WO2022222336A1 - 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质 - Google Patents

体素点墨量控制方法、三维打印方法、三维打印设备及存储介质 Download PDF

Info

Publication number
WO2022222336A1
WO2022222336A1 PCT/CN2021/114686 CN2021114686W WO2022222336A1 WO 2022222336 A1 WO2022222336 A1 WO 2022222336A1 CN 2021114686 W CN2021114686 W CN 2021114686W WO 2022222336 A1 WO2022222336 A1 WO 2022222336A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
value
voxel
ink volume
printing
Prior art date
Application number
PCT/CN2021/114686
Other languages
English (en)
French (fr)
Inventor
吕如松
王克蒙
向东清
Original Assignee
珠海赛纳三维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海赛纳三维科技有限公司 filed Critical 珠海赛纳三维科技有限公司
Publication of WO2022222336A1 publication Critical patent/WO2022222336A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • the present application relates to the technical field of inkjet printing, and in particular, to a voxel dot ink quantity control method, a three-dimensional printing method, a three-dimensional printing device and a storage medium.
  • Inkjet printing technology is a technology in which ink is converted into ink droplets through the nozzles of the nozzle and ejected onto the printing medium to obtain an image product.
  • This technology is non-contact printing, which has the advantages of fast printing speed, little pollution, bright colors, long image storage period, and can adapt to various printing media.
  • Inkjet printing mainly realizes the printing effect of the same color ink showing different color depths by controlling the amount of ink ejected from the nozzles.
  • CMYK color space An example of a color space may be the CMYK color space, where four variables are used to represent ink volume values for cyan ink (C), magenta ink (M), yellow ink (Y), black ink (K).
  • C cyan ink
  • M magenta ink
  • Y yellow ink
  • K black ink
  • the ink volume value may be too large.
  • the present application provides a voxel dot ink volume control method, a three-dimensional printing method, a three-dimensional printing device and a storage medium, which solve the problem of improper control of the deposited ink volume when printing three-dimensional color objects in the prior art, resulting in The problem of poor color rendering in printing.
  • the present application provides a voxel dot ink quantity control method, the method comprising:
  • first-layer printing data includes first ink volume data of a plurality of voxel points, and the first ink volume data of the voxel points includes multiple colors required for printing the voxel points
  • the second ink amount value is used as at least a part of second ink amount data of the voxel point, and the second ink amount data is used to generate print control data.
  • the acquiring the first layer printing data includes:
  • first ink volume values of the plurality of color inks required to print the voxel dots are obtained.
  • the linearization correction curve is selected from at least one of an existing curve, a merged curve of the existing curves, and an interpolation fitting curve.
  • the compression coefficient includes at least a first compression coefficient and/or a second compression coefficient, and the first compression coefficient and the second compression coefficient are respectively used to compress different The first ink level value of the color ink.
  • the compression coefficient is calculated according to a first ink volume value of at least one color ink required to print the voxel points.
  • the obtaining the compression coefficient for compressing the first ink volume values of the plurality of color inks includes:
  • the initial compression coefficient includes at least a first initial compression coefficient and/or a second initial compression coefficient
  • inkjet printing is performed according to the intermediate ink volume values of the multiple color inks to obtain a first calibration pattern
  • the compression coefficient is obtained by adjusting at least one initial compression coefficient according to the first adjustment coefficient.
  • the method further includes:
  • the filling ink volume value required for printing the voxel points is obtained, and the The filling ink amount value is used as at least part of the second ink amount data.
  • the method further includes:
  • An actual white ink volume value is determined based on the proposed white ink volume value, and the actual white ink volume value is used as at least part of the second ink volume data.
  • the determining the actual white ink amount value based on the to-be-used white ink ink amount value includes:
  • a remaining ink level value is determined based on a second ink level value of the plurality of color inks required to print the voxel point, the remaining ink level value being equal to the total ink level threshold of the voxel point minus printing the voxel
  • the second ink volume value of the multiple color inks required for the dot is determined based on a second ink level value of the plurality of color inks required to print the voxel point, the remaining ink level value being equal to the total ink level threshold of the voxel point minus printing the voxel.
  • a smaller value of the to-be-used white ink amount value and the remaining ink amount value of the voxel point is determined, and the smaller value is used as the actual white ink ink amount value required for printing the voxel point.
  • the acquisition of the mapping relationship between the first ink volume values of multiple color inks required for printing the voxel points and the ink volume values of the white ink to be used includes the following steps: :
  • the initial mapping relationship represents the relationship between the first ink volume value and the white ink volume value to be used
  • inkjet printing is performed according to the ink volume value of the white ink to be used and the second ink volume value of the multiple color inks to obtain a second calibration pattern;
  • the initial mapping relationship is adjusted according to the second adjustment coefficient to obtain the mapping relationship.
  • the first ink volume data includes at least first ink volume values of cyan ink, magenta ink, yellow ink and black ink, and the acquiring and printing the voxels
  • the first ink volume value and the initial mapping relationship of multiple color inks required for the dot including at least:
  • the magenta ink and the yellow ink obtain the inverse ink volume value after the color mixing of the cyan ink, the magenta ink and the yellow ink, wherein the color mixing includes one color mixing , secondary color mixing and tertiary color mixing;
  • the method further includes:
  • the second layer of printing data includes initial ink volume data of a plurality of voxel points, and the initial ink volume data of the voxel points includes the ink of multiple colors required for printing the voxel points.
  • Initial ink volume value
  • the actual ink volume data includes printing the voxel The actual ink volume value of at least one color ink required for the dot.
  • the initial ink volume data includes at least the second ink volume data.
  • the comparing the initial ink volume value of at least one color ink required to print the voxel points with a predetermined threshold includes:
  • N is the ink corresponding to a single voxel point
  • N is less than the number M of types of the multi-color inks.
  • the initial ink volume value of at least one color ink required to print the voxel point is compared with a predetermined threshold to obtain the actual value of the voxel point.
  • Ink level data including:
  • the actual ink amount value of the color ink corresponding to the initial ink amount value is set as a first value, and the first value is used to instruct printing of the Ink droplets of the color ink are ejected when the voxels are dotted;
  • the actual ink amount value of the color ink corresponding to the initial ink amount value is set as a second value, and the second value is used to instruct printing of the voxel Ink droplets of the color ink are not ejected when dotted.
  • the initial ink volume value of at least one color ink required to print the voxel point is compared with a predetermined threshold to obtain the actual value of the voxel point.
  • Ink level data including:
  • the actual ink volume value of the color ink corresponding to the initial ink volume value is set as a first value, and the first value is used to instruct printing of the voxel ejecting ink droplets of the color ink when dotted;
  • the actual ink amount value of the color ink corresponding to the initial ink amount value is set as a second value, and the second value is used to instruct printing the Ink droplets of the color ink are not ejected when the voxel dots.
  • Ink level data also includes:
  • the actual ink volume values of the M-N color inks that are not used for comparison are set as a second value, where the second value is used to indicate that ink droplets of the color ink are not ejected when printing the voxel dots.
  • the method further includes:
  • the method further includes:
  • the method before acquiring initial ink volume values of multiple color inks required for printing the voxel points, the method further includes:
  • the present application provides a three-dimensional printing method, the method comprising:
  • first-layer printing data includes first ink volume data of a plurality of voxel points
  • the three-dimensional object is printed according to the printing control data.
  • the present application provides a three-dimensional printing method, the method comprising:
  • the second layer of printing data includes initial ink volume data of a plurality of voxel points, and the initial ink volume data of the voxel points includes the ink of multiple colors required for printing the voxel points.
  • Initial ink volume value
  • the three-dimensional object is printed according to the printing control data.
  • the present application provides a three-dimensional printing device, comprising: at least one processor, at least one memory, and computer program instructions stored in the memory, when the computer program instructions are executed by the processor to achieve the following: The three-dimensional printing method described in the second aspect or the third aspect.
  • the present application provides a storage medium having computer program instructions stored thereon, and when the computer program instructions are executed by a processor, the three-dimensional printing method according to the second or third aspect is implemented.
  • the present application provides a voxel dot ink amount control method, a three-dimensional printing method, a three-dimensional printing device, and a storage medium, wherein the second ink amount data generated by the voxel dot ink amount control method includes the color of each voxel dot based on the color space.
  • the first ink volume value of different color inks is obtained, and the second ink volume value of various color inks is obtained based on the first ink volume value and the compression coefficient.
  • the compression process solves the problem of improper control of the amount of deposited ink when printing three-dimensional color objects in the prior art, resulting in poor printing color rendering effect.
  • FIG. 1 is a flowchart 1 of a voxel dot ink quantity control method provided in Embodiment 1 of the present application;
  • FIG. 2 is a second flowchart of the voxel dot ink quantity control method provided in Embodiment 1 of the present application;
  • FIG. 3 is a flowchart of a voxel dot ink quantity control method provided in Embodiment 2 of the present application;
  • FIG. 5 is a flowchart 1 of a voxel dot ink quantity control method provided in Embodiment 4 of the present application;
  • FIG. 6 is a second flowchart of the voxel dot ink amount control method provided in Embodiment 4 of the present application.
  • FIG. 7 is a schematic structural diagram of the three-dimensional printing apparatus provided in Embodiment 6 of the present application.
  • an embodiment of the present application provides a method for controlling the amount of ink on a voxel dot, the method comprising the following steps:
  • Step S10 acquiring the first layer of printing data
  • the first layer of printing data includes the first ink volume data of a plurality of voxel points
  • the first ink volume data of the voxel points includes the required amount of printing the voxel points.
  • Step S20 obtaining compression coefficients for compressing the first ink volume values of the multiple color inks
  • Step S30 based on the first ink volume values and the compression coefficients of the multiple color inks, obtain second ink volume values of the multiple color inks required to print the voxel dots;
  • Step S40 using the second ink volume value as at least part of the second ink volume data of the voxel point, where the second ink volume data is used to generate print control data.
  • the second ink volume data generated by the voxel point ink volume control method includes a variety of first ink volume values and compression coefficients obtained based on the first ink volume values and compression coefficients of different color inks representing the color of each voxel point based on the color space.
  • the second ink volume value of the color ink the method simply and quickly performs the ink volume compression process on each voxel point, which solves the problem of improper control of the deposited ink volume when printing three-dimensional color objects in the prior art, resulting in the printing display.
  • the problem of poor color effect is provided.
  • a voxel point is the smallest volume unit divided during the 3D printing process.
  • Step S10 acquiring the first layer of printing data
  • the first layer of printing data includes the first ink volume data of a plurality of voxel points
  • the first ink volume data of the voxel points includes the required amount of printing the voxel points.
  • Existing color inkjet three-dimensional printing systems can be associated with a color space, defined by one or more color inks available to the printing system for deposition or application to a print medium.
  • color space is the four-color space of cyan (C), magenta (M), yellow (Y), black (K), where the first ink volume value of each color ink is used to indicate that the color ink can The amount of ink used. It can be understood that, in the example of other color spaces, the color space may also be any other color space such as six-color, eight-color, and the like. In this application, the four-color color space is used as an example for illustration, and is not intended to limit the method.
  • the first ink volume data of each voxel point includes first ink volume values of multiple color inks required to print the voxel point.
  • each color value can be represented by a number between 0 and 255.
  • the first ink volume value can also be represented by a number between 0 and 255, or can be represented by a number between 0 and 255. Numerical representation from 0 to 100%.
  • step S10 acquiring the first layer printing data may specifically include:
  • the first ink volume values of the multiple color inks required for printing voxel points are obtained.
  • the initial ink volume values of the various color inks can be obtained by performing color processing based on the color data of the voxel points.
  • the color processing may include various processing such as color space conversion, color gamut compression, and color gamut mapping, and combinations thereof.
  • the first ink volume values of the plurality of color inks required for printing voxel dots may be directly the initial ink volume values of the plurality of color inks required for printing voxel dots.
  • the linearization correction curve may be selected from at least one of an existing curve, a merged curve of the existing curves, and an interpolation fitting curve.
  • the output values of the linearization correction curves can be used as the output values of the multiple color inks required for printing voxels.
  • the first ink volume value if the initial ink volume values of the various color inks are used as the input values of the linearization correction curve, the output values of the linearization correction curves can be used as the output values of the multiple color inks required for printing voxels.
  • the first ink volume value if the initial ink volume values of multiple color inks are used as the input values of the linearization correction curve, the output values of the linearization correction curves can be used as the output values of the multiple color inks required for printing voxels.
  • the first ink volume value if the initial ink volume values of the various color inks are used as the input values of the linearization correction curve, the output values of the linearization correction curves can be used as the output values of the multiple color inks required for printing voxels.
  • the first ink volume value if the initial ink volume values of the various
  • Step S20 obtaining compression coefficients for compressing the first ink volume values of the plurality of color inks.
  • the first ink volume value and the compression coefficient of the multiple color inks may be the same or different.
  • the compression coefficient may also be input by the user, or may be calculated according to the first ink volume value of at least one color ink required to print each voxel point.
  • the compression coefficient may include at least a first compression coefficient and/or a second compression coefficient, and the first compression coefficient and the second compression coefficient are respectively used to compress the first ink volume values of different color inks.
  • the compression coefficients of multiple color inks in a single voxel point are different, which can avoid the problem of poor product quality caused by using the same compression coefficient to compress the ink volume of multiple color inks in industrial inkjet printing.
  • different compression coefficients can be assigned to different color inks, so as to further improve the printing color rendering effect and make the printed color patterns more vivid and brighter.
  • the pattern is more layered.
  • the first compression parameter may be used to compress the ink volumes of the three color inks of cyan (C), magenta (M), and yellow (Y), and the second compression parameter may be used to compress the The ink volume of the black (K) ink, the first compressibility is different from the second compressibility.
  • the compression coefficient is calculated according to at least one of the first ink volume values of multiple color inks required to print each voxel point, so as to ensure that the compression coefficients of each voxel point are different from each other , to avoid the problem of poor product quality caused by using the same compression coefficient to compress the ink volume of each voxel point in inkjet printing.
  • the first compression parameter depends on the first ink volume value of the black (K) ink, and is used to compress the three color inks of cyan (C), magenta (M), and yellow (Y) and the second compression parameter depends on the first ink volume value of the three color inks of cyan (C), magenta (M), and yellow (Y), and is used to compress the black (K ) ink volume.
  • the first compression coefficient T1 1 ⁇ K/4
  • MAX( C, M, Y) refers to taking the maximum value among the first ink volume values of cyan ink (C), magenta ink (M), and yellow ink (Y).
  • obtaining the compression coefficients for compressing the first ink volume values of the multiple color inks may further include:
  • Step S21 obtaining initial compression coefficients for compressing the first ink volume values of the plurality of color inks, where the initial compression coefficients include at least the first initial compression coefficient and/or the second initial compression coefficient;
  • Step S22 obtaining intermediate ink volume values of the multiple color inks based on the first ink volume value and the initial compression coefficient of the multiple color inks;
  • Step S23 inkjet printing is performed according to the intermediate ink volume values of the multiple color inks to obtain a first calibration pattern
  • Step S24 obtaining a first adjustment coefficient according to the first calibration pattern and the preset standard pattern
  • Step S25 Adjust at least one initial compression coefficient according to the first adjustment coefficient to obtain the compression coefficient.
  • the initial compression coefficients of the first ink volume values of the plurality of color inks are obtained, and after the initial compression coefficients are obtained, the obtained first compression coefficients of the plurality of color inks of each voxel point can be An ink volume value is calculated to obtain the corresponding intermediate ink volume values of the multiple color inks, and a first calibration pattern is obtained by printing according to the intermediate ink volume values of the multiple color inks for each pixel.
  • the preset standard pattern is the standard pattern of the model to be printed.
  • the first adjustment coefficient may adjust one initial compression coefficient, or may adjust multiple initial compression coefficients, which may be selected according to the comparison between the first calibration pattern obtained by printing and the standard pattern of the model to be printed.
  • the first adjustment coefficient Kx may be obtained by comparing the color parameters of the first calibration pattern and the standard pattern; the color parameters may include brightness, saturation, hue angle, and the like.
  • the first adjustment coefficient Kx may adjust only the initial compression coefficient for compressing the ink amount of the black (K) ink.
  • k K*T2*Kx, where k is the second ink volume value of black (K) ink, K is the first ink volume value of black (K) ink, and T2 is the ink volume used to compress the black (K) ink
  • the initial compressibility of the ink volume It can be understood that the first adjustment coefficients Cx, Mx, Yx can also be obtained to adjust the initial compression coefficients for compressing the ink volumes of cyan (C) ink, magenta (M) ink, and yellow (Y) ink.
  • Step S30 based on the first ink volume values of the multiple color inks and the compression coefficient, obtain second ink volume values of the multiple color inks required for printing the voxel dots.
  • Step S40 using the second ink volume value as at least part of the second ink volume data of the voxel point, where the second ink volume data is used to generate print control data.
  • the ink volume values of the multiple color inks after the ink volume compression process are obtained based on the ink volume values and the compression coefficients of the multiple color inks that are associated with the color space and reflect the color of each voxel point.
  • the method is simple and fast, and the ink volume values of various color inks after each voxel point is compressed by the ink volume are calculated according to the actual color value of each voxel point, which solves the problem of the prior art when printing color objects. Improper control of the amount of deposited ink, resulting in poor color rendering.
  • the second ink volume data of the voxel point further includes the actual white ink volume value required for printing the voxel point.
  • the method further includes:
  • Step S41 obtaining the mapping relationship between the first ink volume value of the multiple color inks required for printing the voxel points and the ink volume value of the white ink to be used;
  • Step S42 based on the first ink volume value of the multiple color inks and the mapping relationship, obtain the proposed white ink volume value required for printing the voxel points;
  • Step S43 determining an actual white ink amount value based on the to-be-used white ink amount value, and using the actual white ink ink amount value as at least part of the second ink amount data.
  • the proposed white ink volume value corresponding to each voxel point is obtained through the mapping relationship between the first ink volume value of the multiple color inks in the voxel point and the to-be-used white ink volume value, and for each voxel point
  • the amount of white ink to be used for filling the pixel point is set according to the actual color value of each voxel point, which avoids the uneven control of the amount of white ink and printing caused by direct printing with the same amount of white ink in inkjet printing.
  • the problem of poor color rendering effect At the same time, the white ink set in this way and the various color inks in the voxel points complement each other, so that the printed color patterns are more vivid and layered, and the tone and saturation of the color expression are improved. degree effect.
  • determining the actual white ink amount value based on the to-be-used white ink ink amount value includes:
  • a remaining ink level value is determined based on a second ink level value of the plurality of color inks required to print the voxel point, the remaining ink level value being equal to the total ink level threshold of the voxel point minus printing the voxel
  • the second ink volume value of the multiple color inks required for the dot is determined based on a second ink level value of the plurality of color inks required to print the voxel point, the remaining ink level value being equal to the total ink level threshold of the voxel point minus printing the voxel.
  • a smaller value of the to-be-used white ink amount value and the remaining ink amount value of the voxel point is determined, and the smaller value is used as the actual white ink ink amount value required for printing the voxel point.
  • the total ink volume threshold of the voxel point is determined by the number of ink droplets corresponding to the voxel point. According to different printing technology principles, the number of ink droplets corresponding to the voxel point is different. For example, when the number of ink droplets corresponding to a single voxel point is 3, the total ink volume threshold of the voxel point is 300% or 3*255. In this embodiment, the remaining ink volume value is equal to the total ink volume threshold value of the voxel dot minus the second ink volume value of the plurality of color inks required to print the voxel dot.
  • the actual white ink volume value is taken from the smaller value of the proposed white ink volume value and the remaining ink volume value of each voxel point, so that it can be avoided that the total ink volume in the voxel point exceeds the The total ink volume threshold of the pixel dots will cause the accumulation of ink, etc.
  • the process of the voxel dot ink quantity control method may first perform steps S20 and S30, and then proceed to steps S41 and S42; or may first perform steps S41 and S42, and then perform steps S20 and S30; S41 and S42 may also be performed in parallel with steps S20 and S30. It is only necessary to perform step S43 after step S30.
  • step S41 obtaining the mapping relationship between the first ink volume values of the various color inks required to print the voxel points and the ink volume values of the white ink to be used may include:
  • Step S411 obtaining the first ink volume value and the initial mapping relationship of the various color inks required to print the voxel points, and the initial mapping relationship represents the relationship between the first ink volume value and the to-be-used white ink volume value. Relationship;
  • Step S412 based on the first ink volume value of the multiple color inks and the initial mapping relationship, obtain the white ink volume value to be used;
  • Step S413 inkjet printing is performed according to the ink volume value of the white ink to be used and the second ink volume value of the multiple color inks to obtain a second calibration pattern;
  • Step S414 obtaining a second adjustment coefficient according to the first calibration pattern and the preset standard pattern
  • Step S415 Adjust the initial mapping relationship according to the second adjustment coefficient to obtain the mapping relationship.
  • the initial mapping relationship between the first ink volume value of the multiple color inks and the white ink volume value is acquired, and the initial mapping relationship can be acquired, for example, by a subsequent method.
  • the corresponding ink volume value of white ink to be used can be calculated according to the obtained first ink volume value of the multiple color inks of each voxel point, and the corresponding proposed white ink volume value can be calculated according to the obtained first ink volume value of each voxel point.
  • a second calibration pattern is obtained by printing with the ink volume value of the white ink and the second ink volume value of the plurality of color inks generated in the first embodiment.
  • the first ink volume data includes at least first ink volume values of cyan ink (C), magenta ink (M), yellow ink (Y) and black ink (K).
  • the white ink (W) of the padding can be complemented with the cyan ink (C), magenta ink (M), yellow ink (Y) and black ink (K) in the voxel points, and the color expression can be controlled uniformly. tone and saturation performance.
  • step S411 obtaining the first ink volume values and initial mapping relationships of multiple color inks required for printing the voxel points, which may include:
  • Step S4111 according to the first ink volume value of the cyan ink, the magenta ink and the yellow ink, obtain the reverse color ink volume value of the mixed color of the cyan ink, the magenta ink and the yellow ink , wherein the color mixing includes primary color mixing, secondary color mixing and tertiary color mixing;
  • the mixed colors of cyan (C), magenta (M), and yellow (Y) are divided into primary colors, secondary colors, and tertiary colors.
  • the basic colors cyan (C), magenta (M), and yellow (Y) are primary colors; the colors obtained by mixing two basic colors in different proportions are secondary colors, and the secondary colors are also called secondary colors; tertiary colors
  • a color, also known as a secondary color or a secondary color, is a color produced by mixing any two secondary colors or three primary colors.
  • the primary color ink amount value, the secondary color ink amount value, and the tertiary color ink amount value may be obtained according to the first ink amount value of the cyan ink (C), the magenta ink (M), and the yellow ink (Y).
  • the primary color ink volume value color1 is equal to the maximum value of the first ink volume values of cyan ink (C), magenta ink (M), and yellow ink (Y) minus the intermediate value
  • the secondary color ink volume value color2 is equal to The median value minus the minimum value among the first ink volume values of cyan ink (C), magenta ink (M), and yellow ink (Y)
  • the third color ink volume value color3 is equal to cyan ink (C), magenta ink ( M), the minimum value among the first ink volume values of the yellow ink (Y).
  • Step S4112 obtaining the white ink coefficient according to the first ink volume value of the black ink
  • Step S4113 Multiply the mixed color ink volume value by the white ink coefficient to obtain the initial white ink volume value, and calculate the difference between the initial white ink volume value and the first ink volume value of the multiple color inks.
  • the mapping relationship is confirmed as the initial mapping relationship.
  • the actual mapping relationship can be obtained by adjusting the initial mapping relationship according to the second adjustment coefficient, wherein the second adjustment coefficient can adjust the value of the mixed color inverse color ink, and can also adjust the white ink coefficient, Their combination can also be adjusted.
  • the second ink volume value of the multiple color inks is smaller than the first ink volume value of the multiple color inks, It may cause the total ink volume value of the voxel point to be lower than the total ink volume threshold value of the voxel point.
  • the second ink volume data of the voxel point further includes the filling ink volume value required for printing the voxel point. Referring to FIG. 4 , after step S30, the method further includes:
  • Step S44 according to the second ink volume value of the various color inks required for printing the voxel points and the total ink volume threshold value of the voxel points, obtain the filling ink volume value of the voxel points required for printing the voxel points , and use the filling ink amount value as at least part of the second ink amount data.
  • the total ink volume threshold of the voxel point is determined by the number of ink droplets corresponding to the voxel point.
  • the number of ink droplets corresponding to the voxel point is different. For example, when the number of ink droplets corresponding to a single voxel point is 3, the total ink volume threshold of the voxel point is 300% or 3*255.
  • the filling ink amount value is equal to the total ink amount threshold value of the voxel dot minus the second ink amount value of the plurality of color inks required to print the voxel dot.
  • the filling ink may preferably be transparent ink, so that the transparent ink will not affect the color representation of the voxel points.
  • the embodiment of the present application also provides a voxel dot ink quantity control method, as shown in FIG. 5 , the method includes the following steps:
  • Step S50 acquiring the second layer of printing data
  • the second layer of printing data includes initial ink volume data of a plurality of voxel points
  • the initial ink volume data of the voxel points includes various types of data required for printing the voxel points.
  • Step S60 compare the initial ink volume value of at least one color ink required for printing the voxel points with a predetermined threshold value, and obtain the actual ink volume data of the voxel points, where the actual ink volume data includes the printing data.
  • the actual ink volume value of at least one color ink required for the voxel point is compared.
  • the voxel dot ink volume control method generates an actual ink volume value corresponding to at least one color ink based on a comparison with an initial ink volume value of at least one color ink used by the three-dimensional printing device and a predetermined threshold,
  • an optimized voxel point ink volume control method is provided, which compresses the ink volume of each voxel point simply and quickly. In the process of ink volume compression, the effect of the discarded color ink is better preserved, so that the color will not be seriously damaged due to compression, thereby improving the printing color rendering effect and improving the printing quality.
  • the color ink includes the color ink described in the first to third embodiments, and may also include white ink, etc., that is, the initial ink amount data includes at least the second ink amount data, the second ink amount The data may include at least one of a second ink level value for color ink, an actual white ink level value for white ink.
  • the voxel dot ink amount control method may further include:
  • Step S01 acquiring color data of the voxel point, and processing based on at least part of the color data to obtain the initial ink volume data.
  • the representations of the color data in different color spaces are different.
  • the color data consists of cyan (C), magenta (M), yellow (Y), black (K)
  • the color data is the color value (C, M, Y, K) of a single voxel point
  • the color data is the color value (R, G, B) of a single voxel point.
  • the processing of the color data in different color spaces is different, and the processing of the color data in the same color space may also be different.
  • the processing of the color data may include various processing such as color space conversion, color gamut compression, color gamut mapping, linearization processing, ink volume compression, and combinations thereof.
  • Step S50 acquiring the second layer of printing data
  • the second layer of printing data includes initial ink volume data of a plurality of voxel points
  • the initial ink volume data of the voxel points includes various types of data required for printing the voxel points.
  • the initial ink level value of the color ink is a value of the color ink.
  • the second ink volume data of the voxel point can be obtained, and the second ink volume data of the voxel point at least includes printing the volume
  • the second ink volume value of the multi-color ink required by the pixel point, in this embodiment, the second ink volume data of the voxel point described in the first embodiment, the second embodiment and the third embodiment is used as the initial ink volume data.
  • the ink volume of the ink required for printing each voxel point can be easily and quickly carried out. and obtain the required white ink amount value for printing voxel points through the mapping relationship between the first ink amount value of multiple color inks in the voxel point and the white ink ink amount value, and set the white ink and voxel A variety of color inks in the dots complement each other, making the printed color patterns more vivid and layered, and improving the tone and saturation of the color expression.
  • the second ink amount data of all voxel points can be used as the initial ink amount data.
  • the number of types of color inks used by the three-dimensional printing device is M.
  • the color inks usable by the three-dimensional printing device may include at least three basic color inks, and may also include non-basic color inks different from the basic colors, so M is greater than or equal to 3.
  • the basic color ink generally includes cyan ink (C), magenta ink (M), yellow ink (Y), and in other embodiments, black ink (K) may also be included as the basic color ink; the non-basic color ink For example, it can be white ink (W), green ink (G), light ink, etc., which are not limited here.
  • the plurality of initial ink volume values are in one-to-one correspondence with the M color inks, that is, the initial ink volume values are used to represent the ink volume values of the M color inks required for printing voxel points.
  • M color inks include cyan ink (C), magenta ink (M), yellow ink (Y), black ink (K), and white ink (W)
  • the initial ink volume data of a single pixel can be expressed as ( c1, c2, c3, c4, c5), where c1 corresponds to the initial ink volume value of the cyan ink (C), c2 corresponds to the initial ink volume value of the magenta ink (M), and c3 corresponds to the yellow ink (Y)
  • the initial ink volume value of , c4 corresponds to the initial ink volume value of black ink (K), and c5 corresponds to the initial ink volume value of white ink (W).
  • Step S60 compare the initial ink volume value of at least one color ink required for printing the voxel points with a predetermined threshold value, and obtain the actual ink volume data of the voxel points, where the actual ink volume data includes the printing data.
  • the actual ink volume value of at least one color ink required for the voxel point is compared.
  • the number of ink droplets corresponding to a single voxel point can be different.
  • a single-color voxel point can have 3 ink droplets, 5 ink droplets, or 4 ink droplets. That is, the number of ink droplets corresponding to a single voxel point may be smaller than the type of color ink provided by the printing device.
  • the number of ink droplets corresponding to a single voxel point determines the ink volume threshold for that voxel point. Therefore, in this case, the sum of multiple initial ink volume values of a single voxel point is likely to be greater than the ink volume threshold value of a single voxel point, then it is considered that the voxel point will cause ink accumulation, and the voxel point needs to be checked. Ink volume compression for voxel ink volume control.
  • the actual ink volume of the M color inks required for printing the voxel point is obtained magnitude.
  • the actual ink volume values C1, C2, C3, C4, and C5 of the voxel points can be obtained, wherein C1, C2, C3 , C4, and C5 correspond to the actual ink volume values of cyan ink (C), magenta ink (M), yellow ink (Y), black ink (K), and white ink (W), respectively.
  • the actual ink volume values C1, C2, C3, C4, and C5 can be set to be equal to 0 or 255 to indicate whether the print head ejects ink droplets of the color ink to the position of the voxel point during the actual printing process .
  • the voxel ink volume control method provided by the embodiment of the present application is simple and fast, and the effect of the discarded color ink is well preserved in the process of ink volume compression, so that the color will not be seriously damaged due to compression, Thus, the color rendering effect of printing is improved, and the printing quality is improved.
  • the initial ink volume value corresponding to each color ink is greater than or equal to the second value and less than or equal to the first value, that is, c1, c2, c3, c4, c5 ⁇ [second value, first value].
  • the first value e.g. 225 or 100%
  • the second value e.g. 0
  • the second value is used to indicate that ink droplets of the color ink are not ejected when printing the voxel dots.
  • the ink volume value when the ink volume value can be represented by a value from 0 to 255, then the first value is 225, and the second value is 0; when the ink volume value can also be represented by a value from 0 to 100%, then The first value is 100% and the second value is 0.
  • the predetermined threshold may be determined by user input, or a default value may be used.
  • the predetermined threshold when the ink volume value can be represented by a value from 0 to 255, the predetermined threshold can be 127; when the ink volume value can also be represented by a value from 0 to 100%, the predetermined threshold value can be 50%.
  • the at least one amount of ink required for printing voxel points is obtained.
  • the actual ink volume value of each color ink is used to indicate whether the ink droplets of the color ink are ejected to the voxel point position during the actual printing process, and an optimized voxel point ink volume control method is provided.
  • the voxel points are subjected to the ink volume compression process, and the effect of the discarded color ink is better preserved in the process of ink volume compression, so that the color will not be seriously damaged due to compression, which further improves the printing color rendering effect. print quality.
  • step S60 includes:
  • N is the ink corresponding to a single voxel point
  • N is less than the number M of types of the multi-color inks.
  • the number of ink droplets in a single voxel point is N, which means that the color ink types of a single voxel point are at most N.
  • N is less than M, then at least M-N color inks do not need to be jetted. Therefore, in this embodiment, only the largest N of the multiple initial ink volume values are selected and compared with the predetermined threshold respectively, which saves the space and time occupied by data processing, improves processing efficiency, and can It can better ensure the color rendering effect.
  • step S60 specifically includes:
  • Step S611 judging whether the selected N initial ink volume values are less than the predetermined threshold
  • Step S612 when the initial ink volume value is greater than or equal to the predetermined threshold value, set the actual ink volume value of the color ink corresponding to the initial ink volume value to a first value, and the first value is used to indicate ejecting ink droplets of the color ink when printing the voxel dots;
  • Step S613 when the initial ink volume value is less than the predetermined threshold, set the actual ink volume value of the color ink corresponding to the initial ink volume value to a second value, and the second value is used to instruct the printing
  • the voxel points are described, the ink droplets of the color ink are not ejected.
  • step S60 in this embodiment further includes:
  • Step S614 Set the actual ink volume values of the M-N color inks that are not used for comparison as a second value, where the second value is used to instruct not to eject ink droplets of the color ink when printing the voxel dots.
  • step S60 specifically includes:
  • Step S621 judging whether the selected N initial ink volume values are greater than the predetermined threshold
  • Step S622 when the initial ink amount value is greater than the predetermined threshold, set the actual ink amount value of the color ink corresponding to the initial ink amount value to a first value, and the first value is used to instruct the printing ejecting ink droplets of the color ink when the voxel points are described;
  • Step S623 when the initial ink volume value is less than or equal to the predetermined threshold, set the actual ink volume value of the color ink corresponding to the initial ink volume value to a second value, and the second value is used to indicate Ink droplets of the color ink are not ejected when the voxel dots are printed.
  • the method also includes:
  • Step S70 Calculate the error between the initial ink volume value of the multi-color ink required for printing the voxel point and the actual ink volume value, and spread the error to other adjacent voxel points.
  • c1-C1, c2-C2, c3-C3, c4-C4, c5-C5 can be calculated to obtain cyan ink (C), magenta ink (M), yellow ink (Y), black ink (K), The error value of the ink volume of the white ink (W), and the error is subjected to error diffusion processing to apply to other adjacent voxel points.
  • error diffusion processing the loss of repeated colors can be avoided, and the printing display can be better improved. color effect.
  • This embodiment does not specifically limit the error diffusion processing, and any effective error diffusion algorithm can be implemented.
  • the method can also include:
  • the ink volume value of the transparent filling ink is the first value, such as 255 or 100%, then the actual total ink volume of the voxel point is exactly equal to the total ink volume threshold of the voxel point, and the transparent filling ink will not affect the voxel point. color rendering.
  • the initial ink volume data of each voxel point in the voxel set can be sequentially acquired, and the actual ink volume data of the voxel point is generated based on the comparison of at least part of the plurality of initial ink volume values with a predetermined threshold value , so as to complete the actual ink volume data generation process of all voxel points of the entire voxel set.
  • Embodiment 1 On the basis of Embodiment 1, Embodiment 2 and Embodiment 3, the voxel dot ink quantity control method generates second ink quantity data.
  • This embodiment provides a three-dimensional printing method, including:
  • first-layer printing data includes first ink volume data of a plurality of voxel points
  • the second ink volume of at least a part of the voxel points is obtained.
  • the three-dimensional object is printed according to the printing control data.
  • the second ink volume data includes second ink volume values of multiple color inks required for printing the voxel dots, and may also include filling ink volume values or actual white ink volume values.
  • the second ink volume data may be further processed.
  • actual ink volume data of the voxel dots may be generated based on a comparison of at least part of the second ink volume data with a predetermined threshold, wherein the actual ink volume data includes actual ink volume values of different color inks.
  • the different color inks include the different color inks, and may also include white ink.
  • the actual ink volume value corresponding to the different color inks is set to indicate whether the ink droplets of the color ink are actually ejected to the position of the voxel point, and an optimized voxel point ink volume control method is provided, and the method is simple and fast, And in the process of ink volume compression, the effect of the discarded color ink is better preserved, so that the color will not be seriously damaged due to compression, and the printing color rendering effect is improved.
  • the voxel dot ink quantity control method generates actual ink quantity data
  • this embodiment provides a three-dimensional printing method, including:
  • the second layer of printing data includes initial ink volume data of a plurality of voxel points, and the initial ink volume data of the voxel points includes the ink of multiple colors required for printing the voxel points.
  • Initial ink volume value
  • the three-dimensional object is printed according to the printing control data.
  • the actual ink volume data may be further processed.
  • the actual ink volume data may be halftone processed to obtain halftone data after screening.
  • the printing control data for the 3D printing device is generated based at least in part on the actual ink volume data of each voxel point to print the 3D object, so that the color is not seriously damaged due to compression, and the printing color rendering effect is further improved. Improved print quality.
  • the three-dimensional printing method in the fifth embodiment of the present application may be implemented by a three-dimensional printing device, and FIG. 7 shows a schematic diagram of the hardware structure of the three-dimensional printing device 300 provided in the sixth embodiment of the present application.
  • the three-dimensional printing apparatus 300 may include a processor 301 and a memory 302 storing computer program instructions.
  • the processor 301 may include a central processing unit (CPU), or a specific integrated circuit (ASIC), or may be configured to implement one or more integrated circuits of the present embodiment.
  • Memory 302 may include mass storage for data or instructions.
  • memory 302 may include a hard disk drive, a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus drive, or a combination of two or more of the above.
  • Memory 302 may include removable or non-removable (or fixed) media, where appropriate.
  • Memory 302 may be internal or external to the data processing device, where appropriate.
  • memory 302 is non-volatile solid state memory.
  • memory 302 includes read only memory (ROM).
  • the ROM may be a mask programmed ROM, programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), electrically rewritable ROM (EAROM) or flash memory or A combination of two or more of the above.
  • PROM programmable ROM
  • EPROM erasable PROM
  • EEPROM electrically erasable PROM
  • EAROM electrically rewritable ROM
  • flash memory or A combination of two or more of the above.
  • the processor 301 implements the three-dimensional printing method described in the fifth embodiment above by reading and executing the computer program instructions stored in the memory 302 .
  • the three-dimensional printing apparatus 300 may also include a printing assembly operably connected to the processor 301 , and the processor 301 controls the printing assembly to print three-dimensional objects by reading and executing computer program instructions stored in the memory 302 .
  • the present application may further provide a computer-readable storage medium for implementation.
  • Computer program instructions are stored on the computer-readable storage medium; when the computer program instructions are executed by the processor, the three-dimensional printing method described in the fifth embodiment is implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ink Jet (AREA)

Abstract

本申请提供体素点墨量控制方法、三维打印方法、三维打印设备及存储介质,其中,方法包括:获取第一层打印数据,第一层打印数据包括多个体素点的第一墨量数据,体素点的第一墨量数据包括打印体素点所需的多种彩色墨水的第一墨量值;获取用于压缩多种彩色墨水的第一墨量值的压缩系数;基于多种彩色墨水的第一墨量值和压缩系数,得到打印体素点所需的多种彩色墨水的第二墨量值;将第二墨量值作为体素点的第二墨量数据中的至少部分,第二墨量数据用于生成打印控制数据。本申请提供的体素点墨量控制方法、三维打印方法、三维打印设备及存储介质,解决了现有技术中在打印三维颜色物体时对沉积的墨量控制不当,导致打印显色效果不佳的问题。

Description

体素点墨量控制方法、三维打印方法、三维打印设备及存储介质
本申请要求于2021年04月20日提交中国专利局、申请号为202110425877.5,发明名称为“体素点墨量控制方法、三维打印方法、三维打印设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及喷墨打印技术领域,尤其涉及体素点墨量控制方法、三维打印方法、三维打印设备及存储介质。
背景技术
喷墨打印技术是将墨水经喷头喷嘴变成墨滴喷射到打印介质上,从而得到图像产品的技术。该技术为非接触打印,具有打印速度快,污染小,色彩鲜艳,图像保存期长,能适应多种打印介质等优点。喷墨打印主要通过控制喷嘴喷出的墨量多少来实现同一颜色的墨水呈现不同颜色深度的打印效果。
现有的彩色喷墨式三维打印系统关联于颜色空间,所述颜色空间通过可用于打印系统以用于沉积或施加到打印介质的一种或多种颜色墨水来被限定。颜色空间的示例可以是CMYK颜色空间,其中四个变量被使用以表示青色墨水(C)、品红色墨水(M)、黄色墨水(Y)、黑色墨水(K)的墨量值。但是在将图像颜色数据如RGB数据转换为输出到打印机的颜色空间如CMYK颜色空间的墨量数据后,可能存在墨量值过大的情况,当墨量值过大时打印色彩再现的范围不会提高,反而会因墨量过大导致墨层表面起皱、积墨以及溢出等问题,导致打印显色效果不佳。
申请内容
本申请为了克服上述缺陷,本申请提供体素点墨量控制方法、三维打印方法、三维打印设备及存储介质,解决了现有技术中在打印三维颜色物体时对沉积的墨量控制不当,导致打印显色效果不佳的问题。
第一方面,本申请提供一种体素点墨量控制方法,所述方法包括:
获取第一层打印数据,所述第一层打印数据包括多个体素点的第一墨量数据,所述体素点的第一墨量数据包括打印所述体素点所需的多种彩色墨水的第一墨量值;
获取用于压缩所述多种彩色墨水的第一墨量值的压缩系数;
基于所述多种彩色墨水的所述第一墨量值和所述压缩系数,得到打印所述体素点所需的多种彩色墨水的第二墨量值;
将所述第二墨量值作为所述体素点的第二墨量数据中的至少部分,所述第二墨量数据用于生成打印控制数据。
结合第一方面,在一种可行的实施方式中,所述获取第一层打印数据包括:
获取打印所述体素点所需的多种彩色墨水的初始墨量值和线性化校正曲线;
基于所述多种彩色墨水的所述初始墨量值和所述线性化校正曲线,得到打印所述体素点 所需的多种彩色墨水的第一墨量值。
结合第一方面,在一种可行的实施方式中,所述线性化校正曲线选自现有曲线、现有曲线的合并曲线以及插值拟合曲线中的至少一种。
结合第一方面,在一种可行的实施方式中,所述压缩系数至少包括第一压缩系数和/或第二压缩系数,所述第一压缩系数、所述第二压缩系数分别用于压缩不同的彩色墨水的第一墨量值。
结合第一方面,在一种可行的实施方式中,所述压缩系数依据打印所述体素点所需的至少一种彩色墨水的第一墨量值计算得到。
结合第一方面,在一种可行的实施方式中,所述获取用于压缩所述多种彩色墨水的第一墨量值的压缩系数,包括:
获取用于压缩所述多种彩色墨水的第一墨量值的初始压缩系数,所述初始压缩系数至少包括第一初始压缩系数和/或第二初始压缩系数;
基于所述多种彩色墨水的所述第一墨量值和所述初始压缩系数,得到所述多种彩色墨水的中间墨量值;
依据所述多种彩色墨水的中间墨量值进行喷墨打印,得到第一校准图案;
依据所述第一校准图案与预设的标准图案得到第一调整系数;
依据所述第一调整系数调整至少一个初始压缩系数,得到所述压缩系数。
结合第一方面,在一种可行的实施方式中,在所述基于所述多种彩色墨水的所述第一墨量值和所述压缩系数,得到打印所述体素点所需的多种彩色墨水的第二墨量值之后,所述方法还包括:
依据打印所述体素点所需的多种彩色墨水的第二墨量值和所述体素点的总墨量阈值,得到打印所述体素点所需的填充墨墨量值,并将所述填充墨墨量值作为所述第二墨量数据的至少部分。
结合第一方面,在一种可行的实施方式中,所述方法还包括:
获取打印所述体素点所需的多种彩色墨水的第一墨量值和拟用白墨墨量值之间的映射关系;
基于所述多种彩色墨水的所述第一墨量值和所述映射关系,获得打印所述体素点所需的的拟用白墨墨量值;
基于所述拟用白墨墨量值确定实际白墨墨量值,并将所述实际白墨墨量值作为所述第二墨量数据的至少部分。
结合第一方面,在一种可行的实施方式中,所述基于所述拟用白墨墨量值确定实际白墨墨量值,包括:
基于打印所述体素点所需的多种彩色墨水的第二墨量值确定剩余墨量值,所述剩余墨量值等于所述体素点的总墨量阈值减去打印所述体素点所需的多种彩色墨水的第二墨量值;
确定所述拟用白墨墨量值和所述体素点的剩余墨量值中的较小值,将所述较小值作为打印所述体素点所需的实际白墨墨量值。
结合第一方面,在一种可行的实施方式中,所述获取打印所述体素点所需的多种彩色墨水的第一墨量值和拟用白墨墨量值之间的映射关系,包括:
获取打印所述体素点所需的多种彩色墨水的第一墨量值和初始映射关系,所述初始映射 关系表示所述第一墨量值与拟用白墨墨量值之间的关系;
基于所述多种彩色墨水的所述第一墨量值和所述初始映射关系,得到拟用白墨墨量值;
依据所述拟用白墨墨量值与所述多种彩色墨水的所述第二墨量值进行喷墨打印,得到第二校准图案;
依据所述第二校准图案与预设的标准图案,得到第二调整系数;
依据所述第二调整系数调整所述初始映射关系,得到所述映射关系。
结合第一方面,在一种可行的实施方式中,所述第一墨量数据至少包括青色墨水、品红色墨水、黄色墨水和黑色墨水的第一墨量值,所述获取打印所述体素点所需的多种彩色墨水的第一墨量值和初始映射关系,至少包括:
依据青色墨水、品红色墨水和黄色墨水的第一墨量值,获取所述青色墨水、所述品红色墨水和所述黄色墨水混色后的反色墨量值,其中,所述混色包括一次混色、二次混色和三次混色;
依据黑色墨水的第一墨量值获取白墨系数;
将混色后的反色墨量值乘以所述白墨系数得到初始白墨墨量值,并将所述初始白墨墨量值与所述多种彩色墨水的第一墨量值之间的映射关系确认为初始映射关系。
结合第一方面,在一种可行的实施方式中,所述方法还包括:
获取第二层打印数据,所述第二层打印数据包括多个体素点的初始墨量数据,所述体素点的初始墨量数据包括打印所述体素点所需的多种颜色墨水的初始墨量值;
将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,所述实际墨量数据包括打印所述体素点所需的至少一种颜色墨水的实际墨量值。
结合第一方面,在一种可行的实施方式中,所述初始墨量数据至少包括所述第二墨量数据。
结合第一方面,在一种可行的实施方式中,所述将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,包括:
选取所述多种颜色墨水中初始墨量值最大的N种颜色墨水,将N种颜色墨水的初始墨量值分别与所述预定阈值进行比较,其中,N为单个体素点所对应的墨滴数,且N小于所述多种颜色墨水的种类数M。
结合第一方面,在一种可行的实施方式中,所述将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,包括:
判断选取的N个所述初始墨量值是否小于所述预定阈值;
当所述初始墨量值大于或等于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第一值,所述第一值用于指示打印所述体素点时喷射所述颜色墨水的墨滴;
当所述初始墨量值小于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
结合第一方面,在一种可行的实施方式中,所述将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,包括:
判断选取的N个所述初始墨量值是否大于所述预定阈值;
当所述初始墨量值大于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨 量值设置为第一值,所述第一值用于指示打印所述体素点时喷射所述颜色墨水的墨滴;
当所述初始墨量值小于或等于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
结合第一方面,在一种可行的实施方式中,所述将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,还包括:
将未用于进行比较的M-N种颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
结合第一方面,在一种可行的实施方式中,所述方法还包括:
计算打印所述体素点所需的多种颜色墨水的初始墨量值与所述实际墨量值之间的误差,并将所述误差扩散到邻近的其它体素点处。
结合第一方面,在一种可行的实施方式中,所述方法还包括:
确定打印所述体素点时需要喷射的颜色墨水的实际墨量值为P滴,并确定打印所述体素点所需的T滴透明填充墨水,其中,T=N-P。
结合第一方面,在一种可行的实施方式中,在获取打印所述体素点所需的多种颜色墨水的初始墨量值之前,所述方法还包括:
获取所述体素点的颜色数据,基于至少部分所述颜色数据进行处理得到初始墨量数据。
第二方面,本申请提供一种三维打印方法,所述方法包括:
获取第一层打印数据,所述第一层打印数据包括多个体素点的第一墨量数据;
基于至少部分所述体素点的第一墨量数据并根据第一方面所述的体素点墨量控制方法,得到至少部分所述体素点的第二墨量数据;
根据至少部分所述体素点的第二墨量数据,生成打印控制数据;以及
根据所述打印控制数据打印三维物体。
第三方面,本申请提供一种三维打印方法,所述方法包括:
获取第二层打印数据,所述第二层打印数据包括多个体素点的初始墨量数据,所述体素点的初始墨量数据包括打印所述体素点所需的多种颜色墨水的初始墨量值;
基于至少部分所述体素点的初始墨量数据并根据第一方面所述的体素点墨量控制方法,得到至少部分所述体素点的实际墨量数据;
根据至少部分所述体素点的实际墨量数据,生成打印控制数据;以及
根据所述打印控制数据打印三维物体。
第四方面,本申请提供一种三维打印设备,包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现如第二方面或第三方面所述的三维打印方法。
第五方面,本申请提供一种存储介质,其上存储有计算机程序指令,当所述计算机程序指令被处理器执行时实现如第二方面或第三方面所述的三维打印方法。
有益效果:
本申请提供了体素点墨量控制方法、三维打印方法、三维打印设备及存储介质,所述体素点墨量控制方法生成的第二墨量数据包括基于颜色空间体现各体素点的颜色的不同种彩色墨水的第一墨量值,并基于第一墨量值与压缩系数得到的多种彩色墨水的第二墨量值,该方 法简单、快捷地对各体素点进行了墨量压缩处理,解决了现有技术中在打印三维颜色物体时对沉积的墨量控制不当,导致打印显色效果不佳的问题。
附图说明
下面结合附图和实施例对本申请进一步说明。
图1为本申请实施例一提供的体素点墨量控制方法的流程图一;
图2为本申请实施例一提供的体素点墨量控制方法的流程图二;
图3为本申请实施例二提供的体素点墨量控制方法的流程图;
图4为本申请实施例三提供的体素点墨量控制方法的流程图;
图5为本申请实施例四提供的体素点墨量控制方法的流程图一;
图6为本申请实施例四提供的体素点墨量控制方法的流程图二;
图7为本申请实施例六提供的三维打印设备的结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
实施例一
请参阅附图1,本申请实施例提供一种体素点墨量控制方法,所述方法包括以下步骤:
步骤S10,获取第一层打印数据,所述第一层打印数据包括多个体素点的第一墨量数据,所述体素点的第一墨量数据包括打印所述体素点所需的多种彩色墨水的第一墨量值;
步骤S20,获取用于压缩所述多种彩色墨水的第一墨量值的压缩系数;
步骤S30,基于所述多种彩色墨水的所述第一墨量值和所述压缩系数,得到打印所述体素点所需的多种彩色墨水的第二墨量值;
步骤S40,将所述第二墨量值作为所述体素点的第二墨量数据中的至少部分,所述第二墨量数据用于生成打印控制数据。
在上述方案中,所述体素点墨量控制方法生成的第二墨量数据包括基于颜色空间体现各体素点的颜色的不同种彩色墨水的第一墨量值与压缩系数得到的多种彩色墨水的第二墨量值,该方法简单、快捷地对各体素点进行了墨量压缩处理,解决了现有技术中在打印三维颜色物体时对沉积的墨量控制不当,导致打印显色效果不佳的问题。
需要说明的是,体素点是三维打印过程中分割出来的最小体积单位。
以下结合实施例以及本申请提供的计算方法详细阐述本方案:
步骤S10,获取第一层打印数据,所述第一层打印数据包括多个体素点的第一墨量数据,所述体素点的第一墨量数据包括打印所述体素点所需的多种彩色墨水的第一墨量值。
现有的彩色喷墨式三维打印系统可以关联于颜色空间,通过可用于打印系统以用于沉积或施加到打印介质的一种或多种彩色墨水来被限定。
颜色空间的示例是青色(C)、品红色(M)、黄色(Y)、黑色(K)这四色颜色空间,其中,每种彩色墨水的第一墨量值用于表示该彩色墨水可以被使用的墨水的量。可以理解的是,在其它颜色空间的示例中,颜色空间也可以是六色、八色等任意其它颜色空间。在本申请中,仅以四色颜色空间进行举例说明,并不是为了限定本方法。
各个体素点的第一墨量数据包括打印体素点所需的多种彩色墨水的第一墨量值。在本实施例中,在打印体系中,每种颜色值都可以用0~255之间的数字来表示,同样地,第一墨量值也可以用0至255的数值进行表示,也可以用0至100%的数值表示。
在一种实施方式中,步骤S10,获取第一层打印数据具体可以包括:
获取打印体素点所需的多种彩色墨水的起始墨量值和线性化校正曲线;
基于多种彩色墨水的所述起始墨量值和所述线性化校正曲线,得到打印体素点所需的多种彩色墨水的第一墨量值。
具体的,多种彩色墨水的起始墨量值可以基于体素点的颜色数据进行颜色处理得到。其中颜色处理可以包括颜色空间转换、色域压缩、色域映射等各种处理及其组合。在其它实施方式中,打印体素点所需的多种彩色墨水的第一墨量值可以直接为打印体素点所需的多种彩色墨水的起始墨量值。
具体的,线性化校正曲线可以选自现有曲线、现有曲线的合并曲线以及插值拟合曲线中的至少一种。示例的,线性化校正曲线可以选自现有的Gamma曲线,例如以幂函数y=1-(1-x)^γ或y=x^(1-γ)的曲线作为线性化校正曲线。示例的,线性化校正曲线还可以选自现有的Gamma曲线的合并曲线,例如以y=max(1-(1-x)^γ,x^(1-γ))或y=min(1-(1-x)^γ,x^(1-γ))的合并曲线作为线性化校正曲线。示例的,线性化校正曲线还可以无具体的函数形式,选自插值拟合曲线;其中插值拟合曲线的生成可以例如为:在0-100的阶调中选取有限个阶调点,测量出采样点的密度百分比(或网点百分比等),由此连成一条折线S,折线S与理想直线y=x对比,进行反向拟合,生成拟合曲线,其中采样点之外的部分用模拟计算插值的方法进行取点,即生成插值拟合曲线。
具体的,将多种彩色墨水的起始墨量值作为所述线性化校正曲线的输入值,则可将所述线性化矫正曲线的输出值作为打印体素点所需的多种彩色墨水的第一墨量值。由此,可以对多种彩色墨水的起始墨量值进行线性化校正,从而明显改善多种彩色墨水的阶调误差,提高打印显色效果。
步骤S20,获取用于压缩所述多种彩色墨水的第一墨量值的压缩系数。
在本实施例中,所述多种彩色墨水的第一墨量值、压缩系数可以相同,也可以不同。在其他实施例中,压缩系数也可以由用户输入,也可以依据打印各体素点所需的至少一种彩色墨水的第一墨量值计算得到。
所述压缩系数可以至少包括第一压缩系数和/或第二压缩系数,所述第一压缩系数、所述第二压缩系数分别用于压缩不同的彩色墨水的第一墨量值。在本实施例中,单个体素点中多种彩色墨水的压缩系数不同,可以避免工业喷墨打印中采用同一压缩系数对多种彩色墨水进 行墨量压缩而导致的产品质量差的问题。
具体地,可以依据不同彩色墨水对体素点颜色的亮度、饱和度等影响程度,给不同彩色墨水分配不同的压缩系数,从而进一步地提升打印显色效果,使得打印的彩色图案色彩更鲜明、图案更有层次感。
示例的,所述第一压缩参数可以用于压缩所述青色(C)、品红色(M)、黄色(Y)三种彩色墨水的墨量,而所述第二压缩参数用于压缩所述黑色(K)墨水的墨量,所述第一压缩系数不同于所述第二压缩系数。
在一种实施方式中,所述压缩系数依据打印各体素点所需的多种彩色墨水中的至少一个所述第一墨量值计算得到,从而保证各体素点的压缩系数各不相同,避免了喷墨打印中采用相同的压缩系数对各体素点进行墨量压缩而导致的产品质量差的问题。
示例的,所述第一压缩参数取决于所述黑色(K)墨水的第一墨量值,且用于压缩所述青色(C)、品红色(M)、黄色(Y)三种彩色墨水的墨量;而所述第二压缩参数取决于所述青色(C)、品红色(M)、黄色(Y)三种彩色墨水的第一墨量值,且用于压缩所述黑色(K)墨水的墨量。
更具体的,在一个实施方式中,在墨量值用0至100%的数值表示的情况下,第一压缩系数T1=1–K/4,第二压缩系数T2=1–MAX(C,M,Y)/4,其中C、M、Y、K分别表示青色墨水(C)、品红色墨水(M)、黄色墨水(Y)、黑色墨水(K)的第一墨量值,MAX(C,M,Y)指的是取青色墨水(C)、品红色墨水(M)、黄色墨水(Y)的第一墨量值中的最大值。可以容易理解的是,在墨量值用0至255的数值表示的情况下,第一压缩系数T1=1–(K/255)/4,第二压缩系数T2=1–(MAX(C,M,Y)/255)/4。因此,c=C*T1,m=M*T1,y=Y*T1,k=K*T2,其中c、m、y、k为青色墨水(C)、品红色墨水(M)、黄色墨水(Y)、黑色墨水(K)的第二墨量值。
进一步地,参见图2,步骤S20,获取用于压缩所述多种彩色墨水的第一墨量值的压缩系数,还可以包括:
步骤S21,获取用于压缩所述多种彩色墨水的第一墨量值的初始压缩系数,所述初始压缩系数至少包括第一初始压缩系数和/或第二初始压缩系数;
步骤S22,基于所述多种彩色墨水的所述第一墨量值和所述初始压缩系数,得到所述多种彩色墨水的中间墨量值;
步骤S23,依据所述多种彩色墨水的中间墨量值进行喷墨打印,得到第一校准图案;
步骤S24,依据所述第一校准图案与预设的标准图案得到第一调整系数;
步骤S25,依据所述第一调整系数调整至少一个初始压缩系数,得到所述压缩系数。
具体的,获取所述多种彩色墨水的所述第一墨量值的初始压缩系数,获取所述初始压缩系数后就可以根据获取的每个体素点的所述多种彩色墨水的所述第一墨量值计算得到对应的所述多种彩色墨水的中间墨量值,依据每个像素点的所述多种彩色墨水的中间墨量值进行打印得到第一校准图案。
接着,扫描打印获取的第一校准图案,获取所述第一校准图案中每个体素点的颜色值,将第一校准图案中每个体素点的颜色值与预设的标准图案中对应体素点的颜色值进行误差计算,获取调整至少一个所述初始压缩系数的第一调整系数,依据所述第一调整系数对至少一个所述初始压缩系数进行调整得到实际压缩系数。其中,也可以通过人工观察所述第一校准 图案,然后对比标准图案,并根据经验调整至少一个所述初始压缩系数,但人工观察误差大、效率低。在本实施例中,预设的标准图案是待打印模型的标准图案。
第一调整系数可以对一个初始压缩系数进行调整,也可以对多个初始压缩系数进行调整,这可以依据打印获取的第一校准图案和待打印模型的标准图案的对比进行选择。示例的,可以根据第一校准图案和标准图案的颜色参数进行比对,获得第一调整系数Kx;颜色参数可以包括明度、饱和度及色调角等等。第一调整系数Kx可以仅对用于压缩黑色(K)墨水的墨量的初始压缩系数进行调整。因此,k=K*T2*Kx,其中k为黑色(K)墨水的第二墨量值,K为黑色(K)墨水的第一墨量值,T2为用于压缩黑色(K)墨水的墨量的初始压缩系数。可以理解的是,也可以获得第一调整系数Cx、Mx、Yx以对用于压缩青色(C)墨水、品红色(M)墨水、黄色(Y)墨水的墨量的初始压缩系数进行调整。
步骤S30,基于所述多种彩色墨水的所述第一墨量值和所述压缩系数,得到打印所述体素点所需的多种彩色墨水的第二墨量值。
步骤S40,将所述第二墨量值作为所述体素点的第二墨量数据中的至少部分,所述第二墨量数据用于生成打印控制数据。
在本实施例中,基于关联于颜色空间的体现各体素点的颜色的多种彩色墨水的墨量值和压缩系数获得经墨量压缩处理后所述多种彩色墨水的墨量值,该方法简单、快捷,且各体素点经墨量压缩处理后的多种彩色墨水的墨量值是根据各体素点的实际颜色值进行计算的,解决现有技术中在打印彩色物体时对沉积的墨量控制不当,导致打印显色效果不佳的问题。
实施例二
为了提升颜色表现的阶调和饱和度效果,可以在打印彩色物体时确保打印机系统沉积适当量的白墨以更准确地表示给定的颜色。因此,所述体素点的第二墨量数据还包括打印所述体素点所需的实际白墨墨量值。为了获得对各体素点进行补白的白墨墨量值,参见图3,在实施例一的基础上,所述方法还包括:
步骤S41,获取打印所述体素点所需的多种彩色墨水的第一墨量值和拟用白墨墨量值之间的映射关系;
步骤S42,基于所述多种彩色墨水的所述第一墨量值和所述映射关系,获得打印所述体素点所需的拟用白墨墨量值;
步骤S43,基于所述拟用白墨墨量值确定实际白墨墨量值,并将所述实际白墨墨量值作为所述第二墨量数据的至少部分。
具体的,通过体素点中多种彩色墨水的所述第一墨量值与拟用白墨墨量值之间的映射关系获取各体素点对应的拟用白墨墨量值,且对各体素点进行补白的拟用白墨墨量值是根据各体素点的实际颜色值进行设置的,避免了喷墨打印中采用同一白墨墨量值直接进行打印导致的白墨墨量控制不均匀、打印显色效果不佳的问题,同时这样设置补白的白墨与体素点中多种彩色墨水彼此之间互补,使得打印的彩色图案色彩更鲜明、更有层次感,提升了颜色表现的阶调和饱和度效果。
具体地,所述基于所述拟用白墨墨量值确定实际白墨墨量值,包括:
基于打印所述体素点所需的多种彩色墨水的第二墨量值确定剩余墨量值,所述剩余墨量 值等于所述体素点的总墨量阈值减去打印所述体素点所需的多种彩色墨水的第二墨量值;
确定所述拟用白墨墨量值和所述体素点的剩余墨量值中的较小值,将所述较小值作为打印所述体素点所需的实际白墨墨量值。
在具体实施例中,所述体素点的总墨量阈值由所述体素点对应的墨滴数决定,根据不同打印技术原理,所述体素点对应的墨滴数不同。示例的,当单个体素点对应的墨滴数为3时,所述体素点的总墨量阈值为300%或3*255。在本实施例中,剩余墨量值等于所述体素点的总墨量阈值减去打印所述体素点所需的多种彩色墨水的第二墨量值。因此,实际白墨墨量值取自所述拟用白墨墨量值和各体素点的剩余墨量值中的较小值,由此可以避免由于体素点中的总墨量超过所述体素点的总墨量阈值而造成堆墨等情况。
可以理解的是,所述体素点墨量控制方法的进程可以先进行步骤S20、S30,再进行至步骤S41、S42;也可以先进行步骤S41、S42,再进行S20、S30;当然,步骤S41、S42也可以与步骤S20、S30并行进行。只需要在步骤S30之后,再进行步骤S43即可。
进一步地,步骤S41,获取打印所述体素点所需的多种彩色墨水的第一墨量值和拟用白墨墨量值之间的映射关系,可以包括:
步骤S411,获取打印所述体素点所需的多种彩色墨水的第一墨量值和初始映射关系,所述初始映射关系表示所述第一墨量值与拟用白墨墨量值之间的关系;
步骤S412,基于所述多种彩色墨水的所述第一墨量值和所述初始映射关系,得到拟用白墨墨量值;
步骤S413,依据所述拟用白墨墨量值与所述多种彩色墨水的所述第二墨量值进行喷墨打印得到第二校准图案;
步骤S414,依据所述第一校准图案与预设的标准图案获取第二调整系数;
步骤S415,依据所述第二调整系数调整所述初始映射关系,得到所述映射关系。
具体的,获取所述多种彩色墨水的所述第一墨量值和所述白墨墨量值之间的初始映射关系,所述初始映射关系可以例如随后的方法进行获取。
获取所述初始映射关系后,就可以根据获取的每个体素点的所述多种彩色墨水的所述第一墨量值计算得到对应的拟用白墨墨量值,依据每个像素点的拟用白墨墨量值和实施例一中生成的所述多种彩色墨水的所述第二墨量值进行打印得到第二校准图案。
接着,扫描打印获取的第二校准图案,获取所述第二校准图案中每个体素点的颜色值,将第二校准图案中每个体素点的颜色值与预设的标准图案中对应体素点的颜色值进行误差计算,获取调整所述初始映射关系的第二调整系数,依据所述第二调整系数对所述初始映射关系进行调整得到实际的映射关系。其中,也可以通过人工观察所述第二校准图案,然后对比模型图案,并根据经验调整所述初始映射关系,但人工观察误差大、效率低。
具体的,在本实施例中,所述第一墨量数据至少包括青色墨水(C)、品红色墨水(M)、黄色墨水(Y)和黑色墨水(K)的第一墨量值。这样设置补白的白墨(W),可以与体素点中青色墨水(C)、品红色墨水(M)、黄色墨水(Y)和黑色墨水(K)彼此之间互补,可以均匀地控制颜色表现的阶调和饱和度表现。
具体的,步骤S411,获取打印所述体素点所需的多种彩色墨水的第一墨量值和初始映射关系,可以包括:
步骤S4111,依据所述青色墨水、所述品红色墨水和所述黄色墨水的第一墨量值,获取 所述青色墨水、所述品红色墨水和所述黄色墨水混色后的反色墨量值,其中,所述混色包括一次混色、二次混色和三次混色;
具体的,在本实施例中,青色(C)、品红色(M)、黄色(Y)的混色分为一次色、二次色和三次色。其中,基本颜色青色(C)、品红色(M)、黄色(Y)就是一次色;通过两种不同比例基本颜色进行混合所得到的颜色为二次色,二次色又叫做间色;三次色,又叫复色或次色,是用任何两个间色或三个基本颜色相混合而产生出来的颜色。可以依据青色墨水(C)、品红色墨水(M)、黄色墨水(Y)的第一墨量值获取一次色墨量值、二次色墨量值和三次色墨量值。其中,一次色墨量值color1等于青色墨水(C)、品红色墨水(M)、黄色墨水(Y)的第一墨量值中的最大值减去中间值;二次色墨量值color2等于青色墨水(C)、品红色墨水(M)、黄色墨水(Y)的第一墨量值中的中间值减去最小值;三次色墨量值color3等于青色墨水(C)、品红色墨水(M)、黄色墨水(Y)的第一墨量值中的最小值。
因此,在墨量值用0至100%的数值表示的情况下,所述混色的反色墨量值H=100%-color1-color2-color3;在墨量值用0至255的数值表示的情况下,所述混色的反色墨量值H=255-color1-color2-color3。
步骤S4112,依据所述黑色墨水的第一墨量值获取白墨系数;
在本实施例中,可以认为白色(W)和黑色(K)互为补色,因此,可以依据黑色(K)墨水的所述第一墨量值获取白墨系数。具体的,在墨量值用0至100%的数值表示的情况下,所述白墨系数w1=1-K;在墨量值用0至255的数值表示的情况下,所述白墨系数w1=1-K/255。
步骤S4113,将混色后的反色墨量值乘以所述白墨系数得到初始白墨墨量值,并将所述初始白墨墨量值与所述多种彩色墨水的第一墨量值之间的映射关系确认为初始映射关系。
在本实施例中,将所述初始白墨墨量值定义为所述混色的反色墨量值乘以所述白墨系数。具体的,所述初始白墨墨量值W=H*w1。
依据第二调整系数对所述初始映射关系进行调整可以得到实际映射关系,其中所述第二调整系数可以对所述混色的反色墨量值进行调整,也可以对所述白墨系数进行调整,也可以对其组合进行调整。示例的,所述第二调整系数可以包括一次色调整系数h1和二次色调整系数h2,则所述混色的反色墨量值为:在墨量值用0至100%的数值表示的情况下,所述混色的反色墨量值H=100%-h1*color1-h2*color2-color3;所述初始白墨墨量值W=H*w1=(100%-h1*color1-h2*color2-color3)*(1-K)。
实施例三
进一步地,在实施例一的基础上,在本实施例中,由于在墨量压缩后,所述多种彩色墨水的第二墨量值小于所述多种彩色墨水的第一墨量值,可能导致体素点的总墨量值低于所述体素点的总墨量阈值,为了保证体素点的对应的打印厚度,需要对所述体素点进行填充。因此,所述体素点的第二墨量数据还包括打印所述体素点所需的填充墨墨量值,参见图4,在步骤S30之后,所述方法还包括:
步骤S44,依据打印所述体素点所需的多种彩色墨水的第二墨量值和所述体素点的总墨量阈值,得到打印所述体素点所需的填充墨墨量值,并将所述填充墨墨量值作为所述第二墨量数据的至少部分。
具体的,所述体素点的总墨量阈值由所述体素点对应的墨滴数决定,根据不同打印技术 原理,所述体素点对应的墨滴数不同。示例的,当单个体素点对应的墨滴数为3时,所述体素点的总墨量阈值为300%或3*255。在本实施例中,填充墨墨量值等于所述体素点的总墨量阈值减去打印体素点所需的多种彩色墨水的所述第二墨量值。所述填充墨可以优选为透明墨水,这样透明墨水不会影响所述体素点的颜色表现。
实施例四
本申请实施例还提供一种体素点墨量控制方法,如图5所示,所述方法包括以下步骤:
步骤S50,获取第二层打印数据,所述第二层打印数据包括多个体素点的初始墨量数据,所述体素点的初始墨量数据包括打印所述体素点所需的多种颜色墨水的初始墨量值;
步骤S60,将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,所述实际墨量数据包括打印所述体素点所需的至少一种颜色墨水的实际墨量值。
在本方案中,所述体素点墨量控制方法基于与三维打印设备使用的至少一种颜色墨水的初始墨量值与预定阈值的比较,生成至少一种颜色墨水对应的实际墨量值,以指示实际是否喷射该颜色墨水的墨滴到体素点位置处,提供了优化的体素点墨量控制方法,该方法简单、快捷地对各体素点进行了墨量压缩处理,且在墨量压缩的过程中较好地保留了被舍弃的颜色墨水的效果,使得颜色不会因为压缩受损严重,进而提升了打印显色效果,提高了打印质量。
可以理解地,在本方案中,颜色墨水包括实施例一至实施例三中所述的彩色墨水,还可以包括白色墨水等等,即初始墨量数据至少包括第二墨量数据,第二墨量数据可以包括彩色墨水的第二墨量值、白色墨水的实际白墨墨量值中的至少一种。
以下详细介绍本方案,需要说明的是在步骤S50之前,所述体素点墨量控制方法还可以包括:
步骤S01,获取所述体素点的颜色数据,基于至少部分所述颜色数据进行处理得到所述初始墨量数据。
具体的,在不同颜色空间下所述颜色数据的表示各不相同,如在CMYK颜色空间下所述颜色数据就由青色(C)、品红色(M)、黄色(Y)、黑色(K)四种颜色决定,则颜色数据为单个体素点的颜色值(C,M,Y,K);在RGB颜色空间下,颜色数据为单个体素点的颜色值(R,G,B)。不同颜色空间下所述颜色数据的处理各不相同,相同颜色空间下所述颜色数据的处理也可以不同。所述颜色数据的处理可以包括颜色空间转换、色域压缩、色域映射、线性化处理、墨量压缩等各种处理及其组合。
步骤S50,获取第二层打印数据,所述第二层打印数据包括多个体素点的初始墨量数据,所述体素点的初始墨量数据包括打印所述体素点所需的多种颜色墨水的初始墨量值。
具体地,可以在实施例一、实施例二、实施例三的基础上,获得所述体素点的第二墨量数据,所述体素点的第二墨量数据至少包括打印所述体素点所需的多种颜色墨水的第二墨量值,在本实施例中,将实施例一、实施例二、实施例三中所述体素点的第二墨量数据作为初始墨量数据。
可以理解地,根据实施例一、实施例二、实施例三的方法得到的体素点的第二墨量数据,通过简单、快捷地对打印各体素点的所需的墨水的墨量进行了压缩处理;以及通过体素点中多种彩色墨水的第一墨量值与白墨墨量值之间的映射关系获取打印体素点所需的白墨墨量值, 设置补白的白墨与体素点中多种彩色墨水彼此之间互补,使得打印的彩色图案色彩更鲜明、更有层次感,提升了颜色表现的阶调和饱和度效果。将所有体素点的第二墨量数据可以作为初始墨量数据。
在实际打印过程中,三维打印设备使用的颜色墨水的种类数为M。其中,三维打印设备可使用的颜色墨水可以包括至少三种基本颜色墨水,还可以包括不同于基本颜色的非基本颜色墨水,因此M大于或等于3。所述基本颜色墨水一般包括青色墨水(C)、品红色墨水(M)、黄色墨水(Y),在其它实施例中也可以包括黑色墨水(K)作为基本颜色墨水;所述非基本颜色墨水例如可以为白色墨水(W)、绿色墨水(G)以及浅色墨水等,在此不做限定。
多个初始墨量值与M种颜色墨水一一对应,即所述初始墨量值为用于体现打印体素点所需的M种颜色墨水的墨量值。例如M种颜色墨水包括青色墨水(C)、品红色墨水(M)、黄色墨水(Y)、黑色墨水(K)、白色墨水(W),则单个像素点的初始墨量数据可以表示为(c1,c2,c3,c4,c5),其中,c1对应于青色墨水(C)的初始墨量值,c2对应于品红色墨水(M)的初始墨量值,c3对应于黄色墨水(Y)的初始墨量值,c4对应于黑色墨水(K)的初始墨量值,c5对应于白色墨水(W)的初始墨量值。
步骤S60,将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,所述实际墨量数据包括打印所述体素点所需的至少一种颜色墨水的实际墨量值。
根据不同的打印技术原理,单个体素点对应的墨滴数可以不同,例如单色体素点可以有3个墨滴数,也可以有5个墨滴数,或4个墨滴数。即,单个体素点对应的墨滴数可以小于打印设备提供的颜色墨水种类。
单个体素点对应的墨滴数决定了该体素点的墨量阈值。因此,在这种情况下,单个体素点的多个初始墨量值的总和容易大于单个体素点的墨量阈值,则认为该体素点会引起堆墨,需要对该体素点进行墨量压缩,以实现体素墨量控制。
在本实施例中,通过将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到打印所述体素点所需的M种颜色墨水的实际墨量值。对应于多种颜色墨水的初始墨量值c1,c2,c3,c4及c5,可以得到所述体素点的实际墨量值C1,C2,C3,C4,及C5,其中C1,C2,C3,C4,C5分别对应于青色墨水(C)、品红色墨水(M)、黄色墨水(Y)、黑色墨水(K)、白色墨水(W)的实际墨量值。
在本实施例中,可以设置实际墨量值C1,C2,C3,C4,C5等于0或255,以指示实际打印过程中打印头是否喷射该颜色墨水的墨滴到该体素点的位置处。本申请实施例提供的体素墨量控制方法,该方法简单、快捷,且在墨量压缩的过程中较好地保留了被舍弃的颜色墨水的效果,使得颜色不会因为压缩受损严重,进而提升了打印显色效果,提高了打印质量。
具体的,每种颜色墨水对应的初始墨量值大于或等于第二值且小于或等于第一值,即c1,c2,c3,c4,c5∈[第二值,第一值]。当一种颜色墨水的初始墨量值等于第一值(例如为225或100%)时,即第一值用于指示打印所述体素点时喷射所述颜色墨水的墨滴。当一种颜色墨水的初始墨量值等于第二值(例如为0)时,即第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。在具体实施方式中,当墨量值可以用0至255的数值进行表示,那么第一值为225,第二值为0;当墨量值也可以用0至100%的数值进行表示,那么第一值为100%,第二值为0。
可选地,预定阈值可以由用户输入确定,也可以采用默认值。在本实施例中,当墨量值可以用0至255的数值进行表示,预定阈值可以为127;当墨量值也可以用0至100%的数值进行表示,预定阈值可以为50%。
在本方案中,基于与打印体素点所需的多种颜色墨水一一对应的多个初始墨量值的至少部分与预定阈值的比较来得到,所述打印体素点所需的至少一种颜色墨水的实际墨量值,以指示实际打印过程中是否喷射该颜色墨水的墨滴到体素点位置处,提供了优化的体素点墨量控制方法,该方法简单、快捷地对各体素点进行了墨量压缩处理,且在墨量压缩的过程中较好地保留了被舍弃的颜色墨水的效果,使得颜色不会因为压缩受损严重,进一步提升了打印显色效果,提高了打印质量。
在一种具体的实施方式中,步骤S60,包括:
选取所述多种颜色墨水中初始墨量值最大的N种颜色墨水,将N种颜色墨水的初始墨量值分别与所述预定阈值进行比较,其中,N为单个体素点所对应的墨滴数,且N小于所述多种颜色墨水的种类数M。
单个体素点中的墨滴数为N,即表示单个体素点的颜色墨水种类至多为N种。当N小于M时,则至少M-N种颜色墨水无需喷墨。因此,在本实施例中,只选取所述多个初始墨量值中最大的N个,分别与所述预定阈值进行比较,节省了数据处理占据的空间和时间,提高了处理效率,且可以较好地保证显色效果。
进一步地,步骤S60,具体包括:
步骤S611,判断选取的N个所述初始墨量值是否小于所述预定阈值;
步骤S612,当所述初始墨量值大于或等于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第一值,所述第一值用于指示打印所述体素点时喷射所述颜色墨水的墨滴;
步骤S613,当所述初始墨量值小于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
进一步地,本实施例中步骤S60还包括:
步骤S614,将未用于进行比较的M-N种颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
在另一种具体的实施方式中,步骤S60具体包括:
步骤S621,判断选取的N个所述初始墨量值是否大于所述预定阈值;
步骤S622,当所述初始墨量值大于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第一值,所述第一值用于指示打印所述体素点时喷射所述颜色墨水的墨滴;
步骤S623,当所述初始墨量值小于或等于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
进一步地,如图6所示,所述方法还包括:
步骤S70,计算打印所述体素点所需的多种颜色墨水的初始墨量值与所述实际墨量值之间的误差,并将所述误差扩散到邻近的其它体素点处。
具体地,可以计算c1-C1,c2-C2,c3-C3,c4-C4,c5-C5得到青色墨水(C)、品红色墨水(M)、黄色墨水(Y)、黑色墨水(K)、白色墨水(W)的墨量的误差值,并将该误差进行误差扩散处理,作用到邻近的其它体素点位置,通过误差扩散处理,可以避免重复的颜色的损失,更好地提升打印显色效果。本实施例对误差扩散处理不做具体限制,任意有效的误差扩散算法皆可以实现。
进一步地,所述方法还可以包括:
步骤S80,确定打印所述体素点时需要喷射的颜色墨水的实际墨量值为P滴,并确定打印所述体素点所需的T滴透明填充墨水,其中,T=N-P。
可以理解地,步骤S60将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到打印所述体素点所需的至少一种颜色墨水的实际墨量值。因此,打印所述体素点所需的颜色墨水的实际墨量值的个数P小于或等于打印所述体素点所需的墨滴数N,则可以在体素点中填充透明填充墨水以补齐体素点的墨量,透明填充墨水的数量T=N-P。透明填充墨水的墨量值为第一值,例如为255或100%,则体素点的实际总墨量正好等于该体素点的总墨量阈值,且透明填充墨水不会影响体素点的颜色呈现。
重复步骤S50至S80,可以依次获取体素集中各体素点的初始墨量数据,基于所述多个初始墨量值的至少部分与预定阈值的比较生成所述体素点的实际墨量数据,从而完成整个体素集的所有体素点的实际墨量数据生成过程。
实施例五
在实施例一、实施二、实施例三的基础上,所述体素点墨量控制方法生成第二墨量数据,本实施例提供了一种三维打印方法,包括:
获取第一层打印数据,所述第一层打印数据包括多个体素点的第一墨量数据;
基于至少部分所述体素点的第一墨量数据并根据上述实施例一、实施例二、以及实施例三的体素点墨量控制方法,得到至少部分所述体素点的第二墨量数据;
根据至少部分所述体素点的第二墨量数据,生成打印控制数据;以及
根据所述打印控制数据打印三维物体。
在本方案中,所述第二墨量数据包括打印所述体素点所需的多种彩色墨水的第二墨量值,还可以包括填充墨墨量值或实际白墨墨量值。通过对各体素点进行了墨量压缩处理,且在墨量压缩的过程中较好地保留了被舍弃的颜色墨水的效果,基于所述第二墨量数据可以生成打印控制数据,将所述打印控制数据输出到三维打印设备,从而可以用于打印三维物体,使得颜色不会因为压缩受损严重,进一步提升了打印显色效果,提高了打印质量。
具体的,在根据至少部分体素点的第二墨量数据而生成针对三维打印设备的打印控制数据的过程中,还可以对所述第二墨量数据进一步处理。
示例的,可以基于所述第二墨量数据的至少部分与预定阈值的比较生成所述体素点的实际墨量数据,其中所述实际墨量数据包括不同种颜色墨水的实际墨量值。所述不同种颜色墨水包括所述不同种彩色墨水,还可以包括白色墨水。设置所述不同种颜色墨水对应的实际墨量值,以指示实际是否喷射该颜色墨水的墨滴到体素点位置处,提供了优化的体素点墨量控制方法,该方法简单、快捷,且在墨量压缩的过程中较好地保留了被舍弃的颜色墨水的效果,使得颜色不会因为压缩受损严重,提升了打印显色效果。
在实施例四的基础上,所述体素点墨量控制方法生成实际墨量数据,本实施例提供了一种三维打印方法,包括:
获取第二层打印数据,所述第二层打印数据包括多个体素点的初始墨量数据,所述体素点的初始墨量数据包括打印所述体素点所需的多种颜色墨水的初始墨量值;
基于至少部分所述体素点的初始墨量数据并根据上述实施例四的体素点墨量控制方法,得到至少部分所述体素点的实际墨量数据;
根据至少部分所述体素点的实际墨量数据,生成打印控制数据;以及
根据所述打印控制数据打印三维物体。
具体的,在基于至少部分体素点的实际墨量数据而生成打印控制数据的过程中,还可以对所述实际墨量数据进一步处理。仅做示例的,可以对所述实际墨量数据半色调处理,得到加网后的半色调数据。
在本方案中,至少部分基于各体素点的实际墨量数据而生成针对三维打印设备的打印控制数据以打印三维物体,使得颜色不会因为压缩受损严重,进一步提升了打印显色效果,提高了打印质量。
实施例六
本申请实施例五的三维打印方法可以由三维打印设备来实现,图7示出了本申请实施例六提供的三维打印设备300的硬件结构示意图。
三维打印设备300可以包括处理器301以及存储有计算机程序指令的存储器302。具体地,处理器301可以包括中央处理器(CPU),或者特定集成电路(ASIC),或者可以被配置成实施本实施例的一个或多个集成电路。
存储器302可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器302可包括硬盘驱动器、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器302可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器302可在数据处理装置的内部或外部。在特定实施例中,存储器302是非易失性固态存储器。在特定实施例中,存储器302包括只读存储器(ROM)。在合适的情况下,该ROM可以是掩模编程的ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可改写ROM(EAROM)或闪存或者两个或更多个以上这些的组合。
处理器301通过读取并执行存储器302中存储的计算机程序指令,以实现上述实施例五所述的三维打印方法。
三维打印设备300还可以包括打印组件,打印组件可操作性连接至处理器301,处理器301通过读取并执行存储器302中存储的计算机程序指令从而控制所述打印组件打印三维物体。
另外,结合上述实施例五中的三维打印方法,本申请还可提供一种计算机可读存储介质来实现。该计算机可读存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例五中所述的三维打印方法。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (24)

  1. 一种体素点墨量控制方法,其特征在于,所述方法包括:
    获取第一层打印数据,所述第一层打印数据包括多个体素点的第一墨量数据,所述体素点的第一墨量数据包括打印所述体素点所需的多种彩色墨水的第一墨量值;
    获取用于压缩所述多种彩色墨水的第一墨量值的压缩系数;
    基于所述多种彩色墨水的所述第一墨量值和所述压缩系数,得到打印所述体素点所需的多种彩色墨水的第二墨量值;
    将所述第二墨量值作为所述体素点的第二墨量数据中的至少部分,所述第二墨量数据用于生成打印控制数据。
  2. 根据权利要求1所述的方法,其特征在于,所述获取第一层打印数据包括:
    获取打印所述体素点所需的多种彩色墨水的起始墨量值和线性化校正曲线;
    基于所述多种彩色墨水的所述起始墨量值和所述线性化校正曲线,得到打印所述体素点所需的多种彩色墨水的第一墨量值。
  3. 根据权利要求2所述的方法,其特征在于,所述线性化校正曲线选自现有曲线、现有曲线的合并曲线以及插值拟合曲线中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,所述压缩系数至少包括第一压缩系数和/或第二压缩系数,所述第一压缩系数、所述第二压缩系数分别用于压缩不同的彩色墨水的第一墨量值。
  5. 根据权利要求1所述的方法,其特征在于,所述压缩系数依据打印所述体素点所需的至少一种彩色墨水的第一墨量值计算得到。
  6. 根据权利要求1所述的方法,其特征在于,所述获取用于压缩所述多种彩色墨水的第一墨量值的压缩系数,包括:
    获取用于压缩所述多种彩色墨水的第一墨量值的初始压缩系数,所述初始压缩系数至少包括第一初始压缩系数和/或第二初始压缩系数;
    基于所述多种彩色墨水的所述第一墨量值和所述初始压缩系数,得到所述多种彩色墨水的中间墨量值;
    依据所述多种彩色墨水的中间墨量值进行喷墨打印,得到第一校准图案;
    依据所述第一校准图案与预设的标准图案得到第一调整系数;
    依据所述第一调整系数调整至少一个初始压缩系数,得到所述压缩系数。
  7. 根据权利要求1所述的方法,其特征在于,在所述基于所述多种彩色墨水的所述第一墨量值和所述压缩系数,得到打印所述体素点所需的多种彩色墨水的第二墨量值之后,所述方法还包括:
    依据打印所述体素点所需的多种彩色墨水的第二墨量值和所述体素点的总墨量阈值,得到打印所述体素点所需的填充墨墨量值,并将所述填充墨墨量值作为所述第二墨量数据的至少部分。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取打印所述体素点所需的多种彩色墨水的第一墨量值和拟用白墨墨量值之间的映射关系;
    基于所述多种彩色墨水的所述第一墨量值和所述映射关系,获得打印所述体素点所需的的拟用白墨墨量值;
    基于所述拟用白墨墨量值确定实际白墨墨量值,并将所述实际白墨墨量值作为所述第二墨量数据的至少部分。
  9. 根据权利要求8所述的方法,其特征在于,所述基于所述拟用白墨墨量值确定实际白墨墨量值,包括:
    基于打印所述体素点所需的多种彩色墨水的第二墨量值确定剩余墨量值,所述剩余墨量值等于所述体素点的总墨量阈值减去打印所述体素点所需的多种彩色墨水的第二墨量值;
    确定所述拟用白墨墨量值和所述体素点的剩余墨量值中的较小值,将所述较小值作为打印所述体素点所需的实际白墨墨量值。
  10. 根据权利要求8所述的方法,其特征在于,所述获取打印所述体素点所需的多种彩色墨水的第一墨量值和拟用白墨墨量值之间的映射关系,包括:
    获取打印所述体素点所需的多种彩色墨水的第一墨量值和初始映射关系,所述初始映射关系表示所述第一墨量值与拟用白墨墨量值之间的关系;
    基于所述多种彩色墨水的所述第一墨量值和所述初始映射关系,得到拟用白墨墨量值;
    依据所述拟用白墨墨量值与所述多种彩色墨水的所述第二墨量值进行喷墨打印,得到第二校准图案;
    依据所述第二校准图案与预设的标准图案,得到第二调整系数;
    依据所述第二调整系数调整所述初始映射关系,得到所述映射关系。
  11. 根据权利要求10所述的方法,其特征在于,所述第一墨量数据至少包括青色墨水、品红色墨水、黄色墨水和黑色墨水的第一墨量值,所述获取打印所述体素点所需的多种彩色墨水的第一墨量值和初始映射关系,至少包括:
    依据青色墨水、品红色墨水和黄色墨水的第一墨量值,获取所述青色墨水、所述品红色墨水和所述黄色墨水混色后的反色墨量值,其中,所述混色包括一次混色、二次混色和三次混色;
    依据黑色墨水的第一墨量值获取白墨系数;
    将混色后的反色墨量值乘以所述白墨系数得到初始白墨墨量值,并将所述初始白墨墨量值与所述多种彩色墨水的第一墨量值之间的映射关系确认为初始映射关系。
  12. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取第二层打印数据,所述第二层打印数据包括多个体素点的初始墨量数据,所述体素点的初始墨量数据包括打印所述体素点所需的多种颜色墨水的初始墨量值;
    将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,所述实际墨量数据包括打印所述体素点所需的至少一种颜色墨水的实际墨量值。
  13. 根据权利要求12所述的方法,其特征在于,所述初始墨量数据至少包括所述第二墨量数据。
  14. 根据权利要求12所述的方法,其特征在于,所述将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,包括:
    选取所述多种颜色墨水中初始墨量值最大的N种颜色墨水,将N种颜色墨水的初始墨量 值分别与所述预定阈值进行比较,其中,N为单个体素点所对应的墨滴数,且N小于所述多种颜色墨水的种类数M。
  15. 根据权利要求14所述的方法,其特征在于,所述将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,包括:
    判断选取的N个所述初始墨量值是否小于所述预定阈值;
    当所述初始墨量值大于或等于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第一值,所述第一值用于指示打印所述体素点时喷射所述颜色墨水的墨滴;
    当所述初始墨量值小于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
  16. 根据权利要求14所述的方法,其特征在于,所述将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,包括:
    判断选取的N个所述初始墨量值是否大于所述预定阈值;
    当所述初始墨量值大于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第一值,所述第一值用于指示打印所述体素点时喷射所述颜色墨水的墨滴;
    当所述初始墨量值小于或等于所述预定阈值时,将与所述初始墨量值对应的颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
  17. 根据权利要求15所述的方法,其特征在于,所述将打印所述体素点所需的至少一种颜色墨水的初始墨量值与预定阈值进行比较,得到所述体素点的实际墨量数据,还包括:
    将未用于进行比较的M-N种颜色墨水的实际墨量值设置为第二值,所述第二值用于指示打印所述体素点时不喷射所述颜色墨水的墨滴。
  18. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    计算打印所述体素点所需的多种颜色墨水的初始墨量值与所述实际墨量值之间的误差,并将所述误差扩散到邻近的其它体素点处。
  19. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    确定打印所述体素点时需要喷射的颜色墨水的实际墨量值为P滴,并确定打印所述体素点所需的T滴透明填充墨水,其中,T=N-P。
  20. 根据权利要求12所述的方法,其特征在于,在获取打印所述体素点所需的多种颜色墨水的初始墨量值之前,所述方法还包括:
    获取所述体素点的颜色数据,基于至少部分所述颜色数据进行处理得到初始墨量数据。
  21. 一种三维打印方法,其特征在于,所述方法包括:
    获取第一层打印数据,所述第一层打印数据包括多个体素点的第一墨量数据;
    基于至少部分所述体素点的第一墨量数据并根据权利要求1~11任一项所述的体素点墨量控制方法,得到至少部分所述体素点的第二墨量数据;
    根据至少部分所述体素点的第二墨量数据,生成打印控制数据;以及
    根据所述打印控制数据打印三维物体。
  22. 一种三维打印方法,其特征在于,所述方法包括:
    获取第二层打印数据,所述第二层打印数据包括多个体素点的初始墨量数据,所述体素点的初始墨量数据包括打印所述体素点所需的多种颜色墨水的初始墨量值;
    基于至少部分所述体素点的初始墨量数据并根据权利要求12~20任一项所述的体素点墨量控制方法,得到至少部分所述体素点的实际墨量数据;
    根据至少部分所述体素点的实际墨量数据,生成打印控制数据;以及
    根据所述打印控制数据打印三维物体。
  23. 一种三维打印设备,其特征在于,包括:至少一个处理器、至少一个存储器以及存储在所述存储器中的计算机程序指令,当所述计算机程序指令被所述处理器执行时实现如权利要求21或22所述的三维打印方法。
  24. 一种存储介质,其上存储有计算机程序指令,其特征在于,当所述计算机程序指令被处理器执行时实现如权利要求21或22所述的三维打印方法。
PCT/CN2021/114686 2021-04-20 2021-08-26 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质 WO2022222336A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110425877.5A CN113119472B (zh) 2021-04-20 2021-04-20 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质
CN202110425877.5 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022222336A1 true WO2022222336A1 (zh) 2022-10-27

Family

ID=76778300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114686 WO2022222336A1 (zh) 2021-04-20 2021-08-26 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质

Country Status (2)

Country Link
CN (1) CN113119472B (zh)
WO (1) WO2022222336A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119472B (zh) * 2021-04-20 2023-02-17 珠海赛纳三维科技有限公司 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质
CN113103568B (zh) * 2021-04-20 2022-09-30 珠海赛纳三维科技有限公司 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347257B1 (en) * 1995-09-27 2002-02-12 3D Systems, Inc. Method and apparatus for controlling the drop volume in a selective deposition modeling environment
WO2016173629A1 (en) * 2015-04-28 2016-11-03 Hewlett-Packard Development Company L.P. Structure using three-dimensional halftoning
CN106470822A (zh) * 2014-06-24 2017-03-01 株式会社御牧工程 三维印刷装置和三维印刷方法
CN107199699A (zh) * 2016-03-18 2017-09-26 三纬国际立体列印科技股份有限公司 彩色三维模型的切层打印方法
CN107672179A (zh) * 2016-08-02 2018-02-09 船井电机株式会社 打印机及在介质上打印像素的方法
CN107967715A (zh) * 2016-10-19 2018-04-27 富士施乐株式会社 数据处理装置、三维物体创建系统以及数据处理方法
CN108437449A (zh) * 2018-03-21 2018-08-24 北京印刷学院 3d打印颜色呈现方法、装置及系统
CN113119472A (zh) * 2021-04-20 2021-07-16 珠海赛纳三维科技有限公司 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227173A (ja) * 1998-02-10 1999-08-24 Sharp Corp カラー印刷制御装置およびカラー印刷制御装置を制御するプログラムを記録した記録媒体
CN102019756B (zh) * 2009-09-21 2012-09-05 北大方正集团有限公司 打印机总墨量的控制方法及装置
JP6702685B2 (ja) * 2015-10-08 2020-06-03 キヤノン株式会社 画像形成装置、画像形成装置の制御方法、およびプログラム
CN111845101B (zh) * 2019-04-26 2021-09-17 深圳市汉森软件有限公司 基于色彩管理的打印机墨量调整方法、装置、设备及介质
CN112083894A (zh) * 2019-06-14 2020-12-15 森大(深圳)技术有限公司 图像逐像素点白墨墨量自动设置方法、装置、设备及介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347257B1 (en) * 1995-09-27 2002-02-12 3D Systems, Inc. Method and apparatus for controlling the drop volume in a selective deposition modeling environment
CN106470822A (zh) * 2014-06-24 2017-03-01 株式会社御牧工程 三维印刷装置和三维印刷方法
WO2016173629A1 (en) * 2015-04-28 2016-11-03 Hewlett-Packard Development Company L.P. Structure using three-dimensional halftoning
CN107199699A (zh) * 2016-03-18 2017-09-26 三纬国际立体列印科技股份有限公司 彩色三维模型的切层打印方法
CN107672179A (zh) * 2016-08-02 2018-02-09 船井电机株式会社 打印机及在介质上打印像素的方法
CN107967715A (zh) * 2016-10-19 2018-04-27 富士施乐株式会社 数据处理装置、三维物体创建系统以及数据处理方法
CN108437449A (zh) * 2018-03-21 2018-08-24 北京印刷学院 3d打印颜色呈现方法、装置及系统
CN113119472A (zh) * 2021-04-20 2021-07-16 珠海赛纳三维科技有限公司 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质

Also Published As

Publication number Publication date
CN113119472A (zh) 2021-07-16
CN113119472B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2022222336A1 (zh) 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质
US9674403B2 (en) Creating a color gamut look-up-table
JP5458336B2 (ja) 印刷装置、ルックアップテーブルの作成方法、ルックアップテーブル、印刷方法
US7551315B2 (en) Color matching accuracy under multiple printing conditions
JP4200365B2 (ja) 対応関係定義データ作成用格子点決定方法、対応関係定義データ作成用格子点決定装置、対応関係定義データ作成用格子点決定プログラム、印刷制御装置、印刷制御方法、印刷制御プログラムおよび画像データ処理装置
US20090010536A1 (en) Color conversion device, method of color conversion, image formation system and program
JP2004262027A (ja) 有彩1次色インクと有彩2次色インクとを含む複数のインク成分への分版処理
CN107428173B (zh) 印刷装置、印刷方法、印刷系统、图像处理装置、以及图像处理方法
US6406117B2 (en) Image recording method
US8570605B2 (en) Image correction method and image correction system
WO2022222335A1 (zh) 体素点墨量控制方法、三维打印方法、三维打印设备及存储介质
US9396419B2 (en) Data-processing apparatus generating color conversion data
JP2003191532A (ja) カラーマップを自動変換する方法、装置及びプログラム
JP2007088636A (ja) 色分解テーブル作成方法および画像処理装置
CN106142849B (zh) 出墨量控制方法及装置
JP2013115714A (ja) 印刷装置、色変換テーブルの作成方法、および、コンピュータプログラム
JP2008193496A (ja) 画像処理装置、プログラム及び方法
JP7280103B2 (ja) Cmyインキ層厚のシミュレーション
JP2008072602A (ja) 印刷装置に対する色調整
JP3959974B2 (ja) 印刷制御装置、画像処理装置
JP2004314490A (ja) 有彩1次色インクと有彩2次色インクとを含む複数のインク成分への分版処理
JP6332029B2 (ja) 色処理方法、色処理装置、画像形成装置及び色変換装置
EP2989783B1 (en) Creating a color gamut look-up-table
JP4114376B2 (ja) 測色用座標決定方法
JP7362365B2 (ja) 画像処理装置、画像処理方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937558

Country of ref document: EP

Kind code of ref document: A1