WO2022221993A1 - 同步电机 - Google Patents

同步电机 Download PDF

Info

Publication number
WO2022221993A1
WO2022221993A1 PCT/CN2021/088141 CN2021088141W WO2022221993A1 WO 2022221993 A1 WO2022221993 A1 WO 2022221993A1 CN 2021088141 W CN2021088141 W CN 2021088141W WO 2022221993 A1 WO2022221993 A1 WO 2022221993A1
Authority
WO
WIPO (PCT)
Prior art keywords
air gap
rotor
stator
permanent magnet
synchronous motor
Prior art date
Application number
PCT/CN2021/088141
Other languages
English (en)
French (fr)
Inventor
孙天夫
龙凌辉
冯伟
梁嘉宁
李慧云
石印洲
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2021/088141 priority Critical patent/WO2022221993A1/zh
Publication of WO2022221993A1 publication Critical patent/WO2022221993A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the present application relates to the technical field of motors, and in particular, to a synchronous motor.
  • Synchronous motors are divided into permanent magnet synchronous motors, reluctance synchronous motors and hysteresis synchronous motors, and synchronous motors have been widely used in aerospace, industrial automation and Electric vehicles, etc.
  • the purpose of the embodiments of the present application is to provide a synchronous motor, which aims to solve the problem that the performance of the synchronous motor cannot be improved when the working battery is limited.
  • a synchronous motor includes a stator part and a rotor part matched with the stator part, an air gap space is formed between the stator part and the rotor part, and the air gap space is filled with a fluid-conducting magnet.
  • the stator part includes a stator main body
  • the rotor part includes a rotor main body and a plurality of permanent magnet structural members
  • an outer side wall of the rotor main body is provided with a contour corresponding to the outer shape of the permanent magnetic structural member.
  • Each of the permanent magnet structural members is installed in the corresponding installation groove, and the air gap space is formed between the stator main body, the rotor main body and the permanent magnetic structural member.
  • the permanent magnet structure includes two magnetic arms arranged at one end opposite to each other, and the included angle between the magnetic arms gradually decreases along the notch direction of the installation slot.
  • the permanent magnet structure further includes a magnetic base for connecting the two magnetic arms.
  • the permanent magnet structure includes two magnetic arms with one end facing away from each other, and the included angle between the magnetic arms gradually increases along the notch direction of the installation slot.
  • the air gap space is provided with a plurality of magnetic resistance parts arranged at intervals, and each of the magnetic resistance parts separates the air gap space to form several independent air gap subspaces, and the fluid conducting A magnet is filled in the air gap subspace.
  • a plurality of magnetic resistance members arranged at intervals are arranged in the air gap space, and each of the magnetic resistance members is arranged at an end of the magnetic arm; At the ends of the two magnetic arms, the two magnetic resistance members, the stator main body and the mover main body are enclosed to form a first air gap subspace; At the adjacent two permanent magnetic structural members At the ends of the two adjacent magnetic arms, the two magnetic resistance members, the stator main body and the mover main body are enclosed to form a second air gap subspace, and the fluid conducting magnet is filled in the within the second air gap subspace.
  • the stator part includes a stator main body
  • the rotor part includes a rotor main body
  • a plurality of salient poles are provided on the outer side of the rotor main body
  • the stator main body is connected with the rotor main body and each of the salient poles The air gap space is formed therebetween.
  • the rotor body is a non-magnetically conductive rotor body.
  • the air gap space is a cavity formed between two adjacent protruding structures, and the fluid-conducting magnet is filled in the cavity.
  • the stator portion further includes a plurality of windings wound on the stator body.
  • the beneficial effects of the synchronous motor provided by the embodiments of the present application are that: in the synchronous motor of the present application, an air gap space is formed between the stator part and the mover part, and the air gap space is filled with a fluid-conducting magnet. That is to say, the air gap space is filled with the fluid magnetic conductor, thereby reducing the magnetic flux leakage problem of the stator part and the rotor part, and increasing the torque density. In this way, under the condition of a certain working current, the torque output of the synchronous motor is significantly improved.
  • FIG. 1 is a cross-sectional view of a synchronous motor according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a synchronous motor according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a synchronous motor according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a synchronous motor according to an embodiment of the present invention.
  • reluctance refers to a parameter in the magnetic circuit containing permanent magnets, which is due to the existence of magnetic flux leakage in the magnetic circuit.
  • a permanent magnet when a permanent magnet is used to generate a working magnetic field, three parts, a permanent magnet, a high-permeability soft magnet and an air gap of appropriate size, are collectively referred to as a magnetic circuit.
  • the permanent magnets provide the magnetic flux, and the magnetic field is generated at the air gap after being connected by the soft magnets.
  • the synchronous motor of the present application includes a stator part 10 and a rotor part 20 adapted to the stator part 10 .
  • the rotor part 20 is able to rotate about its axis relative to the stator part 10 under the action of the magnetic field.
  • an air gap space 30 is formed between the stator part 10 and the rotor part 20 , the air gap space 30 is used to realize the rotation of the rotor part 20 relative to the stator part 10 around the axis, and the air gap space 30 is filled with a fluid magnetic conductor 40 .
  • the fluid-permeable magnet 40 is a fluid-state magnetic-permeable substance that can flow in the air gap space 30 .
  • the fluid magnet conducting body 40 is a liquid magnetorheological fluid, the magnetorheological fluid fills the air gap space 30 and fills the air gap space 30 , thereby improving the flow of magnetic flux between the rotor part 20 and the stator part 10 .
  • the fluid conducting magnet 40 is a plurality of spherical magnet conducting beads, and the diameter of the magnet conducting beads is small enough to flow in the air gap space 30 and fill the air gap space 30 .
  • the magnetic conductive beads filled in the air gap space 30 can also satisfy the requirement that the rotor part 20 rotates around the axis relative to the stator part 10 , and at the same time, the magnetic flux flow between the two can be improved, so as to prevent the magnetic field strength from being in the air gap space 30 . attenuate.
