WO2022225313A1 - 전이금속 착물 또는 산화-환원 중합체를 포함하는 전기화학적 바이오센서 또는 전기화학적 바이오센서용 센싱 막 - Google Patents

전이금속 착물 또는 산화-환원 중합체를 포함하는 전기화학적 바이오센서 또는 전기화학적 바이오센서용 센싱 막 Download PDF

Info

Publication number
WO2022225313A1
WO2022225313A1 PCT/KR2022/005626 KR2022005626W WO2022225313A1 WO 2022225313 A1 WO2022225313 A1 WO 2022225313A1 KR 2022005626 W KR2022005626 W KR 2022005626W WO 2022225313 A1 WO2022225313 A1 WO 2022225313A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
mmol
oxidation
reaction mixture
Prior art date
Application number
PCT/KR2022/005626
Other languages
English (en)
French (fr)
Inventor
신현서
양보나
강근희
김수진
유아름
Original Assignee
주식회사 아이센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이센스 filed Critical 주식회사 아이센스
Priority to CN202280029276.5A priority Critical patent/CN117242084A/zh
Priority to EP22792013.9A priority patent/EP4328232A1/en
Priority to JP2023564256A priority patent/JP2024518294A/ja
Priority to AU2022261752A priority patent/AU2022261752A1/en
Publication of WO2022225313A1 publication Critical patent/WO2022225313A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/002Osmium compounds
    • C07F15/0026Osmium compounds without a metal-carbon linkage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/02Alkylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose

Definitions

  • the present invention relates to a transition metal complex having a bidentate ligand including pyrazole, triazole, tetrazole, oxadiazole or thiadiazole, and an electrochemical biosensor using the same.
  • an enzyme-based biosensor is a chemical sensor used to selectively detect and measure chemical substances contained in a sample by using the biological detection function in which an organism sensitively reacts with a specific substance, such as a functional substance of an organism or a microorganism. It was developed for medical measurement applications such as sensors, and research is being actively conducted in other applications in food engineering or environmental measurement fields.
  • Periodic measurement of blood sugar is very important in diabetes management, and various blood sugar meters are being manufactured so that blood sugar can be easily measured using a portable measuring instrument.
  • the operating principle of such a biosensor is based on an optical method or an electrochemical method, and this electrochemical biosensor can reduce the effect of oxygen unlike the conventional optical method biosensor, It has the advantage that it can be used without a separate pretreatment. Accordingly, various types of electrochemical biosensors with accuracy and precision are widely used.
  • the currently commercialized electrochemical blood glucose sensor mainly uses an enzyme electrode, and more specifically, has a structure in which a glucose oxidase is fixed by a chemical or physical method on an electrode capable of converting an electrical signal.
  • the electrochemical blood glucose sensor is based on the principle of measuring the concentration of glucose in the analyte by measuring the current generated by transferring electrons generated when glucose in the analyte such as blood is oxidized by an enzyme to the electrode.
  • a redox mediator that is, an electron transport mediator, is essential to facilitate this electron transport reaction. Therefore, the type of enzyme used and the characteristics of the electron transfer mediator most greatly influence the characteristics of the electrochemical biosensor for measuring blood sugar.
  • the development trend of blood glucose sensor is an enzymatic reaction instead of GOX, in which oxygen participates in the enzymatic reaction with glucose in the blood, in order to block the measurement value change due to the difference in oxygen partial pressure (pO 2 ) that varies depending on blood (venous blood, capillary blood, etc.)
  • oxygen partial pressure pO 2
  • ferricyanide which is sensitive to humidity
  • GDH which excludes oxygen.
  • ruthenium hexamine, etc. or organometallic compounds such as osmium complexes are being replaced.
  • the most commonly used electron transport medium is potassium ferricyanide [K 3 Fe(CN) 6 ], which is useful for all sensors using FAD-GOX, PQQ-GDH or FAD-GDH due to its low price and high responsiveness. do.
  • the sensor using this electron transfer medium is manufactured and stored because measurement errors occur due to interfering substances such as uric acid or gentisic acid present in the blood and are easily deteriorated by temperature and humidity. It is difficult to accurately detect low-concentration glucose due to changes in the background current after long-term storage.
  • Hexaamine ruthenium chloride [Ru(NH 3 ) 6 Cl 3 ] has a higher redox stability than ferricyanide, so the biosensor using this electron transfer medium is easy to manufacture and store, and the change in the background current is small even after long-term storage. Although this has a high advantage, there is a disadvantage that it is difficult to manufacture a commercially useful sensor because the reactivity does not match for use with FAD-GDH.
  • a continuous glucose monitoring (CGM) system is used to continuously monitor blood sugar to manage diseases such as diabetes. It cannot be used for these CGMs because it limits the frequency of measurement.
  • CGM continuous glucose monitoring
  • an improved version of the enzyme sensor that can be attached to the body and minimizes invasion has been developed.
  • polyvinylpyridine or polyvinylimide is used so that electron transport media including transition metals are absorbed into the human body and do not cause toxicity and side effects. By fixing it with a polymer such as a sol, it is intended to prevent a problem due to the loss of an electron transport medium in the human body.
  • a transition metal electron transport mediator including bipyridine and bisimidazole ligands was mainly immobilized on the polymer backbone to prepare and use an oxidation-reduction polymer for the enzyme sensor.
  • the present inventors have prepared a transition metal complex having a bidentate ligand including a heterocyclic compound including pyrazole, triazole, tetrazole, oxadiazole or thiadiazole in addition to bipyridine and bisimidazole ligands. When used, it was confirmed that all of the above requirements could be satisfied, and the present invention was completed.
  • the present invention relates to a transition metal complex having a bidentate ligand containing a heterocyclic structure such as pyrazole, triazole, tetrazole, oxadiazole, or thiadiazole, which facilitates synthesis of various derivatives and introduction of functional groups, or a salt thereof to provide a compound.
  • a transition metal complex having a bidentate ligand containing a heterocyclic structure such as pyrazole, triazole, tetrazole, oxadiazole, or thiadiazole, which facilitates synthesis of various derivatives and introduction of functional groups, or a salt thereof to provide a compound.
  • the transition metal complex is pyridine; and a transition metal complex having a bidentate ligand comprising one structure selected from the group consisting of pyrazole, triazole, tetrazole, oxadiazole and thiadiazole, or a salt compound thereof.
  • Another object of the present invention is to provide an oxidation-reduction polymer comprising the transition metal complex or a salt compound thereof.
  • Another object of the present invention is to provide a device with the transition metal complex or a salt compound thereof and/or an oxidation-reduction polymer comprising the same.
  • the device may be a device for an electron transport medium, specifically, an electrochemical biosensor.
  • the device may be insertable into the body.
  • the electrochemical biosensor may be a blood glucose sensor.
  • Another object of the present invention an enzyme capable of oxidation-reduction of a liquid biological sample; And to provide a sensing membrane for an electrochemical biosensor comprising the transition metal complex or a salt compound thereof and/or an oxidation-reduction polymer comprising the same.
  • the present invention is pyridine (pyridine); and bidentate containing one structure selected from the group consisting of pyrazole, triazole, tetrazole, oxadiazole and thiadiazole;
  • pyridine pyridine
  • bidentate a transition metal complex having a ligand or a salt compound thereof is provided.
  • the transition metal complex may be a compound of Formula 1 below.
  • M is one kind of transition metal selected from the group consisting of Fe, Ru, and Os,
  • L is pyridine; and a bidentate ligand comprising one structure selected from the group consisting of pyrazole, triazole, tetrazole, oxadiazole and thiadiazole,
  • a 2 or 3
  • X 1 is one kind of halogen atom selected from the group consisting of F, Cl, Br and I,
  • b 0, 1, or 2;
  • c is an integer selected from 1 to 3 (eg, 1, 2, or 3);
  • X 2 is one type of counter ion selected from the group consisting of F, Cl, Br, I and PF 6 ,
  • d 0, 1, or 2.
  • halo or “halogen” refers to, for example, fluoro, chloro, bromo and iodo.
  • alkyl refers to an aliphatic hydrocarbon radical, and includes both straight-chain or branched hydrocarbon radicals.
  • aliphatic hydrocarbons having 1 to 6 carbon atoms are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl, hexyl. , isohexyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl and 2-ethylbutyl.
  • alkyl is 1 to 6 carbon atoms, 1 to 5 carbon atoms, 1 to 4 carbon atoms, 1 to 3 carbon atoms, 1 to 2 carbon atoms alkyl, 2 to 6 carbon atoms, 2 to 5 carbon atoms, 2 to 4 carbon atoms, carbon atoms 2 to 3, C 3 to 6, C 3 to 5, C 3 to 4, C 1, C 2, C 3, C 4, C 5, or C 6 may mean.
  • alkoxy refers to an -O-alkyl or an alkyl-O- group, wherein the alkyl group is as defined above. Examples include, but are not limited to, methoxy, ethoxy, n-propoxy, n-butoxy, t-butoxy. Alkoxy groups may be unsubstituted or substituted with one or more suitable groups.
  • hydroxy or “hydroxyl”, alone or in combination with other terms, means —OH.
  • amino refers to —NH 2 ; “Nitro” represents -NO 2 .
  • aryl is derived by removing one hydrogen atom from one carbon atom in the parent aromatic ring system, for example, having 6 to 20 carbon atoms, 6 to 12 carbon atoms, or 6 to 10 carbon atoms. aromatic hydrocarbons.
  • the aryl may include bicyclic radicals comprising saturated, partially unsaturated rings and fused aromatic rings.
  • Exemplary aryl groups include radicals derived from benzene (phenyl), substituted phenyl, biphenyl, naphthyl, tetrahydronaphthyl, fluorenyl, toluyl, naphthalenyl, anthracenyl, indenyl, indanyl, and the like. may, but is not limited to.
  • Aryl groups may be unsubstituted or substituted with one or more suitable groups.
  • substitution means that at least one hydrogen atom is a halogen atom (eg, F, Cl, Br, or I), a cyano group, a hydroxyl group, a thiol group, a nitro group, Amino group, imino group, azido group, amidino group, hydrazino group, hydrazono group, oxo group, carbonyl group, carbamyl group, ester group, ether group, carboxyl group or a salt thereof, sulfonic acid group or a salt thereof, phosphoric acid or a salt thereof, an alkyl group having 1 to 6 carbon atoms, a haloalkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a haloalkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an alkynyl
  • the transition metal complex provided herein may be a compound of Formula 1 below.
  • M is one kind of transition metal selected from the group consisting of Fe, Ru, and Os;
  • L is pyridine; and a bidentate ligand comprising one structure selected from the group consisting of pyrazole, triazole, tetrazole, oxadiazole and thiadiazole;
  • a is 2 or 3;
  • X 1 is one halogen atom selected from the group consisting of F, Cl, Br and I;
  • b 0, 1, or 2;
  • c is an integer selected from 1 to 3;
  • X 2 is one counter ion selected from the group consisting of F, Cl, Br, I and PF 6 ;
  • d 0, 1, or 2.
  • the pyridine is unsubstituted, or a C 1-4 alkyl group, a C 1-4 alkoxy group, a -(CH2)-OC 1-4 alkyl group, a -(CH2CH2)-OC 1-4 alkyl group, and a C 1-4 It may be substituted with one or more selected from the group consisting of an alkylamino group (eg, 1 to 4, 1, 2, 3, or 4).
  • an alkylamino group eg, 1 to 4, 1, 2, 3, or 4
  • the pyrazole, triazole, tetrazole, oxadiazole, or thiadiazole are each unsubstituted, or a C 1-4 alkyl group, C 1-4 alkoxy group, -(CH2)-OC 1-4 alkyl group , -(CH2CH2)-OC 1-4 alkyl group, , and C 1-4 It may be substituted with one or more selected from the group consisting of an alkylamino group (eg, 1 to 3, 1, 2, or 3).
  • an alkylamino group eg, 1 to 3, 1, 2, or 3
  • R′ 4 may be hydrogen or substituted or unsubstituted C 1-4 alkyl, and n′ may be an integer selected from 1 to 4, such as 1, 2, 3, or 4.
  • the C 1-4 alkyl group, alkoxy group, or alkylamino group has 1 to 4, 1 to 3, 1 to 2, 2 to 4, 2 to 3, 3 to 4 carbon atoms. , 1, 2, 3, or 4 alkyl groups, alkoxy groups, or alkylamino groups.
  • the C 1-4 alkyl group, C 1-4 alkoxy group, -(CH2)-OC 1-4 alkyl group, -(CH2CH2)-OC 1-4 alkyl group, or C 1-4 alkylamino group is unsubstituted, or may be substituted.
  • the substituted C 1-4 alkyl group, C 1-4 alkoxy group, -(CH2)-OC 1-4 alkyl group, -(CH2CH2)-OC 1-4 alkyl group, or C 1-4 alkylamino group has a hydrogen atom valency F, Cl, Br, or I halogen atom, cyano group, hydroxyl group, thiol group, nitro group, amino group, imino group, azido group, amidino group, hydrazino group, hydrazono group, oxo group, carbonyl group, carba It may be substituted with a wheat group, an ester group, an ether group, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, or phosphoric acid or a salt thereof.
  • the transition metal complex may be a compound of Formula 2 below.
  • R 1 , R 2 , R 3 , and R 4 are each independently hydrogen, C 1-4 alkyl group, C 1-4 alkoxy group, -(CH2)-OC 1-4 alkyl group, -(CH2CH2)-OC 1- 4 alkyl group, or C 1-4 alkylamino group,
  • n 0,
  • At least one of W', Y', Z', and V' is nitrogen (N),
  • W' is nitrogen (N) or carbon (C),
  • Y', Z', and V' are each independently nitrogen (N), sulfur (S), oxygen (O), or carbon (C);
  • R' 1 , R' 2 , and R' 3 are each independently hydrogen, C 1-4 alkyl group, C 1-4 alkoxy group, -(CH2)-OC 1-4 alkyl group, -(CH2CH2)-OC 1- 4 alkyl groups; , or a C 1-4 alkylamino group,
  • the dotted line means that there is no bond or bond
  • R′ 4 may be hydrogen or substituted or unsubstituted C 1-4 alkyl
  • n' may be an integer selected from 1 to 4, such as 1, 2, 3, or 4,
  • M, a, X 1 , b, c, X 2 and d are as defined in Formula 1 above.
  • the C 1-4 alkyl group, C 1-4 alkoxy group, -(CH2)-OC 1-4 alkyl group, -(CH2CH2)-OC 1-4 alkyl group, or C 1-4 alkylamino group is each unsubstituted or , may be substituted, and the case of substitution is the same as described above.
  • the transition metal complex may be a compound selected from the following Chemical Formulas 3 to 25.
  • the transition metal complex according to the present invention may include a transition metal complex in an oxidation state, specifically, a trivalent osmium complex or a divalent osmium complex.
  • a transition metal complex in an oxidation state specifically, a trivalent osmium complex or a divalent osmium complex.
  • the oxidizing agent used in the oxidation treatment a generally used oxidizing agent may be used, and examples of the oxidizing agent include NaOCl, H 2 O 2 , O 2 , O 3 , PbO 2 , MnO 2 , KMnO 4 , ClO 2 , F 2 , Cl 2 , H 2 CrO 4 , N 2 O, Ag 2 O, OsO 4 , H 2 S 2 O 8 , Ceric ammonium nitrate (CAN) pyridinium chlorochromate, and 2,2′ It may be at least one selected from the group consisting of -dipyridyldisulfide (2,2'-
  • the transition metal complex according to the present invention may be in the form of a salt compound having an appropriate counter ion and/or ion, and the salt compound may have high solubility in water, aqueous solution or organic solvent.
  • the salt compounds when it consists of small counter anions such as F - , Cl - and Br - , it tends to dissolve well in water or aqueous solution, and I - , hexafluorophosphate (PF 6 - ) and tetrafluoroborate (BF 4 - ), etc., tend to dissolve well in organic solvents if they are composed of large counter anions.
  • the counter anion it may be at least one selected from a halide selected from the group consisting of F, Cl, Br and I, hexafluorophosphate, and tetrafluoroborate.
  • the present invention is an oxidation-reduction polymer comprising the transition metal complex or a salt compound thereof, and comprising a polymer backbone such as polyvinylimidazole (PVI) and polyvinylpyridine (PVP).
  • a polymer backbone such as polyvinylimidazole (PVI) and polyvinylpyridine (PVP).
  • the oxidation-reduction polymer may be a compound of Formula 26 or Formula 27 below:
  • M is one kind of transition metal selected from the group consisting of Fe, Ru, and Os,
  • L is pyridine; and a bidentate ligand comprising one structure selected from the group consisting of pyrazole, triazole, tetrazole, oxadiazole and thiadiazole,
  • a 2 or 3
  • X 1 is one kind of halogen atom selected from the group consisting of F, Cl, Br and I,
  • X 2 is one type of counter ion selected from the group consisting of F, Cl, Br, I and PF 6 ,
  • n or o is an integer selected from 10 to 600, respectively.
  • the pyridine is unsubstituted, or a C 1-4 alkyl group, a C 1-4 alkoxy group, a -(CH2)-OC 1-4 alkyl group, a -(CH2CH2)-OC 1-4 alkyl group, and a C 1-4 It may be substituted with one or more types (eg, 1 type, 2 types, 3 types, or 4 types) selected from the group consisting of an alkylamino group.
  • the pyrazole, triazole, tetrazole, oxadiazole, or thiadiazole are each unsubstituted, or a C 1-4 alkyl group, C 1-4 alkoxy group, -(CH2)-OC 1-4 alkyl group , -(CH2CH2)-OC 1-4 alkyl group, , and C 1-4 It may be substituted with one or more selected from the group consisting of an alkylamino group (eg, 1 type, 2 types, or 3 types).
  • an alkylamino group eg, 1 type, 2 types, or 3 types.
  • the oxidation-reduction polymer may be a compound selected from the following Chemical Formulas 28 to 45:
  • n or o is as defined in Formula 26 or Formula 27 above.
  • the redox polymer further includes a cross-linkable functional group, and may be a compound of Formula 46 or Formula 47 below.
  • M is one kind of transition metal selected from the group consisting of Fe, Co, Ru, Os, Rh and Ir,
  • L is pyridine; and a bidentate ligand comprising one structure selected from the group consisting of pyrazole, triazole, tetrazole, oxadiazole and thiadiazole,
  • a 2 or 3
  • X 1 is one kind of halogen atom selected from the group consisting of F, Cl, Br and I,
  • X 2 is one type of counter ion selected from the group consisting of F, Cl, Br, I and PF 6 ,
  • a D is a primary and secondary amine group, ammonium group, halogen group, epoxy group, azide group, acrylate group, alkenyl group, alkynyl group, thiol group, isocyanate, alcohol group, silane group, and It is one selected from the group consisting of
  • R 5 is hydrogen or substituted or unsubstituted C 1-4 alkyl
  • n'' is an integer selected from 1 to 4,
  • q is an integer selected from 1 to 10,
  • n, o, or p is an integer selected from 10 to 600, respectively.
  • the pyridine is unsubstituted, or a C 1-4 alkyl group, a C 1-4 alkoxy group, a -(CH2)-OC 1-4 alkyl group, a -(CH2CH2)-OC 1-4 alkyl group, and a C 1-4 It may be substituted with one or more types (eg, 1 type, 2 types, 3 types, or 4 types) selected from the group consisting of an alkylamino group.
  • the pyrazole, triazole, tetrazole, oxadiazole, or thiadiazole are each unsubstituted, or a C 1-4 alkyl group, C 1-4 alkoxy group, -(CH2)-OC 1-4 alkyl group , -(CH2CH2)-OC 1-4 alkyl group, , and C 1-4 It may be substituted with one or more selected from the group consisting of an alkylamino group (eg, 1 type, 2 types, or 3 types).
  • an alkylamino group eg, 1 type, 2 types, or 3 types.
  • the oxidation-reduction polymer may be a compound selected from Formulas 48 to 60 below.
  • transition metal complex or a salt compound thereof; or a device comprising the oxidation-reduction polymer.
  • the device may be an electrochemical biosensor.
  • the device may be insertable into the body, and specifically, may be an electrochemical biosensor insertable into the body.
  • the electrochemical biosensor may be a blood glucose sensor, such as an electrochemical glucose (blood glucose) sensor.
  • the electrochemical biosensor may be a continuous blood glucose monitoring sensor.
  • the present invention provides, for example, an electrode, an insulator, a substrate, a sensing layer comprising the redox polymer and an oxidation-reductase, and a diffusion membrane. layer), a protection layer, and the like.
  • an electrode two types of electrodes such as a working electrode and a counter electrode may be included, and three types of electrodes such as a working electrode, a counter electrode and a reference electrode may be included.
  • the biosensor according to the present invention the transition metal complex or a salt compound thereof on a substrate having at least two, preferably two or three electrodes;
  • it may be an electrochemical biosensor manufactured by applying a reagent composition including the oxidation-reduction polymer and an enzyme capable of oxidation-reduction of a liquid biological sample and then drying it.
  • a working electrode and a counter electrode are provided on opposite sides of a substrate, and a sensing film containing the transition metal complex or redox polymer of the present invention is laminated on the working electrode, the working electrode and an insulator, a diffusion film and a protective film are sequentially stacked on both sides of a substrate provided with a counter electrode.
  • the substrate may be made of one or more materials selected from the group consisting of polyethylene terephthalate (PET), polycarbonate (PC), and polyimide (PI).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PI polyimide
  • the working electrode may use a carbon, gold, platinum, silver or silver/silver chloride electrode.
  • a gold, platinum, silver, or silver/silver chloride electrode can be used as the counter electrode, and a three-electrode including a reference electrode can be used.
  • a gold, platinum, silver, or silver/silver chloride electrode may be used as a reference electrode, and a carbon electrode may be used as a counter electrode.
  • Nafion, cellulose acetate, or silicone rubber may be used as the diffusion film, and silicone rubber, polyurethane, polyurethane-based copolymer, etc. may be used as the protective film, but is not limited thereto.
  • silver chloride or silver may be used because the counter electrode also serves as a reference electrode, and in the case of three electrodes, silver chloride or silver is used as the reference electrode, and a carbon electrode may be used as the counter electrode.
  • the type of enzyme included in the reagent composition of the present invention it can be applied to a biosensor for quantification of various substances such as cholesterol, lactate, creatinine, hydrogen peroxide, alcohol, amino acids, and glutamate.
  • the liquid biological sample is, for example, one or more, two or more, three or more, four or more, or five or more selected from the group consisting of tissue fluid, blood, cells, plasma, serum, urine, cyst fluid, and saliva of a patient. can be, but is not limited thereto.
  • the enzyme is one or more oxidation-reductase selected from the group consisting of dehydrogenase, oxidase, and esterase; or
  • One or more oxidation-reductases selected from the group consisting of dehydrogenases, oxidases, and esterases and flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide (NAD) , and pyrroloquinoline quinone (Pyrroloquinoline quinone, PQQ) may include one or more cofactors selected from the group consisting of.
  • Oxidation-reductase is a generic term for enzymes that catalyze oxidation-reduction reactions in a living body.
  • a target material to be measured for example, a biosensor, refers to an enzyme that is reduced by reacting with the target material to be measured. The reduced enzyme reacts with the electron transfer mediator, and the target substance is quantified by measuring a signal such as a change in current generated at this time.
  • Oxidation-reductase usable in the present invention may be at least one selected from the group consisting of various dehydrogenases, oxidases, esterases, etc., depending on the oxidation-reduction or detection target material. , it is possible to select and use an enzyme using the target substance as a substrate from among the enzymes belonging to the enzyme group.
  • the oxidation-reductase is glucose dehydrogenase (glucose dehydrogenase), glutamate dehydrogenase (glutamate dehydrogenase), glucose oxidase (glucose oxidase), cholesterol oxidase (cholesterol oxidase), cholesterol esterase (cholesterol esterase),
  • glucose dehydrogenase glutamate dehydrogenase
  • glutamate dehydrogenase glutamate dehydrogenase
  • glucose oxidase glucose oxidase
  • cholesterol oxidase cholesterol esterase
  • cholesterol esterase cholesterol esterase
  • One selected from the group consisting of lactate oxidase, ascorbic acid oxidase, alcohol oxidase, alcohol dehydrogenase, bilirubin oxidase, etc. may be more than
  • the oxidation-reductase may include a cofactor that serves to store the hydrogen taken by the oxidation-reductase from the target material to be measured (eg, the target material), for example, flavin. It may be at least one selected from the group consisting of adenine dinucleotide (flavin adenine dinucleotide, FAD), nicotinamide adenine dinucleotide (NAD), pyrroloquinoline quinone (PQQ), and the like.
  • FAD adenine dinucleotide
  • NAD nicotinamide adenine dinucleotide
  • PQQ pyrroloquinoline quinone
  • glucose dehydrogenase when measuring the blood glucose concentration, glucose dehydrogenase (GDH) can be used as the oxidation-reductase, and the glucose dehydrogenase is a flavin adenine dinucleotide containing FAD as a cofactor-glucose flavin adenine dinucleotide-glucose dehydrogenase (FAD-GDH), and/or nicotinamide adenine dinucleotide-glucose dehydrogenase containing FAD-GDH as a cofactor.
  • FAD-GDH cofactor-glucose flavin adenine dinucleotide-glucose dehydrogenase
  • the usable oxidoreductase is FAD-GDH (eg, EC 1.1.99.10, etc.), NAD-GDH (eg, EC 1.1.1.47, etc.), PQQ-GDH (eg, EC1.1.5.2, etc.) ), glutamic acid dehydrogenase (eg, EC 1.4.1.2, etc.), glucose oxidase (eg, EC 1.1.3.4, etc.), cholesterol oxidase (eg, EC 1.1.3.6, etc.), cholesterol esterase (eg, EC 3.1) .1.13, etc.), lactate oxidase (eg, EC 1.1.3.2, etc.), ascorbic acid oxidase (eg, EC 1.10.3.3, etc.), alcohol oxidase (eg, EC 1.1.3.13, etc.), alcohol dehydrogenase ( For example, it may be at least one selected from the group consisting of EC 1.1.1.1, etc.
  • the oxidoreductase is a glucose dehydrogenase capable of maintaining an activity of 70% or more in a buffer solution at 37° C. for one week.
  • the sensing film according to the present invention may contain 20 to 700 parts by weight of the oxidation-reduction polymer, such as 60 to 700 parts by weight or 30 to 340 parts by weight, based on 100 parts by weight of the oxidation-reductase.
  • the content of the oxidation-reduction polymer may be appropriately adjusted according to the activity of the oxidation-reduction enzyme.
  • the sensing film according to the present invention may further include carbon nanotubes to increase film performance. Specifically, when carbon nanotubes are used together with a transition metal complex, in particular, osmium, the electron transfer rate is increased, so that the performance of the sensing film can be further improved.
  • a transition metal complex in particular, osmium
  • the sensing film according to the present invention may further include a crosslinking agent.
  • the sensing membrane according to the present invention contains one or more additives selected from the group consisting of surfactants, water-soluble polymers, quaternary ammonium salts, fatty acids, thickeners, etc. as a dispersant for dissolving reagents, adhesives for preparing reagents, stabilizers for long-term storage, etc. may be additionally included for the role of
  • the surfactant may serve to distribute the composition evenly on the electrode to be dispensed with a uniform thickness. 1 selected from the group consisting of Triton X-100, sodium dodecyl sulfate, perfluorooctane sulfonate, sodium stearate, etc. as the surfactant More than one species can be used.
  • the surfactant is added to 100 parts by weight of the oxidation-reductase based on 3 to 25 parts by weight, such as 10 to 25 parts by weight.
  • oxidizing-reductase having an activity of 700 U/mg 10 to 25 parts by weight of a surfactant may be contained based on 100 parts by weight of the oxidizing-reductase.
  • the content of the active agent may be adjusted lower than this.
  • the water-soluble polymer may serve to assist in stabilization and dispersing of the enzyme as a polymer support of the reagent composition.
  • the water-soluble polymer polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), polyfluorosulfonate (polyperfluoro sulfonate), hydroxyethyl cellulose (HEC), hydroxy At least one selected from the group consisting of propyl cellulose (hydroxypropyl cellulose; HPC), carboxy methyl cellulose (CMC), cellulose acetate, polyamide, and the like may be used.
  • the reagent composition according to the present invention contains 10 to 70 parts by weight of the water-soluble polymer based on 100 parts by weight of the oxidoreductase in order to sufficiently and appropriately exert a role of helping the stabilization and dispersing of the oxidoreductase. , for example, in an amount of 30 to 70 parts by weight.
  • an oxidative-reductase having an activity of 700U/mg it may contain 30 to 70 parts by weight of a water-soluble polymer based on 100 parts by weight of the oxidative-reductase. The content of can be adjusted lower than this.
  • the water-soluble polymer may have a weight average molecular weight of about 2,500 g/mol to 3,000,000 g/mol, for example, about 5,000 g/mol to 1,000,000 g/mol in order to effectively perform a dynamic to help stabilize and disperse the support and enzyme. have.
  • the thickener serves to firmly attach the reagent to the electrode.
  • the thickener at least one selected from the group consisting of natrozole, diethylaminoethyl-dextran hydrochloride (DEAE-Dextran hydrochloride), and the like may be used.
  • an oxidative-reductase having an activity of 700 U/mg when used, 30 to 90 parts by weight of a thickener may be contained based on 100 parts by weight of an oxidative-reductase. The content of can be adjusted lower than this.
  • the transition metal complex and oxidation-reduction polymer according to the present invention can easily adjust the potential value depending on the type of the introduced ligand, and the size of the ligand is miniaturized compared to the existing bipyridine series and the electron transfer rate is increased.
  • the advantage is that the detection is fast and economical.
  • 1A to 1O are cyclic voltammetry curves showing the electrochemical properties of a transition metal complex having a bidentate ligand including pyrazole, triazole, tetrazole, oxadiazole, or thiadiazole according to the present invention. .
  • FIG. 2 is a cyclic voltammetry curve showing the electrochemical properties of the oxidation-reduction polymer containing the transition metal complex according to the present invention.
  • FIG. 3 is a cyclic voltammetry curve showing the electrochemical properties of a redox polymer including a transition metal complex and a cross-linkable functional group according to the present invention.
  • FIG. 7 is a graph showing that all of the electrodes to which the oxidation-reduction polymer according to the present invention is applied exhibited sensitivity to glucose at a lower voltage than that of the comparative electrode.
  • Example 1 Preparation of a transition metal complex according to the present invention
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 2.0 g (30 mmol) of pyrazole and 4.0 g (36 mmol) of potassium tertiary butoxide to 20 mL of anhydrous dimethyl sulfoxide in an argon gas atmosphere. dissolved. 5.0 g (36 mmol) of 2-fluoro-6-methyl pyridine was added to the reaction mixture, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 4 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with water (100 mL) and ethyl acetate (100 mL X 3).
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 2.0 g (30 mmol) of pyrazole and 4.0 g (36 mmol) of potassium tertiary butoxide to 20 mL of anhydrous dimethyl sulfoxide in an argon gas atmosphere. dissolved. 6.7 g (36 mmol) of 2-bromo-4-methoxypyridine was added to the reaction mixture, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 8 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with water (100 mL) and ethyl acetate (100 mL X 3).
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 2.0 g (30 mmol) of pyrazole and 4.0 g (36 mmol) of potassium tertiary butoxide to 20 mL of anhydrous dimethyl sulfoxide in an argon gas atmosphere. dissolved.
  • 6.2 g (36 mmol) of 2-bromo-4-methyl pyridine was added, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 8 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with water (100 mL) and ethyl acetate (100 mL X 3).
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 2.5 g (30 mmol) of 3-methylpyrazole and 4.0 g (36 mmol) of potassium tertiary butoxide in an argon gas atmosphere. dissolved in 20 mL.
  • 6.2 g (36 mmol) of 2-bromo-4-methyl pyridine was added, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 18 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with water (100 mL) and ethyl acetate (100 mL X 3).
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 2.5 g (30 mmol) of 3-methylpyrazole and 4.0 g (36 mmol) of potassium tertiary butoxide in an argon gas atmosphere. dissolved in 20 mL. 6.7 g (36 mmol) of 2-bromo-4-methoxypyridine was added to the reaction mixture, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 18 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with water (100 mL) and ethyl acetate (100 mL X 3).
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 2.5 g (30 mmol) of 4-methylpyrazole and 4.0 g (36 mmol) of potassium tertiary butoxide in an argon gas atmosphere. dissolved in 20 mL.
  • 6.2 g (36 mmol) of 2-bromo-4-methyl pyridine was added, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 18 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with water (100 mL) and ethyl acetate (100 mL X 3).
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 2.5 g (30 mmol) of 4-methylpyrazole and 4.0 g (36 mmol) of potassium tertiary butoxide in an argon gas atmosphere. dissolved in 20 mL. 6.7 g (36 mmol) of 2-bromo-4-methoxypyridine was added to the reaction mixture, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 18 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with water (100 mL) and ethyl acetate (100 mL X 3).
  • the reaction mixture was filtered under reduced pressure to remove the residual solvent and washed with ethanol and distilled water to obtain a white solid.
  • the white solid Put the white solid and 20 mL of ethylene glycol in a 50 mL one-neck flask, heated to 190 °C and stirred for 30 minutes.
  • the reaction mixture was cooled to room temperature and the ethylene glycol solvent was removed through distillation under reduced pressure to finally form a yellow solid 2-(5-R- 2H -1,2,4-triazol-3-yl).
  • pyridine was obtained. (0.22 g, 9%)
  • the resulting potassium chloride was removed by concentration under reduced pressure, 7.0 g (60 mmol) of pyridinecarbonitrile was added to the filtered reaction solution, and the mixture was heated to 100° C. and stirred for one hour. After completion of the reaction, the mixture was concentrated under reduced pressure and washed with distilled water to obtain hydroxyphycorinimidamide as a transparent solid. (9.0 g, 65%)
  • the filtrate was added dropwise to a 1.0 M aqueous solution of sodium dithionate (200 mL) to obtain a precipitate of reduced osmium complex.
  • the resulting solid was filtered under reduced pressure, washed several times with water, and dried in a vacuum oven at 40 °C to obtain the final compound osmium complex. (0.4 g, 56%)
  • reaction mixture was extracted with water (100 mL) and ethyl acetate (100 mL X 3), and the organic layers were collected and dried over magnesium sulfate.
  • the filtrate was added dropwise to a 1.0 M aqueous solution of sodium dithionate (10 mL) to obtain a precipitate of a reduced osmium complex.
  • the resulting solid was filtered under reduced pressure, washed several times with water, and then dried in a vacuum oven at 40° C. to obtain an osmium complex, a final compound of dark purple color. (0.1 g, 56%)
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask 1.3 g (19.2 mmol) of sodium azide, 2.0 g (19.2 mmol) of 2-ethynylpyridine, and 96 mg (0.38 mmol) of copper sulfate are added to argon gas. It was dissolved in 40 mL of anhydrous dimethyl sulfoxide in an atmosphere. The reaction mixture was degassed with argon for 15 minutes, then heated to 140° C. and stirred for 3 hours.
  • Equipped with a reflux condenser and a gas inlet in a 100 mL two-necked round-bottom flask add 1.0 g (6.8 mmol) of 2-(1 H -tetrazol-5-yl)pyridine prepared in 1) above, and dry in an argon gas atmosphere. After dissolving in tetrahydrofuran (30 mL), sodium hydride 0.4 g (10 mmol) was added. The reaction mixture was stirred at room temperature for 30 minutes, 1.5 g (10 mmol) of iodomethane was added in an argon gas atmosphere, and then heated to 80° C. and stirred for 3 hours.
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 3.0 g (43 mmol) of 1H -1,2,4 triazole and 5.8 g (52 mmol) of potassium tertiary butoxide in an argon gas atmosphere. It was dissolved in 40 mL of anhydrous dimethylsulfoxide. 5.0 g (52 mmol) of 2-fluoropyridine was added to the reaction mixture, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 4 hours.
  • the filtrate was added dropwise to a 1.0 M aqueous solution of sodium dithionate (30 mL) to obtain a precipitate of a reduced osmium complex.
  • the resulting solid was filtered under reduced pressure, washed several times with water and acetonitrile, and then dried in a vacuum oven to obtain an osmium complex, the final compound in crimson color. (0.3 g, 62%)
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask add 3.0 g (43 mmol) of 1H -1,2,3 triazole and 5.8 g (52 mmol) of potassium tertiary butoxide in an argon gas atmosphere. It was dissolved in 40 mL of anhydrous dimethylsulfoxide. 5.0 g (52 mmol) of 2-fluoropyridine was added to the reaction mixture, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 4 hours.
  • the filtrate was added dropwise to a 1.0 M aqueous solution of sodium dithionate (30 mL) to obtain a precipitate of a reduced osmium complex.
  • the resulting solid was filtered under reduced pressure, washed several times with water and acetonitrile, and dried in a vacuum oven to obtain a green final compound, osmium complex. (0.4 g, 69%)
  • the filtrate was added dropwise to a 1.0 M aqueous solution of sodium dithionate (30 mL) to obtain a precipitate of a reduced osmium complex.
  • the resulting solid was filtered under reduced pressure, washed several times with water and acetonitrile, and then dried in a vacuum oven to obtain a green final compound osmium complex (0.2 g, 25%).
  • Equipped with a reflux condenser and gas inlet in a 250 mL two-necked round-bottom flask put 2.1 g (22 mmol) of 3,4-dimethylpyrazole and 2.5 g (22 mmol) of potassium tertiary butoxide in an argon gas atmosphere with anhydrous dimethyl Dissolve in 20 mL of sulfoxide.
  • 3.5 g (20 mmol) of 2-bromo-4-methylpyridine was added to the reaction mixture, and the mixture was heated to 100° C. in an argon gas atmosphere and stirred for 18 hours.
  • Equipped with a reflux condenser and gas inlet in a 50 mL two-necked round-bottom flask add 0.6 g (6 mmol) of 3,4-dimethylpyrazole and 0.7 g (6 mmol) of potassium tertiary butoxide in an argon gas atmosphere with anhydrous dimethyl Dissolve in 8 mL of sulfoxide.
  • 1.0 g (5. mmol) of 2-bromo-4-methoxypyridine was added to the reaction mixture, and the mixture was heated to 80° C. in an argon gas atmosphere and stirred for 6 hours.
  • Example 2 Synthesis of redox polymer containing transition metal complex according to the present invention
  • Example 3 Synthesis of redox polymer comprising a transition metal complex according to the present invention and a functional group capable of crosslinking
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.2 g of the polymer prepared in Example 2.1. is put and completely dissolved in methanol in an argon gas atmosphere. 20 mg (0.1 mmol) of 2-bromoethylamine was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.2 g of the polymer prepared in Example 2.3. 20 mg (0.1 mmol) of 2-bromoethylamine was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.4 g of the polymer [Formula 31] prepared in Example 2.4. is put and completely dissolved in methanol in an argon gas atmosphere.
  • 50 mg (0.25 mmol) of 2-bromoethylamine was added, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.4 g of the polymer prepared in Example 2.7. is put and completely dissolved in methanol in an argon gas atmosphere.
  • 50 mg (0.25 mmol) of 2-bromoethylamine was added, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.2 g of the polymer prepared in Example 2.8. is put and completely dissolved in methanol in an argon gas atmosphere. 20 mg (0.1 mmol) of 2-bromoethylamine was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.2 g of the [Formula 40] polymer prepared in Example 2.13. is put and completely dissolved in methanol in an argon gas atmosphere. 20 mg (0.1 mmol) of 2-bromoethylamine was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.2 g of the [Formula 41] polymer prepared in Example 2.14. is put and completely dissolved in methanol in an argon gas atmosphere. 20 mg (0.1 mmol) of 2-bromoethylamine was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.2 g of the [Formula 42] polymer prepared in Example 2.15. is put and completely dissolved in methanol in an argon gas atmosphere. 20 mg (0.1 mmol) of 2-bromoethylamine was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.4 g of the polymer prepared in Example 2.16. is put and completely dissolved in methanol in an argon gas atmosphere. 30 mg (0.15 mmol) of 2-bromoethylamine was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet and a thermometer are mounted in a 100 mL three-necked round-bottom flask, and 0.4 g of the polymer prepared in Example 2.7. is put and completely dissolved in methanol in an argon gas atmosphere.
  • 24 mg (0.1 mmol) of diethylene glycol-2-bromoethylmethyl ether was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid is filtered under reduced pressure and washed several times with diethyl ether.
  • a reflux condenser, a gas inlet, and a thermometer were mounted in a 100 mL three-necked round-bottom flask, and 0.4 g of the polymer prepared in Example 2.17. was put and completely dissolved in methanol in an argon gas atmosphere. 30 mg (0.15 mmol) of 2-bromoethylamine was added to the reaction mixture, and the mixture was heated to 80° C. and stirred for 24 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and added dropwise to diethyl ether to obtain a polymer precipitate. The resulting solid was filtered under reduced pressure and washed several times with diethyl ether.
  • transition metal complex having a bidentate ligand including pyrazole, triazole, tetrazole, oxadiazole or thiadiazole according to the present invention and the redox polymer containing the same as an electron transport mediator
  • electrochemical properties were measured using cyclic voltammetry according to the following experimental method.
  • a working electrode, a reference electrode, and a counter electrode were connected to the oxygen-degassed solution, and an electrical signal change according to a voltage change was measured in an argon gas atmosphere.
  • Formula 3 (FIG. 1A), Formula 4 (FIG. 1B), Formula 9 (FIG. 1C), Formula 11 (FIG. 1D), Formula 14 (FIG. 1E), Formula 15 (FIG. 1F), Formula 16 (FIG. 1G), Formula 17 (FIG. 1H), Formula 18 (FIG. 1I), Formula 20 (FIG. 1J), Formula 22 (FIG. 1K), Formula 23 (FIG. 11), Formula 24 (FIG. 1M), Formula 25 (FIG. 1N), Formula 3 , 4, 11, 14, 15, 16 (Fig. 1o),
  • EmStat PalmSens Co.
  • transition metal complex E pc (V) E pa (V) [Formula 3] 0.03 -0.12 [Formula 4] 0.05 -0.12 [Formula 9] -0.08 -0.18 [Formula 11] -0.16 -0.27 [Formula 14] -0.18 -0.26 [Formula 15] 0.04 -0.16 [Formula 16] 0.26 0.10 [Formula 17] -0.42 -0.56 [Formula 18] -0.40 -0.49 [Formula 20] -0.1 -0.24 [Formula 22] -0.32 -0.47 [Formula 23] 0.50 0.60 [Formula 24] 0.49 0.36 [Formula 25] 0.71 0.63
  • Redox complex comprising cross-linkable functional groups E pc (V) E pa (V) [Formula 48] 0.33 0.17 [Formula 51] 0.26 0.14 [Formula 57] 0.15 0.05 [Formula 59] 0.26 0.13 [Formula 61] 0.39 0.29
  • the transition metal complex according to the present invention had various potential values depending on the type of ligand.
  • an electrochemical sensor electrochemical biosensor
  • an electron transport medium of an oxidation-reduction polymer the sensor was prepared through the following method.
  • Cyclic voltammetry was used as a method for comparing the electron transport performance of the fabricated electrode with the electrode containing Chemical Formula 61.
  • EmStat PalmSens Co.
  • the potential ( E 0 ) of the electrode to which the oxidation-reduction polymer according to the present invention is applied has a lower potential than that of the comparative electrode.
  • Glucose concentrations are 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, and 100 mM, and a high-concentration glucose solution is added to physiological saline solution containing phosphate buffer at an interval of 200 seconds to reach each concentration. injected. Each experiment was carried out for 50 minutes.
  • EmStat PalmSens Co.
  • all of the electrodes to which the oxidation-reduction polymer according to the present invention was applied showed linearity to glucose at a concentration of 10 mM or less, and showed similar sensitivity despite applying a lower voltage than the comparative electrode. .
  • the electrodes to which compounds 51 and 53 were applied showed that the current at 100 mM concentration was greater than that of the control group, so the maximum enzyme activity (V max ) was 1.2 to 2 times greater.
  • the voltage was maintained for 300 seconds at an interval of 0.05 V, including -0.2 V to 0.35 V, and the current was observed.
  • EmStat PalmSens Co.

Abstract

본 발명은 혈중 글루코스 농도를 측정하는 연속혈당측정기 등에서 전자전달 매개체로 사용할 수 있는 피라졸, 트리아졸, 테트라졸, 옥사디아졸 또는 티아디아졸 등을 포함하는 바이덴테이트 리간드를 갖는 전이금속 착물 및 이를 포함하는 산화-환원 중합체에 관한 것으로, 상기 전이금속 착물 및 산화-환원 중합체는 전자를 효소 및 전극 사이에서 신속하고 원활하게 교환할 수 있으므로 연속혈당 바이오센서에 유용하게 사용될 수 있다.

Description

전이금속 착물 또는 산화-환원 중합체를 포함하는 전기화학적 바이오센서 또는 전기화학적 바이오센서용 센싱 막
본 발명은 피라졸, 트리아졸, 테트라졸, 옥사디아졸 또는 티아디아졸 등을 포함하는 바이덴테이트 리간드를 갖는 전이금속 착물 및 이를 이용한 전기화학적 바이오센서에 관한 것이다.
최근 의료 분야부터 환경 및 식품 분야까지 목표 분석물의 정량, 정성 분석을 위해 바이오센서의 개발에 대한 관심이 날로 증대되고 있다. 특히 효소를 이용한 바이오센서는 생물체의 기능 물질 또는 미생물 등 생물체가 특정 물질과 예민하게 반응하는 생물 감지 기능을 이용하여 시료에 함유되어 있는 화학 물질을 선택적으로 검출 계측하는 데 사용하는 화학 센서로 주로 혈당 센서와 같은 의료 계측 용도로 개발되었으며, 그 외 식품 공학이나 환경 계측 분야의 응용에서 역시 연구가 활발하게 이루어지고 있다.
당뇨 관리에 있어 혈당의 주기적인 측정은 대단히 중요하며, 이에 휴대용 계측기를 이용하여 손쉽게 혈당을 측정할 수 있도록 다양한 혈당 측정기가 제작되고 있다. 이러한 바이오센서의 작동원리는 광학적 방법 또는 전기화학적 방법에 기초하고 있고, 이러한 전기화학적 바이오센서는 종래의 광학적 방법에 의한 바이오센서와는 달리 산소에 의한 영향을 줄일 수 있으며, 시료가 혼탁하더라도 시료를 별도 전처리 없이 사용 가능하다는 장점을 갖는다. 따라서, 정확성과 정밀성을 갖춘 다양한 종류의 전기화학적 바이오센서가 널리 쓰이고 있다.
현재 상용화 된 전기화학적 혈당센서는 주로 효소 전극을 이용하는 것으로서, 보다 구체적으로는 전기적 신호를 변환할 수 있는 전극 위에 글루코스 산화 효소를 화학적 또는 물리적 방법으로 고정시킨 구조를 가진다. 이러한 전기화학적 혈당센서는 혈액 등의 분석물 내의 글루코스가 효소에 의해 산화되어 발생하는 전자를 전극에 전달하여 생성되는 전류를 측정함으로써 분석물 내의 글루코스 농도를 측정하는 원리에 의한 것이다. 효소 전극을 이용하는 바이오센서의 경우 효소의 활성 중심과의 거리가 너무 멀기 때문에 기질이 산화되어 발생되는 전자를 직접적으로 전극에 전달하는 것이 용이하지 않은 문제가 발생한다. 따라서 이러한 전자 전달 반응을 용이하게 수행하기 위하여 산화환원 매개체, 즉 전자전달매개체가 필수적으로 요구된다. 따라서, 혈당을 측정하는 전기화학적 바이오센서의 특성을 가장 크게 좌우하는 것은 사용하는 효소의 종류와 전자 전달 매개체의 특성이다.
채혈 혈당 센서의 개발 추이는 혈액(정맥혈, 모세혈 등)에 따라 달라지는 산소 분압(pO2) 차이에 따른 측정치 변화를 차단하기 위하여 혈액 내 글루코오스와의 효소 반응에서 산소가 참여하는 GOX 대신에 효소반응에 산소가 배제된 GDH 사용으로 전환되고 있으며, 전자 전달 매개체의 경우 습도에 따른 안정성이 민감한 ferricyanide를 대신 온도 및 습도에 따른 안정성이 우수한 퀴논 유도체(Phenanthroline quinone, Quineonediimine 등)와 같은 유기화합물과 Ru complex(ruthenium hexamine 등)나 오스뮴 착물과 같은 유기금속 화합물로 대체되고 있다.
가장 보편적으로 사용되는 전자 전달 매개체로는 포타슘페리시아나이드 [K3Fe(CN)6]가 있는데, 가격이 저렴하고 반응성이 좋아서 FAD-GOX, PQQ-GDH 또는 FAD-GDH를 이용한 센서 모두에 유용하다. 그러나, 이 전자 전달 매개체를 이용한 센서는 혈액에 존재하는 요산 (uric acid)이나 겐티식산(gentisic acid)과 같은 방해 물질에 의한 측정오차가 발생하고, 온도와 습도에 의하여 변질되기 쉽기 때문에 제조와 보관에 각별히 주의해야 하며, 장시간 보관 후 바탕전류의 변화로 낮은 농도의 글루코오스를 정확하게 검출하는데 어려움이 있다.
헥사아민루테늄클로라이드 [Ru(NH3)6Cl3]는 페리시아나이드에 비하여 산화환원 안정성이 높아 이 전자 전달 매개체를 사용한 바이오센서는 제조와 보관이 용이하고 장시간 보관에도 바탕전류의 변화가 작아 안정성이 높은 장점을 갖지만, FAD-GDH와 사용하기에는 반응성이 서로 맞지 않아 상업적으로 유용한 센서로 제작하기가 어렵다는 단점이 있다.
또한, 이와 같은 바이오센서를 사용함에 있어 소량의 시료로 정확하게 빠른 측정값을 얻는 것은 사용자의 편리를 극대화한다는 점에서 대단히 중요한 문제이다.
따라서, 이와 같은 종래 전자 전달 매개체의 단점 및 측정 시간의 단축을 달성할 수 있는 새로운 전자 전달 매개체의 개발은 여전히 요구되고 있는 실정이다.
한편, 혈당을 지속적으로 관찰하여 당뇨병 등의 질환을 관리하기 위하여 연속적인 혈당 모니터링(continuous glucose monitoring; CGM) 시스템을 이용하는데 손가락 끝에서 혈액을 채취하는 기존 효소센서는 채혈시 바늘로 인하여 상당한 고통을 유발하기 때문에 측정 빈도를 제한하므로 이러한 CGM에 이용될 수 없다. 이러한 문제점을 해소하기 위해서 최근에는 신체에 부착할 수 있어 침습을 최소화하는 개선된 버전의 효소센서가 개발되어오고 있다. 이러한 연속적인 혈당 모니터링 효소 센서의 경우 인체 내에 센서의 일부가 들어가기 때문에, 상기와 같이 전이금속 등을 포함하는 전자 전달 매개체가 인체에 흡수되어 독성 및 부작용을 발생하지 않도록 폴리비닐피리딘이나 폴리비닐이미다졸 등과 같은 중합체로 고정하여, 전자 전달 매개체의 인체 내 유실로 인한 문제점을 방지하고자 한다.
이와 같이, CGMS 센서에 적합한 신규 전자 전달 매개체의 개발을 위해서 종래에는 바이피리딘 및 비스이미다졸 리간드를 포함한 전이금속 전자 전달매개체를 주로 고분자 골격에 고정하여 효소 센서의 산화-환원 고분자를 제조하여 사용하였다. 이러한 배경하에서, 본 발명자들은 바이피리딘 및 비스이미다졸 리간드 외에 피라졸, 트리아졸, 테트라졸, 옥사디아졸 또는 티아디아졸 등을 포함한 헤테로 고리화합물을 포함하는 바이덴테이트 리간드를 갖는 전이금속 착물을 이용하는 경우 상기와 같은 요구사항을 모두 충족시킬 수 있음을 확인하고 본 발명을 완성하였다.
본 발명은 다양한 유도체의 합성과 기능기 도입이 용이한 피라졸, 트리아졸, 테트라졸, 옥사디아졸 또는 티아디아졸 등의 헤테로고리 구조를 포함하는 바이덴테이트 리간드를 갖는 전이금속 착물 또는 이의 염 화합물을 제공하는 것이다.
일 예에서 상기 전이금속 착물은 피리딘; 및 피라졸, 트리아졸, 테트라졸, 옥사디아졸 및 티아디아졸로 이루어지는 군에서 선택되는 1개의 구조를 포함하는 바이덴테이트 리간드를 갖는 전이금속 착물 또는 이의 염 화합물일 수 있다.
본 발명의 다른 목적은 상기 전이금속 착물 또는 이의 염 화합물을 포함하는, 산화-환원 중합체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 전이금속 착물 또는 이의 염 화합물 및/또는 이를 포함하는 산화-환원 중합체를 장치에 제공하는 것이다.
일 예에서, 상기 장치는 전자전달 매개체용 장치일 수 있으며, 구체적으로 전기화학적 바이오센서일 수 있다. 일 예에서, 상기 장치는 체내에 삽입 가능한 것일 수 있다. 일 예에서, 상기 전기화학적 바이오센서는 혈당 센서일 수 있다.
본 발명의 또 다른 목적은, 액체성 생체시료를 산화-환원시킬 수 있는 효소; 및 상기 전이금속 착물 또는 이의 염 화합물 및/또는 이를 포함하는 산화-환원 중합체를 포함하는 전기화학적 바이오센서용 센싱 막을 제공하는 것이다.
일 양상에서, 본 발명은 피리딘 (pyridine); 및 피라졸 (pyrazole), 트리아졸 (triazole), 테트라졸 (tetrazole), 옥사디아졸 (oxadiazole) 및 티아디아졸 (thiadiazole)로 이루어지는 군에서 선택되는 1개의 구조를 포함하는 바이덴테이트 (bidentate, 이하 “이좌배위좌”라고도 함) 리간드를 갖는 전이금속 착물 또는 이의 염 화합물을 제공한다.
구체적으로, 상기 전이금속 착물은, 하기 화학식 1의 화합물일 수 있다.
[화학식 1]
[M(L)a(X1)b]c d(X2)
상기 식에서,
M은 Fe, Ru, 및 Os로 이루어지는 군에서 선택되는 1종의 전이금속이고,
L은 피리딘; 및 피라졸, 트리아졸, 테트라졸, 옥사디아졸 및 티아디아졸로 이루어지는 군에서 선택되는 1개 구조를 포함하는 바이덴테이트 리간드이고,
a는 2 또는 3이고,
X1은 F, Cl, Br 및 I로 이루어지는 군에서 선택되는 1종의 할로겐 원자이고,
b는 0, 1, 또는 2이고,
c는 1 내지 3 선택되는 정수이고 (예컨대, 1, 2, 또는 3),
X2는 F, Cl, Br, I 및 PF6로 이루어지는 군에서 선택되는 1종의 반대 이온(counter ion)이고,
d는 0, 1, 또는 2이다.
이하, 본 발명을 상세히 설명한다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한, 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 또한, 본 명세서에 기재된 수치는 명시하지 않아도 “약”의 의미를 포함하는 것으로 간주한다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 전체가 본 명세서에 참고로 통합된다.
본 명세서에서 사용되는 잔기의 정의에 대해 상세히 설명한다. 별도 명시하지 않는 한, 각 잔기는 하기의 정의를 가지며, 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다.
본 명세서에서 “할로” 또는 “할로겐”은 예를 들어, 플루오로, 클로로, 브로모 및 아이오도를 의미한다.
본 명세서에서“알킬”은 지방족 탄화수소 라디칼을 의미하며, 직쇄상 또는 분지상의 탄화수소 라디칼을 모두 포함한다. 예를 들어 1 내지 6개의 탄소원자를 갖는 지방족 탄화수소는, 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, sec-부틸, tert-부틸, 펜틸, 이소펜틸, 네오펜틸, 1-에틸프로필, 헥실, 이소헥실, 1,1-디메틸부틸, 2,2-디메틸부틸, 3,3-디메틸부틸 및 2-에틸부틸을 포함하지만, 이에 국한되지 않는다. 달리 정의되지 않는다면, 알킬은 탄소수 1 내지 6, 탄소수 1 내지 5, 탄소수 1 내지 4, 탄소수 1 내지 3, 탄소수 1 내지 2의 알킬, 탄소수 2 내지 6, 탄소수 2 내지 5, 탄소수 2 내지 4, 탄소수 2 내지 3, 탄소수 3 내지 6, 탄소수 3 내지 5, 탄소수 3 내지 4, 탄소수 1, 탄소수 2, 탄소수 3, 탄소수 4, 탄소수 5, 또는 탄소수 6을 의미할 수 있다.
본 명세서에서, "알콕시(alkoxy)"는 -O-알킬 또는 알킬-O- 그룹을 나타내며, 여기서 알킬 그룹은 상기 정의된 바와 같다. 예를 들어, 메톡시, 에톡시, n-프로폭시, n-부톡시, t-부톡시와 같은 것들이 포함되지만 이에 국한되지 않는다. 알콕시 그룹은 하나 이상의 적합한 그룹과 치환되거나 치환되지 않을 수 있다.
본 명세서에서, 단독으로 또는 다른 용어와 조합된 용어 “하이드록시” 또는 “하이드록실”은 -OH를 의미한다.
본 명세서에서, “아미노”는 -NH2를 나타내고; “니트로”는 -NO2를 나타낸다.
본 명세서에서 "아릴(aryl)"은 모 방향족 환 시스템 내 하나의 탄소 원자에서 하나의 수소 원자를 제거함으로써 유도된 예를 들어 탄소수 6 내지 20, 탄소수 6 내지 12, 또는 탄소수 6 내지 10의 1가의 방향족 탄화수소를 말한다. 상기 아릴은 포화된, 부분적으로 불포화된 환과 융합된 방향족 환을 포함하는 이중고리 라디칼을 포함할 수 있다. 예시적인 아릴 그룹은, 벤젠(페닐)으로부터 유도된 라디칼, 치환된 페닐, 바이페닐, 나프틸, 테트라하이드로나프틸, 플루오레닐, 톨루일, 나프탈렌일, 안트라센일, 인덴일, 인단일등을 들 수 있으나 이에 국한되지 않는다. 아릴 그룹은 하나 이상의 적합한 그룹과 치환되거나 치환되지 않을 수 있다.
본 명세서에서 "치환"은 본 명세서에서 특별한 언급이 없는 한, 적어도 하나의 수소 원자가 할로겐 원자(예를 들어 F, Cl, Br, 또는 I), 시아노기, 히드록실기, 티올기, 니트로기, 아미노기, 이미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 옥소기, 카보닐기, 카바밀기, 에스테르기, 에테르기, 카복실기 또는 그것의 염, 술폰 산기 또는 그것의 염, 인산이나 그것의 염, 탄소수 1 내지 6의 알킬기, 탄소수 1 내지 6의 할로알킬기, 탄소수 2 내지 6의 알켄일기, 탄소수 2 내지 6의 할로알켄일기, 탄소수 2 내지 6의 알킨일기, 탄소수 2 내지 6의 할로알킨일기, 탄소수 1 내지 6의 알콕시기, 탄소수 1 내지 6의 할로알콕시기, 탄소수 1 내지 6의 알킬티오기, 탄소수 3 내지 20의 사이클로알킬기, 5원 내지 12원의 헤테로사이클로알킬기, 5원 내지 12원의 헤테로아릴기, 탄소수 6 내지 10의 아릴기, 탄소수 6 내지 10의 아릴옥시기 및 탄소수 6 내지 10의 아릴티오기로 이루어지는 군으로부터 선택되는 1종 내지 3종일 수 있다.
본 명세서에서 제공되는 전이금속 착물은, 하기 화학식 1의 화합물일 수 있다.
[화학식 1]
[M(L)a(X1)b]c d(X2)
상기 식에서,
M은 Fe, Ru, 및 Os로 이루어지는 군에서 선택되는 1종의 전이금속이고;
L은 피리딘; 및 피라졸, 트리아졸, 테트라졸, 옥사디아졸 및 티아디아졸로 이루어지는 군에서 선택되는 1개의 구조를 포함하는 바이덴테이트 리간드이고;
a는 2 또는 3이고;
X1은 F, Cl, Br 및 I로 이루어지는 군에서 선택되는 1종의 할로겐 원자이고;
b는 0, 1, 또는 2이고;
c는 1 내지 3에서 선택되는 정수이고;
X2는 F, Cl, Br, I 및 PF6로 이루어지는 군에서 선택되는 1종의 반대 이온(counter ion)이고;
d는 0, 1, 또는 2이다.
상기 피리딘은 비치환된 것이거나, 또는 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 및 C1-4 알킬아미노기로 이루어지는 군에서 선택되는 1종 이상 (예컨대, 1개 내지 4개, 1개, 2개, 3개, 또는 4개)으로 치환된 것일 수 있다.
상기 피라졸, 트리아졸, 테트라졸, 옥사디아졸, 또는 티아디아졸은 각각 비치환된 것이거나, 또는 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기,
Figure PCTKR2022005626-appb-img-000001
, 및 C1-4 알킬아미노기로 이루어지는 군에서 선택되는 1종 이상 (예컨대, 1개 내지 3개, 1개, 2개, 또는 3개)으로 치환된 것일 수 있다.
상기 R'4는 수소 또는 치환되거나 비치환된 C1-4 알킬일 수 있고, 상기 n'은 1 내지 4에서 선택되는 정수, 예컨대 1, 2, 3, 또는 4일 수 있다.
상기 C1-4 알킬기, 알콕시기, 또는 알킬아미노기는 탄소수 1개 내지 4개, 1개 내지 3개, 1개 내지 2개, 2개 내지 4개, 2개 내지 3개, 3개 내지 4개, 1개, 2개, 3개, 또는 4개의 알킬기, 알콕시기, 또는 알킬아미노기를 의미할 수 있다.
상기 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 또는 C1-4 알킬아미노기는 비치환된 것이나, 또는 치환된 것일 수 있다. 상기 치환된 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 또는 C1-4 알킬아미노기는 수소 원자가 F, Cl, Br, 또는 I의 할로겐 원자, 시아노기, 히드록실기, 티올기, 니트로기, 아미노기, 이미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 옥소기, 카보닐기, 카바밀기, 에스테르기, 에테르기, 카복실기 또는 이의 염, 술폰산기 또는 이의 염, 또는 인산 또는 이의 염으로 치환된 것일 수 있다.
구체적으로, 상기 전이금속 착물은, 하기 화학식 2의 화합물일 수 있다.
[화학식 2]
Figure PCTKR2022005626-appb-img-000002
상기 식에서,
R1, R2, R3, 및 R4는 각각 독립적으로 수소, C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 또는 C1-4 알킬아미노기이고,
n은 0이고,
W', Y', Z', V' 중 적어도 하나는 질소(N)이며,
W'는 질소(N) 또는 탄소(C)이고,
Y', Z', 및 V'는 각각 독립적으로 질소(N), 황(S), 산소(O), 또는 탄소(C)이고,
R'1, R'2, 및 R'3은 각각 독립적으로 수소, C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기,
Figure PCTKR2022005626-appb-img-000003
, 또는 C1-4 알킬아미노기이고,
상기 점선은 결합 또는 결합이 없는 것을 의미하고,
상기 R'4는 수소 또는 치환되거나 비치환된 C1-4 알킬일 수 있고,
상기 n'은 1 내지 4에서 선택되는 정수, 예컨대 1, 2, 3, 또는 4일 수 있고,
M, a, X1, b, c, X2 및 d는 상기 화학식 1에서 정의한 바와 같다.
상기 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 또는 C1-4 알킬아미노기는 각각 비치환된 것이거나, 치환된 것일 수 있으며, 치환되는 경우는 앞에서 설명한 바와 같다.
구체적으로, 상기 전이금속 착물은, 하기 화학식 3 내지 화학식 25에서 선택되는 화합물일 수 있다.
[화학식 3]
Figure PCTKR2022005626-appb-img-000004
,
[화학식 4]
Figure PCTKR2022005626-appb-img-000005
,
[화학식 5]
Figure PCTKR2022005626-appb-img-000006
,
[화학식 6]
Figure PCTKR2022005626-appb-img-000007
,
[화학식 7]
Figure PCTKR2022005626-appb-img-000008
,
[화학식 8]
Figure PCTKR2022005626-appb-img-000009
,
[화학식 9]
Figure PCTKR2022005626-appb-img-000010
,
[화학식 10]
Figure PCTKR2022005626-appb-img-000011
,
[화학식 11]
Figure PCTKR2022005626-appb-img-000012
,
[화학식 12]
Figure PCTKR2022005626-appb-img-000013
,
[화학식 13]
Figure PCTKR2022005626-appb-img-000014
,
[화학식 14]
Figure PCTKR2022005626-appb-img-000015
,
[화학식 15]
Figure PCTKR2022005626-appb-img-000016
,
[화학식 16]
Figure PCTKR2022005626-appb-img-000017
,
[화학식 17]
Figure PCTKR2022005626-appb-img-000018
,
[화학식 18]
Figure PCTKR2022005626-appb-img-000019
,
[화학식 19]
Figure PCTKR2022005626-appb-img-000020
,
[화학식 20]
Figure PCTKR2022005626-appb-img-000021
,
[화학식 21]
Figure PCTKR2022005626-appb-img-000022
, 및
[화학식 22]
Figure PCTKR2022005626-appb-img-000023
.
[화학식 23]
Figure PCTKR2022005626-appb-img-000024
[화학식 24]
Figure PCTKR2022005626-appb-img-000025
[화학식 25]
Figure PCTKR2022005626-appb-img-000026
일 예에서, 본 발명에 따른 전이금속 착물은 산화 상태의 전이금속 복합체, 구체적으로 3가 오스뮴 복합체 또는 2가 오스뮴 복합체를 포함할 수 있다. 산화 처리에서 사용되는 산화제는 일반적으로 사용되는 산화제를 사용할 수 있으며, 산화제의 예시로서 NaOCl, H2O2, O2, O3, PbO2, MnO2, KMnO4, ClO2, F2, Cl2, H2CrO4, N2O, Ag2O, OsO4, H2S2O8, 세릭 암모늄 나이트레이트 (CAN: Ceric ammonium nitrate) 피리디늄 클로로크로메이트 (pyridinium chlorochromate), 및 2,2'-디피리딜디설파이드 (2,2'-Dipyridyldisulfide)로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 또한 전이금속 착물이 산화상태 및 환원상태의 화합물을 포함하는 경우, 산화 처리하여 산화 상태의 전이금속 착물 또는 이의 염 화합물을 제공할 수 있다.
본 발명에 따른 전이금속 착물은 적절한 반대 이온(counter ion) 및/또는 이온을 갖고 있는 염 화합물 형태일 수 있으며, 염 화합물은 물, 수용액 또는 유기용매에서 높은 용해도를 가질 수 있다. 상기 염 화합물 중 F-, Cl- 및 Br- 등과 같은 작은 반대 음이온으로 이루어지는 경우 물 또는 수용액에서 잘 녹는 경향이 있으며, I-, 헥사플루오로포스페이트 (PF6 -) 및 테트라플루오로보레이트 (BF4 -) 등과 같은 큰 반대 음이온으로 이루어지는 경우 유기용매에서 잘 녹는 경향이 있다. 반대 음이온의 예시로, F, Cl, Br 및 I로 이루어지는 군에서 선택되는 할라이드, 헥사플루오로포스페이트 및 테트라플루오로보레이트에서 선택되는 1종 이상일 수 있다.
다른 양상에서, 본 발명은 상기 전이금속 착물 또는 이의 염 화합물을 포함하고, 폴리비닐이미다졸 (Polyvinylimidazole: PVI) 및 폴리비닐피리딘 (Polyvinylpyridine: PVP) 등의 중합체 골격을 포함하는, 산화-환원 중합체를 제공한다.
구체적으로, 상기 산화-환원 중합체는 아래 화학식 26 또는 화학식 27의 화합물일 수 있다:
[화학식 26]
Figure PCTKR2022005626-appb-img-000027
,
[화학식 27]
Figure PCTKR2022005626-appb-img-000028
.
상기 식에서,
M은 Fe, Ru, 및 Os로 이루어지는 군에서 선택되는 1종의 전이금속이고,
L은 피리딘; 및 피라졸, 트리아졸, 테트라졸, 옥사디아졸 및 티아디아졸로 이루어지는 군에서 선택되는 1개의 구조를 포함하는 바이덴테이트 리간드이고,
a는 2 또는 3이고,
X1은 F, Cl, Br 및 I로 이루어지는 군에서 선택되는 1종의 할로겐 원자이고,
X2는 F, Cl, Br, I 및 PF6로 이루어지는 군에서 선택되는 1종의 반대 이온(counter ion)이고,
m 또는 o는 각각 10 내지 600에서 선택되는 정수이다.
상기 피리딘은 비치환된 것이거나, 또는 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 및 C1-4 알킬아미노기로 이루어지는 군에서 선택되는 1종 이상 (예컨대, 1종, 2종, 3종, 또는 4종)으로 치환된 것일 수 있다.
상기 피라졸, 트리아졸, 테트라졸, 옥사디아졸, 또는 티아디아졸은 각각 비치환된 것이거나, 또는 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기,
Figure PCTKR2022005626-appb-img-000029
, 및 C1-4 알킬아미노기로 이루어지는 군에서 선택되는 1종 이상 (예컨대, 1종, 2종, 또는 3종)으로 치환된 것일 수 있다.
구체적으로, 상기 산화-환원 중합체는 하기 화학식 28 내지 화학식 45에서 선택되는 화합물일 수 있다:
[화학식 28]
Figure PCTKR2022005626-appb-img-000030
,
[화학식 29]
Figure PCTKR2022005626-appb-img-000031
,
[화학식 30]
Figure PCTKR2022005626-appb-img-000032
,
[화학식 31]
Figure PCTKR2022005626-appb-img-000033
,
[화학식 32]
Figure PCTKR2022005626-appb-img-000034
,
[화학식 33]
Figure PCTKR2022005626-appb-img-000035
,
[화학식 34]
Figure PCTKR2022005626-appb-img-000036
,
[화학식 35]
Figure PCTKR2022005626-appb-img-000037
,
[화학식 36]
Figure PCTKR2022005626-appb-img-000038
,
[화학식 37]
Figure PCTKR2022005626-appb-img-000039
,
[화학식 38]
Figure PCTKR2022005626-appb-img-000040
,
[화학식 39]
Figure PCTKR2022005626-appb-img-000041
,
[화학식 40]
Figure PCTKR2022005626-appb-img-000042
,
[화학식 41]
Figure PCTKR2022005626-appb-img-000043
,
[화학식 42]
Figure PCTKR2022005626-appb-img-000044
, 및
[화학식 43]
Figure PCTKR2022005626-appb-img-000045
.
[화학식 44]
Figure PCTKR2022005626-appb-img-000046
[화학식 45]
Figure PCTKR2022005626-appb-img-000047
상기 식에서,
m 또는 o는 상기 화학식 26 또는 화학식 27에서 정의한 바와 같다.
또 다른 양상에서, 본 발명은 상기 산화-환원 중합체는 가교가 가능한 기능성 그룹을 더 포함하는 것으로, 아래 화학식 46 또는 화학식 47의 화합물일 수 있다.
[화학식 46]
Figure PCTKR2022005626-appb-img-000048
[화학식 47]
Figure PCTKR2022005626-appb-img-000049
.
상기 식에서,
M은 Fe, Co, Ru, Os, Rh 및 Ir로 이루어지는 군에서 선택되는 1종의 전이금속이고,
L은 피리딘; 및 피라졸, 트리아졸, 테트라졸, 옥사디아졸 및 티아디아졸로 이루어지는 군에서 선택되는 1개 구조를 포함하는 바이덴테이트 리간드이고,
a는 2 또는 3이고,
X1은 F, Cl, Br 및 I로 이루어지는 군에서 선택되는 1종의 할로겐 원자이고,
X2는 F, Cl, Br, I 및 PF6로 이루어지는 군에서 선택되는 1종의 반대 이온(counter ion)이고,
AD는 1차 및 2차 아민기, 암모늄기, 할로젠기, 에폭시기, 아자이드기, 아크릴레이트기, 알케닐기, 알키닐기, 싸이올기, 이소시아네이트, 알코올기, 실란기, 및
Figure PCTKR2022005626-appb-img-000050
로 이루어지는 군에서 선택되는 1종이고,
상기 R5'는 수소 또는 치환되거나 비치환된 C1-4 알킬이고,
상기 n''은 1 내지 4에서 선택되는 정수이고,
q는 1 내지 10에서 선택되는 정수이고,
m, o, 또는 p는 각각 10 내지 600에서 선택되는 정수이다.
상기 피리딘은 비치환된 것이거나, 또는 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 및 C1-4 알킬아미노기로 이루어지는 군에서 선택되는 1종 이상 (예컨대, 1종, 2종, 3종, 또는 4종)으로 치환된 것일 수 있다.
상기 피라졸, 트리아졸, 테트라졸, 옥사디아졸, 또는 티아디아졸은 각각 비치환된 것이거나, 또는 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기,
Figure PCTKR2022005626-appb-img-000051
, 및 C1-4 알킬아미노기로 이루어지는 군에서 선택되는 1종 이상 (예컨대, 1종, 2종, 또는 3종)으로 치환된 것일 수 있다.
구체적으로, 상기 산화-환원 중합체는 아래 화학식 48 내지 화학식 60에서 선택되는 화합물일 수 있다.
[화학식 48]
Figure PCTKR2022005626-appb-img-000052
,
[화학식 49]
Figure PCTKR2022005626-appb-img-000053
,
[화학식 50]
Figure PCTKR2022005626-appb-img-000054
,
[화학식 51]
Figure PCTKR2022005626-appb-img-000055
,
[화학식 52]
Figure PCTKR2022005626-appb-img-000056
,
[화학식 53]
Figure PCTKR2022005626-appb-img-000057
,
[화학식 54]
Figure PCTKR2022005626-appb-img-000058
,
[화학식 55]
Figure PCTKR2022005626-appb-img-000059
,
[화학식 56]
Figure PCTKR2022005626-appb-img-000060
,
[화학식 57]
Figure PCTKR2022005626-appb-img-000061
,
[화학식 58]
Figure PCTKR2022005626-appb-img-000062
, 및
[화학식 59]
Figure PCTKR2022005626-appb-img-000063
.
[화학식 60]
Figure PCTKR2022005626-appb-img-000064
또 다른 양상은, 상기 전이금속 착물 또는 이의 염 화합물; 또는 상기 산화-환원 중합체를 포함하는 장치를 제공한다.
일 예에서, 상기 장치는 전기화학적 바이오센서일 수 있다.
일 예에서, 상기 장치는 체내에 삽입 가능한 것일 수 있고, 구체적으로 체내에 삽입 가능한 전기화학적 바이오센서일 수 있다.
일 예에서, 상기 전기화학적 바이오센서는 혈당 센서, 예컨대 전기화학적 글루코오스(혈당) 센서일 수 있다.
일 예에서, 상기 전기화학적 바이오센서는 연속적인 혈당 모니터링 센서일 수 있다.
상기 연속적인 혈당 모니터링 센서의 구성으로, 본 발명은, 예를 들어 전극, 절연체(insulator), 기판, 상기 산화-환원 중합체 및 산화-환원효소를 포함하는 센싱 막(sensing layer), 확산 막(diffusion layer), 보호 막(protection layer) 등을 포함할 수 있다. 전극의 경우, 작동 전극 및 대향 전극과 같은 2종의 전극을 포함할 수도 있고, 작동 전극, 대향 전극 및 기준 전극과 같은 3종의 전극을 포함할 수도 있다.
일 예에서, 본 발명에 따른 바이오센서는, 적어도 두 개, 바람직하게는 두 개 또는 세 개의 전극을 갖춘 기판에, 상기 전이금속 착물 또는 이의 염 화합물; 또는 상기 산화-환원 중합체와 액체성 생체시료를 산화-환원시킬 수 있는 효소를 포함하는 시약 조성물을 도포한 후 건조하여 제작한 전기화학적 바이오센서일 수 있다.
예를 들면, 전기화학적 바이오센서에 있어서 작동 전극 및 대향 전극이 기판의 서로 반대 면에 구비되고, 상기 작동 전극 위에 본 발명의 전이금속 착물 또는 산화-환원 중합체가 포함되는 센싱 막이 적층되고, 작동 전극 및 대향 전극이 구비된 기판의 양쪽 면에 차례로 절연체, 확산막 및 보호막이 적층되는 것을 특징으로 하는 평면형 전기화학적 바이오센서가 제공된다.
구체적인 양태로서, 상기 기판은 PET (polyethylene terephthalate), PC (polycarbonate) 및 PI (polyimide)로 이루어진 군으로부터 선택되는 1종 이상의 소재로 된 것일 수 있다.
또한, 작동 전극은 탄소, 금, 백금, 은 또는 은/염화은 전극을 사용할 수 있다.
또한, 2 전극을 갖는 전기화학적 바이오센서의 경우 대향 전극이 기준 전극의 역할까지 같이 하기 때문에, 대향 전극으로 금, 백금, 은 또는 은/염화은 전극을 사용할 수 있고, 기준 전극까지 포함하는 3 전극의 전기화학적 바이오센서의 경우, 기준 전극으로 금, 백금, 은 또는 은/염화은 전극을 사용할 수 있고, 대향 전극으로 탄소 전극을 사용할 수 있다.
확산막으로는 Nafion, cellulose acetate, silicone rubber를 사용할 수 있으며, 보호막으로는 silicone rubber, polyurethane, polyurethane 기반 copolymer 등을 사용할 수 있으나 이에 제한되는 것은 아니다.
제한되지 않은 예로서, 2 전극인 경우 대향전극이 기준전극의 역할까지 같이 하기 때문에 염화은 또는 은이 사용될 수 있으며, 3 전극일 경우 기준전극이 염화은 또는 은이 사용되고, 대향 전극은 탄소 전극을 사용할 수 있다.
본 발명의 시약 조성물에 포함되는 효소의 종류를 달리함으로써 콜레스테롤, 락테이트, 크레아티닌, 과산화수소, 알코올, 아미노산, 글루타메이트와 같은 다양한 물질의 정량을 위한 바이오센서에도 적용할 수 있다.
또 다른 양상은, 액체성 생체시료를 산화-환원시킬 수 있는 효소; 및 상기 전이금속 착물 또는 이의 염 화합물; 또는 상기 산화-환원 중합체를 전자전달 매개체로 포함하는 전기화학적 바이오센서용 센싱 막을 제공한다.
상기 액체성 생체시료는 예를 들어, 환자의 조직액, 혈액, 세포, 혈장, 혈청, 뇨, 낭종액, 및 타액으로 이루어진 군에서 선택된 하나 이상, 둘 이상, 셋 이상, 넷 이상, 또는 다섯 이상인 것일 수 있으나 이에 제한되지 않는다.
일 예에서, 상기 효소는 탈수소효소 (dehydrogenase), 산화효소 (oxidase), 및 에스테르화효소 (esterase)로 이루어진 군에서 선택된 1종 이상의 산화-환원효소; 또는
탈수소효소, 산화효소, 및 에스테르화효소로 이루어진 군에서 선택된 1종 이상의 산화-환원효소와 플라빈 아데닌 디뉴클레오타티드 (flavin adenine dinucleotide, FAD), 니코틴아미드 아데닌 디뉴클레오티드 (nicotinamide adenine dinucleotide, NAD), 및 피롤로퀴놀린 퀴논 (Pyrroloquinoline quinone, PQQ)로 이루어진 군에서 선택된 1종 이상의 보조인자를 포함하는 것일 수 있다.
산화-환원효소는 생체의 산화-환원반응을 촉매하는 효소를 총칭하는 것으로, 본 발명에서는 측정하고자 하는 대상물질, 예컨대 바이오센서의 경우에는 측정하고자 하는 대상물질과 반응하여 환원되는 효소를 의미한다. 이와 같이 환원된 효소는 전자 전달 매개체와 반응하며, 이 때 발생한 전류변화 등의 신호를 측정하여 대상물질을 정량하게 된다. 본 발명에 사용 가능한 산화-환원효소는 각종 탈수소효소 (dehydrogenase), 산화효소 (oxidase), 에스테르화효소 (esterase) 등으로 이루어진 군에서 선택된 1종 이상의 것일 수 있으며, 산화환원 또는 검출 대상 물질에 따라서, 상기 효소 군에 속하는 효소들 중에서 상기 대상 물질을 기질로 하는 효소를 선택하여 사용할 수 있다.
보다 구체적으로 상기 산화-환원효소는 글루코오스탈수소효소 (glucose dehydrogenase), 글루탐산탈수소효소 (glutamate dehydrogenase), 글루코오스산화효소 (glucose oxidase), 콜레스테롤산화효소 (cholesterol oxidase), 콜레스테롤에스테르화효소 (cholesterol esterase), 락테이트산화효소 (lactate oxidase), 아스코르브산 산화효소 (ascorbic acid oxidase), 알코올산화효소 (alcohol oxidase), 알코올탈수소효소 (alcohol dehydrogenase), 빌리루빈산화효소 (bilirubin oxidase) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
한편, 상기 산화-환원효소는 측정하고자 하는 대상물질(예컨대, 대상물질)로부터 산화-환원효소가 뺏어온 수소를 보관하는 역할을 하는 보조인자 (cofactor)를 함께 포함할 수 있는데, 예컨대, 플라빈 아데닌 디뉴클레오타티드 (flavin adenine dinucleotide, FAD), 니코틴아미드 아데닌 디뉴클레오티드 (nicotinamide adenine dinucleotide, NAD), 피롤로퀴놀린 퀴논 (Pyrroloquinoline quinone, PQQ) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
예컨대, 혈중 글루코오스 농도를 측정하고자 하는 경우, 상기 산화-환원효소로서 글루코오스 탈수소효소 (glucose dehydrogenase, GDH)를 사용할 수 있으며, 상기 글루코오스 탈수소효소는 보조인자로서 FAD를 포함하는 플라빈아데닌디뉴클레오티드-글루코오스탈수소효소 (flavin adenine dinucleotide- glucose dehydrogenase, FAD-GDH), 및/또는 보조인자로서 FAD-GDH를 포함하는 니코틴아미드아데닌디뉴클레오티드-글루코오스탈수소효소 (nicotinamide adenine dinucleotide- glucose dehydrogenase)일 수 있다.
구체예에서, 상기 사용 가능한 산화-환원효소는 FAD-GDH (예컨대, EC 1.1.99.10 등), NAD-GDH (예컨대, EC 1.1.1.47 등), PQQ-GDH (예컨대, EC1.1.5.2 등), 글루탐산탈수소효소 (예컨대, EC 1.4.1.2 등), 글루코오스산화효소 (예컨대, EC 1.1.3.4 등), 콜레스테롤산화효소 (예컨대, EC 1.1.3.6 등), 콜레스테롤에스테르화효소 (예컨대, EC 3.1.1.13 등), 락테이트산화효소 (예컨대, EC 1.1.3.2 등), 아스코빅산산화효소 (예컨대, EC 1.10.3.3 등), 알코올산화효소 (예컨대, EC 1.1.3.13 등), 알코올탈수소효소 (예컨대, EC 1.1.1.1 등), 빌리루빈산화효소 (예컨대, EC 1.3.3.5 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.
가장 바람직하게, 상기 산화-환원효소는 37℃ 완충용액에서 1주일 동안 70% 이상의 활성도를 유지할 수 있는 글루코오스 탈수소효소이다.
본 발명에 따른 센싱 막은 산화-환원효소 100 중량부를 기준으로 산화-환원 중합체 20 내지 700 중량부, 예컨대 60 내지 700 중량부 또는 30 내지 340 중량부를 함유할 수 있다. 상기 산화-환원 중합체의 함량은 산화-환원효소의 활성도에 따라서 적절히 조절할 수 있다.
나아가, 본 발명에 따른 센싱 막은 막 성능의 증가를 위해 카본 나노튜브를 더 포함할 수 있다. 구체적으로, 카본 나노튜브는 전이금속착체, 특히 오스뮴과 함께 사용시 전자전달속도가 증가되어 센싱 막의 성능을 더욱 높일 수 있다.
또한, 본 발명에 따른 센싱 막은 가교제를 더 포함할 수 있다.
한편, 본 발명에 따른 센싱 막은 계면활성제, 수용성 고분자, 4차 암모늄염, 지방산, 점증제 등으로 이루어진 군에서 선택된 1종 이상의 첨가제를 시약 용해시의 분산제, 시약 제조시의 점착제, 장기 보관의 안정제 등의 역할을 위하여 추가로 포함할 수 있다.
상기 계면활성제는 조성물을 분주할 때 조성물이 전극위에서 골고루 퍼져서 균일한 두께로 분주되게 하는 역할을 하는 것일 수 있다. 상기 계면활성제로 트리톤 X-100 (Triton X-100), 소듐도데실설페이트 (sodium dodecyl sulfate), 퍼플루오로옥탄설포네이트 (perfluorooctane sulfonate), 소듐스테아레이트 (sodium stearate) 등으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 본 발명에 따른 시약 조성물은, 시약을 분주할 때 시약이 전극위에서 골고루 퍼져서 시약이 균일한 두께로 분주되게 하는 역할을 적절하게 수행하도록 하기 위하여, 상기 계면활성제를 산화-환원효소 100 중량부를 기준으로 3 내지 25 중량부, 예컨대 10 내지 25 중량부의 양으로 함유할 수 있다. 예컨대, 활성도가 700 U/mg인 산화-환원효소를 사용하는 경우 산화-환원효소 100 중량부를 기준으로 계면활성제 10 내지 25 중량부를 함유할 수 있으며, 산화-환원효소의 활성도가 이보다 높아지면, 계면활성제의 함량을 이보다 낮게 조절할 수 있다.
상기 수용성 고분자는 시약 조성물의 고분자 지지체로서 효소의 안정화 및 분산 (dispersing)을 돕는 역할을 수행하는 것일 수 있다. 상기 수용성 고분자로는 폴리비닐피롤리돈 (polyvinyl pyrrolidone; PVP), 폴리비닐알코올 (polyvinyl alcohol; PVA), 폴리플루오로설포네이트 (polyperfluoro sulfonate), 하이드록시에틸 셀룰로오즈 (hydroxyethyl cellulose; HEC), 하이드록시프로필 셀룰로오즈 (hydroxypropyl cellulose; HPC), 카르복시메틸 셀룰로오즈 (carboxy methyl cellulose; CMC), 셀룰로오즈 아세테이트 (cellulose acetate), 폴리아미드 (polyamide) 등으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 본 발명에 따른 시약 조성물은, 산화-환원효소의 안정화 및 분산 (dispersing)을 돕는 역할을 충분하고 적절하게 발휘하도록 하기 위하여, 상기 수용성 고분자를 산화-환원효소 100 중량부를 기준으로 10 내지 70 중량부, 예컨대 30 내지 70 중량부의 양으로 함유할 수 있다. 예컨대, 활성도가 700U/mg인 산화-환원효소를 사용하는 경우 산화-환원효소 100 중량부를 기준으로 수용성 고분자 30 내지 70 중량부를 함유할 수 있으며, 산화-환원효소의 활성도가 이보다 높아지면, 수용성 고분자의 함량을 이보다 낮게 조절할 수 있다.
상기 수용성 고분자는 지지체 및 효소의 안정화 및 분산 (dispersing)을 돕는 역학을 효과적으로 수행하기 위하여 중량평균분자량이 2,500g/mol 내지 3,000,000g/mol 정도, 예컨대, 5,000g/mol 내지 1,000,000g/mol 정도일 수 있다.
상기 점증제는 시약을 전극에 견고하게 부착하도록 하는 역할을 한다. 상기 점증제로는 나트로졸, 디에틸아미노에틸-덱스트란 하이드로클로라이드 (DEAE-Dextran hydrochloride) 등으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다. 본 발명에 따른 전기화학적 센서는, 본 발명에 따른 산화-환원 중합체가 전극에 견고하게 부착되도록 하기 위하여, 상기 점증제를 산화-환원효소 100 중량부를 기준으로 10 내지 90 중량부, 예컨대 30 내지 90 중량부의 양으로 함유할 수 있다. 예컨대, 활성도가 700U/mg인 산화-환원효소를 사용하는 경우 산화-환원효소 100 중량부를 기준으로 점증제 30 내지 90 중량부를 함유할 수 있으며, 산화-환원효소의 활성도가 이보다 높아지면, 점증제의 함량을 이보다 낮게 조절할 수 있다.
본 발명에 따른 전이금속 착물 및 산화-환원 중합체는 도입된 리간드 종류에 따라 전위 값을 쉽게 조정할 수 있으며 기존 바이피리딘 계열 대비 리간드의 크기가 소형화되어 전자전달 속도가 증가하여 이를 적용한 전기화학적 바이오센서는 검출이 신속하고 경제적이라는 장점이 있다.
도 1a 내지 도 1o는 본 발명에 따른 피라졸, 트리아졸, 테트라졸, 옥사디아졸, 또는 티아디아졸을 포함하는 바이덴테이트 리간드를 갖는 전이금속 착물의 전기화학적 특성을 나타낸 순환전압전류 곡선이다.
{화학식 3 (도 1a), 화학식 4 (도 1b), 화학식 9 (도 1c), 화학식 11 (도 1d), 화학식 14 (도 1e), 화학식 15 (도 1f), 화학식 16 (도 1g), 화학식 17 (도 1h), 화학식 18 (도 1i), 화학식 20 (도 1j), 화학식 22 (도 1k), 화학식 23 (도 1l), 화학식 24 (도 1m), 화학식 25 (도 1n), 화학식 3, 4, 11, 14, 15, 16 (도 1o)}
도 2는 본 발명에 따른 전이금속 착물을 포함하는 산화-환원 중합체의 전기화학적 특성을 나타낸 순환전압전류 곡선이다.
도 3은 본 발명에 따른 전이금속 착물 및 가교가 가능한 기능성 그룹을 포함하는 산화-환원 중합체의 전기화학적 특성을 나타낸 순환전압전류 곡선이다.
도 4는 본원 발명에 따른 산화-환원 중합체가 적용된 전극의 전위를 나타낸다.
도 5 및 도 6은 본원 발명에 따른 산화-환원 중합체가 적용된 전극들 모두 10 mM 이하 농도의 글루코오스에 대한 선형성을 보였으며, 비교군 전극 보다 더 낮은 전압을 인가하였음에도 불구하고 유사한 감응도를 나타내는 것을 보이는 그래프이다.
도 7은 본원 발명에 따른 산화-환원 중합체가 적용된 전극들 모두 비교군 전극 보다 더 낮은 전압에서 글루코오스에 대한 감응을 나타내는 것을 보이는 그래프이다.
이하, 본 발명을 아래 실시예에 의하여 더욱 상세히 설명한다. 단, 아래 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 아래 실시예에 의해 한정되는 것은 아니다.
실시예 1: 본 발명에 따른 전이금속 착물의 제조
실시예 1.1. 화학식 3의 전이금속 착물의 합성
1) 2-(1H-피라졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000065
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 피라졸 4.7 g (69 mmol)과 포타슘 터셔리 부톡사이드 9.3 g (83 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 40 mL에 용해시켰다. 이 반응혼합물에 2-플루오르피리딘 8.0 g (83 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 4시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 황산 마그네슘으로 건조하고 감압농축하여 투명한 무색의 고체를 얻었다. (7.2 g, 72%)
2) Os(pzpy)2Cl2 [화학식 3]의 합성
Figure PCTKR2022005626-appb-img-000066
500 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 5.0 g (10 mmol)와 상기 1)에서 제조한 2-(1H-피라졸-1-닐)피리딘 2.9 g (20 mmol)을 넣고 아르곤 가스 분위기에서 200 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기(degassing)하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(250 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물로 여러 번 씻어준 후 40 ℃의 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (4.0 g, 75%) HRMS (192Os): m/z 552.0240([M+] required 552.0261)
화학식 3의 화합물의 전체 제조 방법은 아래 반응식 1과 같다.
[반응식 1]
Figure PCTKR2022005626-appb-img-000067
실시예 1.2. 화학식 4의 전이금속 착물의 합성
1) 2-메틸-6-(1H-피라졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000068
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 피라졸 2.0 g (30 mmol)과 포타슘 터셔리 부톡사이드 4.0 g (36 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 20 mL에 용해시켰다. 이 반응혼합물에 2-플루오르-6-메틸 피리딘 5.0 g (36 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 4시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 5:1) 최종적으로 투명한 고체의 2-메틸-6-(1H-피라졸-1-닐)피리딘을 얻었다. (1.4 g, 30%)
2) Os(pz-2-Me-py)2Cl2 [화학식 4]의 합성
Figure PCTKR2022005626-appb-img-000069
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 1.5 g (3.1 mmol)와 상기 1)에서 제조한 2-메틸-6-(1H-피라졸-1-닐)피리딘 1.0 g (6.3 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(250 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (0.27 g, 15%) HRMS (192Os): m/z 580.0569([M+] required 580.0574)
화학식 4의 화합물의 전체 제조 방법은 아래 반응식 2와 같다.
[반응식 2]
Figure PCTKR2022005626-appb-img-000070
실시예 1.3. 화학식 5의 전이금속 착물의 합성
1) 4-메톡시-2-(1H-피라졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000071
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 피라졸 2.0 g (30 mmol)과 포타슘 터셔리 부톡사이드 4.0 g (36 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 20 mL에 용해시켰다. 이 반응혼합물에 2-브로모-4-메톡시 피리딘 6.7 g (36 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 8시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 3:1) 최종적으로 투명한 고체의 4-메톡시-2-(1H-피라졸-1-닐)피리딘 을 얻었다. (4.0 g, 63%)
2) Os(pz-4-Meo-py)2Cl2 [화학식 5]의 합성
Figure PCTKR2022005626-appb-img-000072
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 2.0 g (4.2 mmol)와 상기 1)에서 제조한 4-메톡시-2-(1H-피라졸-1-닐)피리딘 1.5 g (8.3 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(250 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (2.0 g, 78%) HRMS (192Os): m/z 612.0460([M+] required 612.0472)
화학식 5의 화합물의 전체 제조 방법은 아래 반응식 3과 같다.
[반응식 3]
Figure PCTKR2022005626-appb-img-000073
실시예 1.4. 화학식 6의 전이금속 착물의 합성
1) 4-메틸-2-(1H-피라졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000074
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 피라졸 2.0 g (30 mmol)과 포타슘 터셔리 부톡사이드 4.0 g (36 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 20 mL에 용해시켰다. 이 반응혼합물에 2-브로모-4-메틸 피리딘 6.2 g (36 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 8시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 3:1) 최종적으로 투명한 고체의 4-메톡시-2-(1H-피라졸-1-닐)피리딘을 얻었다. (3.5 g, 61%)
2) Os(pz-4-Me-py)2Cl2 [화학식 6]의 합성
Figure PCTKR2022005626-appb-img-000075
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 2.0 g (4.2 mmol)와 상기 1)에서 제조한 4-메틸-2-(1H-피라졸-1-닐)피리딘 1.3 g (8.3 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(250 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (1.0 g, 42%) HRMS (192Os): m/z 580.0561([M+] required 580.0574)
화학식 6의 화합물의 전체 제조 방법은 아래 반응식 4와 같다.
[반응식 4]
Figure PCTKR2022005626-appb-img-000076
실시예 1.5. 화학식 7의 전이금속 착물의 합성
1) 4-메틸-2-(3-메틸-1H-피라졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000077
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 3-메틸피라졸 2.5 g (30 mmol)과 포타슘 터셔리 부톡사이드 4.0 g (36 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 20 mL에 용해시켰다. 이 반응혼합물에 2-브로모-4-메틸 피리딘 6.2 g (36 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 18시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 3:1) 최종적으로 투명한 고체의 4-메틸-2-(3-메틸-1H-피라졸-1-닐)피리딘 을 얻었다. (4.2 g, 80%)
2) Os(3-Me-pz-4-Me-py)2Cl2 [화학식 7]의 합성
Figure PCTKR2022005626-appb-img-000078
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 2.0 g (4.2 mmol)와 상기 1)에서 제조한 4-메틸-2-(3-메틸-1H-피라졸-1-닐)피리딘 1.4 g (8.3 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(250 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (2.0 g, 78%) HRMS (192Os): m/z 608.0875([M+] required 608.0887)
화학식 7의 화합물의 전체 제조 방법은 아래 반응식 5와 같다.
[반응식 5]
Figure PCTKR2022005626-appb-img-000079
실시예 1.6. 화학식 8의 전이금속 착물의 합성
1) 4-메톡시-2-(3-메틸-1H-피라졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000080
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 3-메틸피라졸 2.5 g (30 mmol)과 포타슘 터셔리 부톡사이드 4.0 g (36 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 20 mL에 용해시켰다. 이 반응혼합물에 2-브로모-4-메톡시 피리딘 6.7 g (36 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 18시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 3:1) 최종적으로 투명한 고체의 4-메톡시-2-(3-메틸-1H-피라졸-1-닐)피리딘을 얻었다. (3.0 g, 53%)
2) Os(3-Me-p-4-MeO-py)2Cl2 [화학식 8]의 합성
Figure PCTKR2022005626-appb-img-000081
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 2.0 g (4.2 mmol)와 상기 1)에서 제조한 4-메톡시-2-(3-메틸-1H-피라졸-1-닐)피리딘 1.5 g (8.3 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(250 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (1.0 g, 37%) HRMS (192Os): m/z 640.0775([M+] required 640.0785)
화학식 8의 화합물의 전체 제조 방법은 아래 반응식 6과 같다.
[반응식 6]
Figure PCTKR2022005626-appb-img-000082
실시예 1.7. 화학식 9의 전이금속 착물의 합성
1) 4-메틸-2-(4-메틸-1H-피라졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000083
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 4-메틸피라졸 2.5 g (30 mmol)과 포타슘 터셔리 부톡사이드 4.0 g (36 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 20 mL에 용해시켰다. 이 반응혼합물에 2-브로모-4-메틸 피리딘 6.2 g (36 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 18시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 3:1) 최종적으로 투명한 고체의 4-메틸-2-(4-메틸-1H-피라졸-1-닐)피리딘 을 얻었다. (4.5 g, 86%)
2) Os(4-Me-pz-4-Me-py)2Cl2 [화학식 9]의 합성
Figure PCTKR2022005626-appb-img-000084
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 5.0 g (10 mmol)와 상기 1)에서 제조한 4-메틸-2-(4-메틸-1H-피라졸-1-닐)피리딘 4.1 g (21 mmol)을 넣고 아르곤 가스 분위기에서 100 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(250 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (5.5 g, 91%) HRMS (192Os): m/z 608.0871([M+] required 608.0887)
화학식 9의 화합물의 전체 제조 방법은 아래 반응식 7과 같다.
[반응식 7]
Figure PCTKR2022005626-appb-img-000085
실시예 1.8. 화학식 10의 전이금속 착물의 합성
1) 4-메톡시-2-(4-메틸-1H-피라졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000086
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 4-메틸피라졸 2.5 g (30 mmol)과 포타슘 터셔리 부톡사이드 4.0 g (36 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 20 mL에 용해시켰다. 이 반응혼합물에 2-브로모-4-메톡시 피리딘 6.7 g (36 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 18시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 3:1) 최종적으로 투명한 고체의 4-메톡시-2-(4-메틸-1H-피라졸-1-닐)피리딘 을 얻었다. (2.8 g, 50%)
2) Os(4-Me-pz4-MeO-py)2Cl2 [화학식 10]의 합성
Figure PCTKR2022005626-appb-img-000087
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 3.0 g (6.2 mmol)와 상기 1)에서 제조한 4-메톡시-2-(4-메틸-1H-피라졸-1-닐)피리딘 2.4 g (12 mmol)을 넣고 아르곤 가스 분위기에서 60 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(250 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (2.3 g, 58%) HRMS (192Os): m/z 640.0792([M+] required 640.0785)
화학식 10의 화합물의 전체 제조 방법은 아래 반응식 8과 같다.
[반응식 8]
Figure PCTKR2022005626-appb-img-000088
실시예 1.9. 화학식 11의 전이금속 착물의 합성
1) (피리딘-2-닐)아미드라존의 합성
Figure PCTKR2022005626-appb-img-000089
100 mL 2구 둥근 바닥 플라스크에 2-시아노피리딘 5.2 g (50 mmol)과 하이드라진 수화물 2.7 g (55 mmol)을 넣고 에탄올 4 mL를 첨가하여 상온에서 24시간 동안 교반하였다. 반응 종결 후 반응혼합물은 감압여과하여 잔여 용매를 제거하고 벤젠으로 세척한다. 여과된 고체는 톨루엔에서 재결정하여 (피리딘-2-닐)아미드라존을 얻었다. (4.2 g, 61%)
2) 2-(1,3-다이메틸-1H-1,2,4-트리아졸-5-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000090
50 mL 쉬링크 플라스크에 상기 1)에서 제조한 (피리딘-2-닐)아미드라존 2.0 g (15 mmol)과 소듐카보네이트 1.6 g (15 mmol)을 넣고 용매인 다이메틸 아세트아미드 15 mL와 테트라하이드로퓨란 5 mL를 첨가하여 0℃에서 교반하였다. 추가적으로 10 mL 둥근 바닥 플라스크에 무수 다이메틸 아세트아미드 5 mL와 아세틸 클로라이드 1.1 mL (15 mmol)를 넣고 고무 셉타로 막은 뒤 아르곤하에서 캐뉼라를 통해 상기 반응혼합물에 적하하고 상온에서 5시간 동안 교반하였다. 반응 종결 후 반응혼합물은 감압여과하여 잔여 용매를 제거하고 에탄올 및 증류수로 세척하여 백색의 고체를 얻었다. 50 mL 1구 플라스크에 상기 백색의 고체와 에틸렌글라이콜 20 mL를 넣고 190 ℃로 가열하여 30분 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 감압증류를 통해 에틸렌글라이콜 용매를 제거하여 최종적으로 노란색 고체의 2-(5-R-2H-1,2,4-트리아졸-3-닐)피리딘을 얻었다. (0.22 g, 9%)
50 mL 1구 플라스크에 2-(3-메틸-1H-1,2,4-트리아졸-5-닐)피리딘 0.22 g (1.4 mmol)을 넣고 아르곤 가스 분위기에서 무수 다이메틸 포름아마이드 5 mL에 녹인 후 수소화소듐 83 mg (2.0 mmol)을 첨가하였다. 이 반응혼합물은 상온에서 20분 동안 교반하고 아이오도메탄 0.3 g (2.0 mmol)을 아르곤 가스 분위기에서 첨가한 후에 다시 상온에서 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 7:3) 최종적으로 2-(1,3-다이메틸-1H-1,2,4-트리아졸-5-닐)피리딘을 얻었다. (83 mg, 34%)
3) Os(Dmtz-py)2Cl2 [화학식 11]의 합성
Figure PCTKR2022005626-appb-img-000091
5 mL Corn vial에 포타슘 헥사클로로 오스메이트(IV) 14 mg (28.7 umol)과 상기 2)에서 제조한 2-(1,3-다이메틸-1H-1,2,4-트리아졸-5-닐)피리딘 10 mg (57 umol)을 넣고 아르곤 가스 분위기에서 2 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(10 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물로 여러 번 씻어준 후 40 ℃의 진공오븐에서 건조시켜 갈색의 최종화합물 오스뮴 복합체를 얻었다. (15 mg, 86%) HRMS (192Os): m/z 610.0797([M+] required 610.0792)
화학식 11의 화합물의 전체 제조 방법은 아래 반응식 9와 같다.
[반응식 9]
Figure PCTKR2022005626-appb-img-000092
실시예 1.10. 화학식 12의 전이금속 착물의 합성
1) 5-메틸-3-(피리딘-2-닐)-1,2,4-옥사다이아졸의 합성
Figure PCTKR2022005626-appb-img-000093
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 염화하이드록실암모늄 7.0 g (0.1 mol)과 수산화칼륨 6.0 g (0.1 mol)를 메탄올 100 ml에 넣어 100 ℃로 가열하여 30분동안 교반하였다. 생성된 염화칼륨을 감압 농축하여 제거하고 여과된 반응용액에 피리딘카보나이트릴 7.0 g (60 mmol)을 첨가하여 100 ℃로 가열하여 한시간 동안 교반하였다. 반응 종결 후에 혼합물은 감압 농축하여 증류수로 세척하여 투명한 고체의 하이드록시 피코린이미다마이드를 얻었다. (9.0 g, 65%)
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 하이드록시 피코린이미다마이드 1.0 g (7.3 mmol), pyridine 1.0 g (12.3 mmol), 아세틸클로라이드 0.7 g (8.8 mmol)을 테트라하이드로퓨란 60 ml에 첨가하여 110 ℃로 가열하여 8시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 투명한 고체의 5-메틸-3-(피리딘-2-닐)-1,2,4-옥사다이아졸을 얻었다. (0.85 g, 72%)
2) Os(Me-oxz-py)2Cl2 [화학식 12]의 합성
Figure PCTKR2022005626-appb-img-000094
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 0.6 g (1.4 mmol)과 상기 1)에서 제조한 5-메틸-3-(피리딘-2-닐)-1,2,4-옥사다이아졸 0.5 g (2.9 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 20분 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액 (30 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 황갈색의 최종화합물 오스뮴 복합체를 얻었다. (0.6 g, 70%)
