WO2022223634A1 - Tôles d'aluminium 5xxx à haute formabilté - Google Patents

Tôles d'aluminium 5xxx à haute formabilté Download PDF

Info

Publication number
WO2022223634A1
WO2022223634A1 PCT/EP2022/060442 EP2022060442W WO2022223634A1 WO 2022223634 A1 WO2022223634 A1 WO 2022223634A1 EP 2022060442 W EP2022060442 W EP 2022060442W WO 2022223634 A1 WO2022223634 A1 WO 2022223634A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminium sheet
5xxx series
series aluminium
sheet according
hot rolling
Prior art date
Application number
PCT/EP2022/060442
Other languages
English (en)
Inventor
Jean-Philippe MASSE
Alain BASTIAN
Hervé Ribes
Original Assignee
Constellium Neuf-Brisach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Constellium Neuf-Brisach filed Critical Constellium Neuf-Brisach
Priority to JP2023564393A priority Critical patent/JP2024514929A/ja
Priority to EP22724033.0A priority patent/EP4326917A1/fr
Priority to CN202280029910.5A priority patent/CN117178068A/zh
Priority to KR1020237039861A priority patent/KR20230173173A/ko
Priority to CA3215051A priority patent/CA3215051A1/fr
Publication of WO2022223634A1 publication Critical patent/WO2022223634A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates 5XXX series alloy aluminium sheet and their method of making, particularly useful for the automotive industry.
  • an automotive component such as a car hood is mainly made of two parts: an outer part and an inner part. The first is visible from outside the car and the second is not visible unless for example in case of opening of the hood.
  • the components need to encompass many requirements among which there are the pedestrian safety and the quality of the surface for painting performance. Therefore, the outer part is usually developed to have a high painting aspect quality.
  • the inner part or automobile hood inner is usually not subjected to the same requirements regarding painting aspect quality.
  • the inner part is usually developed in view of pedestrian safety in case of collision which means in particular low in-service strength. Those parts are usually close to the engine and there is a need for thermal stability.
  • the inner part needs also to be apt to receive a surface treatment.
  • AA6xxx aluminium alloys series such as AA6016-T4 are known to combine interesting chemical and mechanical properties such as hardness, strength, forming and even corrosion resistance.
  • Patent application W02006/056481 discloses an aluminium alloy sheet for automotive applications for improved pedestrian safety, having a chemical composition in weight percent: 0.80 £ Si ⁇ 1.20 - 0.10 £ Fe £ 0.30 - 0.05 £ Mn £0.20 - 0. 10 £ Mg £ 0. 30 - Cu £ 0.30 - Ti £ 0.15 - other elements up to 0.05 each, up to 0.15 in total Al balance, in T4 temper condition having a yield strength (Rp) of at least 50 MPa, a uniform elongation (Au) of at least 20% and a total elongation (A80) of at least 22%.
  • Rp yield strength
  • Au uniform elongation
  • A80 total elongation
  • Patent application WO2018/033537 discloses an aluminum alloy for vehicle applications with a moderate strength level, the produced strip showing only a low tendency for curing from the state T4 than can be used for pedestrian impact.
  • the aluminum alloy has the following alloying constituents (in percent by weight): 0.4 wt.% £ Si ⁇ 0.55 wt.%, 0.15 wt.% £ Fe £ 0.25 wt.%, Cu £ 0.06 wt.%, 0.15 wt.% £ Mn £ 0.4 wt.%, 0.33 wt.% £ Mg £ 0.4 wt.%, Cr £ 0.03 wt.%, 0.01 wt.% £ Ti £ 0.10 wt.%, the remainder Al and unavoidable impurities of at most 0.05 wt.% individually and at most 0.15 wt.% in total.
  • the patent application US20120234437 discloses a car component with at least one first component of sheet metal of a first aluminum alloy and at least one second component of sheet metal of a second aluminum alloy, the first and second aluminum alloys are of type AIMgSi and in the sheet metal of the second aluminum alloy a substantial part of the elements Mg and Si, which are required to achieve artificial ageing in solid solution, is present in the form of separate Mg2Si and/or Si particles in order to avoid artificial ageing.
  • the patent application EP2328748 relates to an automotive clad sheet product comprising a core layer and at least one clad layer wherein the core comprises an alloy of the following composition in weight %: Mg 0.45-0,8, Si 0.45-0.7, Cu 0.05-0.25, Mn 0.05-0.2, Fe up to 0,35, other elements (or impurities) ⁇ 0,05 each and ⁇ 0.15 in total, balance aluminium; and the at least one clad layer comprises an alloy of the following composition in weight %: Mg 0.3-0.7, Si 0,3-0.7, Mn up to 0,15, Fe up to 0.35, other elements (impurities) ⁇ 0.05 each and ⁇ 0.15 in total, balance aluminium.
  • the patent application EP2121419 provides a thin vehicle closure panel design that substantially reduces a thickness of a vehicle hood and the impact effect on the head of a pedestrian struck by a motor vehicle by incorporating a foam core positioned between and bonded to the outer and/or the inner panel of the hood shell.
  • the patent application W02020/120267 s directed to a method for producing a 6xxx series aluminium sheet comprising the steps of homogenizing an ingot made from a 6XXX series aluminium alloy comprising in wt.% Si : 0.4 - 0.7, Mg : 0.2 - 0.4, Mn : 0.05 - 0.30, Fe : 0.03 to 0.4, Cu up to 0.3, Cr up to 0.05, Zn up to 0.15, Ti up to 0.1 wt%, rest aluminium and unavoidable impurities up to 0.05 each and 0.15 total, rough hot rolling on a reversible mill to a rough hot rolling exit thickness with a rough hot rolling exit temperature less than 420 °C, finish hot rolling the ingot to a hot rolling final thickness with a tandem mill and coiling at the hot rolling final thickness with a hot rolling exit temperature less than 300 °C, cold rolling to obtain a cold rolled sheet.
  • the products obtained according to the method of the invention are particularly useful for automobile
  • AA5xxx alloys which do not necessitate a solution heat treatment such as T4 temper may be an interesting alternative.
  • the patent application EP0593034 A2 discloses an aluminum alloy sheet which has a high level of strength and excels in formability consisting essentially of about 3 to 10 wt% of Mg and a total of about 0.3 to 2.0 wt% of Fe and Si, the aluminum alloy sheet being provided with a lubricant surface coating and having a sliding resistance of not more than about 0.11. It may also contain strengthening elements, such as Cu, Mn, Cr, Zr and Ti.
  • the patent application WO2011/011744 discloses a 5xxx aluminum alloy consisting essentially of: from about 2.5 wt. % to about 7 wt. % Mg; from about 0.05 wt. % to about 2 wt. % Cu; from about 0.3 wt.
  • additives are selected from the group consisting of Zr, Cr, V, Sc, Hf, Ti, B, C, Ca, Sr, Be, Bi, Cd, Ge, In, Mo, Nb, Ni, Sn, Y; and the balance being aluminum and unavoidable impurities.
  • the patent application W02016/077044 discloses an aluminum alloy comprising 31.5 % Mg, £ 0.8 % Cu, £ 0.5 % Fe, £ 0.4 % Mn, 0.2 - 0.4 % Si, £ 0.5 % Zn, and £ 0.25 % Cr by weight, the remainder being Al and unavoidable impurities, produced by a process comprising cold-rolling to a final gauge and solutionizing at temperatures above 480°C, wherein the process comprises specifically T4 temper.
  • the patent application W02018/005442 discloses an aluminum alloy, comprising 0.10- 0.30 wt. % Fe, 0.10-0.30 wt. % Si, 0-0.25 wt. % Cr, 2.0-3.0 wt. % Mg, 0.05-0.10 wt. % Mn, 0.02-0.06 wt. % Cu, unavoidable impurities up to 0.05 wt. % for each impurity, up to 0.15 wt. % for total impurities, and the balance aluminum.
  • the patent application WO98/24940 discloses an aluminium alloy in the AA5XXX series has the composition: Si 0.10-0.25 %; Fe 0.18-0.30 %; Cu up to 0.5 %; Mn 0.4-0.7 %; Mg 3.0-3.5 %; Cr up to 0.2 %; and Ti up to 0.1 %.
  • the patent application W02008/010352 discloses a high strength aluminum alloy sheet having a chemical composition containing Mg: 2.0 to 3.3 mass %, Mn: 0.1 to 0.5 mass %, and Fe: 0.2 to 1.0 mass %, having a balance of unavoidable impurities and Al.
  • the patent application US20070217943 A1 discloses an aluminum alloy sheet consisting of 2.0-8.0 wt % of Mg, 0.06-0.2 wt % of Si, 0.1-0.5 wt % of Fe, 0.1-0.5 wt % of Mn, and the balance of Al and unavoidable impurities.
  • reinforcements which are located at specific locations and enable local improvement of mechanical properties. Inners may be in specific cases considered as reinforcements. In electric vehicles these reinforcements can also be located around the battery.
  • Patent application JP09279281 discloses a problem to solved: To produce an Al alloy baking finished sheet for a can top material excellent in corrosion resistance without deteriorating its strength and the formability of a rivet or the like.
  • Patent application JP07197176 discloses: To produce an Al alloy sheet for food can full open-end having excellent can openability.
  • This Al alloy sheet for food can full open-end has the chemical composition composed of 1.70-2.70%Mg, 0.30-0.60% Mn, 0.10-0.30% Fe as the essential components, and as necessary, further containing one or more kinds of ⁇ +0.30% Si, ⁇ +0.20% Ti and ⁇ +0.20% Cu and the balance Al with inevitable impurities and 0.3-10% area possessing ratio with Al-Fe-Mn intermetallic compound of 3-20. mu. m when observing from the surface of the product sheet and has excellent can openability.
  • Patent application JP2002212661 discloses a problem to solved: To provide an aluminum alloy sheet for embossing used for building materials such as a siding material, and an aluminum alloy coated sheet in which cracking is hard to be generated in embossing, and which is firm so as to correspond to the request for thinning.
  • the aluminum alloy sheet for embossing contains one or more selected from 0.06 to 0.3% Cu, 0.06 to 0.3% Mn and 0.06 to 0.3% Cr.
  • Aluminum alloy coated sheets for embossing is obtained by further applying coating to the surfaces of the above aluminum alloy sheets.
  • Patent application W02020/185920 discloses a new aluminum alloy products and methods of making these alloys.
  • the aluminum alloy products are age-hardenable, display high strength and formability, and allow for the use of recycled scrap.
  • the aluminum alloys can serve as the core in a clad aluminum alloy product.
  • the alloy products can be used in a variety of applications, including automotive, transportation, and electronics applications.
  • Patent application W02005/080619 discloses A method of making aluminum alloy sheet in a continuous in-line process is provided.
  • a continuously-cast aluminum alloy strip is optionally quenched, hot or warm rolled, annealed or heat-treated in-line, optionally quenched, and preferably coiled, with additional hot, warm or cold rolling steps as needed to reach the desired gauge.
  • the process can be used to make aluminum alloy sheet of T or O temper having the desired properties, in a much shorter processing time.
  • Patent application W02006/026330 discloses a method for producing aluminum vehicular structural parts or members such as from molten aluminum alloy using a continuous caster to cast the alloy into a slab. The method comprises providing a molten aluminum alloy consisting essentially of 2.7 to 3.6 wt.
  • % Mg 0.1 to 0.4 wt. % Mn, 0.02 to 0.2 wt. % Si, 0.05 to 0.30 wt. % Fe, 0.1 wt. % max. Cu, 0.25 wt. % max. Cr, 0.2 wt. % max. Zn, 0.15 wt. % max. Ti, the remainder aluminum, incidental elements and impurities and providing a continuous caster such as a belt caster, block caster or roll caster for continuously casting the molten aluminum alloy.
  • the molten aluminum alloy is cast into a slab which is rolled into a sheet product and then annealed.
  • the sheet has an improved distribution of intermetallic particles (Al-Fe, Al-Fe-Mn or Mg2Si) and improved formability. Thereafter, the sheet product is formed into the vehicular structural part or member with sufficient strength and formability required by automotive industry.
  • intermetallic particles Al-Fe, Al-Fe-Mn or Mg2Si
  • Rp yield strength
  • Au uniform elongation
  • A80 total elongation
  • a first object of the invention is a monolithic aluminium sheet made of a 5xxx series aluminium sheet comprising in wt.%
  • Another object of the invention is a method for producing a monolithic 5xxx series aluminium sheet according to the invention comprising the steps of
  • Still another object of the invention is the use of a 5xxx series aluminium sheet according to the invention for automobile manufacturing preferably as an automotive inner and/or a reinforcement.
  • Metallurgical tempers referred to are designated using the European standard EN-515. All the alloy compositions are provided in weight % (wt.%).
  • the tensile tests were performed according to ISO/DIS 6892-1.
  • the Lankford coefficient also called r value or anisotropy coefficient or perpendicular anisotropy or plastic strain ratio is measured according to DIN EN ISO 10113. It is the ratio of the true plastic width strain 8 b to the true plastic thickness strain s a in the uniform elongation region of a sample subjected to uniaxial tensile test.
  • the crystallographic texture can be described by a 3-dimensional mathematical function. This function is known in the trade as the Orientation Density Function (ODF). It is defined as the volume fraction of material dV/V having a g ⁇ dg orientation:
  • the ODF of each sheet was measured by using the method of spherical harmonics from four pole figures measured by X-ray diffraction on a conventional texture goniometer.
  • the pole figure measurements were performed on the full thickness of the considered sample.
  • the sample size was adapted to the grain size.
  • the volume fraction of crystallites that have a specific orientation is calculated. To do this, one arbitrarily defines the reference orientation and an angle of maximum disorientation around this orientation. The ODF is then integrated into the domain so defined, which makes it possible to deduce the relative volume of orientations in this domain relative to the total volume.
  • the present inventor used a tolerance of 15° around "cube”, “R”, “Q” and “CH” orientations in order to describe the texture obtained.
  • the " cube ", "brass”, “Q” and “CH” crystallographic orientations are known to those skilled in the art and are described in the Table 1 below. [Table 1]
  • Table 1 Textures orientations The inventors have found improved 5xxx aluminium alloy sheets which combine careful balance between different criteria: controlled strength for the car mechanical properties and pedestrian safety as well as sufficient surface quality.
  • the products obtained by the method of the invention are monolithic, i.e. not cladded, and combine high pedestrian safety properties and good formability properties, such as good drawability.
  • the Mg content is from 1.7 wt.% to 2.1 wt.% and preferably from 1.8 wt.% to 2.0 wt.%.
  • Mg is the main alloying element of the alloy and it contributes to strength improvement. When the Mg content is under 1.7% wt.%, strength improvement may be insufficient. On the other hand, a content exceeding 2.1 wt.% may result in a strength detrimental to pedestrian safety.
  • Minimum Mg content of 1.8 wt.%, or 1.82 wt.% or 1.85 wt.% may be advantageous.
  • Maximum Mg content of 2.0 wt.%, or 1.95 wt.% or 1.93 wt.% may be advantageous. In an embodiment the Mg content is from 1.8 wt.% to 2.0 wt.%.
  • Mn is also an effective element for strength improvement, crystal grain refining and structure stabilization.
  • the Mn content is from 0.1 wt.% to 0.5 wt.% and preferably from 0.2 wt.% to 0.5 wt.%, and more preferably from 0.35 wt.% to 0.45 wt.%.
  • Mn content When the Mn content is under 0.1 wt.%, the aforementioned effect is insufficient. On the other hand, a Mn content exceeding 0.5 wt.% may not only cause a saturation of the above effect but also cause the generation of multiple intermetallic compounds that could have an adverse effect on formability.
  • Minimum Mn content of 0.2 wt.%, or 0.26 wt.% or 0.30 wt.% or 0.32 wt.% or 0.35 wt.% may be advantageous.
  • Maximum Mn content of 0.50 wt.%, or 0.48 wt.% or 0.45 wt.% may be advantageous. In an embodiment the Mn content is from 0.2 wt.% to 0.5 wt.
  • the control of Fe is critical to reach the desired properties of the sheets of the invention.
  • the Fe content is from 0.10 wt.% to 0.22 wt.% and preferably from 0. 12 wt.% to 0.20 wt.%.
  • the present inventors have found that unexpectedly an Fe content above 0.22 wt.% and even above 0.20 wt.% results in a deterioration of the Lankford coefficient which renders forming ability to decrease. Although they are not bound to a particular theory the present inventors believe that this behaviour may be related to the influence of Fe on cube texture development. A Fe content under 0.10 wt.% may not produce a sufficient effect while an Fe content above 0.22 wt.% may not sufficiently promote cube texture. Consequently, the Fe content is set within a range of 0.10 wt.% to 0.22 wt.% and preferably 0.12 wt.% to 0.20 wt.%.
  • Minimum Fe content of 0.13 wt.%, or 0.14 wt.% or 0.15 wt.% may be advantageous.
  • Maximum Fe content of 0.20 wt.%, or 0.19 wt.% or 0.18 wt.% may be advantageous.
  • the Si content is from 0.05 wt.% to 0.25 wt.% and preferably from 0.08 wt.% to 0.20 wt.%. Excessive addition of Si may generate more Mg2Si phases that could have an adverse effect on formability.
  • Minimum Si content of 0.09 wt.%, or 0.10 wt.% or 0.12 wt.% may be advantageous.
  • Maximum Si content of 0.20 wt.%, or 0.19 wt.% or 0.18 wt.% may be advantageous.
  • the Cu content is from 0.01 wt.% to 0.20 wt.% and preferably from 0.02 wt.% to 0.15 wt.%.
  • Minimum Cu content of 0.02 wt.%, or 0.03 wt.% or 0.04 wt.% may be advantageous as Cu in solid solution may be beneficial for formability.
  • Maximum Cu content of 0.15 wt.%, or 0.10 wt.% or 0.08 wt.% may be advantageous as formation of Cu containing phases may have an adverse effect on formability.
  • the Cu content is from 0.04 wt.% to 0.08 wt.%.
  • the Cr content is up to 0.1 wt.%, preferably up to 0.05 and more preferably up to 0.03 wt.%. In an embodiment some Cr may be added for strength improvement, crystal grain refining and structure stabilization with a content from 0.01 wt.% to 0.04 wt %, preferably 0.03 wt.%. In another embodiment the Cr content is less than 0.01 wt.%.
  • Zn may be added up to 0.15 wt.% and preferably up to 0.10 wt.% without departing from the advantages of the invention. In an embodiment Zn is among the unavoidable impurities.
  • Zr may be added up to 0.1 wt.% and preferably up to 0.05 wt.% without departing from the advantages of the invention. In an embodiment Zr is among the unavoidable impurities.
  • Grain refiners comprising Ti are typically added with a total Ti content of up to 0.05 wt.% and preferably between 0.005 and 0.04 wt.% and even more preferably between 0.01 and 0.03 wt.%.
  • the rest is aluminium and unavoidable impurities up to 0.05 wt.% each and 0.15 wt.% total.
  • an ingot is prepared by casting, typically Direct-Chill casting, using 5xxx series aluminium alloys of the invention.
  • the ingot thickness is preferably at least 250 mm, or at least 350 mm and preferentially a very thick gauge ingot with a thickness of at least 400 mm, or even at least 500 mm or 600 mm in order to improve the productivity of the process.
  • the ingot is from 1000 to 2000 mm in width and 2000 to 8000 mm in length.
  • the ingot is scalped.
  • the ingot is then pre-heated typically at a temperature between 440°C and 520°C and hot rolled in two successive steps in order to obtain a sheet with a first hot rolling step on a reversible rolling mill also known as roughing mill up to a thickness of typically between 12 and 40 mm and a second hot rolling step on a tandem mill also known as finishing mill up to a thickness of typically between 3 and 12 mm.
