WO2022220575A1 - 피부색 판단용 유전자 다형성 마커 및 이의 용도 - Google Patents

피부색 판단용 유전자 다형성 마커 및 이의 용도 Download PDF

Info

Publication number
WO2022220575A1
WO2022220575A1 PCT/KR2022/005336 KR2022005336W WO2022220575A1 WO 2022220575 A1 WO2022220575 A1 WO 2022220575A1 KR 2022005336 W KR2022005336 W KR 2022005336W WO 2022220575 A1 WO2022220575 A1 WO 2022220575A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin color
skin
nucleotide polymorphism
single nucleotide
markers
Prior art date
Application number
PCT/KR2022/005336
Other languages
English (en)
French (fr)
Inventor
서정연
신중곤
유승원
원홍희
김범수
김단세
Original Assignee
주식회사 엘지생활건강
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지생활건강, 성균관대학교 산학협력단 filed Critical 주식회사 엘지생활건강
Priority to CN202280027644.2A priority Critical patent/CN117222751A/zh
Publication of WO2022220575A1 publication Critical patent/WO2022220575A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Definitions

  • the present invention relates to a composition for determining skin color, comprising a polymorphic marker having correlation with skin color, a probe capable of detecting the same or an agent capable of amplifying the same, a kit or microarray for determining skin color comprising the composition, and the gene It relates to a method of providing information on skin color using a polymorphic marker or a combination of markers.
  • Skin color represents many differences between races or individuals, and can be influenced by environmental factors and factors such as age, gender, and genetic variation. Based on the understanding of the genetic and biological differences underlying the skin color differences, it is possible to present appropriate solutions to individual skin concerns according to skin color characteristics. According to the existing genome-wide association studies (GWAS) on skin color, it is revealed that a genetic mutation located in a gene functionally related to a biological pathway related to skin color is significantly related to skin color. . However, most of the existing GWAS studies have targeted European and African races, and there are few large-scale studies on Asian races, so the understanding of skin color-related genetic variation in Asian races is low.
  • GWAS genome-wide association studies
  • the discovery of skin-related genetic mutations and genes is expected to provide important information for understanding biological mechanisms and understanding and predicting individual skin characteristics. Genetic analysis research is moving from research that discovers genetic indicators related to diseases or phenotypes to researches that predict future diseases or phenotypes using the discovered genetic indicators. In particular, research on predicting facial shape transformation or skin aging through genetic analysis research on facial shape or skin characteristics is also underway (Kemp et al., Molecules. 2017 Feb 26;22(3), 2017). However, GWAS studies on the large-scale skin color of East Asians, including Koreans, are still lacking.
  • the present inventors tried to establish a classification system for Korean skin characteristics through the construction of big data of genetic information and skin type information. As a result of diligent efforts to develop personalized active ingredients and contribute to the development of customized cosmetics for each skin characteristic through various product segmentation, a specific single nucleotide polymorphism (SNP) marker that has a significant correlation with skin color was selected and based on genetic information The present invention was completed by confirming a method for providing information on skin color.
  • SNP single nucleotide polymorphism
  • One object of the present invention is to provide a single nucleotide polymorphism (SNP) marker for skin color determination.
  • SNP single nucleotide polymorphism
  • Another object of the present invention is to provide a composition for determining skin color, comprising a probe capable of detecting a single nucleotide polymorphism (SNP) marker for determining skin color or an agent capable of amplifying it.
  • SNP single nucleotide polymorphism
  • Another object of the present invention is to provide a kit or microarray for determining skin color comprising the composition.
  • Another object of the present invention is to provide a method of providing information on skin color, comprising the step of identifying a polymorphic site of the single nucleotide polymorphism marker.
  • FIG. 1 is a schematic block diagram for explaining an information providing system using predicted intrinsic skin color characteristics according to the present invention.
  • FIG. 2 is a flowchart illustrating a method for providing information using predicted intrinsic skin color characteristics according to the present invention.
  • FIG. 3 is a flowchart illustrating a method for providing information using predicted unique skin color characteristics according to another embodiment of the present invention.
  • One aspect of the present invention provides a single nucleotide polymorphism (SNP) marker for determining skin color.
  • SNP single nucleotide polymorphism
  • compositions for determining skin color comprising a probe capable of detecting or amplifying a single nucleotide polymorphism (SNP) marker for determining skin color.
  • SNP single nucleotide polymorphism
  • the skin type of an individual may be classified according to the degree of skin color.
  • polymorphism refers to a case in which two or more alleles exist at one locus, and among polymorphic sites, only a single base differs from person to person. It is called (single nucleotide polymorphism, SNP).
  • Preferred polymorphic markers have two or more alleles exhibiting an incidence of at least 1%, more specifically at least 10% or 20%, in a selected population.
  • a 'genetic polymorphic marker' is usually two or more alleles at the same locus (base). It refers to a case in which alleles are observed, and generally, depending on the individual, a major allele/major allele, a major allele/minor allele, and a lower allele.
  • polymorphic marker may mean a base and a base region of a lower allele, or may be defined together with the number and base position of a chromosome, but is not limited thereto.
  • allele refers to several types of one gene present at the same locus of homologous chromosomes. Alleles are also used to indicate polymorphism, for example, SNPs have two types of alleles. In addition, it refers to a combination of two or more bases having the same chromosome number and base position, and the base is a higher allele with a higher frequency of occurrence in a specific group of individuals and a lower with lower frequency of occurrence than the upper allele contains minor alleles.
  • the genetic polymorphic markers of the present invention are related to skin color, and when one or more of the two alleles have a lower allele, the skin color is the major allele. It can be said to be significant compared to individuals with the /major allele. That is, in the case of a major allele/minor allele, and a minor allele/minor allele, the major allele/major allele ), it can be seen that the degree has higher or lower skin characteristics compared to the degree of skin color.
  • the single nucleotide polymorphism marker of the present invention can predict an individual's unique skin color characteristics, it can also provide information on active ingredients that effectively act on skin color changes, so it is possible to provide personalized cosmetics, etc. It is not limited thereto.
  • rs_id refers to rs-ID, an independent marker given to all SNPs initially registered by the NCBI, which has been accumulating SNP information since 1998.
  • rs_id described in this table means a SNP marker, which is a polymorphic marker of the present invention.
  • the term 'skin color' refers to the overall color of an individual's skin, and refers to a result of measuring a region that can represent the overall color of the face, such as both cheeks.
  • the skin color of a general individual is 48,433 analysis subjects in which two alleles are observed at the same gene location (base). It means the average skin color of the face part measured for the subject, and the value can be derived as continuous values for each of brightness (CIE L*), redness (CIE a*), and yellowness (CIE b*) within the analysis area. It is not limited thereto.
  • skin color may be classified by dividing it into lightness (skin brightness), redness, and yellowness.
  • skin color may be classified in consideration of skin brightness and/or overall skin color such as red or yellow, but is not limited thereto.
  • the single nucleotide polymorphism marker may be one or more single nucleotide polymorphism markers selected from among the single nucleotide polymorphism markers shown in Tables 1 to 3.
  • the single nucleotide polymorphism markers shown in Tables 1 to 3 may determine the degree of correlation with the degree of skin color.
  • the single nucleotide polymorphism marker is one or more single nucleotide polymorphism markers selected from Table 1 related to skin brightness, one or more single nucleotide polymorphism markers selected from Table 2 related to skin redness, or yellowness of the skin It may be one or more single nucleotide polymorphism markers selected from Table 3 related to.
  • the significance of association of the single nucleotide polymorphism marker of the present invention with skin color was derived from the difference in the observation frequency of the genetic polymorphism marker according to each of the brightness, redness, and yellowness representing skin color.
  • Such significance is characterized by, but is not limited to, a p-value such as, but not limited to, a p-value of less than 0.05, less than 0.01, less than 0.001, less than 0.0001, less than 0.00001, less than 0.000001, less than 0.0000001, less than 0.00000001, or less than 0.000000001.
  • the p-value may be less than 0.01, more specifically, the p-value may be less than 0.001, and more specifically, it may be less than 0.0001, but is not limited thereto.
  • the single nucleotide polymorphism (SNP) marker of the present invention may be any one or more selected from the markers shown in Tables 1 to 3, but is not limited thereto.
  • the single nucleotide polymorphism (SNP) marker may be one or more, and may be used as a combination of a number such as two or more, three or more, four or more that can determine skin color, but is not limited thereto.
  • the marker may be, but is not limited to, the SNP itself, or a polynucleotide consisting of 5-100 consecutive DNA sequences including the SNP position, or a polynucleotide consisting of a complementary sequence thereof.
  • the single nucleotide polymorphism marker may be any one or more selected from the markers shown in Table 1 related to skin brightness, but is not limited thereto.
  • a marker selected from among the markers shown in Table 1 may be described as follows.
  • the marker selected from Table 1 is
  • any one or more of the single nucleotide polymorphism (SNP) markers shown in Table 2 may be selected, but the present invention is not limited thereto.
  • any one or more of the single nucleotide polymorphism (SNP) markers shown in Table 3 may be selected, but the present invention is not limited thereto.
  • the single nucleotide polymorphism markers shown in Tables 2 to 3 may be interpreted and selected as described above, but are not limited thereto.
  • the allele of the present invention has the same number of chromosomes in each individual, and among them, a major allele and a minor allele of the SNP exist, and the base of the polymorphic site of the polymorphic marker is lower As the allele increases one by one, the upper allele may decrease one by one, and as one increases into the upper allele one by one, the lower allele may decrease by one.
  • the range in which the lower allele and upper allele can increase and decrease is i) major allele/major allele, ii) major allele/minor allele ), iii) may be within three types of lower alleles/minor alleles, and the allele may decrease or increase within the range of the three types, but is not limited thereto. .
  • the marker is a marker capable of determining skin color as the bases of the polymorphic site of the polymorphic marker of an individual increase by one minor allele. Specifically, (1) a major allele/minor allele having one or more minor alleles among two alleles, (2) a lower allele ( Minor allele/in the case of minor alleles) have a higher degree of skin color or a higher degree of skin color compared to those carrying the major allele/major allele, which are common individuals. Or it may be judged to have low skin characteristics.
  • the degree of increase or decrease in the brightness of skin color that is, the brightness.
  • the markers shown in Table 1 when the upper allele T at the 5953024th base of the individual's chromosome 9 and the lower allele is C (rs10815321), compared with a person who has T/T, T / If you have C or C/C, it can be determined that the skin brightness increases because the effect size is positive (+), and the upper allele A is the upper allele A at the 96403238th base of the individual chromosome 7, and the lower allele is G (rs1839358), compared with those who have A/A, when holding A/G or G/G, the effect size is negative (-), so it can be determined that the skin brightness decreases, but not limited
  • the degree of increase or decrease in the degree of redness of the skin color As the number of minor alleles among the markers shown in Table 2 increases one by one, it is possible to determine the degree of increase or decrease in the degree of redness of the skin color. For example, among the markers shown in Table 2, when the upper allele A is the upper allele A at the 166643609th base of the individual's chromosome 4 and the lower allele is T (rs7667134), compared with those who have A / A, A / In the case of having T or T/T, since the effect size is positive (+), it can be determined that the degree of skin redness increases, and it is the upper allele G at the 125308682th base of the individual's chromosome 12, and the lower allele is A (rs10846742), compared with those who have G/G, if you have G/A or A/A, the effect size is negative (-), so it can be judged that the redness of the skin is reduced. may, but is not limited thereto
  • the number of minor alleles among the markers shown in Table 3 increases one by one, it is possible to determine the degree of increase or decrease in the yellowness of the skin color.
  • the upper allele C at the 28233905th base of the individual's chromosome 15 and the lower allele is T (rs10775262), compared with those who have C/C, C / If you have T or T/T, the effect size is positive (+), so it can be determined that the yellowness of the skin increases, and it is the upper allele G at the 125315647th base of the individual's chromosome 12, and the lower allele is A (rs7485656), compared with those who have G/G, if you have G/A or A/A, the effect size is negative (-), so it can be judged that the yellowness of the skin is reduced.
  • T the upper allele C at the 28233905th base of the individual's chromosome 15 and the lower allele
  • the effect size is positive (+)
  • the effect size
  • a polymorphic marker highly correlated with the skin color of Koreans may be additionally included.
  • any one or more single nucleotide polymorphism markers selected from Tables 4 to 6 for determining skin color may be highly correlated with skin color of Koreans, but is not limited thereto.
  • the single nucleotide polymorphism markers related to the brightness (brightness) of the skin color of Koreans may be any one or more selected from the markers shown in Table 4, and the single nucleotide polymorphism markers related to the redness of the skin color of Koreans are the markers shown in Table 5. It may be any one or more selected from among, and the single nucleotide polymorphism marker related to the yellow degree of skin color of Koreans may be any one or more selected from the markers shown in Table 6, but is not limited thereto.
  • representative single nucleotide polymorphism markers related to the brightness of skin color in Koreans are rs730502, rs10775262, rs10775263, rs7173419 and rs12915041, and the single nucleotide polymorphism markers related to the redness of the skin color of Koreans are rs7667134, rs999318, rs17688866, rs57940970, and rs17632434 as shown in Table 5.
  • the term "probe capable of detecting a marker for determining skin color” refers to a composition capable of diagnosing skin color by identifying through a hybridization reaction specifically with a polymorphic region of a gene as described above, and such a gene analysis
  • the specific method is not particularly limited, and may be by any gene detection method known in the art to which this invention pertains.
  • the term may be used interchangeably with the term 'for determining skin color'.
  • the term "agent capable of amplifying the marker for skin color judgment” refers to a composition capable of diagnosing the degree of skin color by identifying the polymorphic region of the gene as described above through amplification, and specifically, the marker for determining skin color. It refers to a primer capable of specifically amplifying a polynucleotide of In addition, the term may be used interchangeably with the terms 'for skin color diagnosis', 'for skin color level determination', and 'skin color level diagnosis use'.
  • the primers used for amplifying the polymorphic marker are prepared under suitable conditions (e.g., 4 different nucleoside triphosphates and a polymerization agent such as DNA, RNA polymerase or reverse transcriptase) in an appropriate buffer and template-directing DNA under an appropriate temperature.
  • suitable conditions e.g., 4 different nucleoside triphosphates and a polymerization agent such as DNA, RNA polymerase or reverse transcriptase
  • a polymerization agent such as DNA, RNA polymerase or reverse transcriptase
  • the appropriate length of the primer may vary depending on the intended use, but is usually 15 to 30 nucleotides. Short primer molecules generally require lower temperatures to form stable hybrids with the template.
  • the primer sequence need not be completely complementary to the template, but must be sufficiently complementary to hybridize to the template.
  • primer refers to a nucleotide sequence having a short free 3' hydroxyl group, which can form a base pair with a complementary template and is a start for template strand copying. A short sequence that functions as a branch. Primers are capable of initiating DNA synthesis in the presence of reagents for polymerization (ie, DNA polymerase or reverse transcriptase) and four different nucleoside triphosphates in appropriate buffers and temperatures. By performing PCR amplification, the skin type can be predicted by the degree of production of the desired product. PCR conditions, the length of the sense and antisense primers can be modified based on what is known in the art.
  • the probes or primers of the present invention can be chemically synthesized using the phosphoramidite solid support method, or other well-known methods.
  • Such nucleic acid sequences may also be modified using a number of means known in the art. Non-limiting examples of such modifications include methylation, "encapsulation", substitution of one or more homologues of natural nucleotides, and modifications between nucleotides, such as uncharged linkages (eg, methyl phosphonates, phosphotriesters, phosphoroamidates, carbamates, etc.) or charged linkages (eg phosphorothioates, phosphorodithioates, etc.).
  • uncharged linkages eg, methyl phosphonates, phosphotriesters, phosphoroamidates, carbamates, etc.
  • charged linkages eg phosphorothioates, phosphorodithioates, etc.
  • kits for determining skin color comprising the composition for determining skin color.
  • the kit may be an RT-PCR kit or a DNA chip kit, but is not limited thereto.
  • the kit of the present invention can diagnose a skin type by checking the SNP polymorphic marker, which is a marker for skin type determination, by amplification, or by checking the expression level of the SNP polymorphic marker and the mRNA expression level.
  • the kit for measuring the mRNA expression level of the marker for skin type determination in the present invention may be a kit including essential elements necessary for performing RT-PCR.
  • the RT-PCR kit includes a test tube or other suitable container, reaction buffer (pH and magnesium concentration vary), deoxynucleotides (dNTPs) ), enzymes such as Taq-polymerase and reverse transcriptase, DNase, RNAse inhibitors, DEPC-water, sterile water, and the like.
  • dNTPs deoxynucleotides
  • enzymes such as Taq-polymerase and reverse transcriptase, DNase, RNAse inhibitors, DEPC-water, sterile water, and the like.
  • a primer pair specific for a gene used as a quantitative control may be included.
  • the kit of the present invention may be a kit for determining skin type including essential elements necessary for performing a DNA chip.
