约13%、约12%、约11%、约10%、约9%、约8%、约7%、约6%、约5%、约4%、约3%、约2%、约1%、约0.5%、约0.4%、约0.3%、约0.2%或约0.1%。
一方面,本申请提供本申请的TIL和/或本申请的药物组合物在制备药物中的应用,本申请的药物可以用于预防和/或治疗肿瘤。在一些实施方式中,本申请的肿瘤选自实体瘤。在一些实施方式中,本申请的肿瘤可以选自以下组的一种或多种:黑色素瘤、卵巢癌、宫颈癌、肺癌、膀胱癌、乳腺癌、头颈癌、胰腺癌、肝癌、胃癌、结直肠癌、和肾癌。
一方面,本申请提供一种预防和/或治疗肿瘤的方法,可以包括向受试者施用本申请的TIL 和/或本申请的药物组合物。在一些实施方式中,本申请的肿瘤选自实体瘤。在一些实施方式中,本申请的肿瘤可以选自以下组的一种或多种:黑色素瘤、卵巢癌、宫颈癌、肺癌、膀胱癌、乳腺癌、头颈癌、胰腺癌、肝癌、胃癌、结直肠癌、和肾癌。
一方面,本申请提供一种本申请的TIL和/或本申请的药物组合物,其可以用于预防和/或治疗肿瘤。在一些实施方式中,本申请的肿瘤选自实体瘤。在一些实施方式中,本申请的肿瘤可以选自以下组的一种或多种:黑色素瘤、卵巢癌、宫颈癌、肺癌、膀胱癌、乳腺癌、头颈癌、胰腺癌、肝癌、胃癌、结直肠癌、和肾癌。
使TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强
1.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养。
2.根据技术方案1所述的方法,所述方法包含:使所述TIL与所述饲养细胞共培养之后,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强。
3.根据技术方案1-2中任一项所述的方法,所述方法包含:使所述TIL与所述饲养细胞共培养之前,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强。
4.根据技术方案1-3中任一项所述的方法,所述方法包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触之后且在所述TIL与所述饲养细胞共培养之前使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强。
5.根据技术方案1-4中任一项所述的方法,所述方法包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触基本上同时使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强。
6.根据技术方案1-5中任一项所述的方法,所述方法包含:在所述TIL与所述饲养细胞共培养基本上同时使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强。
7.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强,其中所述TIL包含与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养获得的TIL。
8.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中所述TIL包含使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL。
9.根据技术方案1-8中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
10.根据技术方案9所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
11.根据技术方案10所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
12.根据技术方案1-11中任一项所述的方法,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将编码所述转录因子和/或其功能活性片段的核酸引入所述TIL中。
13.根据技术方案12所述的方法,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
14.根据技术方案12-13中任一项所述的方法,其中编码所述转录因子和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
15.根据技术方案13-14中任一项所述的方法,其中所述载体包含病毒载体。
16.根据技术方案15所述的方法,其中所述病毒载体包含逆转录病毒载体。
17.根据技术方案16所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
18.根据技术方案1-17中任一项所述的方法,所述转录因子和/或其功能活性片段包含激活性转录因子。
19.根据技术方案1-18中任一项所述的方法,所述转录因子包含c-Jun和/或其功能活性片段。
20.根据技术方案1-19中任一项所述的方法,所述转录因子包含如SEQ ID NO:71所示的氨基酸序列。
21.根据技术方案1-20中任一项所述的方法,编码所述转录因子的核苷酸序列选自以下组:SEQ ID NO:72和SEQ ID NO:73。
22.根据技术方案1-21中任一项所述的方法,所述转录因子和/或其功能活性片段的表达提高包含所述转录因子和/或其功能活性片段的合成量提高。
23.根据技术方案1-22中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高。
24.根据技术方案1-23中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高至少约5%以上。
25.根据技术方案1-24中任一项所述的方法,所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达转录因子和/或其功能活性片段的细胞比例为至少约5%以上。
26.根据技术方案1-25中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
27.根据技术方案26所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
28.根据技术方案26-27中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述饲养细胞共培养。
29.根据技术方案26-28中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述饲养细胞共培养。
30.根据技术方案29所述的方法,所述第一阶段体外扩增进行至少约7天。
31.根据技术方案29-30中任一项所述的方法,所述第一阶段体外扩增进行约7天至约14天。
32.根据技术方案29-31中任一项所述的方法,所述第二阶段体外扩增进行至少约7天。
33.根据技术方案29-32中任一项所述的方法,所述第二阶段体外扩增进行约7天至约14天。
34.根据技术方案1-33中任一项所述的方法,使所述TIL在与T细胞激活剂和/或T细胞生长因子接触至少约2小时之后与所述饲养细胞共培养。
35.根据技术方案1-34中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或 所述T细胞生长因子接触约6小时至约72小时之后与所述饲养细胞共培养。
36.根据技术方案1-35中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约12小时至约48小时之后与所述饲养细胞共培养。
37.根据技术方案1-36中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
38.根据技术方案1-37中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
39.根据技术方案1-38中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
40.根据技术方案1-39中任一项所述的方法,所述饲养细胞为外周单个核细胞。
41.根据技术方案1-40中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
42.根据技术方案1-41中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
43.根据技术方案1-42中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
44.根据技术方案43所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
45.根据技术方案1-44中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂接触。
46.根据技术方案45所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂接触。
47.根据技术方案45-46中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述T细胞激活剂接触。
48.根据技术方案45-47中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述T细胞激活剂接触。
49.根据技术方案1-48中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种:分化簇80(CD80)、CD86、CD276、4-1BB配体(4-1BBL)、CD27、CD30、 CD134、CD275、CD40、CD258、以及它们的功能活性片段。
50.根据技术方案1-49中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、疱疹病毒进入介质(HVEM)、CD40L、OX40和4-1BB。
51.根据技术方案1-50中任一项所述的方法,所述T细胞激活剂包含CD3激动剂和/或CD28激动剂。
52.根据技术方案1-51中任一项所述的方法,所述T细胞激活剂包含CD3激动剂。
53.根据技术方案1-52中任一项所述的方法,所述T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
54.根据技术方案1-53中任一项所述的方法,所述T细胞激活剂包含CD28激动剂。
55.根据技术方案1-54中任一项所述的方法,所述T细胞激活剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段。
56.根据技术方案1-55中任一项所述的方法,所述使TIL与所述T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;和(3)将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
57.根据技术方案56所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为至少约30ng/mL。
58.根据技术方案56-57中任一项所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为约30ng/mL-约300ng/mL。
59.根据技术方案56-58中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
60.根据技术方案56-59中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
61.根据技术方案59-60中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
62.根据技术方案56-61中任一项所述的方法,所述固相介质包含聚合物。
63.根据技术方案56-62中任一项所述的方法,每mg所述固相介质中包含的每一种所述T细胞激活剂的量各自独立地至少为约25μg。
64.根据技术方案56-63中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述 TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
65.根据技术方案56-64中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
66.根据技术方案1-65中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
67.根据技术方案66所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
68.根据技术方案66-67中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂以及所述T细胞生长因子接触。
69.根据技术方案66-68中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与T细胞生长因子接触。
70.根据技术方案1-69中任一项所述的方法,使所述TIL基本上同时与所述T细胞激活剂以及所述T细胞生长因子接触。
71.根据技术方案1-70中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
72.根据技术方案1-71中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
73.根据技术方案1-72中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
74.根据技术方案1-73中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
75.根据技术方案1-74中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
76.根据技术方案75所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
77.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的转录因子和/或其功能活性片段的表达提高和/或活性增强, 且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。
78.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群的转录因子和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。
79.根据技术方案78所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
80.根据技术方案78-79中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
81.根据技术方案77-80中任一项所述的方法,所述步骤(A)进行约7天至约14天。
82.根据技术方案77-81中任一项所述的方法,所述步骤(B)进行约7天至约14天。
83.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的转录因子和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL群。
84.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群的转录因子和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL群。
85.根据技术方案84所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
86.根据技术方案84-85中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
87.根据技术方案83-86中任一项所述的方法,所述步骤(A)进行约7天至约14天。
88.根据技术方案83-87中任一项所述的方法,所述步骤(B)进行约0天至约8天。
89.根据技术方案83-88中任一项所述的方法,所述步骤(C)进行约5天至约14天。
90.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群的转录因子和/或其功能活性片段的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;
(D)使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。
91.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群的转录因子和/或其功能活性片段的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;
(D)使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。
92.根据技术方案91所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
93.根据技术方案91-92中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
94.根据技术方案90-93中任一项所述的方法,所述步骤(A)进行约7天至约14天。
95.根据技术方案90-94中任一项所述的方法,所述步骤(B)进行约0天至约4天。
96.根据技术方案90-95中任一项所述的方法,所述步骤(C)进行约0天至约4天。
97.根据技术方案90-96中任一项所述的方法,所述步骤(D)进行约5天至约14天。
98.根据技术方案77-97中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
99.根据技术方案98所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
100.根据技术方案99所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
101.根据技术方案77-100中任一项所述的方法,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将编码所述转录因子和/或其功能活性片段的核酸引入所述TIL中。
102.根据技术方案101所述的方法,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
103.根据技术方案101-102中任一项所述的方法,其中编码所述转录因子和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
104.根据技术方案102-103中任一项所述的方法,其中所述载体包含病毒载体。
105.根据技术方案104所述的方法,其中所述病毒载体包含逆转录病毒载体。
106.根据技术方案105所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
107.根据技术方案77-106中任一项所述的方法,所述转录因子和/或其功能活性片段包含激活性转录因子。
108.根据技术方案77-107中任一项所述的方法,所述转录因子包含c-Jun和/或其功能活性片段。
109.根据技术方案77-108中任一项所述的方法,所述转录因子包含如SEQ ID NO:71所示的氨基酸序列。
110.根据技术方案77-109中任一项所述的方法,编码所述转录因子的核苷酸序列选 自以下组:SEQ ID NO:72和SEQ ID NO:73。
111.根据技术方案77-110中任一项所述的方法,所述转录因子和/或其功能活性片段的表达提高包含所述转录因子和/或其功能活性片段的合成量提高。
112.根据技术方案77-111中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高。
113.根据技术方案77-112中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高至少约5%以上。
114.根据技术方案77-113中任一项所述的方法,所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达转录因子和/或其功能活性片段的细胞比例为至少约5%以上。
115.根据技术方案77-114中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触至少约2小时之后与所述饲养细胞共培养。
116.根据技术方案77-115中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时至约72小时之后与所述饲养细胞共培养。
117.根据技术方案77-116中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约12小时至约48小时之后与所述饲养细胞共培养。
118.根据技术方案77-116中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
119.根据技术方案77-118中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
120.根据技术方案77-119中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
121.根据技术方案77-120中任一项所述的方法,所述饲养细胞为外周单个核细胞。
122.根据技术方案77-121中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
123.根据技术方案77-122中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
124.根据技术方案77-123中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
125.根据技术方案77-124所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
126.根据技术方案77-125中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种:分化簇80(CD80)、CD86、CD276、4-1BB配体(4-1BBL)、CD27、CD30、CD134、CD275、CD40、CD258、以及它们的功能活性片段。
127.根据技术方案77-126中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、疱疹病毒进入介质(HVEM)、CD40L、OX40和4-1BB。
128.根据技术方案77-127中任一项所述的方法,所述T细胞激活剂包含CD3激动剂和/或CD28激动剂。
129.根据技术方案77-128中任一项所述的方法,所述T细胞激活剂包含CD3激动剂。
130.根据技术方案77-129中任一项所述的方法,所述T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
131.根据技术方案77-130中任一项所述的方法,所述T细胞激活剂包含CD28激动剂。
132.根据技术方案77-131中任一项所述的方法,所述T细胞激活剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段。
133.根据技术方案77-132中任一项所述的方法,所述使TIL与所述T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;和(3)将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
134.根据技术方案133所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为至少约30ng/mL。
135.根据技术方案133-134中任一项所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为约30ng/mL-约300ng/mL。
136.根据技术方案133-135中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
137.根据技术方案133-136中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
138.根据技术方案136-137中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
139.根据技术方案133-138中任一项所述的方法,所述固相介质包含聚合物。
140.根据技术方案133-139中任一项所述的方法,每mg所述固相介质中包含的每一种所述T细胞激活剂的量各自独立地至少为约25μg。
141.根据技术方案133-140中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
142.根据技术方案133-141中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
143.根据技术方案77-142中任一项所述的方法,使所述TIL基本上同时与所述T细胞激活剂以及所述T细胞生长因子接触。
144.根据技术方案77-143中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
145.根据技术方案77-144中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
146.根据技术方案77-145中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
147.根据技术方案77-146中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
148.根据技术方案77-147中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
149.根据技术方案148所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
150.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触。
151.根据技术方案150所述的方法,所述方法包含:使所述TIL与CD28激动剂接触之后,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强。
152.根据技术方案150-151中任一项所述的方法,所述方法包含:使所述TIL与CD28激动剂接触之前,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强。
153.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强,其中所述TIL包含与CD28激动剂接触获得的TIL。
154.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL与CD28激动剂接触,其中所述TIL包含使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL。
155.根据技术方案150-154中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
156.根据技术方案155所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
157.根据技术方案156所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
158.根据技术方案150-157中任一项所述的方法,与在体外扩增阶段未曾与所述CD28激动剂接触的相应TIL相比,在至少一个体外扩增阶段中与所述CD28激动剂接触过的所述TIL显示出改善的基因编辑效果。
159.根据技术方案158所述的方法,所述改善的基因编辑效果包含提高的基因敲除效率。
160.根据技术方案150-159中任一项所述的方法,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将编码所述转录因子和/或其功能活性片段的核酸引入所述TIL中。
161.根据技术方案160所述的方法,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
162.根据技术方案160-161中任一项所述的方法,其中编码所述转录因子和/或其功 能活性片段的核酸被整合到所述TIL的基因组中。
163.根据技术方案161-162中任一项所述的方法,其中所述载体包含病毒载体。
164.根据技术方案163所述的方法,其中所述病毒载体包含逆转录病毒载体。
165.根据技术方案164所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
166.根据技术方案150-165中任一项所述的方法,所述转录因子和/或其功能活性片段包含激活性转录因子。
167.根据技术方案150-166中任一项所述的方法,所述转录因子包含c-Jun和/或其功能活性片段。
168.根据技术方案150-167中任一项所述的方法,所述转录因子包含如SEQ ID NO:71所示的氨基酸序列。
169.根据技术方案150-168中任一项所述的方法,编码所述转录因子的核苷酸序列选自以下组:SEQ ID NO:72和SEQ ID NO:73。
170.根据技术方案150-169中任一项所述的方法,所述转录因子和/或其功能活性片段的表达提高包含所述转录因子和/或其功能活性片段的合成量提高。
171.根据技术方案150-170中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高。
172.根据技术方案150-171中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高至少约5%以上。
173.根据技术方案150-172中任一项所述的方法,所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达转录因子和/或其功能活性片段的细胞比例为至少约5%以上。
174.根据技术方案150-173中任一项所述的方法,其中,使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与CD28激动剂接触。
175.根据技术方案174所述的方法,其中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使经所述第一阶段体外扩增的TIL与所述CD28激动剂接触。
176.根据技术方案175所述的方法,所述第一阶段体外扩增进行至少约7天。
177.根据技术方案175-176中任一项所述的方法,所述第一阶段体外扩增进行约7天至约14天。
178.根据技术方案175-177中任一项所述的方法,所述第二阶段体外扩增进行至少约7天。
179.根据技术方案175-178中任一项所述的方法,所述第二阶段体外扩增进行约7天至约14天。
180.根据技术方案150-179中任一项所述的方法,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段、和/或CD86和/或其功能活性片段。
181.根据技术方案150-180中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述CD28激动剂之外的其它T细胞激活剂接触。
182.根据技术方案181所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述其它T细胞激活剂接触。
183.根据技术方案181-182中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述其它T细胞激活剂接触。
184.根据技术方案181-183中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述其它T细胞激活剂接触。
185.根据技术方案181-184中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及所述其它T细胞激活剂接触。
186.根据技术方案181-185中任一项所述的方法,所述其它T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、HVEM、CD40L、OX40和4-1BB。
187.根据技术方案181-186中任一项所述的方法,所述其它T细胞激活剂包含CD3激动剂。
188.根据技术方案181-187中任一项所述的方法,所述其它T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
189.根据技术方案181-188中任一项所述的方法,所述使TIL与所述CD28激动剂以 及所述其它T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述CD28激动剂以及所述其它T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述CD28激动剂以及所述其它T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;(3)将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
190.根据技术方案189所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为至少约30ng/mL。
191.根据技术方案189-190中任一项所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为约30ng/mL-约300ng/mL。
192.根据技术方案189-191中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
193.根据技术方案181-192中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
194.根据技术方案192-193中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
195.根据技术方案189-194中任一项所述的方法,所述固相介质包含聚合物。
196.根据技术方案189-195中任一项所述的方法,每mg所述固相介质包含至少约25μg的所述CD28激动剂以及所述其它T细胞激活剂。
197.根据技术方案189-196中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
198.根据技术方案189-197中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
199.根据技术方案150-198中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL在与CD28激动剂接触一定时间之后与饲养细胞共培养。
200.根据技术方案199所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
201.根据技术方案199-200中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL与CD28激动剂接触且使所述TIL与所述饲养细胞共培养。
202.根据技术方案199-201中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述饲养细胞共培养。
203.根据技术方案199-202中任一项所述的方法,使所述TIL在与所述CD28激动剂接触至少约2小时之后与所述饲养细胞共培养。
204.根据技术方案199-203中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时至约72小时之后与所述饲养细胞共培养。
205.根据技术方案199-204中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约12小时至约48小时之后与所述饲养细胞共培养。
206.根据技术方案199-204中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
207.根据技术方案199-206中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
208.根据技术方案199-207中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
209.根据技术方案199-208中任一项所述的方法,所述饲养细胞为外周单个核细胞。
210.根据技术方案199-209中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
211.根据技术方案199-210中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
212.根据技术方案199-211中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
213.根据技术方案199-212中任一项所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
214.根据技术方案150-213中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与T细胞生长因子接触。
215.根据技术方案214所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
216.根据技术方案214-215中任一项所述的方法,在单个阶段的所述体外扩增中,使 所述TIL与所述CD28激动剂以及所述T细胞生长因子接触。
217.根据技术方案214-216中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与T细胞生长因子接触。
218.根据技术方案214-217中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及所述T细胞生长因子接触。
219.根据技术方案214-218中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
220.根据技术方案214-219中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
221.根据技术方案214-220中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
222.根据技术方案214-221中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
223.根据技术方案150-222中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
224.根据技术方案223所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
225.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的转录因子和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触,其中,经所述步骤(B)得到第三TIL群。
226.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群的转录因子和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触,其中,经所述步骤(B)得到第三TIL群。
227.根据技术方案226所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
228.根据技术方案226-227中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
229.根据技术方案225-228中任一项所述的方法,所述步骤(A)进行约7天至约14天。
230.根据技术方案225-229中任一项所述的方法,所述步骤(B)进行约7天至约14天。
231.根据技术方案225-230中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
232.根据技术方案231所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
233.根据技术方案232所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
234.根据技术方案225-233中任一项所述的方法,与在体外扩增阶段未曾与所述CD28激动剂接触的相应TIL相比,在至少一个体外扩增阶段中与所述CD28激动剂接触过的所述TIL显示出改善的基因编辑效果。
235.根据技术方案234所述的方法,所述改善的基因编辑效果包含提高的基因敲除效率。
236.根据技术方案225-235中任一项所述的方法,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将编码所述转录因子和/或其功能活性片段的核酸引入所述TIL中。
237.根据技术方案236所述的方法,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
238.根据技术方案236-237中任一项所述的方法,其中编码所述转录因子和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
239.根据技术方案237-238中任一项所述的方法,其中所述载体包含病毒载体。
240.根据技术方案239所述的方法,其中所述病毒载体包含逆转录病毒载体。
241.根据技术方案240所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
242.根据技术方案225-241中任一项所述的方法,所述转录因子和/或其功能活性片段包含激活性转录因子。
243.根据技术方案225-242中任一项所述的方法,所述转录因子包含c-Jun和/或其功能活性片段。
244.根据技术方案225-243中任一项所述的方法,所述转录因子包含如SEQ ID NO:71所示的氨基酸序列。
245.根据技术方案225-244中任一项所述的方法,编码所述转录因子的核苷酸序列选自以下组:SEQ ID NO:72和SEQ ID NO:73。
246.根据技术方案225-245中任一项所述的方法,所述转录因子和/或其功能活性片段的表达提高包含所述转录因子和/或其功能活性片段的合成量提高。
247.根据技术方案225-246中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高。
248.根据技术方案225-247中任一项所述的方法,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高至少约5%以上。
249.根据技术方案225-248中任一项所述的方法,所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达转录因子和/或其功能活性片段的细胞比例为至少约5%以上。
250.根据技术方案225-249中任一项所述的方法,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段、和/或CD86和/或其功能活性片段。
251.根据技术方案225-250中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及其它T细胞激活剂接触。
252.根据技术方案251所述的方法,所述其它T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、HVEM、CD40L、OX40和4-1BB。
253.根据技术方案251-252中任一项所述的方法,所述其它T细胞激活剂包含CD3激动剂。
254.根据技术方案251-253中任一项所述的方法,所述其它T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
255.根据技术方案251-254中任一项所述的方法,所述使TIL与所述CD28激动剂以及所述其它T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述CD28激动剂以及所述其它T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述CD28激动剂以及所述其它T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;(3)将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
256.根据技术方案255所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为至少约30ng/mL。
257.根据技术方案255-256中任一项所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为约30ng/mL-约300ng/mL。
258.根据技术方案255-257中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
259.根据技术方案255-258中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
260.根据技术方案258-259中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
261.根据技术方案255-260中任一项所述的方法,所述固相介质包含聚合物。
262.根据技术方案255-261中任一项所述的方法,每mg所述固相介质包含至少约25μg的所述CD28激动剂以及所述其它T细胞激活剂。
263.根据技术方案255-262中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
264.根据技术方案255-263中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
265.根据技术方案225-264中任一项所述的方法,使所述TIL在与所述CD28激动剂接触至少约2小时之后与饲养细胞共培养。
266.根据技术方案265所述的方法,使所述TIL在与所述CD28激动剂接触约6小时至约72小时之后与所述饲养细胞共培养。
267.根据技术方案265-266中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约12小时至约48小时之后与所述饲养细胞共培养。
268.根据技术方案265-267中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
269.根据技术方案265-268中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
270.根据技术方案265-269中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
271.根据技术方案265-270中任一项所述的方法,所述饲养细胞为外周单个核细胞。
272.根据技术方案265-271中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
273.根据技术方案265-272中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
274.根据技术方案265-273中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
275.根据技术方案265-274中任一项所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
276.根据技术方案225-275中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及T细胞生长因子接触。
277.根据技术方案225-276中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
278.根据技术方案225-277中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
279.根据技术方案225-278中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
280.根据技术方案225-279中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
281.根据技术方案225-280中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
282.根据技术方案281所述的方法,所述碎片的体积为约1立方毫米至约27立方毫 米。
283.一种肿瘤浸润淋巴细胞(TIL),所述TIL经过技术方案1-282中任一项所述的方法获得。
284.一种组合物,其包含技术方案283所述的TIL。
285.一种药物组合物,其包含技术方案283所述的TIL和/或技术方案284所述的组合物,以及任选地药学上可接受的载体。
286.一种影响肿瘤细胞生长的方法,包含向受试者施用技术方案283所述的TIL、技术方案284所述的组合物和/或技术方案285所述的药物组合物。
287.技术方案283所述的TIL、技术方案284所述的组合物和/或技术方案285所述的药物组合物在制备药物中的应用,所述药物用于预防和/或治疗肿瘤。
288.根据技术方案287所述的应用,其中,所述肿瘤为实体瘤。
289.根据技术方案287-288中任一项所述的应用,其中,所述肿瘤选自以下组的一种或多种:黑色素瘤、卵巢癌、宫颈癌、肺癌、膀胱癌、乳腺癌、头颈癌、胰腺癌、肝癌、胃癌、结直肠癌、和肾癌。
例如,本申请的方法中使TIL的至少一种目标基因的表达提高和/或活性增强可以包含,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强包含将编码所述转录因子和/或其功能活性片段的核酸引入所述TIL中。
例如,其中所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强可以包含将包含所述核酸的载体引入所述TIL中。例如,其中编码所述转录因子和/或其功能活性片段的核酸被整合到所述TIL的基因组中。例如,当所述TIL的转录因子和/或其功能活性片段可以长期和/或持续在所述TIL中表达。
例如,其中所述载体包含病毒载体。例如,其中所述病毒载体包含逆转录病毒载体。例如,其中所述逆转录病毒载体包含慢病毒载体。
例如,所述转录因子和/或其功能活性片段包含使免疫细胞增殖能力和/或细胞杀伤活性提高的转录因子。
例如,所述转录因子和/或其功能活性片段包含c-Jun或其功能活性片段。
例如,所述转录因子包含如SEQ ID NO:71所示的序列。
例如,编码所述转录因子的核苷酸序列选自以下组:SEQ ID NO:72和SEQ ID NO:73。
例如,所述转录因子和/或其功能活性片段的表达提高包含所述转录因子和/或其功能活性片段的合成量提高。例如,本申请的方法中与转录因子和/或其功能活性片段的表达和/或活性 未改变的TIL相比,使所述TIL的至少一种转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例可以提高至少约5%以上。例如,表达转录因子和/或其功能活性片段的细胞比例可以提高至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、或至少约5%。例如,表达转录因子和/或其功能活性片段的细胞比例可以从0%到可以观测的细胞比例。例如,表达转录因子和/或其功能活性片段的细胞比例可以提高到至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、或至少约1%。例如,表达转录因子和/或其功能活性片段的细胞比例可以通过细胞流式仪对共同表达的标记物进行检测。
例如,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高。
例如,与转录因子和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达转录因子和/或其功能活性片段的细胞比例提高至少约5%以上。例如,表达转录因子和/或其功能活性片段的细胞比例可以提高至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、或至少约5%。
例如,所述使所述TIL的转录因子和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达转录因子和/或其功能活性片段的细胞比例为至少约5%以上。例如,表达转录因子和/或其功能活性片段的细胞比例可以为至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、 或至少约5%。例如,表达转录因子和/或其功能活性片段的细胞比例可以通过细胞流式仪对共同表达的标记物进行检测。
使TIL的微小RNA和/或其功能活性片段 的表达提高和/或活性增强
1.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养。
2.根据实施方案1所述的方法,所述方法包含:使所述TIL与所述饲养细胞共培养之后,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强。
3.根据实施方案1-2中任一项所述的方法,所述方法包含:使所述TIL与所述饲养细胞共培养之前,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强。
4.根据实施方案1-3中任一项所述的方法,所述方法包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触之后且在所述TIL与所述饲养细胞共培养之前使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强。
5.根据实施方案1-4中任一项所述的方法,所述方法包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触基本上同时使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强。
6.根据实施方案1-5中任一项所述的方法,所述方法包含:在所述TIL与所述饲养细胞共培养基本上同时使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强。
7.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强,其中所述TIL包含与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养获得的TIL。
8.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中所述TIL包含使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL。
9.根据实施方案1-8中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
10.根据实施方案9所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提 高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
11.根据实施方案10所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
12.根据实施方案1-11中任一项所述的方法,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将编码所述微小RNA和/或其功能活性片段的核酸引入所述TIL中。
13.根据实施方案12所述的方法,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
14.根据实施方案12-13中任一项所述的方法,其中编码所述微小RNA和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
15.根据实施方案13-14中任一项所述的方法,其中所述载体包含病毒载体。
16.根据实施方案15所述的方法,其中所述病毒载体包含逆转录病毒载体。
17.根据实施方案16所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
18.根据实施方案1-17中任一项所述的方法,所述微小RNA和/或其功能活性片段包含使免疫细胞增殖能力和/或细胞杀伤活性提高的微小RNA。
19.根据实施方案1-18中任一项所述的方法,所述微小RNA和/或其功能活性片段包含miR155或其功能活性片段。
20.根据实施方案1-19中任一项所述的方法,所述微小RNA包含如SEQ ID NO:74、75、79和/或82所示的序列。
21.根据实施方案1-20中任一项所述的方法,所述微小RNA与标记序列直接或间接连接,所述标记序列在细胞中表达为细胞表面的标记物。
22.根据实施方案21所述的方法,所述标记序列编码EGFR或其截短体。
23.根据实施方案21-22中任一项所述的方法,所述标记序列编码EGFR的胞外结构域和/或跨膜域。
24.根据实施方案21-23中任一项所述的方法,所述标记序列编码的表达产物不包含EGFR的胞内结构域。
25.根据实施方案21-24中任一项所述的方法,所述标记序列包含如SEQ ID NO:78和/或80所示的序列。
26.根据实施方案1-25中任一项所述的方法,所述微小RNA和/或其功能活性片段的表达提高包含所述微小RNA和/或其功能活性片段的合成量提高。
27.根据实施方案1-26中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高。
28.根据实施方案1-27中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高至少约5%以上。
29.根据实施方案1-28中任一项所述的方法,所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达微小RNA和/或其功能活性片段的细胞比例为至少约5%以上。
30.根据实施方案1-29中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
31.根据实施方案30所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
32.根据实施方案30-31中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述饲养细胞共培养。
33.根据实施方案30-32中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述饲养细胞共培养。
34.根据实施方案33所述的方法,所述第一阶段体外扩增进行至少约7天。
35.根据实施方案33-34中任一项所述的方法,所述第一阶段体外扩增进行约7天至约14天。
36.根据实施方案33-35中任一项所述的方法,所述第二阶段体外扩增进行至少约7天。
37.根据实施方案33-36中任一项所述的方法,所述第二阶段体外扩增进行约7天至约14天。
38.根据实施方案1-37中任一项所述的方法,使所述TIL在与T细胞激活剂和/或T细胞生长因子接触至少约2小时之后与所述饲养细胞共培养。
39.根据实施方案1-38中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时至约72小时之后与所述饲养细胞共培养。
40.根据实施方案1-39中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约12小时至约48小时之后与所述饲养细胞共培养。
41.根据实施方案1-39中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
42.根据实施方案1-41中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
43.根据实施方案1-42中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
44.根据实施方案1-43中任一项所述的方法,所述饲养细胞为外周单个核细胞。
45.根据实施方案1-44中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
46.根据实施方案1-45中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
47.根据实施方案1-46中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
48.根据实施方案47所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
49.根据实施方案1-48中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂接触。
50.根据实施方案49所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂接触。
51.根据实施方案1-50中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述T细胞激活剂接触。
52.根据实施方案1-51中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述 TIL与所述T细胞激活剂接触。
53.根据实施方案1-52中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种:分化簇80(CD80)、CD86、CD276、4-1BB配体(4-1BBL)、CD27、CD30、CD134、CD275、CD40、CD258、以及它们的功能活性片段。
54.根据实施方案1-53中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、疱疹病毒进入介质(HVEM)、CD40L、OX40和4-1BB。
55.根据实施方案1-54中任一项所述的方法,所述T细胞激活剂包含CD3激动剂和/或CD28激动剂。
56.根据实施方案1-55中任一项所述的方法,所述T细胞激活剂包含CD3激动剂。
57.根据实施方案1-56中任一项所述的方法,所述T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
58.根据实施方案1-57中任一项所述的方法,所述T细胞激活剂包含CD28激动剂。
59.根据实施方案1-58中任一项所述的方法,所述T细胞激活剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段。
60.根据实施方案1-59中任一项所述的方法,所述使TIL与所述T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;和(3)将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
61.根据实施方案60所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为至少约30ng/mL。
62.根据实施方案60-61中任一项所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为约30ng/mL-约300ng/mL。
63.根据实施方案60-62中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
64.根据实施方案60-63中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
65.根据实施方案63-64中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
66.根据实施方案60-65中任一项所述的方法,所述固相介质包含聚合物。
67.根据实施方案60-66中任一项所述的方法,每mg所述固相介质中包含的每一种所述T细胞激活剂的量各自独立地至少为约25μg。
68.根据实施方案60-67中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
69.根据实施方案60-68中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
70.根据实施方案1-69中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
71.根据实施方案70所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
72.根据实施方案70-71中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂以及所述T细胞生长因子接触。
73.根据实施方案70-72中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与T细胞生长因子接触。
74.根据实施方案1-73中任一项所述的方法,使所述TIL基本上同时与所述T细胞激活剂以及所述T细胞生长因子接触。
75.根据实施方案1-74中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
76.根据实施方案1-75中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
77.根据实施方案1-76中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
78.根据实施方案1-77中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
79.根据实施方案1-78中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
80.根据实施方案79所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
81.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的微小RNA和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。
82.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群的微小RNA和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。
83.根据实施方案82所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
84.根据实施方案82-83中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
85.根据实施方案81-84中任一项所述的方法,所述步骤(A)进行约7天至约14天。
86.根据实施方案81-85中任一项所述的方法,所述步骤(B)进行约7天至约14天。
87.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的微小RNA和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL群。
88.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群的微小RNA和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B) 得到第三TIL群;
(C)使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL群。
89.根据实施方案88所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
90.根据实施方案88-89中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
91.根据实施方案87-90中任一项所述的方法,所述步骤(A)进行约7天至约14天。
92.根据实施方案87-91中任一项所述的方法,所述步骤(B)进行约0天至约8天。
93.根据实施方案87-92中任一项所述的方法,所述步骤(C)进行约5天至约14天。
94.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群的微小RNA和/或其功能活性片段的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;
(D)使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。
95.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
(C)使所述第三TIL群的微小RNA和/或其功能活性片段的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;
(D)使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。
96.根据实施方案95所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
97.根据实施方案95-96中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
98.根据实施方案94-97中任一项所述的方法,所述步骤(A)进行约7天至约14天。
99.根据实施方案94-98中任一项所述的方法,所述步骤(B)进行约0天至约4天。
100.根据实施方案94-99中任一项所述的方法,所述步骤(C)进行约0天至约4天。
101.根据实施方案94-100中任一项所述的方法,所述步骤(D)进行约5天至约14天。
102.根据实施方案81-101中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
103.根据实施方案102所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
104.根据实施方案103所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
105.根据实施方案81-104中任一项所述的方法,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将编码所述微小RNA和/或其功能活性片段的核酸引入所述TIL中。
106.根据实施方案105所述的方法,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
107.根据实施方案105-106中任一项所述的方法,其中编码所述微小RNA和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
108.根据实施方案106-107中任一项所述的方法,其中所述载体包含病毒载体。
109.根据实施方案108所述的方法,其中所述病毒载体包含逆转录病毒载体。
110.根据实施方案109所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
111.根据实施方案81-110中任一项所述的方法,所述微小RNA和/或其功能活性片段包含使免疫细胞增殖能力和/或细胞杀伤活性提高的微小RNA。
112.根据实施方案81-111中任一项所述的方法,所述微小RNA和/或其功能活性片段包含miR155或其功能活性片段。
113.根据实施方案81-112中任一项所述的方法,所述微小RNA包含如SEQ ID NO:74、75、79和/或82所示的序列。
114.根据实施方案81-113中任一项所述的方法,所述微小RNA与标记序列直接或间接连接,所述标记序列在细胞中表达为细胞表面的标记物。
115.根据实施方案114所述的方法,所述标记序列编码EGFR或其截短体。
116.根据实施方案114-115中任一项所述的方法,所述标记序列编码EGFR的胞外结构域和/或跨膜域。
117.根据实施方案114-116中任一项所述的方法,所述标记序列编码的表达产物不包含EGFR的胞内结构域。
118.根据实施方案114-117中任一项所述的方法,所述标记序列包含如SEQ ID NO:78和/或80所示的序列。
119.根据实施方案81-118中任一项所述的方法,所述微小RNA和/或其功能活性片段的表达提高包含所述微小RNA和/或其功能活性片段的合成量提高。
120.根据实施方案81-119中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高。
121.根据实施方案81-120中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高至少约5%以上。
122.根据实施方案81-121中任一项所述的方法,所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达微小RNA和/或其功能活性片段的细胞比例为至少约5%以上。
123.根据实施方案81-122中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触至少约2小时之后与所述饲养细胞共培养。
124.根据实施方案81-123中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时至约72小时之后与所述饲养细胞共培养。
125.根据实施方案81-124中任一项所述的方法,使所述TIL在与所述T细胞激活剂 和/或所述T细胞生长因子接触约12小时至约48小时之后与所述饲养细胞共培养。
126.根据实施方案81-124中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
127.根据实施方案81-126中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
128.根据实施方案81-127中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
129.根据实施方案81-128中任一项所述的方法,所述饲养细胞为外周单个核细胞。
130.根据实施方案81-129中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
131.根据实施方案81-130中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
132.根据实施方案81-131中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
133.根据实施方案132所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
134.根据实施方案81-133中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种:分化簇80(CD80)、CD86、CD276、4-1BB配体(4-1BBL)、CD27、CD30、CD134、CD275、CD40、CD258、以及它们的功能活性片段。
135.根据实施方案81-134中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、疱疹病毒进入介质(HVEM)、CD40L、OX40和4-1BB。
136.根据实施方案81-135中任一项所述的方法,所述T细胞激活剂包含CD3激动剂和/或CD28激动剂。
137.根据实施方案81-136中任一项所述的方法,所述T细胞激活剂包含CD3激动剂。
138.根据实施方案81-137中任一项所述的方法,所述T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
139.根据实施方案81-138中任一项所述的方法,所述T细胞激活剂包含CD28激动剂。
140.根据实施方案81-139中任一项所述的方法,所述T细胞激活剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段。
141.根据实施方案81-140中任一项所述的方法,所述使TIL与所述T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;和(3)将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
142.根据实施方案141所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为至少约30ng/mL。
143.根据实施方案141-142中任一项所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为约30ng/mL-约300ng/mL。
144.根据实施方案141-143中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
145.根据实施方案141-144中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
146.根据实施方案144-145中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
147.根据实施方案141-146中任一项所述的方法,所述固相介质包含聚合物。
148.根据实施方案141-147中任一项所述的方法,每mg所述固相介质中包含的每一种所述T细胞激活剂的量各自独立地至少为约25μg。
149.根据实施方案141-148中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
150.根据实施方案141-149中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
151.根据实施方案81-150中任一项所述的方法,使所述TIL基本上同时与所述T细胞激活剂以及所述T细胞生长因子接触。
152.根据实施方案81-151中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
153.根据实施方案81-152中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
154.根据实施方案81-153中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
155.根据实施方案81-154中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
156.根据实施方案81-155中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
157.根据实施方案156所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
158.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触。
159.根据实施方案158所述的方法,所述方法包含:使所述TIL与CD28激动剂接触之后,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强。
160.根据实施方案158-159中任一项所述的方法,所述方法包含:使所述TIL与CD28激动剂接触之前,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强。
161.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强,其中所述TIL包含与CD28激动剂接触获得的TIL。
162.一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL与CD28激动剂接触,其中所述TIL包含使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL。
163.根据实施方案158-162中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
164.根据实施方案163所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
165.根据实施方案164所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细 胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
166.根据实施方案158-165中任一项所述的方法,与在体外扩增阶段未曾与所述CD28激动剂接触的相应TIL相比,在至少一个体外扩增阶段中与所述CD28激动剂接触过的所述TIL显示出改善的基因编辑效果。
167.根据实施方案166所述的方法,所述改善的基因编辑效果包含提高的基因敲除效率。
168.根据实施方案158-167中任一项所述的方法,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将编码所述微小RNA和/或其功能活性片段的核酸引入所述TIL中。
169.根据实施方案168所述的方法,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
170.根据实施方案168-169中任一项所述的方法,其中编码所述微小RNA和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
171.根据实施方案169-170中任一项所述的方法,其中所述载体包含病毒载体。
172.根据实施方案171所述的方法,其中所述病毒载体包含逆转录病毒载体。
173.根据实施方案172所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
174.根据实施方案158-173中任一项所述的方法,所述微小RNA和/或其功能活性片段包含使免疫细胞增殖能力和/或细胞杀伤活性提高的微小RNA。
175.根据实施方案158-174中任一项所述的方法,所述微小RNA和/或其功能活性片段包含miR155或其功能活性片段。
176.根据实施方案158-175中任一项所述的方法,所述微小RNA包含如SEQ ID NO:74、75、79和/或82所示的序列。
177.根据实施方案158-176中任一项所述的方法,所述微小RNA与标记序列直接或间接连接,所述标记序列在细胞中表达为细胞表面的标记物。
178.根据实施方案177所述的方法,所述标记序列编码EGFR或其截短体。
179.根据实施方案177-178中任一项所述的方法,所述标记序列编码EGFR的胞外结构域和/或跨膜域。
180.根据实施方案177-179中任一项所述的方法,所述标记序列编码的表达产物不包含EGFR的胞内结构域。
181.根据实施方案177-180中任一项所述的方法,所述标记序列包含如SEQ ID  NO:78和/或80所示的序列。
182.根据实施方案158-182中任一项所述的方法,所述微小RNA和/或其功能活性片段的表达提高包含所述微小RNA和/或其功能活性片段的合成量提高。
183.根据实施方案158-182中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高。
184.根据实施方案158-183中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高至少约5%以上。
185.根据实施方案158-184中任一项所述的方法,所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达微小RNA和/或其功能活性片段的细胞比例为至少约5%以上。
186.根据实施方案158-185中任一项所述的方法,其中,使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与CD28激动剂接触。
187.根据实施方案186所述的方法,其中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使经所述第一阶段体外扩增的TIL与所述CD28激动剂接触。
188.根据实施方案187所述的方法,所述第一阶段体外扩增进行至少约7天。
189.根据实施方案187-188中任一项所述的方法,所述第一阶段体外扩增进行约7天至约14天。
190.根据实施方案187-189中任一项所述的方法,所述第二阶段体外扩增进行至少约7天。
191.根据实施方案187-190中任一项所述的方法,所述第二阶段体外扩增进行约7天至约14天。
192.根据实施方案158-191中任一项所述的方法,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段、和/或CD86和/或其功能活性片段。
193.根据实施方案158-192中任一项所述的方法,所述方法还包含:使源自肿瘤组织 且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述CD28激动剂之外的其它T细胞激活剂接触。
194.根据实施方案193所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述其它T细胞激活剂接触。
195.根据实施方案193-194中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述其它T细胞激活剂接触。
196.根据实施方案193-195中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述其它T细胞激活剂接触。
197.根据实施方案193-196中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及所述其它T细胞激活剂接触。
198.根据实施方案193-197中任一项所述的方法,所述其它T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、HVEM、CD40L、OX40和4-1BB。
199.根据实施方案193-198中任一项所述的方法,所述其它T细胞激活剂包含CD3激动剂。
200.根据实施方案193-199中任一项所述的方法,所述其它T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
201.根据实施方案193-200中任一项所述的方法,所述使TIL与所述CD28激动剂以及所述其它T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述CD28激动剂以及所述其它T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述CD28激动剂以及所述其它T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;(3)将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
202.根据实施方案201所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为至少约30ng/mL。
203.根据实施方案201-202中任一项所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为约30ng/mL-约300ng/mL。
204.根据实施方案201-203中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
205.根据实施方案201-204中任一项所述的方法,所述固相介质的直径为约1纳米至 约500纳米。
206.根据实施方案204-205中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
207.根据实施方案201-206中任一项所述的方法,所述固相介质包含聚合物。
208.根据实施方案201-207中任一项所述的方法,每mg所述固相介质包含至少约25μg的所述CD28激动剂以及所述其它T细胞激活剂。
209.根据实施方案201-208中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
210.根据实施方案201-209中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
211.根据实施方案158-210中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL在与CD28激动剂接触一定时间之后与饲养细胞共培养。
212.根据实施方案211所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
213.根据实施方案211-212中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL与CD28激动剂接触且使所述TIL与所述饲养细胞共培养。
214.根据实施方案211-213中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述饲养细胞共培养。
215.根据实施方案211-214中任一项所述的方法,使所述TIL在与所述CD28激动剂接触至少约2小时之后与所述饲养细胞共培养。
216.根据实施方案211-215中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时至约72小时之后与所述饲养细胞共培养。
217.根据实施方案211-216中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约12小时至约48小时之后与所述饲养细胞共培养。
218.根据实施方案211-216中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培 养。
219.根据实施方案211-218中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
220.根据实施方案211-219中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
221.根据实施方案211-220中任一项所述的方法,所述饲养细胞为外周单个核细胞。
222.根据实施方案211-221中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
223.根据实施方案211-222中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
224.根据实施方案211-223中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
225.根据实施方案211-224中任一项所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
226.根据实施方案158-225中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与T细胞生长因子接触。
227.根据实施方案226所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
228.根据实施方案226-227中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述CD28激动剂以及所述T细胞生长因子接触。
229.根据实施方案226-228中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与T细胞生长因子接触。
230.根据实施方案226-229中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及所述T细胞生长因子接触。
231.根据实施方案226-230中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
232.根据实施方案226-231中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
233.根据实施方案226-232中任一项所述的方法,所述TIL与所述T细胞生长因子 接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
234.根据实施方案226-233中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
235.根据实施方案158-234中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
236.根据实施方案235所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
237.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
(B)使所述第二TIL群的微小RNA和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触,其中,经所述步骤(B)得到第三TIL群。
238.一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
(A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
(B)使所述第二TIL群的微小RNA和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触,其中,经所述步骤(B)得到第三TIL群。
239.根据实施方案238所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
240.根据实施方案238-239中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
241.根据实施方案237-240中任一项所述的方法,所述步骤(A)进行约7天至约14天。
242.根据实施方案237-241中任一项所述的方法,所述步骤(B)进行约7天至约14天。
243.根据实施方案237-242中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
244.根据实施方案243所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比 例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
245.根据实施方案244所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
246.根据实施方案237-245中任一项所述的方法,与在体外扩增阶段未曾与所述CD28激动剂接触的相应TIL相比,在至少一个体外扩增阶段中与所述CD28激动剂接触过的所述TIL显示出改善的基因编辑效果。
247.根据实施方案246所述的方法,所述改善的基因编辑效果包含提高的基因敲除效率。
248.根据实施方案237-247中任一项所述的方法,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将编码所述微小RNA和/或其功能活性片段的核酸引入所述TIL中。
249.根据实施方案248所述的方法,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
250.根据实施方案248-249中任一项所述的方法,其中编码所述微小RNA和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
251.根据实施方案249-250中任一项所述的方法,其中所述载体包含病毒载体。
252.根据实施方案251所述的方法,其中所述病毒载体包含逆转录病毒载体。
253.根据实施方案252所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
254.根据实施方案237-253中任一项所述的方法,所述微小RNA和/或其功能活性片段包含使免疫细胞增殖能力和/或细胞杀伤活性提高的微小RNA。
255.根据实施方案237-254中任一项所述的方法,所述微小RNA和/或其功能活性片段包含miR155或其功能活性片段。
256.根据实施方案237-255中任一项所述的方法,所述微小RNA包含如SEQ ID NO:74、75、79和/或82所示的序列。
257.根据实施方案237-256中任一项所述的方法,所述微小RNA与标记序列直接或间接连接,所述标记序列在细胞中表达为细胞表面的标记物。
258.根据实施方案257所述的方法,所述标记序列编码EGFR或其截短体。
259.根据实施方案257-258中任一项所述的方法,所述标记序列编码EGFR的胞外结 构域和/或跨膜域。
260.根据实施方案257-259中任一项所述的方法,所述标记序列编码的表达产物不包含EGFR的胞内结构域。
261.根据实施方案257-260中任一项所述的方法,所述标记序列包含如SEQ ID NO:78和/或80所示的序列。
262.根据实施方案237-261中任一项所述的方法,所述微小RNA和/或其功能活性片段的表达提高包含所述微小RNA和/或其功能活性片段的合成量提高。
263.根据实施方案237-262中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高。
264.根据实施方案237-263中任一项所述的方法,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高至少约5%以上。
265.根据实施方案237-264中任一项所述的方法,所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达微小RNA和/或其功能活性片段的细胞比例为至少约5%以上。
266.根据实施方案237-265中任一项所述的方法,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段、和/或CD86和/或其功能活性片段。
267.根据实施方案237-266中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及其它T细胞激活剂接触。
268.根据实施方案267所述的方法,所述其它T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、HVEM、CD40L、OX40和4-1BB。
269.根据实施方案267-268中任一项所述的方法,所述其它T细胞激活剂包含CD3激动剂。
270.根据实施方案267-269中任一项所述的方法,所述其它T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
271.根据实施方案267-270中任一项所述的方法,所述使TIL与所述CD28激动剂以及所述其它T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述CD28激动剂 以及所述其它T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述CD28激动剂以及所述其它T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;(3)将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
272.根据实施方案271所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为至少约30ng/mL。
273.根据实施方案271-272中任一项所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为约30ng/mL-约300ng/mL。
274.根据实施方案271-273中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
275.根据实施方案271-274中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
276.根据实施方案274-275中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
277.根据实施方案271-276中任一项所述的方法,所述固相介质包含聚合物。
278.根据实施方案271-277中任一项所述的方法,每mg所述固相介质包含至少约25μg的所述CD28激动剂以及所述其它T细胞激活剂。
279.根据实施方案271-278中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
280.根据实施方案271-279中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
281.根据实施方案237-280中任一项所述的方法,使所述TIL在与所述CD28激动剂接触至少约2小时之后与饲养细胞共培养。
282.根据实施方案281所述的方法,使所述TIL在与所述CD28激动剂接触约6小时至约72小时之后与所述饲养细胞共培养。
283.根据实施方案281-282中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约12小时至约48小时之后与所述饲养细胞共培养。
284.根据实施方案281-282中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培 养。
285.根据实施方案281-284中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
286.根据实施方案281-285中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
287.根据实施方案281-286中任一项所述的方法,所述饲养细胞为外周单个核细胞。
288.根据实施方案281-287中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
289.根据实施方案281-288中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
290.根据实施方案281-289中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
291.根据实施方案281-290中任一项所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
292.根据实施方案237-291中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及T细胞生长因子接触。
293.根据实施方案237-292中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
294.根据实施方案237-293中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
295.根据实施方案237-294中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
296.根据实施方案237-295中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
297.根据实施方案237-296中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
298.根据实施方案297所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
299.一种肿瘤浸润淋巴细胞(TIL),所述TIL经过实施方案1-298中任一项所述的方法获得。
300.一种组合物,其包含实施方案299所述的TIL。
301.一种药物组合物,其包含实施方案299所述的TIL和/或实施方案300所述的组合物,以及任选地药学上可接受的载体。
302.一种影响肿瘤细胞生长的方法,包含向受试者施用实施方案299所述的TIL、实施方案300所述的组合物和/或实施方案301所述的药物组合物。
303.实施方案299所述的TIL、实施方案300所述的组合物和/或实施方案301所述的药物组合物在制备药物中的应用,所述药物用于预防和/或治疗肿瘤。
304.根据实施方案303所述的应用,其中,所述肿瘤为实体瘤。
305.根据实施方案303-304中任一项所述的应用,其中,所述肿瘤选自以下组的一种或多种:黑色素瘤、卵巢癌、宫颈癌、肺癌、膀胱癌、乳腺癌、头颈癌、胰腺癌、肝癌、胃癌、结直肠癌、和肾癌。
例如,本申请的方法中使TIL的至少一种目标基因的表达提高和/或活性增强可以包含,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强包含将编码所述微小RNA和/或其功能活性片段的核酸引入所述TIL中。
例如,其中所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强可以包含将包含所述核酸的载体引入所述TIL中。例如,其中编码所述微小RNA和/或其功能活性片段的核酸被整合到所述TIL的基因组中。例如,当所述TIL的微小RNA和/或其功能活性片段可以长期和/或持续在所述TIL中表达。
例如,其中所述载体包含病毒载体。例如,其中所述病毒载体包含逆转录病毒载体。例如,其中所述逆转录病毒载体包含慢病毒载体。
例如,所述微小RNA和/或其功能活性片段包含使免疫细胞增殖能力和/或细胞杀伤活性提高的微小RNA。
例如,所述微小RNA和/或其功能活性片段包含miR155或其功能活性片段。
例如,所述微小RNA包含如SEQ ID NO:74、75、79和/或82所示的序列。
例如,本申请的微小RNA包含miR155或其功能活性片段,例如所述miR155或其功能活性片段可以如SEQ ID NO:74和/或82所示。
例如,本申请的目标基因还可以包含调控翻译起始的元件。例如,本申请的调控翻译起始的元件可以包含IRES。例如,本申请的目标基因还可以包含如SEQ ID NO:77所示核酸片段。
例如,本申请的目标基因还可以包含启动子。例如,本申请的启动子可以包含U6启动子。例如,本申请的目标基因还可以包含如SEQ ID NO:76所示核酸片段。
例如,本申请的目标基因还可以包含增加目标基因表达量的元件。例如,本申请的增加目标基因表达量的元件可以包含WPRE。例如,本申请的目标基因还可以包含如SEQ ID NO:81所示核酸片段。
例如,所述微小RNA可以与标记序列直接或间接连接,所述标记序列可以在细胞中表达为细胞表面的标记物。例如,所述标记序列编码EGFR或其截短体。例如,所述标记序列编码EGFR的胞外结构域和/或跨膜域。例如,所述标记序列编码的表达产物不包含EGFR的胞内结构域。例如,所述标记序列包含如SEQ ID NO:78和/或80所示的序列。
例如,本申请的目标基因可以包含如SEQ ID NO:74所示核酸片段、如SEQ ID NO:76所示核酸片段、如SEQ ID NO:77所示核酸片段和如SEQ ID NO:78所示核酸片段。例如,本申请的目标基因可以包含如SEQ ID NO:75所示核酸片段。
例如,本申请的目标基因可以包含如SEQ ID NO:80所示核酸片段、如SEQ ID NO:81所示核酸片段和如SEQ ID NO:82所示核酸片段。例如,本申请的目标基因可以包含如SEQ ID NO:79所示核酸片段。
例如,所述微小RNA和/或其功能活性片段的表达提高包含所述微小RNA和/或其功能活性片段的合成量提高。例如,本申请的方法中与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的至少一种微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例可以提高至少约5%以上。例如,表达微小RNA和/或其功能活性片段的细胞比例可以提高至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、或至少约5%。例如,表达微小RNA和/或其功能活性片段的细胞比例可以从0%到可以观测的细胞比例。例如,表达微小RNA和/或其功能活性片段的细胞比例可以提高到至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、至少约5%、或至少约1%。例如,表达微小RNA和/或其功能活性片段的细胞比例可以通过细胞流式仪对共同表达的标记物进行检测。
例如,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL 的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高。
例如,与微小RNA和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达微小RNA和/或其功能活性片段的细胞比例提高至少约5%以上。例如,表达微小RNA和/或其功能活性片段的细胞比例可以提高至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、或至少约5%。
例如,所述使所述TIL的微小RNA和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达微小RNA和/或其功能活性片段的细胞比例为至少约5%以上。例如,表达微小RNA和/或其功能活性片段的细胞比例可以为至少约100%、至少约90%、至少约80%、至少约70%、至少约60%、至少约50%、至少约40%、至少约30%、至少约20%、至少约19%、至少约18%、至少约17%、至少约16%、至少约15%、至少约14%、至少约13%、至少约12%、至少约11%、至少约10%、至少约9%、至少约8%、至少约7%、至少约6%、或至少约5%。例如,表达微小RNA和/或其功能活性片段的细胞比例可以通过细胞流式仪对共同表达的标记物进行检测。
不欲被任何理论所限,下文中的实施例仅仅是为了阐释本申请的方法和用途等,而不用于限制本申请发明的范围。
实施例
实施例1肿瘤浸润淋巴细胞(TIL)细胞的培养方法
1.1饲养细胞接收及制备
1.1.1单采血接收
记录单采血信息,批号及体积,并复温至室温。
1.1.2 PBMC(外周血单个核细胞)手动分离及冻存
使用75%酒精消毒血袋,转移至生物安全柜内。使用无菌剪刀剪开血袋后,将单采血转移至50mL离心管内,使用20mL注射器注入20mL PBS或生理盐水清洗血袋,将洗涤液一并转入50mL离心管内。每个50mL离心管内液体体积可以不超过30mL。将单采血3000g离心10分钟。离心过程中准备6-8支50mL离心管,加入已复温的淋巴细胞分离液(天津灏 洋Ficoll),20mL/支。离心结束后,弃掉上层血浆,使用PBS或生理盐水稀释细胞沉淀,将稀释后的血细胞混合液缓慢滴加上淋巴细胞分离液上层,可以不破坏界面,每管约加25mL样品,可以不超过28mL。
离心使用水平转子,500-600g离心15-30分钟,温度18-22℃,离心结束后得到的白膜层将处于生理盐水及淋巴细胞分离液Ficoll的分界面处。吸弃上层血浆及生理盐水,用移液管吸取中间白膜层至另一干净的50mL离心管内。使用PBS或生理盐水稀释收集到的白膜层,600g离心10分钟,室温。离心结束后弃上清,PBS或生理盐水清洗细胞一次,500g离心5分钟,室温。
如红细胞较多,离心结束后可以进行裂红,按照细胞沉淀体积与红细胞裂解液1:2至1:3加入红细胞裂解液,混匀,室温裂解10分钟中,中间轻柔混匀离心管2-3次,保证裂解效果,裂解完成后加入PBS或生理盐水清洗细胞。裂红后清洗细胞两次,400g离心6分钟,最后一次离心前取样计数。
弃上清,基础培养基重悬细胞,调整细胞密度约2-3×10 7个细胞/mL,液面高度可以不超过1厘米,每T225培养瓶中体积可以低于200mL;平铺状态下,X射线辐照50Gy。离心弃上清,根据计数结果冻存细胞,约1-2×10 8个细胞/mL,1-2mL/支;将细胞放入程序降温盒内转移至﹣80℃冰箱内冻存。
1.1.3 PBMC自动分离及冻存
将血袋的管路与cpro分离套件(Cytiva)输入端无菌接管。若血量大于120mL,进行预浓缩步骤,可以将血液体积浓缩至120mL以内。可以使用neatcell程序进行PBMC分离及洗涤,洗涤液为生理盐水,中间体积20mL;重悬液为基础培养基,添加80mL/批。分离后每供者PBMC为一袋100mL,在平铺状态下,液面高度可以不超过1厘米,X射线辐照50Gy。辐照后取样计数,使用culture wash程序收集细胞并洗涤三次,洗涤液为生理盐水;设置中间体积及终体积,使得每1×10 9个细胞不少于2mL;加入等量至2倍冻存液混匀。使用1倍冻存液调整细胞密度约为1×10 7个细胞/mL至2×10 8个细胞/mL,分装20mL/袋,程序降温仪内冻存,液氮保存。
1.2肿瘤组织接收及处理
1.2.1组织接收
接收供者的肿瘤组织及血样,核对样品信息并记录,打印相应样品标签。
1.2.2组织处理及培养
使用75%酒精消毒样品管及采血管,转移至生物安全柜内。根据上述PBMC手动分离及 冻存操作程序分离血样中PBMC细胞并进行冻存。取一种具有透气表面的培养瓶或培养袋,例如培养袋(Origen),加入300mL已复温的完全培养基,完全培养基可以任意地选用X-vivo15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,并添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2。取数个10厘米培养皿,加入适量培养基,使用无菌眼科镊从样品管中取出肿瘤组织于10厘米培养皿中,培养基量以刚没过肿瘤组织为准,观察组织形态并记录。洗涤组织并更换培养皿。使用眼科剪及眼科镊将进行初步剪切,去除脂肪组织及坏死组织,每块组织块继续剪碎至约27立方毫米大小。取非悬浮肿瘤组织块,使用20mL注射器去除内部活塞后,与培养袋连接,使用移液管将约1g组织块通过注射器转入培养袋内。将培养袋放入二氧化碳培养箱内进行培养。清理剪刀及镊子,并用75%酒精进行初步消毒后,超声清洗后进行灭菌,得到第一TIL群。
1.3步骤(A)体外扩增及收获
1.3.1步骤(A)体外扩增
根据细胞生长状态,每3-7天补液或半量换液,保证细胞营养。使用完全培养基,完全培养基可以任意地选用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,并添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2(双鹭)。步骤(A)的3-14天,例如可以第13或14天时取样计数,若细胞数目处于5×10 5至5×10 8之间时进入步骤(A)的收获步骤。
1.3.2步骤(A)的收获
收集步骤(A)体外扩增结束细胞,离心,弃去培养基,使用PBS或生理盐水洗涤细胞一次,获得经步骤(A)体外扩增的TIL(第二TIL群),并取样计数留取约5×10 5至2×10 8个细胞进入后续体外扩增步骤;取约5×10 5个细胞可以进行质量控制检测;其余细胞加入冻存液冻存,作为冻存的preREP TIL体外细胞。
1.4步骤(B)TIL活化
继续培养经步骤(A)体外扩增的TIL(第二TIL群),或者对冻存的preREP TIL体外细胞进行细胞复苏,进行步骤(B)的TIL活化。
使用完全培养基,完全培养基可以任意地选用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,调整细胞密度为5×10 5至2×10 6个细胞/mL,于悬浮24孔培养板内,1mL/孔, 添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2。各TIL细胞群的培养基中同时可以添加T细胞激活剂,例如添加CD3激动剂和/或CD28激动剂,例如,约30ng/mL的CD3抗体(Miltenyi Biotech,OKT3)、约30ng/mL的CD28抗体(Merck,15E8)、以约1:2-2:1的磁珠与TIL的比例加入磁珠(直径约1至10μm Dynabeads,Thermo Fisher)和/或以约1:100-1:2000的transACT(直径约100至500nm,Miltenyi)与TIL的比例加入transACT。培养约0-4天,获得第三TIL群。
1.5步骤(C)TIL细胞转导
转导前1天使用终浓度为15μg/mL的重组人纤维蛋白片段(Retronectin,Takara)包被24孔悬浮培养板,24孔板每孔250μL。避光,4℃过夜备用。取出包被好的24孔板,吸弃包被液,加入含2%BSA封闭液500μL室温封闭30分钟。吸弃封闭液,用含2.5%HEPES的洗板液500μL/孔洗板2次,吸弃洗板液。试验组用携带IL-12(氨基酸序列可以包含如SEQ ID NO:34-40中任一项所示的氨基酸序列)的逆转录病毒进行转导,GFP对照组用携带GFP的逆转录病毒进行转导。
携带IL-12的逆转录病毒的质粒构建可以是合成本申请的IL-12基因片段,用EcoRI+NotI酶切,回收外源片段IL-12。用EcoRI+NotI酶切质粒MP71,回收载体片段。用T4Ligase连接外源片段与载体片段,得到携带IL-12的逆转录病毒的质粒。携带GFP的逆转录病毒的质粒的构建采用类似的方法。
每孔加0.25-2mL逆转录病毒液,32℃,2000g,离心2小时,阴性对照组不进行细胞转导。弃去24孔板上清液,24孔板每孔加入第三TIL群,体积300-500μL,细胞浓度约为1×10 6个/mL。30-32℃,1000g,离心10分钟。离心完毕后,将培养板置于37℃,5%CO 2培养箱中培养,得到转导后细胞。转导后培养约0-4天,获得第四TIL群。
1.6步骤(D)TIL细胞转导后培养
在第四TIL细胞群中加入饲养细胞进行培养。TIL与饲养细胞接触的时间需要在步骤(B)的TIL与IL-2以及T细胞激活剂接触后的若干时间T n以后(各个试验组的T n可以取0小时到12天,例如24小时或48小时)。首先复苏1-5名供者混合的饲养细胞;将活化的TIL细胞、饲养细胞按照TIL细胞:饲养细胞约为1:200的比例混合,转入G-Rex100培养瓶或者透气袋内,补充完全培养基,每1-3天取样计数,并根据细胞状态补液或半量换液直至细胞总数大于1×10 9或步骤(D)体外扩增培养约5天至约14天,终止步骤(D)体外扩增的培养。
1.7肿瘤浸润淋巴细胞的收获
取步骤(D)扩增的细胞,离心后弃去培养基上清,并使用PBS或生理盐水或复方电解 质溶液清洗三次,获得经步骤(D)扩增的TIL(第五TIL群),第三次清洗时取样计数,根据计数结果,最后一次离心后弃上清,取3×10 6细胞送质量控制检测;其余全部细胞加入冻存液,调整细胞密度1-3×10 8个细胞/mL冻存。
实施例2 TIL细胞的转导效率检测
转导后的第14天开始,每隔3天用流式细胞仪(Beckman CouLter)检测本申请TIL细胞的转导效率。
图1显示的是,对于来源于供者A的TIL细胞,各组中CD4 +细胞的IL-12转导效率;
图2显示的是,对于来源于供者A的TIL细胞,各组中CD8 +细胞的IL-12转导效率。结果表明本申请的IL-12可以在TIL细胞中取得较高的转导效率,而且IL-12的转导效率显著高于GFP对照组。
实施例3 TIL细胞的扩增效率的检测
IL-2是调节T细胞生长的重要因子,本实施例检测本申请转导了IL-12的TIL细胞是否可以不依赖于IL-2而依然可以存活和/或扩增。
转导后的第8天开始,各组TIL细胞以相同的细胞总数重新铺板,并换用不含有IL-2的细胞培养基培养,即撤去IL-2进行培养。每隔3天用细胞计数仪分析TIL细胞的扩增效率及活率。其中扩增效率以标准化扩增率表示:将撤去IL-2当天(第0天)的细胞总数作为100%,第n天的标准化扩增率为第n天的细胞总数/第0天的细胞总数×100%;活率表示存活细胞数量占总细胞数量的百分比。
图3显示的是,对于来源于供者B的TIL细胞,各组TIL细胞的标准化扩增率;
结果表明,即使撤去IL-2,本申请的转导了IL-12的TIL细胞仍然可以具有更显著的扩增能力。
实施例4 TIL细胞的扩增情况检测
转导后的第8天开始,各组TIL细胞以相同的细胞总数重新铺板,3天后,进行扩增情况的检测。
根据CTG试剂盒(CellTiter-Glo Luminescent Cell Viability Assay,Promega)的说明书,将CTG底物(CellTiter-Glo Substrate)与CTG缓冲液(CellTiter-Glo Buffer)混合制备CTG反应液。将检测细胞悬液加入96孔微孔板中,50μL/孔,设置仅含培养基的孔作为荧光的背景值。每孔加入等体积的CTG反应液,水平摇床震摇2分钟并室温静置10分钟使荧光信号 稳定后,读取荧光值。
图4显示的是,对于来源于供者C的TIL细胞,各组TIL细胞的增殖能力。*表示p<0.05。结果表明,转导了IL-12的TIL细胞可以具有更显著的扩增能力。
实施例5 TIL细胞的细胞因子分泌情况检测
转导后的第8天开始,各组TIL细胞以相同的细胞总数重新铺板,同时加入CD3抗体(同立海源)对TIL细胞进行刺激。24小时后取上清进行细胞因子分泌检测。
细胞因子分泌检测方法可以参照细胞因子检测试剂盒(BD)的说明书,将人Th1/Th2/Th17细胞因子标准品冻干粉(BD)使用2mL Assay Diluent稀释液(BD)复溶(标准品原液各细胞因子浓度均为5000pg/mL)并按顺序:1:2,1:4,1:8,1:16,1:32,1:64,1:128,1:256,1:512,1:1024梯度稀释,标记为“标准品管”。取1管仅含有Assay Diluent稀释液作为参照。按照2μL/Beads/孔加入每种Capture Beads(BD),然后按照10μL/孔加入PE Detection Reagent检测试剂(BD)并混合配制为混合物(mix),按照22μL/孔加入V底96孔板内,随后按照10μL/孔加入各标准品和实验组的上清并混合,室温下避光孵育3小时。
孵育结束,每孔加入200μL Wash Buffer(BD),500g离心3分钟。离心结束,每孔加入100μL Wash Buffer(BD)重悬,进行流式分析。
图5、图6、图7和图8分别显示的是,对于来源于供者D的TIL细胞,各组TIL细胞在CD3抗体刺激后的细胞因子IL-2、IFN-γ、TNF-α和IL-10分别的分泌情况。****表示p<0.0001,***表示p<0.001,**表示p<0.01。结果表明,转导了IL-12的TIL细胞在CD3抗体刺激后可以具有更显著的细胞因子分泌能力。
转导后的第8天开始,各组TIL细胞以相同的细胞总数重新铺板,同时加入transACT(包含CD3抗体和CD28抗体的纳米材料,Miltenyi)对TIL细胞进行刺激。24小时后取上清进行细胞因子分泌检测。
图9、图10、图11和图12分别显示的是,对于来源于供者E的TIL细胞,各组TIL细胞在transACT刺激后的细胞因子IL-2、IL-6、TNF-α和IL-10分别的分泌情况。**表示p<0.01。结果表明,转导了IL-12的TIL细胞在CD3抗体和CD28抗体刺激后可以具有更显著的细胞因子分泌能力。
转导后的第8天开始,各组TIL细胞以相同的细胞总数重新铺板,对TIL细胞不进行刺激。24小时后取上清进行细胞因子分泌检测。
图13、图14、图15、图16和图17分别显示的是,对于来源于供者F的TIL细胞,各组TIL细胞的细胞因子IFN-γ、IL-2、TNF-α、IL-6和IL-10分别的分泌情况。****表示p<0.0001, ***表示p<0.001,**表示p<0.01。结果表明,转导了IL-12的TIL细胞可以具有更显著的细胞因子分泌能力。
转导后的第8天开始,各组TIL细胞以相同的细胞总数重新铺板,并换用不含有IL-2的细胞培养基培养,即撤去IL-2进行培养。撤去IL-2继续培养后的第15天取上清进行细胞因子分泌检测。
图18、图19和图20分别显示的是,对于来源于供者G的TIL细胞撤去IL-2进行培养,各组TIL细胞的细胞因子IFN-γ、IL-6和IL-10分别的分泌情况。****表示p<0.0001,***表示p<0.001。结果表明,转导了IL-12的TIL细胞在IL-2撤去的情况下可以具有更显著的细胞因子分泌能力。
实施例6 TIL细胞杀伤能力检测
转导后的第7天开始,将A375肿瘤细胞系以2×10 4/孔铺于96孔板中。次日,将各组TIL细胞以效靶比(TIL细胞:肿瘤细胞)为0.3:1或1:1的比例与上述A375细胞共培养。
根据细胞凋亡检测试剂(Incucyte Caspase-3/7 Green Dye for Apoptosis,Sartorius)的说明书,按照0.2μL/孔加入
Figure PCTCN2022089721-appb-000001
Caspase-3/7 Green Dye for Apoptosis,并按照25μL/孔加入培养基稀释Caspase 3/7 Green Dye。使用Incucyte记录仪(Sartorius)记录Caspase 3/7的活性来分析TIL对肿瘤细胞的杀伤能力,每3小时记录1次,总记录时长约5天。
图21显示的是,对于来源于供者H的TIL细胞,以效靶比0.3:1与肿瘤细胞共培养的杀伤能力检测结果。****表示p<0.0001。
图22显示的是,对于来源于供者H的TIL细胞,以效靶比1:1与肿瘤细胞共培养的杀伤能力检测结果。****表示p<0.0001。结果表明,转导了IL-12的TIL细胞可以具有更显著的细胞杀伤能力。
在共培养后的第24小时,取上清进行细胞因子分泌检测。
图23显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子IL-2分泌情况结果。***表示p<0.001。
图24显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子IL-6分泌情况结果。*表示p<0.05。
图25显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子IFN-γ分泌情况结果。****表示p<0.0001。
图26显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子IL-10分泌情况结果。***表示p<0.001,*表示p<0.05。
图27显示的是,以效靶比1:1或1:3与肿瘤细胞共培养的来源于供者H的TIL细胞的细胞因子TNF-α分泌情况结果。**表示p<0.01,*表示p<0.05。结果表明,转导了IL-12的TIL细胞在与肿瘤细胞接触时可以具有更显著的细胞因子分泌能力。
实施例7 TIL细胞的TCR克隆多样性检测
转导后的第8天开始,各组TIL细胞以相同的细胞总数重新铺板,并换用不含有IL-2的细胞培养基培养,即撤去IL-2进行培养。在转导后的第8天和第26天对TIL中T细胞受体(TCR)克隆多样性进行分析。
根据TCR谱系试剂盒(Beta Mark TCR Vβ Repertoire Kit,Beckman Coulter)的说明书,在A管至H管的8个管中分别加入4μL的Beta Mark TCR Vβ Repertoire Kit Tube A-H抗体,并在每个管中加入1μL的BV510标记的CD3抗体(BD)、1μL的PerCP-cy5.5标记的CD8抗体(BD)、1μL的PE-cy7标记的CD4抗体(BD)和0.01μL的eFluor 780标记的死活细胞染料(eBioscience)。将待测细胞分为8份,分别加入A管至H管,混合均匀,4℃孵育30分钟。染色结束,离心并弃去上清,使用PBS重悬洗涤1次,用于流式细胞仪检测。
按照TCR谱系试剂盒(Beta Mark TCR Vβ Repertoire Kit,Beckman Coulter)的说明书对TIL细胞的TCR多样性进行鉴定。表1显示的是,A管至H管的荧光与TCR Vβ克隆的对应关系。
表1 A管至H管的荧光与TCR Vβ克隆的对应关系
Figure PCTCN2022089721-appb-000002
Figure PCTCN2022089721-appb-000003
表2和图28显示的是,对于来源于供者I的TIL细胞,转导后的第8天的CD8 +T细胞TCR Vβ克隆的多样性。
表2转导后的第8天的CD8 +T细胞TCR Vβ克隆的多样性
Figure PCTCN2022089721-appb-000004
Figure PCTCN2022089721-appb-000005
表3和图29显示的是,对于来源于供者I的TIL细胞,转导后的第26天的CD8 +T细胞TCR Vβ克隆的多样性。其中TCR Vβ克隆为其它,可以是指该比例下的T细胞没有TCR谱系试剂盒可以鉴定的TCR Vβ。
表3转导后的第26天的CD8 +T细胞TCR Vβ克隆的多样性
Figure PCTCN2022089721-appb-000006
Figure PCTCN2022089721-appb-000007
表4和图30显示的是,对于来源于供者I的TIL细胞,转导后的第8天的CD4 +T细胞TCR Vβ克隆的多样性。
表4转导后的第8天的CD4 +T细胞TCR Vβ克隆的多样性
Figure PCTCN2022089721-appb-000008
Figure PCTCN2022089721-appb-000009
表5和图31显示的是,对于来源于供者I的TIL细胞,转导后的第26天的CD4 +T细胞TCR Vβ克隆的多样性。其中TCR Vβ克隆为其它,可以是指该比例下的T细胞没有TCR谱系试剂盒可以鉴定的TCR Vβ。
表5转导后的第26天的CD4 +T细胞TCR Vβ克隆的多样性
Figure PCTCN2022089721-appb-000010
Figure PCTCN2022089721-appb-000011
结果表明,未转导的TIL细胞在第26天时,CD8 +T细胞Vβ18、Vβ7.2、Vβ11、Vβ5.2、Vβ16、Vβ3、Vβ20、Vβ23、Vβ13.1、Vβ4、Vβ22、Vβ21.3、Vβ17、Vβ5.1、Vβ5.3和Vβ2消失,CD4 +T细胞Vβ7.2、Vβ5.2、Vβ11、Vβ16和Vβ20消失,意味着TCR克隆多样性的降低;转导了IL-12的TIL细胞可以保持更多的β链亚型,可以显著地长期保持TCR克隆的多样性,从而可以有助于实现对于肿瘤细胞更强的抗原识别和免疫应答能力。
实施例8 TIL细胞的体内存续以及分布检测
对免疫缺陷鼠(NOG小鼠,维通利华,品系代码408)进行皮下接种A375细胞,接种数量约为1×10 6个细胞/只。接种7天后,在肿瘤体积到达50-80mm 3左右,根据肿瘤体积大小对小鼠进行随机分组(如表6所示)。
表6分组情况
Figure PCTCN2022089721-appb-000012
各组尾静脉注射来源于供者J的TIL(未转导IL-12的TIL,未转导IL-12的TIL+IL-2,转导IL-12的TIL,等体积PBS作为空白对照),剂量为5×10 6个细胞/只,注射TIL细胞当日记为第0天。对于对照组2,同时进行腹腔注射IL-2,每12小时一次,连续6次,IL-2的注射剂量为1×10 5IU/次。注射TIL细胞后第6天和第21天,取出小鼠肿瘤、脾脏、骨髓、肺组织及血液(抗凝处理),用流式仪分析T细胞数量和组织动态分布。
图32,图33,图34,图35和图36分别显示的是,注射TIL细胞后第6天和第21天各个组织和/或肿瘤中T细胞的数量。结果表明,转导了IL-12的TIL细胞可以具有更长的体内存续时间,而且在肿瘤组织部位,转导了IL-12的TIL细胞可以具有更强的浸润和/或扩增能力。
实施例9饲养细胞不同添加时间培养的TIL增殖能力对比
实施例1的加入IL-2与不同形式的T细胞激活剂后的若干时间T n以后(T n可以取0小时到14天),将饲养细胞与肿瘤浸润淋巴细胞共培养。本实施例中T n选取0小时、6小时、12小时、24小时、48小时、72小时、5天、7天、和9天获得饲养细胞不同添加时间培养的TIL,并进行细胞计数的对比试验。
图37显示的是,饲养细胞不同添加时间培养的TIL的增殖能力分析结果。饲养细胞不同添加时间培养TIL的各组图中纵坐标的数值表示,体外扩增结束后相比于体外扩增开始前,TIL细胞数量扩增至的扩增倍数。4名供者来源的TIL增殖结果显示,加入OKT3和IL-2后的0小时后(即同时)添加饲养细胞培养的TIL,增殖能力弱于加入OKT3和IL-2后的24小 时或48小时后加饲养细胞培养的TIL。
实施例10饲养细胞不同添加时间培养的TIL流式检测对比
在实施例1的加入IL-2与不同形式的T细胞激活剂后的若干时间T n以后(T n可以取0小时到14天),将饲养细胞与肿瘤浸润淋巴细胞共培养。本实施例中T n选取0小时、6小时、12小时、24小时、48小时、72小时、5天、7天、和9天获得饲养细胞不同添加时间培养的TIL,并进行流式检测的对比试验。
TIL流式检测试验材料的来源
转录因子缓冲组(Transcription Factor Buffer Set),厂家BD,货号562574;V底96孔板,厂家Corning,货号3894;流式管,厂家Corning,货号352052。
本实施例流式抗体购自BD或Biolegend。将每组1×10 5至5×10 5个细胞样品,加入流式管或V底96孔板内。600g离心3分钟,弃上清。PBS清洗一次,流式管1mL/管,96孔板250μL/孔,弃上清。加入配制好的抗体工作液进行细胞表面染色,抗体(BD或Biolegend)浓度为1:100至1:200,含活性检测染料1:10000。流式管100μL/管,96孔板50μL/孔染色,2-8℃避光孵育30分钟。染色过程中配制转录因子染色所需试剂:使用转录因子缓冲组(BD,Transcription Factor Buffer Set)稀释4×固定破膜液(BD,Fixation/Permeabilization)为1×工作液A;使用双蒸水稀释5×通透清洗液(BD,Perm/Wash Buffer)为1×工作液B,四度预冷待用。染色结束后加入适量PBS清洗细胞2次(96孔板250μL/次,流式管1mL/次),600g离心3分钟,离心后弃上清。细胞固定、破膜:充分重悬细胞,加入适量(96孔板100μL/孔,流式管1mL/管)1×工作液A进行固定破膜,2-8℃避光孵育40-50分钟。固定破膜结束,加入1×工作液B清洗细胞(96孔板250μL/次,流式管2mL/次),2-8℃离心,350g离心6分钟,清洗两次。使用1×工作液B配制胞内抗体,抗体浓度为1:100至1:200,96孔板50μL/孔,流式管100μL/管,2-8℃避光染色30分钟。染色结束后,加入1×工作液B清洗细胞(96孔板250μL/次,流式管2mL/次),2-8℃离心,350g离心6分钟,清洗两次。表面染色结束后,PBS清洗细胞一次(96孔板250μL/次,流式管1mL/次),室温600g离心3分钟,离心后弃上清。使用100-500μL PBS重悬细胞,进行流式上机检测。
饲养细胞不同添加时间培养的TIL的流式结果分析如图38到图44所示。
图38和图39显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD45RA -CCR7 +中心记忆T细胞(Tcm)比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高中心记忆T细胞的比例。
图40显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD4 +CD25 +Foxp3 +调节性T细胞(Treg)比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更少的调节性T细胞的比例。
图41和图42显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的活化T细胞的比例,例如PD1 +、LAG3 +和/或CD28 +细胞比例更高。
图43显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD103 +CD39 +肿瘤特异性T细胞比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的肿瘤特异性T细胞的比例。
图44显示的是,加入OKT3和IL-2后0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的TCF1 +干细胞样T细胞比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的干细胞样T细胞的比例。
实施例11加入CD28激动剂刺激的TIL增殖能力检测
对于实施例1中各个试验组培养获得的TIL群进行细胞计数。
图45显示的是,添加不同形式的CD28激动剂的试验组以及对照组的增殖能力分析结果。图中纵坐标的数值表示,各个试验组体外扩增获得的TIL群相比于体外扩增开始前的TIL群,TIL细胞数量扩增至的扩增倍数。结果显示,四步骤划分法中的步骤(B)的体外扩增添加CD28抗体,获得的TIL增殖能力强于对照组(不添加CD28抗体)培养的TIL。
实施例12加入CD28激动剂刺激的TIL流式检测
对于实施例1中各个试验组体外扩增培养获得的TIL群进行流式检测。
添加不同形式的CD28激动剂的TIL的流式结果分析如图46到图50所示。
图46显示的是,混合抗体组与对照组培养所得的TIL细胞的T细胞亚群比例。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体,相比对照组(不加入CD28抗体),所得的TIL具有改善的T细胞亚群比例。例如,更高的活化T细胞(CD28 +、TIM3 +或41BB +)的比例,更低的调节性T细胞(Treg,例如CD4 +CD25 +Foxp3 +)比例,更高的干细胞样T细 胞(TCF1 +)比例,和/或更高的中心记忆T细胞(Tcm,例如CD45RA -CCR7 +)的比例。
图47显示的是,混合抗体组与对照组培养所得的TIL细胞的T细胞亚群比例。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体,相比对照组(不加入CD28抗体),所得的TIL具有改善的T细胞亚群比例。例如,更高的肿瘤特异性T细胞(CD103 +CD39 +)比例,更高的活化T细胞(CD25 +)的比例,和/或更低的调节性T细胞(Treg,例如CD4 +CD25 +Foxp3 +)比例。
图48显示的是,磁珠组与对照组培养所得的TIL细胞的T细胞亚群比例。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的磁珠),相比对照组(不加入CD28抗体),所得的TIL具有改善的T细胞亚群比例。例如,更高的活化T细胞(CD28 +、TIM3 +、PD1 +或41BB +)的比例,更高的干细胞样T细胞(TCF1 +)比例,和/或更高的中心记忆T细胞(Tcm,例如CD45RA -CCR7 +)的比例。
图49显示的是,磁珠组与对照组培养所得的TIL细胞的T细胞亚群比例。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的磁珠),相比对照组(不加入CD28抗体),所得的TIL具有改善的T细胞亚群比例。例如,更高的干细胞样T细胞(TCF1 +)比例,更高的活化T细胞(41BB +)的比例,更高的中心记忆T细胞(Tcm,例如CD45RA -CCR7 +)的比例,更低的调节性T细胞(Treg,例如CD4 +CD25 +Foxp3 +)比例,和/或更高的肿瘤特异性T细胞(CD103 +CD39 +)比例。
图50显示的是,纳米基质组与对照组培养所得的TIL细胞的T细胞亚群比例。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的transACT),相比对照组(不加入CD28抗体),所得的TIL具有改善的T细胞亚群比例。例如,更高的肿瘤特异性T细胞(CD103 +CD39 +)比例,更高的活化T细胞(CD25 +或PD1 +)的比例,和/或更高的中心记忆T细胞(Tcm,例如CD45RA -CCR7 +)的比例。
实施例13加入CD28激动剂刺激的TIL细胞杀伤能力检测
对于实施例1中各个试验组四步骤划分法中的步骤(B)体外扩增培养获得的TIL群进行细胞杀伤能力检测。
细胞准备
准备用于检测的各个试验组获得的TIL和用于共培养的靶细胞(例如Hela肿瘤细胞)。
检测步骤
用CFSE(5(6)-Carboxyfluorescein diacetate N-succinimidyl ester,Sigma,21888-25MG-F)标记肿瘤细胞:用PBS清洗肿瘤细胞,重悬肿瘤细胞于500μL的PBS中;将CFSE加入500 μL的PBS中,与500μL的肿瘤细胞PBS重悬液混合,至CFSE的终浓度为0.5μmol/L。37℃孵育6分钟后,加含10%FBS的培养基清洗,600g离心5分钟,用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基重悬肿瘤细胞浓度为5×10 5个细胞/mL。对各个试验组的TIL细胞600g离心5分钟,按照效靶比(TIL细胞与肿瘤细胞的比例)3:1重悬TIL细胞(即重悬TIL细胞浓度为1.5×10 6个细胞/mL)。于U底96孔板(Corning)中加入肿瘤细胞和TIL细胞各100μL,每组设置三个复孔。同时设置一组只包含肿瘤细胞的对照组并按照实验不同分组加入不同试剂。将孔板200g离心1分钟,置于37℃孵育4小时至过夜。
孵育完成后,600g离心3分钟,弃上清,每孔加入20μL胰酶,37℃培养箱内孵育3-5分钟消化肿瘤细胞,消化完成后加入180μL含10%FBS的培养基终止消化。将Dapi(碧云天,C0060)用1:100稀释,然后每孔加入20μL稀释后的Dapi。进行流式上机检测。
杀伤率%=Dapi +CFSE +细胞数/总CFSE +×100%。
图51显示的是,纳米基质组与对照组培养所得的TIL细胞的细胞杀伤能力。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的transACT),相比对照组(不加入CD28抗体),所得的TIL具有更高的细胞杀伤能力。
实施例14加入CD28激动剂刺激的TIL胞内因子表达检测
对于实施例1中各个试验组四步骤划分法中的步骤(B)体外扩增培养获得的TIL群进行胞内因子表达检测。
试验准备
配制胞内因子表达检测所需培养基:取T细胞培养基,按照体积比1:500添加CD107a抗体(BD)。
检测步骤
取各个试验组的TIL离心后,使用600μL上述胞内因子表达检测所需培养基重悬为1×10 6个细胞/mL,加入96孔板内,100μL/孔,置于37℃培养箱孵育过夜。
孵育结束后,200μL/孔PBS洗涤一次,600g离心3分钟,弃上清。配制抗体混合工作液进行细胞表面染色CD3/CD4/CD8(BD),抗体浓度为1:100,viability(1:10000),50μL/组染色,2-8℃避光孵育30分钟。染色结束后清洗细胞,使用PBS重悬,进行流式上机检测。
图52显示的是,混合抗体组与对照组培养所得的TIL细胞的胞内因子表达检测结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体,相比对照组(不加入CD28抗体),所得的TIL具有更高的胞内因子表达能力。例如,更高的CD107a表达能力。
图53显示的是,磁珠组与对照组培养所得的TIL细胞的胞内因子表达检测结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的磁珠),相比对照组(不加入CD28抗体),所得的TIL具有更高的胞内因子表达能力。例如,更高的CD107a表达能力。
图54显示的是,磁珠组与对照组培养所得的TIL细胞的胞内因子表达检测结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的磁珠),相比对照组(不加入CD28抗体),所得的TIL具有更高的胞内因子表达能力。例如,更高的CD107a表达能力。
图55显示的是,磁珠组与对照组培养所得的TIL细胞的胞内因子表达检测结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的磁珠),相比对照组(不加入CD28抗体),所得的TIL具有更高的胞内因子表达能力。例如,更高的CD107a表达能力。
图56显示的是,磁珠组与对照组培养所得的TIL细胞的胞内因子表达检测结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的磁珠),相比对照组(不加入CD28抗体),所得的TIL具有更高的胞内因子表达能力。例如,更高的CD107a表达能力。
图57显示的是,纳米基质组与对照组培养所得的TIL细胞的胞内因子表达检测结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的transACT),相比对照组(不加入CD28抗体),所得的TIL具有更高的胞内因子表达能力。例如,更高的CD107a表达能力、更高的IFN-γ表达能力或更高的GZMB表达能力。
实施例15加入CD28激动剂刺激的TIL细胞因子分泌检测
对于实施例1中各个试验组四步骤划分法中的步骤(B)体外扩增培养获得的TIL群进行细胞因子分泌检测。
图58显示的是,纳米基质组与对照组培养所得的TIL细胞的细胞因子分泌检测结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的transACT),相比对照组(不加入CD28抗体),所得的TIL具有更高的细胞因子分泌能力。例如,更高的IL-2分泌能力、更高的TNF分泌能力、或更高的IFN-γ分泌能力。
取各个试验组获得的TIL与肿瘤细胞过夜孵育,孵育结束后取上清液参照本实施例检测 步骤进行细胞因子分泌检测。
图59显示的是,纳米基质组与对照组培养所得的TIL细胞与肿瘤细胞共同孵育后的细胞因子分泌检测结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的transACT),相比对照组(不加入CD28抗体),所得的TIL具有更高的细胞因子分泌能力。例如,更高的IL-2分泌能力、更高的TNF分泌能力、或更高的IFN-γ分泌能力。
实施例16加入CD28激动剂刺激的TIL基因敲除效率检测
取实施例1中各个试验组在四步骤划分法中的步骤(B)体外扩增培养48小时后的TIL细胞,进行基因敲除效率检测。
用Nuclease-free water(商业来源:上海右凡生物科技有限公司;RT121-02)配制sgRNA(序列如SEQ ID NO:1所示,GGAGAATGACGAGTGGACCC),调节浓度至50μmol/L。取2μL gRNA加入PCR管中,Nuclease-free water作为阴性对照,在PCR仪中95℃孵育2分钟后,室温冷却10分钟。
按照体积比sgRNA:P3 Buffer:Cas9核酸酶=2:2:1,在含有sgRNA的PCR管中依次加入P3 Buffer(商业来源:Lonza;V4XP-3032)及61.7μmol/L Cas9核酸酶(商业来源:苏州克睿基因生物科技有限公司;C01-2019-11-001),将PCR管放入PCR仪,25℃孵育10分钟以形成RNP,放入4℃备用。
按照1mL/孔加入T细胞培养基,放置于CO 2培养箱中预热。取实施例1中各个试验组在四步骤划分法中的步骤(B)体外扩增培养48小时后的TIL细胞,混匀后进行计数,每个试验组样品取5×10 5个细胞加入P3 Buffer(20μL),混匀细胞;将细胞加入新的PCR管中,与5μL的RNP混合;将细胞与RNP的混合物加入电转条板中,在电转仪(Lonza)中进行电转(human T cell stimulated(E0115))。电转程序结束后,立即加入预热的180μL的T细胞培养基,将全部体积转移到24孔悬浮板中,放置于CO 2培养箱中进行培养。24小时后进行细胞计数,按照TIL:饲养细胞=1:200比例加入饲养细胞(辐照后的PBMC细胞),放置于CO 2培养箱中继续培养72小时。取培养结束后的各个试验组的TIL细胞进行细胞计数,每个试验组取2×10 5个细胞,500g离心3分钟,离心后吸弃上清。
配制流式检测混合抗体:取Fixable Viability Dye eFluor 780(商业来源:eBioscience;65-0865-18)在PBS中稀释10000倍;取100μL稀释后的Fixable Viability Dye eFluor 780的PBS溶液,分别加入1μL的TCR-αβ-APC(商业来源:eBioscience;17-9986-42)、1μL的BB515 Mouse Anti-Hu CD8(商业来源:BD Pharmingen;564526)、1μL的PE-Cy7 Mouse Anti-Hu  CD4(商业来源:BD Pharmingen;557852),混合均匀。
每个试验组的TIL细胞样品加入100μL上述流式检测混合抗体,混合均匀后冰上孵育30分钟;孵育结束后,500g离心3分钟,离心后吸弃上清,加入200μL PBS重悬。流式细胞仪行进检测,利用Flowjo软件分析TCRβ敲除效率。
图60显示的是,纳米基质组与对照组培养所得的TIL细胞的基因敲除效率结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的transACT),相比对照组(不加入CD28抗体),所得的TIL具有改善的基因敲除效率能力。例如,提高的TCRβ基因敲除效率。
图61显示的是,纳米基质组与对照组培养所得的TIL细胞的基因敲除效率结果。结果显示,四步骤划分法中的步骤(B)体外扩增添加CD28抗体(例如添加包含CD3抗体和CD28抗体的transACT),相比对照组(不加入CD28抗体),所得的TIL具有改善的基因敲除效率能力。例如,提高的TCRβ基因敲除效率。
实施例17 REP阶段结束后添加CD28激动剂的TIL增殖能力检测
参考实施例1得到源自肿瘤组织且未经体外扩增的第一TIL群,将第一TIL群经过相同方式的四步骤划分法中的步骤(A)、步骤(B)、步骤(C)和步骤(D)得到第五TIL群。将第五TIL群随机分为3组,各个试验组的T细胞培养基加入IL-2的同时,其中空白组不添加任何T细胞激活剂,未添加CD28激动剂组添加CD3抗体约30ng/mL,添加CD28激动剂组添加CD3激动剂和CD28激动剂,例如以约1:100-1:2000的transACT与TIL的比例加入transACT。培养3天得到的TIL(终末刺激细胞群),通过细胞活力检测方法使用CellTiter-Glo试剂盒(商业来源:Promega)的进行TIL细胞增殖能力的检测。
图62、图63和图64分别显示的是,对于不同供者来源的TIL,终末刺激阶段以不同方式进行体外扩增的试验组的增殖能力分析结果。图中纵坐标荧光值反映了各个试验组以不同方式进行终末刺激的TIL细胞的增殖能力。结果显示,终末刺激添加CD28激动剂,与终末刺激不添加CD28激动剂相比,具有类似的TIL增殖能力。
实施例18 TIL细胞的连续杀伤能力检测
1、TIL转导IL-12(氨基酸序列可以本申请任一项IL-12所示的氨基酸序列)后的第7天开始,将A375肿瘤细胞系以2e4/孔铺于96孔板中。
2、次日,将各组TIL细胞(NT:对照TIL和转导IL-12的TIL细胞)以效靶比(TIL细胞:肿瘤细胞)4:1的比例与上述肿瘤细胞共培养。
3、按照1.5μL/孔加入SuperView TM 488 Caspase-3/7,使用Incucyte记录仪(Sartorius)记录Caspase 3/7的活性来分析TIL对肿瘤细胞的杀伤能力,每3小时记录1次,总记录时长约3天,本次杀伤记为R1。
4、三天后,提前将A375肿瘤细胞系以2e4/孔铺于96孔板中。收集上一轮以组为单位收集各孔中的TIL,500g离心弃上清,适量培养液重悬TIL后计数。按照4:1的效靶比,向新鲜铺板的肿瘤细胞中加入等量TIL。
5、重复步骤3,本次杀伤记为R2。
6、重复4,5步骤,本次杀伤记为R3。
图65显示的是,转导IL-12的TIL细胞可以显示出更强的连续杀伤能力。
实施例19 TIL细胞的体内效果检测
对免疫缺陷鼠(NOG小鼠,维通利华,品系代码408)进行皮下接种A375细胞,接种数量为1×10 6个细胞。约7天后,在肿瘤体积到达50-80mm 3左右根据肿瘤体积大小对小鼠进行随机分组(如下表)。每只通过尾静脉注射对照TIL和转导IL-12的TIL细胞注射液,等体积PBS作为阴性对照,记为D0。NT+IL-2组进行腹腔注射IL-2,每天2次,连续6次。
各组小鼠每周测量两次肿瘤体积,转导IL-12的TIL细胞组显示出更为显著的抑瘤能力,抑瘤效果明显强于NT+IL-2组。同时,各组小鼠分别在多个时间点取外周血,用CBA法分析血清中的IFN-γ分泌。结果表明,转导IL-12的TIL细胞组比NT+IL-2组表现出更高和更为持久的IFN-γ分泌,与其更好的抑瘤效果一致。
组别 回输剂量 IL-2注射量(IU) 小鼠数量
PBS \ \ 8
NT+IL-2 5×10 7 2×10 4×3×BID 8
转导IL-12的TIL 5×10 7 \ 8
图66显示的是,转导IL-12的TIL细胞可以显示出更强的肿瘤体积抑制能力。图67显示的是,转导IL-12的TIL细胞可以显示出更高和更为持久的IFN-γ分泌能力。
实施例20
1.1饲养细胞接收及制备
1.1.1单采血接收
记录单采血信息,批号及体积,并复温至室温。
1.1.2 PBMC(外周血单个核细胞)手动分离及冻存
使用75%酒精消毒血袋,转移至生物安全柜内。使用无菌剪刀剪开血袋后,将单采血转移至50mL离心管内,使用20mL注射器注入20mL PBS或生理盐水清洗血袋,将洗涤液一并转入50mL离心管内。每个50mL离心管内液体体积可以不超过30mL。将单采血3000g离心10分钟。离心过程中准备6-8支50mL离心管,加入已复温的淋巴细胞分离液(天津灏洋Ficoll),20mL/支。离心结束后,弃掉上层血浆,使用PBS或生理盐水稀释细胞沉淀,将稀释后的血细胞混合液缓慢滴加上淋巴细胞分离液上层,可以不破坏界面,每管约加25mL样品,可以不超过28mL。
离心使用水平转子,500-600g离心15-30分钟,温度18-22℃,离心结束后得到的白膜层将处于生理盐水及淋巴细胞分离液Ficoll的分界面处。吸弃上层血浆及生理盐水,用移液管吸取中间白膜层至另一干净的50mL离心管内。使用PBS或生理盐水稀释收集到的白膜层,600g离心10分钟,室温。离心结束后弃上清,PBS或生理盐水清洗细胞一次,500g离心5分钟,室温。
如红细胞较多,离心结束后可以进行裂红,按照细胞沉淀体积与红细胞裂解液1:2至1:3加入红细胞裂解液,混匀,室温裂解10分钟中,中间轻柔混匀离心管2-3次,保证裂解效果,裂解完成后加入PBS或生理盐水清洗细胞。裂红后清洗细胞两次,400g离心6分钟,最后一次离心前取样计数。
弃上清,基础培养基重悬细胞,调整细胞密度约2-3×10 7个细胞/mL,液面高度可以不超过1厘米,每T225培养瓶中体积可以低于200mL;平铺状态下,X射线辐照50Gy。离心弃上清,根据计数结果冻存细胞,约1-2×10 8个细胞/mL,1-2mL/支;将细胞放入程序降温盒内转移至﹣80℃冰箱内冻存。
1.1.3 PBMC自动分离及冻存
将血袋的管路与cpro分离套件(Cytiva)输入端无菌接管。若血量大于120mL,进行预浓缩步骤,可以将血液体积浓缩至120mL以内。可以使用neatcell程序进行PBMC分离及洗涤,洗涤液为生理盐水,中间体积20mL;重悬液为基础培养基,添加80mL/批。分离后每供者PBMC为一袋100mL,在平铺状态下,液面高度可以不超过1厘米,X射线辐照50Gy。辐照后取样计数,使用culture wash程序收集细胞并洗涤三次,洗涤液为生理盐水;设置中间体积及终体积,使得每1×10 9个细胞不少于2mL;加入等量至2倍冻存液混匀。使用1倍冻存液调整细胞密度约为1×10 7个细胞/mL至2×10 8个细胞/mL,分装20mL/袋,程序降温仪内 冻存,液氮保存。
1.2肿瘤组织接收及处理
1.2.1组织接收
接收供者的肿瘤组织及血样,核对样品信息并记录,打印相应样品标签。
1.2.2组织处理及培养
使用75%酒精消毒样品管及采血管,转移至生物安全柜内。根据上述PBMC手动分离及冻存操作程序分离血样中PBMC细胞并进行冻存。取一种具有透气表面的培养瓶或培养袋,例如培养袋(Origen),加入300mL已复温的完全培养基,完全培养基可以任意地选用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,并添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2。取数个10厘米培养皿,加入适量培养基,使用无菌眼科镊从样品管中取出肿瘤组织于10厘米培养皿中,培养基量以刚没过肿瘤组织为准,观察组织形态并记录。洗涤组织并更换培养皿。使用眼科剪及眼科镊将进行初步剪切,去除脂肪组织及坏死组织,每块组织块继续剪碎至约27立方毫米大小。取非悬浮肿瘤组织块,使用20mL注射器去除内部活塞后,与培养袋连接,使用移液管将约1g组织块通过注射器转入培养袋内。将培养袋放入二氧化碳培养箱内进行培养。清理剪刀及镊子,并用75%酒精进行初步消毒后,超声清洗后进行灭菌,得到第一TIL群。
1.3步骤(A)体外扩增及收获
1.3.1步骤(A)体外扩增
根据细胞生长状态,每3-7天补液或半量换液,保证细胞营养。使用完全培养基,完全培养基可以任意地选用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,并添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2(双鹭)。步骤(A)的3-14天,例如可以第13或14天时取样计数,若细胞数目处于5×10 5至5×10 8之间时进入步骤(A)的收获步骤。
1.3.2步骤(A)的收获
收集步骤(A)体外扩增结束细胞,离心,弃去培养基,使用PBS或生理盐水洗涤细胞一次,获得经步骤(A)体外扩增的TIL(第二TIL群),并取样计数留取约5×10 5至2×10 8个细胞进入后续体外扩增步骤;取约5×10 5个细胞可以进行质量控制检测;其余细胞加入冻存液冻存,作为冻存的preREP TIL体外细胞。
1.4步骤(B)TIL活化
继续培养经步骤(A)体外扩增的TIL(第二TIL群),或者对冻存的preREP TIL体外细胞进行细胞复苏,进行步骤(B)的TIL活化。
使用完全培养基,完全培养基可以任意地选用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,调整细胞密度为5×10 5至2×10 6个细胞/mL,于悬浮24孔培养板内,1mL/孔,添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL或6000IU/mL)的IL-2。各TIL细胞群的培养基中同时可以添加T细胞激活剂,例如添加CD3激动剂和/或CD28激动剂,例如,约30ng/mL的CD3抗体(Miltenyi Biotech,OKT3)、约30ng/mL的CD28抗体(Merck,15E8)、以约1:2-2:1的磁珠与TIL的比例加入磁珠(直径约1至10μm Dynabeads,Thermo Fisher)和/或以约1:100-1:2000的transACT(直径约100至500nm,Miltenyi)与TIL的比例加入transACT。培养约0-4天,获得第三TIL群。
1.5步骤(C)TIL细胞转导
转导前1天使用终浓度为15μg/mL的重组人纤维蛋白片段(Retronectin,Takara)包被24孔悬浮培养板,24孔板每孔250μL。避光,4℃过夜备用。取出包被好的24孔板,吸弃包被液,加入含2%BSA封闭液500μL室温封闭30分钟。吸弃封闭液,用含2.5%HEPES的洗板液500μL/孔洗板2次,吸弃缓冲液。试验组用携带本申请的目标核酸片段(氨基酸序列可以如SEQ ID NO:71所示,核苷酸序列可以如SEQ ID NO:72和/或73所示)的逆转录病毒进行转导,GFP对照组可以用携带GFP的逆转录病毒进行转导。
携带目标核酸片段的逆转录病毒的质粒构建可以用EcoRI+NotI酶切,回收外源片段。用EcoRI+NotI酶切质粒MP71,回收载体片段。用T4 Ligase连接外源片段与载体片段,得到携带目标核酸片段的逆转录病毒的质粒。携带GFP的逆转录病毒的质粒的构建采用类似的方法。
每孔加0.25-2mL逆转录病毒液,32℃,2000g,离心2小时,阴性对照组可以不进行细胞转导。弃去24孔板上清液,24孔板每孔加入第三TIL群,体积300-500μL,细胞浓度约为1×10 6个/mL。30-32℃,1000g,离心10分钟。离心完毕后,将培养板置于37℃,5%CO 2培养箱中培养,得到转导后细胞。转导后培养约0-4天,获得第四TIL群。
1.6步骤(D)TIL细胞基因转导后培养
在第四TIL细胞群中加入饲养细胞进行培养。TIL与饲养细胞接触的时间需要在步骤(B)的TIL与IL-2以及T细胞激活剂接触后的若干时间T n以后(各个试验组的T n可以取0小时到12天,例如24小时或48小时)。首先复苏1-5名供者混合的饲养细胞;将活化的TIL细 胞、饲养细胞按照TIL细胞:饲养细胞约为1:100至1:200的比例混合,转入G-Rex100培养瓶或者透气袋内,补充完全培养基,每1-3天取样计数,并根据细胞状态补液或半量换液直至细胞总数大于1×10 9或步骤(D)体外扩增培养约5天至约14天,终止步骤(D)体外扩增的培养。
1.7肿瘤浸润淋巴细胞的收获
取步骤(D)扩增的细胞,离心后弃去培养基上清,并使用PBS或生理盐水或复方电解质溶液清洗三次,获得经步骤(D)扩增的TIL(第五TIL群),第三次清洗时取样计数,根据计数结果,最后一次离心后弃上清,取3×10 6细胞送质量控制检测;其余全部细胞加入冻存液,调整细胞密度1-3×10 8个细胞/mL冻存。
实施例21 TIL细胞的扩增情况的检测
基因转导(例如转导编码SEQ ID NO:71所述的核酸片段,例如SEQ ID NO:72所述的核酸片段)后的第13天开始,各组TIL细胞以相同的细胞总数重新铺板。3天后用CTG试剂盒(CellTiter-Glo Luminescent Cell Viability Assay,Promega)分析TIL细胞的扩增效率。NT表示未进行基因转导的对照组。
图68显示的是,各组TIL细胞的扩增后的荧光量。结果表明,本申请的基因转导c-Jun的TIL细胞可以显著提高扩增能力。
实施例22 TIL细胞杀伤能力检测
基因转导(例如转导编码SEQ ID NO:71所述的核酸片段,例如SEQ ID NO:72所述的核酸片段)后的第13天开始,将A375肿瘤细胞系铺于96孔平底板中。次日,将各组TIL细胞以效靶比(TIL细胞:肿瘤细胞,E:T)为3:1的比例与上述肿瘤细胞共培养。肿瘤细胞和TIL细胞各100μL,每组设置三个复孔,同时设置一组只包含肿瘤细胞的对照组。根据细胞凋亡检测试剂(Incucyte Caspase-3/7 Green Dye for Apoptosis,Sartorius)的说明书,按照0.2μL/孔加入细胞凋亡检测试剂,并按照25μL/孔加入培养基稀释Caspase 3/7 Green Dye。使用Incucyte记录仪(Sartorius)记录Caspase 3/7的活性来分析TIL对肿瘤细胞的杀伤能力,每3小时记录1次,总记录时长约5天。
图69显示的是,基因转导c-Jun(例如转导编码SEQ ID NO:71所述的核酸片段)后的TIL细胞以效靶比3:1与肿瘤细胞共培养的杀伤能力检测结果。结果表明,基因转导的TIL细胞可以具有更显著的肿瘤细胞杀伤能力。
实施例23 TIL细胞因子分泌检测
基因转导(例如转导编码SEQ ID NO:71所述的核酸片段,例如SEQ ID NO:72所述的核酸片段)后的第13天开始,各组TIL细胞以相同的细胞总数重新铺板,24小时后取上清液进行细胞因子分泌检测。细胞因子分泌检测方法可以参照细胞因子检测试剂盒(BD)的说明书,将人Th1/Th2/Th17细胞因子标准品冻干粉(BD)使用2mL Assay Diluent稀释液(BD)复溶(标准品原液各细胞因子浓度均为5000pg/mL)并按顺序:1:2,1:4,1:8,1:16,1:32,1:64,1:128,1:256,1:512,1:1024梯度稀释,标记为“标准品管”。取1管仅含有Assay Diluent稀释液作为参照。按照2μL/Beads/孔加入每种Capture Beads(BD),然后按照10μL/孔加入PE Detection Reagent检测试剂(BD)并混合配制为混合物(mix),按照22μL/孔加入V底96孔板内,随后按照10μL/孔加入各标准品和试验组的上清并混合,室温下避光孵育3小时。孵育结束,每孔加入200μL Wash Buffer(BD),500g离心3分钟。离心结束,每孔加入100μL Wash Buffer(BD)重悬,进行流式分析。NT表示未进行基因转导的对照组。
图70显示的是,各组TIL细胞的细胞因子分泌检测结果。结果表明,本申请的基因转导c-Jun的TIL细胞可以具有更高的细胞因子分泌能力。例如,更高的IL-2、IFN-γ分泌能力。
实施例24
1.1饲养细胞接收及制备
1.1.1单采血接收
记录单采血信息,批号及体积,并复温至室温。
1.1.2 PBMC(外周血单个核细胞)手动分离及冻存
使用75%酒精消毒血袋,转移至生物安全柜内。使用无菌剪刀剪开血袋后,将单采血转移至50mL离心管内,使用20mL注射器注入20mL PBS或生理盐水清洗血袋,将洗涤液一并转入50mL离心管内。每个50mL离心管内液体体积可以不超过30mL。将单采血3000g离心10分钟。离心过程中准备6-8支50mL离心管,加入已复温的淋巴细胞分离液(天津灏洋Ficoll),20mL/支。离心结束后,弃掉上层血浆,使用PBS或生理盐水稀释细胞沉淀,将稀释后的血细胞混合液缓慢滴加上淋巴细胞分离液上层,可以不破坏界面,每管约加25mL样品,可以不超过28mL。
离心使用水平转子,500-600g离心15-30分钟,温度18-22℃,离心结束后得到的白膜层将处于生理盐水及淋巴细胞分离液Ficoll的分界面处。吸弃上层血浆及生理盐水,用移液管吸取中间白膜层至另一干净的50mL离心管内。使用PBS或生理盐水稀释收集到的白膜 层,600g离心10分钟,室温。离心结束后弃上清,PBS或生理盐水清洗细胞一次,500g离心5分钟,室温。
如红细胞较多,离心结束后可以进行裂红,按照细胞沉淀体积与红细胞裂解液1:2至1:3加入红细胞裂解液,混匀,室温裂解10分钟中,中间轻柔混匀离心管2-3次,保证裂解效果,裂解完成后加入PBS或生理盐水清洗细胞。裂红后清洗细胞两次,400g离心6分钟,最后一次离心前取样计数。
弃上清,基础培养基重悬细胞,调整细胞密度约2-3×10 7个细胞/mL,液面高度可以不超过1厘米,每T225培养瓶中体积可以低于200mL;平铺状态下,X射线辐照50Gy。离心弃上清,根据计数结果冻存细胞,约1-2×10 8个细胞/mL,1-2mL/支;将细胞放入程序降温盒内转移至﹣80℃冰箱内冻存。
1.1.3 PBMC自动分离及冻存
将血袋的管路与cpro分离套件(Cytiva)输入端无菌接管。若血量大于120mL,进行预浓缩步骤,可以将血液体积浓缩至120mL以内。可以使用neatcell程序进行PBMC分离及洗涤,洗涤液为生理盐水,中间体积20mL;重悬液为基础培养基,添加80mL/批。分离后每供者PBMC为一袋100mL,在平铺状态下,液面高度可以不超过1厘米,X射线辐照50Gy。辐照后取样计数,使用culture wash程序收集细胞并洗涤三次,洗涤液为生理盐水;设置中间体积及终体积,使得每1×10 9个细胞不少于2mL;加入等量至2倍冻存液混匀。使用1倍冻存液调整细胞密度约为1×10 7个细胞/mL至2×10 8个细胞/mL,分装20mL/袋,程序降温仪内冻存,液氮保存。
1.2肿瘤组织接收及处理
1.2.1组织接收
接收供者的肿瘤组织及血样,核对样品信息并记录,打印相应样品标签。
1.2.2组织处理及培养
使用75%酒精消毒样品管及采血管,转移至生物安全柜内。根据上述PBMC手动分离及冻存操作程序分离血样中PBMC细胞并进行冻存。取一种具有透气表面的培养瓶或培养袋,例如培养袋(Origen),加入300mL已复温的完全培养基,完全培养基可以任意地选用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,并添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2。取数个10厘米培养皿,加入适量培养基,使用无菌眼科镊从样品管中取出肿瘤组织于10厘米培养皿中,培养基量以刚没过肿瘤组 织为准,观察组织形态并记录。洗涤组织并更换培养皿。使用眼科剪及眼科镊将进行初步剪切,去除脂肪组织及坏死组织,每块组织块继续剪碎至约27立方毫米大小。取非悬浮肿瘤组织块,使用20mL注射器去除内部活塞后,与培养袋连接,使用移液管将约1g组织块通过注射器转入培养袋内。将培养袋放入二氧化碳培养箱内进行培养。清理剪刀及镊子,并用75%酒精进行初步消毒后,超声清洗后进行灭菌,得到第一TIL群。
1.3步骤(A)体外扩增及收获
1.3.1步骤(A)体外扩增
根据细胞生长状态,每3-7天补液或半量换液,保证细胞营养。使用完全培养基,完全培养基可以任意地选用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,并添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL)的IL-2(双鹭)。步骤(A)的3-14天,例如可以第13或14天时取样计数,若细胞数目处于5×10 5至5×10 8之间时进入步骤(A)的收获步骤。
1.3.2步骤(A)的收获
收集步骤(A)体外扩增结束细胞,离心,弃去培养基,使用PBS或生理盐水洗涤细胞一次,获得经步骤(A)体外扩增的TIL(第二TIL群),并取样计数留取约5×10 5至2×10 8个细胞进入后续体外扩增步骤;取约5×10 5个细胞可以进行质量控制检测;其余细胞加入冻存液冻存,作为冻存的preREP TIL体外细胞。
1.4步骤(B)TIL活化
继续培养经步骤(A)体外扩增的TIL(第二TIL群),或者对冻存的preREP TIL体外细胞进行细胞复苏,进行步骤(B)的TIL活化。
使用完全培养基,完全培养基可以任意地选用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基,并可以添加必须氨基酸及抗生素,调整细胞密度为5×10 5至2×10 6个细胞/mL,于悬浮24孔培养板内,1mL/孔,添加浓度为300-9000IU/mL(例如可以是1000-9000IU/mL,例如可以是6000IU/mL或6000IU/mL)的IL-2。各TIL细胞群的培养基中同时可以添加T细胞激活剂,例如添加CD3激动剂和/或CD28激动剂,例如,约30ng/mL的CD3抗体(Miltenyi Biotech,OKT3)、约30ng/mL的CD28抗体(Merck,15E8)、以约1:2-2:1的磁珠与TIL的比例加入磁珠(直径约1至10μm Dynabeads,Thermo Fisher)和/或以约1:100-1:2000的transACT(直径约100至500nm,Miltenyi)与TIL的比例加入transACT。培养约0-4天,获得第三TIL群。
1.5步骤(C)TIL细胞转导
转导前1天使用终浓度为15μg/mL的重组人纤维蛋白片段(Retronectin,Takara)包被24孔悬浮培养板,24孔板每孔250μL。避光,4℃过夜备用。取出包被好的24孔板,吸弃包被液,加入含2%BSA缓冲液500μL室温封闭30分钟。吸弃封闭液,用含2.5%HEPES的洗板液500μL/孔洗板2次,吸弃缓冲液。试验组用携带本申请的目标核酸片段(核苷酸序列可以如SEQ ID NO:74、75和/或79所示)的逆转录病毒进行转导,GFP对照组可以用携带GFP的逆转录病毒进行转导。
携带目标核酸片段的逆转录病毒的质粒构建可以用EcoRI+NotI酶切,回收外源片段。用EcoRI+NotI酶切质粒MP71,回收载体片段。用T4 Ligase连接外源片段与载体片段,得到携带目标核酸片段的逆转录病毒的质粒。携带GFP的逆转录病毒的质粒的构建采用类似的方法。
每孔加0.25-2mL逆转录病毒液,32℃,2000g,离心2小时,阴性对照组可以不进行细胞转导。弃去24孔板上清液,24孔板每孔加入第三TIL群,体积300-500μL,细胞浓度约为1×10 6个/mL。30-32℃,1000g,离心10分钟。离心完毕后,将培养板置于37℃,5%CO 2培养箱中培养,得到转导后细胞。转导后培养约0-4天,获得第四TIL群。
1.6步骤(D)TIL细胞基因转导后培养
在第四TIL细胞群中加入饲养细胞进行培养。TIL与饲养细胞接触的时间需要在步骤(B)的TIL与IL-2以及T细胞激活剂接触后的若干时间T n以后(各个试验组的T n可以取0小时到12天,例如24小时或48小时)。首先复苏1-5名供者混合的饲养细胞;将活化的TIL细胞、饲养细胞按照TIL细胞:饲养细胞约为1:100至1:200的比例混合,转入G-Rex100培养瓶或者透气袋内,补充完全培养基,每1-3天取样计数,并根据细胞状态补液或半量换液直至细胞总数大于1×10 9或步骤(D)体外扩增培养约5天至约14天,终止步骤(D)体外扩增的培养。
1.7肿瘤浸润淋巴细胞的收获
取步骤(D)扩增的细胞,离心后弃去培养基上清,并使用PBS或生理盐水或复方电解质溶液清洗三次,获得经步骤(D)扩增的TIL(第五TIL群),第三次清洗时取样计数,根据计数结果,最后一次离心后弃上清,取3×10 6细胞送质量控制检测;其余全部细胞加入冻存液,调整细胞密度1-3×10 8个细胞/mL冻存。
实施例25 TIL细胞的扩增情况的检测
基因转导(例如转导SEQ ID NO:75所述的核酸片段)后的第13天开始,各组TIL细胞以相同的细胞总数重新铺板。3天后用CTG试剂盒(CellTiter-Glo Luminescent Cell Viability  Assay,Promega)分析TIL细胞的扩增效率。NT表示未进行基因转导的对照组。
图71显示的是,各组TIL细胞的扩增后的荧光量。结果表明,本申请的基因转导的TIL细胞可以显著提高扩增能力。
实施例26 TIL细胞杀伤能力检测
基因转导(例如转导SEQ ID NO:74或75所述的核酸片段)后的第13天开始,将A375肿瘤细胞系或A375-aCD3肿瘤细胞系铺于96孔平底板中。次日,将各组TIL细胞以效靶比(TIL细胞:肿瘤细胞,E:T)为1:1或3:1的比例与上述肿瘤细胞共培养。肿瘤细胞和TIL细胞各100μL,每组设置三个复孔,同时设置一组只包含肿瘤细胞的对照组。根据细胞凋亡检测试剂(Incucyte Caspase-3/7 Green Dye for Apoptosis,Sartorius)的说明书,按照0.2μL/孔加入细胞凋亡检测试剂,并按照25μL/孔加入培养基稀释Caspase 3/7 Green Dye。使用Incucyte记录仪(Sartorius)记录Caspase 3/7的活性来分析TIL对肿瘤细胞的杀伤能力,每3小时记录1次,总记录时长约5天。
图72A显示的是,基因转导(例如转导SEQ ID NO:74所述的核酸片段)后的TIL细胞以效靶比1:1与肿瘤细胞共培养的杀伤能力检测结果。图72B显示的是,基因转导(例如转导SEQ ID NO:75所述的核酸片段)后的TIL细胞以效靶比3:1与肿瘤细胞共培养的杀伤能力检测结果。结果表明,基因转导的TIL细胞可以具有更显著的肿瘤细胞杀伤能力。
实施例27 TIL细胞因子分泌检测
基因转导(例如转导SEQ ID NO:75所述的核酸片段)后的第13天开始,各组TIL细胞以相同的细胞总数重新铺板,24小时后取上清液进行细胞因子分泌检测。细胞因子分泌检测方法可以参照细胞因子检测试剂盒(BD)的说明书,将人Th1/Th2/Th17细胞因子标准品冻干粉(BD)使用2mL Assay Diluent稀释液(BD)复溶(标准品原液各细胞因子浓度均为5000pg/mL)并按顺序:1:2,1:4,1:8,1:16,1:32,1:64,1:128,1:256,1:512,1:1024梯度稀释,标记为“标准品管”。取1管仅含有Assay Diluent稀释液作为参照。按照2μL/Beads/孔加入每种Capture Beads(BD),然后按照10μL/孔加入PE Detection Reagent检测试剂(BD)并混合配制为混合物(mix),按照22μL/孔加入V底96孔板内,随后按照10μL/孔加入各标准品和试验组的上清并混合,室温下避光孵育3小时。孵育结束,每孔加入200μL Wash Buffer(BD),500g离心3分钟。离心结束,每孔加入100μL Wash Buffer(BD)重悬,进行流式分析。NT表示未进行基因转导的对照组。
图73显示的是,各组TIL细胞的细胞因子分泌检测结果。结果表明,本申请的基因转导 的TIL细胞可以具有更高的细胞因子分泌能力。例如,更高的IL-2分泌能力。
实施例28饲养细胞不同添加时间培养的TIL特性
饲养细胞不同添加时间培养的TIL的结果统计
在实施例1的1.4的第二阶段扩增的TIL活化中,取第一阶段扩增的细胞量,调整细胞密度为5×10 5至2×10 6/mL,于悬浮24孔培养板内,1mL/孔,添加CD3抗体,例如OKT3约30ng/mL,添加浓度约为1000~9000IU/mL的IL-2,例如3000或6000IU/mL的IL-2。加入上述OKT3和IL-2后的0小时、24小时、48小时以后,将饲养细胞加入肿瘤浸润淋巴细胞的培养环境中。其中,TIL与饲养细胞可以按照比率1:40-1:400加入,第二阶段扩增培养约9-14天后收集全部细胞,检测和统计培养所得TIL的结果。
增殖能力检测
对于上述饲养细胞不同添加时间培养获得的TIL进行细胞计数。
不同供者肿瘤来源的TIL作为各自不同的批次;将各个批次的加入OKT3和IL-2同时(0h组)加入饲养细胞的试验组的数据作为基准1,将同批次其它时间点试验组的数据进行标准化处理,统计各试验组在第二阶段扩增相对于0h组的相对增殖能力。
图74A显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的细胞增殖能力结果图。相比于加入OKT3和IL-2后的0小时后(即同时)添加饲养细胞培养的TIL,加入OKT3和IL-2后的24小时或48小时后加饲养细胞培养的TIL增殖能力显著增强。
流式检测TIL细胞组成
对于上述饲养细胞不同添加时间培养获得的TIL群进行流式检测。
不同供者肿瘤来源的TIL作为各自不同的批次;将各个批次的加入OKT3和IL-2同时(0h组)加入饲养细胞的试验组的数据作为基准1,将同批次其它时间点试验组的数据进行标准化处理,统计各试验组在第二阶段扩增相对于0h组的细胞组成比例。
流式检测的试验流程可以参照本申请实施例3的内容。
图74B显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD45RA -CCR7 +中心记忆T细胞(Tcm)比例结果图。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高CD8 +中和/或CD4 +中的中心记忆T细胞的比例。
图74C显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的TCF1 +干细胞样T细胞比例。结果显示,24小时或48小时 后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高CD8 +中的干细胞样T细胞的比例。
图74D显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD4 +CD25 +Foxp3 +调节性T细胞(Treg)比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更少的调节性T细胞的比例。
图74E显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞(PD-1 +)比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的活化T细胞的比例,例如CD8 +中和/或CD4 +中的PD-1 +细胞比例更高。
图74F显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD103 +CD39 +肿瘤特异性T细胞比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的CD8 +中和/或CD4 +中的肿瘤特异性T细胞的比例。
图74G显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞(CD28 +)比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的活化T细胞的比例,例如CD8 +CD28 +细胞比例更高。
图74H显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞(41BB +)比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的活化T细胞的比例,例如CD8 +中和/或CD4 +中的41BB +细胞比例更高。
图74I显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的活化T细胞(CD25 +)比例。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的活化T细胞的比例,例如CD8 +中和/或CD4 +中的CD25 +细胞比例更高。
胞内因子表达检测
试验准备
配制胞内因子表达检测所需培养基:取T细胞培养基,按照体积比1:500添加CD107a抗体(BD)。
检测步骤
取各个试验组的TIL离心后,使用600μL上述胞内因子表达检测所需培养基重悬为1×10 6个细胞/mL,加入96孔板内,100μL/孔,置于37℃培养箱孵育过夜。
孵育结束后,200μL/孔PBS洗涤一次,600g离心3分钟,弃上清。配制抗体混合工作液进行细胞表面染色CD3/CD4/CD8(BD),抗体浓度为1:100,viability(1:10000),50μL/组染色,2-8℃避光孵育30分钟。染色结束后清洗细胞,使用PBS重悬,进行流式上机检测。
图74J显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的胞内因子表达检测结果。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的胞内因子表达能力。例如,更高的CD3 +中、CD8 +中和/或CD4 +中的CD107a表达能力。
细胞因子分泌检测
细胞因子分泌检测方法可以参照细胞因子检测试剂盒(BD)的说明书,将人Th1/Th2/Th17细胞因子标准品冻干粉(BD)使用2mL Assay Diluent稀释液(BD)复溶(标准品原液各细胞因子浓度均为5000pg/mL)并按顺序:1:2,1:4,1:8,1:16,1:32,1:64,1:128,1:256,1:512,1:1024梯度稀释,标记为“标准品管”。取1管仅含有Assay Diluent稀释液作为参照。按照2μL/Beads/孔加入每种Capture Beads(BD),然后按照10μL/孔加入PE Detection Reagent检测试剂(BD)并混合配制为混合物(mix),按照22μL/孔加入V底96孔板内,随后按照10μL/孔加入各标准品和试验组的上清并混合,室温下避光孵育3小时。
孵育结束,每孔加入200μL Wash Buffer(BD),500g离心3分钟。离心结束,每孔加入100μL Wash Buffer(BD)重悬,进行流式分析。
图74K显示的是,加入OKT3和IL-2的0小时、24小时或48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的细胞因子分泌检测结果。结果显示,24小时或48小时后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的细胞因子分泌能力。例如,更高的TNF-α分泌能力、或更高的IFN-γ分泌能力。
饲养细胞不同添加时间培养的TIL的结果统计
在实施例1的1.4的第二阶段扩增的TIL活化中,取第一阶段扩增的细胞量,调整细胞密度为5×10 5至2×10 6/mL,于悬浮24孔培养板内,1mL/孔,添加CD3抗体,例如OKT3约30ng/mL,添加浓度约为1000~9000IU/mL的IL-2,例如3000或6000IU/mL的IL-2。加入上述OKT3和IL-2后的0小时、6小时、12小时、24小时、48小时、72小时、或5天以后,将饲养细胞加入肿瘤浸润淋巴细胞的培养环境中。其中,TIL与饲养细胞可以按照比率 1:40-1:400加入,例如1:200,第二阶段扩增培养约9-14天后收集全部细胞,检测和统计培养所得TIL的结果。
增殖能力检测
对于上述饲养细胞不同添加时间培养获得的TIL进行细胞计数。
图74L显示的是,加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的细胞增殖能力结果图。相比于加入OKT3和IL-2后的0小时后(即同时)添加饲养细胞培养的TIL,加入OKT3和IL-2后的12小时或更多时间后加饲养细胞培养的TIL增殖能力显著增强。
流式检测TIL细胞组成
对于上述饲养细胞不同添加时间培养获得的TIL群进行流式检测。
不同供者肿瘤来源的TIL作为各自不同的批次;将各个批次的加入OKT3和IL-2同时(0h组)加入饲养细胞的试验组的数据作为基准1,将同批次其它时间点试验组的数据进行标准化处理,统计各试验组在第二阶段扩增相对于0h组的细胞组成比例。
流式检测的试验流程可以参照本申请实施例3的内容。
图74M显示的是,加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD8 +T细胞比例。结果显示,加入OKT3和IL-2后的12小时或更多时间后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的CD8 +T细胞的比例。
图74N显示的是,加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD45RO +CD62L +T细胞比例。结果显示,加入OKT3和IL-2后的12小时或更多时间后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的记忆T细胞(Tcm,CD45RO +CD62L +)的比例。
图74O显示的是,加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的NK T细胞比例。结果显示,加入OKT3和IL-2后的12小时或更多时间后添加饲养细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更高的NK T细胞的比例。
图74P显示的是,加入OKT3和IL-2的0小时、6小时、12小时、24小时、48小时、72小时、或5天后添加饲养细胞培养的TIL,培养所得的TIL细胞的CD4 +CD25 +Foxp3 +调节性T细胞(Treg)比例。结果显示,加入OKT3和IL-2后的12小时或更多时间后添加饲养 细胞培养的TIL,相比同时添加饲养细胞培养的TIL,具有更少的调节性T细胞的比例。
本申请培养的TIL的杀伤能力检测
对于实施例1的1.4的第二阶段扩增的TIL活化中,取第一阶段扩增的细胞量,调整细胞密度为5×10 5至2×10 6/mL,于悬浮24孔培养板内,1mL/孔,添加CD3抗体,例如OKT3约30ng/mL,添加浓度约为1000~9000IU/mL的IL-2,例如3000或6000IU/mL的IL-2。加入上述OKT3和IL-2后的12小时至14天后,例如48小时以后,将饲养细胞加入肿瘤浸润淋巴细胞的培养环境中。其中,TIL与饲养细胞可以按照比率1:40-1:400加入,第二阶段扩增培养约9-14天后收集全部细胞,检测和统计培养所得TIL的细胞杀伤能力检测。
细胞准备
准备用于检测的各个试验组获得的TIL和用于共培养的靶细胞(例如A375黑色素瘤细胞和/或Hela宫颈癌细胞)。
检测步骤
用CFSE(5(6)-Carboxyfluorescein diacetate N-succinimidyl ester,Sigma,21888-25MG-F)标记肿瘤细胞:用PBS清洗肿瘤细胞,重悬肿瘤细胞于500μL的PBS中;将CFSE加入500μL的PBS中,与500μL的肿瘤细胞PBS重悬液混合,至CFSE的终浓度为0.5μmol/L。37℃孵育6分钟后,加含10%FBS的培养基清洗,600g离心5分钟,用X-vivo 15培养基或其它商用的T细胞培养基,例如Stem Cell,Lonza,Thermo,美天旎等品牌的T细胞培养基重悬肿瘤细胞浓度为1×10 6个细胞/mL。对各个试验组的TIL群600g离心5分钟,按照效靶比(TIL细胞与肿瘤细胞的比例)3:1重悬TIL细胞(即重悬TIL细胞浓度为3×10 6个细胞/mL)。于U底96孔板(Corning)中加入肿瘤细胞和TIL细胞各100μL,每组设置三个复孔。同时设置一组只包含肿瘤细胞的对照组。将孔板200g离心1分钟,置于37℃孵育4小时至过夜。其中,TIL与肿瘤细胞共培养时,可以不加激活TIL细胞的物质作为无激活组,或者加入transACT(Miltenyi,包含CD3抗体和CD28抗体的纳米基质材料)作为激活组。
孵育完成后,600g离心3分钟,弃上清,每孔加入20μL胰酶,37℃培养箱内孵育3-5分钟消化肿瘤细胞,消化完成后加入180μL含10%FBS的培养基终止消化。将Dapi(碧云天,C0060)用1:100稀释,然后每孔加入20μL稀释后的Dapi。进行流式上机检测。
杀伤率%=Dapi +CFSE +细胞数/总CFSE +×100%,或杀伤率可以通过Dapi +细胞数/总肿瘤细胞数表示。
图74Q显示的是,加入OKT3和IL-2的48小时后添加饲养细胞培养的TIL,培养所得的TIL细胞的细胞杀伤能力结果。结果显示,加入OKT3和IL-2后的48小时后添加饲养细 胞培养的TIL均具有显著的肿瘤细胞杀伤能力,例如黑色素瘤和/或宫颈肿瘤。
前述详细说明是以解释和举例的方式提供的,并非要限制所附权利要求的范围。目前本文所列举的实施方式的多种变化对本领域普通技术人员来说是显而易见的,且保留在所附的权利要求和其等同方案的范围内。

Claims (349)

  1. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的白介素-12(IL-12)和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养。
  2. 根据权利要求1所述的方法,所述方法包含:使所述TIL与所述饲养细胞共培养之后,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
  3. 根据权利要求1-2中任一项所述的方法,所述方法包含:使所述TIL与所述饲养细胞共培养之前,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
  4. 根据权利要求1-3中任一项所述的方法,所述方法包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触之后且在所述TIL与所述饲养细胞共培养之前使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
  5. 根据权利要求1-4中任一项所述的方法,所述方法包含:在所述TIL与所述T细胞激活剂和/或所述T细胞生长因子接触基本上同时使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
  6. 根据权利要求1-5中任一项所述的方法,所述方法包含:在所述TIL与所述饲养细胞共培养基本上同时使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
  7. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强,其中所述TIL包含与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养获得的TIL。
  8. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中所述TIL包含使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL。
  9. 根据权利要求1-8中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
  10. 根据权利要求9所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
  11. 根据权利要求10所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比 例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
  12. 根据权利要求1-11中任一项所述的方法,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将编码所述IL-12和/或其功能活性片段的核酸引入所述TIL中。
  13. 根据权利要求12所述的方法,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
  14. 根据权利要求1-13中任一项所述的方法,其中编码所述IL-12和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
  15. 根据权利要求13-14中任一项所述的方法,其中所述载体包含病毒载体。
  16. 根据权利要求15所述的方法,其中所述病毒载体包含逆转录病毒载体。
  17. 根据权利要求16所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
  18. 根据权利要求1-17中任一项所述的方法,所述IL-12和/或其功能活性片段包含膜锚定的IL-12和/或分泌的IL-12。
  19. 根据权利要求1-18中任一项所述的方法,所述IL-12和/或其功能活性片段包含p40结构域。
  20. 根据权利要求19所述的方法,所述p40结构域包含如SEQ ID NO:42所示的氨基酸序列。
  21. 根据权利要求1-20中任一项所述的方法,所述IL-12和/或其功能活性片段包含p35结构域。
  22. 根据权利要求21所述的方法,所述p35结构域包含如SEQ ID NO:55所示的氨基酸序列。
  23. 根据权利要求21-22中任一项所述的方法,所述p40结构域与所述p35结构域直接或间接连接。
  24. 根据权利要求23所述的方法,所述间接连接包含通过连接子连接。
  25. 根据权利要求24所述的方法,所述连接子包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q各自独立地至少为1。
  26. 根据权利要求1-25中任一项所述的方法,所述IL-12和/或其功能活性片段包含信号肽结构域。
  27. 根据权利要求26所述的方法,所述信号肽结构域包含如SEQ ID NO:41所示的氨基酸序列。
  28. 根据权利要求26-27中任一项所述的方法,所述信号肽结构域与所述p40结构域直接或间接连接。
  29. 根据权利要求1-28中任一项所述的方法,所述IL-12和/或其功能活性片段包含跨膜结构域。
  30. 根据权利要求29所述的方法,所述跨膜结构域和/或跨膜胞内结构域包含如SEQ ID NO:56-61和66-70中任一项所示的氨基酸序列。
  31. 根据权利要求29-30中任一项所述的方法,所述跨膜结构域和/或跨膜胞内结构域与所述信号肽结构域和/或所述p35结构域直接或间接连接。
  32. 根据权利要求1-31中任一项所述的方法,所述IL-12和/或其功能活性片段包含胞内结构域。
  33. 根据权利要求32所述的方法,所述胞内结构域包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。
  34. 根据权利要求32-33中任一项所述的方法,所述胞内结构域与所述跨膜结构域直接或间接连接。
  35. 根据权利要求1-34中任一项所述的方法,所述IL-12的所述功能活性片段包含如SEQ ID NO:42和/或55所示的氨基酸序列。
  36. 根据权利要求1-35中任一项所述的方法,所述IL-12包含如SEQ ID NO:34-40中任一项所示的氨基酸序列。
  37. 根据权利要求1-36中任一项所述的方法,所述IL-12和/或其功能活性片段的表达提高包含所述IL-12和/或其功能活性片段的合成和/或分泌提高。
  38. 根据权利要求1-37中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高。
  39. 根据权利要求1-38中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高至少约5%以上。
  40. 根据权利要求1-39中任一项所述的方法,所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达IL-12和/或其功能活性片段的细胞比例 为至少约5%以上。
  41. 根据权利要求1-40中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
  42. 根据权利要求41所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
  43. 根据权利要求41-42中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述饲养细胞共培养。
  44. 根据权利要求41-43中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述饲养细胞共培养。
  45. 根据权利要求44所述的方法,所述第一阶段体外扩增进行至少约7天。
  46. 根据权利要求44-45中任一项所述的方法,所述第一阶段体外扩增进行约7天至约14天。
  47. 根据权利要求44-46中任一项所述的方法,所述第二阶段体外扩增进行至少约7天。
  48. 根据权利要求44-47中任一项所述的方法,所述第二阶段体外扩增进行约7天至约14天。
  49. 根据权利要求1-48中任一项所述的方法,使所述TIL在与T细胞激活剂和/或T细胞生长因子接触至少约2小时之后与所述饲养细胞共培养。
  50. 根据权利要求1-49中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时至约72小时之后与所述饲养细胞共培养。
  51. 根据权利要求1-50中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约12小时至约48小时之后与所述饲养细胞共培养。
  52. 根据权利要求1-50中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
  53. 根据权利要求1-52中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
  54. 根据权利要求1-53中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多 种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
  55. 根据权利要求1-54中任一项所述的方法,所述饲养细胞为外周单个核细胞。
  56. 根据权利要求1-55中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
  57. 根据权利要求1-56中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
  58. 根据权利要求1-57中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
  59. 根据权利要求58所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
  60. 根据权利要求1-59中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂接触。
  61. 根据权利要求60所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂接触。
  62. 根据权利要求60-61中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述T细胞激活剂接触。
  63. 根据权利要求60-62中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述T细胞激活剂接触。
  64. 根据权利要求1-63中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种:分化簇80(CD80)、CD86、CD276、4-1BB配体(4-1BBL)、CD27、CD30、
    CD134、CD275、CD40、CD258、以及它们的功能活性片段。
  65. 根据权利要求1-64中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、疱疹病毒进入介质(HVEM)、CD40L、OX40和4-1BB。
  66. 根据权利要求1-65中任一项所述的方法,所述T细胞激活剂包含CD3激动剂和/或CD28激动剂。
  67. 根据权利要求1-66中任一项所述的方法,所述T细胞激活剂包含CD3激动剂。
  68. 根据权利要求1-67中任一项所述的方法,所述T细胞激活剂包含抗CD3的抗体和/ 或其抗原结合片段。
  69. 根据权利要求1-68中任一项所述的方法,所述T细胞激活剂包含CD28激动剂。
  70. 根据权利要求1-69中任一项所述的方法,所述T细胞激活剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段。
  71. 根据权利要求1-70中任一项所述的方法,所述使TIL与所述T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;和(3)将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  72. 根据权利要求71所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为至少约30ng/mL。
  73. 根据权利要求71-72中任一项所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为约30ng/mL-约300ng/mL。
  74. 根据权利要求71-73中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
  75. 根据权利要求71-74中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
  76. 根据权利要求74-75中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
  77. 根据权利要求71-76中任一项所述的方法,所述固相介质包含聚合物。
  78. 根据权利要求71-77中任一项所述的方法,每mg所述固相介质中包含的每一种所述T细胞激活剂的量各自独立地至少为约25μg。
  79. 根据权利要求71-78中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  80. 根据权利要求71-79中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  81. 根据权利要求1-80中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
  82. 根据权利要求81所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
  83. 根据权利要求81-82中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞激活剂以及所述T细胞生长因子接触。
  84. 根据权利要求81-83中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与T细胞生长因子接触。
  85. 根据权利要求1-84中任一项所述的方法,使所述TIL基本上同时与所述T细胞激活剂以及所述T细胞生长因子接触。
  86. 根据权利要求1-85中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
  87. 根据权利要求1-86中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
  88. 根据权利要求1-87中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
  89. 根据权利要求1-88中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
  90. 根据权利要求1-89中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
  91. 根据权利要求90所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
  92. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
    (A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
    (B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。
  93. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
    (A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
    (B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群在与T细胞激活剂和/或T细胞生长因子接触一定时间之后与饲养细胞共培养,其中,经所述步骤(B)得到第三TIL群。
  94. 根据权利要求93所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
  95. 根据权利要求93-94中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
  96. 根据权利要求92-95中任一项所述的方法,所述步骤(A)进行约7天至约14天。
  97. 根据权利要求92-96中任一项所述的方法,所述步骤(B)进行约7天至约14天。
  98. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
    (A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
    (B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
    (C)使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL
    群。
  99. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
    (A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
    (B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
    (C)使所述第三TIL群与饲养细胞共培养,其中,经所述步骤(C)得到第四TIL群。
  100. 根据权利要求99所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
  101. 根据权利要求99-100中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
  102. 根据权利要求98-101中任一项所述的方法,所述步骤(A)进行约7天至约14天。
  103. 根据权利要求98-102中任一项所述的方法,所述步骤(B)进行约0天至约8天。
  104. 根据权利要求98-103中任一项所述的方法,所述步骤(C)进行约5天至约14天。
  105. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
    (A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
    (B)使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
    (C)使所述第三TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;
    (D)使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。
  106. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
    (A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
    (B)使所述第二TIL群与T细胞激活剂和/或T细胞生长因子接触,其中,经所述步骤(B)得到第三TIL群;
    (C)使所述第三TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,其中,经所述步骤(C)得到第四TIL群;
    (D)使所述第四TIL群与饲养细胞共培养,其中,经所述步骤(D)得到第五TIL群。
  107. 根据权利要求106所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
  108. 根据权利要求106-107中任一项所述的方法,所述体外TIL群包含由所述第一TIL群冷冻保存获得的TIL群。
  109. 根据权利要求105-108中任一项所述的方法,所述步骤(A)进行约7天至约14天。
  110. 根据权利要求105-109中任一项所述的方法,所述步骤(B)进行约0天至约4天。
  111. 根据权利要求105-110中任一项所述的方法,所述步骤(C)进行约0天至约4天。
  112. 根据权利要求105-111中任一项所述的方法,所述步骤(D)进行约5天至约14天。
  113. 根据权利要求92-112中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
  114. 根据权利要求113所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
  115. 根据权利要求114所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
  116. 根据权利要求92-115中任一项所述的方法,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将编码所述IL-12和/或其功能活性片段的核酸引入所述TIL中。
  117. 根据权利要求116所述的方法,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
  118. 根据权利要求92-117中任一项所述的方法,其中编码所述IL-12和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
  119. 根据权利要求117-118中任一项所述的方法,其中所述载体包含病毒载体。
  120. 根据权利要求119所述的方法,其中所述病毒载体包含逆转录病毒载体。
  121. 根据权利要求120所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
  122. 根据权利要求92-121中任一项所述的方法,所述IL-12和/或其功能活性片段包含膜锚定的IL-12和/或分泌的IL-12。
  123. 根据权利要求92-122中任一项所述的方法,所述IL-12和/或其功能活性片段包含p40结构域。
  124. 根据权利要求123所述的方法,所述p40结构域包含如SEQ ID NO:42所示的氨基酸序列。
  125. 根据权利要求92-124中任一项所述的方法,所述IL-12和/或其功能活性片段包含p35结构域。
  126. 根据权利要求125所述的方法,所述p35结构域包含如SEQ ID NO:55所示的氨基酸序列。
  127. 根据权利要求125-126中任一项所述的方法,所述p40结构域与所述p35结构域直接或间接连接。
  128. 根据权利要求127所述的方法,所述间接连接包含通过连接子连接。
  129. 根据权利要求128所述的方法,所述连接子包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q各自独立地至少为1。
  130. 根据权利要求92-129中任一项所述的方法,所述IL-12和/或其功能活性片段包含信号肽结构域。
  131. 根据权利要求130所述的方法,所述信号肽结构域包含如SEQ ID NO:41所示的氨基酸序列。
  132. 根据权利要求130-131中任一项所述的方法,所述信号肽结构域与所述p40结构域直接或间接连接。
  133. 根据权利要求92-132中任一项所述的方法,所述IL-12和/或其功能活性片段包含跨膜结构域。
  134. 根据权利要求133所述的方法,所述跨膜结构域和/或跨膜胞内结构域包含如SEQ ID NO:56-61和66-70中任一项所示的氨基酸序列。
  135. 根据权利要求133-134中任一项所述的方法,所述跨膜结构域和/或跨膜胞内结构域与所述信号肽结构域和/或所述p35结构域直接或间接连接。
  136. 根据权利要求92-135中任一项所述的方法,所述IL-12和/或其功能活性片段包含胞内结构域。
  137. 根据权利要求136所述的方法,所述胞内结构域包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。
  138. 根据权利要求136-137中任一项所述的方法,所述胞内结构域与所述跨膜结构域直接或间接连接。
  139. 根据权利要求92-138中任一项所述的方法,所述IL-12的所述功能活性片段包含如SEQ ID NO:42和/或55所示的氨基酸序列。
  140. 根据权利要求92-139中任一项所述的方法,所述IL-12包含如SEQ ID NO:34- 40中任一项所示的氨基酸序列。
  141. 根据权利要求92-140中任一项所述的方法,所述IL-12和/或其功能活性片段的表达提高包含所述IL-12和/或其功能活性片段的合成和/或分泌提高。
  142. 根据权利要求92-141中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高。
  143. 根据权利要求92-142中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高至少约5%以上。
  144. 根据权利要求92-143中任一项所述的方法,所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达IL-12和/或其功能活性片段的细胞比例为至少约5%以上。
  145. 根据权利要求92-144中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触至少约2小时之后与所述饲养细胞共培养。
  146. 根据权利要求92-145中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时至约72小时之后与所述饲养细胞共培养。
  147. 根据权利要求92-146中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约12小时至约48小时之后与所述饲养细胞共培养。
  148. 根据权利要求92-146中任一项所述的方法,使所述TIL在与所述T细胞激活剂和/或所述T细胞生长因子接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
  149. 根据权利要求92-148中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
  150. 根据权利要求92-149中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
  151. 根据权利要求92-150中任一项所述的方法,所述饲养细胞为外周单个核细胞。
  152. 根据权利要求92-151中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
  153. 根据权利要求92-152中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
  154. 根据权利要求92-153中任一项所述的方法,所述TIL与所述饲养细胞共培养包 含将所述饲养细胞添加至所述TIL的细胞培养基中。
  155. 根据权利要求154所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
  156. 根据权利要求92-155中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种:分化簇80(CD80)、CD86、CD276、4-1BB配体(4-1BBL)、CD27、CD30、CD134、CD275、CD40、CD258、以及它们的功能活性片段。
  157. 根据权利要求92-156中任一项所述的方法,所述T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、CD28、疱疹病毒进入介质(HVEM)、CD40L、OX40和4-1BB。
  158. 根据权利要求92-157中任一项所述的方法,所述T细胞激活剂包含CD3激动剂和/或CD28激动剂。
  159. 根据权利要求92-158中任一项所述的方法,所述T细胞激活剂包含CD3激动剂。
  160. 根据权利要求92-159中任一项所述的方法,所述T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
  161. 根据权利要求92-160中任一项所述的方法,所述T细胞激活剂包含CD28激动剂。
  162. 根据权利要求92-161中任一项所述的方法,所述T细胞激活剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段和/或CD86和/或其功能活性片段。
  163. 根据权利要求92-162中任一项所述的方法,所述使TIL与所述T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;和(3)将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  164. 根据权利要求163所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为至少约30ng/mL。
  165. 根据权利要求163-164中任一项所述的方法,每一种所述T细胞激活剂在所述TIL的细胞培养基中的初始浓度各自独立地为约30ng/mL-约300ng/mL。
  166. 根据权利要求163-165中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
  167. 根据权利要求163-166中任一项所述的方法,所述固相介质的直径为约1纳米至 约500纳米。
  168. 根据权利要求166-167中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
  169. 根据权利要求163-168中任一项所述的方法,所述固相介质包含聚合物。
  170. 根据权利要求163-169中任一项所述的方法,每mg所述固相介质中包含的每一种所述T细胞激活剂的量各自独立地至少为约25μg。
  171. 根据权利要求163-170中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  172. 根据权利要求163-171中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  173. 根据权利要求92-172中任一项所述的方法,使所述TIL基本上同时与所述T细胞激活剂以及所述T细胞生长因子接触。
  174. 根据权利要求92-173中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
  175. 根据权利要求92-174中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
  176. 根据权利要求92-175中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
  177. 根据权利要求92-176中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
  178. 根据权利要求92-177中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
  179. 根据权利要求178所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
  180. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触。
  181. 根据权利要求180所述的方法,所述方法包含:使所述TIL与CD28激动剂接触之后,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
  182. 根据权利要求180-181中任一项所述的方法,所述方法包含:使所述TIL与 CD28激动剂接触之前,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强。
  183. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强,其中所述TIL包含与CD28激动剂接触获得的TIL。
  184. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,所述方法包含:使所述TIL与CD28激动剂接触,其中所述TIL包含使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL。
  185. 根据权利要求180-184中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
  186. 根据权利要求185所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
  187. 根据权利要求186所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
  188. 根据权利要求180-187中任一项所述的方法,与在体外扩增阶段未曾与所述CD28激动剂接触的相应TIL相比,在至少一个体外扩增阶段中与所述CD28激动剂接触过的所述TIL显示出改善的基因编辑效果。
  189. 根据权利要求188所述的方法,所述改善的基因编辑效果包含提高的基因敲除效率。
  190. 根据权利要求180-189中任一项所述的方法,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将编码所述IL-12和/或其功能活性片段的核酸引入所述TIL中。
  191. 根据权利要求190所述的方法,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
  192. 根据权利要求190-191任一项所述的方法,其中编码所述IL-12和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
  193. 根据权利要求190-192中任一项所述的方法,其中所述载体包含病毒载体。
  194. 根据权利要求193所述的方法,其中所述病毒载体包含逆转录病毒载体。
  195. 根据权利要求194所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
  196. 根据权利要求180-195中任一项所述的方法,所述IL-12和/或其功能活性片段包含膜锚定的IL-12和/或分泌的IL-12。
  197. 根据权利要求180-196中任一项所述的方法,所述IL-12和/或其功能活性片段包含p40结构域。
  198. 根据权利要求197所述的方法,所述p40结构域包含如SEQ ID NO:42所示的氨基酸序列。
  199. 根据权利要求180-198中任一项所述的方法,所述IL-12和/或其功能活性片段包含p35结构域。
  200. 根据权利要求199所述的方法,所述p35结构域包含如SEQ ID NO:55所示的氨基酸序列。
  201. 根据权利要求199-200中任一项所述的方法,所述p40结构域与所述p35结构域直接或间接连接。
  202. 根据权利要求201所述的方法,所述间接连接包含通过连接子连接。
  203. 根据权利要求202所述的方法,所述连接子包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q各自独立地至少为1。
  204. 根据权利要求180-203中任一项所述的方法,所述IL-12和/或其功能活性片段包含信号肽结构域。
  205. 根据权利要求204所述的方法,所述信号肽结构域包含如SEQ ID NO:41所示的氨基酸序列。
  206. 根据权利要求204-205中任一项所述的方法,所述信号肽结构域与所述p40结构域直接或间接连接。
  207. 根据权利要求180-206中任一项所述的方法,所述IL-12和/或其功能活性片段包含跨膜结构域。
  208. 根据权利要求207所述的方法,所述跨膜结构域和/或跨膜胞内结构域包含如SEQ ID NO:56-61和66-70中任一项所示的氨基酸序列。
  209. 根据权利要求207-208中任一项所述的方法,所述跨膜结构域和/或跨膜胞内结构域与所述信号肽结构域和/或所述p35结构域直接或间接连接。
  210. 根据权利要求180-209中任一项所述的方法,所述IL-12和/或其功能活性片段包含胞内结构域。
  211. 根据权利要求210所述的方法,所述胞内结构域包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。
  212. 根据权利要求210-211中任一项所述的方法,所述胞内结构域与所述跨膜结构域直接或间接连接。
  213. 根据权利要求180-212中任一项所述的方法,所述IL-12的所述功能活性片段包含如SEQ ID NO:42和/或55所示的氨基酸序列。
  214. 根据权利要求180-213中任一项所述的方法,所述IL-12包含如SEQ ID NO:34-40中任一项所示的氨基酸序列。
  215. 根据权利要求180-214中任一项所述的方法,所述IL-12和/或其功能活性片段的表达提高包含所述IL-12和/或其功能活性片段的合成和/或分泌提高。
  216. 根据权利要求180-215中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高。
  217. 根据权利要求180-216中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高至少约5%以上。
  218. 根据权利要求180-217中任一项所述的方法,所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达IL-12和/或其功能活性片段的细胞比例为至少约5%以上。
  219. 根据权利要求180-218中任一项所述的方法,其中,使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与CD28激动剂接触。
  220. 根据权利要求219所述的方法,其中,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使经所述第一阶段体外扩增的TIL与所述CD28激动剂接触。
  221. 根据权利要求220所述的方法,所述第一阶段体外扩增进行至少约7天。
  222. 根据权利要求220-221中任一项所述的方法,所述第一阶段体外扩增进行约7天至约14天。
  223. 根据权利要求220-222中任一项所述的方法,所述第二阶段体外扩增进行至少约7天。
  224. 根据权利要求220-223中任一项所述的方法,所述第二阶段体外扩增进行约7天至约14天。
  225. 根据权利要求180-224中任一项所述的方法,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段、和/或CD86和/或其功能活性片段。
  226. 根据权利要求180-225中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与所述CD28激动剂之外的其它T细胞激活剂接触。
  227. 根据权利要求226所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述其它T细胞激活剂接触。
  228. 根据权利要求226-227中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强且使所述TIL与所述其它T细胞激活剂接触。
  229. 根据权利要求226-228中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述其它T细胞激活剂接触。
  230. 根据权利要求226-229中任一项所述的方法,使所述TIL基本上同时与所述
    CD28激动剂以及所述其它T细胞激活剂接触。
  231. 根据权利要求226-230中任一项所述的方法,所述其它T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、HVEM、CD40L、OX40和4-1BB。
  232. 根据权利要求226-231中任一项所述的方法,所述其它T细胞激活剂包含CD3激动剂。
  233. 根据权利要求226-232中任一项所述的方法,所述其它T细胞激活剂包含抗CD3的抗体和/或其抗原结合片段。
  234. 根据权利要求226-233中任一项所述的方法,所述使TIL与所述CD28激动剂以及所述其它T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述CD28激动剂 以及所述其它T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述CD28激动剂以及所述其它T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;(3)将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  235. 根据权利要求234所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为至少约30ng/mL。
  236. 根据权利要求234-235中任一项所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为约30ng/mL-约300ng/mL。
  237. 根据权利要求234-236中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
  238. 根据权利要求234-237中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
  239. 根据权利要求237-238中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
  240. 根据权利要求234-239中任一项所述的方法,所述固相介质包含聚合物。
  241. 根据权利要求234-240中任一项所述的方法,每mg所述固相介质包含至少约25μg的所述CD28激动剂以及所述其它T细胞激活剂。
  242. 根据权利要求234-241中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  243. 根据权利要求234-242中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  244. 根据权利要求180-243中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL在与CD28激动剂接触一定时间之后与饲养细胞共培养。
  245. 根据权利要求244所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述饲养细胞共培养。
  246. 根据权利要求244-245中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL与CD28激动剂接触且使所述TIL与所述饲养细胞共培养。
  247. 根据权利要求244-246中任一项所述的方法,使所述源自肿瘤组织且未经体外扩 增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与所述饲养细胞共培养。
  248. 根据权利要求244-247中任一项所述的方法,使所述TIL在与所述CD28激动剂接触至少约2小时之后与所述饲养细胞共培养。
  249. 根据权利要求244-248中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时至约72小时之后与所述饲养细胞共培养。
  250. 根据权利要求244-249中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约12小时至约48小时之后与所述饲养细胞共培养。
  251. 根据权利要求244-249中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
  252. 根据权利要求244-251中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
  253. 根据权利要求244-252中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
  254. 根据权利要求244-253中任一项所述的方法,所述饲养细胞为外周单个核细胞。
  255. 根据权利要求244-254中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
  256. 根据权利要求244-255中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
  257. 根据权利要求244-256中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
  258. 根据权利要求244-257中任一项所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
  259. 根据权利要求180-258中任一项所述的方法,所述方法还包含:使源自肿瘤组织且未经体外扩增的TIL经过至少一个阶段的体外扩增,其中,在至少一个阶段的所述体外扩增中,使所述TIL与T细胞生长因子接触。
  260. 根据权利要求259所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述T细胞生长因子接触。
  261. 根据权利要求259-260中任一项所述的方法,在单个阶段的所述体外扩增中,使所述TIL与所述CD28激动剂以及所述T细胞生长因子接触。
  262. 根据权利要求259-261中任一项所述的方法,使所述源自肿瘤组织且未经体外扩增的TIL经过第一阶段体外扩增和第二阶段体外扩增,且在所述第二阶段体外扩增中,使所述TIL与T细胞生长因子接触。
  263. 根据权利要求259-262中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及所述T细胞生长因子接触。
  264. 根据权利要求259-263中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
  265. 根据权利要求259-264中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
  266. 根据权利要求259-265中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
  267. 根据权利要求259-266中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300IU/mL。
  268. 根据权利要求180-267中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
  269. 根据权利要求268所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
  270. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
    (A)使源自肿瘤组织且未经体外扩增的第一TIL群与T细胞生长因子接触,其中,经所述步骤(A)得到第二TIL群;
    (B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触,其中,经所述步骤(B)得到第三TIL群。
  271. 一种培养肿瘤浸润淋巴细胞(TIL)的方法,其包含:
    (A)复苏和/或继续培养体外TIL群得到第二TIL群,其中,所述体外TIL群包含由源自肿瘤组织且未经体外扩增的第一TIL群体外扩增获得的TIL群;
    (B)使所述第二TIL群的IL-12和/或其功能活性片段的表达提高和/或活性增强,且使所述TIL与CD28激动剂接触,其中,经所述步骤(B)得到第三TIL群。
  272. 根据权利要求271所述的方法,所述体外TIL群包含由所述第一TIL群接触T细胞生长因子获得的TIL群。
  273. 根据权利要求271-272中任一项所述的方法,所述体外TIL群包含由所述第一 TIL群冷冻保存获得的TIL群。
  274. 根据权利要求270-273中任一项所述的方法,所述步骤(A)进行约7天至约14天。
  275. 根据权利要求270-274中任一项所述的方法,所述步骤(B)进行约7天至约14天。
  276. 根据权利要求270-275中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL显示出改善的TIL特性。
  277. 根据权利要求276所述的方法,所述改善的TIL特性包含选自以下组的一种或多种:增加的TIL细胞数量,增加的活细胞比例,增加的存续能力,改善的T细胞亚群比例,提高的细胞因子分泌能力,提高的肿瘤细胞杀伤能力,提高的T细胞受体(TCR)克隆多样性和提高的组织和/或肿瘤中TIL细胞数量。
  278. 根据权利要求277所述的方法,所述改善的T细胞亚群比例包含选自以下组的一种或多种:增加的中心记忆T细胞比例,降低的调节性T细胞的比例,增加的活化T细胞比例,增加的肿瘤特异性T细胞比例,和增加的干细胞样T细胞比例。
  279. 根据权利要求270-278中任一项所述的方法,与在体外扩增阶段未曾与所述CD28激动剂接触的相应TIL相比,在至少一个体外扩增阶段中与所述CD28激动剂接触过的所述TIL显示出改善的基因编辑效果。
  280. 根据权利要求279所述的方法,所述改善的基因编辑效果包含提高的基因敲除效率。
  281. 根据权利要求270-280中任一项所述的方法,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将编码所述IL-12和/或其功能活性片段的核酸引入所述TIL中。
  282. 根据权利要求281所述的方法,其中所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强包含将包含所述核酸的载体引入所述TIL中。
  283. 根据权利要求270-282中任一项所述的方法,其中编码所述IL-12和/或其功能活性片段的核酸被整合到所述TIL的基因组中。
  284. 根据权利要求282-283中任一项所述的方法,其中所述载体包含病毒载体。
  285. 根据权利要求284所述的方法,其中所述病毒载体包含逆转录病毒载体。
  286. 根据权利要求285所述的方法,其中所述逆转录病毒载体包含慢病毒载体。
  287. 根据权利要求270-286中任一项所述的方法,所述IL-12和/或其功能活性片段包含膜锚定的IL-12和/或分泌的IL-12。
  288. 根据权利要求270-287中任一项所述的方法,所述IL-12和/或其功能活性片段包含p40结构域。
  289. 根据权利要求288所述的方法,所述p40结构域包含如SEQ ID NO:42所示的氨基酸序列。
  290. 根据权利要求270-289中任一项所述的方法,所述IL-12和/或其功能活性片段包含p35结构域。
  291. 根据权利要求290所述的方法,所述p35结构域包含如SEQ ID NO:55所示的氨基酸序列。
  292. 根据权利要求290-291中任一项所述的方法,所述p40结构域与所述p35结构域直接或间接连接。
  293. 根据权利要求292所述的方法,所述间接连接包含通过连接子连接。
  294. 根据权利要求293所述的方法,所述连接子包含选自以下组所示的氨基酸序列:SEQ ID NO:43-49、(SEQ ID NO:50) l、(SEQ ID NO:51) m、(SEQ ID NO:52) n、(SEQ ID NO:53) p、和(SEQ ID NO:54) q,以及上述的任意组合,其中l、m、n、p和q各自独立地至少为1。
  295. 根据权利要求270-294中任一项所述的方法,所述IL-12和/或其功能活性片段包含信号肽结构域。
  296. 根据权利要求295所述的方法,所述信号肽结构域包含如SEQ ID NO:41所示的氨基酸序列。
  297. 根据权利要求295-296中任一项所述的方法,所述信号肽结构域与所述p40结构域直接或间接连接。
  298. 根据权利要求270-297中任一项所述的方法,所述IL-12和/或其功能活性片段包含跨膜结构域。
  299. 根据权利要求298所述的方法,所述跨膜结构域和/或跨膜胞内结构域包含如SEQ ID NO:56-61和66-70中任一项所示的氨基酸序列。
  300. 根据权利要求298-299中任一项所述的方法,所述跨膜结构域和/或跨膜胞内结构域与所述信号肽结构域和/或所述p35结构域直接或间接连接。
  301. 根据权利要求270-300中任一项所述的方法,所述IL-12和/或其功能活性片段包 含胞内结构域。
  302. 根据权利要求301所述的方法,所述胞内结构域包含如SEQ ID NO:62-65中任一项所示的氨基酸序列。
  303. 根据权利要求301-302中任一项所述的方法,所述胞内结构域与所述跨膜结构域直接或间接连接。
  304. 根据权利要求270-303中任一项所述的方法,所述IL-12的所述功能活性片段包含如SEQ ID NO:42和/或55所示的氨基酸序列。
  305. 根据权利要求270-304中任一项所述的方法,所述IL-12包含如SEQ ID NO:34-40中任一项所示的氨基酸序列。
  306. 根据权利要求270-305中任一项所述的方法,所述IL-12和/或其功能活性片段的表达提高包含所述IL-12和/或其功能活性片段的合成和/或分泌提高。
  307. 根据权利要求270-306中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高。
  308. 根据权利要求270-307中任一项所述的方法,与IL-12和/或其功能活性片段的表达和/或活性未改变的TIL相比,使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中表达IL-12和/或其功能活性片段的细胞比例提高至少约5%以上。
  309. 根据权利要求270-308中任一项所述的方法,所述使所述TIL的IL-12和/或其功能活性片段的表达提高和/或活性增强获得的TIL中,表达IL-12和/或其功能活性片段的细胞比例为至少约5%以上。
  310. 根据权利要求270-309中任一项所述的方法,所述CD28激动剂包含抗CD28的抗体和/或其抗原结合片段、CD80和/或其功能活性片段、和/或CD86和/或其功能活性片段。
  311. 根据权利要求270-310中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及其它T细胞激活剂接触。
  312. 根据权利要求311所述的方法,所述其它T细胞激活剂包含选自以下组的一种或多种靶点的激动剂:CD3、HVEM、CD40L、OX40和4-1BB。
  313. 根据权利要求311-312中任一项所述的方法,所述其它T细胞激活剂包含CD3激动剂。
  314. 根据权利要求311-313中任一项所述的方法,所述其它T细胞激活剂包含抗 CD3的抗体和/或其抗原结合片段。
  315. 根据权利要求311-314中任一项所述的方法,所述使TIL与所述CD28激动剂以及所述其它T细胞激活剂接触包含选自以下组的一种或多种方式:(1)将所述CD28激动剂以及所述其它T细胞激活剂添加至所述TIL的细胞培养基中;(2)将表达所述CD28激动剂以及所述其它T细胞激活剂的工程化细胞添加至所述TIL的细胞培养基中;(3)将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  316. 根据权利要求315所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为至少约30ng/mL。
  317. 根据权利要求315-316中任一项所述的方法,所述其它T细胞激活剂在所述TIL的细胞培养基中的初始浓度为约30ng/mL-约300ng/mL。
  318. 根据权利要求315-317中任一项所述的方法,所述固相介质的直径为约500纳米至约10微米。
  319. 根据权利要求315-318中任一项所述的方法,所述固相介质的直径为约1纳米至约500纳米。
  320. 根据权利要求318-319中任一项所述的方法,所述固相介质的直径通过透射电子显微镜测量。
  321. 根据权利要求315-320中任一项所述的方法,所述固相介质包含聚合物。
  322. 根据权利要求315-321中任一项所述的方法,每mg所述固相介质包含至少约25μg的所述CD28激动剂以及所述其它T细胞激活剂。
  323. 根据权利要求315-322中任一项所述的方法,以约2:1-约1:2的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  324. 根据权利要求315-323中任一项所述的方法,以约1:100-约1:2000的所述固相介质与所述TIL的比例,将包含所述CD28激动剂以及所述其它T细胞激活剂的固相介质添加至所述TIL的细胞培养基中。
  325. 根据权利要求270-324中任一项所述的方法,使所述TIL在与所述CD28激动剂接触至少约2小时之后与饲养细胞共培养。
  326. 根据权利要求325所述的方法,使所述TIL在与所述CD28激动剂接触约6小时至约72小时之后与所述饲养细胞共培养。
  327. 根据权利要求325-326中任一项所述的方法,使所述TIL在与所述CD28激动剂 接触约12小时至约48小时之后与所述饲养细胞共培养。
  328. 根据权利要求325-326中任一项所述的方法,使所述TIL在与所述CD28激动剂接触约6小时、约12小时、约24小时、约48小时或约72小时之后与所述饲养细胞共培养。
  329. 根据权利要求325-328中任一项所述的方法,所述饲养细胞包含抗原呈递细胞。
  330. 根据权利要求325-329中任一项所述的方法,所述饲养细胞包含选自以下组的一种或多种:外周单个核细胞,树突状细胞和人工抗原呈递细胞。
  331. 根据权利要求325-330中任一项所述的方法,所述饲养细胞为外周单个核细胞。
  332. 根据权利要求325-331中任一项所述的方法,所述饲养细胞为经过辐照的饲养细胞。
  333. 根据权利要求325-332中任一项所述的方法,所述TIL与所述饲养细胞共培养包含使所述饲养细胞的表面与所述TIL的表面相接触。
  334. 根据权利要求325-333中任一项所述的方法,所述TIL与所述饲养细胞共培养包含将所述饲养细胞添加至所述TIL的细胞培养基中。
  335. 根据权利要求325-334中任一项所述的方法,以约40:1-约400:1的所述饲养细胞与所述TIL的比例,将所述饲养细胞添加至所述TIL的细胞培养基中。
  336. 根据权利要求325-335中任一项所述的方法,使所述TIL基本上同时与所述CD28激动剂以及T细胞生长因子接触。
  337. 根据权利要求270-336中任一项所述的方法,所述T细胞生长因子选自以下组的一种或多种:IL-2、IL-7、IL-12、IL-15、IL-21、γ干扰素、以及它们的功能活性片段。
  338. 根据权利要求270-337中任一项所述的方法,所述T细胞生长因子包含IL-2和/或其功能活性片段。
  339. 根据权利要求270-338中任一项所述的方法,所述TIL与所述T细胞生长因子接触包含将所述T细胞生长因子添加至所述TIL的细胞培养基中。
  340. 根据权利要求270-339中任一项所述的方法,每一种所述T细胞生长因子在所述TIL的细胞培养基中的初始浓度各自独立地为至少约300 IU/mL。
  341. 根据权利要求270-340中任一项所述的方法,所述TIL为源自肿瘤组织的碎片的TIL和/或源自冷冻保存后复苏的TIL。
  342. 根据权利要求341所述的方法,所述碎片的体积为约1立方毫米至约27立方毫米。
  343. 一种肿瘤浸润淋巴细胞(TIL),所述TIL经过权利要求1-342中任一项所述的方法获得。
  344. 一种组合物,其包含权利要求343所述的TIL。
  345. 一种药物组合物,其包含权利要求343所述的TIL和/或权利要求344所述的组合物,以及任选地药学上可接受的载体。
  346. 一种影响肿瘤细胞生长的方法,包含向受试者施用权利要求343所述的TIL、权利要求344所述的组合物和/或权利要求345所述的药物组合物。
  347. 权利要求343所述的TIL、权利要求344所述的组合物和/或权利要求345所述的药物组合物在制备药物中的应用,所述药物用于预防和/或治疗肿瘤。
  348. 根据权利要求347所述的应用,其中,所述肿瘤为实体瘤。
  349. 根据权利要求347-348中任一项所述的应用,其中,所述肿瘤选自以下组的一种或多种:黑色素瘤、卵巢癌、宫颈癌、肺癌、膀胱癌、乳腺癌、头颈癌、胰腺癌、肝癌、胃癌、结直肠癌、和肾癌。
PCT/CN2022/089721 2021-04-29 2022-04-28 一种修饰的肿瘤浸润淋巴细胞及其用途 WO2022228492A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280007364.5A CN116406426A (zh) 2021-04-29 2022-04-28 一种修饰的肿瘤浸润淋巴细胞及其用途

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN2021091120 2021-04-29
CNPCT/CN2021/091120 2021-04-29
CN2021143527 2021-12-31
CNPCT/CN2021/143528 2021-12-31
CNPCT/CN2021/143527 2021-12-31
CN2021143528 2021-12-31

Publications (1)

Publication Number Publication Date
WO2022228492A1 true WO2022228492A1 (zh) 2022-11-03

Family

ID=83846720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089721 WO2022228492A1 (zh) 2021-04-29 2022-04-28 一种修饰的肿瘤浸润淋巴细胞及其用途

Country Status (2)

Country Link
CN (1) CN116406426A (zh)
WO (1) WO2022228492A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024131685A1 (zh) * 2022-12-19 2024-06-27 苏州沙砾生物科技有限公司 一种细胞培养方法及其用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018161038A1 (en) * 2017-03-03 2018-09-07 Obsidian Therapeutics, Inc. Il12 compositions and methods for immunotherapy
CN109468278A (zh) * 2017-09-08 2019-03-15 科济生物医药(上海)有限公司 基因工程化的t细胞及应用
CN109789187A (zh) * 2016-07-18 2019-05-21 创新疗法医药有限公司 Il-12作为替代免疫治疗剂的用途
CN110267978A (zh) * 2016-10-07 2019-09-20 得克萨斯大学体系董事会 用于治疗癌症的表达膜锚定的il-12的t细胞
WO2020056304A1 (en) * 2018-09-14 2020-03-19 Modernatx, Inc. Methods and compositions for treating cancer using mrna therapeutics
CN110913954A (zh) * 2017-03-03 2020-03-24 黑曜石疗法公司 免疫疗法的组合物和方法
CN111601883A (zh) * 2017-11-17 2020-08-28 艾欧凡斯生物治疗公司 由细针抽吸物和小活检物扩增til

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109789187A (zh) * 2016-07-18 2019-05-21 创新疗法医药有限公司 Il-12作为替代免疫治疗剂的用途
CN110267978A (zh) * 2016-10-07 2019-09-20 得克萨斯大学体系董事会 用于治疗癌症的表达膜锚定的il-12的t细胞
WO2018161038A1 (en) * 2017-03-03 2018-09-07 Obsidian Therapeutics, Inc. Il12 compositions and methods for immunotherapy
CN110913954A (zh) * 2017-03-03 2020-03-24 黑曜石疗法公司 免疫疗法的组合物和方法
CN109468278A (zh) * 2017-09-08 2019-03-15 科济生物医药(上海)有限公司 基因工程化的t细胞及应用
CN111601883A (zh) * 2017-11-17 2020-08-28 艾欧凡斯生物治疗公司 由细针抽吸物和小活检物扩增til
WO2020056304A1 (en) * 2018-09-14 2020-03-19 Modernatx, Inc. Methods and compositions for treating cancer using mrna therapeutics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG LING, MORGAN RICHARD A., BEANE JOAL D., ZHENG ZHILI, DUDLEY MARK E., KASSIM SADIK H., NAHVI AZAM V., NGO LIEN T., SHERRY RIC: "Tumor-Infiltrating Lymphocytes Genetically Engineered with an Inducible Gene Encoding Interleukin-12 for the Immunotherapy of Metastatic Melanoma", CLINICAL CANCER RESEARCH, ASSOCIATION FOR CANCER RESEARCH, US, vol. 21, no. 10, 15 May 2015 (2015-05-15), US, pages 2278 - 2288, XP055981943, ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-14-2085 *
ZHANG YIXIN, WANG XIAOYIN; LIANG ZHIQIANG ET AL: "Experimental Study on the Tumor Infiltrating Lymphocytes of Liver Cancer In - duced by Interleukin1 2.", CHINESE JOURNAL OF CLINICAL MEDICINE, vol. 11, no. 1, 28 February 2004 (2004-02-28), pages 51 - 53 +131, XP055981954, ISSN: 1008-6358 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024131685A1 (zh) * 2022-12-19 2024-06-27 苏州沙砾生物科技有限公司 一种细胞培养方法及其用途

Also Published As

Publication number Publication date
CN116406426A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
US11020429B2 (en) Vectors and genetically engineered immune cells expressing metabolic pathway modulators and uses in adoptive cell therapy
CN114761037A (zh) 结合bcma和cd19的嵌合抗原受体及其用途
US20220002669A1 (en) Methods for selection and stimulation of cells and apparatus for same
WO2022036495A9 (en) Lymphocytes-antigen presenting cells co-stimulators and uses thereof
JP2022514023A (ja) 操作されたサイトカイン受容体対を使用して腫瘍浸潤リンパ球を拡大培養する方法及びその使用
JP2022512913A (ja) 遺伝子操作されたt細胞を作製するための方法
WO2022135525A1 (zh) 肿瘤浸润淋巴细胞的制备方法及其用途
WO2022223013A1 (zh) 一种修饰的肿瘤浸润淋巴细胞及其用途
WO2022105816A1 (zh) 肿瘤浸润淋巴细胞的培养方法及其用途
KR20210091212A (ko) 항-pd-1 항체에 불응성인 nsclc 환자의 치료
KR20220101641A (ko) 세포 선택 및/또는 자극 장치 및 사용 방법
CN115315509B (zh) 肿瘤浸润淋巴细胞的制备方法及其用途
JP2024517863A (ja) 細胞を刺激し、形質導入する方法
WO2022228492A1 (zh) 一种修饰的肿瘤浸润淋巴细胞及其用途
WO2023011433A1 (zh) 一种修饰的肿瘤浸润淋巴细胞及其用途
WO2023284721A1 (zh) 一种免疫细胞的培养方法及其用途
WO2023125772A1 (zh) 一种修饰的肿瘤浸润淋巴细胞及其用途
WO2024131685A1 (zh) 一种细胞培养方法及其用途
CN114908050B (zh) 肿瘤浸润淋巴细胞的制备方法及其用途
WO2023011434A1 (zh) 一种修饰的免疫细胞及其用途
WO2024120506A1 (zh) 一种修饰的细胞及其用途
WO2023138598A1 (zh) 肿瘤浸润淋巴细胞在疾病治疗中的用途
US20220241329A1 (en) Formulations and processes for car t cell drug products
JP2023526278A (ja) 組み換え受容体を発現しているドナーバッチ細胞を産生するための方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794962

Country of ref document: EP

Kind code of ref document: A1