CN115290703A - 一种多金属负载氧化钴的多孔复合纳米薄膜制备方法 - Google Patents

一种多金属负载氧化钴的多孔复合纳米薄膜制备方法 Download PDF

Info

Publication number
CN115290703A
CN115290703A CN202111543182.3A CN202111543182A CN115290703A CN 115290703 A CN115290703 A CN 115290703A CN 202111543182 A CN202111543182 A CN 202111543182A CN 115290703 A CN115290703 A CN 115290703A
Authority
CN
China
Prior art keywords
film
temperature
preparation
interdigital electrode
cobalt oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111543182.3A
Other languages
English (en)
Other versions
CN115290703B (zh
Inventor
张军
潘宏胤
刘相红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202111543182.3A priority Critical patent/CN115290703B/zh
Publication of CN115290703A publication Critical patent/CN115290703A/zh
Application granted granted Critical
Publication of CN115290703B publication Critical patent/CN115290703B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明属于气体传感器技术领域,涉及一种多金属负载氧化钴的多孔复合纳米薄膜制备方法,先通过牺牲模板法直接在叉指电极上合成了三维有序大孔结构的Co3O4薄膜,然后以MeCpPtMe3为铂源,以Rh(acac)3为铑源,通过原子层沉积技术在合成的Co3O4薄膜上负载贵金属铂和铑,操作流程简单易行,制备过程中采用的金属催化剂具有高度分散性,金属负载量低,适合于批量制备气体传感器,对于气敏薄膜的研制和气体传感器应用具有重要价值。