  • a DNA chip kit is a method in which nucleic acid species are attached in a gridd array to a generally flat solid support plate, typically a glass surface no larger than a microscope slide, and the nucleic acids are uniformly arranged on the chip surface, so that the DNA chip It is a tool that allows multiple hybridization reactions between the nucleic acids on the chip surface and the complementary nucleic acids contained in the solution treated on the chip surface to enable massively parallel analysis.
  • Another aspect of the present invention provides a microarray for determining skin color comprising the composition for determining skin color.
  • the microarray may include DNA or RNA polynucleotides.
  • the microarray consists of a conventional microarray except that the polynucleotide of the present invention is included in the probe polynucleotide.
  • the probe polynucleotide refers to a hybridizable polynucleotide, and refers to an oligonucleotide capable of sequence-specific binding to a complementary strand of a nucleic acid.
  • the probe of the present invention is an allele-specific probe.
  • a polymorphic site exists in nucleic acid fragments derived from two members of the same species, so that it hybridizes to a DNA fragment derived from one member but does not hybridize to a fragment derived from another member. .
  • the probe of the present invention can be used in a method for diagnosing a skin type by detecting an allele.
  • the diagnostic methods include detection methods based on hybridization of nucleic acids, such as Southern blotting, and may be provided in a form previously bound to a substrate of a DNA chip in a method using a DNA chip.
  • the hybridization can usually be performed under stringent conditions, for example, a salt concentration of 1M or less and a temperature of 25° C. or more.
  • 5x SSPE 750 mM NaCl, 50 mM Na Phosphate, 5 mM EDTA, pH 7.4
  • 25-30° C. may be suitable for allele-specific probe hybridization.
  • the process of immobilizing the probe polynucleotide related to the skin diagnosis of the present invention on a substrate can also be easily prepared using this conventional technique.
  • hybridization of nucleic acids on microarrays and detection of hybridization results are well known in the art.
  • the detection is, for example, labeling a nucleic acid sample with a label capable of generating a detectable signal including a fluorescent substance, for example, a substance such as Cy3 and Cy5, and then hybridizing on a microarray and generating from the labeling material.
  • the hybridization result can be detected by detecting the signal to be used.
  • Another aspect of the present invention comprises the steps of (a) amplifying the polymorphic site of the single nucleotide polymorphism marker in DNA obtained from a sample isolated from an individual or hybridizing with a probe; and (b) identifying the base of the amplified or hybridized polymorphic site of step (a).
  • DNA may be obtained from the sample, such as hair, urine, blood, various body fluids, isolated tissues, isolated cells, or samples such as saliva, but is not limited thereto.
  • step (a) Any method known to those skilled in the art can be used for the method of obtaining genomic DNA in step (a).
  • any method known to those skilled in the art may be used for amplifying the polymorphic site of the single nucleotide polymorphism marker or hybridizing with a probe from the DNA obtained in step (a).
  • it can be obtained by amplifying a target nucleic acid through PCR and purifying it.
  • Others include ligase chain reaction (LCR) (Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988)), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)) and self-maintaining sequence replication (Guatelli et al., Proc. Natl. Acad. Sci. USA 87, 1874 (1990)) and nucleic acid-based sequence amplification (NASBA) can be used.
  • LCR ligase chain reaction
  • LCR Landegren et al., Science 241, 1077 (1988)
  • determining the base of the polymorphic site in step (b) includes sequencing analysis, microarray hybridization, allele specific PCR, dynamic allele-specific hybridization, DASH), PCR extension assay, SSCP, PCR-RFLP assay or TaqMan technique, SNPlex platform (Applied Biosystems), mass spectrometry (e.g. Sequenom's MassARRAY system), mini-sequencing method, Bio-Plex systems (BioRad), CEQ and SNPstream systems (Beckman), Molecular Inversion Probe array technologies (eg, Affymetrix GeneChip), and BeadArray Technologies (eg, Illumina GoldenGate and Infinium assays).
  • One or more alleles in polymorphic markers can be identified, including microsatellites, SNPs, or other types of polymorphic markers, by the above methods or other methods available to those skilled in the art. Determination of the base of such a polymorphic site can be specifically performed through a SNP chip.
  • the method additionally (c) when the base of the amplified or hybridized polymorphic site includes one or more bases that are minor alleles according to the single nucleotide polymorphism marker, it is determined that the skin color is high or low may be, but is not limited thereto.
  • (c) additionally (c) when the base of the amplified or hybridized polymorphic site includes at least one base that is a major allele according to the single nucleotide polymorphism marker it is determined that the brightness of skin color increases or decreases, or , it may be determined that the degree of redness of the skin color increases or decreases, or it is determined that the degree of yellowness of the skin color increases or decreases, but is not limited thereto.
  • SNP chip refers to one of the DNA microarrays that can check each base of hundreds of thousands of SNPs at once.
  • the TaqMan method comprises the steps of (1) designing and manufacturing a primer and a TaqMan probe to amplify a desired DNA fragment; (2) labeling probes of different alleles with FAM dye and VIC dye (Applied Biosystems); (3) using the DNA as a template, and performing PCR using the primers and probes; (4) after the PCR reaction is completed, analyzing and confirming the TaqMan assay plate with a nucleic acid analyzer; and (5) determining the genotype of the polynucleotides of step (1) from the analysis result.
  • FAM dye and VIC dye Applied Biosystems
  • the sequencing analysis may use a conventional method for determining the nucleotide sequence, and may be performed using an automated gene analyzer.
  • allele-specific PCR refers to a PCR method of amplifying a DNA fragment in which the SNP is located with a primer set including a primer designed with the 3' end of the base in which the SNP is located.
  • the principle of the method is, for example, when a specific base is substituted from A to G, a primer containing A as a 3' end base and a reverse primer capable of amplifying a DNA fragment of an appropriate size are designed to perform PCR
  • a primer containing A as a 3' end base and a reverse primer capable of amplifying a DNA fragment of an appropriate size are designed to perform PCR
  • the primer when the base at the SNP position is A, the amplification reaction is normally performed and a band at the desired position is observed, and when the base is substituted with G, the primer can bind to the template DNA, but 3 ' This is taking advantage of the fact that the amplification reaction is not performed properly due to the inability to perform complementary binding at the end.
  • DASH may be performed by a conventional method, and specifically may be performed by a method by Prince et al.
  • PCR extension analysis first amplifies a DNA fragment containing a base in which the single nucleotide polymorphism is located with a pair of primers, and then inactivates all nucleotides added to the reaction by dephosphorylating, and here a SNP-specific extension primer;
  • a primer extension reaction is performed by adding a dNTP mixture, dideoxynucleotide, reaction buffer and DNA polymerase.
  • the extension primer uses the 3' end of the base immediately adjacent to the 5' direction of the base at which the SNP is located, the dNTP mixture excludes a nucleic acid having the same base as the dideoxynucleotide, and the dideoxynucleotide represents the SNP It is selected from one of the base types. For example, when there is a substitution from A to G, when a mixture of dGTP, dCTP and TTP and ddATP are added to the reaction, the primer is extended by DNA polymerase at the base where the substitution has taken place, and after a few bases, A The primer extension reaction is terminated by ddATP at the position where the base first appears. If the substitution does not occur, since the extension reaction is terminated at that position, it is possible to determine the type of base representing the SNP by comparing the lengths of the extended primers.
  • the SNP when the extension primer or dideoxynucleotide is fluorescently labeled, the SNP can be detected by detecting fluorescence using a gene analyzer (eg, ABI's Model 3700, etc.) used for general sequencing. In the case of using a non-labeled extension primer and dideoxynucleotide, the SNP can be detected by measuring the molecular weight using a matrix assisted laser desorption ionization-time of flight (MALDI-TOF) technique.
  • MALDI-TOF matrix assisted laser desorption ionization-time of flight
  • Another aspect of the present invention provides a method for providing information using predicted intrinsic skin color characteristics. Specifically, (a) calculating a first value indicating skin brightness from SNPs data of a specific individual, (b) calculating a second value indicating the degree of skin redness from SNPs data of a specific individual; (c) calculating a third value representing the degree of yellow skin from the SNPs data of a specific individual, (d) a first reference value of the first values calculated from each of the plurality of individuals, from each of the plurality of individuals calculating a second reference value of the calculated second values and a third reference value of the third values calculated from each of the plurality of individuals, (e) the first value, the second value and the third value from the SNPs data of the subject calculating a value, and comparing the calculated first value, the second value, and the third value of the subject with the first reference value, the second reference value, and the third reference value calculated in step (d), respectively, and ( f) predicting the intrinsic skin color characteristic matching the first comparison result data
  • Tables 1 to 3 show a number of single polymorphic markers. Specifically, Table 1 shows a number of single polymorphic markers affecting skin brightness, and Table 2 lists a number of polymorphic markers that affect the degree of skin redness. Single nucleotide polymorphism markers, Table 3 shows a number of single nucleotide polymorphism markers that affect the degree to which the skin appears yellow.
  • each type of marker may have different degrees of influence on skin brightness, redness, and yellowness of the skin. That is, each single nucleotide polymorphism marker may have different weights on skin brightness, redness, and yellowness.
  • the weight of each single nucleotide polymorphism marker on the skin brightness, redness, and yellowness is determined through statistical methods such as linear regression analysis, and using the determined weights, the following formula is used.
  • a formula for predicting intrinsic skin color characteristics was derived.
  • n is a natural number
  • SNP 11 to SNP 1n are single nucleotide polymorphism markers selected from Table 1, and the effect size represents the weight quantifying the influence of each single nucleotide polymorphism marker on skin brightness.
  • Second value (SNP 21 x effect size 21 ) + (SNP 22 x effect size 22 ) + (SNP 23 x effect size 23 ) + ... + (SNP 2n x effect size 2n )
  • SNP 21 to SNP 2n are single nucleotide polymorphism markers selected from Table 2, and the effect size represents the weight quantifying the influence of each single nucleotide polymorphism marker on the degree of skin redness.
  • n is a natural number
  • SNP 11 to SNP 1n are single nucleotide polymorphism markers selected from Table 3, and the effect size represents the weight quantifying the influence of each single nucleotide polymorphism marker on the degree to which the skin appears yellow.
  • the intrinsic skin color characteristic of the subject is predicted using the first value, the second value, and the third value through Equations 1 to 3.
  • a first value, a second value, and a third value are calculated from the SNPs data of a specific individual through Equations 1 to 3.
  • a first value, a second value, and a third value may be respectively calculated from a plurality of individuals, and a first value, a second value, and a third value may be respectively calculated from the plurality of individuals, from which the first reference value , a second reference value and a third reference value are generated.
  • the reference value may be, for example, an average value of each of the plurality of first to third values, but is not limited thereto, and values that may mean a reference of the plurality of first to third values by a statistical analysis technique such as a median value are used. can all be included.
  • the plurality of individuals may be all Korean, but is not particularly limited thereto.
  • a first value, a second value, and a third value are calculated from the subject's SNPs data through Equations 1 to 3.
  • Comparison result data for example, a difference value between a first value and a first reference value, a difference value between a second value and a second reference value, a difference value between a third value and a third reference value may be included here).
  • unique skin color characteristics matching each of the comparison result data may be stored in advance. Accordingly, it is possible to predict the unique skin color characteristic previously stored by matching the generated comparison result data as the subject's unique skin color characteristic.
  • a plurality of pieces of skin care product information and a plurality of pieces of life pattern information affecting skin color may be stored in advance.
  • skin care product information and life pattern information are matched differently to a combination of a plurality of comparison result data and a plurality of unique skin color characteristics.
  • the comparison result data 1 and the unique skin color characteristic 1 may be stored by matching the skin care product 1 and the life pattern information 3
  • the comparison result data 2 and the unique skin color characteristic 2 are the skin care product 2 and the life pattern information 1 may be matched and stored (see FIG. 1 ).
  • the present invention selects and recommends matching skin care product information and life pattern information.
  • the selected recommendation information is output through a separate output device such as a display. Accordingly, it is possible to recommend optimal skin care product information and life pattern information tailored to the subject's skin characteristics.
  • another comparison result data may be generated by measuring the skin color of the subject and comparing the measured skin color (actual skin color) with the target skin color.
  • the comparison result data generated by comparing the first to third values with the first reference value to the third reference value is referred to as the first comparison result data, the measured skin color of the subject, and the target skin color It is assumed that the comparison result data generated through the comparison with and is the second comparison result data.
  • the present invention may select and recommend matching skin care product information and life pattern information.
  • the skin care product information and Since life pattern information is selected and recommended, it can have the effect of increasing the accuracy of the recommendation and the user's satisfaction.
  • the term “skin care product” refers to any product that can change skin color characteristics as it is applied (eg, applied) to a body part, for example, and the term “skin care product information” refers to a specific skin It should be understood as a generic term for all information that can identify skin care products, such as product names and ingredient names of care products.
  • the skin care product can be applied to the skin, such as the face and/or other parts of the body. For example, when the brightness of the intrinsic skin color is low, information on a whitening product that can increase the brightness of the skin color may be provided. It is not limited thereto.
  • life pattern information refers to information that can change skin color characteristics as the subject performs the corresponding life pattern for a predetermined period or longer, for example, eating habits information, exercise information, UV exposure time information, It should be understood as a generic term for all information related to daily life while changing skin color characteristics such as weight change information.
  • the method according to an embodiment of the present invention described above may be implemented in the form of computer program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the present invention, or may be known and available to those skilled in the art of computer software.
  • Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks.
  • - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to carry out the operations of the present invention, and vice versa.
  • Another aspect of the present invention provides an information providing system using predicted intrinsic skin color characteristics. Specifically, SNPs data of each of a plurality of individuals is stored, and a unique skin color characteristic matched to each of the plurality of comparison result data, reference values calculated by the reference value calculation device 21, and a skin color characteristic value calculation device 22
  • a storage device 10 configured to store the skin color characteristic value calculated by A first reference value of the calculated first values (eg, a first average value that is an average of the first values), a second reference value of the calculated second values (eg, a second average value that is an average of the second values) ) and a third reference value of the calculated third values (eg, a third average value that is an average value of the third values), the reference value calculation device 21 configured to calculate the first value of the subject using the SNPs data of the subject a skin color characteristic value calculating device 22 configured to calculate a value, a second value and a third value, comparing the first reference value with a first value of the subject, and comparing the second reference value with
  • the first value is one or more mononucleotide polymorphic markers selected from Table 1, and the selected mononucleotide polymorphic marker is the skin It is calculated using the weight, which is the degree of influence on the brightness, and the second value is the degree to which one or more single polymorphic markers selected from Table 2 and the selected single polymorphic marker affect the degree to which the skin appears red. It is calculated using a phosphorus weight, and the third value uses one or more single polymorphic markers selected from Table 3 and a weight that is the degree to which the selected single polymorphic marker affects the yellow color. to provide a system for predicting unique skin color characteristics.
  • the storage device 10 may be provided in the form of a memory capable of storing predetermined data, and SNPs data of each of a plurality of entities and SNPs data of a subject are stored. Also, in the storage device 10 , a plurality of unique skin color characteristics matched one-to-one with a plurality of comparison result data, reference values calculated by the reference value calculation device 21 , and skin color characteristics calculated by the skin color characteristic value calculation device 22 . The value is saved.
  • the storage device 10 stores a plurality of pieces of skin care product information and a plurality of life pattern information to be recommended, and a plurality of comparison result data (comparison result data 1 to comparison result data N (N is a natural number equal to or greater than 2) )) and multiple skin care product information (skin care product information 1 to skin care product information N (N is a natural number greater than or equal to 2)), different skin care product information and life pattern information are matched and stored according to the number of combinations do.
  • skin care product information and life pattern information according to the number of combinations of the subject's unique skin color characteristics, the first and second comparison result data, respectively, are matched and stored.
  • the calculation device 20 may be provided in the form of a microcontroller unit (MCU) such as a CPU having a calculation function.
  • MCU microcontroller unit
  • the calculation device 20 includes a reference value calculation device 21 and a skin color characteristic value calculation device. (22), a comparison result generating device 23, a prediction device 24, and an information selection device 25 are included.
  • the reference value calculation device 21 is configured to calculate a first value, a second value, and a third value of specific SNPs data through Equations 1 to 3 using the SNPs data stored in the storage device 10 . Also, the reference value calculation device 21 calculates a first reference value (eg, a first average value that is an average value of the first values) of the first values calculated from a plurality of entities, and a second reference of the second values calculate a value (eg, a second average value that is an average of the second values), and calculate a third reference value of the third values (eg, a third average value that is an average of the third values). The calculated first to third reference values may be stored again in the storage device 10 .
  • a first reference value eg, a first average value that is an average value of the first values
  • a second reference of the second values calculate a value (eg, a second average value that is an average of the second values)
  • a third reference value of the third values eg, a third average value that
  • the skin color characteristic value calculation device 22 calculates the first value, the second value, and the third value of the subject's SNPs data through Equations 1 to 3 using the subject's SNPs data stored in the storage device 10 . is composed
  • the comparison result generating device 23 compares the calculated first value of the subject with the first reference value, compares the second value with the second reference value, and compares the third value with the third reference value to obtain comparison result data (first comparison result data).
  • the generated comparison result data may include, for example, a difference value between a first value and a first reference value, a difference value between a second value and a second reference value, and a difference value between a third value and a third reference value. , which is not particularly limited thereto, and all categories of data that may be generated according to the comparison result may be included here.
