WO2022222098A1 - 离子布植装置及机械手臂 - Google Patents

离子布植装置及机械手臂 Download PDF

Info

Publication number
WO2022222098A1
WO2022222098A1 PCT/CN2021/088956 CN2021088956W WO2022222098A1 WO 2022222098 A1 WO2022222098 A1 WO 2022222098A1 CN 2021088956 W CN2021088956 W CN 2021088956W WO 2022222098 A1 WO2022222098 A1 WO 2022222098A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
axis direction
opening
wafer holder
sliding plate
Prior art date
Application number
PCT/CN2021/088956
Other languages
English (en)
French (fr)
Inventor
林群傑
林伟政
Original Assignee
汉辰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汉辰科技股份有限公司 filed Critical 汉辰科技股份有限公司
Priority to PCT/CN2021/088956 priority Critical patent/WO2022222098A1/zh
Priority to CN202180018921.9A priority patent/CN115516601A/zh
Publication of WO2022222098A1 publication Critical patent/WO2022222098A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation

Definitions

  • the present invention relates to an ion implantation device and a mechanical arm for performing ion implantation.
  • ion implantation processes typically use a scanning robot to perform wafer holding and implant angle adjustment. Unlike transfer robots that only transfer wafers in the horizontal plane, the scanning robot must allow the wafers to switch between the horizontal and vertical planes to accept the wafers provided by the transfer robot, and then switch the wafers to the vertical plane, allowing the ion beam Ion implantation is performed by firing sideways to the wafer in the vertical plane. In some processes, the scanning robot adjusts the plane of the wafer to present an angle with the incident direction of the ion beam to allow ion implantation to be performed with different incident angles.
  • the ion beam directed to the robot arm from the side or at an incident angle may cause aging of the mechanism and affect the operation, which increases the frequency of maintenance.
  • the metal particles are easily detached from the surface of the robotic arm, resulting in contamination in the vacuum chamber.
  • one-dimensional arc scanning is performed by rotating the robotic arm radially back and forth relative to the pivot axis;
  • the driving motor in the reaction chamber drives the robotic arm to gradually increase or decrease its height along the Z-axis direction, and scans in a two-dimensional zigzag shape relative to the traveling ion beam, thereby implanting a uniform dose of ions into the workpiece in two-dimensional directions.
  • the degree of freedom in the Z-axis direction is usually limited to 50mm to 140mm, and the diameter of a common wafer is usually 300mm, which obviously exceeds the scanning height range of the robot arm. Therefore, It is difficult to use a general ion implantation device to perform a large-area two-dimensional scan, or a larger and more complex ion implantation device is required, which increases the reaction chamber space and equipment cost of the ion implantation device.
  • the purpose of the present invention is to provide a mechanical arm.
  • the robotic arm is used to move a workpiece along a scanning axis to perform ion implantation of the workpiece, the scanning axis is located on a horizontal plane (X-Y plane) and is perpendicular to a Z-axis direction, and the robotic arm includes: a first The arm includes a front end and a rear end, and the long axis direction of the first arm is perpendicular to the Z axis direction; a second arm includes a front end and a rear end, and the long axis direction of the second arm is perpendicular to the Z axis direction axis direction and the front end of the second arm is pivotally connected to the rear end of the first arm; a third arm includes a front end and a rear end, the long axis direction of the third arm is perpendicular to the Z axis direction and the first arm The front end of the three arms is pivotally connected to the rear end of the second arm; a vertical
  • the ion implantation device includes: a sliding seal assembly, including: a fixing plate connected to a cavity wall of a reaction chamber, the fixing plate has a z-axis extending along a direction a through opening; a first sliding plate, opposite to the reaction chamber, is located on an outer surface of the fixing plate, the first sliding plate can slide on the outer surface along the Z-axis direction, and the first sliding plate has facing the through opening a first opening, and along the Z-axis direction, the diameter of the first opening is smaller than the diameter of the through opening; a second sliding plate, opposite to the reaction chamber and located on a first surface of the first sliding plate, the first sliding plate Two sliding plates can slide on the first surface, the second sliding plate has a second opening facing the first opening, and along the Z-axis direction, the diameter of the second opening is smaller than the diameter of the first opening; a connecting rod , perpendicular to the Z-axis direction and located in the second opening, the connecting rod includes
  • FIG. 1 is a schematic diagram of the robot arm in the initial state according to the first embodiment of the present invention
  • FIG. 2 is a partial three-dimensional schematic diagram of the robotic arm according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the robot arm in the operating state according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a robotic arm according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a robotic arm according to a third embodiment of the present invention.
  • Fig. 6 is the exploded view of the mechanical arm of the embodiment shown in Fig. 5;
  • FIG. 7 is a schematic perspective view of an ion implantation device according to a fourth embodiment of the present invention.
  • FIG. 8A is a schematic view of the sliding seal assembly of the embodiment shown in FIG. 7 from a first perspective
  • FIG. 8B is a schematic view of the sliding seal assembly of the embodiment shown in FIG. 7 from a second perspective;
  • FIG. 9 is a schematic diagram of the use state of the ion implantation device of the embodiment shown in FIG. 7 along the Z-axis direction;
  • FIG. 10 is a schematic diagram of the use state of the ion implantation device of the embodiment shown in FIG. 7 along the X-axis direction;
  • FIG. 11 is a schematic perspective view of an ion implantation device according to a fifth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the use state of the ion implantation device of the embodiment shown in FIG. 11 along the X-axis direction.
  • FIG. 1 is a schematic diagram of the robot arm in the initial state according to the first embodiment of the present invention, please refer to FIG. 1 .
  • the robotic arm 2 includes a first arm 21 , a second arm 23 , a third arm 25 , a vertical arm 26 and a wafer holder 28 .
  • the long axis directions of the first arm 21 , the second arm 23 and the third arm 25 are all perpendicular to the Z axis direction and parallel to the horizontal plane (ie, the X-Y plane).
  • the front end 230 of the second arm 23 is pivotally connected to the rear end 212 of the first arm 21
  • the front end 250 of the third arm 25 is pivotally connected to the rear end 232 of the second arm 23 .
  • the lower end of the vertical arm 26 is fixed to the rear end 252 of the third arm 25 , and the upper end of the vertical arm 26 is coupled to the wafer holder 28 .
  • the wafer holder 28 has a holding surface for carrying workpieces such as wafers.
  • the wafer holder 28 may be an electrostatic chuck, but not limited thereto.
  • the upper end of the vertical arm 26 is provided with a rotating mechanism 27, the rotating mechanism 27 is connected to the wafer holder 28, and the rotating mechanism 27 can drive the wafer holder 28 to rotate relative to the X axis.
  • the rotation mechanism 27 drives the surface normal vector N of the wafer holder 28 to rotate to be perpendicular to the Z-axis direction to face the ion beam R.
  • the rotating mechanism 27 can be, but not limited to, a motor, a gear set, and a belt drive mechanism.
  • the motor is arranged inside the vertical arm 26 , and the rotating shaft of the motor is connected to the rear side of the wafer holder 28 .
  • the elevation angle (depression angle) of the holding surface of the wafer holder 28 can be adjusted, which can be one of the methods of changing the incident angle of the ion beam, but the present invention is not limited to this. 4 and FIG.
  • the wafer holder 28 can be set in the wafer loading/unloading mode (wafer load/unload position) and the initial ion implantation mode (implantation mode)
  • the wafer loading and unloading modes can be defined as the normal vector N of the holding surface of the wafer holder 28 is parallel to the coordinate axis Z
  • the initial ion implantation mode can be defined as the normal vector N of the holding surface is parallel to the On the coordinate axis Y, that is, the direction in which the ion beam R travels.
  • the vertical arm 26 keeps the wafer holder 28 relatively away from the first arm 21 , the second arm 23 and the third arm 25 . In this way, the first arm 21 , the second arm 23 and the third arm 25 are prevented from being irradiated by the ion beam, thereby preventing the mechanism from aging and reducing the maintenance frequency.
  • the rotating mechanism 27 includes a rotating shaft, a transmission element and a motor.
  • the transmission elements may be, but are not limited to, belts, chains, connecting rods or gear sets.
  • a rotating shaft is disposed on the upper end of the vertical arm 26, the rotating shaft is connected to the rear side of the wafer holder 28, a motor is disposed inside the hollow vertical arm 26, and the rotating shaft and the motor are connected by a belt for adjustment The elevation angle (depression angle) of the holding surface of the wafer holder 28 .
  • the motor can be disposed inside the vertical arm 26 or at the lower end of the vertical arm 26 , so as to avoid being irradiated by the ion beam and increase the service life of the motor with relatively high component cost.
  • the wafer holder 28 is relatively far away from the first arm 21 , the second arm 23 and the third arm 25 .
  • the ion beam does not irradiate it. to the first arm 21 , the second arm 23 and the third arm 25 without causing metal particle contamination in the vacuum chamber.
  • the wafer holder 28 is disposed on the side of the vertical arm 26, and the third arm 25, the vertical arm 26 and the wafer holder 28 are viewed from the incident direction of the ion beam, and the three present " ⁇ " type structure.
  • the wafer holder 28 is disposed on the rotating shaft and the length of the rotating shaft is long enough that the distance from the geometric center of the wafer holder 28 to the surface of the vertical arm 26 is greater than half the outer diameter of the holding surface. Therefore, when the ion beam is directed to the wafer holder 28 , it is difficult to irradiate the vertical arm 26 .
  • the surface of the vertical arm 26 facing the incident direction of the ion beam is a flat surface with no curvature. In this way, even if the ion beam is directed towards the vertical arm 26, it will not cause the ion beam to reflect in multiple directions and affect the surrounding chamber.
  • the main body of the vertical arm 26 may be a rectangular parallelepiped or a three-dimensional structure composed of multiple planes.
  • the first arm 21 and the second arm 23 provide the wafer holder 28 to move along the direction of the coordinate axis X during the scanning process.
  • the scanning axis S1 is parallel to the X axis Towards.
  • the configuration of the third arm 25 allows the robotic arm 2 to increase the freedom of movement of the wafer holder 28 along the plane formed by the coordinate axis Y and the coordinate axis Y, thereby allowing adjustment of the distance between the wafer holder 28 and the ion beam emission source. angle to respond to different process conditions.
  • the length of the third arm 25 is sufficient to provide a longer transfer distance, allowing the wafer holder 28 to be moved to a remote wafer exchange point to accept wafers provided by the transfer robot and then moved back to perform ion implantation range of space.
  • the vertical arm 26 is fixed to the third arm 25 to ensure that the orientation of the wafer does not shift during transport.
  • the pivoting direction D1 of the wafer holder 28 pivoted to the vertical arm 26 is perpendicular to the long axis direction of the vertical arm 26 , and the pivoting direction D1 is not parallel to the long axis of the third arm Direction D2 (presents a skewed line in space).
  • the included angle between the pivoting direction D1 and the long axis direction D2 of the third arm is greater than 0 degrees and less than or equal to 30 degrees.
  • the length of the long axis of the third arm 25 is greater than the width W of the wafer holder 28 and the vertical arm 26, and the angle between the pivoting direction D1 and the long axis direction D2 of the third arm is consistent with the wafer holder
  • the tangent of the holding surface of 28 passes through the third pivot unit 24 .
  • the third pivoting unit 24 has a rotation axis D3, and the first pivoting unit 20 has a rotation axis D4.
  • the holding surface of the wafer holder 28 has a tangent line D5.
  • the connecting direction D1 and the long axis direction D2 of the third arm have an included angle, and the included angle is such that the rotation axis D3, the rotation axis D4, and the tangent line D5 are coaxial.
  • the coaxial axes can be aligned with the exit direction of the ion beam, thereby allowing the entirety of the robot arm 2 to be calibrated.
  • the designer is planning the movement trajectory of the arm, he only needs to make design adjustments based on the position of the third pivoting unit 24 on the X-Y plane as a reference point to ensure the position of the wafer holder 28 on the X-Y plane.
  • the footprint of the entire robot arm 2 is extremely small, which is beneficial to the space configuration of the foundry.
  • FIG. 4 is a schematic diagram of a robotic arm according to a second embodiment of the present invention, please refer to FIG. 4 .
  • the vertical arm is provided with a cover (not shown) and an opening 261 .
  • the location of the opening 261 corresponds to the rotation mechanism 27 in the vertical arm 26 , and the cover is detachably disposed on the opening.
  • the detachable can refer to completely removing the cover from the opening 261 , or removing the cover from the opening 261 and connecting the cover to the vertical arm 26 with a loose leaf. In this way, through the opening 261, the rotating mechanism 27 can be replaced or repaired.
  • the opening 261 and the cover do not face the incident direction of the ion beam to avoid ion beam irradiation.
  • FIG. 5 is a schematic diagram of a robotic arm according to a third embodiment of the present invention
  • FIG. 6 is an exploded view of the robotic arm according to the embodiment shown in FIG. 5 , please refer to FIGS. 5 and 6 together.
  • the robotic arm 2 includes a plurality of protective shells 29 disposed on the upper surface of the third arm 25 , the side surface of the vertical arm 26 and the rear surface of the wafer holder 28 , respectively.
  • a protective cover 29 is provided at least on the surface of the vertical arm 26 facing the ion beam emission source.
  • the ion beam when the ion beam is directed toward the wafer holder 28 at an inclination angle (for example, referring to FIG. 11 , the ion implantation is performed with the scan axis S2 ), in order to prevent the ion beam from directly irradiating the wafer holder 28 On the rear side, at least the surface of the rear side of the wafer holder 28 is provided with a protective case 29 .
  • the holding surface of the wafer holder 28 when the holding surface of the wafer holder 28 performs ion implantation at a depression angle, in order to prevent the ion beam reflected by the holding surface from directly irradiating the upper surface of the third arm 25, at least the A protective case 29 is provided on the upper surface.
  • the wafer holder 28 when the holding surface of the wafer holder 28 performs ion implantation at a depression angle, in order to avoid contamination caused by the ion beam reflected by the holding surface directly irradiating the lower surface of the chamber, the wafer holder 28 is provided.
  • the pivoting direction D1 is not parallel to the long-axis direction D2 of the third arm, and the wafer holder 28 is far away from the ion beam emission source relative to the third pivoting unit 24 .
  • the surface material of the protective shell 29 is graphite, silicon or silicide.
  • the surface material may refer to the surface of the coating film or the surface of a uniform material, such as a metal plate with a silicide coating or a graphite plate.
  • FIG. 7 is a schematic perspective view of an ion implantation device according to a fourth embodiment of the present invention.
  • FIG. 8A is a schematic view of the sliding seal assembly of the embodiment shown in FIG. 7 from a first perspective.
  • FIG. 8B is a schematic view of the sliding seal assembly of the embodiment shown in FIG. 7 from a second perspective.
  • FIG. 9 is a schematic diagram of the use state of the ion implantation device of the embodiment shown in FIG. 7 along the Z-axis direction.
  • FIG. 10 is a schematic diagram of the use state of the ion implantation device of the embodiment shown in FIG. 7 along the X-axis direction.
  • an ion implantation device includes a sliding seal assembly 1 and a robotic arm 2 .
  • the ion implantation device is located in the reaction chamber 100 of the ion implantation device.
  • the space of the reaction chamber 100 defines the X-axis direction, the Y-axis direction, and the Z-axis direction, and these three-axis directions are perpendicular to each other.
  • the traveling direction of the ion beam R is parallel to the Y-axis direction to implant the reaction chamber 100, but not limited thereto.
  • the sliding seal assembly 1 includes a fixing plate 10 , a first sliding plate 12 , a second sliding plate 14 , a connecting rod 16 and a driving unit 18 .
  • the sliding seal assembly 1 is located on the side of the reaction chamber 100 , and the sliding seal assembly 1 is connected to the chamber wall 102 through the fixing plate 10 .
  • the fixing plate 10 is connected to the cavity wall 102 of the reaction chamber 100 , for example, the fixing plate 10 is adjacent to the cavity wall 102 and connected to each other, or the fixing plate 10 is integrated with the cavity wall 102 and is integrally formed.
  • the fixing plate 10 has a through port T1.
  • the through port T1 penetrates from the outer surface 10a to the inner side along the Y-axis direction, and the through port T1 communicates with the reaction chamber 100.
  • the cross section of the through port T1 is elongated.
  • the axial direction extends in the Z-axis direction, and the short-axis direction thereof extends in the X-axis direction.
  • the through port T1 has a movable space extending along the Z-axis direction, for the connecting rod 16 to pass through the through port T1 and move along the Z-axis direction.
  • the first sliding plate 12 is located on the outer surface 10 a of the fixed plate 10 , and is located on two opposite sides of the fixed plate 10 from the reaction chamber 100 .
  • the first sliding plate 12 has a first opening T2, and the first opening T2 faces the through port T1 and communicates with each other, wherein, viewed along the Z-axis direction, the diameter of the first opening T2 is smaller than the diameter of the through port T1.
  • the sliding plate 12 is located on the outer surface 10a and covers at least part of the through opening T1.
  • the first opening T2 penetrates inward from the first surface 12a of the first sliding plate 12 along the Y-axis direction, and the first opening T2 communicates with the through hole T1.
  • the cross section of the first opening T2 is elongated.
  • the first opening T2 is an elliptical opening, the long axis direction of which extends along the Z axis direction, and the short axis direction thereof extends along the X axis direction.
  • the first opening T2 has a movable space extending along the Z-axis direction, for the connecting rod 16 to pass through the first opening T2 and move along the Z-axis direction.
  • the second sliding plate 14 is located on the first surface 12 a of the first sliding plate 12 , and is located on two opposite sides of the first sliding plate 12 respectively from the fixing plate 10 .
  • the second sliding plate 14 has a second opening T3, and the second opening T3 faces the first opening T2 and communicates with each other, wherein, viewed along the Z-axis direction, the diameter of the second opening T3 is smaller than the diameter of the first opening T2.
  • the second sliding plate 14 is located on the first surface 12a and covers at least part of the first opening T2.
  • the second opening T3 penetrates from the outer surface of the second sliding plate 14 to the inner side along the Y-axis direction, and the second opening T3 communicates with the first opening T2.
  • the second opening T3 has a perforated space for the connecting rod 16 to pass through.
  • the cross-sectional shape of the second opening T3 corresponds to the cross-sectional shape of the connecting rod 16, and the connecting rods 16 pass through the second opening T3 and are stable to each other. connection, but not limited thereto.
  • the second sliding plate 14 uses the second opening T3 to accommodate the connecting rod 16, so that the connecting rod 16 can pass through the second opening T3 and move along the Z-axis direction.
  • the connecting rod 16 is located at the second opening T3 of the second sliding plate 14 , and the connecting rod 16 extends along the Y-axis direction and is perpendicular to the Z-axis direction.
  • the connecting rod 16 includes a driving end 160 , a rod body 162 and a connecting end 164 which are connected to each other.
  • the driving end 160 is located outside the reaction chamber 100 , the rod body 162 extends toward the reaction chamber 100 through the second opening T3 , the first opening T2 and the through port T1 along the Y-axis direction, and the connecting end 164 is located in the reaction chamber 100 .
  • the drive unit 18 is located outside the reaction chamber 100 , and the drive unit 18 is connected to the drive end 160 of the connecting rod 16 .
  • the driving unit 18 may be, but is not limited to, a stepper motor or a jack for raising or lowering the driving end 160 .
  • the driving unit 18 is disposed outside the reaction chamber 100 and is detachably connected to the driving end 160 , so as to facilitate maintenance of the driving unit 18 and equipment maintenance without disturbing the vacuum state of the reaction chamber 100 . In this way, when the drive unit 18 fails, the drive unit 18 can be quickly replaced to continue the process without breaking the vacuum of the reaction chamber 100 .
  • the driving unit 18 is directly connected to the driving end 160 .
  • the connecting rod 16 can be a feed-through pipe body with a pipe inside, for setting electronic components through the cavity wall 102 to enter the reaction chamber 100, such as but not limited to conductive lines and sensing elements, for example,
  • the robotic arm 2 in the reaction chamber 100 can be connected to an external control circuit and/or a power supply through the connecting rod 16 , but not limited thereto.
  • the robotic arm 2 is located in the reaction chamber 100 and is provided on the connecting rod 16 .
  • the robotic arm 2 includes a first pivoting unit 20 , a second pivoting unit 22 and a third pivoting unit 24 , and the front end 210 of the first arm 21 of the robotic arm 2 is pivoted through the first pivoting unit 20
  • the length of the first arm 21 at the connecting end 164 of the connecting rod 16 is smaller than the length of the connecting rod 16 to avoid the mechanical interference between the mechanical arm 2 and the cavity wall 102 .
  • the front end 210 of the first arm 21 is connected to the first pivot unit 20 .
  • the front end 230 of the second arm 23 is connected to the second pivot unit 22 , the front end 230 of the second arm 23 is pivotally connected to the rear end 212 of the first arm 21 , and the front end 250 of the third arm 25 is connected to the third pivot unit 24 , and the front end 250 of the third arm 25 is pivotally connected to the rear end 232 of the second arm 23 .
  • the first pivot unit 20 allows the first arm 21 to rotate relative to the Z-axis direction
  • the second pivot unit 22 allows the second arm 23 to rotate relative to the Z-axis direction
  • the third pivot unit 24 allows the third arm to rotate 25 is rotated relative to the Z-axis direction.
  • the robotic arm 2 utilizes a plurality of robotic arms to connect and pivot with each other via a plurality of pivoting units, so as to control the scanning orientation, angle and movement path of the wafer holder 28 .
  • the robot arm 2 drives the wafer holder 28 to move along a scan axis S1, wherein the scan axis S1 is parallel to the horizontal plane and perpendicular to the Z-axis direction.
  • the reaction chamber 100 has a spot beam (Spot beam) implanted along the Y-axis direction to scan the wafer spot by spot.
  • the ion beam R can also be a ribbon beam
  • the scanning axis S1 of the wafer holder 28 is parallel to the X-axis direction
  • the scanning axis S1 is perpendicular to the traveling direction of the ion beam R.
  • This scanning method is defined as a linear scan.
  • the robot arm 2 drives the wafer holder 28 to move in the X-axis direction along the scanning axis S1 direction, and also moves the wafer holder 28 in the Z-axis direction through the driving action of the connecting rod 16 of the sliding seal assembly 1 , thereby , the ion implantation device receives the ion beam R and injects the workpiece (not shown) such as a wafer on the wafer holder 28 at a vertical angle to realize a two-dimensional (the plane of the coordinate axis X-coordinate axis Z) linear scanning ( 2D linear scan) ion implantation process.
  • the workpiece not shown
  • a 2D linear scan when using a spot beam for ion distribution, can completely scan the spot beam across the entire surface of the wafer in a similar continuous zigzag path. ;
  • a ribbon beam as the ion distribution value, since the height of the ribbon beam is usually larger than the wafer diameter, it is usually sufficient to use a linear scan.
  • the inventors realized that, in addition to the difficulty of realizing two-dimensional linear scanning in a general ion implantation device, the traditional sliding sealing mechanism used in the conventional ion implantation device only uses a single sliding plate to cover the long and narrow opening on the cavity wall 102, wherein the single sliding plate is positioned upward and downward. While sliding down, the long and narrow opening must be covered in an airtight manner. Therefore, the height of the plate along the Z-axis direction needs to be twice the diameter of the long and narrow opening, resulting in a huge layout space required for a single slide plate to be located on the cavity wall 102 and increasing ion implantation. The space of the reaction chamber 100 required by the equipment and the cost of the equipment.
  • the sliding seal assembly 1 slides relative to the fixed plate 10 through the multi-piece continuous sliding components such as the first sliding plate 12 and the second sliding plate 14 and air-tightly covers the through opening T1 of the fixing plate 10 ,
  • the connecting rod 16 of the sliding seal assembly 1 moves upward along the Z-axis direction in the reaction chamber 100
  • the plurality of sliding plates such as the first sliding plate 12, the second sliding plate 14 and the like are respectively moved along the Z axis.
  • the axial direction covers part of the area of the through port T1.
  • the body of the first sliding plate 12 first slides upward for a certain distance and covers a part of the opening of the through port T1, and then the second sliding plate 14 body moves upward for a distance and covers the through port T1.
  • the remaining part is open, meanwhile, the connecting rod 16 is allowed to pass through the cavity wall 102 of the reaction chamber 100 , and the connecting rod 16 is driven to move in the Z-axis direction in the reaction chamber 100 via the driving unit 18 .
  • the first sliding plate 12 and the second sliding plate 14 cooperate to complete the sliding and sealing action, and can reduce the required space.
  • the positions of the first sliding plate 12 and the second sliding plate 14 are still roughly located around the sliding seal assembly 1 and do not protrude upwards significantly, which greatly reduces the space required for the layout of the chamber wall 102 along the Z-axis direction, and further saves the volume and size of the reaction chamber 100 . equipment cost.
  • At least one of the first pivoting unit 20 , the second pivoting unit 22 and the third pivoting unit 24 can be a stepping motor, so as to accurately control the first arm 21 , the second pivoting unit 24
  • the movement of the mechanical arms such as the arm 23 and the third arm 25 improves the precision of the ion implantation process.
  • the through port T1 of the sliding seal assembly 1 is a long and narrow opening, and the diameter of the through port T1 is greater than or equal to a wafer diameter. Realize 2D scan ion implantation process.
  • the sliding seal assembly 1 further includes a sliding rail unit 19 .
  • the sliding rail unit 19 is located on the outer surface 10 a of the fixing plate 10 , and the sliding rail unit 19 can be a linear groove or a flange, etc., for the first sliding plate 12 and the second sliding plate 14 to move relative to the fixing plate 10 .
  • the upper edge of the sliding rail unit 19 is higher than the upper edge of the fixing plate 10 , so as to provide stability for the first sliding plate 12 and the second sliding plate 14 in the entire moving path.
  • the sliding sealing assembly 1 further includes a first sealing element and a second sealing element.
  • the first sealing element and/or the second sealing element may be an O-ring.
  • the first sealing element is sandwiched between the fixing plate 10 and the first sliding plate 12 .
  • the first sealing element is located on the first sliding plate 12 and surrounds the periphery of the first opening T2 to increase the air tightness of the sliding sealing assembly 1 .
  • the second sealing element is sandwiched between the first sliding plate 12 and the second sliding plate 14 .
  • the second sealing element is located on the second sliding plate 14 and surrounds the periphery of the second opening T3 to increase the air tightness of the sliding sealing assembly 1 .
  • FIG. 11 is a schematic perspective view of an ion implantation device according to a fifth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the use state of the ion implantation device of the embodiment shown in FIG. 11 along the X-axis direction. 11 and FIG.
  • the reaction chamber 100 has an ion beam R implanted along the Y-axis direction, wherein the scan axis S2 of the wafer holder 28 and the X-axis direction form an inclined angle ⁇ , in other words, the moving trajectory of the wafer holder 28 along the scanning axis S2 direction relative to the traveling direction of the ion beam R is maintained at a constant oblique angle (not a 90-degree angle) during the ion implantation scanning process, where the scanning axis is For ion implantation at an oblique angle, ideally, the distance between the ion beam and the wafer surface can be equal.
  • This scanning method is defined as a concentric scan (Isocentric scan).
  • the robot arm 2 drives the wafer holder 28 to move along the scanning axis S2 on the horizontal plane of the X axis-Y axis.
  • the ion beam R is injected into the wafer surface at a fixed angle, and the ion beam During the process of ion implantation, the distances to the wafer surface are all the same.
  • the wafer holder 28 under the condition of using a point-shaped ion beam, the wafer holder 28 is moved along the Z-axis direction by the driving action of the connecting rod 16 of the sliding seal assembly 1, whereby the ion implantation device receives ions
  • the beam R is implanted into a workpiece such as a wafer (not shown) on the wafer holder 28 in an oblique direction, so as to realize a 2D isocentric scan ion implantation process.
  • some embodiments of the present invention provide a robotic arm 2 .
  • the robotic arm 2 adjusts the incident angle of the ion beam R to the wafer through the third arm 25 , and makes the wafer holder 28 through the vertical arm 26 . It is far away from the first arm 21 , the second arm 23 and the third arm 25 , thereby reducing the probability that most of the main body of the robotic arm 2 is irradiated by the ion beam R, prolonging the service life and avoiding particle pollution.
  • Some embodiments of the present invention provide a robotic arm 2 that allows the tangent D5 of the wafer holder 28 , the rotational axis D3 of the third pivot unit 24 and the first pivot unit 20 when in the base state
  • the rotation axis D4 of the ion beam R is coaxial, so that the calibration operation can be completed only by aligning the coaxial axis with the incident direction of the ion beam R.
  • Some embodiments of the present invention provide an ion implantation device, which mainly uses multi-piece continuous sliding components such as the first sliding plate 12 and the second sliding plate 14 to slide relative to the fixed plate 10/chamber wall 102 along the Z-axis direction respectively.
  • the connecting rod 16 is allowed to pass through the cavity wall 102 of the reaction chamber 100, and drives the robotic arm 2 in the reaction chamber 100 to move along the Z-axis direction, so as to realize a two-dimensional linear/isocentric scan (2D linear/isocentric scan).
  • a uniform dose of ion beam R is injected into the workpiece at a vertical or oblique angle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提出一种机械手臂及一种离子布植装置,所述机械手臂包含第一臂、第二臂、第三臂、垂直臂及晶圆固持器。所述第一臂、第二臂及第三臂的长轴方向垂直于Z轴方向。所述第二臂的前端枢接于第一臂的后端。所述第三臂的前端枢接于第二臂的后端。所述垂直臂的下端固接于第三臂的后端。所述晶圆固持器沿一枢接方向枢接于垂直臂的上端,所述枢接方向垂直于垂直臂的长轴方向且所述枢接方向不平行于第三臂的长轴方向。

Description

离子布植装置及机械手臂 技术领域
本发明涉及一种离子布植装置以及用以执行离子布植的机械手臂。
背景技术
现有的离子布植工艺通常使用扫描机器人执行晶圆的固持与植入角度的调整。与仅在水平面上传输晶圆的传输机器人不同,扫描机器人必须允许晶圆于水平面与垂直面之间作切换,以承接传输机器人所提供的晶圆,再将晶圆切换到垂直平面,允许离子束自侧方射向位于垂直平面的晶圆以执行离子布植。在部分工艺,扫描机器人调整晶圆所处的平面与离子束的入射方向呈现一夹角,以允许采用不同入射角执行离子布植。
前述工艺面临几项问题,首先,自侧方或以一入射夹角射向机械手臂的离子束可能导致机构老化而影响运作,使维修的频率增加。
其次,采用金属材质的机械手臂受到离子束的轰击后,金属粒子容易脱离机械手臂的表面而导致真空腔室内的污染。
最后,考量真空腔室的大小限制,必须兼顾手臂运作不得占用过多空间而仍能完成整片晶圆的布植工艺。举例而言,在部分离子布植工艺,通过机械臂相对于枢接轴径向地来回旋转,以进行一维弧线扫描;如果希望执行具有二维扫描的离子布植工艺,通常是通过位于反应室内的驱动马达,驱使机械臂沿Z轴方向逐步递增或递减其高度,相对于行进的离子束呈二维锯齿形扫描,从而在二维方向上将均匀剂量的离子注入到工件中。
然而,上述的扫描方式纵使可以沿Z轴方向进行扫描,但Z轴方向的自由度通常限制为50mm至140mm,而常见晶圆的直径通常为300mm,显然超过机械臂的扫描高度范围,因此,较难使用一般的离子布植装置来进行大面积的二维扫描,或需要更庞大复杂的离子布植装置才可能实现,反而增加离子布植设备所需反应室空间及设备成本。
发明公开
有鉴于此,本发明的目的在于提出一种机械手臂。所述机械手臂用以使一 工件沿一扫描轴移动以执行该工件的离子布植,该扫描轴位于一水平面(X-Y plane)上且垂直于一Z轴方向,该机械手臂包含:一第一臂,包含一前端及一后端,该第一臂的长轴方向垂直于该Z轴方向;一第二臂,包含一前端及一后端,该第二臂的长轴方向垂直于该Z轴方向且该第二臂的前端枢接于该第一臂的后端;一第三臂,包含一前端及一后端,该第三臂的长轴方向垂直于该Z轴方向且该第三臂的前端枢接于该第二臂的后端;一垂直臂,包含一上端及一下端,该垂直臂的下端固接于该第三臂的后端;以及一晶圆固持器,具有用以固持该工件的一固持面,该晶圆固持器沿一枢接方向枢接于该垂直臂的上端,该枢接方向垂直于该垂直臂的长轴方向且该枢接方向不平行于该第三臂的长轴方向。
申请人还提出一种离子布植装置,所述离子布植装置包含:一滑动密封组件,包含:一固定板,连接于一反应室的一腔壁,该固定板具有沿一Z轴方向延伸的一贯通口;一第一滑板,相反于该反应室而位于该固定板的一外表面,该第一滑板沿该Z轴方向可滑动于该外表面,该第一滑板具有面向该贯通口的一第一开口,且沿该Z轴方向,该第一开口的口径小于该贯通口的口径;一第二滑板,相反于该反应室而位于该第一滑板的一第一表面,该第二滑板可滑动于该第一表面,该第二滑板具有面向该第一开口的一第二开口,且沿该Z轴方向,该第二开口的口径小于该第一开口的口径;一连接杆,垂直于该Z轴方向且位于该第二开口,该连接杆包含一驱动端、通过该第一开口及该贯通口的杆体、以及位于该反应室内的一连接端;以及一驱动单元,连接于该连接杆的该驱动端且位于该反应室外,其中,该驱动单元用于驱动该连接杆沿该Z轴方向移动;以及前述的一机械手臂,其中,该第一臂的长度小于该连接杆的长度,该第一臂的前端枢接于该连接杆的该连接端。
以下藉由具体实施例配合所附的附图详加说明,当更容易了解本发明的目的、技术内容、特点及其所达成的功效。
附图简要说明
图1为本发明第一实施例的机械手臂于初始状态的示意图;
图2为本发明第一实施例的机械手臂的局部立体示意图;
图3为本发明第一实施例的机械手臂于运作状态的示意图;
图4为本发明第二实施例的机械手臂的示意图;
图5为本发明第三实施例的机械手臂的示意图;
图6为图5所示实施例的机械手臂的爆炸图;
图7为本发明第四实施例的离子布植装置的立体示意图;
图8A为图7所示实施例的滑动密封组件的第一视角示意图;
图8B为图7所示实施例的滑动密封组件的第二视角示意图;
图9为图7所示实施例的离子布植装置沿Z轴方向的使用状态示意图;
图10为图7所示实施例的离子布植装置沿X轴方向的使用状态示意图;
图11为本发明第五实施例的离子布植装置的立体示意图;
图12为图11所示实施例的离子布植装置沿X轴方向的使用状态示意图。
其中,附图标记
N:法向量
R:离子束
S1,S2:扫描轴
T1:贯通口
T2:第一开口
T3:第二开口
W:宽度
X,Y,Z:座标轴
θ:倾斜角
D1:枢接方向
D2:第三臂的长轴方向
D3、D4:旋转轴
D5:切线
1:滑动密封组件
10:固定板
10a:外表面
12:第一滑板
12a:第一表面
14:第二滑板
16:连接杆
160:驱动端
162:杆体
164:连接端
18:驱动单元
19:滑轨单元
100:反应室
102:腔壁
2:机械手臂
20:第一枢接单元
21:第一臂
210:前端
212:后端
22:第二枢接单元
23:第二臂
230:前端
232:后端
24:第三枢接单元
25:第三臂
250:前端
252:后端
26:垂直臂
261:开口
27:转动机构
28:晶圆固持器
29:保护壳
实现本发明的最佳方式
以下将详述本发明的各实施例,并配合附图作为例示。在说明书的描述中,为了使读者对本发明有较完整的了解,提供了许多特定细节;然而,本发明可 能在省略部分或全部特定细节的前提下仍可实施。附图中相同或类似的元件将以相同或类似符号来表示。特别注意的是,附图仅为示意之用,并非代表元件实际的尺寸或数量,有些细节可能未完全绘出,以求附图的简洁。
图1为本发明第一实施例的机械手臂于初始状态的示意图,请参照图1。依据一些实施例,机械手臂2包含第一臂21、第二臂23、第三臂25、垂直臂26以及晶圆固持器28。第一臂21、第二臂23及第三臂25的长轴方向皆垂直于Z轴方向,且平行于水平面(即X-Y平面)。第二臂23的前端230枢接于第一臂21的后端212,第三臂25的前端250枢接于第二臂23的后端232。垂直臂26的下端固接于第三臂25的后端252,且垂直臂26的上端耦接晶圆固持器28。晶圆固持器28具有固持面用于承载例如晶圆等工件。晶圆固持器28可为静电吸盘(chuck),但不以此为限。依据一些实施例,垂直臂26的上端设置有转动机构27,转动机构27连接于晶圆固持器28,且转动机构27可驱动晶圆固持器28相对于X轴旋转。举例而言,转动机构27驱动晶圆固持器28的表面法向量N旋转至垂直于Z轴方向,以面向离子束R。所述转动机构27可以是但不限于马达、齿轮组、皮带传动机构。举例而言,请参照图2,将马达设置于垂直臂26的内部,马达的转轴连接于晶圆固持器28的后侧,如此一来,晶圆固持器28的固持面的仰角(俯角)得以被调整,此可以为改变离子束的入射角度的方法之一,但本发明并不以此为限。此外,请参照图4与图7,通过改变晶圆固持器28的固持面,可以让晶圆固持器28在晶圆装载、卸载模式(wafer load/unload position)与初始离子布植模式(implant position)切换,在此,晶圆装载、卸载模式可定义为晶圆固持器28其固持面的法向量N平行于座标轴Z;初始离子布植模式可定义为固持面的法向量N平行于座标轴Y,亦即为离子束R进行的方向。
依据一些实施例,垂直臂26使晶圆固持器28相对远离第一臂21、第二臂23及第三臂25。如此一来,避免第一臂21、第二臂23及第三臂25受到离子束照射的机会,从而防止机构老化,降低维修频率。依据一些实施例,将转动机构27包含转轴、传动元件及马达。所述传动元件可以是但不限于皮带、炼条、连杆或齿轮组。举例而言,将转轴设置于垂直臂26的上端,转轴连接于晶圆固持器28的后侧,将一马达设置于镂空的垂直臂26的内部,并以皮带连接所述转轴与马达以调整晶圆固持器28的固持面的仰角(俯角)。如此一来, 马达得以设置于垂直臂26的内部或垂直臂26的下端,从而避免被离子束照射,增加元件成本相对较高的马达的使用寿命。此外,晶圆固持器28相对远离第一臂21、第二臂23及第三臂25,当第一臂21、第二臂23及第三臂25的表面材质采用金属,因离子束不照射到第一臂21、第二臂23及第三臂25,而不会造成真空腔室内发生金属微粒污染。请参照图2,依据一些实施例,晶圆固持器28设置于垂直臂26的侧边,而自离子束入射方向观察第三臂25、垂直臂26及晶圆固持器28,三者呈现「ㄈ」型结构。如此一来,无论离子束以正向或以一入射偏角射向晶圆固持器28,皆不易照射到第三臂25或垂直臂26,从而避免前述机构老化或污染的问题。依据一些实施例,晶圆固持器28设置于转轴且所述转轴的长度足够长,使晶圆固持器28的几何中心至垂直臂26的表面的距离大于固持面的一半外径。因此,离子束射向晶圆固持器28时,不易照射到垂直臂26。依据一些实施例,垂直臂26朝向离子束入射方向的表面为不具弧度的一平面。如此一来,即使离子束射向垂直臂26,亦不会造成离子束朝多个方向反射而影响周围腔室。举例而言,请参照图2,垂直臂26的主体可以为长方体或多个平面组成的立体结构。
请参照图3,依据一些实施例,第一臂21及第二臂23于扫描过程中提供晶圆固持器28延座标轴X的方向移动,于此实施例,扫描轴S1平行于X轴向。第三臂25的配置,允许机械手臂2增加晶圆固持器28延座标轴Y与座标轴Y所构成平面上移动的自由度,从而允许调整晶圆固持器28与离子束发射源的角度,以因应不同的工艺条件。此外,第三臂25的长度足够提供较远的传输距离,允许将晶圆固持器28移动至远处晶圆交换点而承接传输机器人所提供的晶圆,再将其移动回执行离子布植的空间范围。依据一些实施例,为提供承载或传输晶圆时的稳定性,垂直臂26固接于第三臂25以确保晶圆方向于传输过程中不发生偏移。
请参照图1,依据一些实施例,晶圆固持器28枢接于垂直臂26的枢接方向D1垂直于垂直臂26的长轴方向,且枢接方向D1不平行于第三臂的长轴方向D2(呈现空间中的歪斜线)。依据一些实施例,枢接方向D1与第三臂的长轴方向D2的夹角大于0度且小于等于30度。依据一些实施例,第三臂25的长轴的长度大于晶圆固持器28加垂直臂26的宽度W,枢接方向D1与第三臂的长轴方向D2的夹角洽使晶圆固持器28的固持面的切线通过第三枢接单元24。 依据一些实施例,第三枢接单元24具有旋转轴D3,第一枢接单元20具有旋转轴D4,在机械手臂2组装的基态时,该晶圆固持器28的固持面具有切线D5,枢接方向D1与第三臂的长轴方向D2具有一夹角,该夹角洽使旋转轴D3、旋转轴D4、与切线D5共轴。如此一来,机械手臂2处于组装基态时,共轴的轴线得以与离子束的射出方向对齐,从而允许对机械手臂2的整体进行校准。此外,当设计者在规划手臂的移动轨迹时,仅需针对第三枢接单元24于X-Y平面的位置作为基准点进行设计调整,即可确保晶圆固持器28于X-Y平面的位置。此外,请参照图1,藉由前述配置,当机械手臂2处于初始状态时,整体机械手臂2的占地面积(footprint)极小,利于晶圆代工厂的空间配置。
图4为本发明第二实施例的机械手臂的示意图,请参照图4。依据一些实施例,垂直臂配置有盖体(图未示)与开口261,开口261的配置位置对应于垂直臂26内的转动机构27,盖体可拆卸地设置于开口上。所述可拆卸可以指自开口261完全卸除盖体,或自开口261卸除以活页连接于垂直臂26的盖体。如此一来,通过开口261,转动机构27得以被置换或维修。依据一些实施例,开口261与盖体不朝向离子束的入射方向,以避免离子束照射。
图5为本发明第三实施例的机械手臂的示意图;图6为图5所示实施例的机械手臂的爆炸图,请一并参照图5及图6。依据一些实施例,机械手臂2包含多个保护壳29,保护壳29分别设置于第三臂25的上表面、垂直臂26的侧表面以及晶圆固持器28的后侧的表面。依据一些实施例,当离子束以正向射向晶圆固持器28,为避免离子束直接照射到垂直臂26,至少于垂直臂26朝向离子束发射源的表面设置保护壳29。依据一些实施例,当离子束以一倾角射向晶圆固持器28(举例而言,参照图11,以扫描轴S2执行离子布植),为避免离子束直接照射到晶圆固持器28的后侧,至少于晶圆固持器28的后侧的表面设置保护壳29。依据一些实施例,当晶圆固持器28的固持面以一俯角执行离子布植,为避免被固持面所反射的离子束直接照射到第三臂25的上表面,至少于第三臂25的上表面设置保护壳29。依据一些实施例,当晶圆固持器28的固持面以一俯角执行离子布植,为避免被固持面所反射的离子束直接照射到腔室的下表面而导致污染,设置晶圆固持器28的枢接方向D1不平行于第三臂的长轴方向D2,且晶圆固持器28相对第三枢接单元24远离离子束的发射源。如此一来,于离子植入过程中,无论第三臂25被第一臂21及第二臂23 移动到任何位置,设置于第三臂25上表面的保护壳29皆可直接承受自固持面所反射的离子束,而不会照射到腔室的下表面。依据一些实施例,保护壳29的表面材质为石墨、硅或硅化物。所述表面材质可以指镀膜的表面或均匀材质的表面,例如采用硅化物镀膜的金属板或采用石墨板。
图7为本发明第四实施例的离子布植装置的立体示意图。图8A为图7所示实施例的滑动密封组件的第一视角示意图。图8B为图7所示实施例的滑动密封组件的第二视角示意图。图9为图7所示实施例的离子布植装置沿Z轴方向的使用状态示意图。图10为图7所示实施例的离子布植装置沿X轴方向的使用状态示意图。
请一并参照图7至图10,本发明的一实施例的离子布植装置包含一滑动密封组件1以及一机械手臂2。离子布植装置位于离子布植设备的反应室100内。于此,反应室100空间定义出X轴方向、Y轴方向、及Z轴方向,且此三轴方向相互垂直,在本实施例中,离子束R的行进方向平行于Y轴方向而注入反应室100,但不限于此。
滑动密封组件1包含一固定板10、一第一滑板12、一第二滑板14、连接杆16以及一驱动单元18。滑动密封组件1位于反应室100侧面,且滑动密封组件1通过固定板10连接于腔壁102。举例而言,固定板10连接于反应室100的腔壁102,例如:固定板10相邻于腔壁102且彼此相互连接,或固定板10整合于腔壁102结构为一体成型。固定板10具有一贯通口T1。贯通口T1沿Y轴方向自外表面10a向内侧贯穿,且贯通口T1连通于反应室100,此外,贯通口T1的截面呈狭长状,举例而言,贯通口T1为椭圆状开口,其长轴方向沿Z轴方向延伸,且其短轴方向沿X轴方向延伸。其中,贯通口T1具有沿Z轴方向延伸的活动空间,可供连接杆16通过贯通口T1并沿Z轴方向活动。
第一滑板12位于固定板10的外表面10a,而与反应室100分别位于固定板10的相反二侧。第一滑板12具有第一开口T2,且第一开口T2面向贯通口T1且相互连通,其中,沿Z轴方向观之,第一开口T2的口径小于贯通口T1的口径,于此,第一滑板12位于外表面10a上且覆盖至少部分的贯通口T1。第一开口T2沿Y轴方向自第一滑板12的第一表面12a向内侧贯穿,且第一开口T2连通于贯通口T1。此外,第一开口T2的截面呈狭长状,举例而言,第一开口T2为椭圆状开口,其长轴方向沿Z轴方向延伸,且其短轴方向沿X 轴方向延伸。其中,第一开口T2具有沿Z轴方向延伸的活动空间,可供连接杆16通过第一开口T2并沿Z轴方向活动。
第二滑板14位于第一滑板12的第一表面12a,而与固定板10分别位于第一滑板12的相反二侧。第二滑板14具有第二开口T3,且第二开口T3面向第一开口T2且相互连通,其中,沿Z轴方向观之,第二开口T3的口径小于第一开口T2的口径,于此,第二滑板14位于第一表面12a上且覆盖至少部分的第一开口T2。第二开口T3沿Y轴方向自第二滑板14的外侧表面向内侧贯穿,且第二开口T3连通于第一开口T2。此外,第二开口T3具有穿孔空间,供连接杆16通过,举例而言,第二开口T3的截面形状对应于连接杆16的截面形状,且连接杆16穿设于第二开口T3,彼此稳固连接,但不以此为限。藉此,第二滑板14利用第二开口T3容设连接杆16,可供连接杆16通过第二开口T3并沿Z轴方向活动。
连接杆16位于第二滑板14的第二开口T3,且连接杆16沿Y轴方向延伸,而垂直于Z轴方向。连接杆16包含相连接的一驱动端160、一杆体162以及一连接端164。驱动端160位于反应室100之外,杆体162沿Y轴方向通过第二开口T3、第一开口T2及贯通口T1而朝向反应室100延伸,且连接端164位于反应室100内。驱动单元18位于反应室100之外,且驱动单元18连接于连接杆16的驱动端160。驱动单元18可以是但不限于步进马达或千斤顶,用以将驱动端160抬升或下降。依据一些实施例,驱动单元18设置于反应室100的外侧且与驱动端160之间可拆卸式地连接,以利于在不干扰反应室100的真空状态下进行驱动单元18维修及设备保养。如此一来,当驱动单元18发生故障,允许在反应室100不破真空的条件下快速置换驱动单元18以继续工艺。依据一些实施例,驱动单元18直接连接于驱动端160。于一实施例中,连接杆16可为内部具有管道的馈通管体,供设置电子零件通过腔壁102以进入反应室100,例如但不限于导电线路及感测元件等,举例而言,反应室100内的机械手臂2可通过连接杆16,连接于外部的控制电路及/或电源供应器等设备,但不以此为限。
依据一些实施例,机械手臂2位于反应室100内,且设于连接杆16。依据一些实施例,机械手臂2包含第一枢接单元20、第二枢接单元22及第三枢接单元24,机械手臂2的第一臂21的前端210通过第一枢接单元20枢接于 连接杆16的连接端164且第一臂21的长度小于连接杆16的长度,以避免机械手臂2与腔壁102机构干涉。第一臂21的前端210连接于第一枢接单元20。第二臂23的前端230连接于第二枢接单元22,且第二臂23的前端230枢接于第一臂21的后端212,第三臂25的前端250连接于第三枢接单元24,且第三臂25的前端250枢接于第二臂23的后端232。第一枢接单元20可供第一臂21相对于Z轴方向旋转,第二枢接单元22可供第二臂23相对于Z轴方向旋转,且第三枢接单元24可供第三臂25相对于Z轴方向旋转。简言之,机械手臂2利用多个机械支臂经由多个枢接单元相互连接、枢转,以操控晶圆固持器28的扫描方位、角度及运动路径。于此,机械手臂2驱动晶圆固持器28沿一扫描轴S1移动,其中扫描轴S1平行于水平面且垂直于Z轴方向。
请一并参照图7及图10,于一实施例中,反应室100中具有沿Y轴方向注入的点状离子束(Spot beam),以对晶圆进行逐点扫描。于一实施例中,离子束R亦可以为带状离子束(Ribbon beam),晶圆固持器28的扫描轴S1平行于X轴方向,且扫描轴S1垂直于离子束R的行进方向。换言之,晶圆固持器28沿扫描轴S1方向的移动轨迹相对于离子束R的行进方向在离子布植扫描过程中恒定维持垂直角度,此扫描方式定义为线性扫描(Linear scan)。具体而言,机械手臂2驱动晶圆固持器28沿扫描轴S1方向在X轴方向移动,另通过滑动密封组件1的连接杆16驱动作用使晶圆固持器28沿Z轴方向移动,藉此,离子布植装置接受离子束R以垂直角度注入位于晶圆固持器28上例如晶圆等工件(未绘示),实现二维(座标轴X-座标轴Z所在平面)线性扫描(2D linear scan)离子布植工艺。依据一些实施例,在使用点状离子束(spot beam)做离子布值时,二维线性扫描可完整地让点状离子束,以类似连续的锯齿状路径(zigzag)扫描通过晶圆整个表面;而在使用带状离子束(ribbon beam)做离子布值时,由于带状离子束的高度通常大于晶圆直径,通常使用线性扫描即为已足。
发明人认识到,一般的离子布植装置除了难以实现二维线性扫描外,其所使用传统的滑动密封机构仅是利用单一滑板以覆盖腔壁102上的狭长开口,其中单一滑板在向上、向下滑动同时仍须气密式覆盖狭长开口,因此沿Z轴方向的板体高度值需为狭长开口直径的二倍大小,导致单一滑板位于腔壁102上所需布局空间庞大,增加离子布植设备所需反应室100空间及设备成本。
藉由上述离子布植装置结构,滑动密封组件1通过第一滑板12及第二滑 板14等多件式连续滑动组件,相对于固定板10滑动并气密式覆盖固定板10的贯通口T1,而非采用单一滑板设于固定板10的传统方案。请一并参照图7及图9,当滑动密封组件1的连接杆16在反应室100中沿Z轴方向向上移动时,第一滑板12、第二滑板14等多片滑板实体各别沿Z轴方向覆盖贯通口T1的部分区域,具体而言,第一滑板12本体先向上滑动一段距离并覆盖贯通口T1的一部分开口,再由第二滑板14本体向上移动一段距离并覆盖贯通口T1的其余部分开口,同时,允许连接杆16通过反应室100的腔壁102,而经由驱动单元18驱动连接杆16在反应室100内沿Z轴方向移动。换言之,第一滑板12及第二滑板14协同完成滑动密封的动作,且能减少所需占用的空间。此际,第一滑板12及第二滑板14的位置仍大致位于滑动密封组件1周围,并未明显向上突出,大幅减少腔壁102沿Z轴方向所需布局空间,进一步节省反应室100体积及设备成本。
于至少一实施例中,第一枢接单元20、第二枢接单元22及第三枢接单元24至少其中的一可为步进马达,藉此准确控制诸如:第一臂21、第二臂23及第三臂25等机械臂的运动,以提升离子布植工艺精密度。
于至少一实施例中,滑动密封组件1的贯通口T1呈狭长开口,且贯通口T1的口径大于或等于一晶圆直径,举例而言,贯通口T1沿Z轴方向的口径为450mm,可实现二维扫描(2D scan)离子布植工艺。
请继续参照图8A及图8B,于至少一实施例中,滑动密封组件1更包含滑轨单元19。滑轨单元19位于固定板10的外表面10a,且滑轨单元19可为线性凹槽或凸缘等结构,供第一滑板12及第二滑板14相对于固定板10移动。依据一些实施例,滑轨单元19的上缘高于固定板10的上缘,达到提供第一滑板12及第二滑板14在整个移动路径上的稳定性。于另一实施例中,滑动密封组件1更包含第一密封元件以及第二密封元件。举例而言,第一密封元件及/或第二密封元件可为环型垫圈(O-ring)。第一密封元件夹设于固定板10与第一滑板12之间。第一密封元件位于第一滑板12,且围绕于第一开口T2的周缘,增加滑动密封组件1的气密性。第二密封元件夹设于第一滑板12与第二滑板14之间。第二密封元件位于第二滑板14,且围绕于第二开口T3的周缘,增加滑动密封组件1的气密性。
图11为本发明第五实施例的离子布植装置的立体示意图。图12为图11 所示实施例的离子布植装置沿X轴方向的使用状态示意图。请一并参照图11及图12,于一实施例中,反应室100中具有沿Y轴方向注入的离子束R,其中,晶圆固持器28的扫描轴S2与X轴方向呈一倾斜角θ,换言之,晶圆固持器28沿扫描轴S2方向的移动轨迹相对于离子束R的行进方向在离子布植扫描过程中恒定维持为斜向角度(非90度角),在此扫描轴为斜向角度下所进行的离子布植,理想状态可使离子束到达晶圆表面的距离皆相等,此扫描方式定义为同心扫描(Isocentric scan)。具体而言,机械手臂2驱动晶圆固持器28沿扫描轴S2方向在X轴-Y轴所在水平面上移动,在此斜向路径下,离子束R注入晶圆表面的角度固定,且离子束R在离子布植的过程当中,到达晶圆表面的距离皆相等。另外,在一实施中,若在使用点状离子束的条件下,通过滑动密封组件1的连接杆16驱动作用使晶圆固持器28沿Z轴方向移动,藉此,离子布植装置接受离子束R以斜向注入位于晶圆固持器28上例如晶圆等工件(未绘示),可以实现二维等同心扫描(2D isocentric scan)离子布植工艺。
综合上述,本发明的部分实施例提供一种机械手臂2,所述机械手臂2藉由第三臂25调整离子束R至晶圆的入射角度,并藉由垂直臂26使晶圆固持器28远离第一臂21、第二臂23及第三臂25,从而减少机械手臂2大部分的主体受到离子束R照射的机率,延长使用寿命及避免粒子污染。本发明的部分实施例提供一种机械手臂2,所述机械手臂2允许当处于基态时,晶圆固持器28的切线D5、第三枢接单元24的旋转轴D3及第一枢接单元20的旋转轴D4为共轴,如此一来,仅需将共轴的轴线对准离子束R的入射方向,即可完成校准作业。本发明的部分实施例提供一种离子布植装置,主要是利用第一滑板12及第二滑板14等多件式连续滑动组件,各别沿Z轴方向相对于固定板10/腔壁102滑动并气密式覆盖贯通口T1的部分区域,大幅减少滑动密封组件1及腔壁102沿Z轴方向所需布局空间,进一步节省反应室100体积及设备成本。同时,允许连接杆16通过反应室100的腔壁102,并驱动反应室100中机械手臂2沿Z轴方向移动,以实现二维线性/同心扫描(2D linear/isocentric scan),从而在二维方向上将均匀剂量的离子束R以垂直或斜向角度注入工件。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (20)

  1. 一种机械手臂,用以使一工件沿一扫描轴移动以执行该工件的离子布植,其特征在于,该机械手臂包含:
    一第一臂,包含一前端及一后端,该第一臂的长轴方向垂直于一Z轴方向;
    一第二臂,包含一前端及一后端,该第二臂的长轴方向垂直于该Z轴方向且该第二臂的前端枢接于该第一臂的后端;
    一第三臂,包含一前端及一后端,该第三臂的长轴方向垂直于该Z轴方向且该第三臂的前端枢接于该第二臂的后端;
    一垂直臂,包含一上端及一下端,该垂直臂的下端固接于该第三臂的后端;
    一晶圆固持器,具有用以固持该工件的一固持面,该晶圆固持器沿一枢接方向枢接于该垂直臂的上端;以及
    一转动机构,枢接该晶圆固持器于该垂直臂。
  2. 根据权利要求1所述的机械手臂,其特征在于,该枢接方向垂直于该垂直臂的长轴方向,且该枢接方向不平行于该第三臂的长轴方向。
  3. 根据权利要求2所述的机械手臂,其特征在于,该枢接方向与该第三臂的长轴方向的夹角大于0度且小于等于30度。
  4. 根据权利要求1所述的机械手臂,其特征在于,该第三臂、该垂直臂、该晶圆固持器三者共同构成一ㄈ字形状。
  5. 根据权利要求1所述的机械手臂,其特征在于,该晶圆固持器的几何中心至该垂直臂的表面的距离大于该固持面的一半外径。
  6. 根据权利要求1所述的机械手臂,其特征在于,该垂直臂朝向一离子束入射方向的侧表面为非弧面。
  7. 根据权利要求1所述的机械手臂,其特征在于,该晶圆固持器的固持面具有一切线,该第一臂的前端具有一枢接单元,该第一臂的枢接单元具有一第一旋转轴,该第三臂的前端枢接于该第二臂的后端处具有一枢接单元,该第三臂枢接于该第二臂处的枢接单元具有一第二旋转轴,当该机械手臂处于一组装基态时,该枢接方向与该第三臂的长轴方向的夹角使该切线、该第一旋转轴、该第二旋转轴共轴。
  8. 根据权利要求1所述的机械手臂,其特征在于,该垂直臂更配置一盖体与一开口,该开口的配置位置对应于该转动机构,该盖体可拆卸地设置于该开口上。
  9. 根据权利要求1所述的机械手臂,其特征在于,该转动机构包含一转轴、一传动元件及一马达,该转轴设置于该垂直臂的上端并用以枢接该晶圆固持器于该垂直臂,该马达设置于该垂直臂的下端,该传动元件用以将该马达的动力传送至该转轴。
  10. 根据权利要求1所述的机械手臂,其特征在于,更包含至少一保护壳,该保护壳至少设置于以下一个或多个表面:该第三臂的上表面、该垂直臂的侧表面以及该晶圆固持器的后侧的表面。
  11. 根据权利要求10所述的机械手臂,其特征在于,该保护壳的表面材质为石墨、硅或硅化物。
  12. 根据权利要求1所述的机械手臂,其特征在于,该晶圆固持器用以固持该工件以使该工件承受一带状离子束的离子布植,该带状离子束具有一长边与一短边且该长边的长度大于该工件的直径。
  13. 根据权利要求12所述的机械手臂,其特征在于,该带状离子束的传输方向平行于一Y轴方向,且该带状离子束的长边垂直于一XY平面,该机械手臂用以调整该晶圆固持器的固持面垂直于该XY平面且用以调整该扫描轴平行于一X轴方向。
  14. 根据权利要求12所述的机械手臂,其特征在于,该带状离子束的传输方向平行于一Y轴方向,且该带状离子束的长边垂直于一XY平面,该机械手臂用以调整该晶圆固持器的固持面垂直于该XY平面且用以调整该扫描轴与一X轴方向呈现一夹角。
  15. 根据权利要求13或14所述的机械手臂,其特征在于,该机械手臂在沿该扫描轴进行该工件的离子布植时,该带状离子束至该工件的表面的任一点的距离相等。
  16. 一种离子布植装置,其特征在于,包含:
    一滑动密封组件,包含:
    一固定板,连接于一反应室的一腔壁,该固定板具有沿一Z轴方向延伸的一贯通口;
    一第一滑板,相反于该反应室而位于该固定板的一外表面,该第一滑板沿该Z轴方向可滑动于该外表面,该第一滑板具有面向该贯通口的一第一开口,且沿该Z轴方向,该第一开口的口径小于该贯通口的口径;
    一第二滑板,相反于该反应室而位于该第一滑板的一第一表面,该第二滑板可滑动于该第一表面,该第二滑板具有面向该第一开口的一第二开口,且沿该Z轴方向,该第二开口的口径小于该第一开口的口径;
    一连接杆,垂直于该Z轴方向且位于该第二开口,该连接杆包含一驱动端、通过该第一开口及该贯通口的杆体、以及位于该反应室内的一连接端;以及
    一驱动单元,连接于该连接杆的该驱动端且位于该反应室外,其中,该驱动单元用于驱动该连接杆沿该Z轴方向移动;以及
    如权利要求1至5任一项所述的一机械手臂,其中,该第一臂的长度小于该连接杆的长度,该第一臂的前端枢接于该连接杆的该连接端。
  17. 根据权利要求16所述的离子布植装置,其特征在于,该贯通口为狭长开口。
  18. 根据权利要求17所述的离子布植装置,其特征在于,该贯通口的该口径大于或等于一晶圆直径。
  19. 根据权利要求16所述的离子布植装置,其特征在于,该滑动密封组件更包含:
    一第一密封元件,位于该固定板与该第一滑板之间,该第一密封元件围绕并位于该第一滑板的该第一开口的周缘;以及
    一第二密封元件,位于该第一滑板与该第二滑板之间,该第二密封元件围绕并位于该第二滑板的该第二开口的周缘。
  20. 根据权利要求19所述的离子布植装置,其特征在于,该第一密封元件及该第二密封元件至少其中的一包含环型垫圈。
PCT/CN2021/088956 2021-04-22 2021-04-22 离子布植装置及机械手臂 WO2022222098A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/088956 WO2022222098A1 (zh) 2021-04-22 2021-04-22 离子布植装置及机械手臂
CN202180018921.9A CN115516601A (zh) 2021-04-22 2021-04-22 离子布植装置及机械手臂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/088956 WO2022222098A1 (zh) 2021-04-22 2021-04-22 离子布植装置及机械手臂

Publications (1)

Publication Number Publication Date
WO2022222098A1 true WO2022222098A1 (zh) 2022-10-27

Family

ID=83723709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088956 WO2022222098A1 (zh) 2021-04-22 2021-04-22 离子布植装置及机械手臂

Country Status (2)

Country Link
CN (1) CN115516601A (zh)
WO (1) WO2022222098A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899059A (en) * 1988-05-18 1990-02-06 Varian Associates, Inc. Disk scanning apparatus for batch ion implanters
CN102110569A (zh) * 2009-12-25 2011-06-29 上海凯世通半导体有限公司 机械扫描工件的装置
CN103943446A (zh) * 2012-01-20 2014-07-23 汉辰科技股份有限公司 扫描头及运用此扫描头的扫描臂
CN211788912U (zh) * 2020-04-01 2020-10-27 上海临港凯世通半导体有限公司 离子注入机的作业平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899059A (en) * 1988-05-18 1990-02-06 Varian Associates, Inc. Disk scanning apparatus for batch ion implanters
CN102110569A (zh) * 2009-12-25 2011-06-29 上海凯世通半导体有限公司 机械扫描工件的装置
CN103943446A (zh) * 2012-01-20 2014-07-23 汉辰科技股份有限公司 扫描头及运用此扫描头的扫描臂
CN211788912U (zh) * 2020-04-01 2020-10-27 上海临港凯世通半导体有限公司 离子注入机的作业平台

Also Published As

Publication number Publication date
CN115516601A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
KR101669326B1 (ko) 기판 반송 로봇, 기판 반송 시스템 및 기판 반송 방법
WO2019105671A1 (en) Evaporation chamber and system
KR20160030329A (ko) 마이크로 위치결정 시스템을 갖는 급속 열처리 챔버
US6559461B1 (en) Wafer scanning support unit of ion implantation apparatus
US20030197133A1 (en) Method and apparatus for scanning a workpiece in a vacuum chamber
US20210285096A1 (en) Film thickness measuring apparatus and film thickness measuring method, and film forming system and film forming method
WO2022222098A1 (zh) 离子布植装置及机械手臂
JP7475337B2 (ja) 動的水平化を備えた同軸リフト装置
TWI776479B (zh) 離子佈植裝置及機械手臂
KR102297165B1 (ko) 성막 시스템 및 기판 상에 막을 형성하는 방법
JP2020140979A (ja) ロードロックモジュール、基板処理装置及び基板の搬送方法
US6774373B2 (en) Adjustable implantation angle workpiece support structure for an ion beam implanter
KR102512208B1 (ko) 레이저 가공장치
JP4380673B2 (ja) イオンビーム照射装置及びイオンビーム照射方法
JP4020124B2 (ja) イオンビーム照射装置
JP2007111717A (ja) 薄膜を形成した基板のレーザ加工用装置
JP7473195B2 (ja) 集束荷電粒子ビーム装置
WO2022163783A1 (ja) 搬送装置、搬送方法、及び半導体装置の製造方法
JP6722298B2 (ja) 成膜装置、マスクフレーム、アライメント方法
WO2024009470A1 (ja) 搬送装置、搬送方法、及び半導体装置の製造方法
KR20210029671A (ko) 기판 처리 장치 및 기판 처리 방법
KR20240067702A (ko) 기판 처리 장치 및 기판 처리 방법
KR20210001256A (ko) 레이저 가공장치
KR20240041213A (ko) 기판 처리 장치 및 기판 처리 방법
KR20230138424A (ko) 기판 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937337

Country of ref document: EP

Kind code of ref document: A1