Description

一种多金属负载氧化钴的多孔复合纳米薄膜制备方法
技术领域:
本发明属于气体传感器技术领域,涉及一种多金属负载氧化钴的多孔复合纳米薄膜制备方法,特别是一种用于NO2检测的Co3O4/Pt/Rh多孔薄膜的制备方法。
背景技术:
在各种空气污染物中,二氧化氮(NO2)作为化石燃料燃烧的产物,很难通过提高燃烧效率来消除,是对人类危害最大的气体之一,仅仅1ppm的NO2就会对人体的鼻、眼、喉等造成严重刺激,而且长期接触NO2还会增加呼吸道感染和患上肺部疾病的几率。此外,NO2还会形成光化学烟雾和酸雨,严重危害环境。因此,开发具有高灵敏度的NO2传感器是十分有必要的。
Co3O4作为一种具有典型的立方尖晶石结构的p型半导体材料,主要应用于储能、多相催化、气体传感器和超级电容器中。金属氧化物半导体材料(MOS)由于成本较低、灵敏度高、响应快速且便于集成等优点,已被广泛用于NO2检测。气体传感器具有体积小、灵敏度高、稳定性好、构造简单等优势,广泛应用于高危害性气体的检测。目前,二氧化氮的气体传感器材料主要是半导体金属氧化物,如In2O3、Co3O4、ZnO等,为了进一步提高气体传感器的检测灵敏度和抗湿性,研究者们多采用贵金属如Pt、Ag等作为增敏剂来增强金属氧化物气敏材料的表面敏感性能,例如CN112553575A公开了一种多层复合二氧化氮气敏薄膜及其制备方法,其中薄膜包括:带有氧化层的硅基片,以及自下而上依次沉积在硅基片表面的氧化锡层、三氧化钨层、贵金属层,其制备方法是采用直流掠射角磁控溅射技术,分别以锡、钨及贵金属为靶材,依次在硅基片表面沉积氧化锡、三氧化钨、贵金属薄膜,之后将试样置于马弗炉中进行热处理。
在金属氧化物表面负载贵金属最常用的方法是液相化学还原法,但是此法并不适合在薄膜敏感材料上负载金属。因而,迫切需要开发一种新的敏感薄膜制备方法,以及适合在敏感薄膜上负载催化剂的有效方法。
发明内容:
本发明的目的在于克服现有技术存在的缺点,设计提供一种操作简单的制备Co3O4/Pt/Rh多孔薄膜的方法,具有高效、简便、成分可控等优势,并且催化剂与敏感薄膜的界面可以完全暴露于检测气氛。
为了实现上述发明目的,本发明先通过牺牲模板法直接在叉指电极上合成了三维有序大孔结构的Co3O4薄膜,然后以MeCpPtMe3为铂源,以Rh(acac)3为铑源,通过原子层沉积技术在合成的Co3O4薄膜上负载贵金属铂和铑,具体包含以下几个步骤:
(1)首先,将0.5μL的聚苯乙烯(PS)小球转移到Co(NO3)2溶液中,由于表面张力的作用,PS小球悬浮在溶液表明排列成连续的薄膜;静置一分钟,当PS小球模板的空隙被Co(NO3)2溶液完全填充后,用叉指电极将悬浮的PS小球捞起,在60℃下干燥0.5h,然后将叉指电极在空气中以5℃/min的升温速率依次在200℃下加热0.5h,在350℃下加热0.5h,最后在450℃下加热2h,将PS小球模板完全去除,在叉指电极上得到三维有序大孔结构的Co3O4薄膜;
(2)将步骤(1)制备好的带有Co3O4薄膜的叉指电极放置在原子层沉积反应室内负载Pt,采用MeCpPtMe3作为Pt的前体反应物,使用臭氧发生器将高纯度O2转化为O3,高纯N2作为载体和吹扫气体,反应室的温度保持在280℃,将MeCpPtMe3保持在75℃,沉积Pt的每一个循环依次包含:1s的MeCpPtMe3脉冲、20s的反应、25s的N2吹扫、1s的O3脉冲、25s的反应以及25s的N2吹扫,分别沉积5-20个循环;将沉积后的样品于400℃下在含有10%H2的Ar/H2混合气氛中煅烧4h,得到Co3O4/Pt薄膜;
(3)将步骤(2)制备好的Co3O4/Pt薄膜继续放置在原子层沉积反应室内负载Rh,选用Rh(acac)3作为Rh的前体反应物,O2作为氧化气体,高纯N2作为载体和吹扫气体,反应室的温度保持在275℃,将Rh(acac)3保持在150℃,沉积Rh的每一个循环依次包含:1s的Rh(acac)3脉冲、15s的反应、15s的N2吹扫、1s的O2脉冲、10s的反应以及15s的N2吹扫,沉积5-20个循环,得到Co3O4/Pt/Rh薄膜。
本发明将制备的Co3O4/Pt/Rh薄膜用于组装气体传感器,具体过程为:将带有Co3O4/Pt/Rh薄膜的叉指电极两端用银浆连接银引线,放置于恒温烘箱中,稳定1h后,即可通入气体进行测试。
本发明与现有的制备方法相比,操作流程简单易行,金属催化剂具有高度分散性,金属负载量低,适合于批量制备气体传感器,对于气敏薄膜的研制和气体传感器应用具有重要价值。
附图说明:
图1为本发明实施例1制备的Co3O4薄膜的透射电镜照片。
图2为本发明实施例1制备的Co3O4薄膜的高倍透射电镜照片。
图3为本发明实施例2制备的Co3O4/Pt异质敏感薄膜中Pt元素的X射线光电子能谱。
图4为本发明实施例2制备的Co3O4/Pt异质敏感薄膜(a)和本发明实施例1制备的Co3O4薄膜(b)在145℃及45%相对湿度下对不同浓度NO2的气敏响应恢复曲线。
图5为本发明实施例3制备的Co3O4/Pt/Rh异质敏感薄膜中Rh元素的X射线光电子能谱。
图6为本发明实施例3制备的Co3O4/Pt/Rh异质敏感薄膜(a)和本发明实施例1制备的Co3O4薄膜(b)在145℃及90%相对湿度下对2ppm NO2的气敏响应恢复曲线。
具体实施方式:
下面通过具体实施例并结合附图做进一步说明。
实施例1:
本实施例将0.5μL的PS小球转移到Co(NO3)2溶液中,由于表面张力的作用,PS小球悬浮在溶液表明排列成连续的薄膜;静置一分钟,当PS小球模板的空隙被Co(NO3)2溶液完全填充后,用叉指电极将悬浮的PS小球捞起,在60℃下干燥0.5h,然后将叉指电极在空气中以5℃/min的升温速率依次在200℃下加热0.5h,在350℃下加热0.5h,最后在450℃下加热2h,将PS小球模板完全去除,得到三维有序大孔结构的Co3O4薄膜。
本实施例对产物Co3O4薄膜进行透射电镜表征,其结果如图1所示,样品中的孔呈六方密集排列,且表现出高度有序的大孔结构,其中孔的直径约为500nm;对产物进行高倍透射电镜表征,其结果如图2所示,Co3O4纳米球具有高度结晶性。
实施例2:
本实施例将实施例1制备的Co3O4薄膜放入原子层沉积反应器,设置反应温度为280℃,以(三甲基)甲基环戊二烯基铂为铂源,O3为氧源,铂源加热温度75℃,设置铂源和氧源脉冲时间均为1s,暴露时间分别为20s和25s,排气时间为25s,载气流量为50sccm,原子层沉积循环数为15圈,将沉积后的样品于400℃下在含有10%H2的Ar/H2混合气氛中煅烧4h,最终得到Co3O4/Pt薄膜。
本实施例制备的Co3O4/Pt薄膜中Pt元素的X射线光电子能谱如图3所示,图中显示Pt为单质金属态;Co3O4/Pt薄膜对不同浓度二氧化氮具有快速的响应-恢复特性如图4所示,并与原始Co3O4薄膜对比,响应得到较大程度提高,说明Pt的负载可以有效提高Co3O4薄膜的气敏性能。
实施例3:
本实施例将实施例2制备的Co3O4/Pt薄膜放入原子层沉积反应器,设置反应温度为275℃以乙酰丙酮铑(Ⅲ)为铑源,O2为氧源,铑源加热温度150℃,设置铑源和氧源脉冲时间均为1s,暴露时间分别为15s和10s,排气时间为15s,载气流量为50sccm,原子层沉积循环数为15圈,最终得到Co3O4/Pt/Rh薄膜。
本实施例制备的Co3O4/Pt/Rh薄膜中Rh元素的X射线光电子能谱如图5所示,图中显示Rh为单质金属态;Co3O4/Pt/Rh薄膜在高湿度下对二氧化氮具有很好的抗湿特性如图6所示,并与原始Co3O4薄膜对比,抗湿性得到较大程度提高,说明Rh的负载可以有效提高Co3O4薄膜的气敏性能。

Claims (3)

1.一种多金属负载氧化钴的多孔复合纳米薄膜制备方法,其特征在于,具体制备过程为:
(1)在叉指电极上制备三维有序大孔结构的Co3O4薄膜;
(2)以MeCpPtMe3为铂源,以Rh(acac)3为铑源,通过原子层沉积技术在合成的Co3O4薄膜上分别负载贵金属铂和铑,得到Co3O4/Pt/Rh多孔薄膜。
2.根据权利要求1所述多金属负载氧化钴的多孔复合纳米薄膜制备方法,其特征在于,所述步骤(1)的具体过程为:将0.5μL的聚苯乙烯小球转移到Co(NO3)2溶液中,聚苯乙烯小球悬浮在溶液排列成连续的薄膜;静置一分钟,当聚苯乙烯小球模板的空隙被Co(NO3)2溶液完全填充后,用叉指电极将悬浮的聚苯乙烯小球捞起,在60℃下干燥0.5h后将叉指电极在空气中以5℃/min的升温速率依次在200℃下加热0.5h,再在350℃下加热0.5h,最后在450℃下加热2h,将聚苯乙烯小球模板完全去除,在叉指电极上得到三维有序大孔结构的Co3O4薄膜。
3.根据权利要求1所述多金属负载氧化钴的多孔复合纳米薄膜制备方法,其特征在于,所述步骤(2)的具体过程为:
(2-1)将制备好的带有Co3O4薄膜的叉指电极放置在原子层沉积反应室内负载Pt,采用MeCpPtMe3作为Pt的前体反应物,使用臭氧发生器将高纯度O2转化为O3,高纯N2作为载体和吹扫气体,反应室的温度保持在280℃,将MeCpPtMe3保持在75℃,沉积Pt的每一个循环依次包含:1s的MeCpPtMe3脉冲、20s的反应、25s的N2吹扫、1s的O3脉冲、25s的反应以及25s的N2吹扫,分别沉积5-20个循环;将沉积后的样品于400℃下在含有10%H2的Ar/H2混合气氛中煅烧4h,得到Co3O4/Pt薄膜;
(2-2)将制备好的Co3O4/Pt薄膜继续放置在原子层沉积反应室内负载Rh,选用Rh(acac)3作为Rh的前体反应物,O2作为氧化气体,高纯N2作为载体和吹扫气体,反应室的温度保持在275℃,将Rh(acac)3保持在150℃,沉积Rh的每一个循环依次包含:1s的Rh(acac)3脉冲、15s的反应、15s的N2吹扫、1s的O2脉冲、10s的反应以及15s的N2吹扫,沉积5-20个循环,得到Co3O4/Pt/Rh薄膜。
CN202111543182.3A 2021-12-16 2021-12-16 一种多金属负载氧化钴的多孔复合纳米薄膜制备方法 Active CN115290703B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111543182.3A CN115290703B (zh) 2021-12-16 2021-12-16 一种多金属负载氧化钴的多孔复合纳米薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111543182.3A CN115290703B (zh) 2021-12-16 2021-12-16 一种多金属负载氧化钴的多孔复合纳米薄膜制备方法

Publications (2)

Publication Number Publication Date
CN115290703A true CN115290703A (zh) 2022-11-04
CN115290703B CN115290703B (zh) 2024-07-30

Family

ID=83818807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111543182.3A Active CN115290703B (zh) 2021-12-16 2021-12-16 一种多金属负载氧化钴的多孔复合纳米薄膜制备方法

Country Status (1)

Country Link
CN (1) CN115290703B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129623A1 (en) * 2007-01-29 2010-05-27 Nanexa Ab Active Sensor Surface and a Method for Manufacture Thereof
CN108495856A (zh) * 2016-01-27 2018-09-04 巴斯夫欧洲公司 产生无机薄膜的方法
CN109594059A (zh) * 2018-10-31 2019-04-09 青岛大学 一种用于三乙胺检测的异质敏感薄膜的原子层沉积制备方法
US20190105638A1 (en) * 2016-04-27 2019-04-11 University Of Science And Technology Of China Preparation method for wide-temperature catalyst used for preferential oxidation of co in a hydrogen-rich atmosphere, and product and applications
CN113201029A (zh) * 2021-04-23 2021-08-03 北京大学深圳研究生院 有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129623A1 (en) * 2007-01-29 2010-05-27 Nanexa Ab Active Sensor Surface and a Method for Manufacture Thereof
CN108495856A (zh) * 2016-01-27 2018-09-04 巴斯夫欧洲公司 产生无机薄膜的方法
US20190105638A1 (en) * 2016-04-27 2019-04-11 University Of Science And Technology Of China Preparation method for wide-temperature catalyst used for preferential oxidation of co in a hydrogen-rich atmosphere, and product and applications
CN109594059A (zh) * 2018-10-31 2019-04-09 青岛大学 一种用于三乙胺检测的异质敏感薄膜的原子层沉积制备方法
CN113201029A (zh) * 2021-04-23 2021-08-03 北京大学深圳研究生院 有机过渡金属化合物及制备方法、形成含过渡金属薄膜的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHENGMING LOU ET AL.: "Fe2O3-sensitized SnO2 nanosheets via atomic layer deposition for sensitive formaldehyde detection", 《SENSORS AND ACTUATORS B-CHEMICAL》, vol. 345, 15 October 2021 (2021-10-15), pages 1 - 7 *
LEI GUANGLU ET AL.: "Thin films of tungsten oxide materials for advanced gas sensors", 《SENSORS AND ACTUATORS B: CHEMICAL》, vol. 341, 15 August 2021 (2021-08-15), pages 1 - 6 *
TAKAFUMI AKAMATSU ET AL.: "NO and NO2 Sensing Properties of WO3 and Co3O4 Based Gas Sensors", 《SENSORS 2013》, vol. 13, no. 9, 17 September 2013 (2013-09-17), pages 12467 - 12481 *
ZHE ZHAO ET AL.: "Atomic layer-deposited nanostructures and their applications in energy storage and sensing", 《JOURNAL OF MATERIALS RESEARCH》, vol. 35, no. 7, 14 April 2020 (2020-04-14), pages 701 - 719 *
徐永善: "挥发性有机物气敏材料的设计与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, 15 January 2021 (2021-01-15), pages 31 - 33 *
董汉鹏;陈庆永;夏善红;: "氧化钴催化薄膜的制备及在微量氨检测中的应用", 现代化工, no. 03, 20 March 2009 (2009-03-20), pages 57 - 59 *

Also Published As

Publication number Publication date
CN115290703B (zh) 2024-07-30

Similar Documents

Publication Publication Date Title
CN107966479B (zh) 一种提高氢气传感器性能的Pd/W18O49复合材料的制备方法
CN102012386A (zh) 基于准定向三氧化钨纳米带的氮氧化物气体传感器元件的制备方法
CN110465291B (zh) 一种单原子贵金属型催化剂Ru/Cr2O3及其制备方法和应用
CN113740391A (zh) 一种MOF衍生的NiO-Co3O4丙酮气体传感器的制备方法
CN109594059B (zh) 一种用于三乙胺检测的异质敏感薄膜的原子层沉积制备方法
CN108956708A (zh) 一种基于铁酸锌纳米敏感材料的乙醇气体传感器及其制备方法
CN107402241A (zh) 基于氧化钨/氧化钛核壳纳米线的气敏元件及其制备方法
CN101303322B (zh) Wo3厚膜气敏传感器的表面改性方法
CN108931559B (zh) 一种硼掺杂石墨烯修饰Au@ZnO核壳异质结型三乙胺气敏传感器及其制备方法
CN115290703B (zh) 一种多金属负载氧化钴的多孔复合纳米薄膜制备方法
Yang et al. Solution-based synthesis of efficient WO3 sensing electrodes for high temperature potentiometric NOx sensors
CN110642288B (zh) 一种氮掺杂的金属氧化物气敏材料、气敏元件及其制备方法与应用
CN116794118A (zh) 一种基于In2O3/ZIF-8核壳纳米立方体复合材料的NO2传感器及其制备方法
CN114324498B (zh) 一种基于Au-SnO2纳米花敏感材料的ppb级别NO2气体传感器及其制备方法
CN115626657A (zh) 基于CuO/S-SnO2敏感材料的正丁醇传感器及其制备方法与应用
KR102579075B1 (ko) 금속 촉매가 표면에 형성된 다공성 산화아연 시트 및 이를 이용한 가스 센서
CN112255277A (zh) 基于分枝状异质结阵列丙酮气体传感器、制备方法及应用
CN107673355A (zh) 一种用于低功耗高灵敏度甲烷传感器的气体传感材料
CN113511683A (zh) Wo3纳米线及其制备方法和气敏传感器
CN115287626A (zh) 一种氧化铁敏感薄膜的制备方法及应用
CN117929488B (zh) 抗湿性Pd-WO3/WS2三元复合气敏元件的工作方法
CN114577860B (zh) 一种金属氧化物低温氢气敏感材料及其制备方法
CN115385372B (zh) 一种基于双金属mof路线构建的耐湿高选择响应三乙胺气敏材料及其制备方法和应用
CN113447531B (zh) 一种氧化铟基气体传感器制作方法、检测甲醇的方法
CN117398995A (zh) 负载单原子Rh的SnO2空心纳米球及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant