WO2022228345A1 - 热泵系统 - Google Patents

热泵系统 Download PDF

Info

Publication number
WO2022228345A1
WO2022228345A1 PCT/CN2022/088780 CN2022088780W WO2022228345A1 WO 2022228345 A1 WO2022228345 A1 WO 2022228345A1 CN 2022088780 W CN2022088780 W CN 2022088780W WO 2022228345 A1 WO2022228345 A1 WO 2022228345A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
valve device
connection port
heat exchanger
valve
Prior art date
Application number
PCT/CN2022/088780
Other languages
English (en)
French (fr)
Inventor
邱燮宁
肖天龙
王勇
袁斌
Original Assignee
约克广州空调冷冻设备有限公司
江森自控泰科知识产权控股有限责任合伙公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 约克广州空调冷冻设备有限公司, 江森自控泰科知识产权控股有限责任合伙公司 filed Critical 约克广州空调冷冻设备有限公司
Priority to EP22794815.5A priority Critical patent/EP4332465A1/en
Publication of WO2022228345A1 publication Critical patent/WO2022228345A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/10Component parts of trickle coolers for feeding gas or vapour
    • F28F25/12Ducts; Guide vanes, e.g. for carrying currents to distinct zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0063Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F2025/005Liquid collection; Liquid treatment; Liquid recirculation; Addition of make-up liquid

Definitions

  • the present application relates to the field of air conditioning, in particular to a heat pump system.
  • the heat pump system includes a compressor, two heat exchangers, a throttling device and a four-way valve, which can meet the requirements of providing air-conditioning cooling and cooling capacity to the outside world and providing air-conditioning heating and heat supply to the outside world.
  • a compressor two heat exchangers
  • a throttling device and a four-way valve, which can meet the requirements of providing air-conditioning cooling and cooling capacity to the outside world and providing air-conditioning heating and heat supply to the outside world.
  • the present application provides a heat pump system
  • the heat pump system has a cooling mode and a heating mode, and includes a compressor, a first heat exchanger, a second heat exchanger and a valve device.
  • the compressor includes a suction port and a discharge port.
  • the first heat exchanger is configured to function as a falling film evaporator or as a condenser, and the first heat exchanger includes a first port of the first heat exchanger, a second port of the first heat exchanger, a first The third port of the heat exchanger and the fourth port of the first heat exchanger.
  • the second heat exchanger includes a first port of the second heat exchanger and a second port of the second heat exchanger.
  • the valve device includes a first connection port of the valve device, a second connection port of the valve device, a third connection port of the valve device, a fourth connection port of the valve device and a fifth connection port of the valve device.
  • the first connection port of the valve device is connected with the exhaust port of the compressor through a pipeline
  • the second connection port of the valve device is connected with the first port of the second heat exchanger through a pipeline
  • the third connection port of the valve device is connected to the suction port of the compressor through a pipeline
  • the fourth connection port of the valve device is connected to the first port of the first heat exchanger through a pipeline.
  • the fifth connection port of the valve device is connected with the fourth port of the first heat exchanger through a pipeline.
  • the valve device is configured to connect the third connection port of the valve device with the suction port of the compressor when the heat pump system is operating in the cooling mode, so that the first connection port is connected to the suction port of the compressor.
  • a heat exchanger acts as a falling film evaporator; when the heat pump system operates in the heating mode, the valve device communicates the first connection port of the valve device with the exhaust port of the compressor, so as to The first heat exchanger is made to act as a condenser.
  • the valve arrangement includes at least one valve, each of the at least one valve being a reversing valve.
  • the valve device does not include the on-off valve and the check valve.
  • the valve device includes a four-way valve and a three-way valve.
  • the four-way valve includes four ports, and three of the four ports respectively form the first connection port of the valve device, the second connection port of the valve device and the third connection port of the valve device,
  • the three-way valve includes three ports, and two of the three ports respectively form the fourth connection port of the valve device and the fifth connection port of the valve device, and the fourth port of the four-way valve is connected to the valve device.
  • the third port of the three-way valve is connected.
  • the four-way valve includes a first convection passage of the four-way valve and a second convection passage of the four-way valve, and the first convection passage of the four-way valve can make the first connection port of the valve device and the valve
  • the device second connection port is in fluid communication and enables the valve device third connection port to be in fluid communication with the fourth port of the four-way valve, the four-way valve second convection channel enabling the valve device first
  • the connection port is in fluid communication with the fourth port of the four-way valve and enables the second connection port of the valve device and the third connection port of the valve device to be in fluid communication.
  • the three-way valve includes a first flow channel of the three-way valve and a second flow channel of the three-way valve, and the third port of the three-way valve can pass through the first flow channel of the three-way valve and the third port of the valve device.
  • the four connection ports are in fluid communication, and the third port of the three-way valve can be in fluid communication with the fifth connection port of the valve device through the second flow passage of the three-way valve.
  • the valve device includes a five-way valve, the five-way valve includes five ports, and the five ports respectively form the first connection port of the valve device, the second connection port of the valve device, and the The third connection port of the valve device, the fourth connection port of the valve device and the fifth connection port of the valve device.
  • the five-way valve includes a first flow passage of the five-way valve and a second flow passage of the five-way valve.
  • the five-way valve has a first state and a second state, and the five-way valve is configured such that when the five-way valve is in the first state, the valve device first connection port and the valve device The second connection port is in communication, the third connection port of the valve device is in communication with the fifth connection port of the valve device; and when the five-way valve is in the second state, the first connection port of the valve device is in communication with the fifth connection port of the valve device.
  • the fourth connection port of the valve device is in communication, and the second connection port of the valve device is in communication with the third connection port of the valve device.
  • the five-way valve has a third state, and the five-way valve is configured such that when the five-way valve is in the third state, the valve device first connection port and the valve The third connection port of the device is in communication, and the fourth connection port of the valve device is in communication with the fifth connection port of the valve device.
  • the heat pump system further includes a communication pipe configured to controllably communicate the discharge port of the compressor with the second port of the second heat exchanger.
  • the five-way valve has a fourth state, and the five-way valve is configured such that when the five-way valve is in the fourth state, the third connection port of the valve device communicates with the fourth connection port of the valve device, The second connection port of the valve device communicates with the fifth connection port of the valve device.
  • a flash tank is provided in the first heat exchanger.
  • the heat pump system includes a flash tank or an economizer.
  • the heat pump system of the present application can reduce the pressure drop of the system, especially the pressure drop from the discharge port of the compressor to the inlet of the first heat exchanger and the pressure drop from the outlet of the first heat exchanger to the suction port of the compressor .
  • Fig. 1 is the perspective view of the heat exchanger of the present application
  • Figure 2 is an axial cross-sectional view of the heat exchanger shown in Figure 1;
  • Fig. 3 is the sectional view of the heat exchanger shown in Fig. 1 along the line A-A in Fig. 2;
  • Fig. 4 is a sectional view of the heat exchanger shown in Fig. 1 along the line B-B in Fig. 2;
  • FIG. 5A is an axial cross-sectional view of the heat exchanger shown in FIG. 1 , showing the movement trajectory of the refrigerant on the axial cross-sectional view of the heat exchanger when the heat exchanger is in the evaporator working mode;
  • 5B is a cross-sectional view of the heat exchanger shown in FIG. 1 along the line A-A in FIG. 2, showing the movement track of the refrigerant on the radial cross-sectional view of the heat exchanger when the heat exchanger is in the evaporator working mode;
  • 6A is an axial cross-sectional view of the heat exchanger shown in FIG. 1, showing the movement trajectory of the refrigerant on the axial cross-sectional view of the heat exchanger when the heat exchanger is in the condenser working mode;
  • 6B is a cross-sectional view of the heat exchanger shown in FIG. 1 along the line B-B in FIG. 2 , showing the movement track of the refrigerant on the radial cross-sectional view of the heat exchanger when the heat exchanger is in the condenser working mode;
  • FIG. 7 is a system diagram of a heat pump system according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the communication connection between the control device and each component in the heat pump system shown in FIG. 7;
  • Fig. 9 is the schematic internal structure diagram of the control device in Fig. 8.
  • 10A is a system diagram of a heat pump system using the valve assembly of the first embodiment
  • FIG. 10B is a system diagram of the heat pump system shown in FIG. 10A in a cooling mode
  • FIG. 10C is a system diagram of the heat pump system shown in FIG. 10A in a heating mode
  • 11A is a system diagram of a heat pump system using the valve assembly of the second embodiment
  • FIG. 11B is a system diagram of the heat pump system shown in FIG. 11A in a cooling mode
  • FIG. 11C is a system diagram of the heat pump system shown in FIG. 11A in a heating mode
  • 12A is a system diagram of a heat pump system using the valve assembly of the third embodiment
  • FIG. 12B is a system diagram of the heat pump system shown in FIG. 12A in a cooling mode
  • Fig. 12C is a system diagram of the heat pump system shown in Fig. 12A in a heating mode
  • FIG. 12D is a system diagram of the heat pump system shown in FIG. 12A in isolation mode
  • FIG. 12E is a system diagram of the heat pump system shown in FIG. 12A in a drain mode
  • 13A is a system diagram of a heat pump system using the valve assembly of the fourth embodiment
  • FIG. 13B is a system diagram of the heat pump system shown in FIG. 13A in a cooling mode
  • FIG. 13C is a system diagram of the heat pump system shown in FIG. 13A in a heating mode
  • FIG. 13D is a system diagram of the heat pump system shown in FIG. 13A in isolation mode
  • 14A is a system diagram of a heat pump system using the valve assembly of the fifth embodiment
  • FIG. 14B is a system diagram of the heat pump system shown in FIG. 14A in a cooling mode
  • FIG. 14C is a system diagram of the heat pump system shown in FIG. 14A in a heating mode
  • Fig. 14D is a system diagram of the heat pump system shown in Fig. 14A in a drain mode
  • 15A is a system diagram of another embodiment of the heat pump system of the present application.
  • 15B is a system diagram of yet another embodiment of the heat pump system of the present application.
  • FIG. 16 is a system diagram of yet another embodiment of the heat pump system of the present application.
  • first and second used in this application are only used for distinction and identification, and do not have any other meanings. No specific association. For example, the term “first heat exchanger” by itself does not imply the presence of a “second heat exchanger,” nor does the term “second heat exchanger” by itself imply the presence of a "first heat exchanger.”
  • FIG. 1 is a perspective view of the heat exchanger 100 of the present application
  • FIG. 2 is an axial cross-sectional view of the heat exchanger 100 shown in FIG. 1
  • FIG. 3 is the heat exchanger 100 shown in FIG. 1 along the line A-A in FIG. 2
  • Cross-sectional view FIG. 4 is a cross-sectional view of the heat exchanger 100 shown in FIG. 1 along the line B-B in FIG. 2 to illustrate the specific structure of the heat exchanger 100 .
  • the heat exchanger 100 includes a housing 102 .
  • the housing 102 includes a cylindrical body 131 , a left partition plate 132 , a right partition plate 133 , a left end plate 135 and a right end plate 136 .
  • the cylindrical body 131 has an inner diameter D.
  • the cylindrical body 131 is formed to extend along the longitudinal direction of the heat exchanger 100 .
  • the left and right ends of the cylindrical body 131 are respectively closed by the left partition plate 132 and the right partition plate 133 to form the cavity 202 .
  • the left end plate 135 is arc-shaped, and the left end plate 135 is connected with the left partition plate 132 to form the communication cavity 203 .
  • the right end plate 136 is also arc-shaped, and the right end plate 136 is connected to the right partition plate 133 .
  • the right divider plate 133 also includes a lateral divider plate 211 extending laterally from the right divider plate 133 to the right end plate 136 , forming an outlet cavity 212 and an inlet cavity 213 .
  • the heat exchanger 100 further includes a first inlet pipe 112 , a second inlet pipe 114 , a first outlet pipe 124 , a second outlet pipe 122 and an oil return pipe 125 .
  • the first inlet pipe 112 , the second inlet pipe 114 , the first outlet pipe 124 , the second outlet pipe 122 , and the oil return pipe 125 are connected to the housing 102 and communicate with the cavity 202 refrigerant.
  • the first inlet pipe 112 , the second inlet pipe 114 and the first outlet pipe 124 are located approximately at the upper portion of the cylindrical body 131 .
  • first outlet pipe 124 , the first inlet pipe 112 and the second inlet pipe 114 are arranged along the length direction of the casing 102 .
  • the first outlet pipe 124 is located in the left part of the casing 102
  • the first inlet pipe 112 is located in the middle part of the casing 102
  • the second inlet pipe 114 is located in the right part of the casing 102 .
  • the second outlet pipe 122 and the oil return pipe 125 are generally located at the lower part of the cylindrical body 131 .
  • the second outlet pipe 122 is located at the bottom of the casing 102 , and in the longitudinal direction of the casing 102 , the second outlet pipe 122 is located in the middle of the casing 102 .
  • the oil return pipe 125 is located at the lower part of the casing 102 , and in the length direction of the casing 102 , the oil return pipe 125 is located at the left part of the casing 102 , and in the radial direction of the casing 102 , it is inclined downward from the vertical direction. .
  • the heat exchanger 100 of the present application has an evaporator working mode and a condenser working mode.
  • the heat exchanger 100 When the heat exchanger 100 is in the evaporator working mode or the condenser working mode, the refrigerant entering the heat exchanger 100 from different inlets will have different characteristics. flow path.
  • the heat exchanger 100 further includes a refrigerant guiding structure.
  • Refrigerant guide structures are provided in the cavity 202 to define different flow paths for the heat exchanger 100 in the evaporator mode of operation and in the condenser mode of operation.
  • the refrigerant guide structure includes the main baffle assembly 231 .
  • the main baffle assembly 231 extends along the length direction of the housing 102 and is transversely disposed in the cavity 202 to divide the cavity 202 into a first cavity 204 located at the upper part and a second cavity 206 located at the lower part. As shown in FIGS. 3-4 , in the radial cross section of the housing 102 , the main baffle assembly 231 is roughly a stepped shape with lower ends and higher middle. The lower parts of the two ends of the main baffle assembly 231 are provided with several channels 241 , so that the upper first chamber 204 and the lower second chamber 206 can communicate with each other through the channels 241 . Specifically, the channel 241 is in the shape of a broken line.
  • the channel 241 has four adjacent folded line segments, and the adjacent two folded line segments are approximately at 90°, so that the refrigerant can change the movement direction multiple times when moving in the channel 241 .
  • a first communication port 281 and a second communication port 282 are provided on the upper middle portion of the main baffle assembly 231 . In the longitudinal direction of the housing 102, the first communication port 281 is located approximately in the middle, and the second communication port 282 is disposed approximately near the right end.
  • the first inlet pipe 112 communicates with the first communication port 281
  • the outlet of the second inlet pipe 114 communicates with the second communication port 282 .
  • channel 241 is shown as a broken line, other structures such as wire mesh can also be used as the channel, as long as the lower parts of the two ends of the main baffle assembly 231 can make the upper first cavity 204 and The second cavity 206 located at the lower part can be communicated through several channels 241 .
  • the refrigerant guiding structure of the heat exchanger 100 further includes a first inlet pipe expander 291 .
  • the first inlet tube expander 291 is disposed in the first cavity 204 .
  • the cover is set on the first communication port 281 and connected with the first inlet pipe 112 and the main baffle assembly 231 .
  • the first inlet pipe expander 291 is a pipe with a larger diameter than the first inlet pipe 112 .
  • the upper part of the second inlet pipe expander 297 is connected to the first inlet pipe 112 , and the opening 292 of the upper part is communicated with the outlet of the first inlet pipe 112 .
  • the lower cover of the second inlet pipe expander 297 is provided on the main baffle assembly 231 so that the lower opening 293 communicates with the first communication port 281 . Accordingly, the refrigerant flowing in from the first inlet pipe 112 can flow into the second chamber 206 through the first inlet pipe expander 291 and the first communication port 281 . After the refrigerant flows out of the first inlet pipe 112 , the flow velocity can be reduced in the first inlet pipe expander 291 .
  • the refrigerant guiding structure of the heat exchanger 100 further includes a distributor 221 .
  • the distributor 221 is provided below the main baffle assembly 231 .
  • the dispenser 221 includes a dispenser housing 225 that defines a dispenser cavity 226 .
  • the dispenser housing 225 extends substantially along the length of the housing 102.
  • the upper part of the distributor housing 225 is provided with a distributor inlet 222 .
  • the distributor inlet 222 is disposed substantially in the middle along the length direction of the casing 102, and is disposed below the first communication port 281 on the main baffle assembly 231, so that the refrigerant can pass through the first communication port 281 and The dispenser inlet 222 flows into the dispenser cavity 226 .
  • the lower part of the distributor housing 225 is provided with several distributor outlets 223 .
  • the plurality of distributor outlets 223 are arranged at intervals along the length direction of the casing 102, so that the refrigerant flowing in the distributor chamber 226 can flow along the length direction of the casing 102, and flow into the first through the distributor outlets 223.
  • Two cavities 206 are arranged in the example of the present application.
  • the distributor outlet 223 is in the shape of a narrow strip. However, those skilled in the art can understand that the distributor outlet 223 can be any shape.
  • the refrigerant guiding structure of the heat exchanger 100 further includes a second inlet pipe expander 297 .
  • the second inlet tube expander 297 is disposed in the first cavity 204 .
  • the cover is arranged on the second communication port 282 and is connected with the second inlet pipe 114 and the main baffle assembly 231 .
  • the second inlet pipe expander 297 is generally flared. Its upper part is smaller and its lower part is larger.
  • the upper part is connected with the second inlet pipe 114 , and the opening 285 in the upper part is communicated with the outlet of the second inlet pipe 114 .
  • the lower cover is set on the main baffle assembly 231 , and the lower opening 286 is communicated with the second communication port 282 .
  • the size of the opening 285 at the upper portion of the second inlet pipe expander 297 is the same as that of the outlet of the second inlet pipe 114, and the diameters thereof are both the first diameter d1.
  • the diameter of the opening 286 in the lower portion of the second inlet pipe expander 297 is the second diameter d2.
  • the second diameter d2 is larger than the first diameter d1 so that the refrigerant flowing in from the second inlet pipe 114 can reduce the flow velocity in the second inlet pipe expander 297 .
  • the refrigerant guiding structure of the heat exchanger 100 further includes a buffer 250 .
  • the buffer 250 is provided below the main baffle assembly 231 and below the second communication port 282 .
  • the buffer 250 is a buffer plate.
  • the buffer plate has a buffer length extending in the longitudinal direction of the casing 102 , and has a buffer width extending in the width direction of the casing 102 .
  • the shape of the bumper plate is similar to that of the main baffle assembly 231 . Specifically, on the radial section of the housing 102 , the buffer plate is roughly a stepped shape with lower ends at both ends and a higher middle.
  • both sides of the buffer plate in the width direction are raised upward and are connected to the main baffle assembly 231 .
  • the buffer length and the buffer width of the buffer plate are configured to cover the second communication port 282, so that the refrigerant flowing in from the second communication port 282 can flow along the direction of the buffer length of the buffer plate to enter the second chamber 206.
  • the width of the bumper plate is d3.
  • d3:d2 is greater than or equal to 1:1 and less than or equal to 5:1, so that the buffer plate can cover the second communication port 282 .
  • the width of the dispenser 221 in the width direction of the housing 102 is d4.
  • d2:d4 is greater than or equal to 2:1 and less than or equal to 5:1, so that the distributor 221 does not block the flow of the refrigerant flowing through the opening 286 in the lower part of the second inlet pipe expander 297 too much.
  • the buffer plate is also provided with a channel 401 arranged along the buffer length thereof to accommodate a part of the distributor 221 .
  • the distributor outlet 223 of the distributor 221 is disposed at the lower part of the buffer plate, so that the refrigerant flowing in from the first inlet pipe 112 can flow into the second chamber 206 through the distributor outlet 223 without being affected by the buffer plate.
  • the refrigerant guiding structure of the heat exchanger 100 further includes a first additional plate 333 and a second additional plate 334 .
  • the first additional plate 333 and the second additional plate 334 are respectively connected with the main baffle assembly 231 .
  • the first additional plate 333 and the second additional plate 334 are formed to extend along the length direction of the housing 102 and are substantially vertically arranged in the second cavity 206 .
  • the first additional plate 333 and the second additional plate 334 are respectively connected to the lower parts of the stepped main baffle assembly 231 and are formed to extend substantially downward.
  • the heat exchanger 100 further includes a heat exchange tube bundle 210 .
  • the heat exchange tube bundle 210 is disposed in the second cavity 206 below the first inlet tube 112 , the second inlet tube 114 and the first outlet tube 124 , and above the second outlet tube 122 .
  • the heat exchange tube bundle 210 includes a first group of heat exchange tubes 261 and a second group of heat exchange tubes 262 .
  • the first group of heat exchange tubes 261 includes a first number of heat exchange tubes
  • the second group of heat exchange tubes 262 includes a second number of heat exchange tubes
  • the ratio of the first number to the second number is greater than 2:1.
  • the first group of heat exchange tubes 261 are arranged approximately in the middle of the second cavity 206 and extend along the length direction of the casing 102 .
  • the left ends of the heat exchange tubes in the first group of heat exchange tubes 261 are communicated with the communication cavity 203 on the left side of the heat exchanger 100 , and the right ends of the heat exchange tubes in the first group of heat exchange tubes 261 are connected with the right ends of the heat exchanger tubes 100 .
  • the outlet cavities 212 communicate with each other.
  • the second group of heat exchange tubes 262 are generally arranged at the lower portion of the second cavity 206 and extend along the length direction of the casing 102 .
  • the left ends of the heat exchange tubes in the second group of heat exchange tubes 262 are connected with the communication cavity 203 on the left side of the heat exchanger 100
  • the right ends of the heat exchange tubes in the second group of heat exchange tubes 262 are connected with the inlet cavity 213 on the right side of the heat exchanger 100 . Pass.
  • the heat exchange refrigerant can enter the heat exchanger 100 from the inlet cavity 213 on the right side of the heat exchanger 100, flow through the second set of heat exchange tubes 262, the communication cavity 203 and the first set of heat exchange tubes 261 in sequence, and then flow from the outlet Cavity 212 flows out of heat exchanger 100 .
  • the heat exchange refrigerant flows in the first group of heat exchange tubes 261 and the second group of heat exchange tubes 262 , it can exchange heat with the refrigerant in the second cavity 206 .
  • the inner diameter of the cylindrical body 131 is D.
  • the bottoms of the first set of heat exchange tubes 261 and the tops of the second set of heat exchange tubes 262 have a second distance h2. That is to say, the distance between the bottom of the lowermost layer of heat exchange tubes of the first group of heat exchange tubes 261 and the top of the uppermost layer of heat exchange tubes of the second group of heat exchange tubes 262 is the second distance h2.
  • the ratio of the second distance h2 to the inner diameter D is less than 1:2.
  • the refrigerant guiding structures are configured to define different flow paths of the heat exchanger 100 in the condenser mode of operation and in the evaporator mode of operation, respectively.
  • the refrigerant guide structure guides the refrigerant flowing in from the first inlet pipe 112 to exchange heat with the refrigerant in the heat exchange tube bundle 210 to evaporate it into a gas and guide the refrigerant The vaporized gas exits the heat exchanger 100 through the first outlet pipe 124 .
  • the refrigerant guide structure guides the refrigerant flowing in from the second inlet pipe 114 to exchange heat with the refrigerant in the heat exchange tube bundle 210 to condense it into a liquid, and then The liquid formed by condensation is discharged from the heat exchanger 100 via the second outlet pipe 122 . This will be described in detail later in conjunction with the different working modes shown in FIGS. 5A-5B and 6A-6B.
  • the heat exchanger 100 shown in FIGS. 1-4 has an evaporator mode of operation and a condenser mode of operation.
  • the heat exchanger 100 When the heat exchanger 100 is in the evaporator working mode, the heat exchanger 100 is used as an evaporator.
  • the heat exchanger 100 When the heat exchanger 100 is in the condenser working mode, the heat exchanger 100 is used as a condenser.
  • the flow paths of the refrigerant in the heat exchanger 100 when the heat exchanger 100 is in the evaporator working mode and the condenser working mode are described below with reference to FIGS. 5A-5B and FIGS. 6A-6B respectively.
  • FIG. 5A is an axial cross-sectional view of the heat exchanger 100 shown in FIG. 1 , showing the movement trajectory of the refrigerant on the axial cross-sectional view of the heat exchanger 100 when the heat exchanger 100 is in the evaporator working mode.
  • 5B is a cross-sectional view of the heat exchanger 100 shown in FIG. 1 along the line A-A in FIG. 2 , showing the movement of the refrigerant on the radial cross-sectional view of the heat exchanger 100 when the heat exchanger 100 is in the evaporator working mode trajectory. As shown in FIGS.
  • a refrigerant eg, a gas-liquid mixture
  • the refrigerant flows into the distributor chamber 226 of the distributor 221 through the first inlet pipe expander 291 , the first communication port 281 on the main baffle assembly 231 and the distributor inlet 222 in sequence. Since the distributor cavity 226 extends along the length of the housing 102 , the refrigerant contained in the distributor cavity 226 also moves along the length of the housing 102 . That is, in the longitudinal direction of the casing 102, the refrigerant flows from the middle to both sides.
  • the refrigerant will flow downward. It can be seen that since several distributor outlets 223 are arranged along the length direction of the casing 102, the refrigerant can flow downward relatively uniformly in the length direction of the casing 102, and flow through the first group of heat exchange from top to bottom Tube 261.
  • the first group of heat exchange tubes 261 flows a higher temperature heat exchange refrigerant.
  • the refrigerant contacts the first group of heat exchange tubes 261 and exchanges heat with the heat exchange refrigerant in the first group of heat exchange tubes 261 .
  • the refrigerant flows downward and contacts the first group of heat exchange tubes 261 , the refrigerant is distributed on the top row of heat exchange tubes, and forms a liquid film on the top row of heat exchange tubes for evaporation.
  • the unevaporated liquid refrigerant drips onto the next row of heat exchange tubes and continues to evaporate.
  • the liquid refrigerant can flow all the way down, and form a liquid film in the first group of heat exchange tubes 261 for evaporation.
  • the refrigerant not evaporated on the first group of heat exchange tubes 261 flows downward to contact the second group of heat exchange tubes 262, which exchanges heat with the heat exchange refrigerant in the second group of heat exchange tubes 262, increases in temperature and evaporates .
  • the refrigerant evaporated into gas at the first group of heat exchange tubes 261 continues to flow downward until it evaporates into gas After the gas refrigerant passes over the lower edges of the first additional plate 333 and the second additional plate 334, the evaporated gas refrigerant flows upward.
  • the refrigerant evaporated into a gas passes down the first group of heat exchange tubes 261 , flows to both sides, and then flows upward.
  • the refrigerant evaporated into gas will enter the first chamber 204 after passing through the channels 241 on the main baffle assembly 231 , and then flow out of the heat exchanger 100 through the first outlet pipe 124 .
  • Another part of the refrigerant evaporated into gas at the second set of heat exchange tubes 262 flows upward and enters the first chamber 204 after passing through several channels 241 on the main baffle assembly 231, and then flows out of the exchange through the first outlet tube 124.
  • Heater 100 It should be noted that when the heat exchanger 100 is in the evaporator working mode, the liquid refrigerant can be deposited on the bottom of the second chamber 206 and exchange heat with the second set of heat exchange tubes 262 to evaporate.
  • FIG. 6A is an axial cross-sectional view of the heat exchanger 100 shown in FIG. 1 , showing the movement trajectory of the refrigerant on the axial cross-sectional view of the heat exchanger 100 when the heat exchanger 100 is in the condenser working mode.
  • 6B is a cross-sectional view of the heat exchanger 100 shown in FIG. 1 along the line B-B in FIG. 2 , showing the movement trajectory of the refrigerant on the radial cross-sectional view of the heat exchanger when the heat exchanger 100 is in the condenser working mode .
  • refrigerant eg, a gas with a higher flow velocity
  • the refrigerant flows into the heat exchanger 100 from the second inlet pipe 114 .
  • the refrigerant enters the second chamber 206 through the second inlet pipe expander 297 and the second communication port 282 on the main baffle assembly 231 in sequence. Since the moving speed of the refrigerant is relatively high, the refrigerant flowing into the second cavity 206 will directly impact the buffer 250 . Since the width direction of the buffer 250 is connected with the main baffle assembly 231 , the refrigerant can move along the length direction of the casing 102 and move downward after crossing the buffer 250 .
  • the refrigerant then flows to the first set of heat exchange tubes 261 .
  • the first group of heat exchange tubes 261 flows a lower temperature (but higher temperature than the second group of heat exchange tubes 262 ) heat exchange refrigerant.
  • the refrigerant contacts the first group of heat exchange tubes 261 and exchanges heat with the heat exchange refrigerant in the first group of heat exchange tubes 261 .
  • the refrigerant condenses into liquid and accumulates at the bottom of the second cavity 206 .
  • the refrigerant condensed into liquid accumulates at the bottom of the second chamber 206, it can make the second group of heat exchange tubes 262 immersed in the liquid.
  • the refrigerant condensed into liquid will continue to exchange heat with the heat exchange refrigerant in the second group of heat exchange tubes 262, thereby further reducing the temperature. temperature. Subsequently, the refrigerant condensed into liquid may flow out of the heat exchanger 100 from the second outlet pipe 122 .
  • FIG. 7 shows a system diagram of a heat pump system 700 of the present application.
  • the heat pump system 700 includes a compressor 712 , a first heat exchanger 701 , a second heat exchanger 722 , a throttling device 751 and a valve device.
  • the lines shown in FIG. 7 between the various components represent connecting lines.
  • compressor 712 includes suction port 716 and discharge port 714 .
  • the first heat exchanger 701 is the heat exchanger 100 described in Figures 1-6B. It is configured to be able to act as a falling film evaporator or as a condenser.
  • the first heat exchanger 701 includes a first port 702 of the first heat exchanger (ie, the second inlet pipe 114 ), a second port 703 of the first heat exchanger (ie, the first inlet pipe 112 ), a first heat exchanger
  • the third port 704 ie, the second outlet pipe 122) and the fourth port 705 (ie, the first outlet pipe 124) of the first heat exchanger.
  • the second heat exchanger 722 includes a second heat exchanger first port 724 and a second heat exchanger second port 726 .
  • the valve device includes a valve device first connection port 731 , a valve device second connection port 732 , a valve device third connection port 733 , a valve device fourth connection port 734 and a valve device fifth connection port 735 .
  • the throttle device 751 includes a throttle device inlet 752 and a throttle device outlet 753 . Specifically, the first connection port 731 of the valve device is connected to the exhaust port 714 of the compressor 712 through a connecting pipeline, and the second connection port 732 of the valve device is connected to the first port 724 of the second heat exchanger through a connecting pipeline.
  • the third connection port 733 of the device is connected to the suction port 716 of the compressor 712 through a connection pipeline
  • the fourth connection port 734 of the valve device is connected to the first port 702 of the first heat exchanger through a connection pipeline
  • the fifth connection port of the valve device 735 is connected to the fourth port 705 of the first heat exchanger through a connecting pipeline.
  • the second port 703 of the first heat exchanger and the second port 726 of the second heat exchanger are connected to the outlet 753 of the throttle device through a connecting pipeline.
  • the second port 703 of the first heat exchanger communicates with the throttle device outlet 753 through the first connecting pipeline 761 .
  • the second port 726 of the second heat exchanger is connected to the throttling device outlet 753 through the second connecting line 762 .
  • the first connecting pipeline 761 and the second connecting pipeline 762 are joined at the intersection point A and then connected to the throttle device outlet 753 .
  • the third port 704 of the first heat exchanger and the second port 726 of the second heat exchanger communicate with the throttle device inlet 752 through a connecting line.
  • the third port 704 of the first heat exchanger is connected to the throttle device inlet 752 through a third connecting line 763 .
  • the second port 726 of the second heat exchanger is connected to the throttle device inlet 752 through the fourth connecting line 764 .
  • the third connecting pipeline 763 and the fourth connecting pipeline 764 are connected to the throttle device inlet 752 after converging at the intersection point B.
  • the second connecting line 762 and the fourth connecting line 764 meet at the intersection point C.
  • One-way valves are respectively provided on the first connecting pipeline 761 , the second connecting pipeline 762 , the third connecting pipeline 763 and the fourth connecting pipeline 764 .
  • the first connecting pipeline 761 is provided with a one-way valve 771 for enabling the refrigerant to flow from the junction A to the second port 703 of the first heat exchanger in one direction.
  • the second connecting pipeline 762 is provided with a one-way valve 772 for allowing the refrigerant to flow from the junction A to the junction C in one direction.
  • a one-way valve 773 is provided on the third connecting line 763, so that the refrigerant can flow from the third port 704 of the first heat exchanger to the junction point B in one direction.
  • the fourth connecting line 764 is provided with a one-way valve 774 for enabling the refrigerant to flow from the junction C to the junction B in one direction.
  • the one-way valves on the first connecting pipeline 761, the second connecting pipeline 762, the third connecting pipeline 763 and the fourth connecting pipeline 764 can also be set to other types of valves, It only needs to be able to controllably connect or disconnect the valve upstream and downstream.
  • the first heat exchanger 701 is a water-side heat exchanger. When used as a condenser, it can be used to provide users with hot water. It can also be used as an evaporator.
  • the second heat exchanger 722 is an air side heat exchanger. It includes a fan 781 . It can act as a condenser/evaporator to dissipate heat/cold to the outside world.
  • first heat exchanger 701 and the second heat exchanger 722 are only illustrative, and in other examples, the first heat exchanger 701 and the second heat exchanger 722 may be any form of heat exchanger.
  • the second heat exchanger 722 may be a ground source heat exchanger, a water source heat exchanger, or the like.
  • the valve device is configured to connect the third connection port 733 of the valve device with the suction port 716 of the compressor 712 when the heat pump system operates in the cooling mode, so as to make the first heat exchange
  • the evaporator 701 acts as a falling film evaporator.
  • the valve device communicates the first connection port 731 of the valve device with the discharge port 714 of the compressor 712 so that the first heat exchanger 701 acts as a condenser.
  • FIG. 8 is a schematic diagram of the communication connection between the control device 801 and various components in the heat pump system 700 shown in FIG. 7 .
  • the heat pump system 700 includes a control device 801 .
  • the control device 801 is connected to the compressor 712 , the valve device, the fan 781 and the throttling device 751 through communication connections 811 , 812 , 813 , and 814 , respectively.
  • the control device 801 can control the opening and closing of the compressor 712, the opening and closing of the fan 781, the opening and closing of the throttling device 751, and the control of the valve device to select the connection state of each valve device connection port in the valve device.
  • FIG. 9 is a schematic internal structure diagram of the control device 801 in FIG. 8 .
  • the control device 801 includes a bus 902, a processor 904, an input interface 908, an output interface 912, and a memory 918 having a control program.
  • Each component in the control device 801 including the processor 904 , the input interface 908 , the output interface 912 and the memory 918 is communicatively connected to the bus 902 , so that the processor 904 can control the operation of the input interface 908 , the output interface 912 and the memory 918 .
  • memory 918 is used to store programs, instructions, and data
  • processor 904 reads programs, instructions, and data from memory 918 and can write data to memory 918 .
  • the processor 904 controls the operation of the input interface 908 and the output interface 912 by executing the programs and instructions read from the memory 918 .
  • the output interface 912 is connected to the compressor 712 , the valve device, the fan 781 and the throttling device 751 through communication connections 811 , 812 , 813 , and 814 , respectively.
  • the input interface 908 receives the operation request and other operation parameters of the heat pump system 700 through the communication connection 909 .
  • Processor 904 controls the operation of heat pump system 700 by executing programs and instructions in memory 918 .
  • control device 801 can receive an operation request for controlling the heat pump system 700 through the input interface 908 (such as sending a request through the control panel), and send a control signal to each controlled component through the output interface 912, so that the heat pump system 700 can Operates in a variety of work modes and can switch between each work mode.
  • the valve arrangement includes a four-way valve and a three-way valve.
  • the four-way valve includes four ports, wherein three ports respectively form the first connection port 731 of the valve device, the second connection port 732 of the valve device and the third connection port 733 of the valve device.
  • the three-way valve includes three ports, two of which form the fourth connection port 734 of the valve device and the fifth connection port 735 of the valve device, respectively.
  • the fourth port 1001 of the four-way valve is connected to the third port 1002 of the three-way valve through the connecting pipeline 1011 .
  • the four-way valve includes a first convection flow passage of the four-way valve and a second convection flow passage of the four-way valve.
  • the first convection passage of the four-way valve can make the first connecting port 731 of the valve device and the second connecting port 732 of the valve device communicate with refrigerant, and can make the third connecting port 733 of the valve device and the fourth port 1001 of the four-way valve communicate with refrigerant Connected.
  • the second convection passage of the four-way valve can make the first connecting port 731 of the valve device and the fourth port 1001 of the four-way valve communicate with refrigerant, and can make the second connecting port 732 of the valve device and the third connecting port 733 of the valve device refrigerant. Connected.
  • the three-way valve includes a first flow passage of the three-way valve and a second flow passage of the three-way valve.
  • the third port 1002 of the three-way valve can be in refrigerant communication with the fourth connecting port 734 of the valve device through the first flow channel of the three-way valve, or the third port 1002 of the three-way valve can be communicated with the valve device through the second flow channel of the three-way valve
  • the fifth connection port 735 communicates with the refrigerant.
  • FIG. 10B is a system diagram of the heat pump system shown in FIG. 10A in a cooling mode.
  • the four-way valve is in the state of the first convection passage of the four-way valve
  • the three-way valve is in the state of the second passage of the three-way valve
  • the compressor 712, the fan 781 and the The throttle device 751 is opened.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with air, thereby changing the high-temperature and high-pressure gaseous refrigerant into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the junction C, the one-way valve 774 , the junction B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 and becomes a low-temperature and low-pressure refrigerant, and then passes through the intersection point A and the one-way valve 771 in sequence, and enters the first heat exchanger 701 from the second port 703 of the first heat exchanger.
  • the low-temperature and low-pressure refrigerant exchanges heat with the refrigerant with a higher temperature on the user side, thereby reducing the temperature of the refrigerant on the user side, so as to provide the user side with a refrigerant with a lower temperature (for example, using for the provision of air-conditioned cold water).
  • the low-temperature and low-pressure refrigerant exchanges heat with the user-side refrigerant in the first heat exchanger 701 and becomes a low-pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant flows out of the first heat exchanger 701 from the fourth port 705 of the first heat exchanger, it sequentially passes through the fifth connecting port 735 of the valve device, the third port 1002 of the three-way valve, the connecting pipeline 1011, and the four-way valve.
  • the fourth port 1001 of the valve and the third connection port 733 of the valve device then enter the compressor 712 from the suction port 716 of the compressor 712 again, and become a high-temperature and high-pressure gaseous refrigerant to complete the refrigerant cycle.
  • FIG. 10C is a system diagram of the heat pump system shown in FIG. 10A in a heating mode.
  • the four-way valve is placed in the second convection channel state of the four-way valve
  • the three-way valve is placed in the first flow channel state of the three-way valve
  • the compressor 712, the fan 781 and the The throttle device 751 is opened.
  • the high-temperature and high-pressure gaseous refrigerant flowing out from the discharge port 714 of the compressor 712 sequentially passes through the first connecting port 731 of the valve device, the fourth port 1001 of the four-way valve, the connecting pipeline 1011 and the fourth connecting port of the valve device. After 734, flow into the first heat exchanger 701 from the first port 702 of the first heat exchanger.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with the refrigerant with a lower temperature on the user side, thereby increasing the temperature of the refrigerant on the user side, so as to provide the user with a refrigerant with a higher temperature (for example, for air-conditioning hot water).
  • the high-temperature and high-pressure gaseous refrigerant changes into a high-pressure liquid refrigerant after exchanging heat with the user-side refrigerant in the first heat exchanger 701 .
  • the high-pressure liquid refrigerant flows out from the third port 704 of the first heat exchanger 701 and then passes through the one-way valve 773 , the junction B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 and becomes a low-temperature and low-pressure refrigerant, and then flows to the second heat exchanger 722 through the junction A, the one-way valve 772 and the junction C in sequence.
  • the low temperature and low pressure refrigerant exchanges heat with air, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the second connection port 732 of the valve device and the third connection port 733 of the valve device in sequence, and then enters the compressor 712 from the suction port 716 of the compressor 712 again, and becomes a high-temperature and high-pressure gaseous refrigerant to complete the refrigerant. cycle.
  • the valve arrangement includes a five-way valve.
  • the five-way valve includes five ports, which respectively form the valve device first connection port 731 , the valve device second connection port 732 , the valve device third connection port 733 , the valve device fourth connection port 734 and the valve device fifth connection port 735 .
  • the five-way valve includes a five-way valve first flow passage and a five-way valve second flow passage, and has a first state and a second state.
  • the first connection port 731 of the valve device and the second connection port 732 of the valve device are in refrigerant communication, and the third connection port 733 of the valve device and the fifth connection port 735 of the valve device are in refrigerant communication.
  • the first connection port 731 of the valve device and the fourth connection port 734 of the valve device are in refrigerant communication, and the second connection port 732 of the valve device and the third connection port 733 of the valve device are in refrigerant communication.
  • FIG. 11B is a system diagram of the heat pump system shown in FIG. 11A in a cooling mode. As shown in FIG. 11B , through the control of the control device 801 , the five-way valve is in the first state, and the compressor 712 , the fan 781 , and the throttle device 751 are turned on.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with air, thereby changing the high-temperature and high-pressure gaseous refrigerant into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the junction C, the one-way valve 774 , the junction B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 and becomes a low-temperature and low-pressure refrigerant, and then passes through the check valve 771 and enters the first heat exchanger 701 from the second port 703 of the first heat exchanger.
  • the low-temperature and low-pressure refrigerant exchanges heat with the refrigerant with a higher temperature on the user side, thereby reducing the temperature of the refrigerant on the user side, so as to provide the user side with a refrigerant with a lower temperature (for example, using for the provision of air-conditioned cold water).
  • the low-temperature and low-pressure refrigerant exchanges heat with the user-side refrigerant in the first heat exchanger 701 and becomes a low-pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant flows out of the first heat exchanger 701 from the fourth port 705 of the first heat exchanger, it sequentially passes through the fifth connection port 735 of the valve device and the third connection port 733 of the valve device, and then is sucked from the compressor 712 again.
  • the gas port 716 enters the compressor 712 and becomes a high temperature and high pressure gaseous refrigerant to complete the cycle of the refrigerant.
  • FIG. 11C is a system diagram of the heat pump system shown in FIG. 11A in a heating mode. As shown in FIG. 11C , through the control of the control device 801 , the five-way valve is placed in the second state, and the compressor 712 , the fan 781 , and the throttling device 751 are turned on.
  • the high-temperature and high-pressure gaseous refrigerant flowing out from the discharge port 714 of the compressor 712 passes through the first connection port 731 of the valve device and the fourth connection port 734 of the valve device in sequence, and then flows into the first port 702 of the first heat exchanger.
  • the first heat exchanger 701 the high-temperature and high-pressure gaseous refrigerant exchanges heat with the refrigerant with a lower temperature on the user side, thereby increasing the temperature of the refrigerant on the user side, so as to provide the user with a refrigerant with a higher temperature (for example, for air-conditioning hot water).
  • the high-temperature and high-pressure gaseous refrigerant changes into a high-pressure liquid refrigerant after exchanging heat with the user-side refrigerant in the first heat exchanger 701 .
  • the high-pressure liquid refrigerant flows out from the third port 704 of the first heat exchanger 701 and then passes through the one-way valve 773 , the junction B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 to become low-temperature and low-pressure refrigerant, and then flows to the second heat exchanger 722 through the junction A, the one-way valve 772 and the junction C in sequence.
  • the low temperature and low pressure refrigerant exchanges heat with air, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the second connection port 732 of the valve device and the third connection port 733 of the valve device in turn, and then enters the compressor 712 from the suction port 716 of the compressor 712 again, and becomes a high-temperature and high-pressure gaseous refrigerant to complete the refrigerant. cycle.
  • the valve arrangement includes a five-way valve.
  • the five-way valve includes five ports, which respectively form the valve device first connection port 731 , the valve device second connection port 732 , the valve device third connection port 733 , the valve device fourth connection port 734 and the valve device fifth connection port 735 .
  • the five-way valve includes a five-way valve first flow passage and a five-way valve second flow passage, and has a first state, a second state, a third state, and a fourth state.
  • the first connection port 731 of the valve device and the second connection port 732 of the valve device are in refrigerant communication, and the third connection port 733 of the valve device and the fifth connection port 735 of the valve device are in refrigerant communication.
  • the first connection port 731 of the valve device and the fourth connection port 734 of the valve device are in refrigerant communication, and the second connection port 732 of the valve device and the third connection port 733 of the valve device are in refrigerant communication.
  • the first connection port 731 of the valve device and the third connection port 733 of the valve device are in refrigerant communication
  • the fourth connection port 734 of the valve device and the fifth connection port 735 of the valve device are in refrigerant communication.
  • the second connection port 732 of the valve device is in refrigerant communication with the fifth connection port 735 of the valve device
  • the third connection port 733 of the valve device is in refrigerant communication with the fourth connection port 734 of the valve device.
  • the heat pump system shown in FIG. 12A is substantially the same as the heat pump system shown in FIG. 11A , which will not be repeated here.
  • the heat pump system shown in FIG. 12A further includes a communication pipe 1201 , and the communication pipe 1201 is configured to be controllable
  • the discharge port 714 of the compressor 712 is communicated with the second port 726 of the second heat exchanger.
  • one end of the communication pipe 1201 is connected to the junction D of the connecting pipes between the exhaust port 714 of the compressor 712 and the first connection port 731 of the valve device, and the other end of the communication pipe 1201 is connected to the junction C. .
  • the communication pipe 1201 is also provided with a one-way solenoid valve 1202 , which is connected to the control device 801 in communication.
  • the one-way solenoid valve 1202 enables the refrigerant to flow from the junction D to the junction C in one direction.
  • FIG. 12B is a system diagram of the heat pump system shown in FIG. 12A in a cooling mode. As shown in FIG. 12B , through the control of the control device 801 , the five-way valve is in the first state, the compressor 712 , the fan 781 and the throttling device 751 are opened, and the one-way solenoid valve 1202 is closed.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with air, thereby changing the high-temperature and high-pressure gaseous refrigerant into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the junction C, the one-way valve 774 , the junction B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 and becomes a low-temperature and low-pressure refrigerant, and then passes through the check valve 771 and enters the first heat exchanger 701 from the second port 703 of the first heat exchanger.
  • the low-temperature and low-pressure refrigerant exchanges heat with the refrigerant with a higher temperature on the user side, thereby reducing the temperature of the refrigerant on the user side, so as to provide the user side with a refrigerant with a lower temperature (for example, using for the provision of air-conditioned cold water).
  • the low-temperature and low-pressure refrigerant exchanges heat with the user-side refrigerant in the first heat exchanger 701 and becomes a low-pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant flows out of the first heat exchanger 701 from the fourth port 705 of the first heat exchanger, it passes through the fifth connection port 735 of the valve device and the third connection port 733 of the valve device in sequence, and then is sucked from the compressor 712 again.
  • the port 716 enters the compressor 712 and becomes a high temperature and high pressure gaseous refrigerant to complete the cycle of the refrigerant.
  • FIG. 12C is a system diagram of the heat pump system shown in FIG. 12A in a heating mode. As shown in FIG. 12C , through the control of the control device 801 , the five-way valve is in the second state, the compressor 712 , the fan 781 and the throttle device 751 are opened, and the one-way solenoid valve 1202 is closed.
  • the high-temperature and high-pressure gaseous refrigerant flowing out from the discharge port 714 of the compressor 712 passes through the junction D, the first connection port 731 of the valve device, and the fourth connection port 734 of the valve device in sequence, and then passes through the first heat exchanger.
  • the first port 702 flows into the first heat exchanger 701 .
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with the refrigerant with a lower temperature on the user side, thereby increasing the temperature of the refrigerant on the user side, so as to provide the user with a refrigerant with a higher temperature (for example, for air-conditioning hot water).
  • the high-temperature and high-pressure gaseous refrigerant changes into a high-pressure liquid refrigerant after exchanging heat with the user-side refrigerant in the first heat exchanger 701 .
  • the high-pressure liquid refrigerant flows out from the third port 704 of the first heat exchanger 701 and then passes through the one-way valve 773 , the junction B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 to become low-temperature and low-pressure refrigerant, and then flows to the second heat exchanger 722 through the junction A, the one-way valve 772 and the junction C in sequence.
  • the low temperature and low pressure refrigerant exchanges heat with air, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the second connection port 732 of the valve device and the third connection port 733 of the valve device in sequence, and then enters the compressor 712 from the suction port 716 of the compressor 712 again, and becomes a high-temperature and high-pressure gaseous refrigerant to complete the refrigerant. cycle.
  • FIG. 12D is a system diagram of the heat pump system shown in FIG. 12A in isolation mode. As shown in FIG. 12D , through the control of the control device 801 , the five-way valve is in the third state, the compressor 712 , the fan 781 and the throttle device 751 are closed, and the one-way solenoid valve 1202 is closed.
  • the heat pump system is in a shutdown state.
  • the first port 724 of the second heat exchanger of the second heat exchanger 722 is disconnected through the five-way valve, and the second heat exchanger of the second heat exchanger 722 is in the third state.
  • the second port 726 is disconnected from the first heat exchanger 701 by the throttle device 751 in the closed state.
  • the first port 702 of the first heat exchanger and the fourth port 705 of the first heat exchanger are connected together through the fourth connection port 734 of the valve device and the fifth connection port 735 of the valve device of the five-way valve, and the first heat exchanger first
  • the third port 704 is disconnected from the second heat exchanger 722 by the throttle device 751 in the closed state.
  • the discharge port 714 and the suction port 716 of the compressor 712 are connected together through the valve device first connection port 731 and the valve device third connection port 733 of the five-way valve.
  • the first heat exchanger 701 , the second heat exchanger 722 and the compressor 712 are disconnected from each other to prevent refrigerant from migrating among the first heat exchanger 701 , the second heat exchanger 722 and the compressor 712 .
  • FIG. 12E is a system diagram of the heat pump system shown in Figure 12A in a drain mode.
  • the five-way valve is in the fourth state, the compressor 712 is opened, the throttle device 751 and the fan 781 are closed, and the one-way solenoid valve 1202 is opened.
  • the drain mode is a transition mode when the heat pump system is switched from the cooling mode to the heating mode. That is to say, when the heat pump system needs to switch from the cooling mode to the heating mode, the heat pump system will first switch to the drainage mode, and then switch to the heating mode.
  • the refrigerant flowing out of the discharge port 714 of the compressor 712 passes through the intersection point D, the one-way solenoid valve 1202, the intersection point C, the second heat exchanger 722, the valve device second connection port 732, and the valve device in sequence.
  • the fourth port 705 of the first heat exchanger flows into the first heat exchanger 701, and then flows out of the first heat exchanger 701 from the first port 702 of the first heat exchanger.
  • the refrigerant passes through the fourth connection port 734 of the valve device and the third connection port 733 of the valve device in sequence, and then enters the compressor 712 from the suction port 716 of the compressor 712 again to complete the cycle of the refrigerant.
  • the liquid discharge mode can realize the direct communication between the second heat exchanger 722 and the first heat exchanger 701 without passing through the throttling device 751 , thereby defrosting (ie, refrigerating) the refrigerant in the second heat exchanger 722
  • the liquid refrigerant produced in the cooling mode is quickly discharged into the first heat exchanger 701 to prevent the liquid refrigerant from directly entering the compressor 712 when the cooling mode is directly switched to the heating mode.
  • the valve arrangement includes a five-way valve.
  • the five-way valve includes five ports, which respectively form the valve device first connection port 731 , the valve device second connection port 732 , the valve device third connection port 733 , the valve device fourth connection port 734 and the valve device fifth connection port 735 .
  • the five-way valve includes a five-way valve first flow passage and a five-way valve second flow passage, and has a first state, a second state, and a third state.
  • the first connection port 731 of the valve device and the second connection port 732 of the valve device are in refrigerant communication, and the third connection port 733 of the valve device and the fifth connection port 735 of the valve device are in refrigerant communication.
  • the first connection port 731 of the valve device and the fourth connection port 734 of the valve device are in refrigerant communication, and the second connection port 732 of the valve device and the third connection port 733 of the valve device are in refrigerant communication.
  • the first connection port 731 of the valve device and the third connection port 733 of the valve device are in refrigerant communication
  • the fourth connection port 734 of the valve device and the fifth connection port 735 of the valve device are in refrigerant communication.
  • FIG. 13B is a system diagram of the heat pump system shown in FIG. 13A in a cooling mode. As shown in FIG. 13B , through the control of the control device 801 , the five-way valve is in the first state, and the compressor 712 , the fan 781 , and the throttle device 751 are turned on.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with air, thereby changing the high-temperature and high-pressure gaseous refrigerant into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the junction C, the one-way valve 774 , the junction B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 and becomes a low-temperature and low-pressure refrigerant, and then passes through the check valve 771 and enters the first heat exchanger 701 from the second port 703 of the first heat exchanger.
  • the low-temperature and low-pressure refrigerant exchanges heat with the refrigerant with a higher temperature on the user side, thereby reducing the temperature of the refrigerant on the user side, so as to provide the user side with a refrigerant with a lower temperature (for example, using for the provision of air-conditioned cold water).
  • the low-temperature and low-pressure refrigerant exchanges heat with the user-side refrigerant in the first heat exchanger 701 and becomes a low-pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant flows out of the first heat exchanger 701 from the fourth port 705 of the first heat exchanger, it passes through the fifth connection port 735 of the valve device and the third connection port 733 of the valve device in sequence, and then is sucked from the compressor 712 again.
  • the port 716 enters the compressor 712 and becomes a high temperature and high pressure gaseous refrigerant to complete the cycle of the refrigerant.
  • FIG. 13C is a system diagram of the heat pump system shown in FIG. 13A in a heating mode. As shown in FIG. 13C , through the control of the control device 801 , the five-way valve is placed in the second state, and the compressor 712 , the fan 781 , and the throttle device 751 are turned on.
  • the high-temperature and high-pressure gaseous refrigerant flowing out from the discharge port 714 of the compressor 712 passes through the first connection port 731 of the valve device and the fourth connection port 734 of the valve device in sequence, and then flows into the first port 702 of the first heat exchanger.
  • the first heat exchanger 701 the high-temperature and high-pressure gaseous refrigerant exchanges heat with the refrigerant with a lower temperature on the user side, thereby increasing the temperature of the refrigerant on the user side, so as to provide the user with a refrigerant with a higher temperature (for example, for air-conditioning hot water).
  • the high-temperature and high-pressure gaseous refrigerant changes into a high-pressure liquid refrigerant after exchanging heat with the user-side refrigerant in the first heat exchanger 701 .
  • the high-pressure liquid refrigerant After flowing out from the third port 704 of the first heat exchanger, the high-pressure liquid refrigerant passes through the one-way valve 773 , the intersection point B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 to become low-temperature and low-pressure refrigerant, and then flows to the second heat exchanger 722 through the junction A, the one-way valve 772 and the junction C in sequence.
  • the low temperature and low pressure refrigerant exchanges heat with air, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the second connection port 732 of the valve device and the third connection port 733 of the valve device in sequence, and then enters the compressor 712 from the suction port 716 of the compressor 712 again, and becomes a high-temperature and high-pressure gaseous refrigerant to complete the refrigerant. cycle.
  • FIG. 13D is a system diagram of the heat pump system shown in FIG. 13A in isolation mode. As shown in FIG. 13D , through the control of the control device 801 , the five-way valve is placed in the third state, and the compressor 712 , the fan 781 , and the throttle device 751 are closed.
  • the heat pump system is in a shutdown state.
  • the first port 724 of the second heat exchanger of the second heat exchanger 722 is disconnected through the five-way valve, and the second heat exchanger of the second heat exchanger 722 is in the third state.
  • the second port 726 is disconnected from the first heat exchanger 701 by the throttle device 751 in the closed state.
  • the first port 702 of the first heat exchanger and the fourth port 705 of the first heat exchanger are connected together through the fourth connection port 734 of the valve device and the fifth connection port 735 of the valve device of the five-way valve, and the first heat exchanger first
  • the third port 704 is disconnected from the second heat exchanger 722 by the throttle device 751 in the closed state.
  • the discharge port 714 and the suction port 716 of the compressor 712 are connected together through the valve device first connection port 731 and the valve device third connection port 733 of the five-way valve.
  • the first heat exchanger 701 , the second heat exchanger 722 and the compressor 712 are disconnected from each other to prevent refrigerant from migrating among the first heat exchanger 701 , the second heat exchanger 722 and the compressor 712 .
  • the valve arrangement includes a five-way valve.
  • the five-way valve includes five ports, which respectively form the valve device first connection port 731 , the valve device second connection port 732 , the valve device third connection port 733 , the valve device fourth connection port 734 and the valve device fifth connection port 735 .
  • the five-way valve includes a five-way valve first flow passage and a five-way valve second flow passage, and has a first state, a second state, and a third state.
  • the first connection port 731 of the valve device and the second connection port 732 of the valve device are in refrigerant communication, and the third connection port 733 of the valve device and the fifth connection port 735 of the valve device are in refrigerant communication.
  • the first connection port 731 of the valve device and the fourth connection port 734 of the valve device are in refrigerant communication, and the second connection port 732 of the valve device and the third connection port 733 of the valve device are in refrigerant communication.
  • the second connection port 732 of the valve device and the fourth connection port 734 of the valve device are in refrigerant communication
  • the third connection port 733 of the valve device and the fifth connection port 735 of the valve device are in refrigerant communication.
  • the heat pump system shown in FIG. 14A is substantially the same as the heat pump system shown in FIG. 13A , which will not be repeated here. The difference is that the heat pump system shown in FIG. 14A further includes a communication pipe 1401 , and the communication pipe 1401 is configured to be controllable
  • the exhaust port 714 of the compressor 712 is communicated with the second port 726 of the second heat exchanger.
  • one end of the communication pipe 1401 is connected to the junction E of the connecting pipes between the exhaust port 714 of the compressor 712 and the first connection port 731 of the valve device, and the other end of the communication pipe 1401 is connected to the junction C. .
  • the communication pipe 1401 is also provided with a one-way solenoid valve 1402 , which is connected to the control device 801 in communication.
  • the one-way solenoid valve 1402 enables the refrigerant to flow from the junction E to the junction C in one direction.
  • FIG. 14B is a system diagram of the heat pump system shown in FIG. 14A in a cooling mode. As shown in FIG. 14B , through the control of the control device 801 , the five-way valve is in the first state, the compressor 712 , the fan 781 and the throttling device 751 are opened, and the one-way solenoid valve 1402 is closed.
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with air, thereby changing the high-temperature and high-pressure gaseous refrigerant into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant passes through the junction C, the one-way valve 774 , the junction B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 and becomes a low-temperature and low-pressure refrigerant, and then passes through the check valve 771 and enters the first heat exchanger 701 from the second port 703 of the first heat exchanger.
  • the low-temperature and low-pressure refrigerant exchanges heat with the refrigerant with a higher temperature on the user side, thereby reducing the temperature of the refrigerant on the user side, so as to provide the user side with a refrigerant with a lower temperature (for example, using for the provision of air-conditioned cold water).
  • the low-temperature and low-pressure refrigerant exchanges heat with the user-side refrigerant in the first heat exchanger 701 and becomes a low-pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant flows out of the first heat exchanger 701 from the fourth port 705 of the first heat exchanger, it passes through the fifth connection port 735 of the valve device and the third connection port 733 of the valve device in sequence, and then is sucked from the compressor 712 again.
  • the port 716 enters the compressor 712 and becomes a high temperature and high pressure gaseous refrigerant to complete the cycle of the refrigerant.
  • FIG. 14C is a system diagram of the heat pump system shown in FIG. 14A in a heating mode. As shown in FIG. 14C , through the control of the control device 801 , the five-way valve is in the second state, the compressor 712 , the fan 781 and the throttle device 751 are opened, and the one-way solenoid valve 1402 is closed.
  • the high-temperature and high-pressure gaseous refrigerant flowing out from the discharge port 714 of the compressor 712 passes through the junction E, the first connection port 731 of the valve device and the fourth connection port 734 of the valve device in sequence, and then flows from the first heat exchanger through the first connection port 731 of the valve device.
  • a port 702 flows into the first heat exchanger 701 .
  • the high-temperature and high-pressure gaseous refrigerant exchanges heat with the refrigerant with a lower temperature on the user side, thereby increasing the temperature of the refrigerant on the user side, so as to provide the user with a refrigerant with a higher temperature (for example, for air-conditioning hot water).
  • the high-temperature and high-pressure gaseous refrigerant changes into a high-pressure liquid refrigerant after exchanging heat with the user-side refrigerant in the first heat exchanger 701 .
  • the high-pressure liquid refrigerant After flowing out from the third port 704 of the first heat exchanger, the high-pressure liquid refrigerant passes through the one-way valve 773 , the intersection point B and the throttling device 751 in sequence.
  • the high-pressure liquid refrigerant flows through the throttling device 751 and becomes a low-temperature and low-pressure refrigerant, and then flows to the second heat exchanger 722 through the junction A, the one-way valve 772 and the junction C in sequence.
  • the low temperature and low pressure refrigerant exchanges heat with air, thereby changing the low temperature and low pressure refrigerant into a low pressure gaseous refrigerant.
  • the low-pressure gaseous refrigerant passes through the second connection port 732 of the valve device and the third connection port 733 of the valve device in turn, and then enters the compressor 712 from the suction port 716 of the compressor 712 again, and becomes a high-temperature and high-pressure gaseous refrigerant to complete the refrigerant. cycle.
  • FIG. 14D is a system diagram of the heat pump system shown in Figure 14A in a drain mode.
  • the five-way valve is in the third state, the compressor 712 is turned on, the throttle device 751 and the fan 781 are turned off, and the one-way solenoid valve 1402 is turned on.
  • the drain mode is a transition mode when the heat pump system is switched from the cooling mode to the heating mode. That is to say, when the heat pump system needs to switch from the cooling mode to the heating mode, the heat pump system will first switch to the drainage mode, and then switch to the heating mode.
  • the refrigerant flowing out from the discharge port 714 of the compressor 712 passes through the intersection point E, the one-way solenoid valve 1402, the intersection point C, the second heat exchanger 722, the valve device second connection port 732, and the valve device in sequence.
  • the first heat exchanger 701 flows from the first port 702 of the first heat exchanger, and then flows out of the first heat exchanger 701 from the fourth port 705 of the first heat exchanger.
  • the refrigerant passes through the fifth connection port 735 of the valve device and the third connection port 733 of the valve device in sequence, and then enters the compressor 712 from the suction port 716 of the compressor 712 again to complete the cycle of the refrigerant.
  • the liquid discharge mode can realize the direct communication between the second heat exchanger 722 and the first heat exchanger 701 without passing through the throttling device 751 , thereby defrosting (ie, refrigerating) the refrigerant in the second heat exchanger 722
  • the liquid refrigerant produced in the cooling mode is quickly discharged into the first heat exchanger 701 to prevent the liquid refrigerant from directly entering the compressor 712 when the cooling mode is directly switched to the heating mode.
  • the heat pump system 1500 shown in FIG. 15A is a system diagram of another embodiment of the heat pump system of the present application.
  • the heat pump system 1500 shown in FIG. 15A is substantially the same as the heat pump system 700 shown in FIG. 7 , and will not be repeated here.
  • the heat pump system 1500 shown in FIG. 15A further includes a flash tank 1501, a first throttling device 1521, a second throttling device 1522 and an additional one-way valve 1530, while the heat pump of FIG. 7 System 700 includes throttling device 751 .
  • the flash tank 1501 includes a first port 1511 of the flash tank, a second port 1512 of the flash tank, and a third port 1513 of the flash tank.
  • the first port 1511 of the flash tank is communicated with the intermediate cavity (not shown) of the compressor 712 through the connecting pipe 1531
  • the second port 1512 of the flash tank is communicated with the junction B through the connecting pipe 1532
  • the third port 1513 of the flash tank is connected through
  • the connecting pipe 1533 communicates with the junction A.
  • An additional one-way valve 1530 is provided on the connecting pipe 1531 to enable the refrigerant to flow from the first port 1511 of the flash tank to the intermediate chamber of the compressor 712 in one direction.
  • the connecting pipe 1532 is provided with a first throttle device 1521
  • the connecting pipe 1533 is provided with a second throttle device 1522 .
  • the first throttling device 1521 and the second throttling device 1522 are connected in communication with the control device 801 , and the control device 801 is configured to control the opening and closing of the first throttling device 1521 and the second throttling device 1522 .
  • the heat pump system 1500 can implement a plurality of operating modes in the heat pump system 1500 through controls similar to those in the heat pump system 700 , which will not be repeated here.
  • the working principle of the flash tank 1501, the first throttling device 1521 and the second throttling device 1522 is described below:
  • the refrigerant at the intersection point B is a high-pressure liquid refrigerant, and a part of it is throttled into a medium-pressure refrigerant after flowing through the first throttling device 1521 , and then enters the flash tank 1501 .
  • the gaseous refrigerant enters the intermediate cavity of the compressor 712 through the connecting pipe through the first port 1511 of the flash tank, and the liquid refrigerant flows out through the third port 1513 of the flash tank and then flows through the second throttling device 1522 , so that the low-temperature and low-pressure refrigerant flows to the intersection point A after being throttled again.
  • the setup of the flash tank can improve the energy efficiency ratio of the heat pump system.
  • FIG. 15B is a system diagram of yet another embodiment of the heat pump system of the present application.
  • the heat pump system shown in FIG. 15B is substantially the same as the heat pump system 700 shown in FIG. 7 , and will not be repeated here.
  • the heat pump system shown in FIG. 15B further includes an additional heat exchanger 1571, a first throttling device 1581, a second throttling device 1582, and an additional one-way valve 1560, while the heat pump of FIG. 7 System 700 includes throttling device 751 .
  • the additional heat exchanger 1571 includes a first port 1541 of the additional heat exchanger, a second port 1542 of the additional heat exchanger, a third port 1543 of the additional heat exchanger, and a fourth port 1544 of the additional heat exchanger.
  • the first port 1541 of the additional heat exchanger communicates with the intermediate cavity (not shown) of the compressor 712 through the connecting pipe 1551
  • the second port 1542 of the additional heat exchanger communicates with the junction B through the connecting pipe 1552
  • the third port of the additional heat exchanger The port 1543 communicates with the junction point A through the connecting pipe 1553
  • the fourth port 1544 of the additional heat exchanger is connected to the junction point M between the junction point B and the second port 1542 of the additional heat exchanger through the connecting pipe 1554 .
  • An additional one-way valve 1560 is provided on the connecting pipe 1551 to enable the refrigerant to flow one-way from the first port 1541 of the additional heat exchanger to the intermediate chamber of the compressor 712 .
  • the connecting pipe 1554 is provided with a first throttle device 1581
  • the connecting pipe 1553 is provided with a second throttle device 1582 .
  • the first throttling device 1581 and the second throttling device 1582 are connected in communication with the control device 801 , and the control device 801 is configured to control the opening and closing of the first throttling device 1581 and the second throttling device 1582 .
  • the second port 1542 of the additional heat exchanger is in fluid communication with the third port 1543 of the additional heat exchanger, and a first flow path is formed in the additional heat exchanger 1571; the additional heat exchange The first port 1541 of the heat exchanger is in fluid communication with the fourth port 1544 of the additional heat exchanger and forms a second flow path in the additional heat exchanger 1571 .
  • the fluid in the first flow path can exchange heat with the fluid in the second flow path.
  • the heat pump system shown in FIG. 15B can implement a plurality of operating modes in the heat pump system through controls similar to those in the heat pump system 700 , which will not be repeated here.
  • the working principle of the additional heat exchanger 1571, the first throttling device 1581 and the second throttling device 1582 is described below:
  • the refrigerant at the junction B is a high-pressure liquid refrigerant, which flows to the junction M and is divided into two paths, one of which flows from the connecting pipe 1554 through the first throttling device 1581 .
  • the high-pressure liquid refrigerant becomes a low-temperature and low-pressure refrigerant at the first throttling device 1581 , and then flows into the additional heat exchanger 1571 from the fourth port 1544 of the additional heat exchanger 1571 .
  • the other way flows into the additional heat exchanger 1571 from the second port 1542 of the additional heat exchanger 1571 .
  • the fluid entering the additional heat exchanger 1571 from the second port 1542 of the additional heat exchanger is further cooled by the fluid flowing into the additional heat exchanger 1571 from the fourth port 1544 of the additional heat exchanger and then passes through the additional heat exchange
  • the third port 1543 of the filter flows out, and then flows through the second throttling device 1582.
  • the fluid flowing into the additional heat exchanger 1571 from the fourth port 1544 of the additional heat exchanger is heated and then flows to the intermediate cavity (not shown) of the compressor 712 through the first port 1541 of the additional heat exchanger.
  • the additional heat exchanger 1571 and the first throttling device 1581 form an economizer, which on the one hand can make the temperature of the refrigerant flowing through the second throttling device 1582 lower, and on the other hand The discharge temperature of the compressor 712 can be lowered, thereby increasing the efficiency of the heat pump system 700 .
  • FIG. 16 is a system diagram of yet another embodiment of the heat pump system of the present application.
  • the first heat exchanger 701 in FIG. 16 is slightly different from the heat exchanger 100 described in FIGS. 1-6B . The same points will not be repeated here.
  • the first heat exchanger 701 also includes a flash tank 1601 and a one-way valve 1620 .
  • the flash tank 1601 is provided in the housing 102 as shown in FIG. 1 .
  • the flash tank 1601 includes a first port 1611 of the flash tank, a second port 1612 of the flash tank, and a third port 1613 of the flash tank.
  • the first port 1611 of the flash tank protrudes outward from the casing 102 to communicate with an intermediate chamber (not shown) of the compressor 712 through a connecting pipe 1631 .
  • An additional one-way valve 1641 is provided on the connecting pipe 1631 to enable the refrigerant to flow from the first port 1611 of the flash tank to the intermediate chamber of the compressor 712 in one direction.
  • the second port 1612 of the flash tank extends outwardly from the housing 102 to communicate with the junction B through the connecting pipe 1632 .
  • Junction B communicates with the second port 726 of the second heat exchanger through line 1634 .
  • a first throttling device 1621 is provided on the connecting pipe 1632 .
  • the third port 1613 of the flash tank is provided in the casing 102 and extends outward from the casing 102 through the connecting pipe 1633 and is connected to the junction E with the connecting pipe 1633 .
  • a second throttling device 1622 is provided on the connecting pipe 1633 .
  • the first heat exchanger 701 is also provided with internal connecting pipes. One end of the inner connection pipe is connected to the connection pipe 1633, and the other end of the inner connection pipe is connected to the distributor 221, so that the refrigerant flowing out from the third port 1613 of the flash tank can flow into the distributor 221 through the inner connection pipe.
  • a one-way valve 1620 is provided on the inner connecting pipe, so that the refrigerant can flow from the third port 1613 of the flash tank to the distributor 221 in one direction.
  • the connecting pipe 1634 is also provided with a one-way valve 1623, which is arranged between the junction point B and the junction point E, so that the refrigerant can flow from the junction point E to the junction point B in one direction.
  • the heat pump system 1600 shown in FIG. 16 and the heat pump system 700 shown in FIG. 7 can realize basically the same working modes, they will not be repeated here.
  • the flash tank is arranged inside the first heat exchanger 701
  • the arrangement of pipes can be reduced, so that the structure inside the first heat exchanger 701 is more compact.
  • the heat pump system of the present application can reduce the pressure drop of the system, especially the pressure drop from the exhaust port 714 of the compressor 712 to the inlet of the first heat exchanger 701 and the outlet of the first heat exchanger 701 to the compressor 712 The pressure drop across the suction port 716.
  • the present application provides a valve device having a first connection port of the valve device, a second connection port of the valve device, a third connection port of the valve device, a fourth connection port of the valve device, and a fifth connection port of the valve device, so that the compression There are no on-off valves and pipes on the pipeline between the exhaust port 714 of the compressor 712 and the inlet of the first heat exchanger 701 and the pipeline between the outlet of the first heat exchanger 701 and the suction port 716 of the compressor 712. one-way valve.
  • valve device described in this application is a valve group used to switch the working mode between the compressor 712 and the first heat exchanger 701 , which includes a three-way valve, a four-way valve, a five-way valve, etc. Valves, excluding on-off valves and check valves.
  • the schematic diagram of the five-way valve is an example of a rotary five-way valve.
  • the five-way valve includes a housing and a valve body disposed therein.
  • the casing is provided with a first connection port 731 of the valve device, a second connection port 732 of the valve device, a third connection port 733 of the valve device, a fourth connection port 734 of the valve device and a fifth connection port 735 of the valve device.
  • the valve body is provided with a first flow channel of the five-way valve and a second flow channel of the five-way valve.
  • the housing of the five-way valve is a cylinder.
  • the valve body realizes the communication relationship between different connection ports by rotating relative to the casing.
  • the five connection ports are all arranged in the circumferential direction of the cylinder.
  • one connection port ie, the third connection port 733 of the valve device
  • the other four connection ports are provided in the circumferential direction of the cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请提供一种热泵系统,包括压缩机、第一换热器、第二换热器和阀装置。阀装置第一连接口与压缩机的排气口相连接,阀装置第二连接口与第二换热器第一口相连接,阀装置第三连接口与压缩机的吸气口相连接,阀装置第四连接口与第一换热器的第一换热器第一口相连接,阀装置第五连接口与第一换热器的第一换热器第四口相连接。阀装置被配置为:当热泵系统在制冷模式下运行时,阀装置将阀装置第三连接口与压缩机的吸气口相连通,以使得第一换热器作为降膜式蒸发器;当热泵系统在制热模式下运行时,阀装置将阀装置第一连接口与压缩机的排气口相连通,以使得第一换热器作为冷凝器。

Description

热泵系统 技术领域
本申请涉及空调领域,尤其涉及热泵系统。
背景技术
热泵系统包括压缩机、两个换热器、节流装置和四通阀,能够满足向外界提供空调供冷冷量和向外界提供空调供热热量。在现有技术中,当风冷热泵产品的水侧换热器能够作为降膜蒸发器使用时,其无法作为冷凝器使用或者冷凝换热效果不佳。
因而,需要一种换热器,其既可作为降膜式蒸发器使用,亦可作为冷凝器使用,并且还需要一种使用该换热器的热泵系统。
发明内容
为了实现上述目的,本申请提供了一种热泵系统,所述热泵系统具有制冷模式和制热模式,其包括压缩机、第一换热器、第二换热器和阀装置。所述压缩机包括吸气口和排气口。所述第一换热器被配置为能够作为降膜式蒸发器或者作为冷凝器,所述第一换热器包括第一换热器第一口、第一换热器第二口、第一换热器第三口和第一换热器第四口。所述第二换热器包括第二换热器第一口和第二换热器第二口。所述阀装置包括阀装置第一连接口、阀装置第二连接口、阀装置第三连接口、阀装置第四连接口和阀装置第五连接口。其中,所述阀装置第一连接口通过管路与所述压缩机的排气口相连接,所述阀装置第二连接口通过管路与所述第二换热器第一口相连接,所述阀装置第三连接口通过管路与所述压缩机的吸气口相连接,所述阀装置第四连接口通过管路与所述第一换热器第一口相连接,所述阀装置第五连接口通过管路与所述第一换热器第四口相连接。所述阀装置被配置为:当所述热泵系统在制冷模式下运行时,所述阀装置将所述阀装置第三连接口与所述压缩机的吸气口相连通,以使得所述第一换热器作为降膜式蒸发器;当所述热泵系统在制热模式下运行时,所述阀装置将所述阀装置第一连接口与所述压缩机的排气口相连通,以使得所述第一换热器作为冷凝器。
根据上述热泵系统,所述阀装置包括至少一个阀,所述至少一个阀中的每一个为换向阀。
根据上述热泵系统,所述阀装置不包括开关阀和单向阀。
根据上述热泵系统,所述阀装置包括四通阀和三通阀。其中,所述四通阀包括四个口,所述四个口中的三个口分别形成所述阀装置第一连接口、所述阀装置第二连接口和所述阀装置第三连接口,所述三通阀包括三个口,所述三个口中的两个口分别形成所述阀装置第四连接口和所述阀装置第五连接口,所述四通阀的第四口与所述三通阀的第三口相连接。其中,所述四通阀包括四通阀第一对流通通道和四通阀第二对流通通道,所述四通阀第一对流通通道能够使得所述阀装置第一连接口和所述阀装置第二连接口流体连通,并且能够使所述阀装置第三连接口和所述四通阀的第四口流体连通,所述四通阀第二对流通通道能够使得所述阀装置第一连接口和所述四通阀的第四口流体连通,并且能够使所述阀装置第二连接口和所述阀装置第三连接口流体连通。其中,所述三通阀包括三通阀第一流通通道和三通阀第二流通通道,所述三通阀的第三口能够通过所述三通阀第一流通通道与所述阀装置第四连接口流体连通,所述三通阀的第三口能够通过所述三通阀第二流通通道与所述阀装置第五连接口流体连通。
根据上述热泵系统,所述阀装置包括五通阀,所述五通阀包括五个口,所述五个口分别形成所述阀装置第一连接口、所述阀装置第二连接口、所述阀装置第三连接口、所述阀装置第四连接口和所述阀装置第五连接口。
根据上述热泵系统,所述五通阀包括五通阀第一流通通道和五通阀第二流通通道。所述五通阀具有第一状态和第二状态,所述五通阀被配置为:当所述五通阀处于所述第一状态时,所述阀装置第一连接口和所述阀装置第二连接口连通,所述阀装置第三连接口和所述阀装置第五连接口连通;并且当所述五通阀处于所述第二状态时,所述阀装置第一连接口和所述阀装置第四连接口连通,所述阀装置第二连接口和所述阀装置第三连接口连通。
根据上述热泵系统,所述五通阀具有第三状态,所述五通阀被配置为:当所述五通阀处于所述第三状态时,所述阀装置第一连接口和所述阀装置第三连接口连通,所述阀装置第四连接口和所述阀装置第五连接口连通。
根据上述热泵系统,所述热泵系统还包括连通管,所述连通管被配置为可控地将所述压缩机的排气口与所述第二换热器第二口相连通。所述五通阀具有第四状态,所述五通阀被配置为:当所述五通阀处于所述第四状态时,所述阀装置第三连接口和阀装置第四连接口连通,所述阀装置第二连接口和所述阀装置第五连接口连通。
根据上述热泵系统,所述第一换热器中设有闪蒸罐。
根据上述热泵系统,所述热泵系统包括闪蒸罐或经济器。
本申请的热泵系统能够减小系统的压降,尤其减少压缩机的排气口至第一换热器的入口的压降以及第一换热器的出口至压缩机的吸气口的压降。
通过考虑下面的具体实施方式、附图和权利要求,本申请的其它的特征、优点和实施例可以被阐述或变得显而易见。此外,应当理解,上述发明内容和下面的具体实施方式均为示例性的,并且旨在提供进一步的解释,而不限制要求保护的本申请的范围。然而,具体实施方式和具体实例仅指示本申请的优选实施例。对于本领域的技术人员来说,在本申请的精神和范围内的各种变化和修改将通过该具体实施方式变得显而易见。
附图说明
本申请的特征和优点可通过参照附图阅读以下详细说明得到更好地理解,在整个附图中,相同的附图标记表示相同的部件,其中:
图1是本申请的换热器的立体图;
图2是图1所示的换热器的轴向剖面图;
图3是图1所示的换热器沿图2中A-A线的剖面图;
图4是图1所示的换热器沿图2中B-B线的剖面图;
图5A是图1所示的换热器的轴向剖面图,示出换热器处于蒸发器工作模式时,制冷剂在换热器的轴向剖面图上的运动轨迹;
图5B是图1所示的换热器沿图2中A-A线的剖面图,示出换热器处于蒸发器工作模式时,制冷剂在换热器的径向剖面图上的运动轨迹;
图6A是图1所示的换热器的轴向剖面图,示出换热器处于冷凝器工作模式时,制冷剂在换热器的轴向剖面图上的运动轨迹;
图6B是图1所示的换热器沿图2中B-B线的剖面图,示出换热器处于冷凝器工作模式时,制冷剂在换热器的径向剖面图上的运动轨迹;
图7是本申请的一个实施例的热泵系统的系统图;
图8为图7所示的热泵系统中控制装置与各部件的通讯连接示意图;
图9是图8中控制装置示意性的内部结构图;
图10A是使用第一实施例的阀组件的热泵系统的系统图;
图10B是图10A所示的热泵系统在制冷模式下的系统图;
图10C是图10A所示的热泵系统在制热模式下的系统图;
图11A是使用第二实施例的阀组件的热泵系统的系统图;
图11B是图11A所示的热泵系统在制冷模式下的系统图;
图11C是图11A所示的热泵系统在制热模式下的系统图;
图12A是使用第三实施例的阀组件的热泵系统的系统图;
图12B是图12A所示的热泵系统在制冷模式下的系统图;
图12C是图12A所示的热泵系统在制热模式下的系统图;
图12D是图12A所示的热泵系统在隔离模式下的系统图;
图12E是图12A所示的热泵系统在排液模式下的系统图;
图13A是使用第四实施例的阀组件的热泵系统的系统图;
图13B是图13A所示的热泵系统在制冷模式下的系统图;
图13C是图13A所示的热泵系统在制热模式下的系统图;
图13D是图13A所示的热泵系统在隔离模式下的系统图;
图14A是使用第五实施例的阀组件的热泵系统的系统图;
图14B是图14A所示的热泵系统在制冷模式下的系统图;
图14C是图14A所示的热泵系统在制热模式下的系统图;
图14D是图14A所示的热泵系统在排液模式下的系统图;
图15A是本申请的热泵系统的另一个实施例的系统图;
图15B是本申请的热泵系统的又一个实施例的系统图;
图16是本申请的热泵系统的再一个实施例的系统图。
具体实施方式
下面将参考构成本说明书一部分的附图对本发明的各种具体实施方式进行描述。应该理解的是,虽然在本发明中使用表示方向的术语,诸如“上”、“下”、“左”、“右”、等方向或方位性的描述本发明的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,基于附图中显示的示例方位而确定的。由于本发明所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。在以下的附图中,同样的零部件使用同样的附图号。
应该理解的是,本申请中所使用的诸如“第一”和“第二”等序数词仅仅用于区分和标识,而不具有任何其他含义,如未特别指明则不表示特定的顺序,也不具有特定的关联性。例如,术语“第一换热器”本身并不暗示“第二换热器”的存在,术语“第二换热器”本身也不暗示“第一换热器”的存在。
图1是本申请的换热器100的立体图,图2是图1所示的换热器100的轴向剖面图,图3是图1所示的换热器100沿图2中A-A线的剖面图,图4是图1所示的换热器100沿图2中B-B线的剖面图,以示出换热器100的具体结构。
如图1-4所示,换热器100包括壳体102。壳体102包括筒体131、左分隔板132、右分隔板133、左端板135和右端板136。其中,筒体131具有内径D。筒体131沿换热器100的长度方向延伸而成。筒体131的左右两端分别由左分隔板132和右分隔板133封闭,以形成容腔202。左端板135为圆弧形,左端板135与左分隔板132相连接,形成连通腔203。右端板136也是圆弧形,右端板136与右分隔板133相连接。右分隔板133还包括从右分隔板133横向延伸至右端板136的横向分隔板211,从而形成出口容腔212和入口容腔213。
如图1-2所示,换热器100还包括第一入口管112、第二入口管114、第一出口管124、第二出口管122和回油管125。第一入口管112、第二入口管114、第一出口管124、第二出口管122和回油管125连接至壳体102,并与容腔202制冷剂连通。第一入口管112、第二入口管114和第一出口管124大致位于筒体131的上部。其中,第一出口管124、第一入口管112和第二入口管114沿壳体102的长度方向布置。第一出口管124位于壳体102的左部,第一入口管112位于壳体102的中部,第二入口管114位于壳体102的右部。第二出口管122和回油管125大致位于筒体131的下部。其中,第二出口管122位于壳体102的底部,并且在壳体102的长度方向上,第二出口管122位于壳体102的中部。回油管125位于壳体102 的下部,并且在壳体102的长度方向上,回油管125位于壳体102的左部,在壳体102的径向方向上,其倾斜于竖向方向向下设置。
本申请的换热器100具有蒸发器工作模式和冷凝器工作模式,当换热器100处于蒸发器工作模式或冷凝器工作模式时,制冷剂从不同的入口进入换热器100后会具有不同的流动路径。如图1-2所示,换热器100还包括制冷剂引导结构。制冷剂引导结构设置在容腔202中,以限定换热器100处于蒸发器工作模式和处于冷凝器工作模式中的不同流动路径。具体来说,制冷剂引导结构包括主挡板组件231。主挡板组件231沿壳体102的长度方向延伸而成,并且横置在容腔202中,以将容腔202分隔为位于上部的第一容腔204和位于下部的第二容腔206。如图3-4所示,在壳体102的径向截面上,主挡板组件231大致为两端较低,中间较高的阶梯形。主挡板组件231的两端较低的部分设有数个通道241,以使得上部的第一容腔204和位于下部的第二容腔206能够通过数个通道241相连通。具体地,通道241为折线形。通道241具有相邻的四个折线段,并且相邻的两个折线段大致呈90°,以使得制冷剂在通道241中运动时能够多次改变运动方向。主挡板组件231的中间较高的部分上设有第一连通口281和第二连通口282。在壳体102的长度方向上,第一连通口281大致位于中间位置,第二连通口282大致靠近右端布置。第一入口管112与第一连通口281相连通,第二入口管114的出口与第二连通口282相连通。
需要说明的是,虽然上述通道241示出为折线形,但也可以以丝网等其他结构作为通道,只要主挡板组件231的两端较低的部分能够使上部的第一容腔204和位于下部的第二容腔206能够通过数个通道241相连通即可。
如图2所示,换热器100的制冷剂引导结构还包括第一入口管扩大器291。第一入口管扩大器291设置在第一容腔204中。其罩设在第一连通口281上,并与第一入口管112以及主挡板组件231相连接。具体来说,第一入口管扩大器291为比第一入口管112管径更粗的管道。第二入口管扩大器297的上部与第一入口管112相连接,并且其上部的开口292与第一入口管112的出口相连通。第二入口管扩大器297的下部罩设在主挡板组件231上,并使得其下部的开口293与第一连通口281相连通。由此,从第一入口管112流入的制冷剂能够通过第一入口管扩大器291和第一连通口281流入第二容腔206。制冷剂在流出第一入口管112后,能够在第一入口管扩大器291中降低流动速度。
如图2-3所示,换热器100的制冷剂引导结构还包括分配器221。分配器221设置在主挡板组件231的下方。分配器221包括分配器壳体225,其限定分配器容腔226。分配器壳体 225大致沿壳体102的长度方向延伸而成。分配器壳体225的上部设有分配器入口222。具体地,分配器入口222大致沿壳体102的长度方向设置在中部,并且其设置在主挡板组件231上的第一连通口281的下方,以使得制冷剂能够通过第一连通口281和分配器入口222流入分配器容腔226。分配器壳体225的下部设有数个分配器出口223。具体地,数个分配器出口223沿壳体102的长度方向间隔布置,从而使得在分配器容腔226中流动的制冷剂能够沿壳体102的长度方向流动,并且通过分配器出口223流入第二容腔206。在本申请的示例中,分配器出口223呈窄条状。但本领域的技术人员可以理解,分配器出口223可以为任意形状。
如图2所示,换热器100的制冷剂引导结构还包括第二入口管扩大器297。第二入口管扩大器297设置在第一容腔204中。其罩设在第二连通口282上,并与第二入口管114以及主挡板组件231相连接。具体来说,第二入口管扩大器297大致为喇叭形。其上部较小而下部较大。其上部与第二入口管114相连接,并且其上部的开口285与第二入口管114的出口相连通。其下部罩设在主挡板组件231上,并且其下部的开口286与第二连通口282相连通。。其中,第二入口管扩大器297的上部的开口285与第二入口管114的出口的尺寸相同,其直径均为第一直径d1。第二入口管扩大器297的下部的开口286的直径为第二直径d2。第二直径d2大于第一直径d1,以使得从第二入口管114流入的制冷剂能够在第二入口管扩大器297中降低流动速度。
如图2和图4所示,换热器100的制冷剂引导结构还包括缓冲器250。缓冲器250设置在主挡板组件231的下方,并且设置在第二连通口282的下方。在本申请的实施例中,缓冲器250为缓冲板。缓冲板具有沿壳体102的长度方向延伸的缓冲长度,并且具有沿壳体102的宽度方向延伸的缓冲宽度。缓冲板的形状与主挡板组件231的形状相似。具体来说,在壳体102的径向截面上,缓冲板大致为两端较低,中间较高的阶梯形。此外,在壳体102的径向截面上,缓冲板的宽度方向的两侧向上翘起,并与主挡板组件231相连接。缓冲板的缓冲长度和缓冲宽度被配置为能够盖住第二连通口282,从而使得从第二连通口282流入的制冷剂能够沿着缓冲板的缓冲长度的方向流动,以进入第二容腔206。在一个示例中,缓冲板的宽度为d3。其中,d3:d2大于等于1:1并且小于等于5:1,以使得缓冲板能够盖住第二连通口282。在另一个示例中,缓冲板与第二连通口282的顶部之间具有第一距离h1。在再一个示例中,在壳体102的宽度方向上,分配器221的宽度为d4。其中,d2:d4大于等于2:1并且小于等于5:1,以使得分配器221不会过多地阻挡流经第二入口管扩大器297的下部的开口286的制冷剂的流动。
需要说明的是,缓冲板上还设有沿其缓冲长度布置的通道401,以容纳分配器221的一部分。分配器221的分配器出口223设置在缓冲板的下部,以使得从第一入口管112流入的制冷剂能够通过分配器出口223流入第二容腔206,而不受到缓冲板的影响。
如图3-4所示,换热器100的制冷剂引导结构还包括第一附加板333和第二附加板334。第一附加板333和第二附加板334分别与主挡板组件231相连接。具体地说,第一附加板333和第二附加板334沿壳体102的长度方向延伸而成,并且大致竖直设置在第二容腔206中。第一附加板333和第二附加板334分别连接在阶梯形的主挡板组件231的较低的部分,并且大致向下延伸形成。
如图2-4所示,换热器100还包括换热管束210。换热管束210设置在第二容腔206中,并且位于第一入口管112、第二入口管114和第一出口管124的下方,以及第二出口管122的上方。具体来说,换热管束210包括第一组换热管261和第二组换热管262。第一组换热管261包括第一数量的换热管,第二组换热管262包括第二数量的换热管,并且第一数量与第二数量之比大于2:1。第一组换热管261大致布置在第二容腔206的中部,并且沿壳体102的长度方向延伸而成。第一组换热管261中的换热管的左端与换热器100左侧的连通腔203相连通,第一组换热管261中的换热管的右端与换热器100右侧的出口容腔212相连通。第二组换热管262大致布置在第二容腔206的下部,并且沿壳体102的长度方向延伸而成。第二组换热管262中的换热管的左端与换热器100左侧的连通腔203相连通,第二组换热管262的右端与换热器100右侧的入口容腔213相连通。这样,换热制冷剂可以从换热器100右侧的入口容腔213进入换热器100,依次流过第二组换热管262、连通腔203和第一组换热管261后从出口容腔212流出换热器100。当换热制冷剂在第一组换热管261和第二组换热管262中流动时,其能够与第二容腔206中的制冷剂换热。此外,筒体131的内径为D。第一组换热管261的底部与第二组换热管262的顶部具有第二距离h2。也就是说,第一组换热管261最下一层换热管的底部与第二组换热管262的最上一层换热管的顶部之间的距离为第二距离h2。其中,第二距离h2与内径D之比小于1:2。
由此,制冷剂引导结构被配置为分别限定换热器100在冷凝器工作模式中和在蒸发器工作模式中的不同流动路径。当换热器100在蒸发器工作模式中时,制冷剂引导结构引导从第一入口管112流入的制冷剂与换热管束210中的制冷剂进行热交换,以将其蒸发为气体,并引导蒸发形成的气体经由第一出口管124排出换热器100。当换热器100在冷凝器工作模式中时,制冷剂引导结构引导从第二入口管114流入的制冷剂与换热管束210中的制冷剂进行 热交换,以将其冷凝为液体,并且随后冷凝形成的液体经由第二出口管122排出换热器100。这将在后文结合图5A-5B和图6A-6B示出的不同的工作模式进行详细说明。
图1-4所示的换热器100具有蒸发器工作模式和冷凝器工作模式。当换热器100处于蒸发器工作模式时,换热器100作为蒸发器使用。当换热器100处于冷凝器工作模式时,换热器100作为冷凝器使用。下面结合图5A-5B和图6A-6B分别来描述换热器100处于蒸发器工作模式和冷凝器工作模式时,制冷剂在换热器100中的流动路径。
图5A是图1所示的换热器100的轴向剖面图,示出换热器100处于蒸发器工作模式时,制冷剂在换热器100的轴向剖面图上的运动轨迹。图5B是图1所示的换热器100沿图2中A-A线的剖面图,示出换热器100处于蒸发器工作模式时,制冷剂在换热器100的径向剖面图上的运动轨迹。如图5A-5B所示,当换热器100处于蒸发器工作模式时,制冷剂(例如,气液混合物)从第一入口管112流入换热器100。随后制冷剂依次通过第一入口管扩大器291、主挡板组件231上的第一连通口281以及分配器入口222流入分配器221的分配器容腔226。由于分配器容腔226沿壳体102的长度方向延伸,因此容纳在分配器容腔226中的制冷剂也会沿壳体102的长度方向运动。也就是说,在壳体102的长度方向上,制冷剂会从中部向两侧流动。在流动的过程中,由于分配器221的下部设有数个分配器出口223,因此制冷剂会向下流动。可以看出,由于数个分配器出口223沿壳体102的长度方向布置,因此制冷剂能够在壳体102的长度方向上较为均匀地向下流动,并从上向下流经第一组换热管261。第一组换热管261中流动的是较高温度的换热制冷剂。制冷剂接触第一组换热管261并与第一组换热管261中的换热制冷剂进行换热。具体地说,在制冷剂向下流动接触第一组换热管261的过程中,制冷剂分布在最上排的换热管,并在最上排的换热管上形成液膜进行蒸发。未蒸发的液态制冷剂滴落到下一排换热管上继续蒸发。液态制冷剂可以一直向下流动,并在第一组换热管261形成液膜进行蒸发。未在第一组换热管261上蒸发的制冷剂向下流动接触第二组换热管262,其与第二组换热管262中的换热制冷剂进行换热,温度升高并蒸发。由于第一组换热管261的两侧布置有第一附加板333和第二附加板334,因此在第一组换热管261处蒸发为气体的制冷剂依然继续向下流动,直到蒸发为气体的制冷剂越过第一附加板333和第二附加板334的下缘后,蒸发为气体的制冷剂会向上流动。换句话说,在壳体102的径向方向上,蒸发为气体的制冷剂向下越过第一组换热管261后,向两侧流动,随后向上流动。蒸发为气体的制冷剂会在经过主挡板组件231上的数个通道241后进入第一容腔204,随后通过第一出口管124流出换热器100。另一部分在第二组换热管262处蒸发为气体的制冷剂向上流动并在经过主挡板组件231上的数个通道241后进入第一容腔204,随后通过第一出 口管124流出换热器100。需要说明的是,当换热器100处于蒸发器工作模式时,液态的制冷剂能够沉积在第二容腔206的底部并与第二组换热管262换热蒸发。
图6A是图1所示的换热器100的轴向剖面图,示出换热器100处于冷凝器工作模式时,制冷剂在换热器100的轴向剖面图上的运动轨迹。图6B是图1所示的换热器100沿图2中B-B线的剖面图,示出换热器100处于冷凝器工作模式时,制冷剂在换热器的径向剖面图上的运动轨迹。如图6A-6B所示,当换热器100处于冷凝器工作模式时,制冷剂(例如,流速较快的气体)从第二入口管114流入换热器100。随后制冷剂依次通过第二入口管扩大器297、主挡板组件231上的第二连通口282而进入第二容腔206。由于制冷剂的运动速度较高,因此流入第二容腔206的制冷剂会直接冲击缓冲器250。由于缓冲器250的宽度方向与主挡板组件231相连接,因此制冷剂能够沿壳体102的长度方向运动,并且越过缓冲器250后向下运动。随后制冷剂流向第一组换热管261。第一组换热管261中流动的是较低温度(但与第二组换热管262相比为较高温度)的换热制冷剂。制冷剂接触第一组换热管261并与第一组换热管261中的换热制冷剂进行换热。在制冷剂向下流动接触第一组换热管261的过程中,制冷剂冷凝为液体,并积存在第二容腔206的底部。当冷凝为液体的制冷剂积存在第二容腔206的底部时,其能够使得第二组换热管262浸在液体中。由于第二组换热管262中流动的是较低温度的换热制冷剂,因此冷凝为液体的制冷剂会继续与第二组换热管262中的换热制冷剂换热,从而进一步降低温度。随后,被冷凝为液体的制冷剂可以从第二出口管122流出换热器100。
图7示出了本申请的热泵系统700的系统图。如图7所示,热泵系统700包括压缩机712、第一换热器701、第二换热器722、节流装置751以及阀装置。图7所示的在各个部件(包括压缩机712、第一换热器701、第二换热器722、节流装置751以及阀装置)之间的连线表示连接管路。
如图7所示,压缩机712包括吸气口716和排气口714。第一换热器701为图1-6B中所述的换热器100。其被配置为能够作为降膜式蒸发器或者作为冷凝器。第一换热器701包括第一换热器第一口702(即,第二入口管114)、第一换热器第二口703(即,第一入口管112)、第一换热器第三口704(即,第二出口管122)和第一换热器第四口705(即,第一出口管124)。第二换热器722包括第二换热器第一口724和第二换热器第二口726。阀装置包括阀装置第一连接口731、阀装置第二连接口732、阀装置第三连接口733、阀装置第四连接口734和阀装置第五连接口735。节流装置751包括节流装置入口752和节流装置出口753。具体来说,阀装置第一连接口731通过连接管路与压缩机712的排气口714连接,阀装置第二连接口732 通过连接管路与第二换热器第一口724连接,阀装置第三连接口733通过连接管路与压缩机712的吸气口716连接,阀装置第四连接口734通过连接管路与第一换热器第一口702连接,阀装置第五连接口735通过连接管路与第一换热器第四口705连接。第一换热器第二口703和第二换热器第二口726通过连接管路与节流装置出口753连接。具体来说,第一换热器第二口703通过第一连接管路761与节流装置出口753连通。第二换热器第二口726通过第二连接管路762与节流装置出口753连接。第一连接管路761和第二连接管路762于交汇点A处汇合后与节流装置出口753连接。第一换热器第三口704和第二换热器第二口726通过连接管路与节流装置入口752连通。具体来说,第一换热器第三口704通过第三连接管路763与节流装置入口752连接。第二换热器第二口726通过第四连接管路764与节流装置入口752连接。第三连接管路763和第四连接管路764于交汇点B处汇合后与节流装置入口752连接。第二连接管路762和第四连接管路764于交汇点C处交汇。
第一连接管路761、第二连接管路762、第三连接管路763和第四连接管路764上都各自设有单向阀。具体来说,第一连接管路761上设有单向阀771,用于使得制冷剂能够从交汇点A单向流向第一换热器第二口703。第二连接管路762上设有单向阀772,用于使得制冷剂从交汇点A单向流向交汇点C。第三连接管路763上设有单向阀773,用于使得制冷剂能够从第一换热器第三口704单向流向交汇点B。第四连接管路764上设有单向阀774,用于使得制冷剂能够从交汇点C单向流向交汇点B。
但本领域的技术人员可以理解,第一连接管路761、第二连接管路762、第三连接管路763和第四连接管路764上的单向阀也可以设置为其他类型的阀,其能够使阀上游与下游之间可控地连通或断开即可。
在本申请的实施例中,第一换热器701为水侧换热器。其作为冷凝器时,能够用于为用户提供热水。其也可以作为蒸发器使用。第二换热器722为空气侧换热器。其包括风机781。其能够作为冷凝器/蒸发器,用于向外界散发热量/冷量。
本领域的技术人员可以理解,上述第一换热器701和第二换热器722的类型只是示意性的,在其他示例中,第一换热器701和第二换热器722可以为任意形式的换热器。例如,第二换热器722可以为地源型换热器、水源型换热器等。
如图7所示,阀装置被配置为:当热泵系统在制冷模式下运行时,阀装置将阀装置第三连接口733与压缩机712的吸气口716相连通,以使得第一换热器701作为降膜式蒸发器。 当热泵系统在制热模式下运行时,阀装置将阀装置第一连接口731与压缩机712的排气口714相连通,以使得第一换热器701作为冷凝器。
图8为图7所示的热泵系统700中控制装置801与各部件的通讯连接示意图。如图8所示,热泵系统700包括控制装置801。控制装置801通过通讯连接811,812,813,814分别与压缩机712、阀装置、风机781以及节流装置751相连接。其中,控制装置801能够控制压缩机712的开启与关闭,控制风机781的开启与关闭,控制节流装置751的开启与关闭以及控制阀装置以选择阀装置中各个阀装置连接口的连通状态。
图9是图8中控制装置801示意性的内部结构图。如图9所示,控制装置801包括总线902、处理器904、输入接口908、输出接口912以及具有控制程序的存储器918。控制装置801中的各个部件,包括处理器904、输入接口908、输出接口912以及存储器918与总线902通讯相连,使得处理器904能够控制输入接口908、输出接口912以及存储器918的运行。具体地说,存储器918用于存储程序、指令和数据,而处理器904从存储器918读取程序、指令和数据,并且能向存储器918写入数据。通过执行存储器918读取程序和指令,处理器904控制输入接口908、输出接口912的运行。如图9所示,输出接口912通过通讯连接811,812,813,814分别与压缩机712、阀装置、风机781以及节流装置751通讯连接。输入接口908通过通讯连接909接收热泵系统700的运行请求与其他运行参数。通过执行存储器918中的程序和指令,处理器904控制热泵系统700的运行。更具体地说,控制装置801可以通过输入接口908接收控制热泵系统700的运行请求(如通过控制面板发送请求),并通过输出接口912向各被控制部件发出控制信号,从而使得热泵系统700能够以多种工作模式运行并可以在各个工作模式之间进行切换。
本申请提供了五种阀装置的实施例,将分别结合图10A-14D介绍。
图10A为使用第一实施例的阀装置的热泵系统的系统图。在图10A所示的系统图中,阀装置包括四通阀和三通阀。四通阀包括四个口,其中三个口分别形成阀装置第一连接口731、阀装置第二连接口732和阀装置第三连接口733。三通阀包括三个口,其中两个口分别形成阀装置第四连接口734和阀装置第五连接口735。四通阀的第四口1001通过连接管路1011与三通阀的第三口1002连接。四通阀包括四通阀第一对流通通道和四通阀第二对流通通道。四通阀第一对流通通道能够使得阀装置第一连接口731和阀装置第二连接口732制冷剂连通,并且能够使阀装置第三连接口733和四通阀的第四口1001制冷剂连通。四通阀第二对流通通道能够使得阀装置第一连接口731和四通阀的第四口1001制冷剂连通,并且能够使阀装置第 二连接口732和阀装置第三连接口733制冷剂连通。三通阀包括三通阀第一流通通道和三通阀第二流通通道。三通阀的第三口1002能够通过三通阀第一流通通道与阀装置第四连接口734制冷剂连通,或者三通阀的第三口1002能够通过三通阀第二流通通道与阀装置第五连接口735制冷剂连通。
图10B为图10A所示的热泵系统在制冷模式下的系统图。如图10B所示,通过控制装置801的控制,使四通阀处于四通阀第一对流通通道状态,使三通阀处于三通阀第二流通通道状态,使压缩机712、风机781以及节流装置751开启。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过阀装置第一连接口731和阀装置第二连接口732流至第二换热器722。在第二换热器722中,高温高压气态制冷剂与空气换热,从而将高温高压气态制冷剂变为高压液态制冷剂。高压液态制冷剂从第二换热器722流出后依次通过交汇点C、单向阀774、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后依次通过交汇点A和单向阀771,从第一换热器第二口703进入第一换热器701。在第一换热器701中,低温低压制冷剂与用户侧的温度较高的制冷剂进行换热,从而降低用户侧制冷剂的温度,以为用户侧提供温度较低的制冷剂(例如,用于提供空调冷水)。低温低压制冷剂在第一换热器701中与用户侧制冷剂换热后变为低压气态的制冷剂。低压气态的制冷剂从第一换热器第四口705流出第一换热器701后,依次通过阀装置第五连接口735、三通阀的第三口1002、连接管路1011、四通阀的第四口1001以及阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图10C是图10A所示的热泵系统在制热模式下的系统图。如图10C所示,通过控制装置801的控制,使四通阀处于四通阀第二对流通通道状态,使三通阀处于三通阀第一流通通道状态,使压缩机712、风机781以及节流装置751开启。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过阀装置第一连接口731、四通阀的第四口1001、连接管路1011和阀装置第四连接口734后,从第一换热器第一口702流入第一换热器701。在第一换热器701中,高温高压气态制冷剂与用户侧的温度较低的制冷剂进行换热,从而升高用户侧制冷剂的温度,以为用户提供温度较高的制冷剂(例如,用于提供空调热水)。高温高压气态制冷剂在第一换热器701中与用户侧制冷剂换热后变为高压液态的制冷剂。高压液态制冷剂从第一换热器701的第一换热器第三口704流出后依次通过单向阀773、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751 后成为低温低压制冷剂,随后依次通过交汇点A、单向阀772以及交汇点C流至第二换热器722。在第二换热器722中,低温低压制冷剂与空气换热,从而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过阀装置第二连接口732和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图11A为使用第二实施例的阀装置的热泵系统的系统图。在图11A所示的系统图中,阀装置包括五通阀。五通阀包括五个口,分别形成阀装置第一连接口731、阀装置第二连接口732、阀装置第三连接口733、阀装置第四连接口734和阀装置第五连接口735。五通阀包括五通阀第一流通通道和五通阀第二流通通道,并且具有第一状态和第二状态。当五通阀处于第一状态时,阀装置第一连接口731和阀装置第二连接口732制冷剂连通,并且阀装置第三连接口733和阀装置第五连接口735制冷剂连通。当五通阀处于第二状态时,阀装置第一连接口731和阀装置第四连接口734制冷剂连通,并且阀装置第二连接口732和阀装置第三连接口733制冷剂连通。
图11B为图11A所示的热泵系统在制冷模式下的系统图。如图11B所示,通过控制装置801的控制,使五通阀处于第一状态,使压缩机712、风机781以及节流装置751开启。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过阀装置第一连接口731和阀装置第二连接口732流至第二换热器722。在第二换热器722中,高温高压气态制冷剂与空气换热,从而将高温高压气态制冷剂变为高压液态制冷剂。高压液态制冷剂从第二换热器722流出后依次通过交汇点C、单向阀774、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后通过单向阀771,从第一换热器第二口703进入第一换热器701。在第一换热器701中,低温低压制冷剂与用户侧的温度较高的制冷剂进行换热,从而降低用户侧制冷剂的温度,以为用户侧提供温度较低的制冷剂(例如,用于提供空调冷水)。低温低压制冷剂在第一换热器701中与用户侧制冷剂换热后变为低压气态的制冷剂。低压气态的制冷剂从第一换热器第四口705流出第一换热器701后,依次通过阀装置第五连接口735、以及阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图11C是图11A所示的热泵系统在制热模式下的系统图。如图11C所示,通过控制装置801的控制,使五通阀处于第二状态,使压缩机712、风机781以及节流装置751开启。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过阀装置第一连接口731和阀装置第四连接口734后,从第一换热器第一口702流入第一换热器701。在第一换热器701中,高温高压气态制冷剂与用户侧的温度较低的制冷剂进行换热,从而升高用户侧制冷剂的温度,以为用户提供温度较高的制冷剂(例如,用于提供空调热水)。高温高压气态制冷剂在第一换热器701中与用户侧制冷剂换热后变为高压液态的制冷剂。高压液态制冷剂从第一换热器701的第一换热器第三口704流出后依次通过单向阀773、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后依次通过交汇点A、单向阀772以及交汇点C流至第二换热器722。在第二换热器722中,低温低压制冷剂与空气换热,从而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过阀装置第二连接口732和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图12A为使用第三实施例的阀装置的热泵系统的系统图。在图12A所示的系统图中,阀装置包括五通阀。五通阀包括五个口,分别形成阀装置第一连接口731、阀装置第二连接口732、阀装置第三连接口733、阀装置第四连接口734和阀装置第五连接口735。五通阀包括五通阀第一流通通道和五通阀第二流通通道,并且具有第一状态、第二状态、第三状态和第四状态。当五通阀处于第一状态时,阀装置第一连接口731和阀装置第二连接口732制冷剂连通,并且阀装置第三连接口733和阀装置第五连接口735制冷剂连通。当五通阀处于第二状态时,阀装置第一连接口731和阀装置第四连接口734制冷剂连通,并且阀装置第二连接口732和阀装置第三连接口733制冷剂连通。当五通阀处于第三状态时,阀装置第一连接口731和阀装置第三连接口733制冷剂连通,并且阀装置第四连接口734和阀装置第五连接口735制冷剂连通。当五通阀处于第四状态时,阀装置第二连接口732和阀装置第五连接口735制冷剂连通,并且阀装置第三连接口733和阀装置第四连接口734制冷剂连通。
图12A所示的热泵系统与图11A所示的热泵系统大致相同,此处不再赘述,不同之处在于:图12A所示的热泵系统还包括连通管1201,连通管1201被配置为可控地将压缩机712的排气口714与第二换热器第二口726相连通。具体来说,连通管1201的一端连接在压缩机712的排气口714与阀装置第一连接口731之间的连接管道的交汇点D上,连通管1201的另一端连接在交汇点C上。此外,连通管1201上还设有单向电磁阀1202,其与控制装置801通讯连接。单向电磁阀1202能够使得制冷剂从交汇点D单向流向交汇点C。
图12B为图12A所示的热泵系统在制冷模式下的系统图。如图12B所示,通过控制装置801的控制,使五通阀处于第一状态,使压缩机712、风机781以及节流装置751开启,使单向电磁阀1202关闭。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过交汇点D、阀装置第一连接口731和阀装置第二连接口732流至第二换热器722。在第二换热器722中,高温高压气态制冷剂与空气换热,从而将高温高压气态制冷剂变为高压液态制冷剂。高压液态制冷剂从第二换热器722流出后依次通过交汇点C、单向阀774、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后通过单向阀771,从第一换热器第二口703进入第一换热器701。在第一换热器701中,低温低压制冷剂与用户侧的温度较高的制冷剂进行换热,从而降低用户侧制冷剂的温度,以为用户侧提供温度较低的制冷剂(例如,用于提供空调冷水)。低温低压制冷剂在第一换热器701中与用户侧制冷剂换热后变为低压气态的制冷剂。低压气态的制冷剂从第一换热器第四口705流出第一换热器701后,依次通过阀装置第五连接口735和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图12C是图12A所示的热泵系统在制热模式下的系统图。如图12C所示,通过控制装置801的控制,使五通阀处于第二状态,使压缩机712、风机781以及节流装置751开启,使单向电磁阀1202关闭。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过交汇点D、阀装置第一连接口731、和阀装置第四连接口734后,从第一换热器第一口702流入第一换热器701。在第一换热器701中,高温高压气态制冷剂与用户侧的温度较低的制冷剂进行换热,从而升高用户侧制冷剂的温度,以为用户提供温度较高的制冷剂(例如,用于提供空调热水)。高温高压气态制冷剂在第一换热器701中与用户侧制冷剂换热后变为高压液态的制冷剂。高压液态制冷剂从第一换热器701的第一换热器第三口704流出后依次通过单向阀773、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后依次通过交汇点A、单向阀772以及交汇点C流至第二换热器722。在第二换热器722中,低温低压制冷剂与空气换热,从而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过阀装置第二连接口732和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图12D是图12A所示的热泵系统在隔离模式下的系统图。如图12D所示,通过控制装置801的控制,使五通阀处于第三状态,使压缩机712、风机781和节流装置751关闭,使单向电磁阀1202关闭。
具体来说,当压缩机712关闭时,热泵系统处于停机状态。此时,由于五通阀处于第三状态,因此第二换热器722的第二换热器第一口724通过五通阀断开,并且第二换热器722的第二换热器第二口726通过处于关闭状态的节流装置751与第一换热器701断开。第一换热器第一口702和第一换热器第四口705通过五通阀的阀装置第四连接口734和阀装置第五连接口735连接在一起,并且第一换热器第三口704通过处于关闭状态的节流装置751与第二换热器722断开。压缩机712的排气口714和吸气口716通过五通阀的阀装置第一连接口731和阀装置第三连接口733连接在一起。由此,第一换热器701、第二换热器722和压缩机712相互断开,以避免制冷剂在第一换热器701、第二换热器722和压缩机712之间迁移。
图12E是图12A所示的热泵系统在排液模式下的系统图。如图12E所示,通过控制装置801的控制,使五通阀处于第四状态,使压缩机712开启,使节流装置751和风机781关闭,使单向电磁阀1202打开。需要说明的是,排液模式是当热泵系统从制冷模式切换为制热模式时的过渡模式。也就是说,当热泵系统需要从制冷模式切换为制热模式时,热泵系统会先切换为排液模式,随后才切换为制热模式。
具体来说,从压缩机712的排气口714流出的制冷剂依次通过交汇点D、单向电磁阀1202、交汇点C、第二换热器722、阀装置第二连接口732、阀装置第五连接口735后,从第一换热器第四口705流入第一换热器701后,从第一换热器第一口702流出第一换热器701。最后制冷剂依次通过阀装置第四连接口734和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,以完成制冷剂的循环。
由此,排液模式能够实现第二换热器722和第一换热器701的直接连通,而不经过节流装置751,从而将第二换热器722中的由化霜(即,制冷模式)产生的液态制冷剂快速排放至第一换热器701中,避免在制冷模式直接切换到制热模式时,液态制冷剂直接进入压缩机712。
图13A为使用第四实施例的阀装置的热泵系统的系统图。在图13A所示的系统图中,阀装置包括五通阀。五通阀包括五个口,分别形成阀装置第一连接口731、阀装置第二连接口732、阀装置第三连接口733、阀装置第四连接口734和阀装置第五连接口735。五通阀包括五通阀第一流通通道和五通阀第二流通通道,并且具有第一状态、第二状态和第三状态。当 五通阀处于第一状态时,阀装置第一连接口731和阀装置第二连接口732制冷剂连通,并且阀装置第三连接口733和阀装置第五连接口735制冷剂连通。当五通阀处于第二状态时,阀装置第一连接口731和阀装置第四连接口734制冷剂连通,并且阀装置第二连接口732和阀装置第三连接口733制冷剂连通。当五通阀处于第三状态时,阀装置第一连接口731和阀装置第三连接口733制冷剂连通,并且阀装置第四连接口734和阀装置第五连接口735制冷剂连通。
图13B为图13A所示的热泵系统在制冷模式下的系统图。如图13B所示,通过控制装置801的控制,使五通阀处于第一状态,使压缩机712、风机781以及节流装置751开启。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过阀装置第一连接口731和阀装置第二连接口732流至第二换热器722。在第二换热器722中,高温高压气态制冷剂与空气换热,从而将高温高压气态制冷剂变为高压液态制冷剂。高压液态制冷剂从第二换热器722流出后依次通过交汇点C、单向阀774、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后通过单向阀771,从第一换热器第二口703进入第一换热器701。在第一换热器701中,低温低压制冷剂与用户侧的温度较高的制冷剂进行换热,从而降低用户侧制冷剂的温度,以为用户侧提供温度较低的制冷剂(例如,用于提供空调冷水)。低温低压制冷剂在第一换热器701中与用户侧制冷剂换热后变为低压气态的制冷剂。低压气态的制冷剂从第一换热器第四口705流出第一换热器701后,依次通过阀装置第五连接口735和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图13C是图13A所示的热泵系统在制热模式下的系统图。如图13C所示,通过控制装置801的控制,使五通阀处于第二状态,使压缩机712、风机781以及节流装置751开启。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过阀装置第一连接口731和阀装置第四连接口734后,从第一换热器第一口702流入第一换热器701。在第一换热器701中,高温高压气态制冷剂与用户侧的温度较低的制冷剂进行换热,从而升高用户侧制冷剂的温度,以为用户提供温度较高的制冷剂(例如,用于提供空调热水)。高温高压气态制冷剂在第一换热器701中与用户侧制冷剂换热后变为高压液态的制冷剂。高压液态制冷剂从第一换热器第三口704流出后依次通过单向阀773、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后依次通过交汇点A、单向阀772以及交汇点C流至第二换热器722。在第二换热器722中,低温低压制冷剂与空气换热,从 而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过阀装置第二连接口732和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图13D是图13A所示的热泵系统在隔离模式下的系统图。如图13D所示,通过控制装置801的控制,使五通阀处于第三状态,使压缩机712、风机781以及节流装置751关闭。
具体来说,当压缩机712关闭时,热泵系统处于停机状态。此时,由于五通阀处于第三状态,因此第二换热器722的第二换热器第一口724通过五通阀断开,并且第二换热器722的第二换热器第二口726通过处于关闭状态的节流装置751与第一换热器701断开。第一换热器第一口702和第一换热器第四口705通过五通阀的阀装置第四连接口734和阀装置第五连接口735连接在一起,并且第一换热器第三口704通过处于关闭状态的节流装置751与第二换热器722断开。压缩机712的排气口714和吸气口716通过五通阀的阀装置第一连接口731和阀装置第三连接口733连接在一起。由此,第一换热器701、第二换热器722和压缩机712相互断开,以避免制冷剂在第一换热器701、第二换热器722和压缩机712之间迁移。
图14A为使用第五实施例的阀装置的热泵系统的系统图。在图14A所示的系统图中,阀装置包括五通阀。五通阀包括五个口,分别形成阀装置第一连接口731、阀装置第二连接口732、阀装置第三连接口733、阀装置第四连接口734和阀装置第五连接口735。五通阀包括五通阀第一流通通道和五通阀第二流通通道,并且具有第一状态、第二状态和第三状态。当五通阀处于第一状态时,阀装置第一连接口731和阀装置第二连接口732制冷剂连通,并且阀装置第三连接口733和阀装置第五连接口735制冷剂连通。当五通阀处于第二状态时,阀装置第一连接口731和阀装置第四连接口734制冷剂连通,并且阀装置第二连接口732和阀装置第三连接口733制冷剂连通。当五通阀处于第三状态时,阀装置第二连接口732和阀装置第四连接口734制冷剂连通,并且阀装置第三连接口733和阀装置第五连接口735制冷剂连通。
图14A所示的热泵系统与图13A所示的热泵系统大致相同,此处不再赘述,不同之处在于:图14A所示的热泵系统还包括连通管1401,连通管1401被配置为可控地将所述压缩机712的排气口714与第二换热器第二口726相连通。具体来说,连通管1401的一端连接在压缩机712的排气口714与阀装置第一连接口731之间的连接管道的交汇点E上,连通管1401的另一端连接在交汇点C上。此外,连通管1401上还设有单向电磁阀1402,其与控制装置801通讯连接。单向电磁阀1402能够使得制冷剂从交汇点E单向流向交汇点C。
图14B为图14A所示的热泵系统在制冷模式下的系统图。如图14B所示,通过控制装置801的控制,使五通阀处于第一状态,使压缩机712、风机781以及节流装置751开启,使单向电磁阀1402关闭。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过交汇点E、阀装置第一连接口731和阀装置第二连接口732流至第二换热器722。在第二换热器722中,高温高压气态制冷剂与空气换热,从而将高温高压气态制冷剂变为高压液态制冷剂。高压液态制冷剂从第二换热器722流出后依次通过交汇点C、单向阀774、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后通过单向阀771,从第一换热器第二口703进入第一换热器701。在第一换热器701中,低温低压制冷剂与用户侧的温度较高的制冷剂进行换热,从而降低用户侧制冷剂的温度,以为用户侧提供温度较低的制冷剂(例如,用于提供空调冷水)。低温低压制冷剂在第一换热器701中与用户侧制冷剂换热后变为低压气态的制冷剂。低压气态的制冷剂从第一换热器第四口705流出第一换热器701后,依次通过阀装置第五连接口735和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图14C是图14A所示的热泵系统在制热模式下的系统图。如图14C所示,通过控制装置801的控制,使五通阀处于第二状态,使压缩机712、风机781以及节流装置751开启,使单向电磁阀1402关闭。
具体来说,从压缩机712的排气口714流出的高温高压气态制冷剂依次通过交汇点E、阀装置第一连接口731和阀装置第四连接口734后,从第一换热器第一口702流入第一换热器701。在第一换热器701中,高温高压气态制冷剂与用户侧的温度较低的制冷剂进行换热,从而升高用户侧制冷剂的温度,以为用户提供温度较高的制冷剂(例如,用于提供空调热水)。高温高压气态制冷剂在第一换热器701中与用户侧制冷剂换热后变为高压液态的制冷剂。高压液态制冷剂从第一换热器第三口704流出后依次通过单向阀773、交汇点B以及节流装置751。高压液态制冷剂流经节流装置751后成为低温低压制冷剂,随后依次通过交汇点A、单向阀772以及交汇点C流至第二换热器722。在第二换热器722中,低温低压制冷剂与空气换热,从而将低温低压制冷剂变为低压气态制冷剂。低压气态的制冷剂依次通过阀装置第二连接口732和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,成为高温高压气态制冷剂,以完成制冷剂的循环。
图14D是图14A所示的热泵系统在排液模式下的系统图。如图14D所示,通过控制装置801的控制,使五通阀处于第三状态,使压缩机712开启,使节流装置751和风机781关闭,使单向电磁阀1402打开。需要说明的是,排液模式是当热泵系统从制冷模式切换为制热模式时的过渡模式。也就是说,当热泵系统需要从制冷模式切换为制热模式时,热泵系统会先切换为排液模式,随后才切换为制热模式。
具体来说,从压缩机712的排气口714流出的制冷剂依次通过交汇点E、单向电磁阀1402、交汇点C、第二换热器722、阀装置第二连接口732、阀装置第四连接口734后,从第一换热器第一口702流入第一换热器701后,从第一换热器第四口705流出第一换热器701。最后制冷剂依次通过阀装置第五连接口735和阀装置第三连接口733后再次从压缩机712的吸气口716进入压缩机712,以完成制冷剂的循环。
由此,排液模式能够实现第二换热器722和第一换热器701的直接连通,而不经过节流装置751,从而将第二换热器722中的由化霜(即,制冷模式)产生的液态制冷剂快速排放至第一换热器701中,避免在制冷模式直接切换到制热模式时,液态制冷剂直接进入压缩机712。
图15A是本申请的热泵系统的另一个实施例的系统图。图15A所示的热泵系统1500与图7的热泵系统700大致相同,此处不再赘述。与图7的热泵系统700相比,图15A所示的热泵系统1500还包括闪蒸罐1501、第一节流装置1521、第二节流装置1522和附加单向阀1530,而图7的热泵系统700包括节流装置751。具体来说,闪蒸罐1501包括闪蒸罐第一口1511、闪蒸罐第二口1512和闪蒸罐第三口1513。闪蒸罐第一口1511通过连接管道1531与压缩机712的中间腔(未示出)连通,闪蒸罐第二口1512通过连接管道1532与交汇点B连通,闪蒸罐第三口1513通过连接管道1533与交汇点A连通。连接管道1531上设有附加单向阀1530,用于使得制冷剂能够从闪蒸罐第一口1511单向流向压缩机712的中间腔。连接管道1532上设有第一节流装置1521,连接管道1533上设有第二节流装置1522。第一节流装置1521和第二节流装置1522与控制装置801通讯连接,控制装置801被配置为控制第一节流装置1521和第二节流装置1522的开启与关闭。
热泵系统1500能够通过与热泵系统700中相似的控制实现热泵系统1500中的多个工作模式,此处不再赘述。下面针对闪蒸罐1501、第一节流装置1521和第二节流装置1522来描述其工作原理:
交汇点B处的制冷剂为高压液态制冷剂,其流经第一节流装置1521后一部分被节流为中压制冷剂,随后进入闪蒸罐1501。在闪蒸罐1501中,气态制冷剂通过闪蒸罐第一口1511通过连接管道进入压缩机712的中间腔,液体制冷剂通过闪蒸罐第三口1513流出后流过第二节流装置1522,从而被再次节流后成为低温低压制冷剂流动至交汇点A。闪蒸罐的设置能够提高热泵系统的能效比。
图15B是本申请的热泵系统的又一个实施例的系统图。图15B所示的热泵系统与图7的热泵系统700大致相同,此处不再赘述。与图7的热泵系统700相比,图15B所示的热泵系统还包括附加换热器1571、第一节流装置1581、第二节流装置1582和附加单向阀1560,而图7的热泵系统700包括节流装置751。具体来说,附加换热器1571包括附加换热器第一口1541、附加换热器第二口1542、附加换热器第三口1543和附加换热器第四口1544。附加换热器第一口1541通过连接管道1551与压缩机712的中间腔(未示出)连通,附加换热器第二口1542通过连接管道1552与交汇点B连通,附加换热器第三口1543通过连接管道1553与交汇点A连通,附加换热器第四口1544通过连接管道1554连接在交汇点B与附加换热器第二口1542之间的交汇点M。连接管道1551上设有附加单向阀1560,用于使得制冷剂能够从附加换热器第一口1541单向流向压缩机712的中间腔。连接管道1554上设有第一节流装置1581,连接管道1553上设有第二节流装置1582。第一节流装置1581和第二节流装置1582与控制装置801通讯连接,控制装置801被配置为控制第一节流装置1581和第二节流装置1582的开启与关闭。
需要说明的是,在附加换热器1571中,附加换热器第二口1542与附加换热器第三口1543流体连通,并在附加换热器1571中形成第一流动路径;附加换热器第一口1541与附加换热器第四口1544流体连通,并在附加换热器1571中形成第二流动路径。第一流动路径中的流体能够与第二流动路径中的流体进行换热。
图15B所示的热泵系统能够通过与热泵系统700中相似的控制实现热泵系统中的多个工作模式,此处不再赘述。下面针对附加换热器1571、第一节流装置1581和第二节流装置1582来描述其工作原理:
交汇点B处的制冷剂为高压液态制冷剂,其流至交汇点M后分为两路,一路从连接管道1554流经第一节流装置1581。高压液态制冷剂在第一节流装置1581处成为低温低压制冷剂,随后从附加换热器1571的附加换热器第四口1544流入附加换热器1571。另一路从附加换热器1571的附加换热器第二口1542流入附加换热器1571。在附加换热器1571中,从附加换 热器第二口1542进入附加换热器1571的流体被从附加换热器第四口1544流入附加换热器1571的流体进一步冷却后通过附加换热器第三口1543流出,随后流过第二节流装置1582。而从附加换热器第四口1544流入附加换热器1571的流体升温后通过附加换热器第一口1541流至压缩机712的中间腔(未示出)。
在图15B所示的热泵系统中,附加换热器1571与第一节流装置1581形成经济器,其一方面能够使得流经第二节流装置1582的制冷剂的温度更低,另一方面能够降低压缩机712的排气温度,从而提高热泵系统700的效率。
图16是本申请的热泵系统的再一个实施例的系统图。需要说明的是,图16中的第一换热器701与图1-6B中所述的换热器100略有不同。相同之处此处不再赘述。不同之处在于:第一换热器701中还包括闪蒸罐1601和单向阀1620。具体来说,闪蒸罐1601设置在如图1所示的壳体102中。闪蒸罐1601包括闪蒸罐第一口1611、闪蒸罐第二口1612和闪蒸罐第三口1613。闪蒸罐第一口1611从壳体102向外伸出,以通过连接管道1631与压缩机712的中间腔(未示出)连通。连接管道1631上设有附加单向阀1641,用于使得制冷剂能够从闪蒸罐第一口1611单向流向压缩机712的中间腔。闪蒸罐第二口1612从壳体102向外伸出,以通过连接管道1632与交汇点B连通。交汇点B通过管路1634与第二换热器第二口726相连通。连接管道1632上设有第一节流装置1621。闪蒸罐第三口1613设置在壳体102内,并且通过连接管道1633从壳体102向外伸出并与连接管道1633连接至交汇点E。连接管道1633上设有第二节流装置1622。第一换热器701中还设有内部连接管道。内部连接管道的一端连接在连接管道1633上,内部连接管道的另一端连接在分配器221上,以使得从闪蒸罐第三口1613流出的制冷剂能够通过内部连接管道流入分配器221。内部连接管道上设有单向阀1620,以使得制冷剂能够从闪蒸罐第三口1613单向流向分配器221。连接管道1634上还设有单向阀1623,其设置在交汇点B和交汇点E之间,以使得制冷剂能够从交汇点E单向流至交汇点B。
由于图16所示的热泵系统1600与图7所示的热泵系统700能够实现的工作模式基本相同,因此此处不再赘述。当闪蒸罐被设置在第一换热器701内部时,能够减少管道的设置,使得第一换热器701内的结构更加紧凑。
在传统应用降膜换热器的热泵系统中,由于需要实现不同的工作模式,因此需要在压缩机的排气口与冷凝器之间,以及压缩机的吸气口与蒸发器之间设置单向阀和开关阀等阀门,从而造成系统的压降较大。
然而,本申请的热泵系统能够减小系统的压降,尤其减少压缩机712的排气口714至第一换热器701的入口的压降以及第一换热器701的出口至压缩机712的吸气口716的压降。具体来说,本申请通过设置具有阀装置第一连接口、阀装置第二连接口、阀装置第三连接口、阀装置第四连接口和阀装置第五连接口的阀装置,从而使得压缩机712的排气口714至第一换热器701的入口之间的管路上以及第一换热器701的出口至压缩机712的吸气口716之间的管路上不设有开关阀和单向阀。这样,虽然压缩机712的排气口714至第一换热器701的入口之间的管路以及第一换热器701的出口至压缩机712的吸气口716之间的管路中通过的制冷剂为气态,但是相比开关阀和单向阀,阀装置对气态的制冷剂造成的压降更小。
需要说明的是,本申请所述的阀装置是用于在压缩机712和第一换热器701之间切换工作模式的阀组,其包括三通阀、四通阀、五通阀等换向阀,而不包括开关阀和单向阀。
还需要说明的是,在本申请中,图11A-14D所示的热泵系统的四个实施例中,五通阀示意图举例为旋转五通阀。具体来说,五通阀包括壳体和设置在其中的阀体。壳体上设有阀装置第一连接口731、阀装置第二连接口732、阀装置第三连接口733、阀装置第四连接口734和阀装置第五连接口735。阀体上设有五通阀第一流通通道和五通阀第二流通通道。在图11A-14D所示的四种五通阀中,五通阀的壳体为圆柱体。阀体通过相对于壳体的转动从而实现不同连接口之间的连通关系。举例来说,在图11A-11C所示的五通阀中,五个连接口都设置在圆柱体的周向上。在图12A-12E所示的五通阀中,一个连接口(即,阀装置第三连接口733)设置在圆柱体的端部,另四个连接口设置在圆柱体的周向上。
本领域的技术人员可以理解,虽然本申请中以旋转五通阀为例,但任意布置形式(例如,平动五通阀)的五通阀均在本申请的保护范围内。
尽管本文中仅对本申请的一些特征进行了图示和描述,但是对本领域技术人员来说可以进行多种改进和变化。因此应该理解,所附的权利要求旨在覆盖所有落入本申请实质精神范围内的上述改进和变化。

Claims (11)

  1. 一种热泵系统,所述热泵系统具有制冷模式和制热模式,其特征在于:所述热泵系统包括:
    压缩机(712),所述压缩机(712)包括吸气口(716)和排气口(714);
    第一换热器(701),所述第一换热器(701)被配置为能够作为降膜式蒸发器或者作为冷凝器,所述第一换热器(701)包括第一换热器第一口(702)、第一换热器第二口(703)、第一换热器第三口(704)和第一换热器第四口(705);
    第二换热器(722),所述第二换热器(722)包括第二换热器第一口(724)和第二换热器第二口(726);以及
    阀装置,所述阀装置包括阀装置第一连接口(731)、阀装置第二连接口(732)、阀装置第三连接口(733)、阀装置第四连接口(734)和阀装置第五连接口(735);
    其中,所述阀装置第一连接口(731)通过管路与所述压缩机(712)的所述排气口(714)相连接,所述阀装置第二连接口(732)通过管路与所述第二换热器第一口(724)相连接,所述阀装置第三连接口(733)通过管路与所述压缩机(712)的所述吸气口(716)相连接,所述阀装置第四连接口(734)通过管路与所述第一换热器第一口(702)相连接,所述阀装置第五连接口(735)通过管路与所述第一换热器第四口(705)相连接;
    所述阀装置被配置为:当所述热泵系统在制冷模式下运行时,所述阀装置将所述阀装置第三连接口(733)与所述压缩机(712)的所述吸气口(716)相连通,以使得所述第一换热器(701)作为降膜式蒸发器;当所述热泵系统在制热模式下运行时,所述阀装置将所述阀装置第一连接口(731)与所述压缩机(712)的所述排气口(714)相连通,以使得所述第一换热器(701)作为冷凝器。
  2. 如权利要求1所述的热泵系统,其特征在于:
    所述阀装置包括至少一个阀,所述至少一个阀中的每一个为换向阀。
  3. 如权利要求1所述的热泵系统,其特征在于:
    所述阀装置不包括开关阀和单向阀。
  4. 如权利要求1所述的热泵系统,其特征在于:
    所述阀装置包括四通阀和三通阀;
    其中,所述四通阀包括四个口,所述四个口中的三个口分别形成所述阀装置第一连接口(731)、所述阀装置第二连接口(732)和所述阀装置第三连接口(733),所述三通阀包括三个口,所述三个口中的两个口分别形成所述阀装置第四连接口(734)和所述阀装置第五连接口(735),所述四通阀的第四口(1001)与所述三通阀的第三口(1002)相连接;
    其中,所述四通阀包括四通阀第一对流通通道和四通阀第二对流通通道,所述四通阀第一对流通通道能够使得所述阀装置第一连接口(731)和所述阀装置第二连接口(732)流体连通,并且能够使所述阀装置第三连接口(733)和所述四通阀的所述第四口(1001)流体连通,所述四通阀第二对流通通道能够使得所述阀装置第一连接口(731)和所述四通阀的所述第四口(1001)流体连通,并且能够使所述阀装置第二连接口(732)和所述阀装置第三连接口(733)流体连通;
    其中,所述三通阀包括三通阀第一流通通道和三通阀第二流通通道,所述三通阀的所述第三口(1002)能够通过所述三通阀第一流通通道与所述阀装置第四连接口(734)流体连通,所述三通阀的所述第三口(1002)能够通过所述三通阀第二流通通道与所述阀装置第五连接口(735)流体连通。
  5. 如权利要求1所述的热泵系统,其特征在于:
    所述阀装置包括五通阀,所述五通阀包括五个口,所述五个口分别形成所述阀装置第一连接口(731)、所述阀装置第二连接口(732)、所述阀装置第三连接口(733)、所述阀装置第四连接口(734)和所述阀装置第五连接口(735)。
  6. 如权利要求5所述的热泵系统,其特征在于:
    所述五通阀包括五通阀第一流通通道和五通阀第二流通通道;
    所述五通阀具有第一状态和第二状态,所述五通阀被配置为:
    当所述五通阀处于所述第一状态时,所述阀装置第一连接口(731)和所述阀装置第二连接口(732)连通,所述阀装置第三连接口(733)和所述阀装置第五连接口(735)连通;并且
    当所述五通阀处于所述第二状态时,所述阀装置第一连接口(731)和所述阀装置第四连接口(734)连通,所述阀装置第二连接口(732)和所述阀装置第三连接口(733)连通。
  7. 如权利要求6所述的热泵系统,其特征在于:
    所述五通阀具有第三状态,所述五通阀被配置为:
    当所述五通阀处于所述第三状态时,所述阀装置第一连接口(731)和所述阀装置第三连接口(733)连通,所述阀装置第四连接口(734)和所述阀装置第五连接口(735)连通。
  8. 如权利要求6所述的热泵系统,其特征在于:
    所述热泵系统还包括连通管(1201),所述连通管(1201)被配置为可控地将所述压缩机(712)的排气口(714)与所述第二换热器第二口(726)相连通;
    所述五通阀具有第四状态,所述五通阀被配置为:
    当所述五通阀处于所述第四状态时,所述阀装置第三连接口(733)和阀装置第四连接口(734)连通,所述阀装置第二连接口(732)和所述阀装置第五连接口(735)连通。
  9. 如权利要求1所述的热泵系统,其特征在于:
    所述第一换热器(701)中设有闪蒸罐。
  10. 如权利要求1所述的热泵系统,其特征在于:
    所述热泵系统包括闪蒸罐或经济器。
  11. 一种热泵系统,包括权利要求1-10中任一项技术特征或技术特征的任意组合。
PCT/CN2022/088780 2021-04-29 2022-04-24 热泵系统 WO2022228345A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22794815.5A EP4332465A1 (en) 2021-04-29 2022-04-24 Heat pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110475385.7 2021-04-29
CN202110475385.7A CN115265002B (zh) 2021-04-29 2021-04-29 热泵系统

Publications (1)

Publication Number Publication Date
WO2022228345A1 true WO2022228345A1 (zh) 2022-11-03

Family

ID=83745743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088780 WO2022228345A1 (zh) 2021-04-29 2022-04-24 热泵系统

Country Status (3)

Country Link
EP (1) EP4332465A1 (zh)
CN (1) CN115265002B (zh)
WO (1) WO2022228345A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089520A (zh) * 2007-07-12 2007-12-19 特灵空调系统(江苏)有限公司 制冷热泵两用的降膜式热交换器
CN102853575A (zh) * 2012-08-22 2013-01-02 南京五洲制冷集团有限公司 空气源降膜式冷热水机组
CN102878724A (zh) * 2012-10-19 2013-01-16 哈尔滨工业大学 一种兼具蒸发换热与冷凝换热功能的水与制冷剂换热器
CN103727707A (zh) * 2013-12-30 2014-04-16 麦克维尔空调制冷(武汉)有限公司 具有二重冷媒分配装置的全降膜式蒸发器
CN104406329A (zh) * 2014-12-10 2015-03-11 哈尔滨工业大学 一种流动相变蓄能的降膜蒸发式热泵机组
CN105466080A (zh) * 2015-12-24 2016-04-06 宁波沃弗圣龙环境技术有限公司 一种降膜式高温热泵系统
CN107965941A (zh) * 2017-12-26 2018-04-27 王雪峰 一种内转换型水源热泵机组
CN108036658A (zh) * 2017-12-15 2018-05-15 青岛海尔智能技术研发有限公司 用于降膜式换热器的换热管及换热器和空调热泵机组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487639B (zh) * 2009-02-11 2011-03-16 西安建筑科技大学 一种空冷双蒸发器热泵机组
CN101769396B (zh) * 2010-02-05 2012-05-30 清华大学 用于自然冷却和制冷及制热模式切换的五通阀
CN201757537U (zh) * 2010-08-03 2011-03-09 广州市华德工业有限公司 一种蒸发式冷凝液泵供液循环冷热水机组
CN102583608B (zh) * 2012-02-16 2014-07-02 西安交通大学 引射式太阳能海水淡化装置
CN104713265A (zh) * 2013-12-11 2015-06-17 重庆美的通用制冷设备有限公司 空气源热泵机组
CN107883552A (zh) * 2017-12-12 2018-04-06 珠海格力电器股份有限公司 五通阀、空调机组及控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101089520A (zh) * 2007-07-12 2007-12-19 特灵空调系统(江苏)有限公司 制冷热泵两用的降膜式热交换器
CN102853575A (zh) * 2012-08-22 2013-01-02 南京五洲制冷集团有限公司 空气源降膜式冷热水机组
CN102878724A (zh) * 2012-10-19 2013-01-16 哈尔滨工业大学 一种兼具蒸发换热与冷凝换热功能的水与制冷剂换热器
CN103727707A (zh) * 2013-12-30 2014-04-16 麦克维尔空调制冷(武汉)有限公司 具有二重冷媒分配装置的全降膜式蒸发器
CN104406329A (zh) * 2014-12-10 2015-03-11 哈尔滨工业大学 一种流动相变蓄能的降膜蒸发式热泵机组
CN105466080A (zh) * 2015-12-24 2016-04-06 宁波沃弗圣龙环境技术有限公司 一种降膜式高温热泵系统
CN108036658A (zh) * 2017-12-15 2018-05-15 青岛海尔智能技术研发有限公司 用于降膜式换热器的换热管及换热器和空调热泵机组
CN107965941A (zh) * 2017-12-26 2018-04-27 王雪峰 一种内转换型水源热泵机组

Also Published As

Publication number Publication date
CN115265002A (zh) 2022-11-01
CN115265002B (zh) 2023-10-13
EP4332465A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
CN101111730B (zh) 用于热泵集管的管插入件和双向流动配置
CN105190202B (zh) 热交换器和制冷循环装置
US9689594B2 (en) Evaporator, and method of conditioning air
CN101600932B (zh) 改善冷凝水排出的多通道热交换器
CN217357661U (zh) 换热器和空调
WO2016000656A1 (zh) 空调系统
WO2020098354A1 (zh) 复叠式空气调节系统
JPS608425B2 (ja) ヒ−トポンプ装置
KR20200116848A (ko) 실외열교환기 및 이를 포함하는 공기조화기
CN105352225A (zh) 空调器
US4057977A (en) Reverse cycle heat pump circuit
WO2022110901A1 (zh) 多联机空调系统及其控制方法
CN216481725U (zh) 制冷系统及其制冷设备
EP2568247B1 (en) Air conditioner
WO2022228345A1 (zh) 热泵系统
CN106123387B (zh) 一种蒸发前置气液分离装置的微通道热泵回路
CN211625782U (zh) 用于冷水机组的液滴蒸发装置及冷水机组
CN204063693U (zh) 空调器
USRE30745E (en) Reverse cycle heat pump circuit
CN112944741A (zh) 用于冷水机组的液滴蒸发装置及冷水机组
JPH10196984A (ja) 空気調和機
CN218296215U (zh) 换热器及空调器
CN210569375U (zh) 换热器系统和冷水机组
CN219243985U (zh) 蒸发器和空调器
CN219037157U (zh) 冷媒循环系统、制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794815

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022794815

Country of ref document: EP

Effective date: 20231129