화학식 12의 화합물의 전체 제조 방법은 아래 반응식 10과 같다.
[반응식 10]
Figure PCTKR2022005626-appb-img-000095
실시예 1.11. 화학식 13의 전이금속 착물의 합성
1) 2-(1-부틸-1H-1,2,3-트리아졸-4-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000096
250 mL 둥근 바닥 플라스크에 1- 브로모부탄 2.0 g (14 mmol)과 소듐 아자이드 0.9 g (14 mmol)를 넣고 50 mL의 무수 다이메틸포름아마이드를 첨가하여 상온에서 24시간 동안 교반하였다. 반응 종결 후에 이 반응혼합물은 물 (100 mL)과 다이에틸에터 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 황산 마그네슘으로 건조하고 감압농축하여 용매 제거 후에 추가 정제 없이 다음 반응을 진행하였다. 250 mL 2구 둥근 바닥 플라스크에 1-아지도부탄과 2-에티닐피리딘 1.5 g (14 mmol)을 넣고 테트라하이드로퓨란/물 (40 mL/40 mL)을 첨가하여 상온에서 교반하였다. 이 반응혼합물에 소듐 아스코베이트 0.3 g (1.4 mmol)와 카퍼 설페이트 23 mg (0.14 mmol)을 넣고 15분 동안 아르곤 탈기한 후, 상온에서 2시간 동안 교반하였다. 반응 종결 후 반응혼합물은 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하고 유기층은 모아서 황산마그네슘으로 건조하였다. 이 용액은 감압농축하여 용매 제거하고 에틸아세테이트와 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하였다. (헥산 : 에틸아세테이트 = 1:4) 최종적으로 2-(1-(2-메톡시에티닐)-1H-1,2,3-트리아졸-4-닐)피리딘을 얻었다. (1.5 g, 52%)
2) Os(3-Bu-tz-py)2Cl2 [화학식 13]의 합성
Figure PCTKR2022005626-appb-img-000097
100 mL 쉬링크 플라스크에 포타슘헥사클로로 오스메이트(IV) 0.5 g (1.0 mmol)과 상기 1)에서 제조한 2-(1-부틸-1H-1,2,3-트리아졸-4-닐)피리딘 0.4 g (2.0 mmol)을 넣고 아르곤 가스 분위기에서 15 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액 (200 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물로 여러 번 씻어준 후 40 ℃의 진공오븐에서 건조시켜 최종화합물 오스뮴 복합체를 얻었다. (0.4 g, 56%)
화학식 13의 화합물의 전체 제조 방법은 아래 반응식 11과 같다.
[반응식 11]
Figure PCTKR2022005626-appb-img-000098
실시예 1.12. 화학식 14의 전이금속 착물의 합성
1) 13-브로모-2,5,8,11-테트라옥사트라이데카인의 합성
Figure PCTKR2022005626-appb-img-000099
250 mL 둥근 바닥 플라스크에 테트라에틸렌 글라이콜 모노메닐 에테르 2.0 g (9.6 mmol)와 테트라브로모메테인 3.8 g (11.5 mmol)을 넣고 디클로로메탄 50 mL에 녹인 후 얼음조를 이용해 0 ℃에서 교반하였다. 이후 0 ℃를 유지하면서 트라이페닐포스핀 3.0 g (11.5 mmol)을 15분 동안 소분해서 천천히 첨가하고 상온에서 2시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 물 (100 mL)과 다이클로로메탄 (100 mL X 3)으로 추출하였다. 유기층은 모아서 감압농축하고 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 2:1 (메탄올 8%)) 최종적으로 노란색 오일의 13-브로모-2,5,8,11-테트라옥사트라이데카인을 얻었다. (1.4 g, 54%)
2) 2-(1-(2,5,8,11-테트라옥사트라이데칸-13-닐)-1H-1,2,3,-트리아졸-4-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000100
250 mL 둥근 바닥 플라스크에 상기 1)에서 제조한 13-브로모-2,5,8,11-테트라옥사트라이데카인 1.4 g (5.2 mmol)과 소듐아자이드 0.34 g (5.2 mmol)를 넣고 40 mL의 무수 다이메틸포름아마이드를 첨가하여 상온에서 24시간 동안 교반하였다. 반응 종결 후에 이 반응혼합물은 물 (100 mL)과 다이에틸에터 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 황산 마그네슘으로 건조하고 감압농축하여 용매 제거 후에 추가 정제 없이 다음 반응을 진행하였다. 250 mL 2구 둥근 바닥 플라스크에 13-아지도-2,5,8,11-테트라옥사트라이데카인과 2-에티닐피리딘 0.8 g (7.7 mmol)을 넣고 테트라하이드로퓨란/물 (40 mL/40 mL)을 첨가하여 상온에서 교반하였다. 이 반응혼합물에 소듐 아스코베이트 0.15 g (0.8 mmol), 카퍼 설페이트 12 mg (0.08 mmol)을 넣고 15분 동안 아르곤 탈기한 후, 상온에서 2시간 동안 교반하였다. 반응 종결 후 반응혼합물은 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하고 유기층은 모아서 황산마그네슘으로 건조하였다. 이 용액은 감압농축하여 용매 제거 하고 에틸아세테이트와 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 1:2 (메탄올 5%)) 최종적으로 2-(1-(2,5,8,11-테트라옥사트라이데칸-13-닐)-1H-1,2,3,-트리아졸-4-닐)피리딘을 얻었다. (0.86 g, 43%)
3) Os(3-tz-teg-py)2Cl2 [화학식 14]의 합성
Figure PCTKR2022005626-appb-img-000101
50 mL 쉬링크 플라스크에 포타슘헥사클로로 오스메이트(IV) 0.1 g (0.21 mmol)와 상기 2)에서 제조한 2-(1-(2,5,8,11-테트라옥사트라이데칸-13-닐)-1H-1,2,3,-트리아졸-4-닐)피리딘 0.14 g (0.42 mmol)을 넣고 아르곤 가스 분위기에서 15 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(10 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물로 여러 번 씻어준 후 40 ℃의 진공오븐에서 건조시켜 검보라색의 최종화합물 오스뮴 복합체를 얻었다. (0.1 g, 56%)
화학식 14의 화합물의 전체 제조 방법은 아래 반응식 12와 같다.
[반응식 12]
Figure PCTKR2022005626-appb-img-000102
실시예 1.13. 화학식 15의 전이금속 착물의 합성
1) 2-(1-(2-메톡시에티닐)-1H-1,2,3-트리아졸-4-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000103
250 mL 둥근 바닥 플라스크에 2-브로모에틸 메틸 에터 2.0 g (14 mmol)과 소듐 아자이드 0.1 g (14 mmol)를 넣고 50 mL의 무수 다이메틸포름아마이드를 첨가하여 상온에서 24시간 동안 교반하였다. 반응 종결 후에 이 반응혼합물은 물 (100 mL)과 다이에틸에터 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 황산 마그네슘으로 건조하고 감압농축하여 용매 제거 후에 추가 정제 없이 다음 반응을 진행하였다. 250 mL 2구 둥근 바닥 플라스크에 2-아지도에틸 메틸 에터와 2-에티닐피리딘 1.5 g (14 mmol)을 넣고 테트라하이드로퓨란/물 (40 mL/40 mL)을 첨가하여 상온에서 교반하였다. 이 반응혼합물에 소듐 아스코베이트 0.28 g (1.4 mmol)와 카퍼 설페이트 0.02 g (0.14 mmol)을 넣고 15분 동안 아르곤 탈기한 후, 상온에서 2시간 동안 교반하였다. 반응 종결 후 반응혼합물은 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하고 유기층은 모아서 황산마그네슘으로 건조하였다. 이 용액은 감압농축하여 용매 제거하고 에틸아세테이트와 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 1:4) 최종적으로 2-(1-(2-메톡시에티닐)-1H-1,2,3-트리아졸-4-닐)피리딘을 얻었다. (1.5 g, 52%)
2) Os(3-mo-tz-py)2Cl2 [화학식 15]의 합성
Figure PCTKR2022005626-appb-img-000104
100 mL 쉬링크 플라스크에 포타슘헥사클로로 오스메이트(IV) 0.5 g (1.0 mmol)과 상기 1)에서 제조한 2-(1-(2-메톡시에티닐)-1H-1,2,3-트리아졸-4-닐)피리딘 0.4 g (2.1 mmol)을 넣고 아르곤 가스 분위기에서 15 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(200 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물로 여러 번 씻어준 후 40 ℃의 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (0.4 g, 56%) HRMS (192OS): m/z 670.09967([M+] required 670.10)
화학식 15의 화합물의 전체 제조 방법은 아래 반응식 13과 같다.
[반응식 13]
Figure PCTKR2022005626-appb-img-000105
실시예 1.14. 화학식 16의 전이금속 착물의 합성
1) 2-(1H-테트라졸-5-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000106
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 소듐아자이드 1.3 g (19.2 mmol), 2-에티닐피리딘 2.0 g (19.2 mmol)과 카퍼 설페이트 96 mg (0.38 mmol)을 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 40 mL에 용해시켰다. 이 반응혼합물은 15분 동안 아르곤 탈기한 후, 140 ℃로 가열하여 3시간동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하고 유기층은 모아서 황산마그네슘으로 건조하였다. 이 용액은 감압농축으로 용매 제거하여 최종적으로 노란색 고체인 2-(1H-테트라졸-5-닐)피리딘을 얻었다. (1.1 g, 41%)
2) 2-(1-메틸-1H-테트라졸-5-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000107
100 mL의 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 상기 1)에서 제조한 2-(1H-테트라졸-5-닐)피리딘 1.0 g (6.8 mmol)을 넣어 아르곤 가스 분위기에서 무수 테트라하이드로퓨란 (30 mL)에 녹인 후 수소화소듐 0.4 g (10 mmol)을 첨가하였다. 이 반응혼합물은 상온에서 30분 동안 교반하고 아이오도메탄 1.5 g (10 mmol)을 아르곤 가스 분위기에서 첨가한 후에 80 ℃로 가열하여 3시간동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 감압농축하여 용매 제거하고 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 1:3) 최종적으로 2-(1-메틸-1H-테트라졸-5-닐)피리딘을 얻었다. (0.4 g. 40%)
3) Os(tetraz-py)2Cl2 [화학식 16]의 합성
Figure PCTKR2022005626-appb-img-000108
50 mL의 쉬링크 플라스크에 포타슘헥사클로로 오스메이트(IV) 0.10 g (0.21 mmol)과 상기 2)에서 제조한 2-(1-메틸-1H-테트라졸-5-닐)피리딘 0.7 g (0.42 mmol)을 넣고 아르곤 가스 분위기에서 5 mL의 에틸렌글라이콜에 녹인 후 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(200 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물로 여러 번 세척한 후 40 ℃의 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (0.1 g, 84%) HRMS (192OS): m/z 584.0383([M+] required 584.04)
화학식 16의 화합물의 전체 제조 방법은 아래 반응식 14와 같다.
[반응식 14]
Figure PCTKR2022005626-appb-img-000109
실시예 1.15. 화학식 17의 전이금속 착물의 합성
1) 2-(1H-1,2,4-트리아졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000110
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 1H-1,2,4 트리아졸 3.0 g (43 mmol)과 포타슘 터셔리 부톡사이드 5.8 g (52 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 40 mL에 용해시켰다. 이 반응혼합물에 2-플루오르 피리딘 5.0 g (52 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 4시간동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 5:1) 최종적으로 투명한 고체의 2-(1H-1,2,4-트리아졸-1-닐)피리딘을 얻었다. (4.3 g, 57%)
2) Os(1,2,4tz-py)2Cl2 [화학식 17]의 합성
Figure PCTKR2022005626-appb-img-000111
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 0.6 g (1.4 mmol)와 상기 1)에서 제조한 2-(1H-1,2,4-트리아졸-1-닐)피리딘 0.4 g (2.9 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 30분 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(30 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 다홍색의 최종화합물 오스뮴 복합체를 얻었다. (0.3 g, 62%)
화학식 17의 화합물의 전체 제조 방법은 아래 반응식 15와 같다.
[반응식 15]
Figure PCTKR2022005626-appb-img-000112
실시예 1.16. 화학식 18의 전이금속 착물의 합성
1) 2-(1H-1,2,3-트리아졸-1-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000113
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 1H-1,2,3 트리아졸 3.0 g (43 mmol)과 포타슘 터셔리 부톡사이드 5.8 g (52 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 40 mL에 용해시켰다. 이 반응혼합물에 2-플루오르 피리딘 5.0 g (52 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 4시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 5:1) 최종적으로 투명한 고체의 2-(1H-1,2,3-트리아졸-1-닐)피리딘을 얻었다. (3.5 g, 56%)
2) Os(1,2,3tz-py)2Cl2 [화학식 18]의 합성
Figure PCTKR2022005626-appb-img-000114
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 0.6 g (1.4 mmol)와 상기 1)에서 제조한 2-(1H-1,2,3-트리아졸-1-닐)피리딘 0.4 g (2.9 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 30분 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(30 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (0.4 g, 69%)
화학식 18의 화합물의 전체 제조 방법은 아래 반응식 16와 같다.
[반응식 16]
Figure PCTKR2022005626-appb-img-000115
실시예 1.17. 화학식 19의 전이금속 착물의 합성
1) 2-(1-메틸-1H-1,2,4-트리아졸-5-닐)피리딘의 합성
Figure PCTKR2022005626-appb-img-000116
100 mL 2구 둥근 바닥 플라스크에 2-(1H-1,2,4-트리아졸-5-닐)피리딘 1.0 g (6.8 mmol)과 수소화나트륨 0.4 g (0.01 mmol)를 넣어 무수 다이메틸설폭사이드 50 mL에 용해시켰다. 이 반응혼합물에 아이오딘화메틸 1.4 g (0.01 mmol)을 적하깔때기를 이용하여 적하하고 상온에서 24시간 교반하였다. 종결 후에 반응혼합물은 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 5:1) 최종적으로 투명한 고체의 2-(1-메틸-1H-1,2,4-트리아졸-5-닐)피리딘을 얻었다. (0.9 g, 86%)
2) Os(4-Me-1,2,4tz-py)2Cl2 [화학식 19]의 합성
Figure PCTKR2022005626-appb-img-000117
250 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 0.6 g (1.4 mmol)와 상기 1)에서 제조한 2-(1-메틸-1H-1,2,4-트리아졸-5-닐)피리딘 0.5 g (2.9 mmol)을 넣고 아르곤 가스 분위기에서 50 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(30 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다 (0.2 g, 25%).
화학식 19의 화합물의 전체 제조 방법은 아래 반응식 17와 같다.
[반응식 17]
Figure PCTKR2022005626-appb-img-000118
실시예 1.18. 화학식 20의 전이금속 착물의 합성
1) 2-(3,4-다이메틸-1H-피라졸-1-닐)-4-메틸피리딘의 합성
Figure PCTKR2022005626-appb-img-000119
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 3,4-디메틸피라졸 2.1 g (22 mmol)과 포타슘 터셔리 부톡사이드 2.5 g (22 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 20 mL에 용해시켰다. 이 반응혼합물에 2-브로모-4-메틸 피리딘 3.5 g (20 mmol)을 넣고 아르곤 가스 분위기에서 100 ℃로 가열하여 18시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 3:1) 최종적으로 투명한 고체의 4-메틸-2-(3-메틸-1H-피라졸-1-닐)피리딘 을 얻었다. (2.4 g, 63%)
2) Os(3,4-DiMe-pz-4-Me-py)2Cl2 [화학식 20]의 합성
Figure PCTKR2022005626-appb-img-000120
50 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 0.5 g (1.0 mmol)와 상기 1)에서 제조한 2-(3,4-다이메틸-1H-피라졸-1-닐)-4-메틸피리딘의 0.4 g (2.0 mmol)을 넣고 아르곤 가스 분위기에서 15 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 1시간 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(100 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 초록색의 최종화합물 오스뮴 복합체를 얻었다. (0.4 g, 62%) HRMS (192Os): m/z 636.1205([M+] required 636.1200)
화학식 20의 화합물의 전체 제조 방법은 아래 반응식 18과 같다.
[반응식 18]
Figure PCTKR2022005626-appb-img-000121
실시예 1.19. 화학식 21의 전이금속 착물의 합성
1) 2-(3,4-다이메틸-1H-피라졸-1-닐)-4-메톡시피리딘의 합성
Figure PCTKR2022005626-appb-img-000122
50 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 3,4-디메틸피라졸 0.6 g (6 mmol)과 포타슘 터셔리 부톡사이드 0.7 g (6 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸설폭사이드 8 mL에 용해시켰다. 이 반응혼합물에 2-브로모-4-메톡시 피리딘 1.0 g (5. mmol)을 넣고 아르곤 가스 분위기에서 80 ℃로 가열하여 6시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (50 mL)과 에틸아세테이트 (50 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 3:1) 최종적으로 투명한 고체의 4-메틸-2-(3-메틸-1H-피라졸-1-닐)피리딘을 얻었다. (0.4 g, 37%)
2) Os(3,4-DiMe-pz-4-MeO-py)2Cl2 [화학식 21]의 합성
Figure PCTKR2022005626-appb-img-000123
50 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 0.5 g (1.0 mmol)와 상기 1)에서 제조한 2-(3,4-다이메틸-1H-피라졸-1-닐)-4-메톡시피리딘의 0.4 g (2.0 mmol)을 넣고 아르곤 가스 분위기에서 15 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 30분 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(100 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 갈색의 최종화합물 오스뮴 복합체를 얻었다. (0.4 g, 64%) HRMS (192Os): m/z 668.1103([M+] required 668.1098)
화학식 21의 화합물의 전체 제조 방법은 아래 반응식 19와 같다.
[반응식 19]
Figure PCTKR2022005626-appb-img-000124
실시예 1.20. 화학식 22의 전이금속 착물의 합성
1) N,N-다이메틸-2-(4-메틸-1H-피라졸-1-닐)피리딘-4-아민의 합성
Figure PCTKR2022005626-appb-img-000125
250 mL 2구 둥근 바닥 플라스크에 환류응축기, 기체유입구를 장착하고 4-다이메틸아미노-2-브로모 피리딘 1.0 g (5.0 mmol), 4-메틸피라졸 1.2 g (15 mmol), 아이오딘화 구리 0.14 g (0.75 mmol), L-프롤린 0.17 g (1.5 mmol)과 탄산 세슘 4.1 g (12.5 mmol)를 넣어 아르곤 가스 분위기에서 무수 다이메틸포름아마이드 20 mL에 용해시켰다. 이 반응혼합물은 120 ℃로 가열하여 20시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 물 (100 mL)과 에틸아세테이트 (100 mL X 3)와 함께 추출하였다. 유기층은 모아서 감압농축하고 용매 제거 후에 에틸아세테이트와 헥산을 전개용매로 사용하여 컬럼크로마토그래피로 정제하였다. (헥산: 에틸아세테이트 = 5:1) 최종적으로 흰색 고체의 N,N-다이메틸-2-(4-메틸-1H-피라졸-1-닐)피리딘-4-아민 을 얻었다. (0.5 g, 50%)
2) Os(4-Me-pz-4-DiAM-py)2Cl2 [화학식 22]의 합성
Figure PCTKR2022005626-appb-img-000126
50 mL 쉬링크 플라스크에 포타슘 헥사클로로오스메이트(IV) 0.6 g (1.2 mmol)과 상기 1)에서 제조한 N,N-다이메틸-2-(4-메틸-1H-피라졸-1-닐)피리딘-4-아민 0.5 g (2.4 mmol)을 넣고 아르곤 가스 분위기에서 15 mL의 에틸렌글라이콜에 녹인 후, 15분 동안 아르곤 탈기하였다. 이 반응혼합물은 180 ℃로 가열하여 30분 동안 교반하였다. 반응 종결 후 반응혼합물은 상온으로 냉각하고 생성된 붉은색 침전물은 감압여과하여 제거하였다. 여액은 아이티온산나트륨 1.0 M 수용액(100 mL)에 적하하여 환원된 오스뮴 복합체의 침전물을 얻었다. 생성된 고체는 감압여과하고 물 및 아세토니트릴로 여러 번 씻어준 후 진공오븐에서 건조시켜 검붉은색의 최종화합물 오스뮴 복합체를 얻었다. (0.5 g, 75%) HRMS (192Os): m/z 666.1421([M+] required 666.1418)
화학식 22의 화합물의 전체 제조 방법은 아래 반응식 20과 같다.
[반응식 20]
Figure PCTKR2022005626-appb-img-000127
실시예 1.21. 화학식 23의 전이금속 착물의 합성
1) Ru(DMSO)4Cl2의 합성
Figure PCTKR2022005626-appb-img-000128
50 mL 쉬링크 플라스크에 RuCl3*xH2O 0.9 g (4.3 mmol)과 무수 다이메틸설폭사이드 (5 mL)를 넣고 아르곤 가스 분위기에서 10분 동안 탈기하였다. 이 진한 붉은색 현탁액은 170 ℃로 가열하여 30분 동안 교반하였다. 이 반응 용액의 색이 진한 노락색으로 바뀔때까지 이 온도를 유지한 후 온도를 상온으로 내려 반응을 종결하였다. 이 반응 용액에 4 mL의 아세톤을 넣고 0 ℃로 냉각 후 4~5 시간 동안 가만히 두었다. 생성된 고체는 감압여과하고 차가운 아세톤으로 씻었다. 최종적으로 노란색 고체의 Ru(DMSO)4Cl2를 얻었다. 추가 정제 없이 다음 반응에 사용하였다. (1.5 g, 75%)
2) Ru(pzpy)2Cl2 [화학식 23]의 합성
Figure PCTKR2022005626-appb-img-000129
50 mL 쉬링크 플라스크에 Ru(DMSO)4Cl2 0.4 g (0.86 mmol), 상기 실험예에서 제조한 2-(1H-피라졸-1-닐)피리딘 0.25 g (1.7 mmol), 염화리튬 1.8 g (43.0 mmol)과 무수 다이메틸포름아마이드 (15 mL)를 넣고 아르곤 가스 분위기에서 10분 동안 탈기하였다. 빛 차단을 위해 이 반응 용기는 알루미늄 호일로 감싸준 후에 150 ℃에서 4 시간 동안 교반하였다. 반응 종결 후에 진한 보라색의 반응 용액은 50 mL의 아세톤을 넣고 0 ℃에서 24시간 동안 냉각하였다. 검보라색의 고체는 감압여과하고 염화리튬과 부생성물의 제거를 위해 아세톤으로 여과액의 색이 투명해질 때까지 씻었다. 남아있는 진한 보라색의 고체는 진공오븐에서 건조시켜 최종화합물 루테늄 복합체를 얻었다, 그 후 4~5 시간 동안 가만히 두었다. 생성된 고체는 감압여과하고 차가운 아세톤으로 씻었다. 최종적으로 노란색 고체의 Ru(DMSO)4Cl2를 얻었다. (0.25 g, 55%) HRMS: m/z 461.9710([M+] required 461.9690)
화학식 23의 화합물의 전체 제조 방법은 아래 반응식 21과 같다.
Figure PCTKR2022005626-appb-img-000130
실시예 1.22. 화학식 24의 전이금속 착물의 합성
1) Ru(4-Me-pz4-Me-py)2Cl2 [화학식 24]의 합성
Figure PCTKR2022005626-appb-img-000131
50 mL 쉬링크 플라스크에 Ru(DMSO)4Cl2 0.4 g (0.86 mmol), 상기 실험예에서 제조한 4-메틸-2-(4-메틸-1H-피라졸-1-닐)피리딘 0.3 g (1.7 mmol), 염화리튬 1.8 g (43.0 mmol)과 무수 다이메틸포름아마이드 (15 mL)를 넣고 아르곤 가스 분위기에서 10분 동안 탈기하였다. 빛 차단을 위해 이 반응 용기는 알루미늄 호일로 감싸준 후에 150 ℃에서 4 시간 동안 교반하였다. 반응 종결 후에 진한 보라색의 반응 용액은 50 mL의 아세톤을 넣고 0 ℃에서 24시간 동안 냉각하였다. 검보라색의 고체는 감압여과하고 염화리튬과 부생성물의 제거를 위해 아세톤으로 여과액의 색이 투명해질 때까지 씻었다. 남아있는 검은색의 고체는 진공오븐에서 건조시켜 최종화합물 루테늄 복합체를 얻었다. (0.1 g, 23%) HRMS: m/z 518.0321([M+] required 518.0316)
화학식 24의 화합물의 전체 제조 방법은 아래 반응식 22와 같다.
Figure PCTKR2022005626-appb-img-000132
실시예 1.23. 화학식 25의 전이금속 착물의 합성
1) Fe(pzpy)2Cl2 [화학식 25]의 합성
Figure PCTKR2022005626-appb-img-000133
100 mL 쉬링크 플라스크에 FeCl3 1.6 g (10.0 mmol), 상기 실험예에서 제조한 2-(1H-피라졸-1-닐)피리딘 1.5 g (10.0 mmol), 테레프탈산 3.3 g (20.0 mmol), 소듐하이드록사이드 0.8 g (20 mmol)과 무수 에탄올 (30 mL)를 넣고 아르곤 가스 분위기에서 10분 동안 탈기하였다. 이 반응 용액은 50 ℃에서 96 시간 동안 교반하였다. 반응 종결 후에 상온으로 온도를 내리고 생성된 검붉은 색의 고체는 감압여과하고 아세톤으로 씻었다. 검붉은색의 고체는 진공오븐에서 건조시켜 최종화합물 철 복합체를 얻었다. (1.0 g, 24%) HRMS: m/z 415.9971 ([M+] required 415.9995)
실시예 2: 본 발명에 따른 전이금속 착물을 포함하는 산화-환원 중합체의 합성
실시예 2.1. 화학식 28의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000134
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 1.1.에서 제조된 Os(pzpy)2Cl2 [화학식 3] 0.12 g (0.22 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 10 mL에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 100 ℃로 가열하여 2일 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.2 g의 짙은 녹색의 화학식 25의 산화-환원 중합체 (PVI-Os(pzpy)2Cl)를 얻었다. (0.20 g, 91%)
실시예 2.2. 화학식 29의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000135
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 1.2.에서 제조된 Os(pz-2-Me-py)2Cl2 [화학식 4] 0.13 g (0.22 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 10 mL에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 100 ℃로 가열하여 2일 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.2 g의 짙은 녹색의 화학식 26의 산화-환원 중합체 (PVI-Os(pz-2-Mepy)2Cl)를 얻었다. (0.20 g, 87%)
실시예 2.3. 화학식 30의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000136
100 mL 쉬링크 플라스크에 상기 실시예 1.3.에서 제조된 Os(pz-4-MeO-py)2Cl2 [화학식 5] 0.13 g (0.22 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 10 mL에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 120 ℃로 가열하여 24 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.2 g의 짙은 녹색의 화학식 27의 산화-환원 중합체 (PVI-Os(pz-4-MeO-py)2Cl)를 얻었다. (0.21 g, 89%)
실시예 2.4. 화학식 31의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000137
100 mL 쉬링크 플라스크에 상기 실시예 1.4.에서 제조된 Os(pz-4-Me-py)2Cl2 [화학식 6] 0.31 g (0.53 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 20 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 30 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.2 g을 첨가하고 120 ℃로 가열하여 36 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.4 g의 짙은 녹색의 화학식 28의 산화-환원 중합체 (PVI-Os(pz-4-Me-py)2Cl)를 얻었다. (0.4 g, 78%)
실시예 2.5. 화학식 32의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000138
100 mL 쉬링크 플라스크에 상기 실시예 1.5.에서 제조된 Os(3-Me-pz-4-Me-py)2Cl2 [화학식 7] 0.27 g (0.44 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 20 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 30 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.2 g을 첨가하고 120 ℃로 가열하여 24 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.4 g의 짙은 녹색의 화학식 29의 산화-환원 중합체 (PVI-Os(3-Me-pz-4-Me-py)2Cl)를 얻었다. (0.41g, 87%)
실시예 2.6. 화학식 33의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000139
100 mL 쉬링크 플라스크에 상기 실시예 1.6.에서 제조된 Os(3-Me-pz-4-MeO-py)2Cl2 [화학식 8] 0.14 g (0.22 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 10 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 120 ℃로 가열하여 24 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.22 g의 짙은 녹색의 화학식 30의 산화-환원 중합체 (PVI-Os(3-Me-pz-4-MeO-py)2Cl)를 얻었다. (0.22 g, 92%)
실시예 2.7. 화학식 34의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000140
250 mL 쉬링크 플라스크에 상기 실시예 1.7.에서 제조된 Os(4-Me-pz-4-Me-py)2Cl2 [화학식 9] 0.8 g (1.32 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 50 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 50 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.5 g을 첨가하고 120 ℃로 가열하여 24 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 1.21 g의 짙은 녹색의 화학식 31의 산화-환원 중합체 (PVI-Os(4-Me-pz-4-Me-py)2Cl)를 얻었다. (1.21 g, 93%)
실시예 2.8. 화학식 35의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000141
100 mL 쉬링크 플라스크에 상기 실시예 1.8.에서 제조된 Os(4-Me-pz-4-MeO-py)2Cl2 [화학식 10] 0.14 g (0.22 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 10 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 120 ℃로 가열하여 24 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.20 g의 짙은 녹색의 화학식 32의 산화-환원 중합체 (PVI-Os(4-Me-pz-4-MeO-py)2Cl)를 얻었다. (0.20 g, 83%)
실시예 2.9. 화학식 36의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000142
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 1.9.에서 제조된 Os(Dmtz-py)2Cl2 [화학식 11] 0.13 g (0.22 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 10 mL에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 100 ℃로 가열하여 2일 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.15 g의 갈색의 화학식 33의 산화-환원 중합체 (PVI-Os(Dmtz-py)2Cl)를 얻었다. (0.15 g, 65%)
실시예 2.10. 화학식 37의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000143
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 1.11.에서 제조된 Os(3-Bu-tz-py)2Cl2 [화학식 13] 0.12 g (0.18 mmol)을 넣어 아르곤 가스 분위기에서 에탄올에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 85 mg 을 첨가하고 100 ℃로 가열하여 2일 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.2 g의 적색의 화학식 34의 PVI-Os 중합체 (PVI-Os(3-Bu-tz-py)2Cl)를 얻었다. (0.2 g. 95%)
실시예 2.11. 화학식 38의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000144
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 1.13.에서 제조된 Os(3-motz-py)2Cl2 [화학식 15] 0.15 g (0.22 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 10 mL에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 100 ℃로 가열하여 2일 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.12 g의 갈색의 화학식 35의 산화-환원 중합체 (PVI-Os(3-motz-py)2Cl)를 얻었다. (0.12 g, 48%)
실시예 2.12. 화학식 39의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000145
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 1.16.에서 제조된 Os(1,2,3-tz-py)2Cl2 [화학식 18] 0.12 g (0.22 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 10 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 110 ℃로 가열하여 2일 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.22 g의 적색의 화학식 36의 산화-환원 중합체 (PVI-Os(1,2,3-tz-py)2Cl)를 얻었다. (0.21g, 96%)
실시예 2.13. 화학식 40의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000146
100 mL 쉬링크 플라스크에 상기 실시예 1.18.에서 제조된 Os(3,4-DiMe-pz-4-Me-py)2Cl2 [화학식 20] 0.17 g (0.27 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 15 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 120 ℃로 가열하여 24 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.22 g의 짙은 녹색의 화학식 37의 산화-환원 중합체 (PVI-Os(3,4-DiMe-pz-4-Me-py)2Cl)를 얻었다. (0.22 g, 81%)
실시예 2.14. 화학식 41의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000147
100 mL 쉬링크 플라스크에 상기 실시예 1.19.에서 제조된 Os(3,4-Dime-pz-4-MeO-py)2Cl2 [화학식 21] 0.29 g (0.43 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 20 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 30 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.2 g을 첨가하고 120 ℃로 가열하여 48 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.40 g의 갈색의 화학식 38의 산화-환원 중합체 (PVI-Os(3,4-Dime-pz-4-MeO-py)2Cl)를 얻었다. (0.40 g, 81%)
실시예 2.15. 화학식 42의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000148
100 mL 쉬링크 플라스크에 상기 실시예 1.20.에서 제조된 Os(4-Me-pz-4-DiAM-py)2Cl2 [화학식 22] 0.18 g (0.27 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 20 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 120 ℃로 가열하여 18 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.24 g의 갈색의 화학식 39의 산화-환원 중합체 (PVI-Os(4-Me-pz-4-DiAM-py)2Cl)를 얻었다. (0.24 g, 86%)
실시예 2.16. 화학식 43의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000149
250 mL 쉬링크 플라스크에 상기 실시예 1.20.에서 제조된 Os(4-Me-pz-4-DiAM-py)2Cl2 [화학식 22] 0.5 g (0.76 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 60 mL 에 완전히 녹인다. 이 반응혼합물에 에탄올 30 mL로 완전히 용해된 폴리비닐피리딘(polyvinylpyridine) (Mn = 160,000 g/mol) 0.32 g을 첨가하고 120 ℃로 가열하여 24 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.70 g의 갈색의 화학식 40의 산화-환원 중합체 (PVP-Os(4-Me-pz-4-DiAM-py)2Cl)를 얻었다. (0.70 g, 85%)
실시예 2.17. 화학식 44의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000150
100 mL 쉬링크 플라스크에 상기 실시예 1.22.에서 제조된 Ru(4-Me-pz4-Me-py)2Cl2 [화학식 24] 0.14 g (0.27 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 30 mL 에 완전히 녹였다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 100 ℃로 가열하여 12 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.24 g의 짙은 녹색의 화학식 44의 산화-환원 중합체 (PVI-Ru(4-Me-pz4-Me-py)2Cl)를 얻었다. (0.2 g, 83%)
실시예 2.18. 화학식 45의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000151
100 mL 쉬링크 플라스크에 상기 실시예 1.23.에서 제조된 Fe(pzpy)2Cl2 [화학식 25] 0.11 g (0.27 mmol)을 넣어 아르곤 가스 분위기에서 에탄올 25 mL 에 완전히 녹였다. 이 반응혼합물에 에탄올 20 mL로 완전히 용해된 폴리비닐이미다졸 (Mn = 10,000 g/mol) 0.1 g을 첨가하고 80 ℃로 가열하여 24 시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한 후 40 ℃의 진공오븐에서 24시간 건조시켜 최종적으로 0.1 g의 붉은 갈색의 화학식 45의 산화-환원 중합체 (PVI-Fe(pzpy)2Cl)를 얻었다. (0.1 g, 47%)
실시예 3. 본 발명에 따른 전이금속 착물 및 가교가 가능한 기능성 그룹을 포함하는 산화-환원 중합체의 합성
실시예 3.1. 화학식 48의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000152
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.1.에서 제조된 [화학식 28] 중합체 0.2 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 20 mg (0.1 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해 시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.2 g의 녹색의 [화학식 48] 중합체를 얻었다. (0.2 g. 90%)
실시예 3.2. 화학식 49의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000153
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.3.에서 제조된 [화학식 30] 중합체 0.2 g 을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 20 mg (0.1 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환 하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해 시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.2 g의 녹색의 [화학식 49] 중합체를 얻었다. (0.2 g. 90%)
실시예 3.3. 화학식 50의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000154
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.4.에서 제조된 [화학식 31] 중합체 0.4 g 을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 50 mg (0.25 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환 하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해 시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.41 g의 녹색의 [화학식 50] 중합체를 얻었다. (0.41 g. 91%)
실시예 3.4. 화학식 51의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000155
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.7.에서 제조된 [화학식 34] 중합체 0.4 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 50 mg (0.25 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해 시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.4 g의 녹색의 [화학식 51] 중합체를 얻었다. (0.4 g. 90%)
실시예 3.5. 화학식 52의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000156
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.8.에서 제조된 [화학식 35] 중합체 0.2 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 20 mg (0.1 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환 하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해 시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.2 g의 녹색의 [화학식 52] 중합체를 얻었다. (0.2 g. 90%)
실시예 3.6. 화학식 53의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000157
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.13.에서 제조된 [화학식 40] 중합체 0.2 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 20 mg (0.1 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환 하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해 시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.2 g의 녹색의 [화학식 53] 중합체를 얻었다. (0.2 g. 90%)
실시예 3.7. 화학식 54의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000158
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.14.에서 제조된 [화학식 41] 중합체 0.2 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 20 mg (0.1 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환 하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해 시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.2 g의 녹색의 [화학식 54] 중합체를 얻었다. (0.2 g. 90%)
실시예 3.8. 화학식 57의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000159
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.15.에서 제조된 [화학식 42] 중합체 0.2 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 20 mg (0.1 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.2 g의 적색의 [화학식 57] 중합체를 얻었다. (0.2 g. 90%)
실시예 3.9. 화학식 58의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000160
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.16.에서 제조된 [화학식 43] 중합체 0.4 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 2-브로모에틸아민 30 mg (0.15 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.41 g의 적색의 [화학식 58] 중합체를 얻었다. (0.41 g. 95%)
실시예 3.10. 화학식 59의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000161
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.7.에서 제조된 [화학식 34] 중합체 0.4 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹인다. 이 반응혼합물에 다이에틸렌 글리콜-2-브로모에틸메틸에터 24 mg (0.1 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척한다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.4 g의 녹색의 [화학식 59] 중합체를 얻었다. (0.4 g. 94%)
실시예 3.11. 화학식 60의 산화-환원 중합체의 합성
Figure PCTKR2022005626-appb-img-000162
100 mL의 3구 둥근 바닥 플라스크에 환류응축기, 기체유입구 및 온도계를 장착하고 상기 실시예 2.17.에서 제조된 [화학식 44] 중합체 0.4 g을 넣어 아르곤 가스 분위기에서 메탄올에 완전히 녹였다. 이 반응혼합물에 2-브로모에틸아민 30 mg (0.15 mmol)을 넣고 80 ℃로 가열하여 24시간 동안 교반하였다. 반응 종결 후에 반응혼합물은 상온으로 냉각하고 다이에틸에터에 적하하여 고분자 침전물을 얻었다. 생성된 고체는 감압여과하고 다이에틸에터로 여러 번 세척하였다. 상기 반응물에 포함된 Br이온을 Cl이온으로 교환하기 위해, 200 mL 비커에 여과된 고체와 물 50 mL를 넣고 모두 용해시킨 후에 이온 교환 수지 (AG1x4) 20 mL를 첨가하여 24시간 동안 교반하였다. 이 반응혼합물은 감압여과하여 레진을 제거하고 여과된 수용액은 동결 건조로 물을 제거해 최종적으로 0.35 g의 적색의 [화학식 60] 중합체를 얻었다. (0.35 g. 81%)
실험예 1: 순환 전압 전류법을 이용한 본 발명에 따른 전이금속 착물 및 산화-환원 중합체의 전기화학적 특성 확인
본 발명에 따른 피라졸, 트리아졸, 테트라졸, 옥사디아졸 또는 티아디아졸 등을 포함하는 바이덴테이트 리간드를 갖는 전이금속 착물 및 이를 포함하는 산화-환원 중합체의 전자전달 매개체로서의 성능을 확인하기 위하여, 다음과 같은 실험방법에 따라 순환 전압 전류법을 이용한 전기화학적 특성을 측정하였다.
실험방법
1. 본 발명에 따른 화학식 3, 4, 9, 11, 14, 15, 16, 17, 18, 20, 22, 23, 24, 및 25의 화합물 (전이금속 착물) 20 mg을 각각 0.1 M 테트라부틸 암모늄 퍼클로레이트(Tetrabutylammonium perchlorate) 다이메틸설폭사이드 용액 2 mL에 녹였다.
본 발명에 따른 화학식 28, 34, 40, 및 42의 화합물 (산화-환원 중합체) 및 화학식 48, 51, 57, 및 59의 화합물 (가교가 가능한 기능성 그룹을 더 포함하는 산화-환원 중합체) 20 mg을 각각 탈이온수와 0.1 M 염화나트륨(sodium chloride) 용액 5 mL에 녹였다. 비교군으로, 아래 화학식 61의 화합물 20 mg을 탈이온수와 0.1 M 염화나트륨(sodium chloride) 용액 5 mL에 녹였다.
[화학식 61]
Figure PCTKR2022005626-appb-img-000163
2. 용액 안의 산소를 제거하기 위해 5~10분 동안 아르곤으로 탈기하였다.
3. 산소가 탈기된 상기 용액에 작동 전극, 기준 전극, 대향 전극을 연결하고 아르곤 가스 분위기에서 전압의 변화에 따른 전기적 신호 변화를 측정하였다.
4. 이 실험결과를 각각 아래 표 1 내지 표 3과 도 1a 내지 도 1o, 도 2 및 도 3에 나타내었다.
각 화합물의 실험결과는 아래 도면에 대응하여 나타내었다:
화학식 3 (도 1a), 화학식 4 (도 1b), 화학식 9 (도 1c), 화학식 11 (도 1d), 화학식 14 (도 1e), 화학식 15 (도 1f), 화학식 16 (도 1g), 화학식 17 (도 1h), 화학식 18 (도 1i), 화학식 20 (도 1j), 화학식 22 (도 1k), 화학식 23 (도 1l), 화학식 24 (도 1m), 화학식 25 (도 1n), 화학식 3, 4, 11, 14, 15, 16 (도 1o),
화학식 3(비교군), 28, 34, 40, 42 (도 2),
화학식 28(비교군), 48, 51, 57, 59, 61(비교군) (도 3).
실험재료/조건
작동전극(working electrode): 유리탄소 전극 (dia: 3.0mm)
기준전극(Reference electrode): Ag/AgCl 전극
대향전극(Counter electrode): 백금 로드(Platinum rod)
시험 파라미터
- 장비: EmStat(PalmSens Co.)
- Technique: cyclic voltammetry
- Potential range: -1.0 ~ 1.0V
- Scan rate: 10mV/s
전이금속 착물 E pc (V) E pa (V)
[화학식3] 0.03 -0.12
[화학식4] 0.05 -0.12
[화학식 9] -0.08 -0.18
[화학식 11] -0.16 -0.27
[화학식 14] -0.18 -0.26
[화학식 15] 0.04 -0.16
[화학식 16] 0.26 0.10
[화학식 17] -0.42 -0.56
[화학식 18] -0.40 -0.49
[화학식 20] -0.1 -0.24
[화학식 22] -0.32 -0.47
[화학식 23] 0.50 0.60
[화학식 24] 0.49 0.36
[화학식 25] 0.71 0.63
산화-환원 복합체 E pc (V) E pa (V)
[화학식3] 0.03 -0.12
[화학식 28] 0.33 0.17
[화학식 34] 0.24 0.14
[화학식 40] 0.26 0.12
[화학식 42] 0.12 -0.03
가교가 가능한 기능성 그룹을 포함하는 산화-환원 복합체 E pc (V) E pa (V)
[화학식 48] 0.33 0.17
[화학식 51] 0.26 0.14
[화학식 57] 0.15 0.05
[화학식 59] 0.26 0.13
[화학식 61] 0.39 0.29
상기 표 1 및 도 1a 내지 도 1o에 나타난 바와 같이, 본원발명에 따른 전이금속 착물은 리간드 종류에 따라 다양한 전위값을 가지는 것을 확인하였다.
상기 표 2 및 도 2에 나타난 바와 같이 본원발명에 따른 전이금속 착물을 산화-환원 중합체로 합성하였을 경우 착물 고유의 전위값이 변화하는 것을 확인하였다.
또한, 상기 표 3 및 도 3에 나타난 바와 같이 본원발명에 따른 산화-환원 중합체에 가교가 가능한 기능성 그룹을 도입한 경우 산화-환원 중합체의 전위값에 영향을 미치지 않는 것을 확인하였다. 또한 화학식 48, 51, 57, 및 59의 화합물은 기존에 알려진 대조군인 화학식 61의 화합물과 대비하여 낮은 전위 값을 나타내어, 높은 효율의 산화-환원 매개체로서 작용할 수 있음을 확인하였다.
실험예 2: 본 발명에 따른 산화-환원 중합체를 포함하는 연속 혈당 측정용 전기화학적 센서의 제조
본 발명에 따른 산화-환원 중합체의 전자전달 매개체를 포함하는 전기화학 센서(전기화학적 바이오센서)를 제조하기 위하여 다음과 같은 방법을 통해 센서를 제조하였다.
실험방법
1. 본 발명에 따른 화학식 48, 51, 53, 및 59의 화합물과 비교군으로서 61번 화합물을 각각 산화 환원 효소(glucose dehydrogenase), 탄소나노튜브(CNT), 비이온성 계면활성제(Triton-X)및 가교물질 (polyethylene glycol diglycidylether)과 수용액에 용해시키고 교반 및 초음파 분산 방식을 사용하여 각 용액을 제조하였다.
2. 연속 혈당 전기화학 센서를 제작하기 위하여 제조한 각 용액들을 카본 페이스트가 인쇄된 전극 위에 분주하여 코팅하였으며, 이후 상온에서 24시간 동안 가교 반응을 통해 경화시켰다. 경화 후, 증류수를 사용하여 제조된 센서를 세척하였다.
3. 상기 제작된 전극의 전자 전달 성능을 화학식 61을 포함하는 전극과 비교하기 위한 방법으로 순환 전압 전류법(cyclic voltammetry)을 사용하였다.
4. 이 실험결과를 각각 아래 표 4 내지 도 4 에 나타내었다.
실험재료/조건
작동전극(working electrode): 상기 제작된 전극
기준전극(Reference electrode): Ag/AgCl 전극
대향전극(Counter electrode): 백금 와이어(Platinum wire)
전해질(electrolyte): 인산 버퍼가 포함된 생리식염수 (Phosphate buffer with NaCl solution)
시험 파라미터
- 장비: EmStat(PalmSens Co.)
- Technique: cyclic voltammetry
- Potential range: -0.3 ~ 0.4V
- Scan rate: 10 mV/s
산화-환원 중합체를 포함한 연속 혈당 측정용 전기화학적 센서 E 0 (mV) E c -E a (mV) I pa (μA)
[화학식 48] 133.3 110.7 40.1
[화학식 51] 99.2 97.7 91.1
[화학식 53] 100.7 83.3 71.0
[화학식 59] 106.7 49 15.0
[화학식 61] 216.2 147.6 129.6
상기 표 4 및 도 4에 나타난 바와 같이 본원 발명에 따른 산화-환원 중합체가 적용된 전극의 전위(E 0)는 비교군 전극 보다 낮은 전위를 갖는다. 이는 실험예 1과 유사한 결과이며 또한 이 실험으로 연속 혈당 측정용 전기화학적 센서의 작동 전압이 비교군 보다 낮은 전압에서도 안정적으로 사용 할 수 있음을 확인하였다.
실험예 3: 연속 혈당 측정용 전기화학적 센서의 글루코오스 농도 변화에 대한 감응도 비교
1. 본 발명에 따른 화학식 51, 53의 화합물과 비교군으로서 61번 화합물을 이용한 상기 실험예 2 에서 제작된 전극을 0 ~ 100 mM의 글루코오스 용액에서 시간대전류법(chronoamperometry)을 수행하여 비교하였다.
2. 시간대전류법 수행 시 인가하는 전압은 51, 53의 화합물을 이용한 전극은 0.15 V, 비교군 61번 화합물을 이용한 전극은 0.25 V를 인가하였다.
3. 글루코오스 농도는 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100 mM이며 각 농도에 도달할 수 있도록 200초의 간격을 두고 인산 버퍼가 포함된 생리식염수 용액에 고농도의 글루코오스 용액을 주사하였다. 각 실험은 50분간 진행하였다.
4. 이 실험결과를 각각 아래 도 5와 도 6 에 나타내었다.
실험재료/조건
작동전극(working electrode): 상기 제작된 전극
기준전극(Reference electrode): Ag/AgCl 전극
대향전극(Counter electrode): 백금 와이어(Platinum wire)
전해질(electrolyte): 인산 버퍼가 포함된 생리식염수 (Phosphate buffer with NaCl solution)
시험 파라미터
- 장비: EmStat(PalmSens Co.)
- Technique: chronoamperometry
- Potential range: 0.15 V, 0.25 V
도 5와 6에 나타난 바와 같이 본원 발명에 따른 산화-환원 중합체가 적용된 전극들 모두 10 mM 이하 농도의 글루코오스에 대한 선형성을 보였으며, 비교군 전극 보다 더 낮은 전압을 인가하였음에도 불구하고 유사한 감응도를 보였다. 특히, 51, 53 화합물이 적용된 전극들은 100 mM 농도의 전류가 비교군 보다 더 큰 것으로 보아 최대효소활동도(Vmax)는 1.2 ~ 2 배 정도 큰 것으로 보인다.
실험예 4: 연속 혈당 측정용 전기화학적 센서의 전압 증가에 따른 글루코오스 감응도 비교
1. 본 발명에 따른 화학식 51, 53의 화합물과 비교군으로서 61번 화합물을 이용한 상기 실험예 2 에서 제작된 전극을 400 mM의 글루코오스 용액에서 다단계 전압전류법(multi-potential step)을 수행하여 비교하였다.
2. 다단계 전압전류법 수행 시 전압은 -0.2 V 부터 0.35 V를 포함하여 그 사이 0.05 V 간격의 전압에서 300초 동안 전압을 유지시켜 전류를 관찰하였다.
3. 이 실험결과를 각각 아래 도 7 에 나타내었다.
실험재료/조건
작동전극(working electrode): 상기 제작된 전극
기준전극(Reference electrode): Ag/AgCl 전극
대향전극(Counter electrode): 백금 와이어(Platinum wire)
전해질(electrolyte): 인산 버퍼가 포함된 생리식염수 (Phosphate buffer with NaCl solution)
시험 파라미터
- 장비: EmStat(PalmSens Co.)
- Technique: multi-potential step
- Potential range: -0.2 ~ 0.35 V
도 7에 나타난 바와 같이 본원 발명에 따른 산화-환원 중합체가 적용된 전극들 모두 비교군 전극 보다 더 낮은 전압에서 글루코오스에 대한 감응을 나타내는 것을 확인할 수 있다.

Claims (15)

  1. 하기 화학식 1의 화합물인 것인, 전이금속 착물 또는 이의 염 화합물:
    [화학식 1]
    [M(L)a(X1)b]c d(X2)
    상기 식에서,
    M은 Fe, Ru, 및 Os로 이루어지는 군에서 선택되는 1종의 전이금속이고,
    L은 피리딘; 피라졸, 트리아졸, 테트라졸, 옥사디아졸 티아디아졸로 이루어지는 군에서 선택되는 1개의 구조를포함하는 바이덴테이트 리간드이고,
    상기 피리딘은, 비치환되거나, 또는 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 및 C1-4 알킬아미노기로 이루어지는 군에서 선택되는 1개 내지 4개로 치환된 피리딘이고,
    상기 피라졸, 트리아졸, 테트라졸, 및 옥사디아졸로 이루어지는 군에서 선택되는 1개는, 각각 독립적으로 비치환되거나, 또는 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기,
    Figure PCTKR2022005626-appb-img-000164
    , 및 C1-4 알킬아미노기로 이루어지는 군에서 선택된 1개 내지 3개로 치환된 것이고,
    R'4는 수소 또는 치환되거나 비치환된 C1-4 알킬이고,
    n'은 1 내지 4에서 선택되는 정수이고,
    a는 2 또는 3이고,
    상기 치환된 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, 또는 C1-4 알킬아미노기는, 수소 원자가 F, Cl, Br, 또는 I의 할로겐 원자, 시아노기, 히드록실기, 티올기, 니트로기, 아미노기, 이미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 옥소기, 카보닐기, 카바밀기, 에스테르기, 에테르기, 카복실기 또는 이의 염, 술폰산기 또는 이의 염, 또는 인산 또는 이의 염으로 치환된 것이고,
    X1은 F, Cl, Br 및 I로 이루어지는 군에서 선택되는 1종의 할로겐 원자이고,
    b는 0, 1, 또는 2이고,
    c는 1 내지 3에서 선택되는 정수이고,
    X2는 F, Cl, Br, I 및 PF6로 이루어지는 군에서 선택되는 1종의 반대 이온(counter ion)이고,
    d는 0, 1, 2, 또는 3이다.
  2. 제1항에 있어서, 상기 전이금속 착물은 하기 화학식 2의 화합물인 것인, 전이금속 착물 또는 이의 염 화합물:
    [화학식 2]
    Figure PCTKR2022005626-appb-img-000165
    상기 식에서,
    R1, R2, R3, 및 R4는 각각 독립적으로 수소, C1-4 알킬기, C1-4 알콕시기, (CH2)-O-C1-4 알킬기, (CH2CH2)-O-C1-4 알킬기, 또는 C1-4 알킬아미노기이고,
    n은 0이고,
    W', Y', Z', V' 중 적어도 하나는 질소(N)이며,
    W'는 질소(N) 또는 탄소(C)이고,
    Y', Z', 및 V'는 각각 독립적으로 질소(N), 황(S), 산소(O), 또는 탄소(C)이고,
    R'1, R'2, 및 R'3은 각각 독립적으로 수소, C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기,
    Figure PCTKR2022005626-appb-img-000166
    , 또는 C1-4 알킬아미노기이고,
    상기 C1-4 알킬기, C1-4 알콕시기, -(CH2)-O-C1-4 알킬기, -(CH2CH2)-O-C1-4 알킬기, R4', n', 또는 C1-4 알킬아미노기 제1항에서 정의한 바와 같고
    M, a, X1, b, c, X2 및 d는 제1항에서 정의한 바와 같다.
  3. 제2항에 있어서, 상기 화학식 2의 화합물은 아래 화학식 3 내지 화학식 25의 화합물들로 이루어진 군에서 선택되는 화합물인 것인, 전이금속 착물 또는 이의 염 화합물:
    [화학식 3]
    Figure PCTKR2022005626-appb-img-000167
    ,
    [화학식 4]
    Figure PCTKR2022005626-appb-img-000168
    ,
    [화학식 5]
    Figure PCTKR2022005626-appb-img-000169
    ,
    [화학식 6]
    Figure PCTKR2022005626-appb-img-000170
    ,
    [화학식 7]
    Figure PCTKR2022005626-appb-img-000171
    ,
    [화학식 8]
    Figure PCTKR2022005626-appb-img-000172
    ,
    [화학식 9]
    Figure PCTKR2022005626-appb-img-000173
    ,
    [화학식 10]
    Figure PCTKR2022005626-appb-img-000174
    ,
    [화학식 11]
    Figure PCTKR2022005626-appb-img-000175
    ,
    [화학식 12]
    Figure PCTKR2022005626-appb-img-000176
    ,
    [화학식 13]
    Figure PCTKR2022005626-appb-img-000177
    ,
    [화학식 14]
    Figure PCTKR2022005626-appb-img-000178
    ,
    [화학식 15]
    Figure PCTKR2022005626-appb-img-000179
    ,
    [화학식 16]
    Figure PCTKR2022005626-appb-img-000180
    ,
    [화학식 17]
    Figure PCTKR2022005626-appb-img-000181
    ,
    [화학식 18]
    Figure PCTKR2022005626-appb-img-000182
    ,
    [화학식 19]
    Figure PCTKR2022005626-appb-img-000183
    ,
    [화학식 20]
    Figure PCTKR2022005626-appb-img-000184
    ,
    [화학식 21]
    Figure PCTKR2022005626-appb-img-000185
    ,
    [화학식 22]
    Figure PCTKR2022005626-appb-img-000186
    ,
    [화학식 23]
    Figure PCTKR2022005626-appb-img-000187
    ,
    [화학식 24]
    Figure PCTKR2022005626-appb-img-000188
    , 및
    [화학식 25]
    Figure PCTKR2022005626-appb-img-000189
    .
  4. 하기 화학식 26 또는 화학식 27의 화합물로 나타내어지는, 산화-환원 중합체:
    [화학식26]
    Figure PCTKR2022005626-appb-img-000190
    , 및
    [화학식27]
    Figure PCTKR2022005626-appb-img-000191
    .
    상기 식에서,
    m 또는 o는 각각 10 내지 600에서 선택되는 정수이고,
    M, L, a, X1 및 X2는 각각 제1항에서 정의한 바와 같다.
  5. 제4항에 있어서, 상기 화학식 26 또는 화학식 27의 화합물은 아래 화학식 28 내지 45의 화합물들로 이루어진 군에서 선택되는 화합물인 것인, 산화-환원 중합체:
    [화학식 28]
    Figure PCTKR2022005626-appb-img-000192
    ,
    [화학식 29]
    Figure PCTKR2022005626-appb-img-000193
    ,
    [화학식 30]
    Figure PCTKR2022005626-appb-img-000194
    ,
    [화학식 31]
    Figure PCTKR2022005626-appb-img-000195
    ,
    [화학식 32]
    Figure PCTKR2022005626-appb-img-000196
    ,
    [화학식 33]
    Figure PCTKR2022005626-appb-img-000197
    ,
    [화학식 34]
    Figure PCTKR2022005626-appb-img-000198
    ,
    [화학식 35]
    Figure PCTKR2022005626-appb-img-000199
    ,
    [화학식 36]
    Figure PCTKR2022005626-appb-img-000200
    ,
    [화학식 37]
    Figure PCTKR2022005626-appb-img-000201
    ,
    [화학식 38]
    Figure PCTKR2022005626-appb-img-000202
    ,
    [화학식 39]
    Figure PCTKR2022005626-appb-img-000203
    ,
    [화학식 40]
    Figure PCTKR2022005626-appb-img-000204
    ,
    [화학식 41]
    Figure PCTKR2022005626-appb-img-000205
    ,
    [화학식 42]
    Figure PCTKR2022005626-appb-img-000206
    ,
    [화학식 43]
    Figure PCTKR2022005626-appb-img-000207
    ,
    [화학식 44]
    Figure PCTKR2022005626-appb-img-000208
    , 및
    [화학식 45]
    Figure PCTKR2022005626-appb-img-000209
    ,
    상기 식에서, m 및 o는 각각 제5항에서 정의한 바와 같다.
  6. 제4항에 있어서, 상기 산화-환원 중합체는 가교가 가능한 기능성 그룹을 더 포함하는, 하기 화학식 46 또는 화학식 47로 나타내어지는 것인, 산화-환원 중합체:
    [화학식 46]
    Figure PCTKR2022005626-appb-img-000210
    , 및
    [화학식 47]
    Figure PCTKR2022005626-appb-img-000211
    .
    AD는 1차 및 2차 아민기, 암모늄기, 할로젠기, 에폭시기, 아자이드기, 아크릴레이트기, 알케닐기, 알키닐기, 싸이올기, 이소시아네이트, 알코올기, 실란기, 및
    Figure PCTKR2022005626-appb-img-000212
    로 이루어지는 군에서 선택되는 1종이고,
    상기 R5'는 수소 또는 치환되거나 비치환된 C1-4 알킬이고,
    상기 n''은 1 내지 4에서 선택되는 정수이고,
    q는 1 내지 10에서 선택되는 정수이고,
    m, o, 또는 p는 각각 10 내지 600에서 선택되는 정수이고,
    M, L, a, X1 및 X2는 각각 제1항에서 정의한 바와 같다.
  7. 제6항에 있어서, 상기 화학식 46 또는 화학식 47의 화합물은 아래 화학식 48 내지 화학식 60의 화합물들로 이루어진 군에서 선택되는 화합물인 것인, 산화-환원 중합체:
    [화학식48]
    Figure PCTKR2022005626-appb-img-000213
    ,
    [화학식49]
    Figure PCTKR2022005626-appb-img-000214
    ,
    [화학식50]
    Figure PCTKR2022005626-appb-img-000215
    ,
    [화학식51]
    Figure PCTKR2022005626-appb-img-000216
    ,
    [화학식52]
    Figure PCTKR2022005626-appb-img-000217
    ,
    [화학식53]
    Figure PCTKR2022005626-appb-img-000218
    ,
    [화학식54]
    Figure PCTKR2022005626-appb-img-000219
    ,
    [화학식55]
    Figure PCTKR2022005626-appb-img-000220
    ,
    [화학식56]
    Figure PCTKR2022005626-appb-img-000221
    ,
    [화학식57]
    Figure PCTKR2022005626-appb-img-000222
    ,
    [화학식 58]
    Figure PCTKR2022005626-appb-img-000223
    ,
    [화학식59]
    Figure PCTKR2022005626-appb-img-000224
    , 및
    [화학식 60]
    Figure PCTKR2022005626-appb-img-000225
    ,
    상기 식에서,
    m, o 및 p는 제7항에서 정의한 바와 같다.
  8. 제1항 내지 제3항 중 어느 한 항의 전이금속 착물 또는 이의 염 화합물; 또는 제4항 내지 제7항 중 어느 한 항의 산화-환원 중합체를 포함하는 전기화학적 바이오센서.
  9. 제8항에 있어서, 상기 전기화학적 바에오센서는 체내에 삽입 가능한 것인, 전기화학적 바이오센서.
  10. 액체성 생체시료를 산화-환원시킬 수 있는 효소; 및
    제1항 내지 제4항 중 어느 한 항의 전이금속 착물 또는 이의 염 화합물; 또는 제5항 내지 제8항 중 어느 한 항의 산화-환원 중합체를 전자전달 매개체로 포함하는 전기화학적 바이오센서용 센싱 막.
  11. 제10항에 있어서, 상기 효소는 탈수소효소 (dehydrogenase), 산화효소 (oxidase), 및 에스테르화효소 (esterase)로 이루어진 군에서 선택된 1종 이상인, 센싱 막.
  12. 제11항에 있어서, 상기 효소는 글루코오스탈수소효소 (glucose dehydrogenase), 글루탐산탈수소효소 (glutamate dehydrogenase), 글루코오스산화효소 (glucose oxidase), 콜레스테롤산화효소 (cholesterol oxidase), 콜레스테롤에스테르화효소 (cholesterol esterase), 락테이트산화효소 (lactate oxidase), 아스코르브산 산화효소 (ascorbic acid oxidase), 알코올산화효소 (alcohol oxidase), 알코올탈수소효소 (alcohol dehydrogenase) 및 빌리루빈산화효소 (bilirubin oxidase)로 이루어진 군에서 선택된 1종 이상인, 센싱 막.
  13. 제11항에 있어서, 플라빈 아데닌 디뉴클레오타티드 (flavin adenine dinucleotide, FAD), 니코틴아미드 아데닌 디뉴클레오티드 (nicotinamide adenine dinucleotide, NAD), 및 피롤로퀴놀린 퀴논 (Pyrroloquinoline quinone, PQQ)로 이루어진 군에서 선택된 1종 이상의 보조인자를 추가적으로 포함하는, 센싱 막.
  14. 제10항에 있어서, 카본 나노튜브를 더 포함하는, 센싱 막.
  15. 제10항에 있어서, 상기 액체성 생체시료는 환자의 조직액, 혈액, 세포, 혈장, 혈청, 뇨, 낭종액, 및 타액으로 이루어진 군에서 선택된 하나 이상인, 센싱 막.
PCT/KR2022/005626 2021-04-19 2022-04-19 전이금속 착물 또는 산화-환원 중합체를 포함하는 전기화학적 바이오센서 또는 전기화학적 바이오센서용 센싱 막 WO2022225313A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280029276.5A CN117242084A (zh) 2021-04-19 2022-04-19 含过渡金属络合物或氧化还原聚合物的电化学生物传感器或用于电化学生物传感器的传感膜
EP22792013.9A EP4328232A1 (en) 2021-04-19 2022-04-19 Electrochemical biosensor, or sensing membrane for electrochemical biosensor containing transition metal complex or oxidation-reduction polymer
JP2023564256A JP2024518294A (ja) 2021-04-19 2022-04-19 遷移金属錯体または酸化-還元重合体を含む電気化学的バイオセンサーまたは電気化学的バイオセンサー用センシング膜
AU2022261752A AU2022261752A1 (en) 2021-04-19 2022-04-19 Electrochemical biosensor, or sensing membrane for electrochemical biosensor containing transition metal complex or oxidation-reduction polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0050610 2021-04-19
KR20210050610 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022225313A1 true WO2022225313A1 (ko) 2022-10-27

Family

ID=83722415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005626 WO2022225313A1 (ko) 2021-04-19 2022-04-19 전이금속 착물 또는 산화-환원 중합체를 포함하는 전기화학적 바이오센서 또는 전기화학적 바이오센서용 센싱 막

Country Status (6)

Country Link
EP (1) EP4328232A1 (ko)
JP (1) JP2024518294A (ko)
KR (1) KR20220144342A (ko)
CN (1) CN117242084A (ko)
AU (1) AU2022261752A1 (ko)
WO (1) WO2022225313A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058281A1 (en) * 2003-11-07 2009-03-05 Ye Tao Phosphorescent Osmium (II) complexes and uses thereof
KR20200133678A (ko) * 2019-05-20 2020-11-30 서강대학교산학협력단 탄소나노튜브를 포함하는 생체신호 측정용 전기화학적 바이오 센서 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058281A1 (en) * 2003-11-07 2009-03-05 Ye Tao Phosphorescent Osmium (II) complexes and uses thereof
KR20200133678A (ko) * 2019-05-20 2020-11-30 서강대학교산학협력단 탄소나노튜브를 포함하는 생체신호 측정용 전기화학적 바이오 센서 및 이의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHO HYUN-YONG, DAE SIK HONG,DONG WOOK JEONG,YOUNG-DAE GONG,SEONG IHL WOO: "High-throughput synthesis of new Ni(II), Pd(II), and Co(II) catalysts and polymerization of norbornene utilizing the self-made parallel polymerization reactor system", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 25, no. 1, 2 January 2004 (2004-01-02), pages 302 - 306, XP055979139, DOI: 10.1002/marc.200300158 *
SAHA NITYANANDA, KAR SUSANTA K: "Magnetic and Spectroscopic Studies on some New Bis- and Tris-complexes of Iron(Ⅱ) with 3,5-Dimethyl-1-(2`-pyridyl)pyrazole : Indication of 5T2-1A1 Equilibrium", JOURNAL OF THE INDIAN CHEMICAL SOCIETY, vol. 66, 31 October 1989 (1989-10-31), pages 521 - 524, XP055979129, DOI: 10.5281/zenodo.5959285 *
STEEL P J, LAHOUSSE F, LERNER D, MARZIN C: "Contribution from the New Ruthenium(II) Complexes with Pyridylpyrazole Ligands. Photosubstitution and , 13C, and "Ru NMR Structural Studies", INORGANIC CHEMISTRY, vol. 22, no. 10, 1 May 1983 (1983-05-01), pages 1488 - 1493, XP055979132, DOI: 10.1021/ic00152a014 *

Also Published As

Publication number Publication date
KR20220144342A (ko) 2022-10-26
CN117242084A (zh) 2023-12-15
JP2024518294A (ja) 2024-05-01
AU2022261752A1 (en) 2023-11-09
EP4328232A1 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2021125791A1 (ko) C-n 리간드를 갖는 신규 전이금속 전자전달 착체 및 이를 이용한 전기화학적 바이오센서
WO2011005060A9 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012102544A2 (ko) 신규한 유기염료 및 이의 제조방법
WO2013081315A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2011102586A1 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010147425A2 (ko) 신규한 유기염료 및 이의 제조방법
WO2009145456A2 (ko) 헤테로사이클 유도체
WO2021096228A1 (ko) 유기 발광 소자
WO2014142488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2010120013A1 (ko) 신규한 로다민 유도체 및 이를 포함한 차아염소산 검출 센서
WO2021049843A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022225313A1 (ko) 전이금속 착물 또는 산화-환원 중합체를 포함하는 전기화학적 바이오센서 또는 전기화학적 바이오센서용 센싱 막
WO2023282617A2 (ko) 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2019074241A1 (ko) 페닐아세틸렌 유도체를 포함하는 pd-1과 pd-l1의 상호작용 억제제
AU2021226297B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2018147638A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2021162493A1 (ko) 단백질 키나아제 분해 유도 화합물 및 이의 용도
WO2020060194A1 (ko) 폴리알릴글라이시딜에터 기반의 산화-환원 고분자 및 이를 이용한 전기화학적 바이오센서
WO2022145982A1 (ko) 테트라덴테이트 질소 공여체 리간드를 포함하는 전이금속 착체 및 이를 포함하는 전기화학적 바이오센서
EP4110780A1 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2015047018A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021133144A1 (ko) 신규한 유기 전자전달매개체 및 이를 포함하는 장치
WO2021261962A1 (ko) 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22792013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023564256

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 804969

Country of ref document: NZ

Ref document number: AU2022261752

Country of ref document: AU

Ref document number: 2022261752

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022261752

Country of ref document: AU

Date of ref document: 20220419

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022792013

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022792013

Country of ref document: EP

Effective date: 20231120