  • the comparison result generating device 23 compares the measured skin color (actual skin color) of the subject measured by the skin color measuring device 40 with the target skin color of the subject to obtain another comparison result data (second result comparison). data) to be created.
  • the skin color measuring device 40 may be any configuration capable of measuring the actual skin color of the subject, and may be, for example, a camera.
  • the prediction device 24 is pre-stored in the storage device 10, and sets the intrinsic skin color characteristic matching the comparison result data (first comparison result data) generated by the comparison result generating device 23 to the intrinsic skin color characteristic of the subject. predict with The intrinsic skin color characteristic predicted by the prediction device 24 is output through the output device 30 provided in the form of a display or monitor.
  • the present invention relates to the comparison result data (first comparison result data) generated by the comparison result generating device 23 , and skin care product information and life pattern matching the intrinsic skin color characteristic predicted by the prediction device 24 . It may further include an information selection device 25 configured to select information. The skin care product information and life pattern information selected by the information selection device 25 are output through the output device 30 . Through this, information on skin care products tailored to the subject's skin characteristics and life pattern information may be provided.
  • the information selection device 25 may be configured to select skin care product information and life pattern information that match the intrinsic skin color characteristic predicted by the prediction device 24, the first comparison result data, and the second comparison result data. can Through this, it is possible to provide skin care product information and life pattern information that allow the subject to reach a desired target skin color while considering the skin characteristics of the subject.
  • Example 1 Skin color evaluation and gene collection
  • Skin color of a general individual is the average facial skin color measured in 48,433 subjects in which both alleles are observed at the same gene location (base). , and the values were derived as successive values for each of brightness (CIE L*), redness (CIE a*), and yellowness (CIE b*) within the analysis area.
  • Gene collection was done through saliva collection, and for effective gene collection, all analytes were prohibited from ingesting any food including water from 30 minutes before collection.
  • test site has undergone treatment (dermabrasion, botox, other skin care) or planned within 6 months, 8 If you have a chronic wasting disease (asthma, diabetes, high blood pressure, etc.), 9 If you have atopic dermatitis, 10 Other cases judged to be difficult due to the judgment of the main investigator were excluded from the subjects.
  • Gene analysis was performed using Illumina's microarray genotyping chip, and specifically, the genes of the subjects were analyzed using the global screening array product of the same company.
  • Illumina's microarray genotyping chip gene analysis experiment was performed according to the provided manual, and using the provided reagents, genomic DNA amplification, DNA fragmentation, precipitation, hybridization, and staining were performed. , washing, coating, and scanning were performed.
  • microarray genotyping chip on which the experiment was completed was scanned using the iScan Control Software (Illumina), and when the scan was completed, the idat file was automatically created and data quality management (sample call rate 98%, marker call) was performed using the GenomeStudio (Illumina) program. rate 98%) and genetic information was confirmed.
  • Imputation is a statistical technique for inferring unanalyzed genetic polymorphic marker information based on experimentally obtained genetic polymorphic marker information.
  • correct skin color values with information on age or BMI or lifestyle can (e.g., performing linear regression analysis).
  • polymorphic markers related to skin color were derived, and it was confirmed that the polymorphic markers were mainly located on chromosomes 1, 2, 3, 4, 6, 11, 12, and 16 of the human genome.
  • Tables 1 to 3 A list of SNP markers significantly related to skin color is shown in Tables 1 to 3 below. Specifically, Table 1 relates to skin color (brightness)-associated polymorphic markers with a significance level (P) of less than 0.0001, and Table 2 relates to skin color (redness)-associated polymorphic markers with a significance level (P) of less than 0.0001. and Table 3 relates to skin color (yellow degree) related gene polymorphic markers, and the significance level (P) is less than 0.0001.
  • Skin color each value of CIE L*a*b* in both cheek areas (CIE L*: brightness, CIE a*: redness, CIE b*: yellowness), using commercially available equipment (Janus3, PIE company, Korea)
  • Skin color CIE L*a*b* values of both cheek areas (CIE L*: brightness, CIE a*: redness, CIE b*: yellowness), using a commercially available device (Janus3, PIE company, Korea)
  • Skin color CIE L*a*b* values of both cheek areas (CIE L*: brightness, CIE a*: redness, CIE b*: yellowness), using a commercially available device (Janus3, PIE company, Korea)
  • minor allele frequency (2mm + Mm)/2(MM + Mm + mm)
  • SNP single nucleotide polymorphism
  • the markers are rs7667134, rs999318, rs17688866, rs57940970, and rs17632434 as shown in Table 5, and the single nucleotide polymorphism (SNP) markers related to the yellowness of skin color in Koreans are rs10775262, rs10775263, rs730502, rs7485656, and rs10846742.
  • SNP single nucleotide polymorphism
  • Example 5 System for providing customized skin care product information and life pattern information using skin color-related genetic polymorphism markers
  • the expression of the skin color prediction model constructed through the combination of markers may have the following format. The formula can be used as a basis for predicting and classifying an individual's unique skin color characteristics, providing customized skin care products, and providing recommendations for life pattern information.
  • Equation of skin color prediction model SNP 1 X effect size 1 + ... + (SNP n : the number of specific alleles in a specific SNP, effect size: the effect value for SNP n obtained through linear regression analysis, etc.)
  • each predictive model for brightness, redness, and yellowness is calculated from a plurality of objects, and configure a reference database with the values.
  • an average value may be obtained from a reference database, and comparison data may be generated by comparison with a calculated value of a subject. This can be used as a basis for providing customized skin care product information and lifestyle information recommendations.
  • target skin brightness (brightness), redness, and yellowness values (CIE L*a*b*) for the desired skin color
  • CIE L*a*b* yellowness values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 피부색 정도와 연관유의성을 갖는 유전자 다형성 마커를 검출할 수 있는 프로브 또는 증폭할 수 있는 제제를 포함하는, 피부색 판단용 조성물, 상기 조성물을 포함하는 키트 또는 마이크로어레이, 및 상기 유전자 다형성 마커 또는 마커들의 조합을 이용한 피부색에 대한 정보 제공 방법에 관한 것이다. 본 발명의 단일염기다형성 마커들은 개개인의 피부 타입에 정확한 정보를 제공하므로 개인 맞춤형 화장품 개발 및 맞춤형 유효성분을 개발할 수 있다.

Description

피부색 판단용 유전자 다형성 마커 및 이의 용도
본 발명은 피부색과 연관유의성을 갖는 유전자 다형성 마커, 이를 검출할 수 있는 프로브 또는 증폭할 수 있는 제제를 포함하는, 피부색 판단용 조성물, 상기 조성물을 포함하는 피부색 판단용 키트 또는 마이크로어레이, 및 상기 유전자 다형성 마커 또는 마커들의 조합을 이용한 피부색에 대한 정보 제공 방법에 관한 것이다.
피부색은 인종 혹은 개인 간에 많은 차이를 나타내며, 환경적 요인과 연령, 성별 및 유전자 변이와 같은 요인들에 의해 영향을 받을 수 있다. 피부색 차이의 저변에 깔린 유전학적, 생물학적 차이에 대한 이해를 바탕으로 피부색 특성에 따라 개개인의 피부 고민에 대한 적절한 해결책을 제시할 수 있다. 피부색에 대한 기존의 전장유전체연관분석연구(GWAS, Genome-wide association study)들에 따르면, 피부색과 관련된 생물학적 경로와 기능적으로 연관된 유전자 내에 위치하고 있는 유전자 변이가 피부색과 유의하게 관련되어 있음이 밝혀지고 있다. 그러나, 기존의 GWAS 연구들은 대부분 유럽과 아프리카 인종을 대상으로 하였으며 아시아 인종에 대한 대규모 연구는 거의 없기에 아시아 인종의 피부색 연관 유전적 변이에 대한 이해는 낮다.
피부와 연관된 유전변이 및 유전자의 발굴은 생물학적 기전의 이해와 개인의 피부 특징을 이해하고 예측하는데 중요한 정보를 제공할 것으로 기대된다. 유전자 분석 연구는 질병이나 표현형과 관련성이 있는 유전지표를 발굴하는 연구에서, 발굴된 유전지표를 이용하여 미래의 질병이나 표현형을 예측하는 연구로 옮겨가고 있다. 특히 얼굴 형태나 피부 특성에 대한 유전자 분석 연구를 통해 얼굴 형태 변형이나 피부 노화를 예측하는 연구도 진행되고 있다 (Kemp et al., Molecules. 2017 Feb 26;22(3), 2017). 그러나, 아직까지 한국인을 포함한 동아시아인의 대규모 피부색에 대한 GWAS 연구는 매우 부족한 실정이다.
본 발명자들은 유전정보와 피부타입 정보의 빅데이터 구축을 통한 한국인 피부 특성 분류체계를 구축하고자 하였으며, 개체의 피부 특성을 결정하는 유전적 특징을 파악하여 과학적 피부 분류 기준을 구축하고, 이를 근거로 한 개인 맞춤형 유효성분을 개발하여, 다양한 제품 세분화를 통해 피부 특성별 맞춤형 화장품 개발에 기여하고자 예의 노력한 결과, 피부색과 유의적 상관관계를 갖는 특정 단일염기다형성 (SNP) 마커를 선별하고 유전정보를 바탕으로 피부색에 대한 정보를 제공하는 방법을 확인하여 본 발명을 완성하였다.
본 발명의 하나의 목적은 피부색 판단용 단일염기다형성(SNP) 마커를 제공하는 것이다.
본 발명의 또 하나의 목적은 피부색 판단용 단일염기다형성(SNP) 마커를 검출할 수 있는 프로브 또는 증폭할 수 있는 제제를 포함하는, 피부색 판단용 조성물을 제공하는 것이다.
본 발명의 또 하나의 목적은 상기 조성물을 포함하는 피부색 판단용 키트 또는 마이크로어레이를 제공하는 것이다.
본 발명의 또 하나의 목적은 상기 단일염기다형성 마커의 다형성 부위를 확인하는 단계를 포함하는 피부색에 대한 정보의 제공 방법을 제공하는 것이다.
본 발명의 피부색 연관유의성을 갖는 유전자 다형성 마커들을 통하여 개인의 피부색 대한 정보를 제공해 줄 수 있으며, 더 나아가서는 개인에게서 관찰되는 유전자 다형성 마커들의 정보에 따라 개인에게 가장 효과적인 맞춤형 성분 또는 제품을 개발할 수 있을 것이다.
도 1은 본 발명에 따른 예측된 고유 피부색 특성을 이용한 정보 제공 시스템을 설명하기 위한 개략적인 블록도이다.
도 2는 본 발명에 따른 예측된 고유 피부색 특성을 이용한 정보 제공 방법을 설명하기 위한 순서도이다.
도 3은 본 발명의 다른 실시예에 따른 예측된 고유 피부색 특성을 이용한 정보 제공 방법을 설명하기 위한 순서도이다.
본 발명에서 개시된 각각의 설명 및 실시 형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.
본 발명의 하나의 양태는 피부색 판단용 단일염기다형성(SNP) 마커를 제공한다.
본 발명의 다른 하나의 양태는 피부색 판단용 단일염기다형성(SNP) 마커를 검출할 수 있는 프로브 또는 증폭할 수 있는 제제를 포함하는, 피부색 판단용 조성물을 제공한다.
상기 피부색 정도에 따라 개체의 피부 타입을 구분할 수 있다.
본 발명에서 용어, "다형성(polymorphism)"이란 하나의 유전자 좌위(locus)에 두 가지 이상의 대립유전자(allele)가 존재하는 경우를 말하며 다형성 부위 중에서, 사람에 따라 단일 염기만이 다른 것을 단일염기다형성(single nucleotide polymorphism, SNP)이라 한다. 바람직한 다형성 마커는 선택된 집단에서 1% 이상, 더욱 구체적으로 10% 또는 20% 이상의 발생빈도를 나타내는 두 가지 이상의 대립유전자를 가진다.'유전자 다형성 마커'는 일반적으로 동일한 유전자 위치(염기)에서 두 가지 이상의 대립유전자(allele)가 관찰되는 경우를 말하며, 일반적으로 개인에 따라서 상위 대립유전자(major allele)/상위 대립유전자(major allele), 상위 대립유전자(major allele)/하위 대립유전자(minor allele), 하위 대립유전자(minor allele)/하위 대립유전자(minor allele) 의 경우가 존재한다. 본 발명에서는 "다형성 마커"와 혼용될 수 있으며, 하위 대립 유전자의 염기와 염기 부위를 의미하거나, 염색체의 number와 base position과 함께 정의될 수 있으나, 이에 제한되지 않는다.
본 발명에서 용어, "대립유전자(allele)"는 상동염색체의 동일한 유전자좌위에 존재하는 한 유전자의 여러 타입을 말한다. 대립유전자는 다형성을 나타내는데 사용되기도 하며, 예컨대, SNP는 두 종류의 대립인자 (biallele)를 갖는다. 또한, 염색체의 number와 base position이 동일한 둘 이상의 염기의 조합을 의미하며, 상기 염기는 특정한 집단의 개체들에서 발생 빈도가 높은 상위 대립유전자(major allele)와 상기 상위 대립유전자 보다 발생 빈도가 낮은 하위 대립유전자(minor allele)를 포함한다.
구체적으로, 본 발명의 유전자 다형성 마커들은 피부색과 연관유의성이 있는 것으로, 두 가지 대립유전자(allele) 중에서 하위 대립유전자(minor allele)를 하나 이상 보유하고 있는 경우, 피부색이 상위 대립유전자(major allele)/상위 대립유전자 (major allele)를 갖고 있는 개체에 비해 유의미성이 있다고 할 수 있다. 즉, 상위 대립유전자(major allele)/하위 대립유전자(minor allele), 하위 대립유전자(minor allele)/하위 대립유전자(minor allele)의 경우에는 상위 대립유전자(major allele)/상위 대립유전자 (major allele)를 보유하고 있는 경우와 비교하여 피부색 정도에 비해 그 정도가 높거나 혹은 낮은 피부 특성을 가짐을 알 수 있다.
본 발명의 단일염기다형성 마커는 개인의 고유 피부색 특성을 예측 할 수 있도록 하므로, 피부색 변화에 효과적으로 작용하는 유효 성분에 대한 정보도 제공할 수 있는 바, 개인의 맞춤형 화장품 등의 제공이 가능할 수 있으나, 이에 제한되지 않는다.
본 발명에서 용어, "rs_id"란 1998년부터 SNP 정보를 축적하기 시작한 NCBI가 초기에 등록되는 모든 SNP에 대하여 부여한 독립된 표지자인 rs-ID를 의미한다. 이와 같은 표에 기재된 rs_id는 본 발명의 다형성 마커인 SNP 마커를 의미한다.
또한, 본 발명의 목적상 상기 용어 '피부색'은 개인 피부의 전반적인 색상을 의미하는 것으로 양쪽 볼 부위 등 안면부 전반적인 색상을 대변할 수 있는 부위를 측정한 결과를 의미한다. 구체적으로, 본 발명에서 피부색은 일반적인 개인 (상위 대립유전자 / 상위 대립유전자 (major allele / major allele)를 보유)의 피부색은 동일한 유전자 위치(염기)에서 두 가지 대립유전자가 관찰되는 분석대상 48,433명을 대상으로 측정한 안면부 평균 피부색을 의미하며 그 값은 분석 영역 내에서 명도(CIE L*), 붉은 정도(CIE a*), 노란 정도(CIE b*) 각각의 연속적인 수치로 도출될 수 있으나, 이에 제한되지 않는다.
본 발명의 목적상 피부색을 명도(피부 밝기), 붉은 정도, 노란 정도로 나누어 분류할 수 있으며, 분류 시 당업자가 통상적으로 생각할 수 있는 피부색과 관련되는 여러 가지 기준을 포함할 수 있다. 일 예로, 상기 피부색은 피부 밝기 및/또는 붉은색, 노란색 등 전반적인 피부색 등을 고려하여 분류될 수 있으나, 이에 제한되지 않는다.
상기 단일염기다형성 마커는 표 1 내지 표 3에 표시된 단일염기다형성 마커들 중에서 선택된 1종 이상의 단일염기다형성 마커일 수 있다. 상기 표 1 내지 표 3에 표시된 단일염기다형성 마커는 피부색 정도와 연관성이 있는지 정도를 판단하는 것일 수 있다.
구체적으로, 상기 단일염기다형성 마커는 피부의 밝기와 관련된 표 1에서 선택되는 하나 이상의 단일염기다형성 마커이거나, 피부의 붉은 정도와 관련된 표 2에서 선택되는 하나 이상의 단일염기다형성 마커이거나, 피부의 노란 정도와 관련된 표 3에서 선택되는 하나 이상의 단일염기다형성 마커일 수 있다.