  • the fluid magnetic conductor 40 is filled in the air gap space 30 between the stator part 10 and the rotor part 20 .
  • the fluid-conducting magnet 40 is used to fill the air gap space 30, so as to improve the flow of magnetic flux in the air gap space 30. In this way, when a certain working current is applied to the synchronous motor, or when the working current is limited, it can be Reducing the influence of the magnetic field strength by the air gap space 30 can further improve the torque density of the synchronous motor.
  • the stator part 10 includes a stator body 11 , which forms a magnetic field in an energized state, for example, a three-phase alternating current is connected to the stator body 11 .
  • the rotor part 20 includes a rotor main body 21 and a plurality of permanent magnet structural members 22.
  • the rotor main body 21 is a carrier.
  • the magnetic field formed by each permanent magnetic structural member 22 interacts with the magnetic field formed by the energized stator main body 11, so that the rotor main body 21 is opposite to each other.
  • the stator main body 11 is rotated about an axis.
  • the rotor main body 21 is provided with a number of installation slots that are adapted to the outline of the permanent magnet structure 22.
  • each installation groove 21a is arranged at intervals with the central axis of the rotor body 21 as the center of rotation.
  • ten installation grooves 21a are provided on the rotor main body 21, and a corresponding one is provided at each of the ten installation grooves 21a.
  • the number of the permanent magnet structural members 22 and the installation grooves 21a can also be adjusted according to actual needs.
  • several installation grooves 21a are opened in the rotor main body 21, then each permanent magnet structure 22 enters the corresponding installation groove 21a from the end of the rotor main body 21 during installation.
  • Each permanent magnet structure 22 is installed in the corresponding installation slot 21a, and the slot structure of the installation slot 21a is adapted to the outline of the permanent magnet structure 22, so as to ensure the installation mechanical strength of each permanent magnet structure 22.
  • the magnetic poles of the two adjacent permanent magnet structures 22 are opposite. It can be understood that, for example, the N pole of the permanent magnet structural member 22 in the first position faces the outside, and the S pole of the permanent magnet structural member 22 adjacent to it faces the outside.
  • the N pole, the air gap space 30 , the stator body 11 , the air gap space 30 , and the S pole of the other permanent magnet structure 22 are opposite.
  • the shape of the permanent magnet structure 22 can be adjusted according to actual needs.
  • the permanent magnet structure 22 includes two first permanent magnets 221 with one end facing each other.
  • the S pole or the N pole of the first permanent magnet 221 faces outward.
  • the included angle between the two first permanent magnets 221 gradually decreases along the notch direction of the installation slot 21a, that is, the opening of the permanent magnet structure 22 is in a constricted state, and the magnetization effect is better, which can Increase the magnetic intensity of the synchronous motor; in another case, the angle between the two first permanent magnets 221 gradually increases along the notch direction of the installation slot 21a, that is, the opening of the permanent magnet structure 22 is enlarged.
  • the magnetization effect of the flared permanent magnet structure 22 is relatively reduced, which is suitable for synchronous motors with other pole-slot coordination and torque density requirements.
  • the permanent magnet structure 22 further includes a first permanent magnet 222 for connecting the other ends of the two first permanent magnets 221 , the first permanent magnet 222 and the two first permanent magnets 222 .
  • the magnets 221 enclose a U-shaped permanent magnet structure 22 on the cross section of the rotor main body 21 . It can be understood that each first permanent magnet 221 and a plurality of first permanent magnets 222 are enclosed to form the permanent magnet structure 22 having a U-shaped structure, which also follows the same outward polarity, that is, the S pole or the N pole. .
  • the opening of the U-shaped permanent magnet structure 22 faces the stator main body 11 , that is, the direction of the magnetic circuit is ensured to face the stator main body 11 .
  • the permanent magnet structure 22 also has a U-shaped structure, and the difference from the above embodiment is that the number of the first permanent magnets 221 and the number of the first permanent magnets 222 of the permanent magnet structure 22 are different, That is, at least two or more first permanent magnets 221 are sequentially connected to form the vertical portion of the U-shaped structure, and at least two or more first permanent magnets 222 are sequentially connected to form the horizontal portion of the U-shaped structure.
  • the permanent magnet structure 22 includes two first permanent magnets 221 with one end abutting and the other end facing away from each other, and the included angle between the two first permanent magnets 221 is along the notch direction of the installation slot 21a gradually increase.
  • the permanent magnet structure 22 in this case also follows the principle of the same polarity. It can be understood that the permanent magnet structure 22 in this embodiment is V-shaped, and its opening direction faces the stator main body 11 , that is, the direction of the magnetic circuit is guaranteed to face the stator main body 11 .
  • a plurality of magnetic resistance members 50 are arranged in the air gap space 30 at intervals.
  • the magnetic resistance members 50 are non-magnetic metal structural members or structures made of other materials. The function is to avoid the magnetic circuit communication between the two adjacent permanent magnetic structural members 22, that is, to avoid the formation between the N pole of the adjacent permanent magnetic structural member 22 and the S pole of another permanent magnetic structural member 22. The path that does not pass through the stator reduces unnecessary flux leakage to the magnetic flux.
  • each magnetic resistance member 50 can also be selected, that is, each magnetic resistance member 50 is set on the side of the stator main body 11 facing the rotor main body 21, that is, each magnetic resistance member 50 is stationary relative to the rotor main body 21; or , each magnetic resistance member 50 is arranged on the side of the rotor main body 21 facing the stator main body 11 , that is, each magnetic resistance member 50 rotates around the axis together with the rotor main body 21 .
  • the air gap space 30 is separated to form several independent air gap subspaces 31. It can be understood that each air gap subspace 31 is also separated by each magnetic resistance member 50 and independently set.