  • a tandem mill is a rolling mill in which several cages supporting rolling mill rolls, typically 2, 3, 4 or 5 act successively ("in tandem").
  • rough hot rolling on the reversible mill is done with a rough hot rolling entry temperature of more than 440 °C and preferably more than 460 °C.
  • the first step on a reversible mill can be carried out on one or even two reversible mills placed successively.
  • the final temperature which is the hot rolling exit temperature should be at least 280 ° C, preferably at least 300 °C and most preferably at least 335 °C so that preferably the hot rolled sheet obtained after finish hot rolling exhibit at least 50% recrystallization rate and preferably at least 80% recrystallization rate.
  • Cold rolling is realized directly after the hot rolling step to further reduce the thickness of the aluminium sheets.
  • annealing after hot rolling or during cold rolling is not necessary to obtain sufficient strength, formability, surface quality and corrosion resistance.
  • Preferably no annealing after hot rolling or during cold rolling is carried out.
  • the sheet directly obtained after cold rolling is referred to as the cold rolled sheet.
  • the cold rolled sheet thickness is typically between 0.5 and 2.5 mm and preferably between 0.7 and 2 mm.
  • the cold rolling reduction is at least 40%, or at least 50%. Typically, the cold rolling reduction is at most 70%.
  • Advantageous embodiments of cold rolling reduction may enable to obtain improved mechanical properties in particular advantageous Lankford coefficient.
  • the cold rolled sheet is preferably annealed in order to obtain a O temper which has a fully recrystallized microstructure, preferably in a continuous annealing line.
  • the continuous annealing line is operated in such a way that a temperature of at least 320 °C, preferably at least 340 °C and at most 500°C or preferably at most 440 °C is reached by the sheet, most preferably between 360°C and 400 °C.
  • the continuous annealing line is operated such that the heating rate of the sheet is at least 10°C/s and the time above 340 °C is between 5 s and 25 s.
  • the coiling temperature after annealing is preferably up to 85 °C, preferably up to 65 °C and more preferably between 40 °C and 60 °C.
  • the annealing may be carried out by batch annealing at a temperature of at most 440 °C.
  • the sheet After annealing the sheet may be cut and formed to its final shape, painted and bake hardened.
  • a thermal treatment is carried to obtain a H2X temper, preferably a H24 temper.
  • the 5xxx series aluminium sheets of the invention in the O temper have a Lankford coefficient of at least 0.605, preferably of at least 0.610. In an embodiment wherein the maximum Fe content is 0.20 wt.%, the sheets of the invention in the O temper have Lankford coefficient of at least 0.615.
  • the 5xxx series aluminium sheets of the invention in the O temper have a volume fraction of cube texture of at least 13%, preferably 13.0%, preferably of at least 14%, preferably 14.0%, preferentially of at least 15% and preferably at least 15.0%.
  • the 5xxx series aluminium sheets of the invention in the O temper have a volume fraction of R texture of at most 11.0%, preferably of at most 10.0%.
  • the sheets of the invention in the O temper have a volume fraction of cube texture of at least 14%, preferably 14.0%, preferentially of at least 15% and preferably 15.0%. In an embodiment wherein the maximum Fe content is 0.20 wt.%, the sheets of the invention in the O temper have a volume fraction of R texture of at most 10.0%.
  • the products of the invention in the O temper have preferably a TYS in the LT direction, referred to as TYS(LT)o, between 50 MPa and 100 MPa, advantageously between 60 MPa and 98 MPa and preferably between 65 MPa and 95 MPa.
  • the products of the invention in the O temper have after bake hardening (5% stretching and 20 min at 185 °C), a TYS in the LT direction referred to as TYS(LT) BH , between 90 MPa and 150 MPa, advantageously between 95 MPa and 140 MPa and preferably between 100 MPa and 135 MPa.
  • the ingots were pre-heated at 490°C and hot rolled with a starting temperature as disclosed in Table 3.
  • the recrystallization rate of the hot rolled strips after hot rolling was more than 50%.
  • the sheets were annealed at 380 °C in a continuous annealing line to a fully recrystallized O-temper and conversion coated.
  • the sheets are fully recrystallized as shown in the figure 1 because grains are equiaxed and there remain no long and thin grain typical of rolled grains.
  • the mechanical properties are provided in Table 4.
  • the 0.2% tensile yield strength, TYS, and ultimate tensile strength, UTS, of the O temper and bake hardened sheets (5% stretching and 20 min at 185 °C) from those O temper sheets were determined in the transverse direction using methods known to one of ordinary skill in the art.
  • the tensile tests were performed according to ISO/DIS 6892-1. The results are provided in Table 4.

Abstract

L'invention concerne une tôle d'aluminium monolithique constituée d'une tôle d'aluminium de série 5xxx comprenant en % en poids de Mg : 1,7 à 2,1 ; Mn : 0,1 à 0,5, Fe : 0,10 à 0,22 ; Si : 0,05 à 0,25, Cu : 0,01 à 0,20, Cr jusqu'à 0,1, Zn jusqu'à 0,15, Zr jusqu'à 0,1, Ti jusqu'à 0,05 % en poids, le reste étant de l'aluminium et des impuretés inévitables jusqu'à 0,05 chacun et 0,15 au total. Un procédé de production de la tôle d'aluminium de série 5xxx monolithique selon l'invention comprend les étapes de coulée, de préchauffage, de laminage brut à chaud sur un laminoir réversible avec une température d'entrée de laminage brut à chaud de plus de 440 °C, de laminage à chaud de finition du lingot avec une température de sortie de laminage à chaud d'au moins 280 °C, de laminage à froid. L'invention est utile pour la fabrication automobile.
PCT/EP2022/060442 2021-04-21 2022-04-20 Tôles d'aluminium 5xxx à haute formabilté WO2022223634A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023564393A JP2024514929A (ja) 2021-04-21 2022-04-20 高い形成性を有する5xxxアルミニウムシート
EP22724033.0A EP4326917A1 (fr) 2021-04-21 2022-04-20 Tôles d'aluminium 5xxx à haute formabilté
CN202280029910.5A CN117178068A (zh) 2021-04-21 2022-04-20 具有高可成型性的5xxx铝板
KR1020237039861A KR20230173173A (ko) 2021-04-21 2022-04-20 높은 성형성을 갖는 5xxx 알루미늄 시트
CA3215051A CA3215051A1 (fr) 2021-04-21 2022-04-20 Toles d'aluminium 5xxx a haute formabilte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2104165 2021-04-21
FR2104165A FR3122187B1 (fr) 2021-04-21 2021-04-21 Tôles d’aluminium 5xxx dotée d’une aptitude à la mise en forme élevée

Publications (1)

Publication Number Publication Date
WO2022223634A1 true WO2022223634A1 (fr) 2022-10-27

Family

ID=76730717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/060442 WO2022223634A1 (fr) 2021-04-21 2022-04-20 Tôles d'aluminium 5xxx à haute formabilté

Country Status (7)

Country Link
EP (1) EP4326917A1 (fr)
JP (1) JP2024514929A (fr)
KR (1) KR20230173173A (fr)
CN (1) CN117178068A (fr)
CA (1) CA3215051A1 (fr)
FR (1) FR3122187B1 (fr)
WO (1) WO2022223634A1 (fr)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593034A2 (fr) 1992-10-13 1994-04-20 Kawasaki Steel Corporation Tôle en alliage d'aluminium ayant une excellente plasticité et sa méthode de production
JPH07197176A (ja) 1993-12-28 1995-08-01 Kobe Steel Ltd 開缶性に優れたフルオープンエンド用Al合金板とその製造方法
JPH09279281A (ja) 1996-04-12 1997-10-28 Furukawa Electric Co Ltd:The 耐蝕性に優れた缶蓋材用Al合金焼付塗装板とその製造方法
WO1998024940A1 (fr) 1996-12-04 1998-06-11 Alcan International Limited Alliage d'aluminium et procede
JP2002212661A (ja) 2001-01-12 2002-07-31 Sky Alum Co Ltd エンボス成形加工用アルミニウム合金板およびエンボス成形加工用アルミニウム合金塗装板
WO2004090184A1 (fr) 2003-04-08 2004-10-21 Hydro Aluminium Deutschland Gmbh Semi-produit plat, lamine, en alliage d'aluminium
US20050183801A1 (en) * 2004-02-19 2005-08-25 Ali Unal In-line method of making heat-treated and annealed aluminum alloy sheet
WO2006026330A2 (fr) 2004-08-27 2006-03-09 Commonwealth Industries, Inc. Elements structuraux en aluminium pour automobiles
FR2878255A1 (fr) 2004-11-25 2006-05-26 Corus Aluminium Nv Tole en alliage d'aluminium pour automobiles, piece faconnee a partir de cette tole, et procedes de production de cette tole et de cette piece
US20070217943A1 (en) 2004-04-23 2007-09-20 Pizhi Zhao Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same
WO2008010352A1 (fr) 2006-07-18 2008-01-24 Nippon Light Metal Company, Ltd. Plaque en alliage d'aluminium à haute résistance et son procédé de fabrication
EP2121419A2 (fr) 2007-03-07 2009-11-25 Alcoa Inc. Capot d'automobile pour la protection des piétons comportant une mousse de renfort
WO2011011744A2 (fr) 2009-07-24 2011-01-27 Alcoa Inc. Alliages en aluminium 5xxx améliorés et produits en alliage d'aluminium corroyé élaborés à partir de ces alliages
EP2328748A1 (fr) 2008-08-13 2011-06-08 Novelis, Inc. Tôle plaquée pour automobile
US20120234437A1 (en) 2003-11-20 2012-09-20 Corrado Bassi Automobile body part
WO2016077044A1 (fr) 2014-11-11 2016-05-19 Novelis Inc. Alliages d'aluminium à usages multiples pouvant subir un traitement thermique et procédés et utilisations associés
WO2018005442A1 (fr) 2016-06-28 2018-01-04 Novelis Inc. Alliages d'aluminium de qualité anodisée, ainsi que produits et procédés associés
WO2018033537A2 (fr) 2016-08-15 2018-02-22 Hydro Aluminium Rolled Products Gmbh Alliage d'aluminium et bande en alliage d'aluminium pour la protection des piétons en cas de collision
WO2020120267A1 (fr) 2018-12-11 2020-06-18 Constellium Neuf-Brisach Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface
WO2020185920A1 (fr) 2019-03-13 2020-09-17 Novelis Inc. Alliages d'aluminium durcissables par vieillissement et à formabilité élevée, feuille monolithique fabriquée à partir de ces derniers et produit en alliage d'aluminium plaqué la comprenant

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593034A2 (fr) 1992-10-13 1994-04-20 Kawasaki Steel Corporation Tôle en alliage d'aluminium ayant une excellente plasticité et sa méthode de production
JPH07197176A (ja) 1993-12-28 1995-08-01 Kobe Steel Ltd 開缶性に優れたフルオープンエンド用Al合金板とその製造方法
JPH09279281A (ja) 1996-04-12 1997-10-28 Furukawa Electric Co Ltd:The 耐蝕性に優れた缶蓋材用Al合金焼付塗装板とその製造方法
WO1998024940A1 (fr) 1996-12-04 1998-06-11 Alcan International Limited Alliage d'aluminium et procede
JP2002212661A (ja) 2001-01-12 2002-07-31 Sky Alum Co Ltd エンボス成形加工用アルミニウム合金板およびエンボス成形加工用アルミニウム合金塗装板
WO2004090184A1 (fr) 2003-04-08 2004-10-21 Hydro Aluminium Deutschland Gmbh Semi-produit plat, lamine, en alliage d'aluminium
US20120234437A1 (en) 2003-11-20 2012-09-20 Corrado Bassi Automobile body part
US20050183801A1 (en) * 2004-02-19 2005-08-25 Ali Unal In-line method of making heat-treated and annealed aluminum alloy sheet
WO2005080619A1 (fr) 2004-02-19 2005-09-01 Alcoa Inc. Procede en ligne de fabrication de feuille d'alliage en aluminium traitee thermiquement et recuite
US20070217943A1 (en) 2004-04-23 2007-09-20 Pizhi Zhao Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same
WO2006026330A2 (fr) 2004-08-27 2006-03-09 Commonwealth Industries, Inc. Elements structuraux en aluminium pour automobiles
CN101166845A (zh) * 2004-08-27 2008-04-23 联邦工业有限公司 铝汽车结构构件
FR2878255A1 (fr) 2004-11-25 2006-05-26 Corus Aluminium Nv Tole en alliage d'aluminium pour automobiles, piece faconnee a partir de cette tole, et procedes de production de cette tole et de cette piece
WO2006056481A1 (fr) 2004-11-25 2006-06-01 Corus Aluminium Nv Feuille d'alliage a base d'aluminium pour des applications dans l'industrie automobile
WO2008010352A1 (fr) 2006-07-18 2008-01-24 Nippon Light Metal Company, Ltd. Plaque en alliage d'aluminium à haute résistance et son procédé de fabrication
EP2121419A2 (fr) 2007-03-07 2009-11-25 Alcoa Inc. Capot d'automobile pour la protection des piétons comportant une mousse de renfort
EP2328748A1 (fr) 2008-08-13 2011-06-08 Novelis, Inc. Tôle plaquée pour automobile
WO2011011744A2 (fr) 2009-07-24 2011-01-27 Alcoa Inc. Alliages en aluminium 5xxx améliorés et produits en alliage d'aluminium corroyé élaborés à partir de ces alliages
WO2016077044A1 (fr) 2014-11-11 2016-05-19 Novelis Inc. Alliages d'aluminium à usages multiples pouvant subir un traitement thermique et procédés et utilisations associés
WO2018005442A1 (fr) 2016-06-28 2018-01-04 Novelis Inc. Alliages d'aluminium de qualité anodisée, ainsi que produits et procédés associés
WO2018033537A2 (fr) 2016-08-15 2018-02-22 Hydro Aluminium Rolled Products Gmbh Alliage d'aluminium et bande en alliage d'aluminium pour la protection des piétons en cas de collision
WO2020120267A1 (fr) 2018-12-11 2020-06-18 Constellium Neuf-Brisach Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface
WO2020185920A1 (fr) 2019-03-13 2020-09-17 Novelis Inc. Alliages d'aluminium durcissables par vieillissement et à formabilité élevée, feuille monolithique fabriquée à partir de ces derniers et produit en alliage d'aluminium plaqué la comprenant
US20200291503A1 (en) * 2019-03-13 2020-09-17 Novelis Inc. Age-hardenable and highly formable aluminum alloys and methods of making the same

Also Published As

Publication number Publication date
FR3122187B1 (fr) 2024-02-16
CN117178068A (zh) 2023-12-05
FR3122187A1 (fr) 2022-10-28
EP4326917A1 (fr) 2024-02-28
KR20230173173A (ko) 2023-12-26
JP2024514929A (ja) 2024-04-03
CA3215051A1 (fr) 2022-10-27

Similar Documents

Publication Publication Date Title
JP4901757B2 (ja) アルミニウム合金板、及びその製造方法
EP2169088B1 (fr) Tole D'ALLIAGE D'ALUMINIUM POUR MOULAGE À LA PRESSE
US20150368771A1 (en) Aluminium alloy for producing semi-finished products or components for motor vehicles, method for producing an aluminium alloy strip from said aluminium alloy, and aluminium alloy strip and uses therefore
US20030029531A1 (en) Process for making aluminum alloy sheet having excellent bendability
DK2219860T3 (en) Coated sheet metal product and process for its manufacture
CA2766327C (fr) Bande en almgsi pour applications a exigences elevees de deformation
WO2020120267A1 (fr) Procédé de fabrication de tôles d'aluminium 6xxx présentant une haute qualité de surface
CN114450425B (zh) 铝合金精密板
EP3662091A1 (fr) Produit en feuille laminé de série 6xxxx à formabilité améliorée
WO2015155911A1 (fr) Plaque en un alliage d'aluminium présentant une haute résistance et d'exceptionnelles aptitude au pliage et capacité de fixation de forme et son procédé de fabrication
JP2004250738A (ja) Al−Mg系合金板
JP2008190022A (ja) Al−Mg−Si系合金熱延上り板およびその製造法
JP2004010982A (ja) 曲げ加工性とプレス成形性に優れたアルミニウム合金板
JP2008231475A (ja) 成形加工用アルミニウム合金板およびその製造方法
JP3749627B2 (ja) プレス成形性に優れたAl合金板
EP4326917A1 (fr) Tôles d'aluminium 5xxx à haute formabilté
JPH09268341A (ja) スコア部の耐応力腐食割れ性に優れた缶蓋材用Al合金焼付塗装板とその製造方法
JP4202894B2 (ja) Mg含有Al合金
JP3208234B2 (ja) 成形性に優れた成形加工用アルミニウム合金板およびその製造方法
CN114086034B (zh) Al-Mg-Si系铝合金板
JP2003286552A (ja) Al−Mg−Si系合金板の製造方法
JPH10102179A (ja) プレス成形性および塗装焼付硬化性に優れたアルミニウム合金板およびその製造方法
JP2003321723A (ja) 曲げ加工性に優れたアルミニウム合金板
JP2024509070A (ja) 高強度5xxxアルミニウム合金の変種及びその調製方法
JPH07252570A (ja) 自動車パネル用Al−Mg−Si系合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22724033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3215051

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18556008

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023564393

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237039861

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039861

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022724033

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022724033

Country of ref document: EP

Effective date: 20231121