본 발명의 단일염기다형성 마커의 피부색과의 연관유의성은 피부색을 대변하는 명도, 붉은 정도, 노란 정도 각각에 따른 유전자 다형성 마커의 관찰 빈도 차이를 통해 도출하였다. 이와 같은 유의성은 0.05 미만, 0.01 미만, 0.001 미만, 0.0001 미만, 0.00001 미만, 0.000001 미만, 0.0000001 미만, 0.00000001 미만, 또는 0.000000001 미만의 p-value와 같은 p-값을 특징으로 하나 이에 제한되지는 않는다. 구체적으로 p-value가 0.01 미만일 수 있으며, 더 구체적으로 p-value가 0.001 미만일 수 있고, 보다 더 구체적으로 0.0001 미만일 수 있으나, 이에 제한되지 않는다.
본 발명의 단일염기다형성(SNP) 마커는 표 1 내지 표 3에 표시된 마커 중 선택되는 어느 하나 이상일 수 있으나, 이에 제한되지 않는다. 상기 단일염기다형성 (SNP) 마커는 1개 이상일 수 있으며, 2개 이상, 3개 이상, 4개 이상 등 피부색을 판단할 수 있는 개수의 조합으로 이용될 수 있으나, 이에 제한되지 않는다.
상기 마커는 SNP 그 자체, 또는 상기 SNP 위치를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드, 또는 이의 상보적인 서열로 구성되는 폴리뉴클레오티드일 수 있으나, 이에 제한되지 않는다.
하나의 구체예로 단일염기다형성 마커는 피부의 밝기와 관련된 표 1에 표시된 마커 중 선택되는 어느 하나 이상일 수 있으나, 이에 제한되지 않는다.
표 1에 표시된 마커 중 선택되는 마커를 설명하면 다음과 같을 수 있다.
한 예로, SNP 아이디가 rs730502의 경우, Chr.Position (GRCh ver. 37)이 "15:28234410"으로 기재되어 있고, Allele이 T>G 로 개시되어 있다면, 이는 인간의 15번 염색체의 28234410번째 염기가 T 또는 G 임을 나타내는 것이며, allele의 ">" 왼쪽에 위치하는 염기가 상위 대립유전자(major allele)를 오른쪽에 위치하는 염기가 하위 대립유전자(minor allele)를 의미하는 것일 수 있다.
하나의 구체예로, 표 1에서 선택되는 마커는
인간의 1번 염색체의 110677712번째 염기가 A 또는 G인(rs7518585), 상기 110677712번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 2번 염색체의 58828927번째 염기가 C 또는 T인(rs7589338), 상기 58828927번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 3번 염색체의 98749778번째 염기가 T 또는 G인(rs774535), 상기 98749778번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 4번 염색체의 90868849번째 염기가 T 또는 C인(rs16996201), 상기 90868849번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 5번 염색체의 88761655번째 염기가 G 또는 T인(rs117007154), 상기 88761655번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 6번 염색체의 85574085번째 염기가 A 또는 G인(rs6913995), 상기 85574085번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 7번 염색체의 96414506번째 염기가 A 또는 G인(rs7786855), 상기 96414506번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 8번 염색체의 78062096번째 염기가 T 또는 A인(rs10097260), 상기 78062096번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 9번 염색체의 5953024번째 염기가 T 또는 C인(rs10815321), 상기 5953024번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 10번 염색체의 88442143번째 염기가 T 또는 C인(rs10749541), 상기 88442143번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 11번 염색체의 78243134번째 염기가 A 또는 C인(rs4285892), 상기 78243134번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 12번 염색체의 89373308번째 염기가 A 또는 C인(rs7969593), 상기 89373308번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 13번 염색체의 27559971번째 염기가 T 또는 C인(rs12429976), 상기 27559971번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 14번 염색체의 92578273번째 염기가 C 또는 G인(rs10146051), 상기 92578273번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 15번 염색체의 28234410번째 염기가 T 또는 G인(rs730502), 상기 28234410번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 16번 염색체의 90067310번째 염기가 A 또는 G인(rs62054574), 상기 90067310번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 17번 염색체의 80988582번째 염기가 C 또는 T인(rs12453146), 상기 80988582번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 18번 염색체의 69562234번째 염기가 T 또는 C인(rs7242728), 상기 69562234번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 19번 염색체의 18398628번째 염기가 C 또는 G인(rs11086102), 상기 18398628번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 20번 염색체의 32891200번째 염기가 T 또는 G인(rs819146), 상기 32891200번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 인간의 22번 염색체의 50164613번째 염기가 G 또는 C인(rs6009872), 상기 50164613번째 염기를 포함하는 5-100개의 연속적인 DNA 서열로 구성되는 폴리뉴클레오티드; 및 이들의 상보적인 폴리뉴클레오티드로 이루어진 군에서 선택된 하나 이상의 폴리뉴클레오티드로 이루어진 것일 수 있으나, 이에 제한되지 않는다. 상기에 기재된 마커는 표 1에서 일부만을 예시로 기재한 것일 뿐이며, 다른 위치의 염색체에서도 상기와 동일한 방법으로 선택될 수 있다.
또 하나의 구현예로 표 1과 마찬가지로 표 2에 표시된 단일염기다형성(SNP) 마커 중 어느 하나 이상 선택될 수 있으나, 이에 제한되지 않는다.
또 하나의 구현예로 표 1과 마찬가지로 표 3에 표시된 단일염기다형성(SNP) 마커 중 어느 하나 이상 선택될 수 있으나, 이에 제한되지 않는다.
표 2 내지 표 3에 표시된 단일염기다형성 마커는 상기에서 설명한 바와 같이 해석 및 선택될 수 있으나, 이에 제한되지 않는다.
본 발명의 상기 대립유전자는 각각의 개체에서 염색체의 number가 동일하고, 그 중에서 SNP의 상위 대립유전자(major allele) 및 하위 대립유전자(minor allele)가 존재하고, 다형성 마커의 다형성 부위의 염기가 하위 대립유전자로 하나씩 늘어감에 따라 상위 대립유전자는 하나씩 줄어갈 수 있으며, 상위 대립유전자로 하나씩 늘어감에 따라 하위 대립유전자는 하나씩 줄어갈 수 있다. 다만, 하위대립유전자 및 상위대립유전자가 늘어나고 줄어들 수 있는 범위는 i) 상위 대립유전자(major allele)/상위 대립유전자(major allele), ii) 상위 대립유전자(major allele)/하위 대립유전자(minor allele), iii) 하위 대립유전자(minor allele)/하위 대립유전자(minor allele)의 3가지 타입 안에서 일 수 있으며, 상기 3가지 타입의 범위 내에서 대립 유전자가 줄어들거나, 늘어날 수 있으나, 이에 제한되지 않는다.
또한, 본 발명에서 상기 마커는 개체의 다형성 마커의 다형성 부위의 염기가 하위 대립유전자 (minor allele)가 하나씩 늘어감에 따라 피부색을 판단할 수 있는 마커이다. 구체적으로, 두 가지 대립유전자(allele) 중에서 하위 대립유전자(minor allele)를 하나 이상 보유하고 있는 (1) 상위 대립유전자(major allele)/하위 대립유전자(minor allele), (2) 하위 대립유전자(minor allele)/하위 대립유전자(minor allele)의 경우)를 갖는 개인은 일반적인 개인인 상위 대립유전자(major allele)/상위 대립유전자(major allele)를 보유하고 있는 사람과 비교하여, 피부색 정도가 높거나 혹은 낮은 피부 특성을 가진다고 판단할 수 있다.
더욱 구체적으로, 표 1에 표시된 마커 중 하위 대립유전자 (minor allele)가 하나씩 늘어감에 따라 피부색의 밝기, 즉 명도의 증감 변화 정도를 판단할 수 있다. 일 예로, 표 1에 표시된 마커 중 개체의 9번 염색체의 5953024번째 염기에서 상위 대립유전자 T이고, 하위 대립 유전자가 C인 경우(rs10815321), T/T를 보유하고 있는 사람과 비교하여, T/C 또는 C/C를 보유하는 경우에 effect size가 플러스(+)이므로 피부 밝기가 증가하는 것으로 판단할 수 있고, 개체의 7번 염색체의 96403238번째 염기에서 상위 대립유전자 A이고, 하위 대립 유전자가 G인 경우(rs1839358), A/A를 보유하고 있는 사람과 비교하여, A/G 또는 G/G를 보유하는 경우에 effect size가 마이너스(-)이므로 피부 밝기가 감소하는 것으로 판단할 수 있으나, 이에 제한되지 않는다.
표 2에 표시된 마커 중 하위 대립유전자 (minor allele)가 하나씩 늘어감에 따라 피부색의 붉은 정도의 증감 변화 정도를 판단할 수 있다. 일 예로, 표 2에 표시된 마커 중 개체의 4번 염색체의 166643609번째 염기에서 상위 대립유전자 A이고, 하위 대립 유전자가 T인 경우(rs7667134), A/A를 보유하고 있는 사람과 비교하여, A/T 또는 T/T를 보유하는 경우에 effect size가 플러스(+)이므로 피부의 붉은 정도가 증가하는 것으로 판단할 수 있고, 개체의 12번 염색체의 125308682번째 염기에서 상위 대립유전자 G이고, 하위 대립 유전자가 A인 경우(rs10846742), G/G를 보유하고 있는 사람과 비교하여, G/A 또는 A/A를 보유하는 경우에 effect size가 마이너스(-)이므로 피부의 붉은 정도가 감소하는 것으로 판단할 수 있으나, 이에 제한되지 않는다.
표 3에 표시된 마커 중 하위 대립유전자 (minor allele)가 하나씩 늘어감에 따라 피부색의 노란 정도의 증감 변화 정도를 판단할 수 있다. 일 예로, 표 3에 표시된 마커 중 개체의 15번 염색체의 28233905번째 염기에서 상위 대립유전자 C이고, 하위 대립 유전자가 T인 경우(rs10775262), C/C를 보유하고 있는 사람과 비교하여, C/T 또는 T/T를 보유하는 경우에 effect size가 플러스(+)이므로 피부의 노란 정도가 증가하는 것으로 판단할 수 있고, 개체의 12번 염색체의 125315647번째 염기에서 상위 대립유전자 G이고, 하위 대립 유전자가 A인 경우(rs7485656), G/G를 보유하고 있는 사람과 비교하여, G/A 또는 A/A를 보유하는 경우에 effect size가 마이너스(-)이므로 피부의 노란 정도가 감소하는 것으로 판단할 수 있으나, 이에 제한되지 않는다.
상기 염기들은 표 1 내지 표 3만을 일 예로 기재한 것이며, 구체적으로 기재하지는 않았으나, 상기에서 설명한 바와 같이 해석 및 도출될 수 있다.
또한, 상기 표 1 내지 표 3의 피부색 판단용 단일염기다형성 마커에서 선택한 단일염기다형성 마커 중에서도 한국인의 피부색과 연관성이 높은 다형성 마커를 추가적으로 포함할 수 있다. 구체적으로, 표 4 내지 표 6에서 선택되는 어느 하나 이상의 피부색 판단용 단일염기다형성 마커는 한국인의 피부색과 연관성이 높은 것일 수 있으나, 이에 제한되지 않는다.
구체적으로, 한국인의 피부색의 밝기(명도)와 관련된 단일염기다형성 마커는 표 4에 표시된 마커 중 선택되는 어느 하나 이상일 수 있으며, 한국인의 피부색의 붉은 정도와 관련된 단일염기다형성 마커는 표 5에 표시된 마커 중 선택되는 어느 하나 이상일 수 있으며, 한국인의 피부색의 노란 정도와 관련된 단일염기다형성 마커는 표 6에 표시된 마커 중 선택되는 어느 하나 이상일 수 있으나, 이에 제한되지 않는다.
하나의 구체예로, 타인종과 비교하여 그 빈도가 높거나 낮은 단일염기다형성 마커를 확인한 결과, 한국인의 피부색의 명도와 관련된 대표적인 단일염기다형성 마커는 표 4에 나타낸 바와 같이 rs730502, rs10775262, rs10775263, rs7173419 및 rs12915041이고, 한국인의 피부색의 붉은 정도와 관련된 단일염기다형성 마커는 표 5에 나타낸 바와 같이 rs7667134, rs999318, rs17688866, rs57940970, 및 rs17632434이며, 한국인의 피부색의 노란 정도와 관련된 단일염기다형성 마커는 표 6에 나타낸 바와 같이 rs10775262, rs10775263, rs730502, rs7485656, 및 rs10846742일 수 있으나, 상기 단일염기다형성 마커는 대표적인 예일 뿐, 이에 제한되지 않는다.
본 발명에서 용어, "피부색 판단용 마커를 검출할 수 있는 프로브"는 상기와 같은 유전자의 다형성 부위와 특이적으로 혼성화 반응을 통해 확인하여 피부색을 진단할 수 있는 조성물을 의미하며, 이와 같은 유전자 분석의 구체적 방법은 특별한 제한이 없으며, 이 발명이 속하는 기술분야에 알려진 모든 유전자 검출 방법에 의하는 것일 수 있다. 또한, 상기 용어는 '피부색 판단용'의 용어와 혼용되어 사용할 수 있다.
본 발명에서 용어, "피부색 판단용 마커를 증폭할 수 있는 제제"란 상기와 같은 유전자의 다형성 부위를 증폭을 통해 확인하여 피부색 정도를 진단할 수 있는 조성물을 의미하며, 구체적으로 상기 피부색 판단용 마커의 폴리뉴클레오티드를 특이적으로 증폭할 수 있는 프라이머를 의미한다. 또한, 상기 용어는 '피부색 진단용', '피부색 정도 판단용', 및 '피부색 정도 진단용'의 용어와 혼용되어 사용할 수 있다.
상기 다형성 마커 증폭에 사용되는 프라이머는, 적절한 버퍼 중의 적절한 조건 (예를 들면, 4개의 다른 뉴클레오시드 트리포스페이트 및 DNA, RNA 폴리머라제 또는 역전사 효소와 같은 중합제) 및 적당한 온도 하에서 주형-지시 DNA 합성의 시작점으로서 작용할 수 있는 단일가닥 올리고뉴클레오티드를 말한다. 상기 프라이머의 적절한 길이는 사용 목적에 따라 달라질 수 있으나, 통상 15 내지 30 뉴클레오티드이다. 짧은 프라이머 분자는 일반적으로 주형과 안정한 혼성체를 형성하기 위해서는 더 낮은 온도를 필요로 한다. 프라이머 서열은 주형과 완전하게 상보적일 필요는 없으나, 주형과 혼성화 할 정도로 충분히 상보적이어야 한다.
본 발명에서 용어, "프라이머"는 짧은 자유 3' 말단 수산화기(free 3' hydroxyl group)를 가지는 염기 서열로 상보적인 템플레이트(template)와 염기쌍(base pair)을 형성할 수 있고 주형 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 폴리머레이즈 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성을 개시할 수 있다. PCR 증폭을 실시하여 원하는 생성물의 생성 정도를 통해 피부 타입을 예측할 수 있다. PCR 조건, 센스 및 안티센스 프라이머의 길이는 당업계에 공지된 것을 기초로 변형할 수 있다.
본 발명의 프로브 또는 프라이머는 포스포르아미다이트 고체 지지체 방법, 또는 기타 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 이러한 핵산 서열은 또한 당해 분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비-제한적인 예로는 메틸화, "캡화", 천연 뉴클레오타이드 하나 이상의 동족체로의 치환, 및 뉴클레오타이드 간의 변형, 예를 들면, 하전되지 않은 연결체(예: 메틸 포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.
본 발명의 다른 하나의 양태는 상기 피부색 판단용 조성물을 포함하는 피부색 판단용 키트를 제공한다. 상기 키트는 RT-PCR 키트 또는 DNA 칩 키트일 수 있으나, 이에 제한되지 않는다.
본 발명의 키트는 피부 타입 판단용 마커인 SNP 다형성 마커를 증폭을 통해 확인하거나, SNP 다형성 마커의 발현 수준을 mRNA의 발현 수준을 확인함으로써 피부 타입을 진단할 수 있다. 구체적인 일례로서, 본 발명에서 피부 타입 판단용 마커의 mRNA 발현 수준을 측정하기 위한 키트는 RT-PCR을 수행하기 위해 필요한 필수 요소를 포함하는 키트일 수 있다. RT-PCR 키트는, 피부 타입 판단용 마커의 유전자에 대한 특이적인 각각의 프라이머 쌍 외에도 RT-PCR 키트는 테스트 튜브 또는 다른 적절한 컨테이너, 반응 완충액(pH 및 마그네슘 농도는 다양), 데옥시뉴클레오타이드(dNTPs), Taq-폴리머라아제 및 역전사효소와 같은 효소, DNase, RNAse 억제제, DEPC-수(DEPC-water), 멸균수 등을 포함할 수 있다. 또한 정량 대조군으로 사용되는 유전자에 특이적인 프라이머 쌍을 포함할 수 있다. 또한 구체적으로, 본 발명의 키트는 DNA 칩을 수행하기 위해 필요한 필수 요소를 포함하는 피부 타입 판단용 키트일 수 있다. DNA 칩 키트는, 일반적으로 편평한 고체 지지판, 전형적으로는 현미경용 슬라이드보다 크지 않은 유리 표면에 핵산 종을 격자형 배열(gridded array)로 부착한 것으로, 칩 표면에 핵산이 일정하게 배열되어, DNA 칩 상의 핵산과 칩 표면에 처리된 용액 내에 포함된 상보적인 핵산 간에 다중 혼성화(hybridization) 반응이 일어나 대량 병렬 분석이 가능하도록 하는 도구이다.
본 발명의 다른 하나의 양태는 상기 피부색 판단용 조성물을 포함하는 피부색 판단용 마이크로어레이를 제공한다.
상기 마이크로어레이는 DNA 또는 RNA 폴리뉴클레오티드를 포함하는 것일 수 있다. 상기 마이크로어레이는 프로브 폴리뉴클레오티드에 본 발명의 폴리뉴클레오티드를 포함하는 것을 제외하고는 통상적인 마이크로어레이로 이루어진다.
프로브 폴리뉴클레오티드를 기판상에 고정화하여 마이크로어레이를 제조하는 방법은 당업계에 잘 알려져 있다. 상기 프로브 폴리뉴클레오티드는 혼성화할 수 있는 폴리뉴클레오티드를 의미하는 것으로, 핵산의 상보성 가닥에 서열 특이적으로 결합할 수 있는 올리고뉴클레오티드를 의미한다. 본 발명의 프로브는 대립유전자 특이적 프로브로서, 같은 종의 두 구성원으로부터 유래한 핵산 단편 중에 다형성 부위가 존재하여, 한 구성원으로부터 유래한 DNA 단편에는 혼성화하나, 다른 구성원으로부터 유래한 단편에는 혼성화하지 않는다. 이 경우 혼성화 조건은 대립유전자간의 혼성화 강도에 있어서 유의한 차이를 보여, 대립유전자 중 하나에만 혼성화 하도록 충분히 엄격해야 한다. 이렇게 함으로써 다른 대립유전자 형태 간에 좋은 혼성화 차이를 유발할 수 있다. 본 발명의 상기 프로브는 대립유전자를 검출하여 피부 타입 진단 방법 등에 사용될 수 있다. 상기 진단 방법에는 서던 블롯트 등과 같은 핵산의 혼성화에 근거한 검출방법들이 포함되며, DNA 칩을 이용한 방법에서 DNA 칩의 기판에 미리 결합된 형태로 제공될 수도 있다. 상기 혼성화란 엄격한 조건, 예를 들면 1M 이하의 염 농도 및 25℃ 이상의 온도하에서 보통 수행될 수 있다. 예를 들면, 5x SSPE (750 mM NaCl, 50 mM Na Phosphate, 5 mM EDTA, pH 7.4) 및 25~30℃의 조건이 대립유전자 특이적 프로브 혼성화에 적합할 수 있다.
본 발명의 피부 진단과 연관된 프로브 폴리뉴클레오티드의 기판상에 고정화하는 과정도 또한 이러한 종래 기술을 사용하여 용이하게 제조할 수 있다. 또한, 마이크로어레이 상에서의 핵산의 혼성화 및 혼성화 결과의 검출은 당업계에 잘 알려져 있다. 상기 검출은 예를 들면, 핵산 시료를 형광 물질 예를 들면 Cy3 및 Cy5와 같은 물질을 포함하는 검출가능한 신호를 발생시킬 수 있는 표지 물질로 표지한 다음, 마이크로어레이 상에 혼성화하고 상기 표지 물질로부터 발생하는 신호를 검출함으로써 혼성화 결과를 검출할 수 있다.
본 발명의 다른 하나의 양태는 (a) 개체로부터 분리한 시료로부터 수득한 DNA에서 상기 단일염기다형성 마커의 다형성 부위를 증폭하거나 프로브와 혼성화하는 단계; 및 (b) 상기 (a) 단계의 증폭된 또는 혼성화된 다형성 부위의 염기를 확인하는 단계를 포함하는, 피부색에 대한 정보의 제공 방법을 제공한다.
본 발명의 용어, "개체"란 피부색에 대한 진단을 하기 위한 피험자를 의미한다. 상기 검체에서 머리카락, 뇨, 혈액, 각종 체액, 분리된 조직, 분리된 세포 또는 타액과 같은 시료 등으로부터 DNA를 수득할 수 있으나, 이에 제한되는 것은 아니다.
상기 (a) 단계의 게놈 DNA 수득 방법은 당업자에게 알려진 어떠한 방법이든 사용가능하다.
상기 (a) 단계의 수득한 DNA로부터 상기 단일염기다형성 마커의 다형성 부위를 증폭하거나 프로브와 혼성화하는 단계는 당업자에게 알려진 어떠한 방법이든 사용가능하다. 예를 들면, 표적 핵산을 PCR을 통하여 증폭하고 이를 정제하여 얻을 수 있다. 그 외 리가제 연쇄 반응(LCR) (Wu 및 Wallace, Genomics 4, 560(1989), Landegren 등, Science 241, 1077(1988)), 전사증폭(transcription amplification)(Kwoh 등, Proc. Natl.Acad. Sci. USA 86, 1173(1989)) 및 자가유지 서열 복제 (Guatelli 등, Proc. Natl. Acad. Sci. USA 87, 1874(1990)) 및 핵산에 근거한 서열 증폭 (NASBA)이 사용될 수 있다.
상기 방법 중 (b)단계의 다형성 부위의 염기를 결정하는 것은 시퀀싱 분석, 마이크로어레이(microarray)에 의한 혼성화, 대립유전자 특이적인 PCR(allele specific PCR), 다이나믹 대립유전자 혼성화 기법(dynamic allele-specifichybridization, DASH), PCR 연장 분석, SSCP, PCR-RFLP 분석 또는 TaqMan 기법, SNPlex 플랫폼(Applied Biosystems), 질량 분석법(예를 들면, Sequenom의 MassARRAY 시스템), 미니-시퀀싱(mini-sequencing) 방법, Bio-Plex 시스템(BioRad), CEQ and SNPstream 시스템(Beckman), Molecular Inversion Probe 어레이 기술(예를 들면, Affymetrix GeneChip), 및 BeadArray Technologies(예를 들면, Illumina GoldenGate 및 Infinium 분석법)를 포함하나, 이에 한정되지 않는다. 상기 방법들 또는 본 발명이 속하는 기술분야의 당업자에게 이용가능한 다른 방법에 의해, 마이크로새틀라이트, SNP 또는 다른 종류의 다형성 마커를 포함한, 다형성 마커에서의 하나 이상의 대립유전자가 확인될 수 있다. 이와 같은 다형성 부위의 염기를 결정하는 것은 구체적으로 SNP 칩을 통해 수행할 수 있다.
상기 방법은 추가적으로 (c) 증폭된 또는 혼성화된 다형성 부위의 염기가 상기 단일염기다형성 마커에 따른 하위 대립유전자(minor allele)인 염기를 하나 이상 포함하는 경우, 피부색 정도가 높거나 혹은 낮은 것으로 판단하는 것일 수 있으나, 이에 제한되지 않는다. 또한, 추가적으로 (c) 증폭된 또는 혼성화된 다형성 부위의 염기가 상기 단일염기다형성 마커에 따른 상위 대립유전자(major allele)인 염기를 하나 이상 포함하는 경우, 피부색의 밝기가 증가하거나 감소하는 것으로 판단하거나, 피부색의 붉은 정도가 증가하거나 감소하는 것으로 판단하거나, 피부색의 노란 정도가 증가하거나 감소하는 것으로 판단하는 것일 수 있으나, 이에 제한되지 않는다.
본 발명에서 용어, "SNP 칩"은 수십만개의 SNP의 각 염기를 한번에 확인할 수 있는 DNA 마이크로어레이의 하나를 의미한다.
TaqMan 방법은 (1) 원하는 DNA 단편을 증폭할 수 있도록 프라이머 및 TaqMan 탐침을 설계 및 제작하는 단계; (2) 서로 다른 대립유전자의 탐침을 FAM 염료 및 VIC 염료로 표지(Applied Biosystems)하는 단계; (3) 상기 DNA를 주형으로 하고, 상기의 프라이머 및 탐침을 이용하여 PCR을 수행하는 단계; (4) 상기의 PCR 반응이 완성된 후, TaqMan 분석 플레이트를 핵산 분석기로 분석 및 확인하는 단계; 및 (5) 상기 분석결과로부터 단계 (1)의 폴리뉴클레오티들의 유전자형을 결정하는 단계를 포함한다.
상기에서, 시퀀싱 분석은 염기서열 결정을 위한 통상적인 방법을 사용할 수 있으며, 자동화된 유전자분석기를 이용하여 수행될 수 있다. 또한, 대립유전자 특이적 PCR은 SNP가 위치하는 염기를 3' 말단으로 하여 고안한 프라이머를 포함한 프라이머 세트로 상기 SNP가 위치하는 DNA 단편을 증폭하는 PCR 방법을 의미한다. 상기 방법의 원리는, 예를 들어, 특정 염기가 A에서 G로 치환된 경우, 상기 A를 3' 말단염기로 포함하는 프라이머 및 적당한 크기의 DNA 단편을 증폭할 수 있는 반대 방향 프라이머를 고안하여 PCR 반응을 수행할 경우, 상기 SNP 위치의 염기가 A인 경우에는 증폭반응이 정상적으로 수행되어 원하는 위치의 밴드가 관찰되고, 상기 염기가 G로 치환된 경우에는 프라이머는 주형 DNA에 상보결합할수 있으나, 3' 말단 쪽이 상보결합을 하지 못함으로써 증폭반응이 제대로 수행되지 않는 점을 이용한 것이다. DASH는 통상적인 방법으로 수행될 수 있고, 구체적으로 프린스 등에 의한 방법에 의하여 수행될 수 있다.
한편, PCR 연장 분석은 먼저 단일염기 다형성이 위치하는 염기를 포함하는 DNA 단편을 프라이머 쌍으로 증폭을 한 다음, 반응에 첨가된 모든 뉴클레오티드를 탈인산화시킴으로써 불활성화시키고, 여기에 SNP 특이적 연장 프라이머, dNTP 혼합물, 디디옥시뉴클레오티드, 반응 완충액 및 DNA 중합효소를 첨가하여 프라이머 연장반응을 수행함으로써 이루어진다. 이때, 연장 프라이머는 SNP가 위치하는 염기의 5' 방향의 바로 인접한 염기를 3' 말단으로 삼으며, dNTP 혼합물에는 디디옥시뉴클레오티드와 동일한 염기를 갖는 핵산이 제외되고, 상기 디디옥시뉴클레오티드는 SNP를 나타내는 염기 종류 중 하나에서 선택된다. 예를 들어, A에서 G로의 치환이 있는 경우, dGTP, dCTP 및 TTP 혼합물과 ddATP를 반응에 첨가할 경우, 상기 치환이 일어난 염기에서 프라이머는 DNA 중합효소에 의하여 연장되고, 몇 염기가 지난 후 A 염기가 최초로 나타나는 위치에서 ddATP에 의하여 프라이머 연장반응이 종결된다. 만일 상기 치환이 일어나지 않았다면, 그 위치에서 연장반응이 종결되므로, 상기 연장된 프라이머의 길이를 비교함으로써 SNP를 나타내는 염기 종류를 판별할 수 있게 된다.
이때, 검출방법으로는 연장 프라이머 또는 디디옥시뉴클레오티드를 형광 표지한 경우에는 일반적인 염기서열 결정에 사용되는 유전자 분석기(예를 들어, ABI사의 Model 3700 등)를 사용하여 형광을 검출함으로써 상기 SNP을 검출할 수 있으며, 무-표지된 연장 프라이머 및 디디옥시뉴클레오티드를 사용할 경우에는 MALDI-TOF(matrix assisted laser desorption ionization-time of flight) 기법을 이용하여 분자량을 측정함으로써 상기 SNP를 검출할 수 있다.
본 발명의 다른 하나의 양태는 예측된 고유 피부색 특성을 이용한 정보 제공 방법을 제공한다. 구체적으로, (a) 특정 개체의 SNPs 데이터로부터 피부 밝기를 나타내는 제1 값을 계산하는 단계, (b) 특정 개체의 SNPs 데이터로부터 피부가 붉은색을 띄는 정도를 나타내는 제2 값을 계산하는 단계, (c) 특정 개체의 SNPs 데이터로부터 피부가 노란색을 띄는 정도를 나타내는 제3 값을 계산하는 단계, (d) 다수의 개체 각각으로부터 계산된 제1 값들의 제1 레퍼런스 값, 상기 다수의 개체 각각으로부터 계산된 제2 값들의 제2 레퍼런스 값 및 상기 다수의 개체 각각으로부터 계산된 제3 값들의 제3 레퍼런스 값을 계산하는 단계, (e) 피검자의 SNPs 데이터로부터 제1 값, 제2 값 및 제3 값을 계산하고, 계산된 피검자의 제1 값, 제2 값 및 제3 값을 상기 (d) 단계에서 계산된 제1 레퍼런스 값, 제2 레퍼런스 값 및 제3 레퍼런스 값과 각각 비교하는 단계 및 (f) 상기 (e) 단계에서의 비교에 의해 생성된 제1 비교 결과 데이터에 매칭되는 고유 피부색 특성을 피검자의 고유 피부색 특성으로 예측하는 단계를 포함하는, 예측된 고유 피부색 특성을 이용한 정보 제공 방법을 제공한다.
표 1 내지 3에는 다수의 단일염기다형성 마커가 제시되며, 구체적으로 표 1에는 피부 밝기에 영향을 미치는 다수의 단일염기다형성 마커가, 표 2에는 피부가 붉은색을 띄는 정도에 영향을 미치는 다수의 단일염기다형성 마커가, 표 3에는 피부가 노란색을 띄는 정도에 영향을 미치는 다수의 단일염기다형성 마커가 나타내어진다.
동일한 그룹에 포함된 단일염기다형성 마커라도, 마커의 종류마다 피부 밝기, 피부가 붉은색을 띄는 정도, 피부가 노란색을 띄는 정도에 영향을 미치는 정도가 다를 수 있다. 즉, 단일염기다형성 마커마다, 피부의 밝기, 붉은색을 띄는 정도, 노란색을 띄는 정도에 미치는 가중치가 서로 다를 수 있다.
본 발명에서는, 선형회귀분석 등의 통계적 방법을 통해 각 단일염기다형성 마커가 피부의 밝기, 붉은색을 띄는 정도, 노란색을 띄는 정도에 미치는 가중치를 결정하고, 결정된 가중치를 이용하여 아래의 수식에 따라 고유 피부색 특성을 예측할 수 있는 수식을 도출하였다.
[수식 1]
제1 값 = (SNP11 x effect size11) + (SNP12 x effect size12) + (SNP13 x effect size13) + … + (SNP1n x effect size1n)
여기서, n은 자연수이고, SNP11 내지 SNP1n은 표 1에서 선택된 단일염기다형성 마커이며, effect size는 각 단일염기다형성 마커가 피부의 밝기에 영향을 미치는 것을 수치화한 가중치를 나타낸다.
[수식 2]
제2 값 = (SNP21 x effect size21) + (SNP22 x effect size22) + (SNP23 x effect size23) + … + (SNP2n x effect size2n)
여기서, n은 자연수이고, SNP21 내지 SNP2n은 표 2에서 선택된 단일염기다형성 마커이며, effect size는 각 단일염기다형성 마커가 피부가 붉은색을 띄는 정도에 영향을 미치는 것을 수치화한 가중치를 나타낸다.
[수식 3]
제3 값 = (SNP31 x effect size31) + (SNP32 x effect size32) + (SNP33 x effect size33) + … + (SNP3n x effect size3n)
여기서, n은 자연수이고, SNP11 내지 SNP1n은 표 3에서 선택된 단일염기다형성 마커이며, effect size는 각 단일염기다형성 마커가 피부가 노란색을 띄는 정도에 영향을 미치는 것을 수치화한 가중치를 나타낸다.
본 발명에서는, 수식 1 내지 3을 통해 제1 값, 제2 값 및 제3 값으로 해당 개체의 고유 피부색 특성을 예측한다.
먼저, 특정 개체의 SNPs 데이터로부터 상기 수식 1 내지 3을 통해 제1 값, 제2 값 및 제3 값을 계산한다. 다수의 개체로부터 제1 값, 제2 값 및 제3 값이 각각 계산될 수 있으며, 다수의 개체로부터 제1 값, 제2 값 및 제3 값이 각각 계산될 수 있으며, 이로부터 제1 레퍼런스 값, 제2 레퍼런스 값 및 제3 레퍼런스 값이 생성된다. 여기에서, 레퍼런스 값은 일 예로 다수의 제1 내지 3 값들의 각 평균값일 수 있으며, 이에 제한되지 않고 중간값 등 통계적 분석 기법에 의해 다수의 제1 내지 3 값들의 레퍼런스를 의미할 수 있는 값들이 모두 포함될 수 있다. 또한, 다수의 개체는 모두 한국인일 수 있으나, 특별히 이에 제한되는 것은 아니다.
다음, 피검자의 SNPs 데이터로부터 상기 수식 1 내지 3을 통해 제1 값, 제2 값 및 제3 값을 계산한다.
다음, 계산된 피검자의 제1 값을 제1 레퍼런스 값과 비교하고, 피검자의 제2 값을 제2 레퍼런스 값과 비교하며, 피검자의 제3 값을 제3 레퍼런스 값과 비교한다. 상기 비교에 의해 비교 결과 데이터(예를 들어, 제1 값과 제1 레퍼런스 값과의 차이값, 제2 값과 제2 레퍼런스 값과의 차이값, 제3 값과 제3 레퍼런스 값과의 차이값이 여기에 포함될 수 있음)가 생성된다.
본 발명에서는, 상기 비교 결과 데이터 각각에 매칭되는 고유 피부색 특성이 미리 저장되어 있을 수 있다. 따라서, 생성된 비교 결과 데이터에 매칭되어 미리 저장되어 있는 고유 피부색 특성을 피검자의 고유 피부색 특성으로 예측할 수 있게 된다.
본 발명에서는, 예측된 고유 피부색 특성을 이용하여 다양한 정보를 피검자에게 제공하는 것이 가능하다. 본 발명에서는, 다수의 피부 관리 제품 정보와, 피부색에 영향을 미치는 다수의 생활 패턴 정보가 미리 저장되어 있을 수 있다. 나아가 피부 관리 제품 정보와 생활 패턴 정보는 다수의 비교 결과 데이터와 다수의 고유 피부색 특성의 조합에 각각 다르게 매칭된다. 예를 들어, 비교 결과 데이터 1과 고유 피부색 특성 1은 피부 관리 제품 1과 생활 패턴 정보 3이 매칭되어 저장될 수 있으며, 비교 결과 데이터 2와 고유 피부색 특성 2는 피부 관리 제품 2와 생활 패턴 정보 1이 매칭되어 저장될 수 있다(도 1 참조).
예측된 고유 피부색 특성과, 생성된 비교 결과 데이터의 조합에 따라 본 발명에서는 이에 매칭되는 피부 관리 제품 정보와, 생활 패턴 정보를 선정하여 추천하게 된다. 선정된 추천 정보는 디스플레이 등의 별도의 출력 장치를 통해 출력된다. 따라서, 피검자 피부 특성에 맞춘 최적의 피부 관리 제품 정보 및 생활 패턴 정보를 추천할 수 있게 된다. 또한, 본 발명에서는 피검자의 피부색을 측정하고, 측정된 피부색(실제 피부색)과 목표 피부색과의 비교를 통해 또 다른 비교 결과 데이터를 생성할 수도 있다. 설명의 편의를 위해, 제1 값 내지 제3 값을 제1 레퍼런스 값 내지 제3 레퍼런스 값과 비교하는 것을 통해 생성되는 비교 결과 데이터를 제1 비교 결과 데이터로, 피검자의 측정된 피부색과, 목표 피부색과의 비교를 통해 생성되는 비교 결과 데이터를 제2 비교 결과 데이터로 가정한다.
또한, 피검자의 고유 피부색 특성, 측정 피부색, 제1 및 제2 비교 결과 데이터의 조합에 따라 본 발명에서는 이에 매칭되는 피부 관리 제품 정보와, 생활 패턴 정보를 선정하여 추천할 수도 있다. 고유 피부색 특성과 제1 비교 결과 데이터만을 이용하여 추천하는 경우와 비교하였을 때, 실제 피검자의 피부색, 그리고 현재 피부색과 목표 피부색과의 비교 결과 데이터인 제2 비교 결과 데이터까지 사용하여 피부 관리 제품 정보와 생활 패턴 정보를 선정하여 추천하기 때문에, 추천의 정확성과 사용자의 만족도가 높아지는 효과를 가질 수 있다.
본 발명에서 용어 "피부 관리 제품"은 예를 들어, 신체 부위에 적용(예를 들어, 도포)됨에 따라 피부색 특성을 변화시킬 수 있는 모든 제품을 의미하며, 용어 "피부 관리 제품 정보"는 특정 피부 관리 제품의 제품명, 성분명 등 피부 관리 제품을 특정할 수 있는 모든 정보를 통칭하는 것으로 이해하여야 한다. 상기 피부 관리 제품은 얼굴 및/또는 신체의 다른 부분과 같은 피부에도 적용할 수 있으며, 일 예로, 고유 피부색의 명도가 낮은 경우에는 피부색의 명도를 높일 수 있는 미백 제품의 정보를 제공할 수 있으나, 이에 제한되지 않는다.본 발명에서 용어 "생활 패턴 정보"는 피검자가 해당 생활 패턴을 소정 기간 이상 수행함에 따라 피부색 특성을 변화시킬 수 있는 정보, 예를 들어 식습관 정보, 운동 정보, 자외선 노출 시간 정보, 체중 변화 정보 등 피부색 특성을 변화시킬 수 있으면서도 일상 생활과 관련된 모든 정보를 통칭하는 것으로 이해하여야 한다.
위 설명한 본 발명의 일 실시예에 따른 방법은, 다양한 컴퓨터 수단을 통하여 수행될 수 있는 컴퓨터 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명을 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
본 발명의 다른 하나의 양태는 예측된 고유 피부색 특성을 이용한 정보 제공 시스템을 제공한다. 구체적으로, 다수의 개체 각각의 SNPs 데이터가 저장되고, 다수의 비교 결과 데이터 각각에 매칭되는 고유 피부색 특성과, 레퍼런스 값 계산 장치(21)에 의해 계산된 레퍼런스 값들, 피부색 특성 값 계산 장치(22)에 의해 계산된 피부색 특성 값이 저장되도록 구성된 저장 장치(10), 상기 저장 장치(10)에 저장된 SNPs 데이터를 이용하여 다수의 개체 각각의 제1 값, 제2 값 및 제3 값을 계산하고, 계산된 제1 값들의 제1 레퍼런스 값(예를 들어, 제1 값들의 평균값인 제1 평균값), 계산된 제2 값들의 제2 레퍼런스 값(예를 들어, 제2 값들의 평균값인 제2 평균값) 및 계산된 제3 값들의 제3 레퍼런스 값(예를 들어, 제3 값들의 평균값인 제3 평균값)을 계산하도록 구성된 레퍼런스 값 계산 장치(21), 피검자의 SNPs 데이터를 이용하여 피검자의 제1 값, 제2 값 및 제3 값을 계산하도록 구성된 피부색 특성 값 계산 장치(22), 상기 제1 레퍼런스 값을 상기 피검자의 제1 값과 비교하고, 상기 제2 레퍼런스 값을 상기 피검자의 제2 값과 비교하며, 상기 제3 레퍼런스 값을 상기 피검자의 제3 값과 비교함으로써, 비교 결과 데이터를 생성하도록 구성된 비교 결과 생성 장치(23) 및 상기 비교 결과 생성 장치(23)에서 생성된 비교 결과 데이터에 매칭되는 고유 피부색 특성을 상기 피검자의 고유 피부색 특성으로 예측하도록 구성된 예측 장치(24)를 포함하며, 상기 제1 값은 표 1에서 선택되는 하나 이상의 단일염기다형성 마커와, 선택된 단일염기다형성 마커가 피부 밝기에 영향을 미치는 정도인 가중치를 이용하여 계산되고, 상기 제2 값은 표 2에서 선택되는 하나 이상의 단일염기다형성 마커와, 선택된 단일염기다형성 마커가 피부가 붉은색을 띄는 정도에 영향을 미치는 정도인 가중치를 이용하여 계산되며, 상기 제3 값은 표 3에서 선택되는 하나 이상의 단일염기다형성 마커와, 선택된 단일염기다형성 마커가 노란색을 띄는 정도에 영향을 미치는 정도인 가중치를 이용하여 계산되는, 고유 피부색 특성 예측 시스템을 제공한다.
저장 장치(10)는 소정의 데이터를 저장할 수 있는 메모리 형태로 구비될 수 있으며, 다수의 개체 각각의 SNPs 데이터와, 피검자의 SNPs 데이터가 저장된다. 또한 저장 장치(10)에는 다수의 비교 결과 데이터에 일대일 매칭되는 다수의 고유 피부색 특성, 레퍼런스 값 계산 장치(21)에 의해 계산된 레퍼런스 값들, 피부색 특성 값 계산 장치(22)에 의해 계산된 피부색 특성 값이 저장된다. 또한, 저장 장치(10)에는 추천의 대상이 되는 다수의 피부 관리 제품 정보와 다수의 생활 패턴 정보가 저장되고, 다수의 비교 결과 데이터(비교 결과 데이터 1 내지 비교 결과 데이터 N(N은 2 이상의 자연수))와 다수의 피부 관리 제품 정보(피부 관리 제품 정보 1 내지 피부 관리 제품 정보 N(N은 2 이상의 자연수)) 조합 경우의 수에 따라 서로 상이한 피부 관리 제품 정보와 생활 패턴 정보가 각각 매칭되어 저장된다.
본 발명에 따른 다른 실시예에서, 저장 장치(10)에는 피검자의 고유 피부색 특성, 제1 및 제2 비교 결과 데이터의 조합 경우의 수에 따른 피부 관리 제품 정보 및 생활 패턴 정보가 각각 매칭되어 저장될 수도 있다.
계산 장치(20)는 연산 기능을 갖춘 CPU와 같은 마이크로 컨트롤러 유닛(MCU) 형태로 구비될 수 있으며, 도 1을 참조하면 계산 장치(20)는 레퍼런스 값 계산 장치(21), 피부색 특성 값 계산 장치(22), 비교 결과 생성 장치(23), 예측 장치(24) 및 정보 선정 장치(25)를 포함한다.
레퍼런스 값 계산 장치(21)는 저장 장치(10)에 저장되어 있는 SNPs 데이터를 이용하여 수식 1 내지 3을 통해 특정 SNPs 데이터의 제1 값, 제2 값 및 제3 값을 계산하도록 구성된다. 또한, 레퍼런스 값 계산 장치(21)는 다수의 개체로부터 계산된 제1 값들의 제1 레퍼런스 값(예를 들어, 제1 값들의 평균값인 제1 평균값)을 계산하고, 제2 값들의 제2 레퍼런스 값(예를 들어, 제2 값들의 평균값인 제2 평균값)을 계산하며, 제3 값들의 제3 레퍼런스 값(예를 들어, 제3 값들의 평균값인 제3 평균값)을 계산하도록 구성된다. 계산된 제1 내지 제3 레퍼런스 값은 저장 장치(10)에 다시 저장될 수 있다.
피부색 특성 값 계산 장치(22)는 저장 장치(10)에 저장되어 있는 피검자의 SNPs 데이터를 이용하여 수식 1 내지 3을 통해 피검자의 SNPs 데이터의 제1 값, 제2 값 및 제3 값을 계산하도록 구성된다.
비교 결과 생성 장치(23)는 피검자의 계산된 제1 값을 제1 레퍼런스 값과 비교하고, 제2 값을 제2 레퍼런스 값과 비교하며, 제3 값을 제3 레퍼런스 값과 비교함으로써 비교 결과 데이터(제1 비교 결과 데이터)를 생성하도록 구성된다. 생성된 비교 결과 데이터는 예를 들어, 제1 값과 제1 레퍼런스 값의 차이값, 제2 값과 제2 레퍼런스 값의 차이값, 제3 값과 제3 레퍼런스 값의 차이값을 포함할 수 있으나, 특별히 이에 제한되지 않고 비교 결과에 따라 생성될 수 있는 모든 데이터의 범주가 여기에 포함될 수 있다.
또한, 비교 결과 생성 장치(23)는, 피부색 측정 장치(40)에 의해 측정된 피검자의 측정 피부색(실제 피부색)과, 피검자의 목표 피부색과의 비교를 통해 또 다른 비교 결과 데이터(제2 결과 비교 데이터)를 생성하도록 구성된다. 여기에서, 피부색 측정 장치(40)는 피검자의 실제 피부색을 측정할 수 있는 구성이면 어느 것이든 적용될 수 있으며, 일 예로 카메라 등이 해당할 수 있다.
예측 장치(24)는 저장 장치(10)에 미리 저장되어 있으며, 비교 결과 생성 장치(23)에 의해 생성된 비교 결과 데이터(제1 비교 결과 데이터)에 매칭되는 고유 피부색 특성을 피검자의 고유 피부색 특성으로 예측한다. 예측 장치(24)에 의해 예측된 고유 피부색 특성은 디스플레이, 모니터 등의 형태로 구비되는 출력 장치(30)를 통해 출력된다.
또한, 본 발명은 비교 결과 생성 장치(23)에 의해 생성된 비교 결과 데이터(제1 비교 결과 데이터), 그리고 예측 장치(24)에 의해 예측된 고유 피부색 특성에 매칭되는 피부 관리 제품 정보 및 생활 패턴 정보를 선정하도록 구성된 정보 선정 장치(25)를 더 포함할 수 있다. 정보 선정 장치(25)에 의해 선정된 피부 관리 제품 정보 및 생활 패턴 정보는 출력 장치(30)를 통해 출력된다. 이를 통해, 피검자 피부 특성 맞춤형 피부 관리 제품 정보와 생활 패턴 정보가 제공될 수 있다.
또한, 정보 선정 장치(25)는, 예측 장치(24)에 의해 예측된 고유 피부색 특성, 제1 비교 결과 데이터 및 제2 비교 결과 데이터에 매칭되는 피부 관리 제품 정보 및 생활 패턴 정보를 선정하도록 구성될 수 있다. 이를 통해, 피검자의 피부 특성을 고려하면서도 피검자가 원하는 목표 피부색에 도달될 수 있도록 하는 피부 관리 제품 정보와 생활 패턴 정보가 제공되는 것이 가능하다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1: 피부색 평가 및 유전자 채취
일반적인 피부색을 설명할 수 있는 유전자 다형성 마커를 도출해내기 위하여, 20~70대의 건강한 한국인 여성을 모집하였다. 또한, 피부 측정을 위하여 모든 분석대상은 클렌징 또는 비누를 얼굴 세안을 하고 피부가 측정환경에 적응할 수 있도록 어떠한 제품도 바르지 않고 30분간 대기한 후에 피부색을 평가하였으며, 평가에는 이미지 기반의 피부진단 전문기기(PIE社 Janus3)를 활용하였다 (측정 및 분석은 기기 제조사의 매뉴얼에 따라 수행함). 구체적으로, 분석 대상자는 머리띠 착용 및 검은 천을 옷 위에 두른 후 얼굴을 기기에 내장된 이마 받침대와 턱 받침대에 고정하고 눈을 감은 상태로 측정을 위한 자세 유지하고, Janus 3 기기에 내장된 카메라를 통해 분석 대상자의 안면부에 대한 고해상도 이미지를 촬영하였다. Janus 3 자체에서 제공하는 프로그램은 양 볼 영역을 정의하고, 해당 영역 내 CIE L*a*b* 값을 피부색 수치로 사용하였다 (CIE L*: 명도, CIE a*: 붉은 정도, CIE b*: 노란 정도).
일반적인 개인 (상위 대립유전자(major allele)/상위 대립유전자 (major allele)를 보유)의 피부색은 동일한 유전자 위치(염기)에서 두 가지 대립유전자가 관찰되는 분석대상 48,433명을 대상으로 측정한 안면부 평균 피부색을 의미하며 그 값은 분석 영역 내에서 명도(CIE L*), 붉은 정도(CIE a*), 노란 정도(CIE b*) 각각의 연속적인 수치로 도출하였다.
유전자 채집은 타액 수집을 통하여 이루어졌으며, 효과적인 유전자 채집을 위해 모든 분석대상은 채집 전 30분부터는 물을 포함한 어떠한 음식물 섭취를 금하였다.
분석 대상자 중 ① 임신, 수유 중 또는 6 개월 이내에 임신을 계획하고 있는 경우, ② 피부질환의 치료를 위해 스테로이드가 함유된 피부외형제를 1 개월 이상 사용한 경우, ③ 동일한 시험에 참가한 뒤 6 개월이 경과되지 않는 경우, ④ 민감성, 과민성 피부를 가진 경우, ⑤ 시험부위에 점, 여드름, 홍반, 모세혈관확장 등의 피부 이상 소견이 있는 경우, ⑥ 시험시작 3 개월 이내에 시험부위에 동일 또는 유사한 화장품 또는 의약품을 사용한 경우, ⑦ 시험부위에 시술(피부 박피술, 보톡스, 기타 피부관리)을 받거나 6 개월 이내 계획한 경우, ⑧ 만성 소모성 질환이 있는 경우 (천식, 당뇨, 고혈압 등), ⑨ 아토피 피부염을 가지는 경우, ⑩ 그 외 주 시험자의 판단으로 시험이 곤란하다고 판단되는 경우는 피험자에서 제외하였다.
실시예 2: 피부색에 따른 유전자형 분석
유전자 분석을 위한 타액으로부터의 유전자 추출은 QIAmp mini prep kit (QIAGEN)을 이용하여 human genomic DNA를 추출하였으며, 그 품질은 흡광도 (OD 260/280) 또는 1.7, 농도 50ng/ul, 1x TAE 1% agarose gel을 통한 band 검사를 통해 확인하였으며 품질을 통과한 건에 한하여 유전자 분석을 수행하였다.
Illumina社 microarray genotyping chip을 이용하여 유전자 분석이 진행되었으며, 구체적으로는 동일회사의 global screening array 제품을 이용하여 분석 대상자들의 유전자를 분석하였다.
Illumina社 microarray genotyping chip 유전자 분석실험은 제공되는 매뉴얼에 따라 진행되었으며, 제공되는 시약을 사용하여 genomic DNA 증폭 (amplification), DNA 조각화 (fragmentation), 침전 (precipitation), 혼성화 (hybridization), 염색 (staining), 세척 (washing), 코팅 (coating), 스캐닝 (scanning)의 과정을 수행하였다.
실험이 완료된 microarray genotyping chip은 iScan Control Software (Illumina)를 이용하여 스캔하였으며, 스캔이 완료되면 idat 파일이 자동으로 생성되어 GenomeStudio (Illumina) 프로그램을 이용하여 데이터 품질관리 (sample call rate 98%, marker call rate 98%) 및 유전자정보 확인을 수행하였다.
본 실험에서는 유전자 분석 이후 데이터 품질관리를 통과한 데이터만 활용하였다.
실시예 3: 피부색 연관유의성 유전자 다형성 마커 도출
피부색과 연관유의성을 갖는 유전자 다형성 마커들을 도출하기 위하여 분석대상들의 유전자 다형성 마커를 이용한 선형회귀분석을 진행하였으며, 분석을 위하여 BOLT-LMM 프로그램을 사용하였다.
실험을 통하여 확인된 유전자 다형성 마커들을 활용하여 추가적인 유전자 다형성 마커에 대한 정보를 확보하기 위하여 Imputation 분석을 Minimac 4 프로그램을 사용하여 진행하였으며, 해당 분석을 진행하기 위하여 기준이 되는 참조데이터는 국제 공개 유전체데이터 database인 Haplotype Reference Consortium에 등록되어 있는 정보를 활용하였다.
Imputation은 실험으로 확보한 유전자 다형성 마커 정보를 토대로 분석되지 않은 유전자 다형성 마커 정보를 추론하는 통계학적 기법이다.
분석대상 유전자 다형성 마커들의 품질관리를 위하여 각 유전자 다형성 마커들이 하위 대립유전자 빈도 (minor allele frequency) 또는 0.005 및 하디-웨인버그 평형 (Hardy-Weinberg equilibrium) 또는 0.000001 기준을 넘는 것에 한하여 활용하였다.
피부색과 연관성을 보이는 유전자 다형성 마커들의 유의성은 선형회귀분석 F-statistics를 통해 평가하였으며, 그 기준은 P-value < 0.0001로 설정하였다.
피부색에 영향을 줄 수 있는 외부효과를 최소화하고 유전자정보에 따른 효과를 도출하기 위하여 나이 또는 BMI 정보 또는 생활습관 (음주, 흡연, 식습관, 수면습관 등)의 정보로 피부색 수치를 보정하여 분석에 활용할 수 있다 (예: 선형회귀분석을 수행).
피부색 연관유의성 유전자 다형성 마커들은 매우 다수가 도출되었으며, 해당 유전자 다형성 마커들은 인간 유전체 중에서 1, 2, 3, 4, 6, 11, 12, 16번 염색체에 주로 위치하고 있음을 확인하였다.
피부색과 유의하게 관련된 SNP 마커 리스트는 하기 표 1 내지 표 3에 나타냈다. 구체적으로, 표 1은 피부색(명도) 연관 유전자 다형성 마커에 관한 것으로 유의수준(P)이 0.0001 미만인 것이고, 표 2는 피부색(붉은 정도) 연관 유전자 다형성 마커에 관한 것으로 유의수준(P)이 0.0001 미만인 것이며, 표 3은 피부색(노란 정도) 연관 유전자 다형성 마커에 관한 것으로 유의수준(P)이 0.0001 미만인 것에 관한 것이다.
Figure PCTKR2022005336-appb-img-000001
Figure PCTKR2022005336-appb-img-000002
Figure PCTKR2022005336-appb-img-000003
Figure PCTKR2022005336-appb-img-000004
Figure PCTKR2022005336-appb-img-000005
Figure PCTKR2022005336-appb-img-000006
Figure PCTKR2022005336-appb-img-000007
Figure PCTKR2022005336-appb-img-000008
Figure PCTKR2022005336-appb-img-000009
Figure PCTKR2022005336-appb-img-000010
Figure PCTKR2022005336-appb-img-000011
Figure PCTKR2022005336-appb-img-000012
Figure PCTKR2022005336-appb-img-000013
Figure PCTKR2022005336-appb-img-000014
Figure PCTKR2022005336-appb-img-000015
Figure PCTKR2022005336-appb-img-000016
Figure PCTKR2022005336-appb-img-000017
Figure PCTKR2022005336-appb-img-000018
Figure PCTKR2022005336-appb-img-000019
Figure PCTKR2022005336-appb-img-000020
Figure PCTKR2022005336-appb-img-000021
Figure PCTKR2022005336-appb-img-000022
Figure PCTKR2022005336-appb-img-000023
Figure PCTKR2022005336-appb-img-000024
Figure PCTKR2022005336-appb-img-000025
Figure PCTKR2022005336-appb-img-000026
Figure PCTKR2022005336-appb-img-000027
Figure PCTKR2022005336-appb-img-000028
Figure PCTKR2022005336-appb-img-000029
Figure PCTKR2022005336-appb-img-000030
Figure PCTKR2022005336-appb-img-000031
Figure PCTKR2022005336-appb-img-000032
Figure PCTKR2022005336-appb-img-000033
Figure PCTKR2022005336-appb-img-000034
Figure PCTKR2022005336-appb-img-000035
Figure PCTKR2022005336-appb-img-000036
Figure PCTKR2022005336-appb-img-000037
Figure PCTKR2022005336-appb-img-000038
Figure PCTKR2022005336-appb-img-000039
Figure PCTKR2022005336-appb-img-000040
Figure PCTKR2022005336-appb-img-000041
Figure PCTKR2022005336-appb-img-000042
Figure PCTKR2022005336-appb-img-000043
Figure PCTKR2022005336-appb-img-000044
Figure PCTKR2022005336-appb-img-000045
Figure PCTKR2022005336-appb-img-000046
Figure PCTKR2022005336-appb-img-000047
Figure PCTKR2022005336-appb-img-000048
Figure PCTKR2022005336-appb-img-000049
Figure PCTKR2022005336-appb-img-000050
Figure PCTKR2022005336-appb-img-000051
Figure PCTKR2022005336-appb-img-000052
Figure PCTKR2022005336-appb-img-000053
Figure PCTKR2022005336-appb-img-000054
Figure PCTKR2022005336-appb-img-000055
Figure PCTKR2022005336-appb-img-000056
Figure PCTKR2022005336-appb-img-000057
Figure PCTKR2022005336-appb-img-000058
Figure PCTKR2022005336-appb-img-000059
Figure PCTKR2022005336-appb-img-000060
Figure PCTKR2022005336-appb-img-000061
Figure PCTKR2022005336-appb-img-000062
Figure PCTKR2022005336-appb-img-000063
Figure PCTKR2022005336-appb-img-000064
Figure PCTKR2022005336-appb-img-000065
Figure PCTKR2022005336-appb-img-000066
Figure PCTKR2022005336-appb-img-000067
Figure PCTKR2022005336-appb-img-000068
1) 미국국립보건원 (NIH) ID, 해당 홈페이지에서 서열확인가능
2) (major allele) > (minor allele) 의미
3) minor allele frequency = (2mm + Mm)/2(MM + Mm + mm)
4) 3가지의 유전형(M/M, M/m, m/m)에 대한 표현형 차이의 통계적 유의성 (M: major allele, m: minor allele)
5) minor allele 이 하나씩 늘어감에 따라 표현형(피부색: 명도)의 증감 변화정도 (- : 피부 명도 감소, + : 피부 명도 증가),
피부색 = 양 볼 영역의 CIE L*a*b* 각각의 값 (CIE L*: 명도, CIE a*: 붉은 정도, CIE b*: 노란 정도), 시판기기이용 (Janus3, PIE社, Korea)
6) BOLT-LMM 사용하여 분석
Figure PCTKR2022005336-appb-img-000069
Figure PCTKR2022005336-appb-img-000070
Figure PCTKR2022005336-appb-img-000071
Figure PCTKR2022005336-appb-img-000072
Figure PCTKR2022005336-appb-img-000073
Figure PCTKR2022005336-appb-img-000074
Figure PCTKR2022005336-appb-img-000075
Figure PCTKR2022005336-appb-img-000076
Figure PCTKR2022005336-appb-img-000077
Figure PCTKR2022005336-appb-img-000078
Figure PCTKR2022005336-appb-img-000079
Figure PCTKR2022005336-appb-img-000080
Figure PCTKR2022005336-appb-img-000081
Figure PCTKR2022005336-appb-img-000082
Figure PCTKR2022005336-appb-img-000083
Figure PCTKR2022005336-appb-img-000084
Figure PCTKR2022005336-appb-img-000085
Figure PCTKR2022005336-appb-img-000086
Figure PCTKR2022005336-appb-img-000087
Figure PCTKR2022005336-appb-img-000088
Figure PCTKR2022005336-appb-img-000089
Figure PCTKR2022005336-appb-img-000090
Figure PCTKR2022005336-appb-img-000091
Figure PCTKR2022005336-appb-img-000092
Figure PCTKR2022005336-appb-img-000093
Figure PCTKR2022005336-appb-img-000094
Figure PCTKR2022005336-appb-img-000095
Figure PCTKR2022005336-appb-img-000096
Figure PCTKR2022005336-appb-img-000097
Figure PCTKR2022005336-appb-img-000098
Figure PCTKR2022005336-appb-img-000099
Figure PCTKR2022005336-appb-img-000100
Figure PCTKR2022005336-appb-img-000101
Figure PCTKR2022005336-appb-img-000102
Figure PCTKR2022005336-appb-img-000103
Figure PCTKR2022005336-appb-img-000104
Figure PCTKR2022005336-appb-img-000105
Figure PCTKR2022005336-appb-img-000106
Figure PCTKR2022005336-appb-img-000107
Figure PCTKR2022005336-appb-img-000108
Figure PCTKR2022005336-appb-img-000109
Figure PCTKR2022005336-appb-img-000110
Figure PCTKR2022005336-appb-img-000111
Figure PCTKR2022005336-appb-img-000112
Figure PCTKR2022005336-appb-img-000113
Figure PCTKR2022005336-appb-img-000114
Figure PCTKR2022005336-appb-img-000115
Figure PCTKR2022005336-appb-img-000116
Figure PCTKR2022005336-appb-img-000117
Figure PCTKR2022005336-appb-img-000118
Figure PCTKR2022005336-appb-img-000119
Figure PCTKR2022005336-appb-img-000120
Figure PCTKR2022005336-appb-img-000121
Figure PCTKR2022005336-appb-img-000122
Figure PCTKR2022005336-appb-img-000123
Figure PCTKR2022005336-appb-img-000124
Figure PCTKR2022005336-appb-img-000125
Figure PCTKR2022005336-appb-img-000126
Figure PCTKR2022005336-appb-img-000127
Figure PCTKR2022005336-appb-img-000128
Figure PCTKR2022005336-appb-img-000129
Figure PCTKR2022005336-appb-img-000130
Figure PCTKR2022005336-appb-img-000131
Figure PCTKR2022005336-appb-img-000132
Figure PCTKR2022005336-appb-img-000133
Figure PCTKR2022005336-appb-img-000134
Figure PCTKR2022005336-appb-img-000135
Figure PCTKR2022005336-appb-img-000136
Figure PCTKR2022005336-appb-img-000137
Figure PCTKR2022005336-appb-img-000138
Figure PCTKR2022005336-appb-img-000139
Figure PCTKR2022005336-appb-img-000140
Figure PCTKR2022005336-appb-img-000141
Figure PCTKR2022005336-appb-img-000142
Figure PCTKR2022005336-appb-img-000143
Figure PCTKR2022005336-appb-img-000144
Figure PCTKR2022005336-appb-img-000145
Figure PCTKR2022005336-appb-img-000146
Figure PCTKR2022005336-appb-img-000147
1) 미국국립보건원 (NIH) ID, 해당 홈페이지에서 서열확인가능
2) (major allele) > (minor allele) 의미
3) minor allele frequency = (2mm + Mm)/2(MM + Mm + mm)
4) 3가지의 유전형(M/M, M/m, m/m)에 대한 표현형 차이의 통계적 유의성 (M: major allele, m: minor allele)
5) minor allele 이 하나씩 늘어감에 따라 표현형(피부색: 붉은 정도)의 증감 변화정도 (- : 피부 붉은 정도 감소, + : 피부 붉은 정도 증가),
피부색 = 양 볼 영역의 CIE L*a*b* 각각의 값 (CIE L*: 명도, CIE a*: 붉은 정도, CIE b*: 노란 정도), 시판기기이용 (Janus3, PIE社, Korea)
6) BOLT-LMM 사용하여 분석
Figure PCTKR2022005336-appb-img-000148
Figure PCTKR2022005336-appb-img-000149
Figure PCTKR2022005336-appb-img-000150
Figure PCTKR2022005336-appb-img-000151
Figure PCTKR2022005336-appb-img-000152
Figure PCTKR2022005336-appb-img-000153
Figure PCTKR2022005336-appb-img-000154
Figure PCTKR2022005336-appb-img-000155
Figure PCTKR2022005336-appb-img-000156
Figure PCTKR2022005336-appb-img-000157
Figure PCTKR2022005336-appb-img-000158
Figure PCTKR2022005336-appb-img-000159
Figure PCTKR2022005336-appb-img-000160
Figure PCTKR2022005336-appb-img-000161
Figure PCTKR2022005336-appb-img-000162
Figure PCTKR2022005336-appb-img-000163
Figure PCTKR2022005336-appb-img-000164
Figure PCTKR2022005336-appb-img-000165
Figure PCTKR2022005336-appb-img-000166
Figure PCTKR2022005336-appb-img-000167
Figure PCTKR2022005336-appb-img-000168
Figure PCTKR2022005336-appb-img-000169
Figure PCTKR2022005336-appb-img-000170
Figure PCTKR2022005336-appb-img-000171
Figure PCTKR2022005336-appb-img-000172
Figure PCTKR2022005336-appb-img-000173
Figure PCTKR2022005336-appb-img-000174
Figure PCTKR2022005336-appb-img-000175
Figure PCTKR2022005336-appb-img-000176
Figure PCTKR2022005336-appb-img-000177
Figure PCTKR2022005336-appb-img-000178
Figure PCTKR2022005336-appb-img-000179
Figure PCTKR2022005336-appb-img-000180
Figure PCTKR2022005336-appb-img-000181
Figure PCTKR2022005336-appb-img-000182
Figure PCTKR2022005336-appb-img-000183
Figure PCTKR2022005336-appb-img-000184
Figure PCTKR2022005336-appb-img-000185
Figure PCTKR2022005336-appb-img-000186
Figure PCTKR2022005336-appb-img-000187
Figure PCTKR2022005336-appb-img-000188
Figure PCTKR2022005336-appb-img-000189
Figure PCTKR2022005336-appb-img-000190
Figure PCTKR2022005336-appb-img-000191
Figure PCTKR2022005336-appb-img-000192
Figure PCTKR2022005336-appb-img-000193
Figure PCTKR2022005336-appb-img-000194
Figure PCTKR2022005336-appb-img-000195
Figure PCTKR2022005336-appb-img-000196
Figure PCTKR2022005336-appb-img-000197
Figure PCTKR2022005336-appb-img-000198
Figure PCTKR2022005336-appb-img-000199
1) 미국국립보건원 (NIH) ID, 해당 홈페이지에서 서열확인가능
2) (major allele) > (minor allele) 의미
3) minor allele frequency = (2mm + Mm)/2(MM + Mm + mm)
4) 3가지의 유전형(M/M, M/m, m/m)에 대한 표현형 차이의 통계적 유의성 (M: major allele, m: minor allele)
5) minor allele 이 하나씩 늘어감에 따라 표현형(피부색: 노란 정도)의 증감 변화정도 (- : 피부 노란 정도 감소, + : 피부 노란 정도 증가),
피부색 = 양 볼 영역의 CIE L*a*b* 각각의 값 (CIE L*: 명도, CIE a*: 붉은 정도, CIE b*: 노란 정도), 시판기기이용 (Janus3, PIE社, Korea)
6) BOLT-LMM 사용하여 분석
그 결과, 총 8개의 유전체 부위(1, 2, 3, 4, 6, 11, 12, 16번 염색체)에서 주로 피부색과의 연관성을 보이는 유전자 변이들이 확인되었다.
실시예 4: 한국인의 피부색 연관유의성 유전자 다형성 마커 규명
실시예 3을 통해 도출된 한국인에서 피부색과 연관이 높은 유전자 다형성 마커들이 한국인 특이적 마커임을 규명하기 위해, 대표 마커에 한하여 그 빈도를 타인종 (아프리카, 동아시아, 유럽, 서아시아, 미국)과 비교하였다.
