WO2022222210A1 - 有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法 - Google Patents

有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法 Download PDF

Info

Publication number
WO2022222210A1
WO2022222210A1 PCT/CN2021/093880 CN2021093880W WO2022222210A1 WO 2022222210 A1 WO2022222210 A1 WO 2022222210A1 CN 2021093880 W CN2021093880 W CN 2021093880W WO 2022222210 A1 WO2022222210 A1 WO 2022222210A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
cobalt
pinene
metal compound
film
Prior art date
Application number
PCT/CN2021/093880
Other languages
English (en)
French (fr)
Inventor
王新炜
陆科
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Publication of WO2022222210A1 publication Critical patent/WO2022222210A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals

Definitions

  • the invention relates to the synthesis of metal compounds and the technical field of thin films, in particular to organic transition metal compounds and preparation methods, and methods for forming transition metal-containing thin films.
  • Vapor deposition techniques include chemical vapor deposition techniques, physical vapor deposition techniques, atomic layer deposition techniques, and the like. With the development of modern science and technology in the field of microelectronics and the needs of industrial automation, the requirements for surface modification technology of materials are getting higher and higher. Vapor deposition technology is one of the fastest growing technologies that meets its requirements. It is suitable for preparing a variety of materials, such as superconducting, superhard, ultrathin, corrosion-resistant, information storage and other materials. Among them, chemical vapor deposition (CVD) and atomic layer deposition (ALD) are technologies that deposit thin film coatings or nanomaterials on the surface of substrates by vaporizing one or more precursors, which are widely used in semiconductor and other industrial fields.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • cyclopentadienyl and pentadienyl groups of n 5 structure are the most reported, and their metallo-organic compounds also have a very wide range of uses in the fields of synthetic chemistry and organic catalysis.
  • cyclopentadienyl and open-chain pentadienyl ⁇ 5 -structured ligands exhibit stronger delta acidity when coordinating with transition metals with low oxidation states and higher stability. Therefore, organometallic compounds with ligands of this structure are the most common.
  • the metal organic compounds with ⁇ 1 structure ligands such as general alkyl groups are very rarely reported, because the compounds with this structure are prone to self-decomposition at normal temperature and pressure, so the stability is generally relatively low.
  • Transition metals such as cobalt, nickel, iron, manganese, chromium, copper, molybdenum, tungsten, iridium, platinum, palladium, ruthenium, indium, etc. have recently attracted more and more scientific research due to their unique physical and chemical properties. Workers join the ranks to study it. Similar to most transition metals, metal-organic compounds with cyclopentadienyl and pentadienyl as ligands are more studied, while allyl as ligands are rarely reported, such as CoCp 2 , Co(Pdl) 2 .
  • Transition metal organic compounds with high oxidation state have the advantages of easy operation, safety and stability, etc., but it is difficult to obtain such transition metal organic compounds in the existing technology. And how to use the obtained transition metal organic compounds to modify the substrate or obtain materials with specific functions through vapor deposition technology. Therefore, the existing technology still needs to be improved and developed.
  • the purpose of the present invention is to provide an organic transition metal compound with better stability and higher volatility, a preparation method thereof, and a method for forming a transition metal-containing thin film.
  • the present invention provides an organic transition metal compound, the structural formula of the organic transition metal compound is selected from one of the following:
  • R 1 , R 2 , R 3 , R 4 , R 5 are independently a hydrogen atom, a C 1 -C 8 straight-chain alkyl group, a C 1 -C 8 branched-chain alkyl group, a C 6 -C 10 one of the aromatic groups;
  • R' 1 , R' 2 , and R' 3 are independently one of a C 1 -C 8 straight-chain alkyl group, a C 1 -C 8 branched-chain type alkyl group, and a C 6 -C 10 aryl group ;
  • X is one of hydrogen atom, oxygen atom, hydroxyl group, ether group and ester group
  • M is a transition metal
  • the transition metal is selected from one of cobalt, nickel, iron, manganese, chromium, copper, molybdenum, tungsten, iridium, platinum, palladium, ruthenium, indium and the like.
  • the above-mentioned organotransition metal compound provided in the embodiments of the present invention is an alkyl metal organic compound with an all-carbon skeleton as a ligand, and is also a red oily liquid that is stable in air at normal temperature and pressure. Since the carbon atom connected to the transition metal is a bridgehead carbon, and this carbon and the allyl group are connected to a ring, the stability of the transition metal alkyl is increased.
  • the present invention provides an organocobalt metal compound, and the structural formula of the organocobalt metal compound is selected from one of the following:
  • the transition metal is selected from one of cobalt, nickel, iron, manganese, chromium, copper, molybdenum, tungsten, iridium, platinum, palladium, ruthenium, and indium.
  • the reducing agent is selected from zinc powder, magnesium powder, iron powder, hydrogen gas, metal amalgam, stannous chloride, sodium borohydride, potassium borohydride, passivated sodium borohydride derivatives, passivated One of potassium borohydride derivatives, activated sodium borohydride derivatives, lithium aluminum hydride, passivated lithium aluminum hydride, borane, alkylated borane, ethanol, oxalic acid, isopropanol, etc.
  • the MCl x (PPh 3 ) 2 is prepared by the following method: adopting the reaction of MCl x and PPh 3 to obtain the MCl x (PPh 3 ) 2 .
  • the MCl x (PPh 3 ) 2 is subjected to a lithium halide exchange reaction with a cyclopentadienyl lithium compound, followed by in-situ reduction under the action of zinc powder to obtain a low-valent transition metal compound CpM(PPh 3 ) 2 .
  • the pinene is ⁇ -pinene or ⁇ -pinene
  • the derivative of pinene is a derivative of ⁇ -pinene or a derivative of ⁇ -pinene.
  • the temperature at which the C-C bond is subjected to the oxidative addition reaction is 80-300° C., and the time is 0.5-100 hours.
  • the molar ratio of the low-valent transition metal compound to pinene or pinene derivative is 0.001:1-20:1.
  • the present invention provides a method of forming a transition metal-containing thin film, the method comprising using an organic transition metal compound of any one of the following formulas:
  • R 1 , R 2 , R 3 , R 4 , R 5 are independently a hydrogen atom, a C 1 -C 8 straight-chain alkyl group, a C 1 -C 8 branched-chain alkyl group, a C 6 -C 10 one of the aromatic groups;
  • R' 1 , R' 2 , and R' 3 are independently one of a C 1 -C 8 straight-chain alkyl group, a C 1 -C 8 branched-chain type alkyl group, and a C 6 -C 10 aryl group ;
  • X is one of hydrogen atom, oxygen atom, hydroxyl group, ether group and ester group
  • M is a transition metal
  • the transition metal-containing thin film is formed by a vapor deposition process.
  • the vapor deposition process is chemical vapor deposition.
  • the vapor deposition process is atomic layer deposition.
  • the organic transition metal compound is delivered to the substrate in pulses alternating with pulses of an oxygen source selected from the group consisting of H2O , O2 , ozone, and H2O2 to form the transition metal - containing film
  • an oxygen source selected from the group consisting of H2O , O2 , ozone, and H2O2 to form the transition metal - containing film
  • the method comprising using a plasma technique to enhance the formation of the transition metal-containing thin film.
  • the co-reactant is selected from one or more of H 2 , nitrogen, hydrazine, unsymmetrical dimethyl hydrazine and ammonia; the method includes using plasma technology The formation of the transition metal-containing thin film is enhanced.
  • the co-reactant is selected from a sulfur source, and the sulfur source is selected from one or more of hydrogen sulfide, sulfide, mercaptan and peroxodisulfide;
  • the method includes enhancing the formation of the transition metal-containing thin film using plasma techniques.
  • it also includes using at least one co-reactant selected from a fluorine source selected from hydrogen fluoride, CF 4 , TiF 4 , SF 6 , TaF 5 , WF 6 and MoF 6 one or more of; the method comprising the use of plasma techniques to enhance the formation of transition metal-containing fluorides.
  • a fluorine source selected from hydrogen fluoride, CF 4 , TiF 4 , SF 6 , TaF 5 , WF 6 and MoF 6 one or more of; the method comprising the use of plasma techniques to enhance the formation of transition metal-containing fluorides.
  • the co-reactant is selected from a boron source, and the boron source is selected from one or more of borane and BF 3 ; the method includes the use of plasma technology Enhanced formation of transition metal-containing borides.
  • the co-reactant is selected from a silicon source, and the silicon source is selected from one or more of silane, SiCl 4 and SiF 4 ; the method includes using Plasma technology enhances the formation of transition metal containing silicides.
  • the use of hydrogen sulfide as a co-reactant is included to form the cobalt-containing thin film.
  • the transition metal is selected from one of cobalt, nickel, iron, manganese, chromium, copper, molybdenum, tungsten, iridium, platinum, palladium, ruthenium, and indium.
  • the transition metal-containing thin film is a cobalt-containing thin film.
  • the cobalt-containing film is selected from one of elemental metal cobalt film, cobalt oxide film, cobalt nitride film, cobalt sulfide film, cobalt-silicon film, and cobalt fluoride film.
  • the present invention provides the design and synthesis of a series of novel high-valent transition metal organic compounds containing chelating ligands, and the synthetic route of the series of high-valent transition metal organic compounds is as follows: First, MCl x (PPh 3 ) 2 or M(CO ) y is reduced in situ under the action of a reducing agent (such as zinc powder) to obtain a low-valent transition metal compound, and then a CC oxidation addition reaction occurs with pinene or a derivative of pinene to obtain the target product. In the reported studies, most of the interactions between metals and pinenes or derivatives of pinenes are connected by delta or unsaturated pi bonds of heteroatoms.
  • a reducing agent such as zinc powder
  • the inventor provides an innovative synthesis route through experimental research and improved synthesis methods. The inventor proposes a one-pot synthesis method, which greatly simplifies the synthesis steps and also effectively avoids the problems of separation of low-valent transition metal compound intermediates and difficult storage.
  • the method of the present invention obtains low-valent transition metal compounds in situ, the reactivity of such low-valent transition metal compounds is also improved. Due to the improvement of the synthesis method, the synthesis of the present invention can be extended to a wider range of transition metals.
  • the structures of such high-valent transition metal-organic compounds can be confirmed by high-resolution mass spectrometry (HRMS), one-dimensional NMR and two-dimensional NMR spectra. Besides, it can be found by thermogravimetric analysis (TGA) that this series of compounds have good volatility, which meets the primary conditions of atomic layer deposition (ALD) precursors.
  • HRMS high-resolution mass spectrometry
  • TGA thermogravimetric analysis
  • transition metal organic compounds are used as ALD precursors, and transition metal-containing nano-films are prepared by adjusting parameters such as the number of deposition cycles, purge gas and flow rate, and finally they are evaluated as precursors in ALD technology through the characterization of the films. application prospects in .
  • Fig. 1 is the synthetic route diagram of organocobalt metal compound.
  • Figure 2 is a schematic diagram of the synthesis of organocobalt metal compounds using pentamethylcyclopentadiene.
  • Figure 3 is a graph showing the results of thermogravimetric testing of three alkyl cobalt metal compounds.
  • a and b are the saturation curve of the amount of cobalt precursor and the saturation curve of the oxygen plasma duration under the atomic layer deposition at 180 °C, respectively; c is the thickness of the cobalt oxide thin film and the total number of cycles of atomic layer deposition. Schematic diagram of the relationship; d is the growth curve at different temperatures.
  • a and b are the TEM images and electron diffraction patterns of the 15-nanometer cobalt oxide thin film obtained under 300 atomic layer deposition cycles, respectively; c is the atomic force microscope image of the thin film.
  • FIG. 7 is a scanning electron microscope image of a cross section of a uniformly grown thin film by atomic layer deposition in a 10:1 trench.
  • a is the X-ray electron spectrum of the thin film in the case of atomic layer deposition at 180 °C; a is the full spectrum, b is the Co 2p spectrum; c is the S 1s spectrum; d and e are the Scanning electron images of 15 nm sulfide films obtained under 300 atomic layer deposition cycles.
  • a-c are the X-ray electron spectra of the thin film under the condition of atomic layer deposition at 180 °C; a is the full spectrum, b is the Co 2p spectrum; c is the F 1s spectrum; d, e are at 300 Scanning electron images of 15 nm cobalt fluoride thin films obtained under 1 atomic layer deposition cycle.
  • Figure 10 is a schematic diagram of the synthesis of tricarbonyl pinene iron compounds.
  • Figure 11 is an NMR spectrum of a tricarbonyl pinene iron compound.
  • the present invention provides an organic transition metal compound, a preparation method, and a method for forming a transition metal-containing thin film. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
  • the embodiment of the present invention provides an organocobalt metal compound, and the structural formula of the organocobalt metal compound is selected from one of the following:
  • the above-mentioned organocobalt metal compound provided in the embodiment of the present invention is an alkyl metal organic compound with an all-carbon skeleton as a ligand, and it is also a red oily liquid that is stable in air at normal temperature and pressure. Since the carbon atom connected to the cobalt is a bridgehead carbon, and this carbon is connected to the allyl group in a ring, the stability of the alkyl cobalt is increased.
  • the embodiment of the present invention also provides the above-mentioned preparation method of the organocobalt metal compound, and its detailed introduction is as follows:
  • ⁇ - and ⁇ -pinene are widely present in various plants in nature, and belong to bicyclic single-stage renewable biomass materials. Such compounds can be obtained through simple transformation steps.
  • Various pinene derivatives Since this kind of pinene and its derivatives have a strained four-membered ring and an alkene structure connected to the four-membered ring, the further transformation of these compounds is facilitated.
  • the hydrocarbon compound can also coordinate with transition metals to obtain transition metal compounds.
  • the inventor first obtained CoCl(PPh 3 ) 3 with low oxidation state by synthesis and separation, and then this compound reacted with cyclopentadienyl lithium compound at low temperature to obtain Cp-Co(PPh 3 ) 2 intermediate with oxidative addition ability . There is no need to separate the intermediate, and an excess of pinene is directly added to the reaction system, and the reaction is carried out at 100° C. for 24 hours. After the reaction, the volatile solvent and waste solids were removed by filtration and rotary evaporation under reduced pressure. The target product can then be obtained by rapid column chromatography. However, in the actual experimental operation, it is found that there are some problems that lead to a certain gap between the actual results and the expected results.
  • the embodiments of the present invention provide the above-mentioned preparation method of an organocobalt metal compound, the method comprising the steps of: in-situ reduction of CoCl 2 (PPh 3 ) 2 under the action of zinc powder to obtain a low-priced cobalt compound, the The low-valent cobalt compound is subjected to oxidative addition reaction of ⁇ -pinene or CC bond to obtain the organocobalt metal compound.
  • CoCl 2 (PPh 3 ) 2 that is stable to air under normal temperature and pressure is obtained by reacting CoCl 2 with twice the molar amount of PPh 3 .
  • this compound and the cyclopentadienyl lithium compound are subjected to a lithium halide exchange reaction at a low temperature to obtain a Cp-CoCl(PPh 3 ) 2 intermediate product, as shown in FIG. 1 .
  • zinc powder and excess pinene were directly added to the reaction system, and the reaction was carried out at 100° C. for 24 hours. After the reaction, waste solids and volatile solvents can be removed by filtration and rotary evaporation under reduced pressure, respectively.
  • the target product can then be obtained by rapid column chromatography.
  • the preparation method of the embodiment of the present invention has the following advantages: 1.
  • the CoCl 2 (PPh 3 ) 2 compound is easy to synthesize and store; 2.
  • a low oxidation state CpCo (PPh 3 ) 2 intermediate product is generated in situ, and this intermediate product
  • the product can immediately undergo oxidative addition reaction with pinene in the reaction system to obtain the target product. Avoid the problems caused by the synthesis and separation of CoCl(PPh 3 ) 3 in low oxidation state, and the problems of poor quality control and inconvenient storage of CoCl(PPh 3 ) 3 in low oxidation state; 3.
  • the improvement greatly increases the yield of the reaction.
  • this study used pentamethylcyclopentadiene as an example to screen the optimal conditions for the reaction (see Figure 2). After obtaining the optimal reaction conditions, the optimal conditions were then used for the synthesis of cobalt metal organic compounds of other pinene derivatives. Under the same conditions, the target product can be obtained in very high yield.
  • the inventors speculate that the mechanism of this reaction may be: after the dissociation of the ligand of CpCo(PPh 3 ) 2 , the olefinic surface of pinene undergoes coordination and bonding, and then the olefin undergoes isomerization from the exo-structured surface. The alkene becomes an endo-structured alkene coordinated with cobalt.
  • the cobalt atom is close to the small sterically hindered surface of the pinene, and the ⁇ , ⁇ carbon-carbon bond adjacent to the olefin in the four-membered strained ring of the pinene is oxidatively added to obtain the product.
  • the three compounds were analyzed by thermogravimetric test (see Figure 3), and it was found that they had only a single weight reduction step and very little residual amount at the end, indicating that they had no obvious thermal decomposition process.
  • the residual amounts of these three alkyl cobalt metal compounds at high temperature are very small (compounds 1, 2, 3 correspond to 0%, 1.1%, 2.1%, respectively), which also indicates that the decomposition during the evaporation process is negligible .
  • the temperature at which the evaporation starts (the temperature at which the weight loss is 1% is the temperature at which the evaporation starts), and the corresponding temperatures for 1, 2, and 3 are 80°C, 141°C, and 170°C.
  • the alkyl cobalt compound 1 was selected in this study to further study its applicability to atomic layer deposition.
  • the atomic layer deposition process uses oxygen plasma as a co-reactive reagent to deposit cobalt oxide thin films. This deposition process can take place well following the atomic layer deposition process.
  • a and b represent the saturation curves of two different precursors in the case of atomic layer deposition at 180 °C, respectively. It can be found that each atomic layer deposition cycle increases with the increase of compound 1 and plasma oxygen. When the dose of compound 1 reaches 4 and the plasma oxygen exceeds 10s, the growth rate of the film in each cycle tends to be stable.
  • the growth rate of the films was measured in the deposition temperature range of 80 to 240 °C, and it was found that the growth rate of the films at 90 to 210 °C reached 0.048–0.051 nm/cycle, which represents the atomic layer deposition of compound 1 temperature window.
  • Fig. 5a the relationship between the growth rate of the film and the dose number of the cobalt precursor can be seen.
  • Cobalt oxide thin film samples of about 15 nm were deposited on quartz for the measurement of Raman spectra.
  • Figure 5b one can see the Raman spectrum of the quartz substrate and the spectrum of the thin film plus the quartz substrate.
  • the cobalt oxide thin film has 5 characteristic peaks, which are respectively 195, 481, 522, 621 and 691 wavenumbers, which represent the F 2g and E g of the spinel-structured cobalt oxide, respectively. , F 2g , F 2g and A 1g models.
  • Figure 6 a, b show the TEM images and electron diffraction patterns of the 15 nm cobalt oxide thin films obtained under 300 atomic layer deposition cycles. Both transmission electron microscopy and electron diffraction patterns indicated that the obtained film was polycrystalline, and the crystal structure was confirmed to be spinel cobalt oxide. The spinel structure was further confirmed by Fast Fourier Transform (FFT) analysis of the boxed region in the TEM image ( Figure 6). The composition of the films was investigated by Rutherford backscattering. In c in Fig.
  • FFT Fast Fourier Transform
  • the ratio of Co:O in the obtained film is 0.75 ⁇ 0.01, which also indicates that the obtained film is a cobalt oxide film containing transition metal cobalt.
  • the films were further analyzed using X-ray electron spectroscopy (XPS). Both the XPS full-energy spectrum and the high-resolution image of the film show that after etching, the film does not contain carbon (detection limit is 1%), so a film with very high purity is obtained.
  • the XPS high-resolution images of cobalt and oxygen are all analyzed on the unetched surface, because the structure of the film will be destroyed after etching. As shown in d in Fig.
  • the Co 2p spectrum shows spin-orbit splitting peaks of 2p 3/2 and 2p 1/2 with a splitting energy of 15.25 eV, and the 2p 3/2 and 2p 1/2 peaks can be further split, respectively are composed of two peaks, corresponding to Co 3+ (779.18 and 794.23 eV) and Co 2+ (780.27 and 795.73 eV) located on the octahedral and tetrahedral sites of the cobalt oxide spinel structure, respectively. Less intense satellite peaks appear approximately 9.6 eV higher than the main peak, which is also characteristic of cobalt oxide.
  • the O 1s spectrum (e in Fig.
  • the main peak at 529.41 eV corresponds to the stoichiometric oxygen in the cobalt oxide, while the broader peak at the high binding energy of 531.03 eV corresponds to the non-stoichiometric oxygen in the surface region or the OH species on the surface. It can be found that the surface of the deposited film is quite flat on the flat silicon wafer.
  • Figure 6 c shows an atomic force microscope (AFM) image of a film of about 47 nm, with a root mean square roughness of only 0.47 nm, which is only 1% of the total thickness of the film.
  • AFM atomic force microscope
  • f describes the dielectric constant ⁇ obtained by fitting the B-spline model on an ellipsometer.
  • the imaginary part ⁇ 2 of the dielectric constant has characteristic peaks at 0.9, 1.67, and 2.68 electron volts, which also indicates that the obtained film is composed of cobalt oxide.
  • Cobalt oxide thin films were deposited in a homemade tubular atomic layer deposition reaction by using chelated ⁇ 1 , ⁇ 3 , ⁇ 5 -cobalt(III) metal-organic compounds (compound 1 ) as cobalt precursor and O as co-reactant in the device.
  • Planar SiO 2 /Si substrates were used to study the growth behavior of the films.
  • the cobalt precursor was kept in a bubbler and heated to 50°C to provide sufficient vapor pressure for deposition.
  • the precursor vapor was delivered to the deposition chamber by means of pure Ar gas (through an inert gas purifier) as a carrier gas.
  • Cobalt oxide thin films were deposited in a homemade tubular atomic layer deposition reaction by using chelated ⁇ 1 , ⁇ 3 , ⁇ 5 -cobalt(III) metal-organic compounds (compound 1 ) as cobalt precursor and O as co-reactant in the device.
  • the growth behavior of the thin films was investigated using a deep 6 ⁇ m trench substrate of SiO 2 /Si with a depth aspect ratio of 10:1.
  • the cobalt precursor was kept in a bubbler and heated to 90°C to provide sufficient vapor pressure for deposition.
  • the precursor vapor was delivered to the deposition chamber by means of pure Ar gas (through an inert gas purifier) as a carrier gas. Then, turn off the vacuum pump and carrier gas for 120 s.
  • Cobalt sulfide thin films were deposited on homemade tubular atomic layer deposition by using a chelated ⁇ 1, ⁇ 3, ⁇ 5 - cobalt( III ) metal-organic compound (compound 1 ) as cobalt precursor and H2S as co-reactant in the reactor. Planar SiO 2 /Si substrates were used to study the growth behavior of the films.
  • the cobalt precursor was kept in a bubbler and heated to 50°C to provide sufficient vapor pressure for deposition.
  • the precursor vapor was delivered to the deposition chamber by means of pure Ar gas (through an inert gas purifier) as a carrier gas.
  • co-reactant H 2 S gas 30 sccm of co-reactant H 2 S gas was delivered into the ALD reactor, and the length of the plasma H 2 S time was set to 10 s.
  • the power of the plasma H2S was set to 90W.
  • argon was about 0.4 Torr.
  • the obtained cobalt sulfide film is characterized in Figure 8, where ac is the X-ray electron spectrum of the film under the condition of atomic layer deposition at 180 °C; a is the full spectrum, b is the Co 2p spectrum; c is S 1s spectrum; d, e are the scanning electron images of 15 nm sulfide obtained under 300 atomic layer deposition cycles, respectively.
  • Cobalt sulfide thin films were deposited on homemade tubular atomic layer deposition by using a chelated ⁇ 1, ⁇ 3, ⁇ 5 - cobalt( III ) metal-organic compound (compound 1 ) as cobalt precursor and H2S as co-reactant in the reactor.
  • the growth behavior of the thin films was investigated using a deep 6 ⁇ m trench substrate of SiO 2 /Si with a depth aspect ratio of 10:1.
  • the cobalt precursor was kept in a bubbler and heated to 90°C to provide sufficient vapor pressure for deposition.
  • the precursor vapor was delivered to the deposition chamber by means of pure Ar gas (through an inert gas purifier) as a carrier gas. Then, turn off the vacuum pump and carrier gas for 120 s.
  • H2S gas 50 seem of co - reactant H2S gas was delivered into the atomic layer deposition reactor, and the length of the H2S plasma time was set to 100 s.
  • the power of the H2S plasma was set to 90W.
  • argon was about 0.4 Torr.
  • Cobalt fluoride thin films were deposited by using a chelated ⁇ 1 , ⁇ 3 , ⁇ 5 -cobalt(III) metalorganic compound (compound 1) as cobalt precursor and a perfluorocarbon and oxygen plasma mixture as co-reactant in a homemade tubular atomic layer deposition reactor. Planar SiO 2 /Si substrates were used to study the growth behavior of the films.
  • the cobalt precursor was kept in a bubbler and heated to 50°C to provide sufficient vapor pressure for deposition.
  • the precursor vapor was delivered to the deposition chamber by means of pure Ar gas (through an inert gas purifier) as a carrier gas.
  • the cobalt fluoride film obtained by the above conditioning deposition is characterized in Figure 9, where ac is the X-ray electron spectrum of the film under the condition of atomic layer deposition at 180 °C; a is the full spectrum, b is the Co 2p spectrum ; c is the F 1s spectrum; d, e are the scanning electron images of 15 nm cobalt fluoride thin films obtained under 300 atomic layer deposition cycles, respectively.
  • Cobalt fluoride thin films were deposited by using a chelated ⁇ 1 , ⁇ 3 , ⁇ 5 -cobalt(III) metalorganic compound (compound 1) as cobalt precursor and a perfluorocarbon and oxygen plasma mixture as co-reactant in a homemade tubular atomic layer deposition reactor.
  • the growth behavior of the thin films was investigated using a deep 6 ⁇ m trench substrate of SiO 2 /Si with a depth aspect ratio of 10:1.
  • the cobalt precursor was kept in a bubbler and heated to 90°C to provide sufficient vapor pressure for deposition.
  • the precursor vapor was delivered to the deposition chamber by means of pure Ar gas (through an inert gas purifier) as a carrier gas.
  • Another embodiment of the present invention also provides specific steps for synthesizing the metal-organic compound of iron pinene, as shown in Figure 10, the specific steps are as follows: Fe 2 (CO) 9 and 10 equivalents of pinene, in a nitrogen atmosphere and 100 ° C reaction conditions for 24 hours. After the reaction, waste solids and volatile solvents can be removed by filtration and rotary evaporation under reduced pressure, respectively. Then, through rapid column chromatography separation, the target product can be obtained, and its nuclear magnetic spectrum is shown in Figure 11.
  • a new synthetic route is designed for the first time in the present invention, and a new type of alkyl transition metal complex is synthesized and isolated through this route.
  • Low-valent transition metals are chelated ⁇ 1 , ⁇ 3 , ⁇ 5 -organotransition metal compounds or ⁇ 1 , ⁇ 3 -organotransition metal carbonyls by carbon-carbon bond oxidative addition with pinene or pinene derivatives compound.
  • the structures of these compounds were determined by high-resolution mass spectrometry (HRMS) combined with one-dimensional and two-dimensional NMR spectra. Then, the atomic layer deposition behavior of this new class of air-stable transition metal alkyls was investigated.
  • HRMS high-resolution mass spectrometry
  • the ⁇ 1 , ⁇ 3 , ⁇ 5 -organocobalt(III) metal complex (compound 1) was used as the metal precursor, and its atomic deposition process was studied, and it was proved that it followed the ideal atomic layer deposition growth well, In order to deposit cobalt-containing cobalt oxide, cobalt fluoride and cobalt sulfide films with high purity and smooth surface.
  • cobalt-containing cobalt oxide, cobalt fluoride, cobalt sulfide films can be conformally deposited in deep and wide trenches in this atomic layer deposition process , which shows that these methods are very suitable for complex or porous three-dimensional nano-stereostructured substrates, and the cobalt-containing cobalt oxide, cobalt fluoride, and cobalt sulfide thin films can be deposited uniformly and conformally.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法。所述有机过渡金属化合物的结构式选自如图所示中的一种。低价过渡金属与蒎烯进行碳-碳键氧化加成而得到螯合的有机过渡金属化合物。将有机过渡金属金属配合物用作金属前体,通过研究它的原子沉积过程,证明它很好的遵循了理想的原子层沉积生长,以沉积出纯度高,表面平整的含过渡金属薄膜。并进一步证明在此原子层沉积工艺中,可以将含过渡金属薄膜保形地沉积在深宽的沟槽中,这表明这些方法非常适合于复杂的或多孔三维纳米立体结构基底上,均匀和保形性好地沉积得到含过渡金属薄膜。

Description

有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法 技术领域
本发明涉及金属化合物的合成以及薄膜技术领域,尤其涉及有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法。
背景技术
气相沉积技术包括化学气相沉积技术、物理气相沉积技术、原子层沉积技术等。随者微电子领域等现代科学技术的发展和工业自动化的需要,对于材料的表面改性技术的要求越来越高。气相沉积技术是符合其要求以及是发展最快的技术之一。它适用于制备各种各样的材料,例如超导,超硬,超薄,耐腐蚀,信息储存等材料。其中,化学气相沉积(CVD)和原子层沉积(ALD)都是通过将一种或多种前驱体气化,在基质表面沉积得到薄膜涂层或纳米材料的技术,是半导体等工业领域中应用广泛的薄膜沉积技术。这两种气相沉积技术的核心在于气相沉积前驱体的研发。目前,此类前驱体主要是各类有机金属化合物,需要研发、易于合成、操作方便、适用范围广。在过去的几十年里,金属有机化合物领域中烯烃作为辅助的协同模式是研究最多的模式之一,例如环戊二烯基(Cp)、戊二烯基(Pdl)以及烯丙基(allyl)等。在这种模式里面,η 5结构的环戊二稀基和戊二烯基是报道最多的,而它们的金属有机化合物在合成化学以及有机催化领域也有非常广泛的用途。相对于烯丙基结构的配体,环戊二稀基与开链式的戊二烯基的η 5结构的配体在和低氧化态的过渡金属配位时,表现出更强的δ酸性和更高的稳定性。所以,这种结构的配体的金属有机化合物是最常见的。而对于一般烷基这种η 1结构配体的金属有机化合物是报道的非常少的,因为这种结构的化合物在常温常压下容易发生自身的分解,所以稳定性一般都比较低。
过渡金属如钴、镍、铁、锰、铬、铜、钼、钨、铱、铂、钯、钌、铟等,由于它们具有独特的物理化学性质,所以最近越来越吸引到更多的科研工作者加入研究它的队伍。与大部分过渡金属有同样的特点,环戊二稀基和戊二烯基作为配体的金属有机化合 物是研究得比较多的,而烯丙基作为配体的也很少有报道,例如CoCp 2,Co(Pdl) 2。对于一般烷基钴的金属有机化合物,只有salen骨架作为协同配体的金属有机化合物被报道,例如n-C 3H 7Co(salen)等。由于高氧化态的过渡金属具有非常强的还原性,而烷基配体具有非常强的δ受体能力,所以此类烷基有机金属化合物非常的容易自身发生还原消除反应得到低氧化态过渡金属化合物。
高氧化态的过渡金属有机化合物有易于操作和安全稳定等优点,但现有的技术难以获得此类过渡金属有机化合物。以及如何使用得到的过渡金属有机化合物通过气相沉积技术来对基板进行改性或者获得特定功能的材料等。因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供稳定性更好、挥发性更高的有机过渡金属化合物及其制备方法与形成含过渡金属薄膜的方法。
本发明的技术方案如下:
第一方面,本发明提供有机过渡金属化合物,所述有机过渡金属化合物的结构式选自如下所示中的一种:
Figure PCTCN2021093880-appb-000001
其中,
R 1,R 2,R 3,R 4,R 5独立地为氢原子、C 1-C 8直链型的烷基、C 1-C 8支链型的烷基、C 6-C 10的芳香基中的一种;
R’ 1,R’ 2,R’ 3独立地为C 1-C 8直链型的烷基、C 1-C 8支链型的烷基、C 6-C 10的芳香基中的一种;
X为氢原子、氧原子、羟基、醚基、酯基中的一种;
M为过渡金属。
可选地,所述过渡金属选自钴、镍、铁、锰、铬、铜、钼、钨、铱、铂、钯、钌、铟等中的一种。
本发明实施例提供的如上所述有机过渡金属化合物是一种全碳骨架作为配体的烷基金属有机化合物,其还是一种常温常压下于空气中稳定的红色油状液体。由于与过渡金属相连的碳原子是一个桥头碳,同时此碳与烯丙基是相连在一个环上,因此增加了烷基过渡金属的稳定性。
第二方面,本发明提供有机钴金属化合物,所述有机钴金属化合物的结构式选自如下所示中的一种:
Figure PCTCN2021093880-appb-000002
第三方面,本发明提供所述的有机过渡金属化合物的制备方法,所述方法包括步骤:MCl x(PPh 3) 2或者M(CO) y在还原剂作用下原位还原得到低价的过渡金属化合物,所述低价的过渡金属化合物与蒎烯或蒎烯的衍生物发生C-C键氧化加成反应,得到所述有机过渡金属化合物;其中,M为过渡金属,x=1、2、3或4,y=2、3、4、4.5、5或6。
可选地,所述过渡金属选自钴、镍、铁、锰、铬、铜、钼、钨、铱、铂、钯、钌、铟中的一种。
可选地,所述还原剂选自锌粉、镁粉、铁粉、氢气、金属汞齐、氯化亚锡、硼氢化钠、硼氢化钾、钝化的硼氢化钠衍生物、钝化的硼氢化钾衍生物、活化的硼氢化钠衍生物、氢化锂铝、钝化的氢化锂铝、硼烷、烷基化的硼烷、乙醇、草酸、异丙醇等中的一种。
可选地,所述MCl x(PPh 3) 2通过以下方法制备得到:采用MCl x与PPh 3反应得到所述MCl x(PPh 3) 2
可选地,所述MCl x(PPh 3) 2与环戊二稀基锂化合物进行锂卤交换反应,接着在锌粉 作用下原位还原得到低价的过渡金属化合物CpM(PPh 3) 2
可选地,所述蒎烯为α-蒎烯或者β-蒎烯,所述蒎烯的衍生物为α-蒎烯的衍生物或者β-蒎烯的衍生物。
可选地,所述C-C键进行氧化加成反应的温度为80-300℃,时间为0.5-100小时。
可选地,所述低价的过渡金属化合物与蒎烯或蒎烯的衍生物的摩尔比为0.001:1-20:1。
第四方面,本发明提供一种形成含过渡金属薄膜的方法,所述方法包括使用如下式任一结构式的有机过渡金属化合物:
Figure PCTCN2021093880-appb-000003
其中,
R 1,R 2,R 3,R 4,R 5独立地为氢原子、C 1-C 8直链型的烷基、C 1-C 8支链型的烷基、C 6-C 10的芳香基中的一种;
R’ 1,R’ 2,R’ 3独立地为C 1-C 8直链型的烷基、C 1-C 8支链型的烷基、C 6-C 10的芳香基中的一种;
X为氢原子、氧原子、羟基、醚基、酯基中的一种;
M为过渡金属。
可选地,通过气相沉积工艺形成所述含过渡金属薄膜。
可选地,所述气相沉积工艺为化学气相沉积。
可选地,所述气相沉积工艺为原子层沉积。
可选地,其中有机过渡金属化合物在与氧源的脉冲交替的脉冲中传递至基板,形成所述含过渡金属薄膜,所述氧源选自H 2O、O 2、臭氧和H 2O 2中的一种;所述方法包括使用等离子技术增强形成所述含过渡金属薄膜。
可选地,还包括使用至少一种共反应物,所述共反应物选自H 2、氮气、肼、偏二甲肼和氨气中的一种或几种;所述方法包括使用等离子技术增强形成所述含过渡金属薄膜。
可选地,还包括使用至少一种共反应物,所述共反应物选自硫源,所述硫源选自硫化氢、硫醚、硫醇和过二硫醚中的一种或几种;所述方法包括使用等离子技术增强形成所述含过渡金属薄膜。
可选地,还包括使用至少一种共反应物,所述共反应物选自氟源,所述氟源选自氟化氢、CF 4、TiF 4、SF 6、TaF 5、WF 6和MoF 6中的一种或几种;所述方法包括使用等离子技术增强形成含过渡金属的氟化物。
可选地,还包括使用至少一种共反应物,所述共反应物选自硼源,所述硼源选自硼烷和BF 3中的一种或几种;所述方法包括使用等离子技术增强形成含过渡金属的硼化物。
可选地,还包括使用至少一种共反应物,所述共反应物选自硅源,所述硅源选自硅烷、SiCl 4和SiF 4中的一种或几种;所述方法包括使用等离子技术增强形成含过渡金属的硅化物。
可选地,包括使用硫化氢作为共反应物以形成含钴薄膜。
可选地,所述过渡金属选自钴、镍、铁、锰、铬、铜、钼、钨、铱、铂、钯、钌、铟中的一种。
可选地,所述含过渡金属薄膜为含钴薄膜。
可选地,所述含钴薄膜选自单质金属钴薄膜、氧化钴薄膜、氮化钴薄膜、硫化钴薄膜、钴-硅薄膜、氟化钴薄膜中的一种。
有益效果:本发明提供一系列新型含螯合配体的高价过渡金属有机化合物的设计与合成,该系列高价过渡金属有机化合物的合成路线如下:首先,MCl x(PPh 3) 2或者M(CO) y在还原剂(如锌粉)作用下原位还原得到低价的过渡金属化合物,然后与蒎烯或者蒎烯的衍生物发生C-C氧化加成反应得到目标产物。已报道的研究中,金属与蒎烯或者蒎烯类的衍生物的相互作用大部分都是属于杂原子的δ或者不饱和的π键相互作用连接的。虽然有通过打开蒎烯或者蒎烯衍生物的四元张力环来形成碳金属键的。但是它们共同的特 点都是先合成分离得到低价的金属络合物,然后再利用此低价金属络合物与蒎烯或者蒎烯衍生物反应得到目标产物。且已报道的此类金属有机物,只有铁和铑。而在本发明中,发明人通过实验的研究和改进合成的方法,提供了一条创新性的合成路线。发明人提出一锅合成方法,该方法在大大的简化合成步骤的同时还有效地避免了低价过渡金属化合物中间产物的分离以及储存困难的问题。且由于本发明的方法是通过原位得到低价过渡金属化合物,所以还提高了此类低价过渡金属化合物的反应活性。由于合成方法的改进,使得本发明的合成可以拓展到更大范围的过渡金属。此类高价过渡金属有机化合物的结构均可通过高分辨质谱(HRMS)、一维核磁和二维核磁谱图的确认。除此之外,还可通过热重分析(TGA)发现该系列化合物具有很好的挥发性,符合原子层沉积(ALD)前驱体的首要条件。因此,本发明将高价过渡金属有机化合物用作ALD前驱体,并通过调节沉积圈数、吹扫气体和流速等参数制备含过渡金属纳米薄膜,最后通过薄膜的表征评估它们作为前驱体在ALD技术中的应用前景。
附图说明
图1为有机钴金属化合物的合成路线图。
图2为使用五甲基环戊二稀合成有机钴金属化合物的路线图。
图3为三个烷基钴金属化合物的热重测试结果图。
图4中a,b分别为在180℃的原子层沉积的情况下钴前驱体用量的饱和曲线和氧等离子等离子时长的饱和曲线;c为氧化钴薄膜的厚度与原子层沉积的总循环数的关系示意图;d为不同温度下的生长曲线。
图5中a为在180℃的原子层沉积的情况下射频时长的生长曲线;b为氧化钴薄膜样品的拉曼谱图;c为薄膜的X光电子能谱图;d为Co 2p光谱图;e为O 1s光谱图;f为在椭偏仪上测试使用B-spline的模式进行拟合得到的介电常数ε。
图6中a,b分别为在300个原子层沉积循环下得到15纳米氧化钴薄膜的透射电镜图以及电子衍射图;c为薄膜的原子力显微镜图像。
图7为在10:1的沟槽中原子层沉积均匀生长薄膜截面的扫描电镜图。
图8中a为在180℃的原子层沉积的情况下为薄膜的X光电子能谱图;a为全谱图,b为Co 2p光谱图;c为S 1s光谱图;d、e分别为在300个原子层沉积循环下得到15纳米硫化物薄膜的扫描电子图。
图9中a-c为在180℃的原子层沉积的情况下薄膜的X光电子能谱图;a为全谱图,b为Co 2p光谱图;c为F 1s光谱图;d、e分别为在300个原子层沉积循环下得到15纳米氟化钴薄膜的扫描电子图。
图10为三羰基蒎烯铁化合物的合成示意图。
图11为三羰基蒎烯铁化合物的核磁谱图。
具体实施方式
本发明提供有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供有机钴金属化合物,所述有机钴金属化合物的结构式选自如下所示中的一种:
Figure PCTCN2021093880-appb-000004
本发明实施例提供的如上所述有机钴金属化合物是一种全碳骨架作为配体的烷基金属有机化合物,其还是一种常温常压下于空气中稳定的红色油状液体。由于与钴相连的碳原子是一个桥头碳,同时此碳与烯丙基是相连在一个环上,因此增加了烷基钴的稳定性。
本发明实施例还提供了如上所述有机钴金属化合物的制备方法,其详细介绍如下:
发明人发现,α-和β-蒎烯广泛的存在于大自然的各种植物体内,属于双环的单帖类的可再生的生物质材料,此类化合物可以通过简单的转化步骤可以得到各种各样的蒎烯 类衍生物。由于此类蒎烯及其衍生物具有一个张力的四元环以及与此四元环相连的烯烃结构,为此类化合物进一步的转化提供了便捷。此外,此碳氢类化合物还可以与过渡金属进行配位等作用来获得过渡金属化合物。
已报道的研究中,金属与蒎烯或者蒎烯类的衍生物的相互作用大部分都是属于杂原子的δ或者不饱和的π键相互作用连接的。虽然有通过打开蒎烯或者蒎烯衍生物的四元张力环来形成碳金属键的。但是它们共同的特点都是先合成分离得到低价的金属络合物,然后再利用此低价金属络合物与蒎烯或者蒎烯衍生物反应得到目标产物。且已报道的此类金属有机物,只有铁和铑。
发明人首先通过合成分离得到低氧化态的CoCl(PPh 3) 3,接着此化合物与环戊二稀基锂化合物在低温下反应得到具有氧化加成能力的Cp-Co(PPh 3) 2中间体。不需要分离中间体,向反应体系中直接加入过量的蒎烯,并在100℃的条件下反应24小时。反应完以后,通过过滤和减压旋蒸的操作把挥发的溶剂以及废弃固体除去。接着通过快速的柱色谱分离,就可以得到目标产物。但是,在实际的实验操作中,发现存在一些问题导致实际得到的结果与预计的有一定差距。例如,低氧化态的CoCl(PPh 3) 3的合成质量难以控制,使用硼氢化钠还原得到的是棕色的固体,使用锌粉还原得到的是鲜绿色的固体。此外,因为CoCl(PPh 3) 3容易与氧气发生反应而导致变质,因此该化合物的储存也是一个问题。还有,通过各种实验,发现在合成中最高只能以38%的产率得到该目标产物。
基于此,本发明实施例提供如上所述的有机钴金属化合物的制备方法,所述方法包括步骤:CoCl 2(PPh 3) 2在锌粉作用下原位还原得到低价的钴化合物,所述低价的钴化合物与β-蒎烯或发生C-C键氧化加成反应,得到所述有机钴金属化合物。
具体的,首先是使用CoCl 2与两倍摩尔量的PPh 3反应得到常温、常压下对空气稳定的CoCl 2(PPh 3) 2。接着,此化合物与环戊二稀基锂化合物在低温下进行锂卤交换反应,得到Cp-CoCl(PPh 3) 2中间产物,见图1所示。然后,直接向反应体系中加入锌粉与过量的蒎烯,在100℃的条件下反应24小时。反应完以后,通过过滤和减压旋蒸可以分别把废弃固体以及挥发性的溶剂除去。接着通过快速的柱色谱分离,就可以得到目标产物。
本发明实施例制备方法有以下优点:1.CoCl 2(PPh 3) 2化合物合成容易,方便保存;2.在反应中,原位生成低氧化态的CpCo(PPh 3) 2中间产物,此中间产物在反应体系中马上可以与蒎烯进行氧化加成反应得到目标产物。避免了低氧化态的CoCl(PPh 3) 3的合成与分离带来的问题,及低氧化态的CoCl(PPh 3) 3质量不好控制以及储存不方便的问题;3.基于上述反应路线的改进,大大的提高了反应的产率。
基于上述反应路线的设计,本研究使用五甲基环戊二稀作为示例对反应的最优条件进行筛选(见图2)。得到最优的反应条件以后,接着用此最优条件用于其他蒎烯衍生物的钴金属有机化合物的合成。同样的条件下,可以以非常高的产率得到目标产物。对于此反应的机理发明人推测可能是:CpCo(PPh 3) 2的配体的解离后从蒎烯的烯烃位阻小的面进行配位结合,接着烯烃发生异构化由exo-结构的烯烃变为endo-结构的烯烃与钴配位的化合物。最后,钴原子在蒎烯的小位阻面靠近,对蒎烯的四元张力环中与烯烃相邻的α,β的碳-碳键进行氧化加成从而得到产物。
在如下表1中,总结了三个烷基钴金属有机化合物的核磁氢谱与碳谱的数据。结合它们的二维谱图(cosy,HMBC,HSQC),可以清楚的分析出此类化合物的特征峰。例如,此类烷基钴有机化合物的烯丙基的碳的特征峰,化合物1分别在64.2,75.0,91.5;化合物2分别在64.7,75.8,91.7;化合物3分别在62.3,73.1,91.4。经过与文献对照分析,可以确定得到的化合物是η 135-螯合配体结构的钴(III)金属有机化合物。
表1
Figure PCTCN2021093880-appb-000005
这三个化合物通过热重测试的分析(见图3),可以发现它们只有一个单一的重量减少步骤并且最后残留量非常的少,说明了它们没有明显的热分解过程。这三种烷基钴 金属化合物在高温下的残留量都非常少(化合物1,2,3分别对应的是0%,1.1%,2.1%),这也表明在蒸发过程中的分解可以忽略不计。在此测试同时发现开始蒸发的温度(以1%的重量损失温度为开始蒸发的温度),1,2,3对应的温度为80℃,141℃,170℃。在此测试同时发现开始蒸发的温度(以0.5%的重量损失温度为开始蒸发的温度),1、2和3对应的温度为72℃,125℃和158℃。相对于商业化的Cp 2Co的100℃(0.5%),110℃(1%)有很大改进。
基于此类化合物具有较高的挥发性和良好的热稳定性,因此本研究选择了烷基钴化合物1来进一步研究其对于原子层沉积的适用性。原子层沉积工艺是使用氧等离子作为共反应的试剂来沉积氧化钴薄膜。这个沉积过程可以发生是很好地遵循原子层沉积历程。图4中a,b分别代表着在180℃的原子层沉积的情况下两种不同前驱体的饱和曲线。可以发现每个原子层沉积的循环是随着化合物1与等离子氧气的增加而增加,当化合物1的剂量数达到4和等离子氧气超过10s以后,每个循环薄膜的生长速率趋于平稳。所以,在后面的薄膜沉积没有特别说明的情况下,选择4剂量的化合物1与10s等离子氧气作为原子层沉积氧化钴的方法。从图4中c可以看出,氧化钴薄膜的厚度与原子层沉积的总循环数具有良好的线性关系,并且该线性关系也具有0截距,这表明没有膜生长的延迟成核现象。从线性关系的斜率获得原子层沉积每个循环中薄膜的生长速率。在图4中d,在80至240℃的沉积温度范围内测量薄膜的生长速率,发现在90至210℃的薄膜的生长速率达到0.048-0.051纳米/循环,这代表了化合物1的原子层沉积的温度窗口。
在图5中a中,可以看到薄膜的生长速率与钴前驱体剂量数之间的关系。在石英上沉积约15nm的氧化钴薄膜样品用于拉曼谱图的测试得到。在图5中b中,可以看到石英基底的拉曼谱图以及薄膜加石英基底的谱图。在拉曼谱图中,可以发现氧化钴薄膜出5个特征峰,分别是195,481,522,621以及691波数的地方,它们分别代表了尖晶石结构的氧化钴的F 2g,E g,F 2g,F 2g和A 1g的模型。接着对在180℃下沉积得到的薄膜进行了仔细的表征了氧化钴薄膜的性能。图6中a,b展示了在300个原子层沉积循环下得到15纳米氧化钴薄膜的透射电镜图以及电子衍射图。透射电镜图和电子衍射图均表明得到的 薄膜是多晶的,晶体的结构被确认为尖晶石氧化钴。通过对透射电镜图中框住区域进行快速傅里叶变换(FFT)分析进一步确认了尖晶石结构(图6)。通过卢瑟福背散射来研究薄膜的组成成份。在图5中的c中,可以得到薄膜中Co:O的比例是0.75±0.01,这也表明得到的薄膜是含过渡金属钴的氧化钴薄膜。紧接着,使用X光电子能谱(XPS)来进一步分析薄膜。通过薄膜的XPS全能谱图和高分辨图都显示了在刻蚀以后,薄膜没有含有碳元素(检测限1%),所以得到纯度非常高的薄膜。钴与氧的XPS高分辨图都是分析在没有刻蚀过的表面的谱图,因为经过刻蚀以后会破坏薄膜的结构。如图5中d所示,Co 2p光谱显示2p 3/2和2p 1/2的自旋轨道分裂峰,分裂能为15.25eV,并且2p 3/2和2p 1/2峰可以分别进一步进行分为两个峰组成,分别对应于Co 3+(779.18和794.23eV)和Co 2+(780.27和795.73eV)分别位于氧化钴尖晶石结构的八面体和四面体位点上。强度更小的卫星峰大约出现在比主峰高9.6eV的地方,这也是氧化钴的特征。对O 1s光谱(图5中e)分峰,可以在529.41和531.03eV下分为两个峰组成(FWHM:1.22和2.26,比例=1.00:0.73)。在529.41eV处的主峰对应于氧化钴中的化学计量氧,而在高的结合能531.03eV处的较宽峰对应于表面区域中的非化学计量氧或表面上的OH物种。可以发现在平整的硅片表明沉积得到的薄膜的表面是相当平整的。图6中c显示了一个约47纳米薄膜的原子力显微镜(AFM)图像,均方根粗糙度仅为0.47纳米,仅为薄膜总厚度的1%。图5中f,描述了在椭偏仪上测试使用B-spline的模式进行拟合得到的介电常数ε。在图中可以看出介电常数的虚部ε 2在0.9,1.67,2.68的电子伏特的地方出现特征峰,这同样是可以表明所得到的薄膜成份是氧化钴。应用示例1:
通过使用螯合的η 135-钴(III)金属有机化合物(化合物1)作为钴前体和O 2作为共反应物,将氧化钴薄膜沉积在自制的管状原子层沉积反应器中。平面SiO 2/Si衬底用于研究膜的生长行为。将该钴前体保持在起泡器中,并加热至50℃,以提供足够的蒸气压进行沉积。前驱体蒸气借助于纯净的Ar气(通过惰性气体净化器)作为载气被输送到沉积室。将30sccm的共反应物O 2气体输送到原子层沉积反应器中,并将等离子体O 2时间的长度设置为10s。等离子体O 2的功率设置为90W。在吹扫过程中,氩气约为0.4托。
通过使用螯合的η 135-钴(III)金属有机化合物(化合物1)作为钴前体和O 2作为共反应物,将氧化钴薄膜沉积在自制的管状原子层沉积反应器中。使用深纵横比为10:1的SiO 2/Si的深6μm沟槽基底来研究薄膜的生长行为。将钴前体保持在起泡器中,并加热到90℃,以提供足够的蒸气压进行沉积。前驱体蒸气借助于纯净的Ar气(通过惰性气体净化器)作为载气被输送到沉积室。然后,关闭真空泵和载气,并保持120s。将50sccm的共反应物O 2气体输送到原子层沉积反应器中,并且将O 2等离子体时间的长度设置为100s。O 2等离子体的功率设置为90W。在吹扫过程中,氩气约为0.4托。在图7中,可以看到薄膜在宽深比为10:1的沟槽里的生长情况是具有很好的保型性生长特点,侧面证明这个生长是原子层沉积的过程。
应用示例2:
通过使用螯合的η 135-钴(III)金属有机化合物(化合物1)作为钴前体和H 2S作为共反应物,将硫化钴薄膜沉积在自制的管状原子层沉积反应器中。平面SiO 2/Si衬底用于研究膜的生长行为。将该钴前体保持在起泡器中,并加热至50℃,以提供足够的蒸气压进行沉积。前驱体蒸气借助于纯净的Ar气(通过惰性气体净化器)作为载气被输送到沉积室。将30sccm的共反应物H 2S气体输送到原子层沉积反应器中,并将等离子体H 2S时间的长度设置为10s。等离子体H 2S的功率设置为90W。在吹扫过程中,氩气约为0.4托。得到的硫化钴薄膜表征在图8中,其中,a-c为在180℃的原子层沉积的情况下为薄膜的X光电子能谱图;a为全谱图,b为Co 2p光谱图;c为S 1s光谱图;d、e分别为在300个原子层沉积循环下得到15纳米硫化物的扫描电子图。通过使用螯合的η 135-钴(III)金属有机化合物(化合物1)作为钴前体和H 2S作为共反应物,将硫化钴薄膜沉积在自制的管状原子层沉积反应器中。使用深纵横比为10:1的SiO 2/Si的深6μm沟槽基底来研究薄膜的生长行为。将钴前体保持在起泡器中,并加热到90℃,以提供足够的蒸气压进行沉积。前驱体蒸气借助于纯净的Ar气(通过惰性气体净化器)作为载气被输送到沉积室。然后,关闭真空泵和载气,并保持120s。将50sccm的共反应物H 2S气体输送到原子层沉积反应器中,并且将H 2S等离子体时间的长度设置为100s。H 2S等离子体的功率设置为90W。在吹扫过程中,氩气约为0.4托。
应用示例3:
通过使用螯合的η 135-钴(III)金属有机化合物(化合物1)作为钴前体和全氟化碳与氧等离子体混合物作为共反应物,将氟化钴薄膜沉积在自制的管状原子层沉积反应器中。平面SiO 2/Si衬底用于研究膜的生长行为。将该钴前体保持在起泡器中,并加热至50℃,以提供足够的蒸气压进行沉积。前驱体蒸气借助于纯净的Ar气(通过惰性气体净化器)作为载气被输送到沉积室。将30sccm的共反应物CF 4气体输送到原子层沉积反应器中,并将氧等离子体时间的长度设置为10s。氧等离子体的功率设置为90W。在吹扫过程中,氩气约为0.4托。通过上述调节沉积得到的氟化钴薄膜表征在图9中,其中,a-c为在180℃的原子层沉积的情况下薄膜的X光电子能谱图;a为全谱图,b为Co 2p光谱图;c为F 1s光谱图;d、e分别为在300个原子层沉积循环下得到15纳米氟化钴薄膜的扫描电子图。
通过使用螯合的η 135-钴(III)金属有机化合物(化合物1)作为钴前体和全氟化碳与氧等离子体混合物作为共反应物,将氟化钴薄膜沉积在自制的管状原子层沉积反应器中。使用深纵横比为10:1的SiO 2/Si的深6μm沟槽基底来研究薄膜的生长行为。将钴前体保持在起泡器中,并加热到90℃,以提供足够的蒸气压进行沉积。前驱体蒸气借助于纯净的Ar气(通过惰性气体净化器)作为载气被输送到沉积室。然后,关闭真空泵和载气,并保持120s。将50sccm的共反应物全氟化碳与氧混合气体输送到原子层沉积反应器中,并且将等离子时间的长度设置为100s。等离子体的功率设置为90W。在吹扫过程中,氩气约为0.4托。
本发明另一实施例还提供了合成蒎烯铁的金属有机化合物的具体步骤,如图10所示,具体步骤如下:Fe 2(CO) 9与10当量的蒎烯,在氮气氛围和100℃的条件下反应24小时。反应完以后,通过过滤和减压旋蒸可以分别把废弃固体以及挥发性的溶剂除去。接着通过快速的柱色谱分离,就可以得到目标产物,其核磁谱图见图11所示。
综上所述,本发明首次设计了一条全新的合成路线并且通过此路线合成、分离出一类新型的烷基过渡金属配合物。低价过渡金属通过与蒎烯或者蒎烯衍生物进行碳-碳键氧化加成而得到螯合的η 135-有机过渡金属化合物或者η 13-有机过渡金属羰基化合 物。用高分辨质谱(HRMS)结合一维和二维核磁谱图来确定该类化合物的结构。然后,研究了这类新型对空气稳定的烷基过渡金属的原子层沉积行为。将η 135-有机钴(III)金属配合物(化合物1)用作金属前体,通过研究它的原子沉积过程,证明它很好的遵循了理想的原子层沉积生长,以沉积出纯度高,表面平整的含钴的氧化钴、氟化钴、硫化钴薄膜。通过使用深纵横比高达10:1沟槽作为基底,进一步证明在此原子层沉积工艺中,可以将含钴的氧化钴、氟化钴、硫化钴膜保形地沉积在深宽的沟槽中,这表明这些方法非常适合于复杂的或多孔三维纳米立体结构基底上,均匀和保形性好地沉积得到含钴的氧化钴、氟化钴、硫化钴薄膜。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (19)

  1. 有机过渡金属化合物,所述有机过渡金属化合物的结构式选自如下所示中的一种:
    Figure PCTCN2021093880-appb-100001
    其中,
    R 1,R 2,R 3,R 4,R 5独立地为氢原子、C 1-C 8直链型的烷基、C 1-C 8支链型的烷基、C 6-C 10的芳香基中的一种;
    R’ 1,R’ 2,R’ 3独立地为C 1-C 8直链型的烷基、C 1-C 8支链型的烷基、C 6-C 10的芳香基中的一种;
    X为氢原子、氧原子、羟基、醚基、酯基中的一种;
    M为过渡金属。
  2. 根据权利要求1所述的有机过渡金属化合物,所述有机过渡金属化合物的结构式选自如下所示中的一种:
    Figure PCTCN2021093880-appb-100002
  3. 权利要求1所述的有机过渡金属化合物的制备方法,所述方法包括步骤:
    MCl x(PPh 3) 2或者M(CO) y在还原剂作用下原位还原得到低价的过渡金属化合物,所述低价的过渡金属化合物与蒎烯或蒎烯的衍生物发生C-C键氧化加成反应,得到所述有机过渡金属化合物;其中,M为过渡金属,x=1、2、3或4;y=2、3、4、4.5、5或6。
  4. 根据权利要求3所述的方法,所述过渡金属选自钴、镍、铁、锰、铬、铜、钼、钨、铱、铂、钯、钌、铟中的一种;和/或,所述还原剂选自锌粉、镁粉、铁粉、钠块、萘钠、氢气、金属汞齐、氯化亚锡、硼氢化钠、硼氢化钾、钝化的硼氢化钠衍生物、钝 化的硼氢化钾衍生物、活化的硼氢化钠衍生物、氢化锂铝、钝化的氢化锂铝、硼烷、烷基化的硼烷、乙醇、草酸、异丙醇中的一种。
  5. 根据权利要求3所述的方法,所述MCl x(PPh 3) 2通过以下方法制备得到:采用MCl x与PPh 3反应得到所述MCl x(PPh 3) 2
  6. 根据权利要求3所述的方法,所述MCl x(PPh 3) 2与环戊二烯基锂化合物进行锂卤交换反应,接着在锌粉作用下原位还原得到低价的过渡金属化合物CpM(PPh 3) 2
  7. 根据权利要求3所述的方法,所述蒎烯为α-蒎烯或者β-蒎烯,或者所述蒎烯的衍生物为α-蒎烯的衍生物或者β-蒎烯的衍生物,所述C-C键进行氧化加成反应的温度为80-300℃,时间为0.5-100小时。
  8. 根据权利要求3所述的方法,所述低价的过渡金属化合物与蒎烯或蒎烯的衍生物的摩尔比为0.001:1-20:1。
  9. 一种形成含过渡金属薄膜的方法,所述方法包括使用如下式任一结构式的有机过渡金属化合物:
    Figure PCTCN2021093880-appb-100003
    其中,
    R 1,R 2,R 3,R 4,R 5独立地为氢原子、C 1-C 8直链型的烷基、C 1-C 8支链型的烷基、C 6-C 10的芳香基中的一种;
    R’ 1,R’ 2,R’ 3独立地为C 1-C 8直链型的烷基、C 1-C 8支链型的烷基、C 6-C 10的芳香基中的一种;
    X为氢原子、氧原子、羟基、醚基、酯基中的一种;
    M为过渡金属。
  10. 根据权利要求9所述的方法,通过气相沉积工艺形成所述含过渡金属薄膜。
  11. 根据权利要求10所述的方法,所述气相沉积工艺为化学气相沉积或者原子层 沉积。
  12. 根据权利要求10所述的方法,其中有机过渡金属化合物在与氧源的脉冲交替的脉冲中传递至基板,形成所述含过渡金属薄膜,所述氧源选自H 2O、O 2、臭氧和H 2O 2中的一种;所述方法包括使用等离子技术增强形成所述含过渡金属薄膜。
  13. 根据权利要求10所述的方法,还包括使用至少一种共反应物,所述共反应物选自H 2、氮气、肼、偏二甲肼和氨气中的一种或几种;所述方法包括使用等离子技术增强形成所述含过渡金属薄膜。
  14. 根据权利要求10所述的方法,还包括使用至少一种共反应物,所述共反应物选自硫源,所述硫源选自硫化氢、硫醚、硫醇和过二硫醚中的一种或几种;所述方法包括使用等离子技术增强形成所述含过渡金属薄膜。
  15. 根据权利要求10所述的方法,还包括使用至少一种共反应物,所述共反应物选自氟源,所述氟源选自氟化氢、CF 4、TiF 4、SF 6、TaF 5、WF 6和MoF 6中的一种或几种;所述方法包括使用等离子技术增强形成含过渡金属的氟化物。
  16. 根据权利要求10所述的方法,还包括使用至少一种共反应物,所述共反应物选自硼源,所述硼源选自硼烷和BF 3中的一种或几种;所述方法包括使用等离子技术增强形成含过渡金属的硼化物。
  17. 根据权利要求10所述的方法,还包括使用至少一种共反应物,所述共反应物选自硅源,所述硅源选自硅烷、SiCl 4和SiF 4中的一种或几种;所述方法包括使用等离子技术增强形成含过渡金属的硅化物。
  18. 根据权利要求9所述的方法,所述过渡金属选自钴、镍、铁、锰、铬、铜、钼、钨、铱、铂、钯、钌、铟中的一种。
  19. 根据权利要求9所述的方法,所述含过渡金属薄膜为含钴薄膜,所述含钴薄膜选自单质的金属钴薄膜、氧化钴薄膜、氮化钴薄膜、硫化钴薄膜、钴-硅薄膜、氟化钴薄膜中的一种。
PCT/CN2021/093880 2021-04-23 2021-05-14 有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法 WO2022222210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110440700.2A CN113201029B (zh) 2021-04-23 2021-04-23 有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法
CN202110440700.2 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022222210A1 true WO2022222210A1 (zh) 2022-10-27

Family

ID=77028014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093880 WO2022222210A1 (zh) 2021-04-23 2021-05-14 有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法

Country Status (2)

Country Link
CN (1) CN113201029B (zh)
WO (1) WO2022222210A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115290703A (zh) * 2021-12-16 2022-11-04 青岛大学 一种多金属负载氧化钴的多孔复合纳米薄膜制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824736A (zh) * 2019-03-28 2019-05-31 苏州欣溪源新材料科技有限公司 一种钴配合物及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824736A (zh) * 2019-03-28 2019-05-31 苏州欣溪源新材料科技有限公司 一种钴配合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAN JANG-SHYANG, LIU RAI-SHUNG: "A Transition-Metal−η 4 -Diene Cation Can Undergo Nucleophilic Addition at the Internal Carbon", ORGANOMETALLICS, AMERICAN CHEMICAL SOCIETY, vol. 17, no. 6, 1 March 1998 (1998-03-01), pages 1002 - 1003, XP055981329, ISSN: 0276-7333, DOI: 10.1021/om971033z *
JENNY TITUS A, MA LIQIAN: "Synthetic Use of a o-Alkyl-z-Ally1 Iron Complex Obtained by Stereospecific Ring Opening of a-Pinene", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 32, no. 43, 1 January 1991 (1991-01-01), Amsterdam , NL , pages 6101 - 6104, XP055981325, ISSN: 0040-4039 *
JENNY TITUS A., HUBER VRONI, MA LIQIAN, RAEMY JACQUES, ZELLER DAVID, STOECKLI-EVANS HELEN: "Synthesis, X-ray Structure, and Reactivity of Phosphine-Substituted Iron Carbonyl Complexes Containing σ -Alkyl− π -Allyl Ligands", ORGANOMETALLICS, AMERICAN CHEMICAL SOCIETY, vol. 21, no. 12, 1 June 2002 (2002-06-01), pages 2504 - 2513, XP055981322, ISSN: 0276-7333, DOI: 10.1021/om010781s *

Also Published As

Publication number Publication date
CN113201029B (zh) 2022-07-29
CN113201029A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
KR101659725B1 (ko) 휘발성 디하이드로피라지닐 및 디하이드로피라진 금속 착화합물
KR101260858B1 (ko) 금속 함유 화합물, 그 제조 방법, 금속 함유 박막 및 그형성 방법
JP5857970B2 (ja) (アミドアミノアルカン)金属化合物、及び当該金属化合物を用いた金属含有薄膜の製造方法
TWI425110B (zh) 以化學相沉積法製造含金屬薄膜之方法
WO2012165124A1 (ja) 酸化モリブデンを含有する薄膜の製造方法、酸化モリブデンを含有する薄膜の形成用原料及びモリブデンアミド化合物
JP5528338B2 (ja) 化学的相成長工程用の有機金属前駆体
CN108794521B (zh) 新三甲硅烷基胺衍生物、其制备方法以及使用其的含硅薄膜
JP4980679B2 (ja) チタン錯体、それらの製造方法、チタン含有薄膜及びそれらの形成方法
EP3384065B1 (en) Process for the generation of metallic films
WO2014103588A1 (ja) アルミニウム化合物、薄膜形成用原料及び薄膜の製造方法
WO2014077089A1 (ja) 金属アルコキシド化合物、薄膜形成用原料、薄膜の製造方法及びアルコール化合物
TWI515197B (zh) 含矽組合物、使用該含矽組合物之含矽薄膜及製造該含矽薄膜之方法
WO2019238469A1 (en) Process for the generation of metal or semimetal-containing films
WO2013018413A1 (ja) アルコキシド化合物及び薄膜形成用原料
TWI727091B (zh) 含有烯丙基配位體之金屬錯合物
WO2022222210A1 (zh) 有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法
KR102634502B1 (ko) 루테늄 화합물, 박막 형성용 원료 및 박막의 제조 방법
Su et al. Synthesis of β-ketoiminate and β-iminoesterate tungsten (VI) oxo-alkoxide complexes as AACVD precursors for growth of WOx thin films
TWI672390B (zh) 二取代炔基二鈷六羰基化合物、其製造及使用方法
CN114560886B (zh) 一种信息存储材料用前驱体氨基吡啶基Ni(II)化合物
WO2022196491A1 (ja) スズ化合物、薄膜形成用原料、薄膜、薄膜の製造方法及びハロゲン化合物
JP7495086B2 (ja) 有機金属化合物の製造方法およびその方法で得られた有機金属化合物を用いた薄膜
TWI824133B (zh) 薄膜形成用原料、薄膜之製造方法及新穎的鈧化合物
WO2023199853A1 (ja) ルテニウム錯体、その製造方法、及びルテニウム含有薄膜の製造方法
CN109072431A (zh) 产生无机薄膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937436

Country of ref document: EP

Kind code of ref document: A1