WO2022222613A1 - 一种射频前端电路及电子设备 - Google Patents

一种射频前端电路及电子设备 Download PDF

Info

Publication number
WO2022222613A1
WO2022222613A1 PCT/CN2022/079145 CN2022079145W WO2022222613A1 WO 2022222613 A1 WO2022222613 A1 WO 2022222613A1 CN 2022079145 W CN2022079145 W CN 2022079145W WO 2022222613 A1 WO2022222613 A1 WO 2022222613A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
transceiver
amplifier module
bus
end circuit
Prior art date
Application number
PCT/CN2022/079145
Other languages
English (en)
French (fr)
Inventor
杨永行
Original Assignee
惠州Tcl云创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl云创科技有限公司 filed Critical 惠州Tcl云创科技有限公司
Publication of WO2022222613A1 publication Critical patent/WO2022222613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of mobile communication, and in particular, to a radio frequency front-end circuit and an electronic device.
  • the existing combination design needs to use multiple PA (PowerAmplifier: power amplifier) or PAMID (PA+Duplexer+Filter+ASM: power amplifier module with integrated duplexer) to achieve different ENDC combinations, for example, at the same time
  • PA PowerAmplifier: power amplifier
  • PAMID PA+Duplexer+Filter+ASM: power amplifier module with integrated duplexer
  • Three PAs are required to implement the following ENDC combinations, and the three power amplifiers support three LTE and NR dual-connection modes: LTE B3&NR N3, LTE B3&NRN7, and LTE B28&NR N2. All ENDC combinations must follow two different links.
  • the power amplifier In the signal transmission mode, in order to adapt to a variety of ENDC combinations, the power amplifier is required to be able to receive input signals transmitted by two different links, so that one of the links can be arbitrarily selected to receive the input signal to complete the ENDC combination when the ENDC is combined;
  • the input signal of the power amplifier in the existing RF front-end circuit comes from the same transmission chain, which limits the combination of ENDCs.
  • the purpose of the present disclosure is to provide a radio frequency front-end circuit and electronic equipment, by setting two transmission chains and an independent transmission bus, to ensure that the power amplifier is not restricted when the ENDC is combined , so as to solve the problem that the existing RF front-end circuit ENDC combination is limited.
  • a radio frequency front-end circuit including a transceiver, a power amplifier, a first transmit chain, a second transmit chain, a first bus, a first power amplifier module, a second power amplifier module, a second bus, and a third bus ;
  • the first transmission chain is used for transmitting the low frequency band signal sent by the transceiver to the power amplifier;
  • the second transmission chain is used for transmitting the mid frequency band signal and the high frequency band signal sent by the transceiver transmitting to the power amplifier;
  • the first bus is used for transmitting the first control signal sent by the transceiver to the power amplifier;
  • the second bus is used for transmitting the second control signal sent by the transceiver the first power amplifier module;
  • the third bus is used for transmitting the third control signal sent by the transceiver to the second power amplifier module;
  • the first transmission link is also used for transmitting the transceiver The high-frequency signal sent by the transceiver is transmitted to the first power amplifier module; the second transmission link is also used
  • the power amplifier includes a first power supply pin, a second power supply pin and a third power supply pin; an external power supply provides the power amplifier with a first power supply through the first power supply pin, or A second power supply is provided for the power amplifier through a second power supply pin, or a third power supply is provided for the power amplifier through a third power supply pin.
  • the power amplifier is a multi-mode multi-frequency power amplifier.
  • the first power amplifier module includes a first antenna, a second antenna and a third antenna; the first antenna is connected to the first power amplifier module, and the second antenna is connected to the second antenna The power amplifier module is connected, and the third antenna is connected with the power amplifier.
  • the first power amplifier module includes a duplexer-integrated power amplifier module
  • the second power amplifier module includes a duplexer-integrated power amplifier module
  • the first bus is a MIPI bus.
  • the second bus and the third bus are both MIPI buses.
  • a second aspect of the present disclosure provides a radio frequency front-end circuit, including a transceiver, a power amplifier, a first transmit chain, a second transmit chain, and a first bus; the first transmit chain is used to connect the transceiver The transmitted low-frequency signal is transmitted to the power amplifier; the second transmission link is used for transmitting the mid-frequency signal and the high-frequency signal transmitted by the transceiver to the power amplifier; the first bus is used for transmitting The first control signal sent by the transceiver is transmitted to the power amplifier.
  • the radio frequency front-end circuit further includes a first power amplifier module, a second power amplifier module, a second bus and a third bus; the second bus is used for transmitting the second control signal sent by the transceiver to the first power amplifier. a power amplifier module; the third bus is used for transmitting the third control signal sent by the transceiver to the second power amplifier module.
  • the first transmission chain is further used to transmit the high frequency band signal sent by the transceiver to the first power amplifier module; the second transmission chain is also used to transmit the high frequency signal sent by the transceiver to the first power amplifier module; The low-frequency signal sent by the transceiver is transmitted to the second power amplifier module.
  • the power amplifier includes a first power supply pin, a second power supply pin and a third power supply pin; an external power supply provides the power amplifier with a first power supply through the first power supply pin, Either a second power supply is provided for the power amplifier through a second power supply pin, or a third power supply is provided for the power amplifier through a third power supply pin.
  • the power amplifier is a multi-mode multi-frequency power amplifier.
  • the first power amplifier module includes a first antenna, a second antenna and a third antenna; the first antenna is connected to the first power amplifier module, and the second antenna is connected to the first antenna.
  • the second power amplifier module is connected, and the third antenna is connected with the power amplifier.
  • the first power amplifier module includes a duplexer-integrated power amplifier module
  • the second power amplifier module includes a duplexer-integrated power amplifier module
  • the first bus is an MIPI bus.
  • both the second bus and the third bus are MIPI buses.
  • Three aspects of the present disclosure provide an electronic device including the above-mentioned radio frequency front-end circuit.
  • the present disclosure provides a radio frequency front-end circuit and electronic equipment, wherein the radio frequency front-end circuit includes a transceiver, a power amplifier, a first transmission link, a second transmission link and a first bus; the The first transmission chain is used for transmitting the low frequency band signal sent by the transceiver to the power amplifier; the second transmission chain is used for transmitting the mid frequency band signal and the high frequency band signal sent by the transceiver to the power amplifier; the power amplifier; the first bus is used to transmit the first control signal sent by the transceiver to the power amplifier; the present disclosure ensures that the power amplifier is in the ENDC by setting two transmission links and an independent transmission bus The combination is not limited, and any combination with other power amplifiers can be realized, thereby solving the problem that the existing radio frequency front-end circuit ENDC is limited in combination, and ensuring that the power amplifier can work normally and stably.
  • FIG. 1 is a structural block diagram of a radio frequency front-end circuit provided by the present disclosure
  • FIG. 2 is a schematic diagram of a power amplifier in a radio frequency front-end circuit provided by the present disclosure
  • FIG. 3 is a schematic diagram of a radio frequency front-end circuit provided by the present disclosure.
  • the present disclosure provides a radio frequency front-end circuit and electronic equipment. By setting two transmit chains and an independent transmission bus, it is ensured that the power amplifier is not restricted when the ENDC is combined, thereby solving the problem that the existing radio frequency front-end circuit is limited by the ENDC combination. question.
  • a radio frequency front-end circuit includes a transceiver 100, a power amplifier 200, a first transmit chain, a second transmit chain, and a first bus; the transceiver 100 and the power amplifier 200 Electrical connection; wherein, the first transmission link is used to transmit the low frequency signal sent by the transceiver 100 to the power amplifier 200; the second transmission link is used to transmit the transceiver 100 The mid-band signal and the high-band signal are transmitted to the power amplifier 200; the first bus is used to transmit the first control signal sent by the transceiver 100 to the power amplifier 200; The link and an independent transmission bus ensure that the power amplifier 200 is not limited in the ENDC combination, and can be combined with other power amplifiers 200 arbitrarily, thereby solving the problem that the existing RF front-end circuit ENDC combination is limited.
  • the transceiver 100 when the radio frequency front-end circuit participates in signal transmission, if a low-frequency signal needs to be transmitted, the transceiver 100 sends a low-frequency signal to the power amplifier 200 through the first transmission link, and the power amplifier 200 amplifies the low-band signal and outputs it, so as to facilitate subsequent transmission of the low-band signal; if the mid-band signal and the high-band signal need to be transmitted, the transceiver 100 passes the second link Send the intermediate frequency signal and the high frequency signal to the power amplifier 200, and then the power amplifier 200 amplifies the intermediate frequency signal and the high frequency signal and outputs it, so as to facilitate the subsequent transmission of the intermediate frequency signal and the high frequency signal.
  • the high-frequency signal thus enables the power amplifier 200 to alternately operate in the first transmission chain and the second transmission chain.
  • the power amplifier 200 is an MMPA (Multimode multifrequency PA: Multimode Multifrequency Power Amplifier 200); wherein, the operation of the power amplifier 200 is controlled by the transceiver 100, that is, the transceiver 100 A related control signal will be output to control the operation of the power amplifier 200 to ensure that the power amplifier 200 can work normally and stably.
  • MMPA Multimode multifrequency PA: Multimode Multifrequency Power Amplifier 200
  • a transmission bus is independently set between the power amplifier 200 and the transceiver 100 in the present disclosure, namely, the If the first bus is used, the transceiver 100 transmits a first control signal to the power amplifier 200 through the first bus.
  • the first control signal is the relevant control command required for the power amplifier 200 to work.
  • the power amplifier 200 is provided with a single transmission bus, which can effectively avoid the conflict between the power amplifier 200 and the transmission buses of other power amplifiers when the power amplifier 200 is used in combination with the ENDC; the present disclosure provides two transmission links and an independent transmission bus by setting , to ensure that the power amplifier 200 is not limited in the combination of ENDC, and can realize any combination with other power amplifiers, thereby solving the problem that the combination of the existing radio frequency front-end circuit is limited by the ENDC.
  • the radio frequency front-end circuit further includes a first power amplifier module 300, a second power amplifier module 400, a second bus and a third bus, and the first power amplifier module 300 and the second power amplifier module 400 communicate with the transceiver respectively.
  • the power amplifier 200 , the first power amplifier module 300 and the second power amplifier module 400 are all electrically connected to the transceiver 100 , respectively.
  • the first power amplifier module 300 and the second power amplifier module 400 both include PAMID (PA+Duplexer+Filter+ASM: power amplifier module with integrated duplexer), and the first power amplifier module 300 is referred to as PAMID1 , the second power amplifier module 400 is PAMID2; wherein, the combination of the power amplifier 200, the first power amplifier module 300 and the second power amplifier module 400 can realize the ENDC mode; the second bus is used for for transmitting the second control signal sent by the transceiver 100 to the first power amplifier module 300; the third bus is used for transmitting the third control signal sent by the transceiver 100 to the second power amplifier module 400; the first power amplifier module 300, the second power amplifier module 400 and the power amplifier 200 each have a bus connected to the transceiver 100.
  • the transceiver 100 can pass The bus transmits control signals to the first power amplifier module 300, the second power amplifier module 400 and the power amplifier 200 to ensure that the power amplifier module and the power amplifier 200 can work normally.
  • the operations of the power amplifier 200 , the first power amplifier module 300 and the second power amplifier module 400 are controlled by the transceiver 100 .
  • the transceiver 100 needs to control the operation of the first power amplifier module 300
  • the transceiver 100 transmits a second control signal to the first power amplifier module 300 through the second bus
  • the first power amplifier module 300 is controlled to enter a corresponding working state
  • the transceiver 100 needs to control
  • the transceiver 100 transmits a third control signal to the second power amplifier module 400 through the third bus to control the second power amplifier module 400 to perform a corresponding working state
  • the transceiver 100 transmits the first control signal to the power amplifier 200 through the first bus.
  • the power amplifier 200 will not share the bus with another power amplifier, thereby effectively avoiding the transmission bus of the power amplifier 200 and other power amplifiers 200 when the power amplifier 200 is used in combination with other power amplifiers 200 Conflict occurs; the present disclosure ensures that the power amplifier 200 is not restricted when the ENDC is combined, and can realize any combination with other power amplifiers 200 by setting two transmission chains and an independent transmission bus, thereby solving the existing RF front-end circuit.
  • the problem of limited ENDC combination ensures that the power amplifier 200 can work normally and stably.
  • the first transmission link is also used to transmit the high frequency band signal sent by the transceiver 100 to the first power amplifier module 300 ;
  • the second transmission link is also used to transmit the transceiver 100
  • the sent low-frequency signal is transmitted to the second power amplifier module 400; when the radio frequency front-end circuit participates in signal transmission, when the transceiver 100 transmits a signal to the first power amplifier module 300, it is through the first power amplifier module 300.
  • the transmission link transmits the high-frequency signal to the first power amplifier module 300, and then the first power amplifier module 300 amplifies the high-frequency signal and outputs it for subsequent transmission; the transceiver 100 sends When the second power amplifier module 400 transmits a signal, it transmits a low frequency signal to the second power amplifier module 400 through the second transmission link, and then the second power amplifier module 400 transmits the low frequency signal. Amplified and output to facilitate subsequent transmission, thereby selecting different transmission chains for transmission according to signals in different frequency bands, avoiding that the input signal of the power amplifier module comes from the same transmission chain.
  • the power amplifier 200 includes a first power supply pin, a second power supply pin and a third power supply pin, wherein the first power supply pin is VCC1, and the second power supply pin is VCC2, so the The third power supply pin is VCC2_2; the external power supply provides the first power supply for the power amplifier 200 through the first power supply pin, or provides the second power supply for the power amplifier 200 through the second power supply pin, or provides the power amplifier 200 with the second power supply through the second power supply pin.
  • the three power supply pins provide a third power supply for the power amplifier 200.
  • the model of the power amplifier 200 is QM56030;
  • the second power amplifier module 400 is externally provided with a second power supply; when the power amplifier 200 is used in combination with the first power amplifier module 300 to implement the ENDC mode, the first power amplifier module 300 is powered by an external third power supply. , then the power amplifier 200 receives the first power supply provided externally through the first power supply pin or the second power supply provided externally through the second power supply pin, and the third power supply pin does not participate in the work;
  • the second power amplifier module 400 is provided with a second power supply from the outside, and then the power amplifier 200 passes through the first power supply pin.
  • the externally provided first power supply or the third power supply pin receives the externally provided third power supply, and the second power supply pin does not participate in the work.
  • the first power supply supplies power for the first stage, which can supply power to all power amplifiers 200, and consumes less power;
  • the second power supply supplies power to the last stage power amplifiers 200 with medium bandwidth and high bandwidth, and consumes more power;
  • the third power supply supplies power to the last-stage power amplifier 200 with low bandwidth, and consumes a large amount of power; thus, using different power supplies for power supply for different power amplifiers 200 can effectively improve power consumption, and facilitate the power amplifier 200 to operate in different
  • the required power supply can be selected in the ENDC mode to facilitate the realization of different ENDC modes.
  • the transceiver 100 transmits a first control signal to the power amplifier 200 through the first bus to control the power amplifier 200 normal operation of the first power amplifier module 300, and the second control signal of the first power amplifier module 300 is transmitted by the transceiver 100 through the second bus to control the normal operation of the first power amplifier module 300;
  • the power amplifier 200 participates in the processing of 4G signals, and the first power amplifier module 300 participates in the processing of 5G signals;
  • the first power amplifier module 300 receives the high-frequency signal transmitted by the transceiver 100 through the first transmission link, and then uses The first power amplifier module 300 amplifies the high-frequency signal and outputs it; wherein, the power amplifier 200 receives the low-frequency signal transmitted by the transceiver 100 through the first transmission link, and can also use the
  • the second transmission link receives the mid-band signal and the high-band signal transmitted by the transceiver 100, and the power amplifier 200 amplifies the low-band signal received through the
  • the transceiver 100 transmits a first control signal to the power amplifier 200 through the first bus to control the power amplifier 200 normal operation of the second power amplifier module 400, and the third control signal of the second power amplifier module 400 is transmitted by the transceiver 100 through the third bus to control the normal operation of the second power amplifier module 400;
  • the power amplifier 200 participates in the processing of 4G signals, and the second power amplifier module 400 participates in the processing of 5G signals;
  • the second power amplifier module 400 receives the low-frequency signal transmitted by the transceiver 100 through the second transmission link, and then receives The second power amplifier module 400 amplifies the low-frequency signal and outputs it; wherein, the power amplifier 200 receives the low-frequency signal transmitted by the transceiver 100 through the first transmission link, and can also use the The second transmission link receives the mid-band signal and the high-band signal transmitted by the transceiver 100, and the power amplifier 200 amplifies the low-band signal received through
  • the transceiver 100 transmits a second control signal to the first power amplifier module 300 through the second bus to control the The first power amplifier module 300 works normally, and the third control signal of the second power amplifier module 400 is transmitted by the transceiver 100 through the third bus to control the normal operation of the second power amplifier module 400;
  • the first power amplifier module 300 can participate in both 4G signal processing and 5G signal processing.
  • the second power amplifier module 400 can participate in both 5G signal processing and 4G signal processing.
  • the second power amplifier module 400 participates in the processing of 5G signals
  • the second power amplifier The module 400 participates in the processing of 4G signals, thereby realizing the ENDC mode; the second power amplifier module 400 receives the low-frequency signal transmitted by the transceiver 100 through the second transmission link, and then the second power amplifier module 400 sends The low-frequency signal is amplified and output; wherein, the first power amplifier module 300 receives the low-frequency signal transmitted by the transceiver 100 through the first transmission link, and the first power amplifier module 300 transmits the signal through the first transmission link.
  • the low-frequency signal received by a transmission chain is amplified and output, so as to facilitate subsequent signal transmission.
  • the first power amplifier module 300 includes a first antenna ANT1, a second antenna ANT2 and a third antenna ANT3; the first antenna ANT1 is connected to the first power amplifier module 300, and the first antenna ANT1 is connected to the first power amplifier module 300.
  • the second antenna ANT2 is connected to the second power amplifier module 400, the third antenna ANT3 is connected to the power amplifier 200; the transceiver 100, the first power amplifier module 300 and the first antenna ANT1 form a transceiver
  • the transceiver 100, the power amplifier 200 and the third antenna ANT3 form a transceiving path, and the transceiver 100, the second power amplifier module 400 and the second antenna ANT2 form a transceiving path.
  • the transceiver 100 transmits a first control signal to the power amplifier 200 through the first bus to control all The power amplifier 200 works normally, and the second control signal of the first power amplifier module 300 is transmitted by the transceiver 100 through the second bus to control the normal operation of the first power amplifier module 300;
  • the power amplifier 200 participates in the processing of 4G signals
  • the first power amplifier module 300 participates in the processing of 5G signals
  • the first power amplifier module 300 receives the high frequency band transmitted by the transceiver 100 through the first transmission link TX0 corresponds to the first transmission link, and TX1 corresponds to the second transmission link
  • the first power amplifier module 300 amplifies the high-frequency signal and outputs it to the first antenna ANT1, where the The first antenna ANT1 transmits the amplified high-frequency signal; wherein, the power amplifier 200 receives the low-frequency signal transmitted by the transceiver 100 through the first
  • the transmit chain receives the mid-band signal and the high-frequency signal transmitted by the transceiver 100, and the power amplifier 200 amplifies the low-frequency signal received through the first transmit chain and outputs it to the third antenna ANT3, and transmits the signal through the first transmit link.
  • the mid-frequency signal and the high-frequency signal received by the second transmission link are amplified and output to the third antenna ANT3, and the amplified signal is transmitted by the third antenna ANT3 to facilitate subsequent communication.
  • the transceiver 100 transmits a first control signal to the power amplifier 200 through the first bus to control the power amplifier 200 normal operation of the second power amplifier module 400, and the third control signal of the second power amplifier module 400 is transmitted by the transceiver 100 through the third bus to control the normal operation of the second power amplifier module 400;
  • the power amplifier 200 participates in the processing of 4G signals, and the second power amplifier module 400 participates in the processing of 5G signals;
  • the second power amplifier module 400 receives the low-frequency signal transmitted by the transceiver 100 through the second transmission link, and then receives The second power amplifier module 400 amplifies the low-frequency signal and outputs it to the second antenna ANT2, and the second antenna ANT2 transmits the amplified signal; wherein, the power amplifier 200 passes the first The transmit link receives the low-frequency signal transmitted by the transceiver 100, and can also receive the mid-frequency signal and the high-frequency signal transmitted by the transceiver 100 through
  • the low-frequency signal received by a transmit link is amplified and output to the third antenna ANT3, and the mid-frequency and high-frequency signals received through the second transmit link are amplified and output to the third antenna ANT3, where the The third antenna ANT3 transmits the amplified signal to facilitate subsequent communication.
  • the transceiver 100 transmits a second control signal to the first power amplifier module 300 through the second bus to control the The first power amplifier module 300 works normally, and the third control signal of the second power amplifier module 400 is transmitted by the transceiver 100 through the third bus to control the normal operation of the second power amplifier module 400;
  • the first power amplifier module 300 can participate in both 4G signal processing and 5G signal processing.
  • the second power amplifier module 400 can participate in both 5G signal processing and 4G signal processing.
  • the second power amplifier module 400 participates in the processing of 5G signals
  • the second power amplifier The module 400 participates in the processing of 4G signals, thereby realizing the ENDC mode; the second power amplifier module 400 receives the low-frequency signal transmitted by the transceiver 100 through the second transmission link, and then the second power amplifier module 400 sends The low-frequency signal is amplified and output to the second antenna ANT2, and the amplified signal is transmitted by the second antenna ANT2; wherein, the first power amplifier module 300 receives the signal through the first transmission link.
  • the low-frequency signal transmitted by the transceiver 100 is amplified by the first power amplifier module 300 and the low-frequency signal received through the first transmission link is output to the first antenna ANT1, and the amplified signal is amplified by the first antenna ANT1.
  • the signal is transmitted to facilitate subsequent communication.
  • the first bus is the MIPI bus and is denoted as MIPI1
  • the operation of the power amplifier 200 is controlled by the transceiver 100, that is to say, the transceiver 100 will output a relevant control signal to control the operation of the power amplifier 200, Make sure that the power amplifier 200 can work normally and stably.
  • a transmission bus MIPI1 is independently set between the power amplifier 200 and the transceiver 100 in the present disclosure, Then, the transceiver 100 transmits the first control signal to the power amplifier 200 through MIPI1.
  • the first control signal is the relevant control command required by the power amplifier 200 to work.
  • the bus can effectively prevent the power amplifier 200 from conflicting with the transmission buses of other power amplifiers 200 when the power amplifier 200 is used in combination with the ENDC; the present disclosure ensures that the power amplifier 200 is combined in the ENDC by setting two transmission links and an independent transmission bus.
  • the time is not limited, and any combination with other power amplifiers 200 can be realized, thereby solving the problem that the existing radio frequency front-end circuit ENDC is limited in combination.
  • the second bus and the third bus are both MIPI buses, the second bus is marked as MIPI2, and the third bus is marked as MIPI3; when the transceiver 100 needs to control the first power amplifier When the module 300 is working, the transceiver 100 transmits a second control signal to the first power amplifier module 300 through MIPI2, and then controls the first power amplifier module 300 to enter a corresponding working state; when the transceiver 100 needs to control When the second power amplifier module 400 is working, the transceiver 100 transmits a third control signal to the second power amplifier module 400 through MIPI3, thereby controlling the second power amplifier module 400 to perform a corresponding working state.
  • the present disclosure also provides an electronic device correspondingly, the electronic device includes the above-mentioned radio frequency front-end circuit, and the radio frequency front-end circuit includes a transceiver, a power amplifier, a first transmission chain, a second transmission chain, and a first transmission chain.
  • the transceiver is electrically connected to the power amplifier; wherein the first transmission link is used to transmit the low-frequency signal sent by the transceiver to the power amplifier; the second transmission link The first bus is used for transmitting the mid-band signal and the high-frequency signal sent by the transceiver to the power amplifier; the first bus is used for transmitting the first control signal sent by the transceiver to the power amplifier; the present disclosure
  • the present disclosure provides a radio frequency front-end circuit and electronic equipment, wherein the radio frequency front-end circuit includes a transceiver, a power amplifier, a first transmit link, a second transmit link and a first bus; the first The transmit chain is used for transmitting the low frequency band signal sent by the transceiver to the power amplifier; the second transmit chain is used for transmitting the mid frequency band signal and the high frequency band signal sent by the transceiver to the power amplifier an amplifier; the first bus is used to transmit the first control signal sent by the transceiver to the power amplifier; the present disclosure ensures that the power amplifier is combined when the ENDC is combined by setting two transmission links and an independent transmission bus Without limitation, any combination with other power amplifiers can be realized, thereby solving the problem that the existing radio frequency front-end circuit ENDC is limited in combination, and ensuring that the power amplifier can work normally and stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本公开公开了一种射频前端电路及电子设备,所述射频前端电路包括收发器、功率放大器、第一发射链路、第二发射链路和第一总线;所述第一发射链路用于将所述收发器发送的低频段信号传输至所述功率放大器;所述第二发射链路用于将所述收发器发送的中频段信号和高频段信号传输至所述功率放大器;所述第一总线用于将所述收发器发送的第一控制信号传输至所述功率放大器;本公开通过设置两个发射链路以及一个独立的传输总线,确保功率放大器在ENDC组合时不受限制,能够实现与其他功率放大器的任意组合,进而解决现有的射频前端电路ENDC组合受限制的问题,确保所述功率放大器能够正常稳定地工作。

Description

一种射频前端电路及电子设备
优先权
所述PCT专利申请要求申请日为2021年4月22日,申请号为202110434562.7的中国专利优先权,本专利申请结合了上述专利的技术方案。
技术领域
本公开涉及移动通信技术领域,特别涉及一种射频前端电路及电子设备。
背景技术
随着5G技术发展,5G终端的射频前端设计比4G更要复杂,尤其是NSA(Non-Standalone:非独立组网)模式下有很多ENDC(E-UTRA-NR Dual Connectivity:LTE和NR的双连通)组合,现有的组合设计中需要使用多个PA(PowerAmplifier:功率放大器)或者PAMID(PA+Duplexer+Filter+ASM:集成双工器的功放模块)来实现不同的ENDC组合,例如在同时实现如下ENDC组合时需要3颗PA,三个功率放大器支持三种LTE和NR双连接模式分别为LTE B3&NR N3、LTE B3&NRN7和LTE B28&NR N2,所有的ENDC组合必须遵循具有两种不同链路分别进行信号传输的模式,为了适应多种ENDC组合,那么就要求功率放大器能够接收两种不同链路发射的输入信号,以便于在ENDC组合时可以任意选择其中一种链路接收输入信号完成ENDC组合;但是现有的射频前端电路中的功率放大器的输入信号来自于同一个发射链路,使得ENDC组合受到限制。
因而现有技术还有待改进和提高。
发明内容
鉴于上述现有技术的不足之处,本公开的目的在于提供了一种射频前端电路及电子设备,通过设置两个发射链路以及一个独立的传输总线,确保功率放大器在ENDC组合时不受限制,进而解决现有的射频前端电路ENDC组合受限制的问题。
为了达到上述目的,本公开采取了以下技术方案:
本公开一方面提供了射频前端电路,包括收发器、功率放大器、第一发射链路、第二发射链路、第一总线、第一功放模块、第二功放模块、第二总线和第三总线;所述第一发射链路用于将所述收发器发送的低频段信号传输至所述功率放大器;所述第二发射链路用于将所述收发器发送的中频段信号和高频段信号传输至所述功率放大器;所述第一总线用于将所述收发器发送的第一控制信号传输至所述功率放大器;所述第二总线用于将所述收发器发送的第二控制信号传输至所述第一功放模块;所述第三总线用于将所述收发器发送的第三控制信号传输至所述第二功放模块;所述第一发射链路还用于将所述收发器发送的高频段信号传输至所述第一功放模块;所述第二发射链路还用于将所述收发器发送的低频段信号传输至所述第二功放模块。
所述的射频前端电路,所述功率放大器包括第一供电引脚、第二供电引脚和第三供电引脚;由外部电源通过第一供电引脚为所述功率放大器提供第一电源,或通过第二供电引脚为所述功率放大器提供第二电源,或通过第三供电引脚为所述功率放大器提供第三电源。
所述的射频前端电路,所述功率放大器为多模多频功率放大器。
所述的射频前端电路,所述第一功放模块包括第一天线、第二天线和第三天线;所述第一天线与所述第一功放模块连接,所述第二天线与所述第二功放模块连接,所述第三天线与所述功率放大器连接。
所述的射频前端电路,所述第一功放模块包括集成双工器的功放模块,且所述第二功放模块包括集成双工器的功放模块。
所述的射频前端电路,所述第一总线为MIPI总线。
所述的射频前端电路,所述第二总线和所述第三总线均为MIPI总线。
本公开的二方面提供了一种射频前端电路,包括收发器、功率放大器、第一发射链路、第二发射链路和第一总线;所述第一发射链路用于将所述收发器发送的低频段信号传输至所述功率放大器;所述第二发射链路用于将所述收发器发送的中频段信号和高频段信号传输至所述功率放大器;所述第一总线用于将所述收发器发送的第一控制信号传输至所述功率放大器。
所述的射频前端电路,还包括第一功放模块、第二功放模块、第二总线和第三总线;所述第二总线用于将所述收发器发送的第二控制信号传输至所述第一功放模块;所述第三总线用于将所述收发器发送的第三控制信号传输至所述第二功放模块。
所述的射频前端电路中,所述第一发射链路还用于将所述收发器发送的高频段信号传输至所述第一功放模块;所述第二发射链路还用于将所述收发器发送的低频段信号传输至所述第二功放模块。
所述的射频前端电路中,所述功率放大器包括第一供电引脚、第二供电引脚和第三供电引脚;由外部电源通过第一供电引脚为所述功率放大器提供第一电源,或通过第二供电引脚为所述功率放大器提供第二电源,或通过第三供电引脚为所述功率放大器提供第三电源。
所述的射频前端电路,所述功率放大器为多模多频功率放大器。
所述的射频前端电路中,所述第一功放模块包括第一天线、第二天线和第三天线;所述第一天线与所述第一功放模块连接,所述第二天线与所述第二功放模块连接,所述第三天线与所述功率放大器连接。
所述的射频前端电路,所述第一功放模块包括集成双工器的功放模块,且所述第二功放模块包括集成双工器的功放模块。
所述的射频前端电路中,所述第一总线为MIPI总线。
所述的射频前端电路中,所述第二总线和所述第三总线均为MIPI总线。
本公开的三方面提供了一种电子设备,包括上所述的射频前端电路。
相较于现有技术,本公开提供的一种射频前端电路及电子设备,所述射频前端电路包括收发器、功率放大器、第一发射链路、第二发射链路和第一总线;所述第一发射链路用于将所述收发器发送的低频段信号传输至所述功率放大器;所述第二发射链路用于将所述收发器发送的中频段信号和高频段信号传输至所述功率放大器;所述第一总线用于将所述收发器发送的第一控制信号传输至所述功率放大器;本公开通过设置两个发射链路以及一个独立的传输总线,确保功率放大器在ENDC组合时不受限制,能够实现与其他功率放大器的任意组合,进而解决现有的射频前端电路ENDC组合受限制的问题,确保所述功率放 大器能够正常稳定地工作。
附图说明
图1为本公开提供的射频前端电路的结构框图;
图2为本公开提供的射频前端电路中功率放大器的示意图;
图3为本公开提供的射频前端电路的原理图;
附图标记:100:收发器;200:功率放大器;300:第一功放模块;400:第二功放模块;ANT1:第一天线;ANT2:第二天线;ANT3:第三天线。
具体实施方式
本公开提供一种射频前端电路及电子设备,通过设置两个发射链路以及一个独立的传输总线,确保功率放大器在ENDC组合时不受限制,进而解决现有的射频前端电路ENDC组合受限制的问题。
为使本公开的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本公开的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义 一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
下面结合附图,通过对实施例的描述,对发明内容作进一步说明。
请参阅图1,本公开提供的一种射频前端电路包括收发器100、功率放大器200、第一发射链路、第二发射链路和第一总线;所述收发器100与所述功率放大器200电性连接;其中,所述第一发射链路用于将所述收发器100发送的低频段信号传输至所述功率放大器200;所述第二发射链路用于将所述收发器100发送的中频段信号和高频段信号传输至所述功率放大器200;所述第一总线用于将所述收发器100发送的第一控制信号传输至所述功率放大器200;本公开通过设置两个发射链路以及一个独立的传输总线,确保功率放大器200在ENDC组合时不受限制,能够实现与其他功率放大器200的任意组合,进而解决现有的射频前端电路ENDC组合受限制的问题。
具体地,当所述射频前端电路参与信号发射时,若需要发射低频段信号,所述收发器100通过所述第一发射链路发送低频段信号至所述功率放大器200,由所述功率放大器200将所述低频段信号放大后进行输出,以便于后续发射所述低频段信号;若需要发射所述中频段信号和所述高频段信号,则所述收发器100通过所述第二链路发送所述中频段信号和所述高频段信号至所述功率放大器200,进而由所述功率放大器200将所述中频信号和所述高频信号放大后输出,以便于后续发射所述中频信号和所述高频信号,由此使得所述功率放大器200可以交替工作在第一发射链路和所述第二发射链路。本实施例中,所述功率放大器200为MMPA(Multimode multifrequency PA:多模多频功率放大器200);其中,所述功率放大器200的工作由所述收发器100进行控制,也就是说收发器100会输出相关的控制信号控制功率放大器200的工作,确保所述功率放大器200能够正常稳定地工作。而为了避免所述功率放大器200在进行ENDC组合时,不占用其他功率放大器200的传输总线,因此本公开中在所述功率放大器200和所述收发器100之间独立设置了一条传输总线即所述第一总线,那么就由所述收发器100通过所述第一总线向所述功率放大器200传输第一控制信号,第一控制信号为所述功率放大器200工作需要的相关控制指令,通过为所述功率放大器200单独设置一条传输总线,能够有效避所述功率放大器200在进行ENDC 组合使用时与其他功率放大器的传输总线发生冲突;本公开通过设置两个发射链路以及一个独立的传输总线,确保功率放大器200在ENDC组合时不受限制,能够实现与其他功率放大器的任意组合,进而解决现有的射频前端电路ENDC组合受限制的问题。
进一步地,所述射频前端电路还包括第一功放模块300、第二功放模块400、第二总线和第三总线,所述第一功放模块300和所述第二功放模块400分别与所述收发器100连接,本实施例中所述功率放大器200、所述第一功放模块300和所述第二功放模块400均分别与所述收发器100电性连接。本实施例中所述第一功放模块300和所述第二功放模块400均包括PAMID(PA+Duplexer+Filter+ASM:集成双工器的功放模块),记所述第一功放模块300为PAMID1,所述第二功放模块400为PAMID2;其中,所述功率放大器200、所述第一功放模块300和所述第二功放模块400两两之间组合可实现ENDC模式;所述第二总线用于将所述收发器100发送的第二控制信号传输至所述第一功放模块300;所述第三总线用于将所述收发器100发送的第三控制信号传输至所述第二功放模块400;所述第一功放模块300、所述第二功放模块400和所述功率放大器200均各自有一路总线与所述收发器100连接,在实现ENDC模式时,所述收发器100可通过各自的总线向所述第一功放模块300、所述第二功放模块400和功率放大器200传输控制信号,确保功放模块以及功率放大器200能够正常的工作。
其中,所述功率放大器200、所述第一功放模块300和所述第二功放模块400的工作由所述收发器100进行控制,当所述收发器100需要控制所述第一功放模块300工作时,由所述收发器100通过所述第二总线向所述第一功放模块300传输第二控制信号,控制所述第一功放模块300进入相应的工作状态;当所述收发器100需要控制所述第二功放模块400工作时,由所述收发器100通过所述第三总线向所述第二功放模块400传输第三控制信号,控制所述第二功放模块400进行相应的工作状态;当所述收发器100需要控制功率放大器200工作时,则由所述收发器100通过所述第一总线向所述功率放大器200传输第一控制信号,通过设置三路独立的总线,不论所述功率放大器200与哪一个功放组合实现ENDC模式,所述功率放大器200均不会和另外一个功放共用总线,由此有效避所述功率放大器200在进行ENDC组合使用时与其他功率放大器200的传输总线发生冲突;本公开 通过设置两个发射链路以及一个独立的传输总线,确保功率放大器200在ENDC组合时不受限制,能够实现与其他功率放大器200的任意组合,进而解决现有的射频前端电路ENDC组合受限制的问题,确保所述功率放大器200能够正常稳定地工作。
进一步地,所述第一发射链路还用于将所述收发器100发送的高频段信号传输至所述第一功放模块300;所述第二发射链路还用于将所述收发器100发送的低频段信号传输至所述第二功放模块400;当所述射频前端电路参与信号发射时,所述收发器100向所述第一功放模块300发射信号时,则是通过所述第一发射链路向所述第一功放模块300发射所述高频段信号,之后由所述第一功放模块300将所述高频段信号进行放大后输出,以便于后续进行发射;所述收发器100向所述第二功放模块400发射信号时,则是通过所述第二发射链路向所述第二功放模块400发射低频段信号,之后由所述第二功放模块400将所述低频段信号进行放大后输出,以便于后续进行发射,由此根据不同频段的信号选择不同的发射链路进行发射,避免了功放模块的输入信号来自同一个发射链路。
进一步地,请参阅图2,所述功率放大器200包括第一供电引脚、第二供电引脚和第三供电引脚,其中第一供电引脚为VCC1,第二供电引脚为VCC2,所述第三供电引脚为VCC2_2;由外部电源通过第一供电引脚为所述功率放大器200提供第一电源,或通过第二供电引脚为所述功率放大器200提供第二电源,或通过第三供电引脚为所述功率放大器200提供第三电源,本实施例中所述功率放大器200的型号为QM56030;相应地,所述第一功放模块300由外部提供第三电源,而所述第二功放模块400由外部提供第二电源;当所述功率放大器200与所述第一功放模块300组合使用实现ENDC模式时,此时所述第一功放模块300由外部提供体第三电源进行供电,那么此时所述功率放大器200则通过第一供电引脚接收外部提供的第一电源或第二供电引脚接收外部提供的第二电源,所述第三供电引脚不参与工作;当所述功率放大器200与所述第二功放模块400组合使用实现ENDC模式时,此时所述第二功放模块400由外部提供第二电源,那么此时所述功率放大器200则通过第一供电引脚接收外部提供的所述第一电源或第三供电引脚接收外部提供的第三电源,所述第二供电引脚不参与工作。其中,第一电源为第一级供电,能够给所有的功率放大器200进行供电,功耗较小;第二电源则是给中带宽和高带宽最后一级功率放大器200供电, 功耗较大;第三电源则是给低带宽最后一级功率放大器200供电,功耗较大;由此针对不同的功率放大器200采用不同的电源进行供电,可以有效改善功耗,便于所述功率放大器200在不同的ENDC模式中能够选择所需要的电源,以便于实现不同的ENDC模式。
当所述功率放大器200与所述第一功放模块300组合使用实现ENDC模式时,此时所述收发器100通过第一总线向所述功率放大器200传输第一控制信号,控制所述功率放大器200的正常工作,而所述第一功放模块300的第二控制信号则由所述收发器100通过所述第二总线传输,控制所述第一功放模块300的正常工作;本实施例中所述功率放大器200参与4G信号的处理,所述第一功放模块300参与5G信号的处理;所述第一功放模块300则由第一发射链路接收所述收发器100发射的高频段信号,之后由所述第一功放模块300将所述高频段信号放大之后输出;其中,所述功率放大器200则通过所述第一发射链路接收所述收发器100发射的低频段信号,也可以通过所述第二发射链路接收所述收发器100发射的中频段信号和高频段信号,由所述功率放大器200将通过第一发射链路接收的低频段信号进行放大后输出,并将通过所述第二发射链路接收的中频段信号和高频段信号进行放大后输出,以便于后续实现信号的发射。
当所述功率放大器200与所述第二功放模块400组合使用实现ENDC模式时,此时所述收发器100通过第一总线向所述功率放大器200传输第一控制信号,控制所述功率放大器200的正常工作,而所述第二功放模块400的第三控制信号则由所述收发器100通过所述第三总线传输,控制所述第二功放模块400的正常工作;本实施例中所述功率放大器200参与4G信号的处理,所述第二功放模块400参与5G信号的处理;所述第二功放模块400则由第二发射链路接收所述收发器100发射的低频段信号,之后由所述第二功放模块400将所述低频段信号放大之后输出;其中,所述功率放大器200则通过所述第一发射链路接收所述收发器100发射的低频段信号,也可以通过所述第二发射链路接收所述收发器100发射的中频段信号和高频段信号,由所述功率放大器200将通过第一发射链路接收的低频段信号进行放大后输出,并将通过所述第二发射链路接收的中频段信号和高频段信号进行放大后输出,以便于后续实现信号的发射。
当所述第一功放模块300与所述第二功放模块400组合使用实现ENDC模式时,此时 所述收发器100通过第二总线向所述第一功放模块300传输第二控制信号,控制所述第一功放模块300的正常工作,而所述第二功放模块400的第三控制信号则由所述收发器100通过所述第三总线传输,控制所述第二功放模块400的正常工作;本实施例中所述第一功放模块300既可以参与4G信号的处理,也可以参与5G信号的处理,同样所述第二功放模块400既可以参与5G信号的处理,也可以参与4G信号的处理,当所述第一功放模块300参与4G信号的处理时,那么所述第二功放模块400则参与5G信号的处理,当所述第一功放模块300参与5G信号的处理则所述第二功放模块400参与4G信号的处理,由此实现ENDC模式;所述第二功放模块400则由第二发射链路接收所述收发器100发射的低频段信号,之后由所述第二功放模块400将所述低频段信号放大之后输出;其中,所述第一功放模块300则通过所述第一发射链路接收所述收发器100发射的低频段信号,由所述第一功放模块300将通过第一发射链路接收的低频段信号进行放大后输出,以便于后续实现信号的发射。
进一步地,请参阅图3,所述第一功放模块300包括第一天线ANT1、第二天线ANT2和第三天线ANT3;所述第一天线ANT1与所述第一功放模块300连接,所述第二天线ANT2与所述第二功放模块400连接,所述第三天线ANT3与所述功率放大器200连接;所述收发器100与所述第一功放模块300和所述第一天线ANT1组成一条收发通路,所述收发器100与所述功率放大器200和所述第三天线ANT3组成一条收发通路,所述收发器100与所述第二功放模块400和所述第二天线ANT2组成一条收发通路。
具体实施时,当所述功率放大器200与所述第一功放模块300组合使用实现ENDC模式时,此时所述收发器100通过第一总线向所述功率放大器200传输第一控制信号,控制所述功率放大器200的正常工作,而所述第一功放模块300的第二控制信号则由所述收发器100通过所述第二总线传输,控制所述第一功放模块300的正常工作;本实施例中所述功率放大器200参与4G信号的处理,所述第一功放模块300参与5G信号的处理;所述第一功放模块300则由第一发射链路接收所述收发器100发射的高频段信号,其中,TX0对应为第一发射链路,TX1对应为第二发射链路;之后由所述第一功放模块300将所述高频段信号放大之后输出至所述第一天线ANT1,由所述第一天线ANT1将放大后的高频段信 号发射出去;其中,所述功率放大器200则通过所述第一发射链路接收所述收发器100发射的低频段信号,也可以通过所述第二发射链路接收所述收发器100发射的中频段信号和高频段信号,由所述功率放大器200将通过第一发射链路接收的低频段信号进行放大后输出至第三天线ANT3,并将通过所述第二发射链路接收的中频段信号和高频段信号进行放大后输出至第三天线ANT3,由所述第三天线ANT3将放大后的信号发射出去,以便于后续实现通信。
当所述功率放大器200与所述第二功放模块400组合使用实现ENDC模式时,此时所述收发器100通过第一总线向所述功率放大器200传输第一控制信号,控制所述功率放大器200的正常工作,而所述第二功放模块400的第三控制信号则由所述收发器100通过所述第三总线传输,控制所述第二功放模块400的正常工作;本实施例中所述功率放大器200参与4G信号的处理,所述第二功放模块400参与5G信号的处理;所述第二功放模块400则由第二发射链路接收所述收发器100发射的低频段信号,之后由所述第二功放模块400将所述低频段信号放大之后输出至第二天线ANT2,由所述第二天线ANT2将放大后的信号发射出去;其中,所述功率放大器200则通过所述第一发射链路接收所述收发器100发射的低频段信号,也可以通过所述第二发射链路接收所述收发器100发射的中频段信号和高频段信号,由所述功率放大器200将通过第一发射链路接收的低频段信号进行放大后输出至第三天线ANT3,并将通过所述第二发射链路接收的中频段信号和高频段信号进行放大后输出至第三天线ANT3,由所述第三天线ANT3将放大后的信号发射出去,以便于后续实现通信。
当所述第一功放模块300与所述第二功放模块400组合使用实现ENDC模式时,此时所述收发器100通过第二总线向所述第一功放模块300传输第二控制信号,控制所述第一功放模块300的正常工作,而所述第二功放模块400的第三控制信号则由所述收发器100通过所述第三总线传输,控制所述第二功放模块400的正常工作;本实施例中所述第一功放模块300既可以参与4G信号的处理,也可以参与5G信号的处理,同样所述第二功放模块400既可以参与5G信号的处理,也可以参与4G信号的处理,当所述第一功放模块300参与4G信号的处理时,那么所述第二功放模块400则参与5G信号的处理,当所述第一功 放模块300参与5G信号的处理则所述第二功放模块400参与4G信号的处理,由此实现ENDC模式;所述第二功放模块400则由第二发射链路接收所述收发器100发射的低频段信号,之后由所述第二功放模块400将所述低频段信号放大之后输出至第二天线ANT2,由所述第二天线ANT2将放大后的信号发射出去;其中,所述第一功放模块300则通过所述第一发射链路接收所述收发器100发射的低频段信号,由所述第一功放模块300将通过第一发射链路接收的低频段信号进行放大后输出至第一天线ANT1,由所述第一天线ANT1将放大后的信号发射出去,以便于后续实现通信。
进一步地,所述第一总线为MIPI总线记为MIPI1,所述功率放大器200的工作由所述收发器100进行控制,也就是说收发器100会输出相关的控制信号控制功率放大器200的工作,确保所述功率放大器200能够正常稳定地工作。而为了避免所述功率放大器200在进行ENDC组合时,不占用其他功率放大器200的传输总线,因此本公开中在所述功率放大器200和所述收发器100之间独立设置了一条传输总线MIPI1,那么就由所述收发器100通过MIPI1向所述功率放大器200传输第一控制信号,第一控制信号为所述功率放大器200工作需要的相关控制指令,通过为所述功率放大器200单独设置一条传输总线,能够有效避所述功率放大器200在进行ENDC组合使用时与其他功率放大器200的传输总线发生冲突;本公开通过设置两个发射链路以及一个独立的传输总线,确保功率放大器200在ENDC组合时不受限制,能够实现与其他功率放大器200的任意组合,进而解决现有的射频前端电路ENDC组合受限制的问题。
进一步地,所述第二总线和所述第三总线均为MIPI总线,所述第二总线记为MIPI2,所述第三总线记为MIPI3;当所述收发器100需要控制所述第一功放模块300工作时,由所述收发器100通过MIPI2向所述第一功放模块300传输第二控制信号,进而控制所述第一功放模块300进入相应的工作状态;当所述收发器100需要控制所述第二功放模块400工作时,由所述收发器100通过MIPI3向所述第二功放模块400传输第三控制信号,进而控制所述第二功放模块400进行相应的工作状态。
进一步地,本公开还相应提供了一种电子设备,所述电子设备包括上述射频前段电路,所述射频前段电路包括收发器、功率放大器、第一发射链路、第二发射链路和第一总线; 所述收发器与所述功率放大器电性连接;其中,所述第一发射链路用于将所述收发器发送的低频段信号传输至所述功率放大器;所述第二发射链路用于将所述收发器发送的中频段信号和高频段信号传输至所述功率放大器;所述第一总线用于将所述收发器发送的第一控制信号传输至所述功率放大器;本公开通过设置两个发射链路以及一个独立的传输总线,确保功率放大器在ENDC组合时不受限制,能够实现与其他功率放大器的任意组合,进而解决现有的射频前端电路ENDC组合受限制的问题;由于上述对该所述射频前端电路进行了详细的描述,在此不再赘述。
综上所述,本公开提供的一种射频前端电路及电子设备,所述射频前端电路包括收发器、功率放大器、第一发射链路、第二发射链路和第一总线;所述第一发射链路用于将所述收发器发送的低频段信号传输至所述功率放大器;所述第二发射链路用于将所述收发器发送的中频段信号和高频段信号传输至所述功率放大器;所述第一总线用于将所述收发器发送的第一控制信号传输至所述功率放大器;本公开通过设置两个发射链路以及一个独立的传输总线,确保功率放大器在ENDC组合时不受限制,能够实现与其他功率放大器的任意组合,进而解决现有的射频前端电路ENDC组合受限制的问题,确保所述功率放大器能够正常稳定地工作。
可以理解的是,对本领域普通技术人员来说,可以根据本公开的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本公开所附的权利要求的保护范围。

Claims (17)

  1. 一种射频前端电路,其特征在于,包括收发器、功率放大器、第一发射链路、第二发射链路、第一总线、第一功放模块、第二功放模块、第二总线和第三总线;所述第一发射链路用于将所述收发器发送的低频段信号传输至所述功率放大器;所述第二发射链路用于将所述收发器发送的中频段信号和高频段信号传输至所述功率放大器;所述第一总线用于将所述收发器发送的第一控制信号传输至所述功率放大器;所述第二总线用于将所述收发器发送的第二控制信号传输至所述第一功放模块;所述第三总线用于将所述收发器发送的第三控制信号传输至所述第二功放模块;所述第一发射链路还用于将所述收发器发送的高频段信号传输至所述第一功放模块;所述第二发射链路还用于将所述收发器发送的低频段信号传输至所述第二功放模块。
  2. 根据权利要求1所述的射频前端电路,其特征在于,所述功率放大器包括第一供电引脚、第二供电引脚和第三供电引脚;由外部电源通过第一供电引脚为所述功率放大器提供第一电源,或通过第二供电引脚为所述功率放大器提供第二电源,或通过第三供电引脚为所述功率放大器提供第三电源。
  3. 根据权利要求2所述的射频前端电路,其特征在于,所述功率放大器为多模多频功率放大器。
  4. 根据权利要求1所述的射频前端电路,其特征在于,所述第一功放模块包括第一天线、第二天线和第三天线;所述第一天线与所述第一功放模块连接,所述第二天线与所述第二功放模块连接,所述第三天线与所述功率放大器连接。
  5. 根据权利要求4所述的射频前端电路,其特征在于,所述第一功放模块包括集成双工器的功放模块,且所述第二功放模块包括集成双工器的功放模块。
  6. 根据权利要求1所述的射频前端电路,其特征在于,所述第一总线为MIPI总线。
  7. 根据权利要求1所述的射频前端电路,其特征在于,所述第二总线和所述第三总线均为MIPI总线。
  8. 一种射频前端电路,其特征在于,包括收发器、功率放大器、第一发射链路、第二发射链路和第一总线;所述第一发射链路用于将所述收发器发送的低频段信号传输至所述功率放大器;所述第二发射链路用于将所述收发器发送的中频段信号和高频段信号传输 至所述功率放大器;所述第一总线用于将所述收发器发送的第一控制信号传输至所述功率放大器。
  9. 根据权利要求8所述的射频前端电路,其特征在于,还包括第一功放模块、第二功放模块、第二总线和第三总线;所述第二总线用于将所述收发器发送的第二控制信号传输至所述第一功放模块;所述第三总线用于将所述收发器发送的第三控制信号传输至所述第二功放模块。
  10. 根据权利要求9所述的射频前端电路,其特征在于,所述第一发射链路还用于将所述收发器发送的高频段信号传输至所述第一功放模块;所述第二发射链路还用于将所述收发器发送的低频段信号传输至所述第二功放模块。
  11. 根据权利要求8所述的射频前端电路,其特征在于,所述功率放大器包括第一供电引脚、第二供电引脚和第三供电引脚;由外部电源通过第一供电引脚为所述功率放大器提供第一电源,或通过第二供电引脚为所述功率放大器提供第二电源,或通过第三供电引脚为所述功率放大器提供第三电源。
  12. 根据要求11所述的射频前端电路,其特征在于,所述功率放大器为多模多频功率放大器。
  13. 根据权利要求9所述的射频前端电路,其特征在于,所述第一功放模块包括第一天线、第二天线和第三天线;所述第一天线与所述第一功放模块连接,所述第二天线与所述第二功放模块连接,所述第三天线与所述功率放大器连接。
  14. 根据权利要求13所述的射频前端电路,其特征在于,所述第一功放模块包括集成双工器的功放模块,且所述第二功放模块包括集成双工器的功放模块。
  15. 根据权利要求8所述的射频前端电路,其特征在于,所述第一总线为MIPI总线。
  16. 根据权利要求8所述的射频前端电路,其特征在于,所述第二总线和所述第三总线均为MIPI总线。
  17. 一种电子设备,其特征在于,包括权利要求1-7任意一项所述的射频前端电路。
PCT/CN2022/079145 2021-04-22 2022-03-03 一种射频前端电路及电子设备 WO2022222613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110434562.7A CN113517904B (zh) 2021-04-22 2021-04-22 一种射频前端电路及电子设备
CN202110434562.7 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022222613A1 true WO2022222613A1 (zh) 2022-10-27

Family

ID=78062706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079145 WO2022222613A1 (zh) 2021-04-22 2022-03-03 一种射频前端电路及电子设备

Country Status (2)

Country Link
CN (1) CN113517904B (zh)
WO (1) WO2022222613A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517904B (zh) * 2021-04-22 2023-03-24 惠州Tcl云创科技有限公司 一种射频前端电路及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110912576A (zh) * 2019-11-22 2020-03-24 维沃移动通信有限公司 一种射频结构及通信终端
CN111130592A (zh) * 2019-12-17 2020-05-08 锐石创芯(重庆)科技有限公司 用于5g非独立组网的支持lte/nr双连接的射频前端模块
CN111294214A (zh) * 2020-01-21 2020-06-16 Oppo广东移动通信有限公司 供电方法及相关产品
CN211266879U (zh) * 2020-02-27 2020-08-14 深圳市泰衡诺科技有限公司 用于4g/5g标准的射频模块和移动终端
US20200412306A1 (en) * 2019-06-28 2020-12-31 Murata Manufacturing Co., Ltd. Radio-frequency circuit and communication device
CN113517904A (zh) * 2021-04-22 2021-10-19 Tcl通讯(宁波)有限公司 一种射频前端电路及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8183917B2 (en) * 2010-06-04 2012-05-22 Quantance, Inc. RF power amplifier circuit with mismatch tolerance
DE102015103807A1 (de) * 2015-03-16 2016-09-22 Intel IP Corporation Eine Vorrichtung und ein Verfahren zum Steuern der Erzeugung eines Radiofrequenz-Sendesignals
CN108494443B (zh) * 2018-03-06 2019-12-17 维沃移动通信有限公司 一种信号传输方法及装置
KR20210006766A (ko) * 2019-07-09 2021-01-19 삼성전자주식회사 듀얼 커넥티비티를 지원하는 전자 장치 및 전자 장치에서의 전력 제어 방법
CN111342862B (zh) * 2019-12-17 2021-09-17 锐石创芯(重庆)科技有限公司 支持lte/nr双连接的射频前端模组及移动终端
CN111491397A (zh) * 2020-03-19 2020-08-04 华为技术有限公司 一种通信方法及装置
CN111769851B (zh) * 2020-06-28 2022-04-19 深圳市锐尔觅移动通信有限公司 射频装置以及移动终端
CN111600616B (zh) * 2020-07-10 2020-12-04 锐石创芯(深圳)科技有限公司 一种射频前端架构、天线装置及通信终端
CN112448734A (zh) * 2020-10-14 2021-03-05 深圳市锐尔觅移动通信有限公司 射频模块、终端设备及信号发射方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200412306A1 (en) * 2019-06-28 2020-12-31 Murata Manufacturing Co., Ltd. Radio-frequency circuit and communication device
CN110912576A (zh) * 2019-11-22 2020-03-24 维沃移动通信有限公司 一种射频结构及通信终端
CN111130592A (zh) * 2019-12-17 2020-05-08 锐石创芯(重庆)科技有限公司 用于5g非独立组网的支持lte/nr双连接的射频前端模块
CN111294214A (zh) * 2020-01-21 2020-06-16 Oppo广东移动通信有限公司 供电方法及相关产品
CN211266879U (zh) * 2020-02-27 2020-08-14 深圳市泰衡诺科技有限公司 用于4g/5g标准的射频模块和移动终端
CN113517904A (zh) * 2021-04-22 2021-10-19 Tcl通讯(宁波)有限公司 一种射频前端电路及电子设备

Also Published As

Publication number Publication date
CN113517904B (zh) 2023-03-24
CN113517904A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
CN112436845B (zh) 射频L-PA Mid器件、射频收发系统和通信设备
CN112187297B (zh) 射频收发系统和通信设备
WO2021143877A1 (zh) 射频电路和电子设备
WO2022116728A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2020192527A1 (zh) 射频前端电路及移动终端
CN101159441B (zh) 无线收发器的前端电路结构
CN104852749A (zh) 射频电路及终端设备
WO2022116724A1 (zh) 射频L-PA Mid器件、射频收发系统和通信设备
WO2021238453A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023016204A1 (zh) 放大器模组、射频系统及通信设备
WO2021238536A1 (zh) 射频PA Mid器件、射频收发装置和通信设备
WO2023103687A1 (zh) 射频前端器件、射频收发系统和通信设备
CN109361406B (zh) 一种fdd全频段收发信机
WO2022222613A1 (zh) 一种射频前端电路及电子设备
WO2023197662A1 (zh) 一种双发射频电路及电子设备
WO2021120243A1 (zh) 一种支持非独立组网的5g功率放大器架构
WO2022127402A1 (zh) 射频PA Mid器件、射频收发系统和通信设备
WO2013063926A1 (zh) 功率放大模块、多模射频收发器和多模终端
WO2019059085A1 (ja) フィルタ回路および高周波モジュール
WO2018219219A1 (zh) Tdd/fdd可配置装置、方法、射频模块及通信设备
KR20120013138A (ko) 복수 방식을 지원하는 증폭기 및 그 증폭 방법
WO2022166653A1 (zh) 一种射频前端模块及天线装置
CN114124115B (zh) 射频收发系统和通信设备
WO2024045774A1 (zh) 多模多频功率放大器件、切换方法、射频前端装置和设备
KR20230124740A (ko) 무선주파수 회로 및 전자기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790722

Country of ref document: EP

Kind code of ref document: A1