  • the fluid-conducting magnets 40 are filled in the corresponding air-gap subspaces 31 .
  • the air-gap subspace 31 may correspond completely or partially to the opening of the permanent magnetic structure 22 , that is, the fluid-conducting magnet 40 of the air-gap subspace 31 has the following situations: First, the fluid in the air-gap subspace 31 The magnetic conductor 40 completely corresponds to the opening of the permanent magnetic structure member 22. At this time, the magnetic resistance effect of the magnetic resistance member 50 is the best, and the magnetic conductivity of the fluid magnetic conductor 40 is also the best.
  • the magnetic circuit of the magnetic structural member 22 has no magnetic leakage problem.
  • the fluid magnetic conductor 40 of the air-gap subspace 31 corresponds to the opening of the permanent magnetic structure 22 .
  • the air-gap subspace 31 and the opening of the permanent magnetic structure 22 are staggered, so that the fluidic magnetic conductor 40 also has a part Outside the opening of the permanent magnet structure 22, in this way, the flow of magnetic flux can be satisfied, but the effect is relatively poor.
  • the air-gap subspace 31 is larger than the opening of the permanent magnet structure 22 and completely corresponds to it. At this time, the magnetic resistance effect of the magnetic resistance member 50 and the magnetic conduction effect of the fluid magnetic conducting body 40 are both better.
  • each magnetic resistance member 50 is located between the first permanent magnets 221 of two adjacent permanent magnet structural members 22 .
  • the air gap subspace 31 formed by each magnetic resistance member 50 is larger than the opening of the permanent magnetic structure member 22, and at the same time, it completely corresponds to the opening thereof.
  • the fluid-conducting magnet 40 can fill all the air-gap sub-spaces 31 , or the fluid-conducting magnet 40 can selectively fill in the corresponding air-gap subspace 31 .
  • the fluid conducting magnets 40 are filled into the corresponding corresponding air gap subspaces 31 at intervals.
  • the number of the magnetic resistance members 50 between the first permanent magnets 221 of the two permanent magnet structural members 22 is not limited, and one or more may be provided.
  • each magnetic resistance member 50 is located at the end of one of the first permanent magnets 221 of the permanent magnet structural member 22 , and it can be understood that the magnetic resistance member 50 is located at the current permanent magnet At the end of one of the first permanent magnets 221 of the magnetic structural member 22 facing the stator body 11 , the air gap subspace 31 formed is larger than the opening formed by the two first permanent magnets 221 of the permanent magnetic structural member 22 , and similarly, filling the fluid magnetic conducting body 40 in the corresponding air-gap subspace 31 can also serve the purpose of conducting magnetism.
  • each magnetic resistance member 50 is located at the ends of the two first permanent magnets 221 of the permanent magnet structure 22.
  • the two magnetic resistance members 50 are respectively arranged at the two first permanent magnets 221 of the current permanent magnet structure.
  • the air gap subspaces 31 formed in this way are all completely compatible with the openings formed by the two first permanent magnets 221 of the permanent magnet structure 22.
  • the fluid magnetic conductor 40 is filled in the air-gap subspace 31 , and there is no magnetic flux leakage or reduced magnetic flux leakage in the magnetic circuit.
  • each air gap subspace 31 is divided into a first air gap subspace and a second air gap subspace, wherein the first air gap subspace corresponds to the opening of the permanent magnet structure 22, And the second air gap subspace is located at the neutral position of the two adjacent permanent magnet structures 22, so that the fluid conductive body 40 can also be selected as follows when filling: fill in all the first air gap subspaces; Or, it is filled in part of the first air gap subspace; or, it is filled in all the first air gap subspace and all the second air gap subspace; or, it is filled in all the first air gap subspace and Part of the second air gap subspace; alternatively, filled in part of the first air gap subspace and all of the second air gap subspace; alternatively, filled in part of the first air gap subspace and part of the second air gap subspace.
  • the stator part 10 includes a stator body 11
  • the rotor part 20 includes a rotor body 21 and a plurality of protruding structures 23 disposed on the outer side of the rotor body 21 .
  • the structures 23 are arranged on the outer side of the rotor main body 21 at equal intervals with the rotor main body 21 as the central axis as the rotation center.
  • An air gap space 30 is formed between the stator main body 11 and the rotor main body 21 and each protruding structure 23 .
  • the synchronous motor is a synchronous reluctance motor, which is different from a synchronous permanent magnet motor in that the torque of the synchronous reluctance motor needs to rely on the protruding structure of the rotor part 20 , that is, the rotor of the rotor part 20
  • the main body 21 is a non-magnetically conductive rotor main body 21, for example, made of non-magnetically conductive metal or non-metallic material.
  • the air gap space 30 is filled with a fluid magnetic conductor 40, the magnetic field formed by the fluid magnetic conductor 40 interacts with the magnetic field of the energized stator part 10, and the formed force pushes one or more of the protruding structures 23, Thus, the entire rotor part 20 is rotated about the axis relative to the stator part 10 .
  • the air gap space 30 is a cavity formed between two adjacent protruding structures 23 , and the fluid magnetic conductor 40 is filled in the cavity.
  • the cavity is a groove extending in the axial direction of the rotor body 21 and communicating with both ends of the rotor body 21 , or the cavity is a closed cavity extending in the axial direction of the rotor body 21 . groove.
  • the stator part 10 further includes a plurality of windings 12 wound on the stator body 11 . It can be understood that each winding 12 is electrically connected to an external power source, and in an energized state, the winding 12 forms a magnetic field and interacts with the rotor part 20 .
  • the synchronous motor of the present application is an inner rotor motor. As shown in FIG. 1 , the stator part 10 is sleeved on the outer side of the rotor part 20 .
  • the synchronous motor of the present application can also be an outer rotor motor, that is, the rotor part 20 is sleeved on the outer side of the stator part 20 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本申请公开一种同步电机,该同步电机包括定子部(10)以及与定子部(10)相适配的转子部(20),定子部(10)与转子部(20)之间形成气隙空间(30),气隙空间(30)内填充有流体导磁体(40)。在定子部(10)与动子部(20)之间形成气隙空间(30),并且,在气隙空间(30)内填充流体导磁体(40)。即利用流体导磁体(40)将气隙空间(30)进行填充,从而减小定子部(10)与转子部(20)的漏磁问题,增大其转矩密度。这样,在一定的工作电流的情况下,同步电机的转矩输出得到明显提升。

Description

同步电机 技术领域
本申请涉及电机技术领域,具体涉及一种同步电机。
背景技术
同步电机分为永磁同步电机、磁阻同步电机以及磁滞同步电机,并且,同步电机因为其具有高功率、高效率、高转矩密度等优点已被广泛地应用于航空航天、工业自动化以及电动汽车等领域。
然后,同步电机在工作电流受限的情况下,电机的磁强强度以及电机的转矩无法进一步提升。
技术问题
本申请实施例的目的在于:提供一种同步电机,旨在解决的同步电机在工作电池受限的情况下,其性能无法提升的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
一种同步电机包括定子部以及与所述定子部相适配的转子部,所述定子部与所述转子部之间形成气隙空间,所述气隙空间内填充有流体导磁体。
在一个实施例中,所述定子部包括定子主体,所述转子部包括转子主体以及若干个永磁结构件,所述转子主体的外侧壁上开设有与所述永磁结构件的外形轮廓相适配的若干个安装槽,各所述永磁结构件安装于对应的所述安装槽内,所述定子主体与所述转子主体和所述永磁结构件之间形成所述气隙空间。
在一个实施例中,所述永磁结构件包括一端相向设置的两个磁臂,各所述磁臂之间夹角沿所述安装槽的槽口方向逐渐减小。
在一个实施例中,所述永磁结构件还包括用于连接两个所述磁臂的磁座。
在一个实施例中,所述永磁结构件包括一端相背离设置的两个磁臂,各所述磁臂之间夹角沿所述安装槽的槽口方向逐渐增大。
在一个实施例中,所述气隙空间内设有多个间隔设置的阻磁件,各所述阻磁件将所述气隙空间分隔形成若干个独立的气隙子空间,所述流体导磁体填充于所述气隙子空间内。
在一个实施例中,所述气隙空间内设有多个间隔设置的阻磁件,并且,各所述阻磁件设置于所述磁臂的端部;在同一所述永磁结构件的两个所述磁臂的端部处,两个所述阻磁件、所述定子主体和所述动子主体围合形成第一气隙子空间;在相邻两个所述永磁结构件的相邻两个所述磁臂的端部处,两个所述阻磁件、所述定子主体和所述动子主体围合形成第二气隙子空间,所述流体导磁体填充于所述第二气隙子空间内。
在一个实施例中,所述定子部包括定子主体,所述转子部包括转子主体,所述转子主体的外侧设有多个凸极,所述定子主体与所述转子主体和各所述凸极之间形成所述气隙空间。
在一个实施例中,所述转子主体为非导磁转子主体。
在一个实施例中,所述气隙空间为相邻两个所述凸起结构之间所形成凹腔,所述流体导磁体填充于所述凹腔内。
在一个实施例中,所述定子部还包括缠绕于所述定子主体上的多个绕组。
有益效果
本申请实施例提供的同步电机的有益效果在于:本申请的同步电机,定子部与动子部之间形成气隙空间,并且,在气隙空间内填充流体导磁体。即利用流体导磁体将气隙空间进行填充,从而减小定子部与转子部的漏磁问题,增大其转矩密度。这样,在一定的工作电流的情况下,同步电机的转矩输出得到明显提升。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明一实施例提供的同步电机的剖面图;
图2为本发明一实施例提供的同步电机的剖面图;
图3为本发明一实施例提供的同步电机的剖面图;
图4为本发明一实施例提供的同步电机的剖面图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
通常,同步电机中存在磁阻,磁阻是指含有永磁体的磁路中的一个参量,源于磁路存在漏磁。其中,永磁体来产生一个工作磁场时,需要有永磁体、高导磁软磁体和适当大小的气隙三个部分,总称为磁路。永磁体提供磁通,经过软磁体连接后在气隙处产生磁场。磁路中的总磁通量是守恒的,但在气隙处的磁通密度相对降低,原因是部分磁通在在非气隙处流失,称之为漏磁,导致磁路中出现磁阻。同时,同步电机的转矩密度受到的定子与转子之间的气隙限制,导致同步电机在一定工作电流的情况下,同步电机的磁场强度以及转矩密度无法进一步提升。并且,受到加工技术的影响,定子与转子之间的气隙无法无限减小。综上,为解决上述同步电机在一定输入电流的情况下,其磁场强度以及转矩密度无法进一步提升的问题,本申请提供如下技术方案,具体请参见以下实施例:
请参考图1,本申请的同步电机包括定子部10以及与定子部10相适配的转子部20。转子部20在磁场作用下能够相对定子部10绕其轴。并且,定子部10与转子部20之间形成气隙空间30,该气隙空间30用于实现转子部20相对定子部10绕轴线转动,并且,在气隙空间30内填充有流体导磁体40。这里,流体导磁体40是呈流质状态的导磁物质,能够在气隙空间30内流动。例如,流体导磁体40为呈液态的磁流变液,该磁流变液充满在气隙空间30内,并将气隙空间30填充,从而提高转子部20与定子部10之间磁通流通。或者,流体导磁体40是多个呈球状的导磁体珠,该导磁体珠的直径足够小,能够满足在气隙空间30内流动且将气隙空间30进行填充。同理地,填充在气隙空间30内的导磁体珠也能够满足转子部20在相对定子部10绕轴转动的同时,提高二者之间的磁通流通,避免磁场强度在气隙空间30处衰减。
本申请的同步电机,在定子部10和转子部20之间的气隙空间30内填充流体导磁体40。该流体导磁体40用于填充气隙空间30,从而提高气隙空间30处的磁通流通,这样,在对同步电机施加一定工作电流的情况下,或者,工作电流受限的情况下,能够减小磁场强度受气隙空间30的影响,实现同步电机的转矩密度进一步地提升。
请参考图1和图2,在一个实施例中,定子部10包括定子主体11,定子主体11在通电状态下形成磁场,例如,给定子主体11通三相交流电。转子部20包括转子主体21以及若干个永磁结构件22,该转子主体21为载体,各永磁结构件22形成磁场与通电后的定子主体11所形成磁场相互作用,从而使得转子主体21相对定子主体11绕轴转动。转子主体21上开设有与永磁结构件22的外形轮廓相适配的若干个安装槽,这里,各安装槽的设置位置进行说明,例如,在转子主体21的侧壁上开设若干各安装槽21a,各安装槽21a以转子主体21的中轴线为转动中心,而进行间隔地设置,具体地,在转子主体21上开设十个安装槽21a,对应的在十个安装槽21a处均设置一永磁结构件22,当然,也可根据实际需求进行调整永磁结构件22和安装槽21a的数量。或者,在转子主体21内开设若干个安装槽21a,那么,各永磁结构件22在安装时,由转子主体21的端部进入对应的安装槽21a内。各永磁结构件22安装于对应的安装槽21a内,安装槽21a的槽结构与永磁结构件22的外形轮廓相适配,从而保证各永磁结构件22的安装机械强度,并且,相邻两个永磁结构件22的磁极相反。可以理解地,例如,位置第一的永磁结构件22的N极朝向外侧,与其相邻的永磁结构件22的S极则朝向外侧,这样,整体磁路为一永磁结构件22的N极、气隙空间30、定子主体11、气隙空间30以及另一永磁结构件22的S极。
具体地,请参考图,永磁结构件22的形状可根据实际需要进行调整。例如,永磁结构件22包括一端相向设置的两个第一永磁体221,同理地,在位置摆放时,同样遵循第一永磁体221的S极或N极朝向外侧。在一种情况下,两个第一永磁体221之间夹角沿安装槽21a的槽口方向逐渐减小,即该永磁结构件22的开口呈缩口状态,聚磁效果更好,能够增大同步电机的磁强强度;在另一种情况下,两个第一永磁体221之间夹角沿安装槽21a的槽口方向逐渐增大,即该永磁结构件22的开口呈扩口状态,扩口的永磁结构件22聚磁效果相对降低,适用于其他极槽配合及转矩密度要求下的同步电机。
可选地,请参考图2和图3,永磁结构件22还包括用于连接两个第一永磁体221的另一端的第一永磁体222,第一永磁体222和两个第一永磁体221在转子主体21的横截面上围合形成呈U型的永磁结构件22。可以理解地,各第一永磁体221和若干个第一永磁体222围合形成呈U型结构的永磁结构件22同样遵循其朝外的极性是一致的,即为S极或N极。同时,U型的永磁结构件22的开口朝向定子主体11,即保证磁路方向朝向定子主体11。
在一个实施例中,永磁结构件22同样呈U型结构,与上述实施例不同之处在于,该永磁结构件22的第一永磁体221的数量和第一永磁体222的数量不同,即有至少两个以上的第一永磁体221依次连接形成U型结构的竖直部,以及,至少两个以上的第一永磁体222依次连接形成U型结构的水平部。
在另一个实施例中,永磁结构件22包括一端相抵接且另一端相背离设置的两个第一永磁体221,两个第一永磁体221之间夹角沿安装槽21a的槽口方向逐渐增大。同理地,该种情况下的永磁结构件22也同样遵循极性一致的原则。可以理解地,本实施例中的永磁结构件22呈V型,且其开口方向朝向定子主体11,即保证磁路方向朝向定子主体11。
请参考图2和图3,在一个实施例中,气隙空间30内设有间隔设置的多个阻磁件50,这里,阻磁件50为不导磁的金属结构件或其他材质的结构件,其作用是避免相邻的两个永磁结构件22之间的磁路连通,即避免相邻的永磁结构件22的N极与另一永磁结构件22的S极之间形成不经过定子的通路,降低对磁通不必要的漏磁。同时,各阻磁件50的设置位置也可进行选择,即各阻磁件50均设于定子主体11朝向转子主体21的一侧,即各阻磁件50相对转子主体21是静止的;或者,各阻磁件50设于转子主体21朝向定子主体11的一侧,即各阻磁件50随转子主体21一起绕轴转动。同时,由于阻磁件50的增设,使得气隙空间30分隔形成若干个独立的气隙子空间31,可以理解地,各气隙子空间31同样被各阻磁件50进行分隔而独立设置,流体导磁体40填充于对应的气隙子空间31内。这里,气隙子空间31与永磁结构件22的开口可完全对应或者部分对应,即,气隙子空间31的流体导磁体40存在如下几种情况:一是,气隙子空间31的流体导磁体40与永磁结构件22的开口完全对应,此时,阻磁件50的阻磁效果最佳,以及,流体导磁体40的导磁效果也最好,且,相邻的两个永磁结构件22的磁路无漏磁问题。二是,气隙子空间31的流体导磁体40与永磁结构件22的开口部分对应,此时,气隙子空间31与永磁结构件22的开口相错开,使得流体导磁体40也有部分在永磁结构件22的开口之外,这样,能够满足磁通流通,但效果相对较差一些。三是,气隙子空间31大于永磁结构件22的开口处且也完全对应。此时,阻磁件50的阻磁效果和流体导磁体40的导磁效果均较佳。
具体地,请参考图2,在一个实施例中,各阻磁件50位于相邻两个永磁结构件22的第一永磁体221之间。可以理解地,此时,各阻磁件50所分隔形成气隙子空间31则大于永磁结构件22的开口,同时,又完全与其开口对应。在该种情况下所形成各气隙子空间31中,流体导磁体40可填充所有的气隙子空间31,或者,流体导磁体40选择性的填充在对应的气隙子空间31内。例如,流体导磁体40间隔地填充入对应的对应气隙子空间31内。当然,两个永磁结构件22的第一永磁体221之间的阻磁件50的数量不做限定,可以设置一个或多个。
具体地,请参考图3,在另一个实施例中,各阻磁件50位于永磁结构件22的其中一第一永磁体221的端部处,可以理解地,阻磁件50位于当前永磁结构件22的其中一第一永磁体221的朝向定子主体11的端部处,这样,所形成的气隙子空间31均大于永磁结构件22的两个第一永磁体221所形成开口,同样地,在对应的气隙子空间31内填充流体导磁体40同样能够起到导磁的目的。或者,将各阻磁件50位于永磁结构件22的两个第一永磁体221的端部处,可以理解地,是将两个阻磁件50分别设置在当前永磁结构的两个第一永磁体221的朝向定子主体11的端部处,这样,所形成的气隙子空间31均与永磁结构件22的两个第一永磁体221所形成开口完全相适配,此时,在该气隙子空间31内填充流体导磁体40,磁路中无漏磁或漏磁减小。而且,在本实施例中,将各气隙子空间31分为第一气隙子空间和第二气隙子空间,其中,第一气隙子空间与永磁结构件22的开口相对应,而第二气隙子空间位于相邻两个永磁结构件22的空档处,这样,流体导磁体40在进行进行填充时也可如下选择:填充于所有的第一气隙子空间内;或者,填充于部分的第一气隙子空间内;或者,填充于所有的第一气隙子空间和所有的第二气隙子空间内;或者,填充于所有的第一气隙子空间和部分的第二气隙子空间;或者,填充于部分的第一气隙子空间和所有的第二气隙子空间;或者,填充于部分的第一气隙子空间和部分的第二气隙子空间。
请参考图4,在另一实施例中,定子部10包括定子主体11,转子部20包括转子主体21以及设于转子主体21的外侧的多个凸起结构23,可选择地,各凸起结构23以转子主体21为中轴线为转动中心等间距地设于转子主体21的外侧上。定子主体11与转子主体21和各凸起结构23之间形成气隙空间30。在本实施例中,同步电机为同步磁阻电机,与同步永磁电机不同之处在于,同步磁阻电机的转矩需要依靠转子部20的凸起结构性,即,该转子部20的转子主体21为非导磁转子主体21,例如,由非导磁的金属或非金属材料制成。同时,在气隙空间30处填充流体导磁体40,该流体导磁体40所形成的磁场与通电后的定子部10的磁场相互作用,所形成作用力推动其中一个或几个凸起结构23,从而使得整个转子部20相对定子部10绕轴转动。
具体地,请参考图4,气隙空间30为相邻两个凸起结构23之间形成凹腔,流体导磁体40填充于凹腔内。可以理解地,凹腔为沿转子主体21的轴向方向延伸的且连通转子主体21的两端部的凹槽,或者,凹腔为沿沿转子主体21的轴向方向延伸的且封闭的凹槽。
具体地,请参考图1和图4,定子部10还包括缠绕于定子主体11上的多个绕组12。可以理解地,各绕组12与外部电源电性连接,在通电状态下,绕组12形成磁场与转子部20相互作用。
在一个实施例中,本申请的同步电机为内转子电机,如图1所示,定子部10套设在转子部20的外侧。当然,本申请的同步电机也可为外转子电机,即,转子部20套设在定子部20的外侧。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (12)

  1. 一种同步电机,其特征在于,包括定子部以及与所述定子部相适配的转子部,所述定子部与所述转子部之间形成气隙空间,所述气隙空间内填充有流体导磁体。
  2. 根据权利要求1所述的同步电机,其特征在于,所述定子部包括定子主体,所述转子部包括转子主体以及若干个永磁结构件,所述转子主体上开设有与所述永磁结构件的外形轮廓相适配的若干个安装槽,各所述永磁结构件安装于对应的所述安装槽内,并且,相邻两个所述永磁结构件的磁极相反。
  3. 根据权利要求2所述的同步电机,其特征在于,所述永磁结构件包括一端相向设置的两个第一永磁体,两个所述第一永磁体之间夹角沿所述安装槽的槽口方向逐渐减小,或者,两个所述第一永磁体之间夹角沿所述安装槽的槽口方向逐渐增大。
  4. 根据权利要求3所述的同步电机,其特征在于,所述永磁结构件还包括用于连接两个所述第一永磁体的另一端的第二永磁体,所述第二永磁体和两个所述第一永磁体在所述转子主体的横截面上围合形成呈U型的所述永磁结构件。
  5. 根据权利要求2所述的同步电机,其特征在于,所述永磁结构件包括一端相抵接且另一端相背离设置的两个第一永磁体,两个所述第一永磁体之间夹角沿所述安装槽的槽口方向逐渐增大。
  6. 根据权利要求3至5任一项所述的同步电机,其特征在于,所述气隙空间内设有间隔设置的多个阻磁件,各所述阻磁件设于所述定子主体朝向所述转子主体的一侧;或者,各所述阻磁件设于所述转子主体朝向所述定子主体的一侧,各所述阻磁件将所述气隙空间分隔形成若干个独立的气隙子空间,所述流体导磁体填充于所述气隙子空间内。
  7. 根据权利要求6所述的同步电机,其特征在于,各所述阻磁件位于相邻两个所述永磁结构件的所述第一永磁体之间。
  8. 根据权利要求6所述的同步电机,其特征在于,各所述阻磁件位于所述永磁结构件的其中一所述第一永磁体的端部处;或者,各所述阻磁件位于所述永磁结构件的两个所述第一永磁体的端部处。
  9. 根据权利要求1所述的同步电机,其特征在于,所述定子部包括定子主体,所述转子部包括转子主体以及设于所述转子主体的外侧的多个凸起结构,所述定子主体与所述转子主体和各所述凸起结构之间形成所述气隙空间。
  10. 根据权利要求9所述的同步电机,其特征在于,所述转子主体为非导磁转子主体。
  11. 根据权利要求9所述的同步电机,其特征在于,所述气隙空间为相邻两个所述凸起结构之间所形成凹腔,所述流体导磁体填充于所述凹腔内。
  12. 根据权利要求2或9所述的同步电机,其特征在于,所述定子部还包括缠绕于所述定子主体上的多个绕组。
PCT/CN2021/088141 2021-04-19 2021-04-19 同步电机 WO2022221993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/088141 WO2022221993A1 (zh) 2021-04-19 2021-04-19 同步电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/088141 WO2022221993A1 (zh) 2021-04-19 2021-04-19 同步电机

Publications (1)

Publication Number Publication Date
WO2022221993A1 true WO2022221993A1 (zh) 2022-10-27

Family

ID=83723644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088141 WO2022221993A1 (zh) 2021-04-19 2021-04-19 同步电机

Country Status (1)

Country Link
WO (1) WO2022221993A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185544A (ja) * 1986-02-07 1987-08-13 Shin Meiwa Ind Co Ltd ダイレクトドライブモ−タ
JPS62250860A (ja) * 1986-04-24 1987-10-31 Fanuc Ltd 磁性流体を利用したモ−タ
JPH04112668A (ja) * 1990-09-03 1992-04-14 Japan Steel Works Ltd:The 回転磁性流体壁形推進装置
JP2013215022A (ja) * 2012-03-31 2013-10-17 Daihatsu Motor Co Ltd モータ
CN109980878A (zh) * 2019-04-08 2019-07-05 哈尔滨工业大学 内置式v型-u型串并联混合磁路可调磁通永磁同步电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185544A (ja) * 1986-02-07 1987-08-13 Shin Meiwa Ind Co Ltd ダイレクトドライブモ−タ
JPS62250860A (ja) * 1986-04-24 1987-10-31 Fanuc Ltd 磁性流体を利用したモ−タ
JPH04112668A (ja) * 1990-09-03 1992-04-14 Japan Steel Works Ltd:The 回転磁性流体壁形推進装置
JP2013215022A (ja) * 2012-03-31 2013-10-17 Daihatsu Motor Co Ltd モータ
CN109980878A (zh) * 2019-04-08 2019-07-05 哈尔滨工业大学 内置式v型-u型串并联混合磁路可调磁通永磁同步电机

Similar Documents

Publication Publication Date Title
US9608485B2 (en) Rotor for rotating electrical machine, rotating electric machine, and method for producing rotor for rotating electrical machine with magnet having surfaces tilted with respect to magnet insertion hole
US10530203B2 (en) Rotor and reluctance motor
JP5332082B2 (ja) モータ
KR102129348B1 (ko) 회전자 및 자기 저항 모터
JP6055725B2 (ja) 回転子および回転子を用いたアキシャル型回転電機
US20150288233A1 (en) Rotor and motor using the same
WO2014188628A1 (ja) ロータおよびモータ
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
JP4854867B2 (ja) 電動機
JP7017642B2 (ja) ロータ構造、永久磁石補助型同期リラクタンスモータ及び電気自動車
JP2016010176A (ja) モータ
CN112994389B (zh) 一种轴向-径向磁通永磁电机结构
BR102018073728A2 (pt) Máquina elétrica giratória equipada com mecanismo variável de fluxo magnético
CN106953432B (zh) 旋转电机
JP2011147346A (ja) 電動機
WO2021065687A1 (ja) 回転子、モータ
WO2022221993A1 (zh) 同步电机
CN113078791A (zh) 同步电机
US20210091620A1 (en) Single-phase Brushless High-speed Motor
JP2022502988A (ja) ロータ及び永久磁石モータ
CN111030402A (zh) 方向性硅钢片轴向磁场电动机
CN214544059U (zh) 同步电机
KR20230133912A (ko) 모터 회전자 및 모터
KR20150114879A (ko) 로터 및 이를 이용하는 모터
CN219351382U (zh) 转子结构和电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937244

Country of ref document: EP

Kind code of ref document: A1