그 결과, 표 4 내지 표 6에 나타낸 바와 같이 피부색의 명도, 붉은 정도, 노란정도에 따라 피부색 연관 유전자 다형성 마커의 대립유전자 빈도가 인종별로 차이가 남을 확인하였다.
피부색 (명도) 연관 유전자 다형성 대표 마커의 인종간 대립유전자 빈도 비교
SNP1) Gene1) Allele2) MAF3) African East Asian Europe South Asian American
MAF4) MAF4) MAF4) MAF4) MAF4)
rs730502 OCA2 T>G 0.3214 0.8033 0.2917 0.8698 0.7350 0.7910
rs10775262 OCA2 C>T 0.3212 0.8033 0.2867 0.8698 0.7380 0.7880
rs10775263 OCA2 T>C 0.3212 0.8033 0.2867 0.8698 0.7380 0.7880
rs7173419 OCA2 T>C 0.1138 0.2882 0.1389 0.7525 0.4570 0.5300
rs12915041 OCA2 A>G 0.1137 0.3313 0.1419 0.7495 0.4560 0.5260
피부색 (붉은 정도) 연관 유전자 다형성 대표 마커의 인종간 대립유전자 빈도 비교
SNP1) Gene1) Allele2) MAF3) African East Asian Europe South Asian American
MAF4) MAF4) MAF4) MAF4) MAF4)
rs7667134 LINC01179 A>T 0.4012 0.3949 0.3720 0.2197 0.3600 0.1890
rs999318 LINC01179 T>C 0.4067 0.7156 0.3800 0.2724 0.3720 0.2650
rs17688866 LINC01179 C>T 0.4032 0.3979 0.3661 0.2197 0.3590 0.1860
rs57940970 LINC01179 T>C 0.4032 0.3986 0.3661 0.2197 0.3590 0.1860
rs17632434 LINC01179 T>A 0.4032 0.3994 0.3661 0.2197 0.3590 0.1860
피부색 (노란 정도) 연관 유전자 다형성 대표 마커의 인종간 대립유전자 빈도 비교
SNP1) Gene1) Allele2) MAF3) African East Asian Europe South Asian American
MAF4) MAF4) MAF4) MAF4) MAF4)
rs10775262 OCA2 C>T 0.3212 0.8033 0.2867 0.8698 0.7380 0.7880
rs10775263 OCA2 T>C 0.3212 0.8033 0.2867 0.8698 0.7380 0.7880
rs730502 OCA2 T>G 0.3214 0.8033 0.2917 0.8698 0.7350 0.7910
rs7485656 SCARB1 G>A 0.3223 0.5567 0.4246 0.8280 0.8060 0.7420
rs10846742 SCARB1 G>A 0.312 0.4826 0.4147 0.8270 0.8030 0.7280
1) 미국국립보건원 (NIH) ID, 해당 홈페이지에서 서열확인가능2) 한국인 연구에서의 (major allele) > (minor allele) 의미
3) 한국인의 minor allele frequency; minor allele frequency = (2mm + Mm)/2(MM + Mm + mm)
4) 한국인 연구에서의 minor allele (2)의 타인종에서의 빈도
구체적으로, 한국인의 피부색의 명도와 관련된 대표적인 단일염기다형성(SNP) 마커는 표 4에 나타낸 바와 같이 rs730502, rs10775262, rs10775263, rs7173419 및 rs12915041이고, 한국인의 피부색의 붉은 정도와 관련된 단일염기다형성(SNP) 마커는 표 5에 나타낸 바와 같이 rs7667134, rs999318, rs17688866, rs57940970, 및 rs17632434이며, 한국인의 피부색의 노란 정도와 관련된 단일염기다형성(SNP) 마커는 표 6에 나타낸 바와 같이 rs10775262, rs10775263, rs730502, rs7485656, 및 rs10846742임을 확인하였다. 이를 통해, 상기 해당 마커들이 한국인 특이적인 피부색 연관 유전자 다형성 마커임을 알 수 있으나, 상기 마커들은 한국인의 피부색과 관련된 대표적인 단일염기다형성(SNP) 마커일 뿐, 상기 마커로 한정되는 것은 아니다.
실시예 5: 피부색 연관유의성 유전자 다형성 마커를 활용한 맞춤형 피부 관리 제품 정보 및 생활 패턴 정보 제공 시스템
피검자의 피부색 측정 및 개인의 피부색 연관유의성 유전자 다형성 마커 혹은 피부색과 연관유의성을 갖는 유전자 다형성 마커들 중 하나 이상의 마커를 활용한 맞춤형 피부 관리 제품 정보 및 생활 패턴 정보 제공시스템은 피부 밝기(명도), 붉은 정도, 노란 정도 등을 포함한 전반적인 피부색을 토대로 하기와 같은 방식으로 진행하였다.
(1) 피검자의 피부색을 정량화 하는 단계로서 피부 측정을 위하여 모든 피검자는 클렌징 또는 비누를 이용해 얼굴 세안을 하고 피부가 측정 환경에 적응할 수 있도록 어떠한 제품도 바르지 않고 30분간 대기한 후에 피부색을 평가하며, 평가에는 이미지 기반의 피부진단 전문기기(PIE社 Janus3)를 활용하였다 (측정 및 분석은 기기 제조사의 매뉴얼에 따라 수행함). 자체 제공 프로그램을 통해 양 볼 영역을 정의하고 해당 영역 내 CIE L*a*b* 값을 피부색 수치로 사용하였다 (CIE L*: 명도, CIE a*: 붉은 정도, CIE b*: 노란 정도). 한국인 피부색 데이터의 분포를 활용해 피검자의 현재 피부색 각 지표의 한국인 집단에서의 위치의 표현이 가능하다.
(2) 실시예 2 및 실시예 3의 방식을 통한 피검자의 유전자 분석을 통해 CIE L*, a*, b* 각각의 값에 영향을 미치는 1개 이상의 연관유의성 유전자 다형성 마커 또는 CIE L*, a*, b* 각각의 값에 연관유의성을 갖는 유전자 다형성 마커들 중 하나 이상을 포함하는 피부색 정보 제공용 마커 조합을 도출하였다. 마커 조합을 통해 구축한 피부색 예측 모델의 식은 하기와 같은 형식이 될 수 있다. 해당 식은 개인의 고유 피부색 특성 예측 및 분류, 맞춤형 피부 관리 제품 제공 및 생활 패턴 정보 추천 제공의 근거로써 활용 할 수 있다.
예) 피부색 예측 모델의 식 = SNP1 X effect size1 + … + (SNPn: 특정 SNP에서 특정 allele의 수, effect size: 선형회귀분석 등을 통해 구한 SNPn에 대한 효과 값)
예를 들어, 다수의 개체로부터 명도, 붉은 정도, 노란 정도 각각의 예측 모델의 식을 계산 하고, 그 값으로 참조 데이터베이스를 구성할 수 있다. 구체적인 예로, 참조 데이터베이스에서 평균값을 구할 수 있으며, 피검자의 계산값과의 비교를 통해 비교 데이터를 생성할 수 있다. 이는 맞춤형 피부 관리 제품 정보 및 생활 패턴 정보 추천 제공의 근거로써 활용 할 수 있다.
(3) (1)에서 측정된 피부색을 바탕으로 피검자가 원하는 피부색에 대한 목표 피부 밝기(명도), 붉은 정도, 노란 정도 값 (CIE L*a*b*)을 특정할 수 있고, 피부색 측정 비교 결과 데이터를 생성할 수 있다. 이는 맞춤형 피부 관리 제품 정보 및 생활 패턴 정보 추천 제공의 근거로써 활용 할 수 있다.
(4) 피검자의 본질적인 피부색 고민, 예를 들어 피부 밝기(명도)를 개선하기 위해서는 (2)에 기술된 예측 식과 비교 데이터에 기반하여 개인에게 가장 효과적으로 작용하는 미백 기능성, 자외선 차단 등의 기능성 원료를 포함한 처방 혹은 이를 포함한 피부 관리 제품을 추천 할 수 있다. 또한, 현재 피검자의 상태에서 원하는 피부색으로의 표현을 위해 (3)에 기술된 피검자의 피부색 측정치, 목표 피부색 수치 및 비교 데이터에 기반하여 색조 화장품 처방을 포함한 맞춤형 피부 관리 제품을 추천할 수 있다. 피검자 개별 특성에 맞는 처방 혹은 제품 추천과 더불어 야외 활동의 종류, 활동 시간 등 생활습관 관리 항목에 대해서도 추가적으로 제안하여 서비스를 제공할 수 있다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 표 1 내지 표 3에서 선택된 어느 하나 이상의 피부색 판단용 단일염기다형성(SNP) 마커를 검출할 수 있는 프로브 또는 증폭할 수 있는 제제를 포함하는, 피부색 판단용 조성물.
  2. 제1항에 있어서, 상기 조성물은 피부의 밝기와 관련된 표 1에서 선택되는 하나 이상의 단일염기다형성 마커; 피부의 붉은 정도와 관련된 표 2에서 선택되는 하나 이상의 단일염기다형성 마커; 및 피부의 노란 정도와 관련된 표 3에서 선택되는 하나 이상의 단일염기다형성 마커를 검출할 수 있는 프로브 또는 증폭할 수 있는 제제를 포함하는 것인, 조성물.
  3. 제1항에 있어서, 상기 피부색 판단용 단일염기다형성 마커는 표 1 내지 표 3 중 어느 하나에서 선택되는 하나 이상의 단일염기다형성 마커에 해당하는 폴리뉴클레오티드; 및 이들의 상보적인 폴리뉴클레오티드로 이루어진 군에서 선택된 하나 이상의 폴리뉴클레오티드를 추가로 포함하는 것인, 조성물.
  4. 제1항에 있어서, 상기 표 1 내지 표 3의 피부색 판단용 단일염기다형성 마커에서 선택한 단일염기다형성 마커로부터 표 4 내지 표 6에서 선택되는 어느 하나 이상의 피부색 판단용 단일염기다형성 마커는 한국인의 피부색과 연관성이 높은 것인, 조성물.
  5. 제1항 내지 제4항 중 어느 한 항의 조성물을 포함하는 피부색 판단용 키트.
  6. 제5항에 있어서, 상기 키트는 RT-PCR 키트 또는 DNA 칩 키트인 피부색 판단용 키트.
  7. 제1항에 따른 피부색 판단용 단일염기다형성(SNP) 마커를 포함하는, 피부색 판단용 마이크로어레이.
  8. (a) 개체로부터 분리한 시료로부터 수득된 DNA에서 제1항에 따른 피부색 판단용 단일염기다형성 마커의 다형성 부위를 증폭하거나 프로브와 혼성화하는 단계; 및
    (b) 상기 (a) 단계의 증폭된 또는 혼성화된 다형성 부위의 염기를 확인하는 단계를 포함하는, 피부색에 대한 정보의 제공 방법.
  9. 제8항에 있어서, 상기 시료는 머리카락, 뇨, 혈액, 각종 체액, 분리된 조직, 분리된 세포 또는 타액인 것인, 피부색에 대한 정보의 제공 방법.
  10. 제8항에 있어서, 상기 다형성 부위의 증폭 및 확인은 SNP 칩을 이용하는 것인, 피부색에 대한 정보의 제공 방법.
PCT/KR2022/005336 2021-04-13 2022-04-13 피부색 판단용 유전자 다형성 마커 및 이의 용도 WO2022220575A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280027644.2A CN117222751A (zh) 2021-04-13 2022-04-13 用于判断肤色的基因多态性标记及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210048039A KR20220141659A (ko) 2021-04-13 2021-04-13 피부색 판단용 유전자 다형성 마커 및 이의 용도
KR10-2021-0048039 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022220575A1 true WO2022220575A1 (ko) 2022-10-20

Family

ID=83640514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005336 WO2022220575A1 (ko) 2021-04-13 2022-04-13 피부색 판단용 유전자 다형성 마커 및 이의 용도

Country Status (3)

Country Link
KR (1) KR20220141659A (ko)
CN (1) CN117222751A (ko)
WO (1) WO2022220575A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170049768A (ko) * 2015-10-28 2017-05-11 주식회사 엘지생활건강 피부 색상 및 흑화 민감도 진단용 단일염기다형성 마커 및 이의 용도
JP2021040626A (ja) * 2016-11-30 2021-03-18 株式会社 資生堂 肌特性解析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170049768A (ko) * 2015-10-28 2017-05-11 주식회사 엘지생활건강 피부 색상 및 흑화 민감도 진단용 단일염기다형성 마커 및 이의 용도
JP2021040626A (ja) * 2016-11-30 2021-03-18 株式会社 資生堂 肌特性解析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HART KATIE L., KIMURA SHEY L., MUSHAILOV VLADIMIR, BUDIMLIJA ZORAN M., PRINZ MECHTHILD, WURMBACH ELISA: "Improved eye- and skin-color prediction based on 8 SNPs", CROATIAN MEDICAL JOURNAL, ZAGREB,, CR, vol. 54, no. 3, 1 June 2013 (2013-06-01), CR , pages 248 - 256, XP055976951, ISSN: 0353-9504, DOI: 10.3325/cmj.2013.54.248 *
MURRAY NICOLE, NORTON HEATHER L, PARRA ESTEBAN J: "Distribution of two OCA2 polymorphisms associated with pigmentation in East-Asian populations", HUMAN GENOME VARIATION, vol. 2, no. 1, 1 December 2015 (2015-12-01), pages 15058 - 5, XP055976891, ISSN: 2054-345X, DOI: 10.1038/hgv.2015.58 *
OLGA SPICHENOK; ZORAN M. BUDIMLIJA; ADELE A. MITCHELL; ANDREAS JENNY; LEJLA KOVACEVIC; DAMIR MARJANOVIC; THERESA CARAGINE; MECHTHI: "Prediction of eye and skin color in diverse populations using seven SNPs", FORENSIC SCIENCE INTERNATIONAL: GENETICS, ELSEVIER BV, NETHERLANDS, vol. 5, no. 5, 5 October 2010 (2010-10-05), Netherlands , pages 472 - 478, XP028275682, ISSN: 1872-4973, DOI: 10.1016/j.fsigen.2010.10.005 *

Also Published As

Publication number Publication date
KR20220141659A (ko) 2022-10-20
CN117222751A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2011055916A2 (ko) 장암 진단을 위한 장암 특이적 메틸화 마커 유전자의 메틸화 검출방법
WO2012081898A2 (ko) 위암의 예후 예측용 마커 및 이를 이용하는 위암의 예후 예측 방법
WO2015068957A1 (en) Method for the detection of multiple target nucleic acids using clamping probes and detection probes
WO2012070861A2 (ko) 위암 진단을 위한 위암 특이적 메틸화 바이오마커
WO2018169145A1 (ko) 진행성 위암 환자의 수술 후 예후 또는 항암제 적합성 예측 시스템
WO2021075797A2 (ko) 특정 유전자의 cpg 메틸화 변화를 이용한 간암 진단용 조성물 및 이의 용도
WO2019107893A2 (ko) 표적핵산 증폭방법 및 표적핵산 증폭용 조성물
WO2021230663A1 (ko) 초기 유방암 환자의 예후 예측 방법
WO2022220527A1 (ko) 피부색 판단용 유전자 다형성 마커 및 이의 용도
WO2021182881A1 (ko) 유방암 진단용 다중 바이오마커 및 이의 용도
WO2011139032A2 (ko) 표적 유전자의 다양한 변이가 존재하는 유전자 영역을 증폭하기 위한 프라이머 조성물
WO2022220575A1 (ko) 피부색 판단용 유전자 다형성 마커 및 이의 용도
WO2023234659A1 (ko) 퇴행성 턱관절염의 진단 또는 예후 예측용 유전자 마커 및 이의 용도
WO2024043743A1 (ko) Flt3 유전자 증폭용 조성물 및 이의 용도
WO2017209575A1 (en) Evaluation of specificity of oligonucleotides
WO2015167087A1 (ko) Dna 복제수 변이를 이용한 강직성 척추염 발병 위험도 예측 방법
WO2021201592A1 (ko) 색소침착 피부 타입 판단용 유전자 다형성 마커 및 이의 용도
WO2023106680A1 (ko) 비타민 c를 포함하는 처방의 피부 밝기 변화 예측 방법 및 시스템
WO2013105801A1 (ko) 만성 골수성 백혈병 융합 유전자형 타이핑용 프로브, 프라이머 및 이의 이용방법
WO2018194280A1 (ko) SDC2(Syndecan 2) 유전자의 메틸화 검출방법
WO2022055276A1 (ko) 여성형 탈모증 관련 유전자 다형성 마커 및 이의 용도
WO2021034034A1 (ko) 핵산 단편간 거리 정보를 이용한 염색체 이상 검출 방법
WO2017146432A1 (ko) 프로히비틴 유전자 타깃 백혈병 진단용 키트 및 이를 이용한 진단 방법
WO2023219369A1 (ko) 히드로퀴논을 포함하는 처방의 피부 밝기 변화 예측 방법 및 시스템
WO2021172653A1 (ko) 단일 표적 유전자의 유전적 변이 실시간 검출용 단일핵산 및 이를 이용한 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280027644.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC