TWI672390B - 二取代炔基二鈷六羰基化合物、其製造及使用方法 - Google Patents

二取代炔基二鈷六羰基化合物、其製造及使用方法 Download PDF

Info

Publication number
TWI672390B
TWI672390B TW106145154A TW106145154A TWI672390B TW I672390 B TWI672390 B TW I672390B TW 106145154 A TW106145154 A TW 106145154A TW 106145154 A TW106145154 A TW 106145154A TW I672390 B TWI672390 B TW I672390B
Authority
TW
Taiwan
Prior art keywords
cobalt
film
bis
hexacarbonyl
substrate
Prior art date
Application number
TW106145154A
Other languages
English (en)
Other versions
TW201928099A (zh
Inventor
艾倫查理 庫波
塞基烏拉底米諾維奇 伊瓦諾夫
金武性
Original Assignee
美商慧盛材料美國責任有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商慧盛材料美國責任有限公司 filed Critical 美商慧盛材料美國責任有限公司
Priority to TW106145154A priority Critical patent/TWI672390B/zh
Publication of TW201928099A publication Critical patent/TW201928099A/zh
Application granted granted Critical
Publication of TWI672390B publication Critical patent/TWI672390B/zh

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

本文所述係鈷化合物、鈷化合物的製程、用於沉積含鈷膜(例如,鈷、氧化鈷、氮化鈷、矽化鈷等)之使用作為前驅物的鈷化合物;及鈷膜。鈷前驅物化合物之範例係(二取代炔基)二鈷六羰基化合物。用於沉積含金屬膜的表面之範例包括,但不限於,金屬、金屬氧化物、金屬氮化物及金屬矽化物。具有烷基諸如,直鏈烷基及分支鏈烷基的二取代炔基配位體形成鈷複合物,其係被使用於選擇性沉積在某些表面及/或上等的膜性質,諸如均勻性、連續性及低電阻。

Description

二取代炔基二鈷六羰基化合物、其製造及使用方法 相關申請案之交互參照
本案係2017年10月23日申請的第15/790931號美國專利申請案的部份延續申請案,其主張2016年11月1日申請的第62/415822號美國臨時專利申請案的優先權。該等揭示內容在此以引用的方式併入本文。
本文所述係鈷化合物、鈷化合物的製程、及包括用於使用在沉積含鈷膜之鈷化合物的組合物。
含鈷膜被廣泛用於半導體或電子的應用。化學氣相沉積(CVD)及原子層沉積(ALD)已被應用作為用於製造半導體裝置的薄膜之主要沉積技術。這些方法通過含金屬化合物(前驅物)的化學反應使共形膜(金屬、金屬氧化物、金屬氮化物、金屬矽化物等)能夠達成。該化學反應係發生 在可包括金屬、金屬氧化物、金屬氮化物、金屬矽化物的表面上及其他表面上。
過渡金屬膜,特別是鎂、鐵、鈷及釕對於各種不同的半導體或電子應用是重要的。例如,鈷薄膜因為其之高磁導率引起了人們的興趣。含鈷薄膜已被用作超大規模積體裝置的銅/低k阻障體、鈍化層和封蓋層。在積體電路佈線和互連線中,鈷是被考慮用於更換銅的。
在本技術領域中一些鈷膜沉積前驅物已被研究。
US 2016/0115588 A1揭露含鈷膜之形成組合物及其在膜沉積的用途。
WO 2015/127092 A1描述用於在基材上氣相沉積鈷之前驅物,諸如在積體電路的製造及薄膜產品中,在ALD及CVD製程中用於形成互連線、封蓋結構及大塊鈷導體。
US 2015/0093890 A1揭露金屬前驅物及包括分解在一積體電路裝置上的一金屬前驅物及形成來自該金屬前驅物之一金屬的方法。該金屬前驅物係選自由(炔基)二鈷六羰基化合物組成的族群,該(炔基)二鈷六羰基化合物係由具有1至6個碳原子的直鏈或分支鏈單價烴基、單核鈷羰基亞硝醯基類、鍵結至硼、銦、鍺和錫基團其中之一的鈷羰基類、鍵結至單核或二核烯丙基的鈷羰基類、及包括氮基支撐配位基之鈷化合物所取代。
WO 2014/118748 A1描述鈷化合物、該鈷化合物之合成及鈷化合物在沉積含鈷膜的用途。
Keunwoo Lee等人(Japanese Journal of Applied Physics,2008,Vol.47,No.7,pp.5396-5399)描述藉由金屬有機化學氣相沉積(MOCVD)使用叔丁基乙炔(二鈷六羰基)(CCTBA)作為鈷前驅物及H2反應物氣體沉積鈷膜。該膜中的碳及氧之不純物隨著氫氣分壓的增加而減少,但是在該膜中的碳量之最低量在150℃下仍為2.8原子%。增加沉積溫度會導致高的不純物含量,及一高的膜電阻率歸因於該CCTBA前驅物之過多的熱分解。
C.Georgi等人(J.Mater.Chem.C,2014,2,4676-4682)教示自(炔基)二鈷六羰基前驅物形成鈷金屬膜。然而,因為該些膜仍含有會導致高的電阻率之高程度的碳及/或氧,那些前驅物是不可取的。文獻中也未有證據可以支持沉積連續的鈷薄膜之能力。
JP2015224227描述用於生產(炔基)二鈷六羰基化合物之一通常的合成製程。(叔丁基甲基乙炔)二鈷六羰基(CCTMA)被用於產生具有低電阻率的鈷膜。然而,相對於(叔丁基乙炔)二鈷六羰基(CCTBA)的膜性質被表明沒有改善。而且,(叔丁基甲基乙炔)二鈷六羰基是一高熔點(大約160℃)固體。在溫度小於等於100℃,或更佳小於等於30℃是液體的前驅物係更可取的。
一般而言,用於遞送高純度鈷膜的ALD和CVD前驅物中存在著有限的選擇。為了提高膜的均勻性、膜的連續性和該沉積膜的電學性能,必須開發新穎的前驅物,並為薄、高純度鈷膜和大塊鈷導體所需。
本文所述係鈷化合物(或複合物,化合物和複合物之用語係可交換的)、鈷化合物的製程、及用於沉積含鈷膜之包括鈷金屬膜前驅物的組合物;使用該鈷化合物沉積的含鈷膜。
本文所述的鈷前驅物化合物之範例包括,但不限於,(炔基)二鈷六羰基化合物。含鈷膜之範例包括,但不限於,鈷膜、氧化鈷膜、矽化鈷膜及氮化鈷膜。用於沉積含金屬膜的表面之範例包括,但不限於,金屬、金屬氧化物、金屬氮化物、氧化矽及氮化矽。
對於某些應用,對於較佳的鈷膜成核及使用已知的鈷沉積前驅物所沉積的薄(1-2nm)鈷膜之較低的膜電阻率有一需求。作為一範例,對於在TaN上的較佳成核鈷膜及相對於使用已知的鈷沉積前驅物沉積的薄鈷膜有較低的膜電阻率有一需求。
對於其他應用,對於在某些表面上的選擇性沉積有一需求。例如,在銅金屬表面相對於介電表面(例如,SiO2)的選擇性鈷膜沉積。
選擇性沉積係藉由使用具有配位體的鈷化合物達成,該些配位體相對於(vs.)另外表面可選擇性地與一表面交互作用。或者,選擇性沉積係藉由使用鈷化合物相對於(vs.)另外表面選擇性地與一表面反應而達成。
在一具體例中,藉由修改該鈷膜前驅物的配位體而改變該配位體的解離能,可以實現對金屬沉積速率及/或金 屬膜純度的影響。一種用於改變配位體解離能的方法係在一配位體上增加或減少官能基之大小。此外,在一配位體上的官能基的數目可以改變配位體的解離能。影響配位體解離能之一範例是來自單-及二-取代(炔基)二鈷六羰基複合物之炔基配位體解離能所觀察到的變化。
在另一具體例中,該鈷膜前驅物的熔點係藉由改變在炔基配位體上的官能基降低。
在一態樣中,本發明揭露一種二取代炔基二鈷六羰基化合物,具有化學式:Co2(CO)6(R1CΞCR2);其中R1係一叔烷基及R2係選自由具有至少二個碳原子之一直鏈烷基、異丙基及異丁基所組成的族群。
在另一態樣中,本發明揭露合成一種二取代炔基二鈷六羰基化合物的一方法,包括步驟:將二取代炔添加於在一溶劑中的二鈷八羰基;其中該二取代炔具有R1CΞCR2之一結構;其中R1係一叔烷基,及R2係選自由具有至少二個碳原子之一直鏈烷基、異丙基及異丁基所組成的族群;及該二取代炔與在該溶劑中的二鈷八羰基反應而形成該二取代炔基二鈷六羰基化合物。
在又一態樣中,本發明揭露在一反應器中的一基材上沉積一鈷膜的一方法,包括:提供該基材至該反應器; 提供一鈷前驅物至該反應器;使該鈷前驅物與該基材接觸;及在該基材上形成該鈷膜;其中該鈷前驅物係具有化學式Co2(CO)6(R1CΞCR2)之一種二取代炔基二鈷六羰基化合物;其中R1係一叔烷基及R2係一直鏈烷基;及該基材係選自由金屬、金屬氧化物、金屬氮化物、氧化矽、氮化矽及其之組合所組成之族群。
在又一態樣中,本發明揭露藉由使用具有化學式Co2(CO)6(R1CΞCR2)之一種二取代炔基二鈷六羰基化合物沉積之一含鈷膜;其中R1係一叔烷基,及R2係一直鏈烷基。
在又一態樣中,本發明揭露一種在一反應器中的一基材上選擇性沉積鈷的方法,包括下列步驟:提供該基材至該反應器,其中該基材包含至少一圖案化介電層及至少一圖案化導電金屬層;進行一預處理以從包含該至少一圖案化導電金屬層的至少一表面的該基材的表面上移除污染物;提供一鈷前驅物至該反應器;使該鈷前驅物與該基材接觸;及在該基材上形成含鈷膜;其中該鈷前驅物係具有化學式Co2(CO)6(R1CΞCR2)之一種二取代炔基二鈷六羰基化合物;其中R1係一叔烷基及R2係一直鏈烷基、異丙基及異丁基;及該含鈷膜係被選擇性形成於該至少一圖案化導電金屬 層上且形成於該至少一圖案化導電金屬層對比於形成於該至少一圖案化介電層的含鈷膜的厚度比>1。
在又一態樣中,本發明揭露一種含有一基材其具有通過揭露於本發明的在一基材上選擇性沉積鈷的方法所沉積的含鈷膜的半導體裝置。
該叔烷基包括,但不限於,叔丁基及叔戊基;及該直鏈烷基包括,但不限於,乙基、正丙基、正丁基、正戊基及正己基。
該二取代炔基二鈷六羰基化合物包括,但不限於,(2,2-二甲基-3-庚炔)二鈷六羰基(CCTPA)、(2,2,6-三甲基-3-庚炔)二鈷六羰基(CCTIBA);(2,2-二甲基-3-辛炔)二鈷六羰基(CCTNBA);(2,2-二甲基-3-癸炔)二鈷六羰基(CCTHA)及(叔丁基甲基乙炔)二鈷六羰基(CCTMA)。
該含鈷膜較佳藉由使用在溫度等於及小於30℃的條件下為液體的一種二取代炔基二鈷六羰基化合物沉積。
該含鈷膜包括,但不限於,鈷膜、氧化鈷膜、矽化鈷膜及氮化鈷膜。該含鈷膜含有碳低於2.5原子%,較佳低於1.5原子%,及更佳低於0.5原子%。
本發明將在其後連同後附的圖式一起說明,其中相似的元件符號表示相似的元件:圖1顯示在流動氮氣下量測的一單取代炔基鈷複合物,(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)及一系列的二取代炔基鈷複合物,(叔丁基R炔基)二鈷六羰基之熱重分析(TGA) 資料的疊加,其中R=甲基(CCTMA)、正丙基(CCTPA)、正丁基(CCTNBA)及正己基(CCTHA)。
圖2顯示在流動氮氣下、於75℃量測的(2,2-Dimethyl-3-辛炔)二鈷六羰基(鈷羰基叔丁基N-丁基乙炔-CCTNBA)之等溫熱重分析(TGA)資料。
圖3顯示在一密封的SS316 DSC平底鍋中量測的(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)和(2,2-二甲基-3-辛炔)二鈷六羰基(CCTNBA)之示差掃描熱析法(DSC)資料的比較。
圖4顯示(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)和(4,4-二甲基-2-戊炔二鈷六羰基(CCTMA)的鈷膜電阻率對膜厚之疊加。
圖5顯示使用4,4-二甲基-2-戊炔二鈷六羰基(CCTMA)作為該鈷膜前驅物沉積在SiO2上之鈷膜的穿透式電子顯微鏡(TEM)影像。
圖6顯示使用(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)和4,4-二甲基-2-戊炔二鈷六羰基(CCTMA)作為該鈷膜前驅物沉積在SiO2上之鈷膜的X射線光電子能譜儀(XPS)資料。
後附詳細的描述只是提供較佳示範的具體例,並未意圖限制本發明之範圍、可利用性或構造。相反地,後附之該些較佳示範的具體例的詳細描述將提供熟悉本技術的人仕能夠用於實施本發明之該些較佳示範的具體例的描述。在功能及元件的安排上各種不同的變化可被作成,並不會背離 本發明之精神及範圍,如記載在後附的申請專利範圍。
在申請專利範圍中,字母可被用於確認請求的方法步驟(例如a、b和c)。這些字母係被使用以幫助參考該方法步驟及不是意圖指明所請求步驟進行的順序,除非及只有在某種程度上這樣的順序被特定地敘述在申請專利範圍中。
本文所述的是鈷化合物、用於製造鈷化合物的製程、及用於沉積含鈷膜(例如,鈷、氧化鈷、氮化鈷、矽化鈷膜等)之包括鈷金屬膜前驅物的組合物。
鈷前驅物化合物之範例包括,但不限於,(炔基)二鈷六羰基化合物。
用於沉積含金屬膜的表面之範例包括,但不限於,金屬、金屬氧化物、金屬氮化物、金屬矽化物、矽、氧化矽和氮化矽。
含鈷膜之範例包括,但不限於,鈷、氧化鈷、矽化鈷及氮化鈷。
本發明之一態樣是鈷化合物,諸如具有化學式Co2(CO)6(R1CΞCR2)的(炔基)二鈷六羰基化合物;其中R1係一叔烷基,及R2係選自由具有至少二個碳原子之一直鏈烴、分支鏈烴及其之組合所組成的一族群。
在本發明之一具體例中,在炔基配位體上的烷基被選擇,以便降低該鈷膜前驅物的熔點。該鈷膜前驅物在遞送溫度,更佳在環境溫度,及最佳在一溫度等於及小於30℃是液體。
在本發明之另一具體例中,該鈷膜前驅物在環境 溫度下係一液體。
在本發明之一具體例中,在炔基配位體上的烷基被選擇,以便降低該配位體解離能(LDE)。
在本發明之另一具體例中,在炔基配位體上的烷基被選擇,以便抑制在鈷膜沉積製程期間該炔基配位體的聚合。
在本發明之另一具體例中,(炔基)二鈷羰基化合物係藉由炔基與二鈷八羰基在一適當溶劑(例如,己烷、四氫呋喃、乙醚、甲苯)中反應合成。
該(炔基)二鈷羰基化合物可藉由減壓下蒸餾而被純化。或者,(炔基)二鈷六羰基化合物可藉由在諸如氧化鋁或氧化矽之一支撐物上的層析而被純化。固體(炔基)二鈷羰基化合物可藉由在減壓下昇華而被純化。
本發明之一具體例是具有化學式Co2(CO)6(R1CΞCR2)的(炔基)二鈷六羰基化合物;其中R1係一叔烷基,及R2係具有至少二個碳原子之一直鏈烷基。叔烷基之範例包括,但不限於,叔丁基及叔戊基。具有至少二個碳原子之直鏈烷基的範例係,但不限於,乙基、正丙基、正丁基、正戊基、正己基、正戊基及正己基。
R1和R2官能基之組合被選擇,以降低該所欲鈷複合物的熔點。R1和R2官能基之組合亦被選擇,以提供具有改善的熱穩定性之液體(炔基)二鈷六羰基化合物。雖然液體(炔基)二鈷六羰基前驅物在本技術領域是已知的,例如CCTBA,這些前驅物的熱穩定性有限。熱重分析是常用於比 較在揮發性前驅物蒸發期間所形成的非揮發性殘留物。
圖1顯示在流動氮氣下量測的一單取代炔基鈷複合物,(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)及一系列的二取代炔基鈷複合物,(叔丁基R炔基)二鈷六羰基之熱重分析(TGA)資料的疊加,其中R=甲基(CCTMA)、正丙基(CCTPA)、正丁基(CCTNBA)及正己基(CCTHA)。
在圖1中的TGA分析顯示,相較於CCTBA,CCTMA、CCTPA和CCTNBA為具有較低的非揮發性殘留物及為更熱穩定的前驅物。
相較於CCTBA,R1是一叔烷基和R2是一直鏈烷基的前驅物在相同溫度下具有較低的非揮發性殘留物。相較於CCTBA,具有類似較高的非揮發性殘留物僅有的前驅物是CCTHA,然而這種前驅物相較於CCTBA,由於其蒸氣壓較低,在大約50度攝氏較高溫度下蒸發。因此,其相較於CCTBA仍具有較佳的熱穩定性,由於相同的非揮發性殘留物被觀察,即使蒸發的終點被轉移50度攝氏至較高溫度。示差掃描熱析法是常用於比較前驅物之熱分解的起始。
圖3顯示在一密封的SS316 DSC平底鍋中量測的(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)和(2,2-二甲基-3-辛炔)二鈷六羰基(CCTNBA)之示差掃描熱析法(DSC)資料的比較。
圖3顯示此發明的液體前驅物CCTNBA相較於CCTBA具有更高的分解溫度。該比較顯示CCTBA在較低的溫度下放熱地分解,而CCTNBA在較高的溫度下吸熱地分解,導 致CCTNBA相較於CCTBA之改善的熱穩定性。
前驅物的熱穩定性對前驅物可靠遞送至沉積工具極為重要。由於CCTBA於蒸發期間顯示出非揮發性殘留物和在相對低溫下之放熱的分解,其從起泡器的蒸發導致在起泡器中的非揮發性殘留物的累積及起泡器中CCTBA的低利用率。相較於CCTBA,本發明的前驅物可望在起泡器中提供更佳的利用及沉積工具上較佳的保存壽命。
4,4-二甲基-2-戊炔與二鈷八羰基的反應導致兩個CO配位體的取代及一個具有一橋接4,4-二甲基-2-戊炔配位體之二鈷化合物的形成。該橋接4,4-二甲基-2-戊炔配位體之化學結構顯示該配位體具有一叔丁基在碳-碳三鍵之一側上及一甲基在該碳-碳三鍵之另一側上:
該(4,4-二甲基-2-戊炔)二鈷六羰基複合物(CCTMA)具有以下結構:
該(4,4-二甲基-2-戊炔)二鈷六羰基複合物在環境溫度下係一固體。(4,4-二甲基-2-戊炔)二鈷六羰基的熔點大約 為160℃,其不是一個適當的遞送溫度。
(4,4-二甲基-2-戊炔)二鈷六羰基之示差掃描熱析法(DSC)資料顯示熱分解之起始發生在180-200℃的溫度範圍。因此,不可能將(4,4-二甲基-2-戊炔)二鈷六羰基遞送至使用液體狀態之鈷膜前驅物的鈷膜沉積製程。
在一實施例中,2,2-二甲基-3-辛炔與二鈷八羰基的反應導致兩個CO配位體的取代及一個具有一橋接2,2-二甲基-3-辛炔配位體之二鈷化合物的形成。該橋接2,2-二甲基-3-辛炔配位體之化學結構顯示該配位體具有一叔丁基在碳-碳三鍵之一側上及一正丁基在該碳-碳三鍵之另一側上:
所得的揮發性(2,2-二甲基-3-辛炔)二鈷六羰基複合物可在真空下被蒸餾以產生一暗紅色油。這鈷膜在室溫係一液體及可被遞送至使用液體狀態之鈷膜前驅物的一鈷膜沉積製程。(2,2-二甲基-3-辛炔)二鈷六羰基之熔點係小於-20℃。
在另一實施例中,2,2,6-三甲基-3-庚炔與二鈷八羰基的反應導致兩個CO配位體的取代及一個具有一橋接2,2,6-三甲基-3-庚炔配位體之二鈷化合物的形成。該橋接2,2,6-三甲基-3-庚炔配位體之化學結構顯示該配位體具有一叔丁基在碳-碳三鍵之一側上及一異丁基在該碳-碳三鍵之另一側上:
該(2,2,6-三甲基-3-庚炔)二鈷六羰基複合物在環境溫度下係一固體。(2,2,6-三甲基-3-庚炔)二鈷六羰基的熔點在25℃以上。
因此,甚至炔基配位體結構的微小改變,諸如改變一正丁基至一異丁基,對於(炔基)二鈷六羰基熔點會有影響。
當碳原子數目增加,(叔丁基正烷基乙炔)二鈷六羰基複合物的熔點通常會降低。然而,如表I所示,碳原子數目對熔點的影響是非線性的。
本文所述的鈷複合物或組合物非常適合用作半導體型式微電子裝置之製造的ALD、CVD、脈衝CVD、電漿增強ALD(PEALD)或電漿增強CVD(PECVD)用的揮發性前驅物。用於本文所揭露方法之適合的沉積製程的範例包括,但不限於,循環式CVD(CCVD)、MOCVD(金屬有機CVD)、熱化學氣相沉積、電漿增強化學氣相沉積(「PECVD」)、高密度PECVD、光子輔助CVD、電漿-光子輔助(「PPECVD」)、低溫化學氣相沉積、化學輔助氣相沉積、熱燈絲化學氣相沉積、一液體聚合物前驅物的CVD、自超臨界流體的沉積,及低能量CVD(LECVD)。於某些具體例中,該含鈷膜係經由原子層沉積(ALD)、電漿增強ALD(PEALD)或電漿增強循環式CVD(PECCVD)製程沉積。如本文所使用,「化學氣相沉積製程」一詞指的是其中一基材係暴露至一或多個揮發性前驅物,其在基材表面上反應及/或分解而產生所欲的沉積的任何製程。如本文所使用,「原子層沉積製程」指的是一自我限制(例如,沉積在每一反應循環之膜材料的量是恆定的),在不同組成的基材上沉積材料膜的順序表面化學。雖然在本文所使用的前驅物、反應劑及源有時可能被描述為「氣態的」,須理解為前驅物可以是液體或固體的,其經由直接蒸發、起泡或昇華,使用或不用一惰性氣體輸送進入 反應器內。於一些情況下,該蒸發的前驅物可通過一電漿產生器。於一具體例中,該含金屬膜係使用一ALD製程沉積。於另一具體例中,該含金屬膜係使用一CCVD製程沉積。於一另外的具體例,該含金屬膜係使用一熱CVD製程沉積。如本文所使用之「反應器」一詞包括,但不限於,反應室或沉積室。
於某些具體例中,本文所揭露之方法係藉由使用在導入該反應器之前及/或期間分離該前驅物之ALD或CCVD方法,避免該金屬前驅物之預反應。
於某些具體例中,該製程使用一還原劑。該還原劑通常以氣態導入。適合的還原劑之範例包括,但不限於,氫氣、氫電漿、遠距的氫電漿、矽烷類(即,二乙基矽烷、乙基矽烷、二甲基矽烷、苯基矽烷、矽烷、二矽烷、胺基矽烷、氯矽烷)、硼烷類(即,硼烷、二硼烷)、氫化鋁、甲鍺烷、肼、氨或其之混合物。
本文所揭露之沉積方法可涉及一或多個清洗氣體。使用來清出未消耗的反應物及/或反應副產物的清洗氣體係未與前驅物反應的一惰性氣體。示範性的清洗氣體包括,但不限於,氬氣(Ar)、氮氣(N2)、氦氣(He)、氖氣及其之混合物。於某些具體例中,一清洗氣體諸如氬氣係以介於約10至約2000sccm之一流率,持續約0.1至10000秒被供應進入該反應器內,藉以清洗可能留在該反應器中的該未反應的材料及任何副產物。
能源可被施加至該至少一前驅物、還原劑、其他 前驅物或其之組合,以引發反應及在該基材上形成該含金屬膜或塗層。如此的能源能以,但不限於,熱、電漿、脈衝電漿、螺旋波電漿、高密度電漿、感應耦合電漿、X-射線、電子束、光子、遠距電漿法及其之組合提供。於某些具體例中,一輔助性RF頻率源可被用於改良該基材表面的電漿特性。於其中該沉積涉及電漿之具體例中,該電漿產生製程可包括一直接電漿產生製程,其中電漿係直接在該反應器中產生,或可替代地,一遠距電漿產生製程,其中電漿係在該反應器外面產生及供應進入該反應器內。
該些鈷前驅物可以各種不同的方法遞送至該反應室,諸如一CVD或ALD反應器。於一具體例中,一液體遞送系統可以被使用。於一替代的具體例中,可以使用一組合的液體遞送及閃蒸製程單元諸如,例如由位於明尼蘇達州的岸景之MSP公司製造的渦輪蒸發器可使低揮發性材料能夠以容積遞送,其導致可重複性的輸送及沉積而無前驅物之熱分解。在此申請案描述的前驅物組合物可有效地以DLI模式用作源反應劑以提供這些鈷前驅物之一蒸氣流進入一ALD或CVD反應器內。
於某些具體例中,這些組合物包括那些利用的烴類溶劑,由於它們能夠被乾燥至水的次-ppm程度的能力,其特別可取。可被使用在本發明之示範性的烴類溶劑包括,但不限於,甲苯、均三甲苯、枯烯(異丙基苯)、對-枯烯(4-異丙基甲苯)、1,3-二異丙基苯、辛烷、十二烷、1,2,4-三甲基環己烷、n-丁基環己烷及十氫化萘(萘烷)。本申請案之該前 驅物組合物也可被儲存在不鏽鋼容器中及在其中使用。於某些具體例中,在該組合物中的該烴類溶劑係一高沸點溶劑或具有沸點100℃或更高。本申請案之該鈷前驅物組合物也可與其他適合的金屬前驅物混合,及該混合物使用來遞送同時用於一二元含金屬膜的生長的兩種金屬。
於某些具體例中,自該前驅物罐連接至反應室的氣體管線被加熱至取決於製程需要的一或多個溫度,及包括該組合物的該容器係保持在用於起泡之一或多個溫度。於其他具體例中,包括一組合物鈷前驅物係注射進入保持在用於直接液體注射的一或多個溫度之一蒸發器內。
可使用一氬氣及/或其他氣體流作為一載氣,於該前驅物脈衝期間幫助遞送至少一鈷前驅物之蒸氣至反應室。於某些具體例中,該反應室製程壓力係介於1與50托之間,較佳介於5與20托之間。
對於許多應用,高純度鈷金屬膜是原因的要求包括,但不限於,低電阻率。在此技術領域廣為人知,在鈷金屬膜中的某些不純物會提高電阻率。這些不純物包括,但不限於,碳、氧及氮。因此,適當的鈷金屬沉積前驅物必須被設計以限制在該沉積鈷金屬膜中碳存在的量。
具有結構(炔基)二鈷六羰基的鈷化合物已被研究用於作為鈷沉積前驅物。C.Georgi等人(J.Mater.Chem.C,2014,2,4676-4682)教示,儘管在具有化學式Co2(CO)6(R1CΞCR2)複合物中的R1和R2官能基的特徵上有廣大的變化;該處R1或R2可以是三級(例如,三甲基矽基)、直鏈(例 如,正丙基)或氫,在整塊膜中有高程度的碳和氧兩者。於此研究中,碳含量係介於自2.5-36.5mol.%及氧含量係介於自0.8-34.4mol.%。對於具有高熔點的固體前驅物,這個系列中最低碳含量是2.5原子%,該處R1和R2是三甲基矽基。因此,使用這些前驅物沉積的鈷膜中的碳含量與自CCTBA沉積的鈷膜中的碳含量相似,由Keunwoo Lee等人in Japanese Journal of Applied Physics,2008,Vol.47,No.7,5396-5399所描述。
在該沉積膜中的碳和氧含量較佳應小於2.5原子%,或更佳小於1.5原子%,及最佳小於0.5原子%。膜中的低碳含量可以產生具有低電阻率的鈷金屬膜,而不需要後沉積處理,諸如暴露該膜至氫氣或氨電漿。
基材溫度是沉積高品質鈷膜的重要製程變數。典型的基材溫度係介於自大約100℃至大約250℃。較高的溫度可以促進更高的膜成長速率。因此,希望找到能在高溫下沉積鈷膜的鈷膜前驅物,而不會增加不純物諸如碳和氧的程度。
相較於在含金屬膜沉積製程條件下其是固體的前驅物,在含金屬膜沉積製程條件下其是液體的前驅物是較佳的,在含金屬膜沉積的技術領域中被普遍接受。理由包括,但不限於,在適當的製程條件下,通過含金屬膜前驅物使載氣起泡的能力。該通過含金屬膜前驅物使載氣起泡的能力可導致遞送前驅物至含金屬膜的沉積製程,相對於固體前驅物的昇華更均勻。
出乎預料地,我們發現本發明之具有化學式Co2(CO)6(R1CΞCR2)之(炔基)二鈷羰基化合物的前驅物;其 中,R1是一叔烷基及R2是選自由直鏈烴類、分支烴類及其組合所組成的一族群,提供具有碳程度低至0.4原子%的鈷膜。在不受理論限制的情況下,咸信需要大體積的叔烷基R1自鈷中心降低炔基配位體的解離能,因此導致有機配位體自鈷中心更清潔的去除。因此,可預期一鈷膜前驅物,諸如(2,2-二甲基-3-辛炔)二鈷六羰基(鈷羰基叔丁基正丁基乙炔,CCTNBA)將顯示在該沉積膜中低的碳程度。
作為一實施例,炔基配位體移除及CO配位體移除之配位體解離能被計算為一系列(炔基)二鈷六羰基化合物。使用BioViaMaterials Studio 7.0(BLYP/DNP/AE,4.4 Angstrom orbital cutoff)用於計算在0 K的反應能量學及具有用手操作的自旋狀態最適化,表II顯示用於自一系列(炔基)二鈷六羰基複合物移除炔基配位體及CO配位體的該計算的反應能量學。表II揭示炔基配位體上烷基的強的立體效應。
*能量係以kcal/mol顯示。
*CCTBA:(叔丁基乙炔)二鈷六羰基/(tBu)CCH(Co)2(CO)6
*CCMPA:(甲基丙基乙炔)二鈷六羰基/(iPr)CC(Me)(Co)2(CO)6
*CCTMA:(叔丁基甲基乙炔)二鈷六羰基/(tBu)CC(Me)(Co)2(CO)6
*CCBTA:[雙(叔丁基)乙炔)二鈷六羰基/(tBu)CC(tBu)(Co)2(CO)6
*CCNBA:(正丁基乙炔)二鈷六羰基/(nBu)CCH(Co)2(CO)6
表II說明立體大塊對炔基配位體解離能(LDE)的重要影響。例如,CCNBA中炔基配位體的LDE明顯高於同分異構的CCTBA中炔基配位體的LDE。此外,一配位體上的官能基數目可以改變炔基配位體的LDE。對於直鏈烷基,顯示在表II的計算表明一(二取代炔基)二鈷六羰基複合物CCMPA相對於一(單取代炔基)二鈷六羰基複合物CCNBA的該LDE之一適度的減少。
在不受理論限制的情況下,咸信R2係選自由直鏈烴類、分支烴類及其組合所組成的一族群,提供對該前驅物之此家族改善的熱穩定性。例如,潛在的CCTBA分解路徑之一是經由單取代炔基配位體叔丁基乙炔的寡聚。本發明的二取代乙炔可預期具有一較低的寡聚率。此性質有利於避免在前驅物遞送期間分解副產物的累積。在另一具體例中,含鈷膜係使用Co2(CO)6(R1CΞCR2)沉積;其中R1係一叔烷基,及R2係具有至少二個碳原子之一直鏈烷基或R2係異丙基及異丁基。叔烷基之範例係,但不限於,叔丁基及叔戊基。具有至少二個碳原子之一直鏈烷基的範例係,但不限於,乙基、正丙基、正丁基、正戊基及正己基。(2,2-二甲基-3-辛炔)二鈷六羰基(CCTNBA)係一較佳前驅物,由於其在室溫係一液體具有相對高蒸氣壓及良好的熱穩定性。鈷膜可在一反應器中使用該揭露的鈷複合物作為沉積前驅物成長在矽、氧化矽、PVD氮化鉭及銅基材上。
鈷膜厚度可藉由X-射線螢光(XRF)及掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)量測。
對於某些應用,具有二取代炔基配體的前驅物被用於相對於介電材料表面在導電金屬表面上選擇性沉積一含鈷膜。
導電金屬表面包含銅、鈷、及釕。該導電金屬表面在沉積方法前可被預處理以從該導電金屬表面移除污染物。該污染物可包含有機雜質及金屬氧化物。該預處理可包含於一還原氣體例如氫及氨的存在下在100-500℃加熱包含一 導電金屬表面的一構造,及/或將包含一導電金屬表面的一構造曝露於100-500℃的一氫電漿、氨電漿、氮電漿、氬電漿或氦電漿。
介電材料表面可包含二氧化矽、氟矽酸鹽玻璃(FSG)、有機矽酸鹽玻璃(OSG)、碳摻雜氧化物(CDO)、或多孔低K-材料。內於該方法中的低K-介電材料的例子包括多孔OSG(有機矽酸鹽玻璃)。
該包含導電金屬表面及介電材料表面的構造可包含:a)內埋導電金屬特徵(銅、鈷、釕或金屬合金)的至少一圖案化介電材料層;及b)至少於導電金屬特徵上選擇性沉積的一鈷層。
該構造可進一步具有被形成於該圖案化介電材料層及內埋導電金屬特徵之間的一金屬阻障層。該金屬阻障層可包含例如鉭、鉭氮化物、鈦、鈦氮化物、鈷、釕等材料,及其它先進阻障材其可避免銅擴散進入該介電材料。
該選擇性可藉由在相同方法條件下被沉積於銅及氧化矽上的含鈷膜的厚度的比較而測量得到。沉積於銅上相對於氧化矽上的含鈷膜的厚度比值較佳為大於10:1,更佳的大於50:1,及最佳的大於250:1,其係通過XRF、SEM或TEM測量得到。
於一具體實施例中由本發明的鈷前驅物沉積得到的含鈷膜被退火以降低該膜的電阻。於該退火方法中該包含鈷膜的構造於一包含3-15體積%氫的氣體流動下被加熱到 300-500℃,較佳的375-425℃。
工作實施例
以下實施例已顯示所揭露的鈷複合物的製造方法,及使用所揭露的鈷複合物作為鈷前驅物沉積含鈷膜。
在沉積製程中,鈷前驅物經由充滿鈷前驅物的不鏽鋼容器,藉由通過50sccm氬氣遞送至反應器室。容器溫度自30℃至60℃變化以達到該前驅物之充足的蒸氣壓。晶圓溫度自介於125℃與200℃之間變化。反應器室壓力係自5至20托變化。沉積測試係在500-1000sccm氫氣或氬氣流存在下進行。沉積時間係自20秒至20分鐘變化,用於達到不同厚度的鈷膜。
鈷膜藉由使用一CN-1蓮蓬頭型反應器成長在矽、氧化矽、PVD氮化鉭及銅基材上。
鈷膜厚度係藉由X-射線螢光(XRF)及掃描式電子顯微鏡(SEM)量測。
實施例1(比較的) (甲基正丙基乙炔)二鈷六羰基的合成及熱性質(CCMPA)/(nPr)CC(Me)(Co)2(CO)6
在一通風罩中,2-己炔(4.34克,53毫莫耳)在己烷(50毫升)中之一溶液被添加超過30分鐘至Co2(CO)8(17克,48毫莫耳)在己烷(100毫升)中之一溶液。在添加2-己炔溶液的每一分量之後,觀察到適度的CO演變。所得的暗紅色/棕色溶液在室溫下被攪拌4小時。揮發物在真空下、在室溫下 被去除以產生暗紅色油。該油通過一矽藻土545墊過濾及在真空下被蒸餾。該產物在40℃及大約200毫托壓力下開始蒸餾。該溫度慢慢升高至50℃(壓力140毫托)。該溫度慢慢升高至55℃(壓力120毫托)。該溫度保持在55℃直到蒸餾結束。在所有的揮發性CCMPA被蒸發之後,一非常少量的黑色固體塗佈在再沸器上。所得的暗紅色油藉由紅外線光譜、核磁共振、熱重分析及示差掃描熱析法分析。
純淨的CCMPA之溶液IR顯示大約0.07%四鈷十二羰基(1860cm-1)及未有其他實質性的金屬羰基峰。
該CCMPA之1H NMR光譜顯示具有所預期的2/3/2/3強度的4組共振與分子結構[2.5ppm(m),2H;2.3ppm(s),3H;1.5ppm(m),2H;0.8ppm(m),3H]匹配。
CCMPA的動態熱重分析(TGA)係在流動氮氣下量測。
蒸發率在大約155℃似乎有一個變化,其可能表明形成一較低揮發性分解產物。該最後的非揮發性殘留物的重量是原來重量的3.1%。
實施例2(比較的) 來自CCMPA之鈷膜的沉積
該鈷前驅物CCMPA係如比較實施例1所述被合成及純化。該鈷膜沉積之實驗條件係:前驅物容器溫度35℃、晶圓溫度150℃、室壓10托、及氫氣流率500sccm。
與使用相同條件但使用CCTBA作為前驅物沉積 的膜比較鈷膜厚度及膜性質係顯示在表III。兩種前驅物的沉積時間係10分鐘。
提高沉積溫度至175℃會導致兩種前驅物有較高的不純物。因此,這個比較實施例表明,該處R1和R2不是叔烷基的Co2(CO)6(nPrCΞCMe)前驅物提供了具有碳量(28.2原子%)之一鈷膜顯著地高於使用CCTBA前驅物之一鈷膜。
實施例3 (叔丁基甲基乙炔)二鈷六羰基的合成及熱性質(CCTMA)/(tBu)CC(Me)(Co)2(CO)6
在一通風罩中,4,4-二甲基-2-戊炔(5克,52毫莫耳)在己烷中(50毫升)之一溶液被添加超過30分鐘至Co2(CO)8(17.0克,48毫莫耳)在己烷中(150毫升)之一溶液。在添加4,4-二甲基-2-戊炔溶液的每一分量之後,觀察到CO的演變。所得的暗紅色/棕色溶液在室溫下被攪拌4小時。揮發物在真空下、在室溫下被去除以產生一暗棕色固體。該固體被溶解在大約25毫升己烷中及通過一矽藻土545之墊過濾。在真空下移除己烷後,得到一暗紅棕色固體。該固體在真空下、35℃(0.6毫 托)藉由昇華純化。
溶液IR分析(10%己烷溶液)顯示羰基配位體之一峰及未有對應至二鈷八羰基起始物質之峰。
該CCMPA之1H NMR光譜顯示具有所預期的1:3強度的2組共振與分子結構[2.3ppm(s),1H;1.1ppm(s),3H]匹配。
CCTMA的動態熱重分析(TGA)係在流動氮氣下量測及與本發明中的其他鈷複合物的資料一起顯示在圖1。
蒸發率在大約160℃時似乎有一個增加,其可能表明一熔點。
該最後的非揮發性殘留物的重量是原來重量的0.6%。一CCTMA樣品的示差掃描熱析法驗證大約160℃的一熔點。
實施例4 (2,2-二甲基-3-庚炔)二鈷六羰基(鈷羰基叔丁基丙基乙炔-CCTPA)的製備
在一通風良好的罩中,2,2-二甲基-3-庚炔(5克,40毫莫耳)在己烷中(25毫升)之一溶液被添加超過30分鐘至Co2(CO)8(12.3克,36毫莫耳)在己烷中(75毫升)之一溶液。在添加2,2-二甲基-3-庚炔溶液的每一分量之後,觀察到CO的演變。所得的暗紅棕色溶液在室溫下被攪拌16小時。揮發物在真空下、在室溫下被去除以產生一暗棕色固體和液體的混合物。該固體/液體混合物被溶解在大約50毫升的己烷中及通過 一矽藻土545之墊過濾。在真空下移除己烷後,得到一暗紅棕色固體和液體的混合物。粗物質被溶解在10毫升的己烷中。一層析柱(直徑大約3公分)係使用8英寸的中性活性氧化鋁包裝,使用純己烷作為沖提液。粗物質溶液被放置在管柱上及使用己烷沖提。一暗棕色帶保持在管柱的頂端,而一亮紅色帶與己烷快速向管柱下方移動。該紅帶被收集及被排空到乾燥,產生一黏稠的暗紅色固體。
該固體的1H NMR和13C NMR分析顯示與預期的產物一致的共振。
在己烷溶液的IR分析顯示該金屬結合CO配位體在2050和2087cm-1的兩個強帶。
實施例5 2,2-二甲基-3-癸炔(叔丁基正己基乙炔)的合成
在一氮氣手套箱中,叔丁基乙炔(3,3-二甲基-1-丁炔)之一溶液係藉由將叔丁基乙炔(5.0克,61毫莫耳)放置在具有100毫升無水THF的一500毫升的舒倫克燒瓶中而製備。24毫升的2.5M正丁基鋰在己烷中(60毫莫耳)被添加至一60毫升的添加漏斗。該燒瓶及添加漏斗從手套箱中移出,並在一通風罩中組裝。該叔丁基乙炔溶液被冷卻至0℃。該正丁基鋰溶液逐滴添加至該叔丁基乙炔溶液,攪拌超過20分鐘。添加完成之後,該無色溶液被允許加熱至室溫,攪拌超過2小時。該所得的溶液被冷卻至0℃。1-碘己烷(11.4克,54毫莫耳)及40毫升無水THF被添加至一60毫升的添加漏斗。此 溶液被逐滴添加至該冷卻的叔丁基乙炔鋰溶液,攪拌超過30分鐘。該溶液被允許加熱至室溫,及在室溫下被攪拌超過2.5天。該所得無色溶液以GC-MS採樣,顯示大約95%產量的所欲產物。在氮氣下,去離子水(100毫升)被添加至該溶液,形成一兩相混合物。然後一額外100毫升的己烷被添加至該兩相混合物,以促進相分離。10分鐘的攪拌之後,該兩相被分離。在分離之前,使用一第二100毫升分量的去離子水萃取該有機層。該兩次水洗被結合及使用50毫升的己烷萃取。該有機部分被結合及藉由無水硫酸鎂攪拌30分鐘乾燥。通過一玻璃熔塊過濾去除該硫酸鎂。所得的清澈、無色溶液在靜態真空下蒸餾以去除該溶劑。在將再沸器溫度保持在20℃,冷凝器在-10℃,及收集燒瓶在-78℃(乾冰)時,蒸餾裝置被排空至大約10托及藉由關閉一閥從真空管線隔離。該溶劑被去除超過大約1.5小時,在再沸器中留下大約10cc的無色液體。該收集燒瓶被移除,及另一較小的收集燒瓶被安裝。此燒瓶被冷卻至-78℃,及該冷凝器溫度被設定為-2℃。大約剩餘液體的一半在動態真空下(大約1托)被轉移至該收集燒瓶。
GC-MS分析顯示2,2-二甲基-3-癸炔以>99%純度被分離。
實施例6 (2,2-二甲基-3-癸炔)二鈷六羰基(鈷羰基叔丁基正己基乙炔-CCTHA)的合成
在一通風罩中,2,2-二甲基-3-癸炔(4.15克,25毫 莫耳)在己烷中(25毫升)之一溶液被添加超過30分鐘至Co2(CO)8(7.85克,23毫莫耳)在己烷中(75毫升)之一溶液。在添加2,2-二甲基-3-癸炔的每一分量溶液之後,觀察到適度的CO演變。所得的暗紅棕色溶液在室溫下被攪拌4小時。揮發物在真空下、在室溫下被去除,以產生具有一些懸浮固體的一暗紅色液體。一層析柱(直徑大約3公分)係使用10英寸的中性活性氧化鋁包裝,使用純己烷作為沖提液。5毫升的純淨粗物質被放置在管柱上及使用己烷沖提。一紅棕色帶與己烷快速向管柱下方移動。一小量的暗色物質保持在管柱的頂端。該紅棕色帶被收集及被排空到大約500毫托,產生一暗紅色液體。
該純化的CCTHA樣品(d8-甲苯)之1H NMR分析:2.66(m)、1.61(m)、1.23(m)、1.17(s)、0.86(t)。
實施例7 2,2,6-三甲基-3-庚炔(叔丁基異丁基乙炔)的合成
在一氮氣手套箱中,叔丁基乙炔(3,3-二甲基-1-丁炔)之一溶液係藉由將叔丁基乙炔(5.0克,61毫莫耳)放置在具有100毫升無水THF的一250毫升的舒倫克燒瓶中而製備。24毫升的2.5M正丁基鋰在己烷中(60毫莫耳)被添加至一60毫升的添加漏斗。該燒瓶及添加漏斗從手套箱中移出,並在一通風罩中組裝。該燒瓶及添加漏斗從手套箱中移出,並在一通風罩中組裝。該叔丁基乙炔溶液被冷卻至0℃。該正丁基鋰溶液逐滴添加至該叔丁基乙炔溶液,攪拌超過20分 鐘。添加完成之後,該淡黃色溶液被允許加熱至室溫,攪拌超過2小時。該所得的溶液被冷卻至0℃。1-碘-2-甲基丙烷(9.9克,54毫莫耳)及20毫升無水THF被添加至一60毫升的添加漏斗。此溶液被逐滴添加至該冷卻的叔丁基乙炔鋰溶液,攪拌超過30分鐘。於添加期間,顏色從淡黃色變成無色。該溶液被允許加熱至室溫,及在室溫下被攪拌超過2天。GC-MS分析顯示幾乎完全轉化為所預期的產物。該溶液使用去離子水(2 x 100mL)萃取。該水洗使用50毫升己烷萃取。該有機部分被結合及藉由無水硫酸鎂乾燥30分鐘。該溶劑在減壓(大約10托)下藉由蒸餾去除。剩下的無色液體在真空下(大約500毫托)被蒸餾而進入一接收器被冷卻到-78℃。
該產物之GC-MS分析顯示該產物係以>98%純度收集。
實施例8 (2,2,6-三甲基-3-庚炔)二鈷六羰基(鈷羰基叔丁基異丁基乙炔-CCTIBA)的合成
在一通風罩中,2,2,6-三甲基-3-庚炔(0.95克,6.6毫莫耳)在己烷中(15毫升)之一溶液被添加超過20分鐘至Co2(CO)8(2.1克,6.2毫莫耳)在己烷中(45毫升)之一溶液。在添加2,2,6-三甲基-3-庚炔溶液之後,觀察到適度的CO演變。所得的暗棕色溶液在室溫下被攪拌4小時的過程轉變為暗紅色。揮發物被去除,以產生一暗棕色固體。5毫升己烷被添加以產生具有一些懸浮固體的一暗紅棕色液體。一層析柱(直 徑大約3公分)係使用8英寸的中性活性氧化鋁包裝,使用純己烷作為沖提液。該粗物質被放置在管柱上及使用己烷沖提。一棕色帶與己烷快速向管柱下方移動。一小量的暗紫色物質被保持在管柱頂端中1”。該紅棕色帶被收集及被排空至在一舒倫克管線上的基礎真空(大約500毫托),產生一黏稠的暗紅棕色固體。
在流動氮氣下,藉由從室溫加熱至400℃之CCTIBA的TGA分析顯示1.3%非揮發性殘留物。
CCTIBA之1H NMR分析顯示該產物具有高純度(>99%)。化學位移(d8-甲苯):2.55(2H,d)、1.80(1H,m)、1.15(9H,s)、0.97(6H,d)。
CCTIBA之13C NMR分析產生以下化學位移(d8-甲苯):199.8、111.6、98.2、41.1、35.4、31.0、30.0、22.2。
實施例9 2,2-二甲基-3-辛炔(叔丁基正丁基乙炔)的合成
在一氮氣手套箱中,叔丁基乙炔(3,3-二甲基-1-丁炔)之一溶液係藉由將叔丁基乙炔(32.8克,0.4毫莫耳)放置在具有500毫升無水THF的一1000毫升的圓底燒瓶中而製備。150毫升的2.5M正丁基鋰在己烷中(0.375毫莫耳)被添加至一500毫升的添加漏斗。該燒瓶及添加漏斗從手套箱中移出,並在一通風罩中組裝。該叔丁基乙炔溶液被冷卻至0℃。該正丁基鋰溶液逐滴添加至該叔丁基乙炔溶液,攪拌超過30分鐘。添加完成之後,該無色溶液被允許加熱至室溫,攪拌 超過2小時。1-碘丁烷(64.4克,0.35毫莫耳)及100毫升無水THF被添加至一500毫升的添加漏斗。此溶液被逐滴添加至該叔丁基乙炔鋰溶液,攪拌超過30分鐘。該溶液在室溫下被攪拌3天。一小量樣品之GC-MS分析顯示完全轉化為產物。該溶液以100毫升的去離子水萃取兩次。該水洗使用200毫升己烷萃取,及此萃取與THF/己烷溶液結合。該有機溶液在無水硫酸鎂上乾燥30分鐘。於此期間,無色溶液成為淡黃色。該結合的有機溶液在減壓(大約10托)下被蒸餾,同時將再沸器保持在20℃,冷凝器在0℃,及收集燒瓶在-78℃。去除溶劑後,另一收集燒瓶被裝上,及剩下的揮發物被蒸餾,同時將再沸器保持在20℃,冷凝器在0℃,及收集燒瓶在-78℃。於第二次蒸餾期間,壓力係大約2托。當所有的揮發物被轉移,該收集燒瓶被允許加熱至室溫。該無色液體使用GC-MS分析,確認高純度產物的存在(純度>99%,42.2克,產量87%)。
2,2-二甲基-3-辛炔之1H NMR分析給定以下化學位移:2.03(t,2H);1.33(m,4H);1.19(s,9H);0.80(t,3H)。
實施例10 (2,2-二甲基-3-辛炔)二鈷六羰基(鈷羰基叔丁基正丁基乙炔-CCTNBA)的合成
在一通風罩中,2,2-二甲基-3-辛炔(21.5克,0.15毫莫耳)在己烷中(100毫升)之一溶液被添加超過30分鐘至Co2(CO)8(47.5克,0.14毫莫耳)在己烷中(700毫升)之一溶液。在添加2,2-二甲基-3-辛炔溶液之後,觀察到可見的CO演變。 所得的暗棕色溶液在室溫下被攪拌4小時的過程轉變為暗紅棕色。己烷使用真空蒸餾去除,同時將再沸器保持在25℃(冷凝器溫度在-5℃,及收集燒瓶溫度在-78℃)以產生具有暗色固體的一暗紅色液體。一層析柱(直徑大約3公分)係使用8英寸的中性活性氧化鋁包裝,使用純己烷作為沖提液。該粗物質被放置在管柱上及使用己烷沖提。一棕色帶與己烷快速向管柱下方移動。暗紫色物質被保持在管柱的頂端中2-3”。該紅棕色帶被收集及被排空在一舒倫克管線上(大約700毫托),產生40.0克的暗紅色液體。
CCTNBA的1H NMR分析顯示高純度(NMR測定99.6%)。化學位移(d8-甲苯):2.66(t,2H)、1.60(m,2H)、1.29(m,2H)、1.17(s,9H)、0.86(t,3H)。
(2,2-二甲基-3-辛炔)二鈷六羰基(鈷羰基叔丁基正丁基乙炔-CCTNBA)的等溫熱重分析(TGA)資料在流動氮氣下、75℃下被量測及顯示在圖2中。該複合物在大約200分鐘內氣化而具有0.55%的低非揮發殘留物,確認CCTNBA前驅物之良好的熱穩定性。
圖3顯示在一密封的SS316 DSC平底鍋中量測的(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)和(2,2-二甲基-3-辛炔)二鈷六羰基(CCTNBA)之示差掃描熱析法(DSC)資料的比較。
實施例11 使用CCTMA之鈷膜的沉積
在沉積製程中,CCTMA經由充滿CCTMA的不鏽鋼容器,藉由通過50sccm氬氣遞送至反應器室。容器溫度自30℃至60℃變化以達到該CCTMA前驅物之充足的蒸氣壓。基材溫度自介於125℃與200℃之間變化。反應器室壓力係自5至20托變化。沉積測試係在500-1000sccm氫氣或氬氣流存在下進行。沉積時間係自20秒至20分鐘變化,用於達到不同厚度(2-70奈米)的鈷膜。
圖4顯示(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)和(4,4-二甲基-2-戊炔二鈷六羰基(CCTMA)的鈷膜電阻率對膜厚之疊加。該些鈷膜係使用CCTMA和CCTBA在一基材溫度150℃時沉積。
圖4指出當基材溫度增加至175℃及200℃,使用CCTMA沉積的鈷膜之電阻率會降低至一個點,該處使用CCTMA在一基材溫度200℃沉積的鈷膜之電阻率比使用CCTBA在一基材溫度150℃沉積相同膜厚的膜低大約50%。在所有的情況下,較低電阻率的膜比具有高電阻率的膜具有較低的碳含量。因此,本發明所述之膜的電阻率係該沉積膜之該殘留碳含量的函數。
圖4顯示CCTMA提供鈷膜相較於自CCTBA沉積的鈷膜具有較低電阻率。
圖5顯示使用4,4-二甲基-2-戊炔二鈷六羰基(CCTMA)作為該鈷膜前驅物沉積在SiO2上之鈷膜的穿透式電子顯微鏡(TEM)影像。
圖5表明鈷金屬之連續膜可以厚度低至大約2奈 米被形成在氧化矽上。
膜係自CCTMA和CCTBA沉積,及藉由X射線光電子能譜(XPS)以測定整個金屬膜中的元素濃度。CCTMA之沉積條件係:前驅物遞送溫度=50℃,晶圓溫度=200℃,沉積時間=10分鐘。CCTBA之沉積條件係:前驅物遞送溫度=35℃,晶圓溫度=175℃,沉積時間=3分鐘。自CCTBA在150℃沉積的鈷膜含有較低含量的碳,即6.2原子%,但是該膜中碳含量相較於自CCTMA在相同溫度下沉積的鈷膜中碳含量(3.7原子%)仍顯著較高。
圖6顯示使用(3,3-二甲基-1-丁炔)二鈷六羰基(CCTBA)和4,4-二甲基-2-戊炔二鈷六羰基(CCTMA)作為該鈷膜前驅物沉積在SiO2上之鈷膜的X射線光電子能譜儀(XPS)資料。
圖6指出使用CCTMA作為鈷膜前驅物在氧化矽沉積的鈷膜比使用CCTBA作為鈷膜前驅物沉積的膜之碳含量(11.1原子%)具有顯著較低程度的碳,即0.4原子%。
使用CCTMA沉積鈷膜的條件係:容器溫度50℃,晶圓溫度=200℃,沉積時間=10分鐘。使用CCTBA沉積鈷膜的條件係:容器溫度35℃,晶圓溫度=175℃,沉積時間=3分鐘。
實施例12 使用CCTNBA之低電阻率鈷膜的沉積
在沉積製程中,CCTNBA經由充滿CCTNBA的不鏽鋼容器,藉由通過50sccm氬氣被遞送至反應器室。製程條 件係:容器溫度50℃,氫氣流50sccm,壓力10托。基材溫度介於自150℃至200℃。該基材係氧化矽。
表IIII顯示膜厚度對沉積時間和基材溫度的相依性。
表IIII中資料指出較高的基材溫度導致使用CCTNBA作為鈷膜前驅物之鈷膜較厚。
實施例13 CCTMA溶液的製備
CCTMA在己烷中之溶液係藉由將CCTMA溶解在己烷中同時使用一磁性攪拌棒攪拌而製備。70%重量 %CCTMA在己烷中之一溶液藉由在20℃在己烷中攪拌該固體持續10分鐘而製備。
實施例14 CCTPA溶液的製備
CCTPA在己烷中之溶液係藉由將CCTPA溶解在己烷中同時使用一磁性攪拌棒攪拌而製備。大於50%重量%CCTPA在己烷中之一溶液藉由在20℃在己烷中攪拌該固體持續5分鐘而製備。
實施例15 於125℃使用CCTNBA之鈷膜的選擇性沉積
在沉積製程中,CCTNBA經由充滿CCTNBA的不鏽鋼容器,藉由通過50sccm氬氣被遞送至反應器室。製程條件係:容器溫度50℃,氫氣流500sccm,室壓10托,沉積時間1分鐘。基材溫度125℃。該基材係銅金屬或熱二氧化矽。
表V顯示使用CCTNBA作為鈷前驅物被沉積於銅及二氧化矽上的鈷膜的沉積結果。選擇性的定義是於銅上的鈷膜厚度對二氧化矽上鈷膜厚度的比值。鈷膜厚度使用XRF測量得到。晶圓以100、200或500W氫電漿於125℃預清潔1及3分鐘。
在5次實驗後於銅上的鈷膜厚度對二氧化矽上鈷膜厚度的平均選擇性為14.5。
實施例16 於150℃使用CCTNBA之鈷膜的選擇性沉積
在沉積製程中,CCTNBA經由充滿CCTNBA的不鏽鋼容器,藉由通過50sccm氬氣被遞送至反應器室。製程條件係:容器溫度50℃,氫氣流500sccm,室壓10托,沉積時間1分鐘。基材溫度150℃。該基材係銅金屬或熱二氧化矽。
表VI顯示使用CCTNBA作為鈷前驅物被沉積於銅及二氧化矽上的鈷膜的沉積結果。選擇性的定義是於銅上的鈷膜厚度對二氧化矽上鈷膜厚度的比值。鈷膜厚度使用XRF測量得到。
在5次實驗後於銅上的鈷膜厚度對二氧化矽上鈷膜厚度的平均選擇性為6.2,顯示出在較高的沉積溫度下選擇性較低,因為較多的鈷被沉積在介電材料上,同時被沉積在金屬上的鈷沒改變。
實施例17 使用CCTNBA形成之鈷膜的退火
在沉積製程中,CCTNBA經由充滿CCTNBA的不鏽鋼容器,藉由通過50sccm氬氣被遞送至反應器室。製程條件係:容器溫度60℃,氫氣流500sccm,室壓10托,沉積時間100分鐘。二氧化矽基材溫度125℃。
於此實驗基材的電漿預處理被進行,該預處理條件為:氫流500sccm,電漿功率200W,預處理時間3分鐘,氫壓力1托。
沉積後的退火處理條件為:氮流450sccm,氫流50sccm,溫度400℃,室壓50托,退火時間30分鐘。
表VII顯示退火對被沉積的鈷膜的電阻的效果。 退火方法降低了鈷金屬膜的電阻。
雖然本發明之原理已如上較佳具體例說明,須清楚理解此說明只是以範例方式作成,且不當作本發明的範圍之一限制。

Claims (19)

  1. 一種在一反應器中的一基材上選擇性沉積鈷的方法,包括下列步驟:提供該基材至該反應器,其中該基材包含至少一圖案化介電層及至少一圖案化導電金屬層;進行一預處理以從包含該至少一圖案化導電金屬層的至少一表面的該基材的表面上移除污染物;提供一鈷前驅物至該反應器;使該鈷前驅物與該基材接觸;及在該基材上形成含鈷膜;其中該鈷前驅物係具有化學式Co2(CO)6(R1C≡CR2)之一種二取代炔基二鈷六羰基化合物;其中R1係一叔烷基及R2係一直鏈烷基、異丙基及異丁基;該含鈷膜係被選擇性形成於該至少一圖案化導電金屬層上且形成於該至少一圖案化導電金屬層的含鈷膜對比於形成於該至少一圖案化介電層的含鈷膜的厚度比>1;及該含鈷膜含有低於2.5原子%的碳。
  2. 如請求項1之方法,其中該直鏈烷基係選自由甲基、乙基、正丙基、正丁基、正戊基及正己基所組成的群組。
  3. 如請求項1之方法,其中該二取代炔基二鈷羰基六羰基化合物係選自由(2,2,6-三甲基-3-庚炔)二鈷六羰基(CCTIBA)、(2,2-二甲基-3-辛炔)二鈷六羰基(CCTNBA)、(2,2-二甲基-3-癸炔)二鈷六羰基(CCTHA)、(2,2-二甲基-3-庚炔)二鈷六羰基(CCTPA)、(叔丁基甲基乙炔)二鈷六羰基(CCTMA)及(叔丁基甲基乙炔)二鈷六羰基(CCTMA)所組成的群組。
  4. 如請求項1之方法,其中該二取代炔基二鈷羰基六羰基化合物在溫度等於及小於30℃為液體化合物。
  5. 如請求項4之方法,其中該二取代炔基二鈷六羰基化合物為(2,2-二甲基-3-辛炔)二鈷六羰基(CCTNBA)。
  6. 如請求項1之方法,其中該含鈷膜係選自由鈷膜、氧化鈷膜、矽化鈷膜、氮化鈷膜及其組合所組成的群組,及該含鈷膜係通過選自由熱CVD、熱ALD、電漿增強ALD(PEALD)、電漿增強化學氣相沉積(PECVD)、及電漿增強循環式化學氣相沉積(PECCVD)所組成的群組中的一方法所沉積。
  7. 如請求項1之方法,其進一步包含對位於該基材上的該含鈷膜退火的步驟。
  8. 如請求項1之方法,其中該至少一圖案化導電金屬層包含銅;及該至少一圖案化介電層包含至少一選自由氧化矽、氟矽酸鹽玻璃(FSG)、有機矽酸鹽玻璃(OSG)、碳摻雜氧化物(CDO)、或多孔低K-材料所組成的群組。
  9. 如請求項1之方法,其中該含鈷膜含有低於0.5原子%的碳。
  10. 如請求項1之方法,其中該預處理包含將該基材曝露於一電漿。
  11. 如請求項1之方法,其中該含鈷膜的厚度比大於或等於5。
  12. 如請求項1之方法,其中該含鈷膜的厚度比大於或等於10。
  13. 一種半導體裝置,包含一基材,該基材含有:(1)具有含鈷膜形成於其面上的至少一圖案化介電層;及(2)具有含鈷膜形成於其面上的至少一圖案化導電金屬 層;其中該基材上的該含鈷膜係通過請求項1的方法所沉積。
  14. 如請求項13之半導體裝置,其中該含鈷膜的厚度比大於或等於5。
  15. 如請求項13之半導體裝置,其中該含鈷膜的厚度比大於或等於10。
  16. 一種在一反應器中的一基材上沉積鈷的方法,包括下列步驟:提供該基材至該反應器;提供一鈷前驅物至該反應器;使該鈷前驅物與該基材接觸;在該基材上形成含鈷膜;退火該含鈷膜;及選擇性地在提供一鈷前驅物至該反應器的步驟之前進行一預處理以從該基材的表面上移除污染物;其中該鈷前驅物係具有化學式Co2(CO)6(R1C≡CR2)之一種二取代炔基二鈷六羰基化合物;其中R1係一叔烷基及R2係一直鏈烷基、異丙基及異丁基; 該基材係選自由金屬、金屬氧化物、金屬氮化物、矽、矽氧化物、矽氮化物、TaN及其組合所組成之群組;該含鈷膜係選自由鈷膜、氧化鈷膜、矽化鈷膜、氮化鈷膜及其組合所組成之群組;及該含鈷膜含有低於2.5原子%的碳。
  17. 如請求項16之方法,其中該退火使該含鈷膜的電阻降低。
  18. 如請求項16之方法,其中該二取代炔基二鈷羰基六羰基化合物在溫度等於及小於30℃為液體化合物。
  19. 如請求項16之方法,其中該二取代炔基二鈷六羰基化合物為(2,2-二甲基-3-辛炔)二鈷六羰基(CCTNBA)。
TW106145154A 2017-12-21 2017-12-21 二取代炔基二鈷六羰基化合物、其製造及使用方法 TWI672390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106145154A TWI672390B (zh) 2017-12-21 2017-12-21 二取代炔基二鈷六羰基化合物、其製造及使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106145154A TWI672390B (zh) 2017-12-21 2017-12-21 二取代炔基二鈷六羰基化合物、其製造及使用方法

Publications (2)

Publication Number Publication Date
TW201928099A TW201928099A (zh) 2019-07-16
TWI672390B true TWI672390B (zh) 2019-09-21

Family

ID=68049077

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106145154A TWI672390B (zh) 2017-12-21 2017-12-21 二取代炔基二鈷六羰基化合物、其製造及使用方法

Country Status (1)

Country Link
TW (1) TWI672390B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790798A (zh) * 2019-10-30 2020-02-14 浙江博瑞电子科技有限公司 一种(3,3-二甲基-1-丁炔)六羰基二钴的精制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201009107A (en) * 2008-04-29 2010-03-01 Applied Materials Inc Selective cobalt deposition on copper surfaces
JP2016513086A (ja) * 2013-01-31 2016-05-12 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード コバルト含有化合物、その合成及びコバルト含有膜の堆積におけるその使用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201009107A (en) * 2008-04-29 2010-03-01 Applied Materials Inc Selective cobalt deposition on copper surfaces
JP2016513086A (ja) * 2013-01-31 2016-05-12 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード コバルト含有化合物、その合成及びコバルト含有膜の堆積におけるその使用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790798A (zh) * 2019-10-30 2020-02-14 浙江博瑞电子科技有限公司 一种(3,3-二甲基-1-丁炔)六羰基二钴的精制方法

Also Published As

Publication number Publication date
TW201928099A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
KR101659725B1 (ko) 휘발성 디하이드로피라지닐 및 디하이드로피라진 금속 착화합물
TWI722456B (zh) 雙(二氮雜二烯)鈷化合物、其製造方法及使用方法
US9121093B2 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films and methods thereof
JP2013136600A (ja) 薄膜堆積のための銅前駆体
KR102110739B1 (ko) 이치환된 알킨 디코발트 헥사카보닐 화합물들, 이를 제조하는 방법, 및 이의 사용 방법
US10290540B2 (en) Disubstituted alkyne dicobalt hexacarbonyl compounds, method of making and method of use thereof
JP2019535900A (ja) コバルト化合物、その製造方法及びその使用方法
CN103755747A (zh) 有机金属化合物及其用法
TWI727091B (zh) 含有烯丙基配位體之金屬錯合物
TW202100535A (zh) 用於薄膜沉積的新穎第v及vi族過渡金屬前驅物
TWI672390B (zh) 二取代炔基二鈷六羰基化合物、其製造及使用方法
KR102592166B1 (ko) 이치환된 알킨 디코발트 헥사카보닐 화합물들, 이를 제조하는 방법, 및 이의 사용 방법
WO2024107593A1 (en) Intramolecular stabilized group 13 metal complexes with improved thermal stability for vapor phase thin-film deposition techniques
WO2023192111A1 (en) Metal carbonyl complexes with phosphorus-based ligands for cvd and ald applications
WO2024107594A1 (en) Intramolecular stabilized metal complexes with improved thermal stability for vapor phase thin-film deposition techniques