WO2022222461A1 - 一种分立器件及功率模组封装 - Google Patents

一种分立器件及功率模组封装 Download PDF

Info

Publication number
WO2022222461A1
WO2022222461A1 PCT/CN2021/132266 CN2021132266W WO2022222461A1 WO 2022222461 A1 WO2022222461 A1 WO 2022222461A1 CN 2021132266 W CN2021132266 W CN 2021132266W WO 2022222461 A1 WO2022222461 A1 WO 2022222461A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
terminal
discrete device
protection
circuit
Prior art date
Application number
PCT/CN2021/132266
Other languages
English (en)
French (fr)
Inventor
钟华
刘志强
赵慧超
王宇
文彦东
宋佳茵
侯毅鹏
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022222461A1 publication Critical patent/WO2022222461A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]

Definitions

  • the invention belongs to the technical field of discrete device motor controllers, and in particular relates to a discrete device and a power module package.
  • the motor controller based on discrete devices is easier to optimize in structure, which is convenient for the design of highly integrated and miniaturized systems, that is, the design of special-shaped structures. At the same time, motor controllers based on discrete devices are easier to control and reduce costs according to system power levels.
  • High-power SMD packages mainly include D2PAK packages and SOT23 packages.
  • High-power in-line packages mainly include TO247, T0262 and so on.
  • the maximum current capability of these packaged discrete devices is around 300A, and systems with higher power levels usually need to use multiple parallel structures.
  • the power terminals of discrete devices use laser welding technology, which has high process requirements and high cost.
  • the power devices have no related protection and detection pins, so short-circuit protection and bus voltage detection cannot be directly realized. Sex is low.
  • motor controllers based on discrete devices are diverse in implementation form.
  • a motor controller in which multi-chip power switching devices are arranged in parallel on an aluminum substrate to form a power conversion main circuit.
  • the aluminum substrate of this type of motor controller has a single-sided layout, generally only power devices and power device heat sinks are arranged.
  • Arranged on the reverse side of the aluminum substrate on the one hand, it is not conducive to the rapid heat dissipation of the power device, and on the other hand, it is not conducive to the integration and compactness of the motor controller.
  • the multi-power devices are arranged in parallel on the circuit board.
  • the current-carrying capacity is generally increased by tinning the circuit board or by welding an external copper bar.
  • Solder has limited heat dissipation and current conductivity, so the way of tinning the circuit board is not suitable for high-current inverters.
  • Welding the external copper bar is not conducive to installation, and is not conducive to compact structure.
  • the present invention provides a discrete device and a power module package, which is a high-power discrete device package for a new energy vehicle and a power module package for a multi-power device parallel motor controller, which is simple and convenient to implement, has high power, Good shock resistance, good heat dissipation, high integration and low cost.
  • a discrete device and power module package including a cooler 1, a power unit 2 and a drive unit 3, which are divided into lower, middle and upper layers and arranged in parallel;
  • the power unit 2 includes a high-power discrete device 201 and a power unit circuit
  • the substrate 202 wherein the high-power discrete device 201 includes a discrete device switch body, a positive power terminal 403, a negative power terminal 404, a control signal terminal 402 and a protection power terminal 401, the bottom surface of the discrete device body is an insulating surface 406, and the The top surface is a heat dissipation welding surface 405, the left and right sides of the front end of the bottom of the discrete device body are respectively provided with positive power terminals 403 and protective power terminals 401, and the left and right sides of the rear end of the bottom of the discrete device body are respectively provided with negative power terminals 404 and control signals.
  • the terminal 402, the positive power terminal 403 and the negative power terminal 404 are soldered on the power unit circuit substrate 202
  • the driving unit 3 includes a driving circuit board, a signal connection terminal 301, a driving circuit 302, a protection circuit 304 and a detection circuit 303, wherein the signal connection terminal 301, the driving circuit 302, the protection circuit 304 and the detection circuit 303 are all arranged on the driving circuit board, And the signal connection terminals 301 are respectively electrically connected with the drive circuit 302 , the detection circuit 303 and the protection circuit 304 , and the control signal terminals 402 and the protection power terminals 401 are insulated through the insulating holes of the power unit circuit substrate 202 and welded to the drive unit 3 .
  • the control signal terminals 402 are electrically connected to the driving circuit 302 and the protection circuit 304 respectively;
  • the control signal terminal 402 and the protection power terminal 401 of the high-power discrete device 201 pass through the insulating hole of the power unit circuit substrate 202 and are soldered or crimped on the drive circuit board of the drive unit 3, and the control signal terminal 402 and the protection
  • the power terminal 401 is of equal length
  • the positive power terminal 403 and the negative power terminal 404 are of equal length
  • the former two are longer than the latter two
  • the latter two are wider than the former two.
  • the heat dissipation welding surface 405 of the high-power discrete device 201 on the power unit circuit substrate 202 is connected to the upper surface of the cooler 1 by silver sintering, tin welding or direct pressing.
  • the power unit circuit substrate 202 is composed of multiple layers of thick copper that are laminated and fixed together through insulating materials at intervals, wherein the thickness of each layer of thick copper is greater than 4 ounces.
  • the power unit circuit substrate 202 is provided with multiple rows of high-power discrete devices 201 , and the number of high-power discrete devices 201 in each row is the same, and the spacing between every two rows of high-power discrete devices 201 is equal.
  • the power unit circuit substrate 202 is provided with copper-exposed positive and negative power terminal holes 204 and copper-exposed three-phase terminal holes 203 .
  • the positive and negative power terminal holes 204 and the three-phase terminal holes 203 are alternately arranged.
  • the invention integrates a plurality of novel discrete power switching devices by uniform welding through thick copper circuit boards, and the heat dissipation surface of the novel discrete power switching devices is insulated and fixed on the smooth surface of the cooler by welding or silver sintering or pressing. At the place, the heat loss is taken away by the cooler to achieve the effect of sufficient heat dissipation.
  • the power terminals of the discrete devices are connected by soldering through the multi-layer thick copper circuit board, and the thick copper multi-layer circuit board carries a large current, making full use of the existing technology, saving space and low cost.
  • the control signal terminals and protection terminals of the discrete devices are insulated through the insulating holes of the multilayer thick copper circuit board, and are soldered to the multilayer ordinary circuit board arranged on the upper layer.
  • the drive circuit is integrated together, the layout is reasonable, and the space and cost are saved.
  • the power module is more resistant to vibration, simplifies the processing process, reduces the overall thermal resistance, enhances the heat dissipation capability, and has better integration.
  • the heat dissipation surface of the power module is an insulating plane, which can directly realize the cooling method of air cooling or water cooling.
  • Fig. 1 is the structural representation of the present invention
  • FIG. 2 is a schematic diagram of the installation structure of the power unit and the drive unit of the present invention.
  • Fig. 3 is the outline schematic diagram of the power unit of the present invention.
  • FIG. 4 is a schematic exploded view of the structure of the power unit of the present invention.
  • FIG. 5 is a schematic structural diagram of a drive unit of the present invention.
  • FIG. 6 is a schematic structural diagram of a high-power discrete device package of the present invention.
  • Fig. 7 is the bottom surface schematic diagram of the high-power discrete device package of the present invention.
  • FIG. 8 is a schematic top view of a high-power discrete device package of the present invention.
  • FIG. 9 is a schematic diagram of part of the circuit of the present invention.
  • FIG. 10 is a schematic diagram of another part of the circuit of the present invention.
  • 1 cooler 1 cooler, 2 power units, 3 drive units, 201 high-power discrete devices, 202 power unit circuit substrates, 203 three-phase terminal holes, 204 positive and negative power terminal holes, 301 signal connection terminals, 302 drive circuit, 303 detection Circuit, 304 protection circuit, 305 fixing hole, 401 protection power terminal, 402 control signal terminal, 403 positive power terminal, 404 negative power terminal, 405 heat dissipation welding surface, 406 insulating surface, G gate, C collector, E emission pole, S source, and D drain.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • specific meanings of the above terms in the present invention can be understood in specific situations.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • a discrete device and power module package includes a cooler 1, a power unit 2 and a drive unit 3, which are divided into lower, middle and upper layers and are arranged in parallel.
  • the power unit 2 includes a high-power discrete device 201 and a power unit circuit substrate 202, wherein the high-power discrete device 201 includes a discrete device switch body, a positive power terminal 403, a negative power terminal 404, a control signal terminal 402 and a power terminal 401 for protection.
  • the bottom surface of the device body is a heat dissipation welding surface 405, the top surface of the discrete device body is an insulating surface 406, the left and right sides of the front end of the bottom of the discrete device body are respectively provided with positive power terminals 403 and protection power terminals 401.
  • the left and right sides are respectively provided with a negative power terminal 404 and a control signal terminal 402 , and the positive power terminal 403 and the negative power terminal 404 are welded on the power unit circuit substrate 202 .
  • the control signal terminal 402 and the protective power terminal 401 are insulated through the insulating hole of the power unit circuit substrate 202 .
  • the positive power terminal 403 corresponds to the IGBT collector or MOS drain
  • the negative power terminal 404 corresponds to the IGBT emitter or MOS source.
  • the protection power terminal 401 and the positive power terminal 403 have the same electrical performance and are used for bus voltage detection and protection.
  • the control signal terminal 402 corresponds to the gate of the IGBT or MOS, and is used for receiving the driving control signal.
  • the positive power terminal 403 and the negative power terminal 404 are wide and short in shape for carrying power current and voltage.
  • the control signal terminal 402 and the protection power terminal 401 are thin and long in shape, and are used for control signal and protection.
  • the driving unit 3 includes a driving circuit board, a signal connection terminal 301, a driving circuit 302, a protection circuit 304 and a detection circuit 303, wherein the signal connection terminal 301, the driving circuit 302, the protection circuit 304 and the detection circuit 303 are all arranged on the driving circuit board, And the signal connection terminals 301 are respectively electrically connected with the driving circuit 302 , the detection circuit 303 and the protection circuit 304 , and the control signal terminals 402 and the protection power terminals 401 of the high-power discrete device 201 pass through the insulating holes on the power unit circuit substrate 202 . Then, it is welded on the drive circuit board of the drive unit 3, and the low-voltage signal is exchanged with the drive unit 3.
  • the control signal terminal 402 is electrically connected to the drive circuit 302 and the protection circuit 304 respectively.
  • the detection circuit 303 is used to detect the bus voltage and the drive circuit. The temperature of the board and the bus voltage are introduced into the drive circuit board of the drive unit 3 through the protection power terminal 401 . Finally, the detection signal and the protection signal processed by the detection circuit 303 and the protection circuit 304 are reported to the inverter control for motor control through the signal connection terminal 301 .
  • the protection circuit 304 and the drive circuit 302 are both arranged around the control signal terminal 402 of the high-power discrete device 201 to protect the high-power discrete device 201 from working safely; the detection circuit 303 is arranged near the protection power terminal 401 for the system bus voltage Detection and board temperature detection.
  • the heat dissipation welding surface 405 of the high-power discrete device 201 is in close contact with the upper surface of the cooler 1, so as to realize rapid heat dissipation of the power device.
  • a plurality of fixing holes 305 are provided on the driving circuit board of the driving unit 3 for fixing the driving unit 3 .
  • the control signal terminal 402 and the protection power terminal 401 are passed through the power unit circuit substrate 202 and then soldered or crimped on the drive circuit board of the drive unit 3, and the control signal terminal 402 of the high-power discrete device 201 is connected to the protection power
  • the terminal 401 is long and thin, and the dimensions of the positive power terminal 403 and the negative power terminal 404 are wide and short.
  • the control signal terminal 402 has the same length as the protection power terminal 401 , and the positive power terminal 403 and the negative power terminal 404 have the same length.
  • the former two are longer than the latter two, and the latter two are wider than the former two high-power discrete devices 201 .
  • the power unit circuit substrate 202 is composed of multiple layers of thick copper that are laminated and fixed together through insulating materials at intervals, wherein the thickness of each layer of thick copper is greater than 4 ounces. According to the current level, it can be 3mm or thicker; it is used to realize the aggregation of large currents after multiple discrete devices are connected in parallel, and the currents are connected to the positive and negative electrodes of the battery and the three-phase terminals of the motor through the positive power terminal 403 after the current is aggregated.
  • the power unit circuit substrate 202 is provided with multiple rows of high-power discrete devices 201 , and each row of high-power discrete devices 201 has the same number and equal spacing.
  • the power unit circuit substrate 202 is provided with copper-exposed positive and negative power terminal holes 204 and copper-exposed three-phase terminal holes 203 .
  • the positive and negative power terminal holes 204 and the three-phase terminal holes 203 are arranged alternately, and are adjacent to the high-power discrete device 201 .
  • the cooler 1 is a metal structure, and the bottom surface is provided with pin pins for contacting the cooling water for heat dissipation; the top surface is smooth and is used for contacting the heat dissipation surface of the power device.
  • the cooling pin of the cooler 1 is in contact with the cooling water to take away the heat loss of the power device, and is placed at the bottom of the three.
  • the middle layer is the power unit 2, which mainly integrates the high-power discrete devices 201 and the power unit circuit substrate 202, so as to realize the parallel integration and integration of the multi-power discrete devices.
  • the upper layer is the drive unit 3, which mainly integrates the signal connection terminal 301, the drive circuit 302, the protection circuit 304 and the detection circuit 303, so as to realize the safe and reliable switching operation, fault reporting, and reporting detection of the high-power discrete device 201 by driving and amplifying the control signal. status signals, etc.
  • the power unit 2 includes a high-power discrete device 201 and a power unit circuit substrate 202, a plurality of high-power discrete devices 201 are connected in parallel to achieve a high-power level, and the positive power terminal 403 and the negative power terminal 404 of the high-power discrete device 201 are welded to the power unit circuit substrate. On 202, parallel connection is realized.
  • the control signal terminal 402 and the protection power terminal 401 of the high-power discrete device 201 are insulated through the power unit circuit substrate 202 and welded to the drive unit 3 parallel to the power unit circuit substrate 202 .
  • the power unit circuit substrate 202 integrates multi-layer thick copper copper plates for realizing large current carrying.
  • the power unit circuit board 202 integrates a plurality of power terminal holes, positive and negative power terminal holes 204 and three-phase terminal holes 203 .
  • the positive and negative voltages of the power battery are input to the high-power discrete device 201 through the positive and negative power terminal holes 204 .
  • the signal connection terminal 301 is connected to the motor control unit through a wire harness for receiving motor control signals, the drive circuit 302 amplifies the power of the control signal obtained from the signal connection terminal 301, and drives the power switch device 201 through the control signal terminal 402;
  • the positive and negative output terminals of the power battery are connected to the power unit circuit substrate 202 through the positive and negative power terminal holes 204 and bolts, so that the DC power of the power battery is introduced into the power device;
  • the power switching device 201 chops the DC power to output the AC power, the AC power is carried by the multi-layer copper plate of the power unit circuit substrate 202, and then exported through the bolt connection on the three-phase terminal hole 203, and finally connected to the three-phase terminal of the motor, thereby realizing the control and driving.
  • a power module of a multi-power device parallel motor controller for a new energy vehicle includes: a cooler 1, a power unit 2 and a drive unit 3; wherein, the upper surface of the cooler 1 is connected to the power unit
  • the high-power discrete devices 201 of 2 are in close contact and fixed, and the fixing methods include welding, silver sintering, and crimping.
  • FIG. 2 a schematic diagram of the installation of a motor controller power module provided by an embodiment of the present invention
  • the power terminals of the high-power discrete device 201 are welded on the power unit circuit substrate 202
  • the control signal terminals 402 of the high-power discrete device 201 are welded. on the drive circuit board of drive unit 3.
  • the high-power discrete devices 201 are evenly distributed on the power unit circuit substrate 202 in rows and connected by welding.
  • the power unit 2 of the motor controller power module includes a high-power discrete device 201 and a power unit circuit substrate 202 .
  • the positive power terminal 403 and the negative power terminal 404 of the high-power discrete device 201 are welded on the power unit circuit substrate 202, and the power unit circuit substrate 202 is connected to the three-phase output copper through the three-phase terminal holes 203 and the positive and negative power terminal holes 204, respectively.
  • the row is bolted to the positive and negative input copper bars to ensure reliable power and current output.
  • the structure of the drive unit 3 of the motor controller power module provided by the embodiment of the present invention includes a signal connection terminal 301 , a drive circuit 302 , a protection circuit 304 , and a detection circuit 303 ;
  • the driving circuit board of the driving unit 3 is on the casing.
  • the driving unit 3 integrates a protection circuit 304 , a detection circuit 303 and a driving circuit 302 to ensure reliable switching operation of the power switching device.
  • a schematic diagram of a high-power discrete device 201 provided by an embodiment of the present invention includes a positive power terminal 403 for input and output, a negative power terminal 404 , a control signal terminal 402 , a power terminal 401 for protection, Heat dissipation welding surface 405 and insulating surface 406 .
  • the positive power terminal 403 and the negative power terminal 404 are used for inverter power input and output
  • the control signal terminal 402 is used for low voltage control
  • the protection power terminal 401 is used for bus voltage detection and short circuit protection
  • the heat dissipation welding surface 405 is used for Solder or sinter to attach the heat sink.
  • the number of high-power discrete devices 201 of the power unit 2 can be set according to actual needs, and a plurality of high-power discrete devices 201 are arranged in a row on the power unit circuit substrate 202 of the power unit 2, so that the power can be expanded good sex.
  • Positive power terminal 403 and negative power terminal 404 are used for power input and output, control signal terminal 402 is used for low-voltage control signal introduction, protection power terminal 401 is used for bus voltage detection and short circuit protection, heat dissipation welding surface 405 is used for welding or silver sintering way to connect cooler 1.
  • the control signal terminal 402 is the same length as the protection power terminal 401, and both are longer than the positive power terminal 403 and the negative power terminal 404, which can realize that the power unit circuit board 202 and the driving circuit board of the driving unit 3 are divided into two layers, and each other. Do not interfere.
  • the positive power terminal 403 is welded on the power unit circuit substrate 202 of the power unit 2, and is connected to the power unit circuit substrate 202 composed of multiple layers of thick copper to realize high current interaction.
  • the control signal terminal 402 passes through the insulating hole on the power unit circuit substrate 202 and is welded to the drive circuit board of the drive unit 3 arranged on the upper layer of the power unit 2.
  • the protection circuit 304 and the drive circuit 302 in the drive unit 3 surround the control signal terminal 402 around.
  • the protection power terminal 401 passes through the insulating hole in the power unit 2 and is welded with the driving circuit board of the drive unit 3 arranged on the upper layer of the power unit 2 .
  • the detection circuit 303 in the drive unit 3 surrounds the protection power terminal 401 .
  • the power switching device heat dissipation, signal control and high power input and output belong to three different planes, it is more conducive to heat dissipation and high current output, and high and low voltage isolation is more conducive to electromagnetic compatibility.
  • the power device provided by the embodiment of the present invention is reasonably packaged, and the power, signal, detection and heat dissipation are layered to reduce the coupling interference of the four.
  • the power switch device adopts discrete devices, which makes it easier to control costs and reduce costs according to the system power level.
  • the layout of the power switch devices is reasonable, the inverter space is small, the heat dissipation capacity is strong, and the integration is high.
  • the power output terminal is connected to the power pin of the discrete power device through a multi-layer thick copper circuit board, which enhances the current capacity and heat dissipation capacity, and is easy to install.
  • the power drive and signal processing circuits are connected to the signal pins of discrete power devices through a multi-layer common circuit board, which shortens the drive loop, reduces stray inductance, and provides drive quality.
  • the high-power output terminals are replaced by metal holes on the thick copper circuit board, which saves costs and is easy to install.

Abstract

本发明属于分立器件电机控制器技术领域,具体涉及一种分立器件及功率模组封装;包括冷却器、功率单元和驱动单元;布置在功率单元中的大功率分立器件封装包括分立器件开关本体、正功率端子、负功率端子、控制信号端子和保护用功率端子。其中,功率端子焊接于功率单元,控制信号端子和保护用功率端子焊接于驱动单元,二者分层布置。大功率分立器件封装的散热焊接面与冷却器的上表面接触。驱动单元包括驱动电路板、信号连接端子、驱动电路、保护电路和检测电路。本发明是一种新能源车用大功率分立器件封装和多功率器件并联电机控制器功率模组封装,实现简单方便、功率大、耐震好、散热好、集成度高、成本低。

Description

一种分立器件及功率模组封装 技术领域
本发明属于分立器件电机控制器技术领域,具体涉及一种分立器件及功率模组封装。
背景技术
基于分立器件的电机控制器在结构上更容易优化,便于系统高度集成、小型化即异形结构的设计,如轮毂电机控制器,受空间形状限制,多采用分立器件布置。同时,基于分立器件的电机控制器更容易根据系统功率等级控制成本、降低成本。一些新型功率半导体,如碳化硅,目前多以分立器件形式存在,可通过多个分立器件并联实现大功率逆变器。
现有分立器件形式主要有两大类:贴片式和直插式。大功率贴片式封装主要有D2PAK封装、SOT23封装等。大功率直插式封装主要有TO247、T0262等。这些封装的分立器件的电流能力最大在300A左右,若想实现更大功率等级的系统通常需要采用多颗并联结构。现也有一些特殊的分立器件结构,如分立器件功率端子采用激光焊接技术,工艺要求高、成本高,且功率器件无相关保护与检测用引脚,无法直接实现短路保护、母线电压检测等,可靠性偏低。
现有基于分立器件的电机控制器在实现形式上是多样化的。如现有一种是多贴片功率开关器件并联布置在铝基板上形成功率变换主电路的电机控制器,该类电机控制器的铝基板单面布板,一般只布置功率器件,功率器件散热器布置在铝基板反面侧,一方面不利于功率器件的迅速散热,另一方面不利于电机控制器的集成度和紧凑性。现有还有是式功率开关器件并联布置,使用多个夹具固定散热,安装太过复杂,且耐震能力弱。多功率器件并联布置在电路板上, 现有技术一般通过电路板镀锡的方式或焊接外置铜排方式去增加承载电流能力。焊锡的散热和导流能力都有限,因此,电路板镀锡的方式不适于大电流逆变器。焊接外置铜排方式不利于安装,同时不利于结构紧凑。
因此,针对大功率分立器件及基于分立器件设计的电机控制器方案存在的上述问题,新能源汽车迫切需要设计一种新型大功率分立器件,该器件需利于系统散热、耐震和集成,同时电机控制器需要便于安装、成本低。
发明内容
为了克服上述问题,本发明提供一种分立器件及功率模组封装,是一种新能源车用大功率分立器件封装和多功率器件并联电机控制器功率模组封装,实现简单方便、功率大、耐震好、散热好、集成度高、成本低。
一种分立器件及功率模组封装,包括冷却器1、功率单元2和驱动单元3,三者分为下、中、上三层平行布置;功率单元2包括大功率分立器件201和功率单元电路基板202,其中大功率分立器件201包括分立器件开关本体、正功率端子403、负功率端子404、控制信号端子402和保护用功率端子401,分立器件本体的底面为绝缘面406,分立器件本体的顶面为散热焊接面405,分立器件本体底部前端的左右两侧分别设有正功率端子403和保护用功率端子401,分立器件本体底部后端的左右两侧分别设有负功率端子404和控制信号端子402,正功率端子403和负功率端子404焊接在功率单元电路基板202上,
驱动单元3包括驱动电路板、信号连接端子301、驱动电路302、保护电路304和检测电路303,其中信号连接端子301、驱动电路302、保护电路304和检测电路303均设置在驱动电路板上,且信号连接端子301分别和驱动电路302、检测电路303与保护电路304之间电连接,控制信号端子402和保护用功率端子401绝缘穿过功率单元电路基板202的绝缘孔洞后焊接在驱动单元3的驱动电路板上,控制信号端子402分别与驱动电路302和保护电路304之间电 连接;大功率分立器件201的散热焊接面405绝缘,且与冷却器1的上表面接触。
所述大功率分立器件201的控制信号端子402和保护用功率端子401穿出功率单元电路基板202绝缘孔洞后锡焊接或压接在驱动单元3的驱动电路板上,且控制信号端子402与保护用功率端子401等长,正功率端子403和负功率端子404等长,前二者长于后二者,后二者宽于前二者。
所述功率单元电路基板202上的大功率分立器件201的散热焊接面405与冷却器1的上表面连接方式为银烧结、锡焊接或直接压合。
所述功率单元电路基板202是由多层厚铜通过绝缘材料间隔层叠压合固定在一起构成的,其中每层厚铜的厚度均大于4盎司。
所述功率单元电路基板202上设有多排大功率分立器件201,且每排大功率分立器件201的个数相同,每两排大功率分立器件201的间距相等。
所述功率单元电路基板202上设有露铜的正负功率端子孔204和露铜的三相端子孔203。
所述正负功率端子孔204和三相端子孔203交替设置。
本发明的有益效果:
本发明将多个新型分立式功率开关器件通过厚铜电路板均匀焊接集成,新型分立式功率开关器件的散热面绝缘,通过焊接或银烧结或压合的方式固定在冷却器的光滑面处,通过冷却器将损耗热量带走,达到充分散热的效果。分立器件的功率端子通过多层厚铜电路板锡焊连接,通过厚铜多层电路板承载大电流,充分利用了现有工艺,节省空间且成本低。分立器件的控制信号端子和保护端子绝缘穿过多层厚铜电路板的绝缘孔洞,焊接于布置其上层的多层普通电路板,同时,多层普通电路板将多种保护电路、检测电路、驱动电路集成与一起,布局合理,节省空间与成本。该功率模组耐震动能力更强、简化了加工工 艺,同时减小了整个热阻,增强了散热能力,集成度更好。而且该功率模组的散热面为绝缘平面,可以直接实现风冷或水冷的冷却方式,可扩展性好,能够大大的提高电机控制器的功率密度,在整车布置的灵活性大幅提高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例的内容和这些附图获得其他的附图。
图1为本发明的结构示意图;
图2为本发明的功率单元与驱动单元安装结构示意图;
图3为本发明的功率单元的外形示意图;
图4为本发明的功率单元结构分解示意图;
图5为本发明驱动单元的结构示意图;
图6为本发明大功率分立器件封装的结构示意图;
图7为本发明大功率分立器件封装的底面示意图;
图8为本发明大功率分立器件封装的顶面示意图。
图9本发明的部分电路示意图。
图10本发明的另一部分电路示意图。
其中:1冷却器、2功率单元、3驱动单元、201大功率分立器件、202功率单元电路基板、203三相端子孔、204正负功率端子孔、301信号连接端子、302驱动电路、303检测电路、304保护电路、305固定孔、401保护用功率端子、402控制信号端子、403正功率端子、404负功率端子、405散热焊接面、406绝缘面、G栅极、C集电极、E发射极、S源极、D漏极。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
实施例1
如图1-10所示,一种分立器件及功率模组封装,包括冷却器1、功率单元 2和驱动单元3,三者分为下、中、上三层平行布置。功率单元2包括大功率分立器件201和功率单元电路基板202,其中大功率分立器件201包括分立器件开关本体、正功率端子403、负功率端子404、控制信号端子402和保护用功率端子401,分立器件本体的底面为散热焊接面405,分立器件本体的顶面为绝缘面406,分立器件本体底部前端的左右两侧分别设有正功率端子403和保护用功率端子401,分立器件本体底部后端的左右两侧分别设有负功率端子404和控制信号端子402,且正功率端子403和负功率端子404焊接在功率单元电路基板202上。控制信号端子402和保护用功率端子401绝缘穿过功率单元电路基板202的绝缘孔洞。
正功率端子403对应IGBT集电极或MOS漏极,负功率端子404对应IGBT发射极或MOS源极,保护用功率端子401与正功率端子403电气性能相同,用于母线电压检测与保护。控制信号端子402对应IGBT或MOS栅极,用于接收驱动控制信号。正功率端子403和负功率端子404形状宽且短,用于承载功率电流和电压。控制信号端子402和保护用功率端子401形状细且长,用于控制信号和保护。
驱动单元3包括驱动电路板、信号连接端子301、驱动电路302、保护电路304和检测电路303,其中信号连接端子301、驱动电路302、保护电路304和检测电路303均设置在驱动电路板上,且信号连接端子301分别和驱动电路302、检测电路303与保护电路304之间电连接,大功率分立器件201的控制信号端子402和保护用功率端子401穿出功率单元电路基板202上的绝缘孔后焊接在驱动单元3的驱动电路板上,与驱动单元3进行低压信号交互,控制信号端子402分别与驱动电路302和保护电路304之间电连接,检测电路303用于检测母线电压和驱动电路板的温度,母线电压由保护用功率端子401引入驱动单元3的驱动电路板中。最终,检测电路303与保护电路304处理得到的检测信号与保护信号通过信号连接端子301上报给逆变器控制用于电机控制。保护 电路304和驱动电路302均布置在大功率分立器件201的控制信号端子402周围,用于保护大功率分立器件201安全工作;检测电路303布置在保护用功率端子401附近,用于系统母线电压检测和板温检测。大功率分立器件201的散热焊接面405与冷却器1的上表面紧密接触,实现功率器件快速散热。
所述驱动单元3的驱动电路板上设有多个固定孔305,用于驱动单元3的固定。
所述控制信号端子402和保护用功率端子401穿出功率单元电路基板202后锡焊接或压接在驱动单元3的驱动电路板上,且大功率分立器件201的控制信号端子402与保护用功率端子401长且细,正功率端子403和负功率端子404的尺寸宽且短。控制信号端子402与保护用功率端子401等长,正功率端子403和负功率端子404等长。前二者长于后二者,后二者宽于前二者大功率分立器件201。
所述功率单元电路基板202是由多层厚铜通过绝缘材料间隔层叠压合固定在一起构成的,其中每层厚铜的厚度均大于4盎司。根据电流等级,可以是3mm或者更厚;用于实现多分立器件并联后大电流的汇总,电流汇总后通过正功率端子403联通到电池的正负极和电机的三相端子。
所述功率单元电路基板202上设有多排大功率分立器件201,且每排大功率分立器件201的个数相同,间距相等。
所述功率单元电路基板202上设有露铜的正负功率端子孔204和露铜的三相端子孔203。
所述正负功率端子孔204和三相端子孔203交替设置,紧邻大功率分立器件201。冷却器1为金属结构,底面设置有pin针,用于接触冷却水散热;顶面光滑,用于接触功率器件散热面。冷却器1散热pin针与冷却水接触,带走功率器件损耗发热量,置于三者的最底层。中层为功率单元2,主要集成大功率分立器件201和功率单元电路基板202,实现多功率分立器件并联汇总集成。 上层为驱动单元3,主要集成信号连接端子301、驱动电路302、保护电路304和检测电路303,实现将控制信号驱动放大用于驱动大功率分立器件201安全可靠的开关动作、上报故障、上报检测状态信号等。
功率单元2包括大功率分立器件201和功率单元电路基板202,多个大功率分立器件201并联实现大功率等级,大功率分立器件201的正功率端子403和负功率端子404焊接在功率单元电路基板202上,实现并联。大功率分立器件201的控制信号端子402和保护用功率端子401绝缘穿过功率单元电路基板202,焊接在与功率单元电路基板202平行的驱动单元3上。功率单元电路基板202集成多层厚铜铜板,用于实现大电流承载。功率单元电路基板202集成多个功率端子孔,正负功率端子孔204,三相端子孔203。动力电池正负电压通过正负功率端子孔204输入至大功率分立器件201,正负电压通过大功率分立器件201斩波处理成三相电压,三相电压通过三相端子孔203输出给电机。
信号连接端子301通过线束与电机控制单元连接,用于接收电机控制信号,驱动电路302将从信号连接端子301得到的控制信号功率放大,并通过控制信号端子402驱动功率开关器件201;
动力电池正负输出端子与功率单元电路基板202通过正负功率端子孔204和螺栓连接,将动力电池直流电引入功率器件中;
功率开关器件201将直流电斩波输出交流电,交流电通过功率单元电路基板202的多层铜板承载,再通过三相端子孔203上的螺栓连接导出,最终与电机的三相端子连接,进而实现控制驱动电机扭矩输出;通过固定孔305将驱动单元3的驱动电路板螺栓连接在逆变器壳体上。
实施例2
如图1所示,一种新能源车用多功率器件并联电机控制器功率模组,包括:冷却器1、功率单元2和驱动单元3;其中,所述冷却器1的上表面与功率单元2的大功率分立器件201紧密接触且固定,固定方式包括焊接、银烧结、压接 等。
如图2所示,本发明实施例提供的电机控制器功率模组的安装示意图,大功率分立器件201的功率端子焊接在功率单元电路基板202上,大功率分立器件201的控制信号端子402焊接在驱动单元3的驱动电路板上。
如图3所示,本发明实施例提供的电机控制器功率模组功率板外形图,大功率分立器件201成排均匀分布在功率单元电路基板202上,焊接连接。
如图4所示,本发明实施例提供的电机控制器功率模组的功率单元2,包括大功率分立器件201、功率单元电路基板202。其中,大功率分立器件201的正功率端子403和负功率端子404焊接在功率单元电路基板202上,功率单元电路基板202通过三相端子孔203和正负功率端子孔204分别与三相输出铜排和正负输入铜排螺栓连接,保证可靠的功率电流输出。
如图5所示,本发明实施例提供的电机控制器功率模组的驱动单元3的结构,包括信号连接端子301、驱动电路302、保护电路304、检测电路303;使用螺栓通过固定孔305固定驱动单元3的驱动电路板于机壳上。驱动单元3集成保护电路304、检测电路303与驱动电路302保证功率开关器件可靠的开关动作。
如图6、图7和图8所示,本发明实施例提供的大功率分立器件201示意图,包括输入输出用正功率端子403、负功率端子404、控制信号端子402、保护用功率端子401、散热焊接面405、绝缘面406。其中,正功率端子403和负功率端子404用于逆变器功率输入与输出,控制信号端子402用于低压控制、保护用功率端子401用于母线电压检测与短路保护,散热焊接面405用于焊接或烧结方式连接散热器。
在本发明中,功率单元2的大功率分立器件201个数可根据实际需要进行设置,多个大功率分立器件201成排设置在功率单元2的功率单元电路基板202上,从而使得功率可扩展性好。
正功率端子403和负功率端子404用于功率输入输出,控制信号端子402用于低压控制信号引入、保护用功率端子401用于母线电压检测与短路保护,散热焊接面405用于焊接或银烧结方式连接冷却器1。
所述控制信号端子402与保护用功率端子401等长,二者均长于正功率端子403和负功率端子404,可以实现功率单元电路基板202与驱动单元3的驱动电路板分为两层,互不干涉。正功率端子403焊接在功率单元2的功率单元电路基板202上,与多层厚铜构成的功率单元电路基板202连接,实现大电流交互。控制信号端子402穿过功率单元电路基板202上的绝缘孔洞,与布置在功率单元2上层的驱动单元3的驱动电路板焊接,驱动单元3中保护电路304、驱动电路302围绕在控制信号端子402周围。保护用功率端子401穿过功率单元2中的绝缘孔洞,与布置在功率单元2上层的驱动单元3的驱动电路板焊接,驱动单元3中检测电路303围绕在保护用功率端子401周围。
此外,在本发明中,由于功率开关器件散热、信号控制与大功率输入输出分属于三个不同平面,更有利于散热和大电流输出,同时高低压隔离,更有利于电磁兼容。
本发明实施例提供的功率器件封装合理,将功率、信号、检测和散热分层,减小四者耦合干扰。本发明实施例提供的电机控制器功率模組,功率开关器件采用分立器件,更容易根据系统功率等级控制成本、降低成本。功率开关器件布局合理,逆变器空间体积小,散热能力强,集成度高。功率输出端子通过多层厚铜电路板与分立功率器件功率脚连接,增强通流能力、散热能力,同时便于安装。功率驱动和信号处理电路通过多层普通电路板与分立功率器件的信号脚连接,缩短驱动回路、降低杂散电感,提供驱动质量。大功率输出端子通过厚铜电路板金属孔代替,节省成本,易于安装。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明的保护范围并不局限于上述实施方式中的具体细节,在本发明的技术构思范围内,任何 熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (7)

  1. 一种分立器件及功率模组封装,其特征在于包括冷却器(1)、功率单元(2)和驱动单元(3),三者分为下、中、上三层平行布置,功率单元(2)包括大功率分立器件(201)和功率单元电路基板(202),其中大功率分立器件(201)包括分立器件开关本体、正功率端子(403)、负功率端子(404)、控制信号端子(402)和保护用功率端子(401),分立器件本体的底面为绝缘面(406),分立器件本体的顶面为散热焊接面(405),分立器件本体底部前端的左右两侧分别设有正功率端子(403)和保护用功率端子(401),分立器件本体底部后端的左右两侧分别设有负功率端子(404)和控制信号端子(402);正功率端子(403)和负功率端子(404)焊接在功率单元电路基板(202)上;
    驱动单元(3)包括驱动电路板、信号连接端子(301)、驱动电路(302)、保护电路(304)和检测电路(303),其中信号连接端子(301)、驱动电路(302)、保护电路(304)和检测电路(303)均设置在驱动电路板上,且信号连接端子(301)分别和驱动电路(302)、检测电路(303)与保护电路(304)之间电连接,控制信号端子(402)和保护用功率端子(401)绝缘穿过功率单元电路基板(202)的绝缘孔洞后焊接在驱动单元(3)的驱动电路板上,控制信号端子(402)分别与驱动电路(302)和保护电路(304)之间电连接;大功率分立器件(201)的散热焊接面(405)绝缘,且与冷却器(1)的上表面接触。
  2. [根据细则26改正14.12.2021] 
    根据权利要求1所述的一种分立器件及功率模组封装,其特征在于所述大功率分立器件(201)的控制信号端子(402)和保护用功率端子(401)穿出功率单元电路基板(202)绝缘孔洞后锡焊接或压接在驱动单元(3)的驱动电路板上,且控制信号端子(402)与保 护用功率端子(401)等长,正功率端子(403)和负功率端子(404)等长,前二者长于后二者,后二者宽于前二者。
  3. 根据权利要求2所述的一种分立器件及功率模组封装,其特征在于所述功率单元电路基板(202)上的大功率分立器件(201)的散热焊接面(405)与冷却器(1)的上表面连接方式为银烧结、锡焊接或直接压合。
  4. 根据权利要求3所述的一种分立器件及功率模组封装,其特征在于所述功率单元电路基板(202)是由多层厚铜通过绝缘材料间隔层叠压合固定在一起构成的,其中每层厚铜的厚度均大于4盎司。
  5. 根据权利要求4所述的一种分立器件及功率模组封装,其特征在于所述功率单元电路基板(202)上设有多排大功率分立器件(201),且每排大功率分立器件(201)的个数相同,每两排大功率分立器件(201)的间距相等。
  6. 根据权利要求5所述的一种分立器件及功率模组封装,其特征在于所述功率单元电路基板(202)上设有露铜的正负功率端子孔(204)和露铜的三相端子孔(203)。
  7. 根据权利要求6所述的一种分立器件及功率模组封装,其特征在于所述正负功率端子孔(204)和三相端子孔(203)交替设置。
PCT/CN2021/132266 2021-04-19 2021-11-23 一种分立器件及功率模组封装 WO2022222461A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110420985.3A CN113346713B (zh) 2021-04-19 2021-04-19 一种分立器件及功率模组封装
CN202110420985.3 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022222461A1 true WO2022222461A1 (zh) 2022-10-27

Family

ID=77468201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132266 WO2022222461A1 (zh) 2021-04-19 2021-11-23 一种分立器件及功率模组封装

Country Status (2)

Country Link
CN (1) CN113346713B (zh)
WO (1) WO2022222461A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113346713B (zh) * 2021-04-19 2022-11-11 中国第一汽车股份有限公司 一种分立器件及功率模组封装
CN113726224A (zh) * 2021-09-13 2021-11-30 雅迪科技集团有限公司 一种一体封装的电机控制器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849697A (zh) * 2017-03-07 2017-06-13 珠海英搏尔电气股份有限公司 交流电机控制器
US20180342447A1 (en) * 2017-05-24 2018-11-29 Infineon Technologies Ag Semiconductor Package with Leadframe
CN110010577A (zh) * 2019-04-08 2019-07-12 深圳市鹏源电子有限公司 直插式功率器件、半导体组件、轮毂电机驱动器或汽车驱动器和新能源汽车
CN111524871A (zh) * 2020-04-10 2020-08-11 湖南国芯半导体科技有限公司 一种功率模块
CN111800986A (zh) * 2020-05-25 2020-10-20 中国第一汽车股份有限公司 一种基于分立器件的电机控制器
CN112398310A (zh) * 2020-11-09 2021-02-23 合肥阳光电动力科技有限公司 一种功率管结构和功率变换器
CN112436737A (zh) * 2020-11-12 2021-03-02 合肥工业大学 适用于分立器件并联和模块化应用的叠层母排结构
CN113346713A (zh) * 2021-04-19 2021-09-03 中国第一汽车股份有限公司 一种分立器件及功率模组封装

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4566678B2 (ja) * 2004-10-04 2010-10-20 日立オートモティブシステムズ株式会社 パワーモジュール
JP4452952B2 (ja) * 2007-06-20 2010-04-21 日立オートモティブシステムズ株式会社 電力変換装置
US20090085542A1 (en) * 2007-09-27 2009-04-02 Kabushiki Kaisha Toshiba Drive system for power semiconductor device
JP4657329B2 (ja) * 2008-07-29 2011-03-23 日立オートモティブシステムズ株式会社 電力変換装置および電動車両
JP5446541B2 (ja) * 2009-07-24 2014-03-19 富士電機株式会社 電力変換装置
JP5481148B2 (ja) * 2009-10-02 2014-04-23 日立オートモティブシステムズ株式会社 半導体装置、およびパワー半導体モジュール、およびパワー半導体モジュールを備えた電力変換装置
CN204859007U (zh) * 2015-08-28 2015-12-09 永济新时速电机电器有限责任公司 一种新型牵引逆变功率单元
JP6989305B2 (ja) * 2017-06-30 2022-01-05 日本電産サンキョー株式会社 回路基板およびモータ制御装置
WO2019026339A1 (ja) * 2017-08-03 2019-02-07 株式会社日立製作所 電力変換装置および電力変換装置を搭載した車両
US11025245B2 (en) * 2017-08-24 2021-06-01 Mitsubishi Electric Corporation Power conversion device
JP6885862B2 (ja) * 2017-12-28 2021-06-16 ルネサスエレクトロニクス株式会社 電力変換装置
CN108417542B (zh) * 2018-02-12 2019-12-27 中国第一汽车股份有限公司 一种电机控制器功率单元总成

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849697A (zh) * 2017-03-07 2017-06-13 珠海英搏尔电气股份有限公司 交流电机控制器
US20180342447A1 (en) * 2017-05-24 2018-11-29 Infineon Technologies Ag Semiconductor Package with Leadframe
CN110010577A (zh) * 2019-04-08 2019-07-12 深圳市鹏源电子有限公司 直插式功率器件、半导体组件、轮毂电机驱动器或汽车驱动器和新能源汽车
CN111524871A (zh) * 2020-04-10 2020-08-11 湖南国芯半导体科技有限公司 一种功率模块
CN111800986A (zh) * 2020-05-25 2020-10-20 中国第一汽车股份有限公司 一种基于分立器件的电机控制器
CN112398310A (zh) * 2020-11-09 2021-02-23 合肥阳光电动力科技有限公司 一种功率管结构和功率变换器
CN112436737A (zh) * 2020-11-12 2021-03-02 合肥工业大学 适用于分立器件并联和模块化应用的叠层母排结构
CN113346713A (zh) * 2021-04-19 2021-09-03 中国第一汽车股份有限公司 一种分立器件及功率模组封装

Also Published As

Publication number Publication date
CN113346713B (zh) 2022-11-11
CN113346713A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
US10943845B2 (en) Three-dimensional packaging structure and packaging method of power devices
WO2022222461A1 (zh) 一种分立器件及功率模组封装
JP2010205960A (ja) 半導体モジュール
CN110176648A (zh) 一种对电池电极独立散热装置
CN111162051B (zh) 功率端子、功率模块封装结构及封装方法
US20210407875A1 (en) Semiconductor device
JP2015100223A (ja) 電力変換装置
WO2022127060A1 (zh) 一种功率器件封装结构及电力电子设备
CN112701111B (zh) 一种三电平电路碳化硅功率模块
CN213151945U (zh) 一种电机控制器功率模组
CN111554645B (zh) 集成叠层母排的双面水冷SiC半桥模块封装结构
JP3529675B2 (ja) 半導体装置及びインバータ装置
JPH0397257A (ja) 大電力半導体装置
WO2023279590A1 (zh) 一种igbt封装散热结构及其应用的电机控制器
CN214101927U (zh) 叠层母排结构及大功率电力变换装置
CN114695322A (zh) 功率模组
CN209929293U (zh) 一种功率模块及逆变功率单元
JPH02174564A (ja) インバータの主回路構造
CN215871952U (zh) 电机驱动器模组及其pcb板
CN213583744U (zh) 一种低电感碳化硅模块
CN214477399U (zh) 无引线键合的双面散热igbt模块
JP2019062739A (ja) 電力変換装置
CN219612466U (zh) 一种改进绝缘耐压性能的大功率电源模块
US20230378025A1 (en) Power conversion device
CN218647940U (zh) 一种功率模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937683

Country of ref document: EP

Kind code of ref document: A1