WO2022220239A1 - 半導体型単層カーボンナノチューブ分散液の製造方法 - Google Patents

半導体型単層カーボンナノチューブ分散液の製造方法 Download PDF

Info

Publication number
WO2022220239A1
WO2022220239A1 PCT/JP2022/017585 JP2022017585W WO2022220239A1 WO 2022220239 A1 WO2022220239 A1 WO 2022220239A1 JP 2022017585 W JP2022017585 W JP 2022017585W WO 2022220239 A1 WO2022220239 A1 WO 2022220239A1
Authority
WO
WIPO (PCT)
Prior art keywords
walled carbon
semiconducting
less
carbon nanotube
group
Prior art date
Application number
PCT/JP2022/017585
Other languages
English (en)
French (fr)
Inventor
浅井光夫
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to EP22788164.6A priority Critical patent/EP4324789A1/en
Priority to CN202280027727.1A priority patent/CN117120369A/zh
Priority to KR1020237032328A priority patent/KR20230169097A/ko
Publication of WO2022220239A1 publication Critical patent/WO2022220239A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/52Natural or synthetic resins or their salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area

Definitions

  • the present disclosure provides a method for producing a semiconducting single-walled carbon nanotube dispersion, a method for producing a semiconducting single-walled carbon nanotube including the production method as a process, and a method for separating a metallic single-walled carbon nanotube and a semiconducting single-walled carbon nanotube. etc.
  • CNT carbon nanotube
  • SWCNTs single-walled carbon nanotubes
  • CNTs have different electrical properties depending on the winding method and diameter of the graphene sheet.
  • SWCNTs are greatly affected by the quantum effect, there are those that exhibit metallic properties (metallic SWCNTs) and those that exhibit semiconducting properties (semiconductor type SWCNTs).
  • synthesis methods such as a high-pressure carbon monoxide disproportionation method (HiPco method), an improved direct injection pyrolysis synthesis method (e-DIPS method), an arc discharge method, and a laser ablation method are known.
  • a separation method is disclosed in which metallic SWCNTs and semiconducting SWCNTs in a SWCNT dispersion to be separated can be separated by a simple operation. Specifically, after centrifuging a SWCNT dispersion to be separated containing polyacrylic acid as a dispersant, a semiconducting SWCNT dispersion including a step of collecting a supernatant containing semiconducting SWCNTs from the centrifuged dispersion. A method of making the liquid is disclosed.
  • the present disclosure provides: preparing a SWCNT dispersion to be separated, comprising SWCNTs including semiconducting SWCNTs and metallic SWCNTs, an aqueous medium, and a polymer; After centrifuging the to-be-separated SWCNT dispersion, collecting a supernatant liquid containing the semiconducting SWCNT from the centrifuged to-be-separated SWCNT dispersion,
  • the polymer is a copolymer containing a structural unit A derived from a monomer represented by the following formula (1) and a structural unit B derived from a monomer represented by the following formula (3) , relates to a method for producing a semiconducting SWCNT dispersion.
  • R 0 represents a hydrogen atom or a methyl group.
  • M represents any one of a hydrogen atom, a metal atom, and a group having a structure represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 or more and 2 or less carbon atoms which may have a hydroxyl group.
  • CH2 CR5- COO- (EO) p- (PO) q -R6 ( 3 )
  • R5 represents a hydrogen atom or a methyl group.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms
  • EO represents an ethyleneoxy group
  • PO represents a propyleneoxy group
  • p represents the average number of added moles of ethyleneoxy groups, and is 1 or more. It is 120 or less
  • q represents the average added mole number of propyleneoxy groups, and is 0 or more and 50 or less.
  • the present disclosure is a method for producing semiconducting SWCNTs, comprising a step of collecting semiconducting SWCNTs by filtering a semiconducting SWCNT dispersion obtained by the method for producing a semiconducting SWCNT dispersion of the present disclosure. Regarding.
  • the present invention relates to a method for producing semiconducting SWCNTs, including a step of removing the copolymer from the mixture and collecting semiconducting SWCNTs.
  • the present disclosure provides: preparing a SWCNT dispersion to be separated, comprising SWCNTs including semiconducting SWCNTs and metallic SWCNTs, an aqueous medium, and a polymer; After centrifuging the to-be-separated SWCNT dispersion, collecting a supernatant liquid containing the semiconducting SWCNT from the centrifuged to-be-separated SWCNT dispersion,
  • the polymer is a copolymer containing a structural unit A derived from a monomer represented by the following formula (1) and a structural unit B derived from a monomer represented by the following formula (3) , a method for separating semiconducting SWCNTs and metallic SWCNTs.
  • R 0 represents a hydrogen atom or a methyl group.
  • M represents any one of a hydrogen atom, a metal atom, and a group having a structure represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 or more and 2 or less carbon atoms which may have a hydroxyl group.
  • CH2 CR5- COO- (EO) p- (PO) q -R6 ( 3 )
  • R5 represents a hydrogen atom or a methyl group.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms
  • EO represents an ethyleneoxy group
  • PO represents a propyleneoxy group
  • p represents the average number of added moles of ethyleneoxy groups, and is 1 or more. It is 120 or less
  • q represents the average added mole number of propyleneoxy groups, and is 0 or more and 50 or less.
  • the present disclosure relates to a method for producing a semiconducting SWCNT-containing ink that includes the method for producing a semiconducting SWCNT dispersion liquid of the present disclosure or the method for producing semiconducting SWCNTs of the present disclosure as one step.
  • semiconducting SWCNTs at least one of an organic solvent and water, a structural unit A derived from a monomer represented by the following formula (1), and the following formula (3) and a copolymer containing a structural unit B derived from a monomer represented by a semiconducting SWCNT-containing ink.
  • CH2 CR0-COOM (1)
  • R 0 represents a hydrogen atom or a methyl group.
  • M represents any one of a hydrogen atom, a metal atom, and a group having a structure represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 or more and 2 or less carbon atoms which may have a hydroxyl group.
  • CH2 CR5- COO- (EO) p- (PO) q -R6 ( 3 )
  • R5 represents a hydrogen atom or a methyl group.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms
  • EO represents an ethyleneoxy group
  • PO represents a propyleneoxy group
  • p represents the average number of added moles of ethyleneoxy groups, and is 1 or more. It is 120 or less
  • q represents the average added mole number of propyleneoxy groups, and is 0 or more and 50 or less.
  • the resulting semiconducting SWCNT dispersion liquid has good dispersion stability.
  • the present disclosure is a method for producing a semiconducting SWCNT dispersion, and a method for producing a semiconducting SWCNT, which enables both high separability of semiconducting SWCNT and dispersion stability of the obtained semiconducting SWCNT dispersion. and a method for separating metallic SWCNTs.
  • the present disclosure relates to a method for producing semiconducting SWCNTs and a method for producing an ink containing semiconducting SWCNTs, which includes the production method as one step, and in one aspect, to an ink containing semiconducting SWCNTs.
  • both high separation of semiconducting SWCNTs and dispersion stability of semiconducting SWCNTs in the obtained semiconducting SWCNT dispersion are achieved. based on the knowledge that
  • the SWCNT dispersion to be separated contains the copolymer containing the structural unit A derived from the monomer represented by the above formula (1), so that the semiconducting SWCNTs are selectively
  • the metallic SWCNT aggregates by subjecting it to centrifugation, it becomes possible to separate the metallic SWCNT and the semiconducting SWCNT satisfactorily, and the separability of the semiconducting SWCNT is improved. It is assumed that this is possible.
  • the copolymer contains the structural unit B derived from the monomer represented by the above formula (3), the dispersion stability of the semiconducting SWCNTs in the resulting semiconducting SWCNT dispersion liquid is good. It is assumed that there are However, the present disclosure should not be construed as being limited to these mechanisms.
  • a method for producing a semiconducting SWCNT dispersion, a semiconducting SWCNT, and a metal A method for isolating type SWCNTs can be provided.
  • the present disclosure can provide a method for producing semiconducting SWCNTs and a method for producing an ink containing semiconducting SWCNTs, which includes the above-mentioned production method as one step, and can provide an ink containing semiconducting SWCNTs.
  • the present disclosure in one aspect, relates to a method for producing a semiconducting SWCNT dispersion (hereinafter also referred to as “method for producing a dispersion of the present disclosure”), including the following steps A and B.
  • the present disclosure also relates to a method for separating semiconducting SWCNTs and metallic SWCNTs (hereinafter also referred to as “separation method of the present disclosure”), including the following steps A and B.
  • Step A SWCNTs containing semiconducting SWCNTs and metallic SWCNTs (hereinafter also referred to as “SWCNT mixture”) and a monomer represented by the following formula (1) (hereinafter also referred to as “monomer A”)
  • SWCNT mixture semiconducting SWCNTs and metallic SWCNTs
  • monomer A a monomer represented by the following formula (1)
  • a copolymer containing a structural unit B derived from a structural unit A derived from and a monomer represented by (3) below (hereinafter also referred to as "monomer B"), and an aqueous medium, SWCNT to be separated A dispersion is prepared.
  • Step B After centrifuging the to-be-separated SWCNT dispersion, a supernatant containing the semiconducting SWCNT is collected from the centrifuged to-be-separated SWCNT dispersion.
  • CH2 CR0-COOM (1)
  • R 0 represents a hydrogen atom or a methyl group.
  • M represents any one of a hydrogen atom, a metal atom, and a group having a structure represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 or more and 2 or less carbon atoms which may have a hydroxyl group.
  • R5 represents a hydrogen atom or a methyl group.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, EO is an ethyleneoxy group (hereinafter also referred to as "EO group"), PO is a propyleneoxy group (hereinafter also referred to as "PO group") p is the average number of added moles of ethyleneoxy groups and is 1 or more and 120 or less, and q is the average number of added moles of propyleneoxy groups and is 0 or more and 50 or less.
  • collecting the supernatant containing the semiconducting SWCNT means that the semiconductor in the SWCNT dispersion to be separated obtained in the step A in the method for producing a dispersion of the present disclosure and the separation method of the present disclosure. It means collecting a supernatant liquid in which the ratio of the semiconducting SWCNTs is improved with respect to the ratio of the SWCNTs of the metallic type and the SWCNTs of the metallic type, and the supernatant liquid is the dispersion of the SWCNTs of the semiconducting type.
  • the present disclosure does not exclude that the supernatant contains relatively low amounts of metallic SWCNTs compared to semiconducting SWCNTs. When the separability of semiconducting SWCNTs is improved, the ratio of semiconducting SWCNTs in the SWCNTs in the supernatant increases, making the material more useful as a material for semiconductor devices.
  • collecting the supernatant can be performed, for example, by separating the supernatant from its remainder.
  • the residue includes sediment containing relatively more metallic SWCNTs than semiconducting SWCNTs.
  • the step A in the method for producing a dispersion of the present disclosure and the separation method of the present disclosure includes, in one or more embodiments, at least a structural unit A derived from the monomer A and a
  • a mixed solution containing a copolymer containing the structural unit B, the SWCNT mixture, and an aqueous medium hereinafter sometimes abbreviated as “mixed solution A”
  • the mixed solution A is subjected to dispersion treatment.
  • subject to Mixture A can be prepared, for example, by adding the SWCNT mixture to an aqueous solution of the copolymer.
  • the copolymer is water-soluble from the viewpoint of improving the separability of semiconducting SWCNTs.
  • water-soluble means that 1 g or more of a polymer dissolves in 100 g of water at 20°C.
  • the structural unit A contained in the copolymer is a structural unit derived from the monomer A represented by the above formula (1).
  • R 0 is preferably a methyl group from the viewpoint of improving the separability of semiconducting SWCNTs.
  • M is a hydrogen atom, a metal atom, or a group of the structure represented by the above formula (2) from the viewpoint of improving the separability and productivity of semiconducting SWCNTs, but a semiconductor From the viewpoint of improving the separability of type SWCNT, improving productivity, and improving versatility, it is preferably a hydrogen atom or a group having a structure represented by the above formula (2), more preferably a hydrogen atom.
  • Monomer A that provides structural unit A is preferably methacrylic acid.
  • the structural unit B contained in the copolymer is a structural unit derived from the monomer B represented by the above formula (3).
  • the structural unit B contained in the copolymer may be of one type, or may be a combination of two or more types.
  • R 5 is preferably a methyl group from the viewpoint of improving the separability of semiconducting SWCNTs.
  • R 6 is a hydrogen atom or a carbon number of 1 from the viewpoint of improving the separation of semiconducting SWCNTs and the dispersion stability of a semiconducting SWCNT dispersion liquid, and from the viewpoint of availability of monomers.
  • R 6 is a hydrocarbon group
  • the number of carbon atoms is preferably 1 from the viewpoint of improving the separation of semiconducting SWCNTs and the dispersion stability of a dispersion of semiconducting SWCNTs, and from the viewpoint of availability of monomers. 4 or less, more preferably 1 or more and 3 or less.
  • Examples of hydrocarbon groups for R 6 include alkyl groups.
  • R 6 include at least one selected from a butyl group, an ethyl group, a methyl group, and a hydrogen atom. is preferred, and a methyl group is more preferred.
  • R 6 is a hydrocarbon group, and the number of carbon atoms is preferably 1 or more and 4 or less, from the viewpoint of improving the separation property of the semiconducting SWCNT and the dispersion stability of the semiconducting SWCNT dispersion. , more preferably 1 or more and 3 or less structural units B, and a structural unit B in which R 6 is hydrogen.
  • the terminal carbon number of the structural unit B that is, the carbon number of R 6 can be calculated from the chemical shift in nuclear magnetic resonance, specifically by the method described in Examples.
  • Monomer B that provides structural unit B is preferably 2-hydroxyethyl methacrylate (HEMA), butoxypolyethylene glycol methacrylate, ethoxypolyethylene glycol methacrylate, methoxypolyethylene glycol (meth)acrylate (PEG(M)A), More preferably, it contains methoxy polyethylene glycol methacrylate (PEGMA).
  • HEMA 2-hydroxyethyl methacrylate
  • PEG(M)A methoxypolyethylene glycol methacrylate
  • PEG(M)A methoxypolyethylene glycol (meth)acrylate
  • PEGMA methoxy polyethylene glycol methacrylate
  • p is 1 or more from the viewpoint of improving the separability of semiconducting SWCNTs, and is 120 or less from the viewpoint of improving separability of semiconducting SWCNTs and the availability of monomers. , preferably 100 or less, more preferably 90 or less, even more preferably 60 or less, even more preferably 45 or less, and even more preferably 25 or less.
  • q is 0 or more and 50 or less, preferably 0 or more and 30 or less, from the viewpoint of the water solubility of the copolymer, the separation tendency of the semiconducting SWCNT, and the availability of the monomer. , more preferably 0 or more and 10 or less, still more preferably 0 or more and 5 or less, still more preferably 0 or more and 3 or less, still more preferably 0.
  • q/(p+q) is preferably 0.7 or less, more preferably 0.7 or less, from the viewpoint of the water solubility of the copolymer, the improvement of the separability of the semiconducting SWCNT, and the availability of the monomer. is 0.4 or less, more preferably 0.
  • the structural unit B contained in the copolymer is a combination of two or more, from the viewpoint of improving the separability of the semiconducting SWCNT, the structural unit B 1 having an average added mole number p of EO groups of 4 or more and 120 or less and a structural unit B 2 in which p is 1 or more and less than 4.
  • the average added mole number p of the structural unit B 1 is preferably 100 or less, more preferably 90 or less, still more preferably 60 or less, still more preferably 45 or less, and even more preferably, from the viewpoint of improving the separability of the semiconducting SWCNT. is 25 or less.
  • the average added mole number p of the structural unit B 2 is preferably 3 or less, more preferably 2 or less, and still more preferably 1 from the viewpoint of improving the separability of the semiconducting SWCNT.
  • R 6 of the structural unit B 1 is preferably a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 4 carbon atoms, still more preferably 1 to 3 carbon atoms.
  • is a hydrocarbon group of R 6 of structural unit B 2 is preferably a hydrogen atom.
  • the molar ratio of the structural unit B 1 and the structural unit B 2 in the copolymer (B 1 /B 2 ) is preferably 0.01 or more, more preferably 0.03 or more, and still more preferably 0.05 or more from the viewpoint of improving the separability of semiconducting SWCNTs. From the viewpoint, it is preferably 0.5 or less, more preferably 0.4 or less, and still more preferably 0.3 or less.
  • the mass ratio of the structural unit B 1 and the structural unit B 2 in the copolymer (B 1 /B 2 ) is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.4 or more from the viewpoint of improving the separability of semiconducting SWCNTs. From the viewpoint, it is preferably 5 or less, more preferably 3 or less, and still more preferably 1 or less.
  • the content (% by mass) of the structural unit A in all the structural units of the copolymer is preferably more than 0% by mass, more preferably 1% by mass or more, and still more preferably from the viewpoint of improving the separability of semiconducting SWCNTs. is 2% by mass or more, still more preferably 3% by mass or more, and from the viewpoint of improving the dispersion stability of the semiconducting SWCNT dispersion, preferably 80% by mass or less, more preferably 50% by mass or less, and further It is preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • the content (mol%) of the structural unit A in all the structural units of the copolymer is preferably more than 0 mol%, more preferably 1 mol% or more, and still more preferably 3 mol, from the viewpoint of improving the separability of the semiconducting SWCNT. % or more, still more preferably 5 mol% or more, still more preferably 8 mol% or more, and from the viewpoint of improving the dispersion stability of the semiconducting SWCNT dispersion, preferably less than 100 mol%, more preferably 90 mol% or less, and further It is preferably 80 mol % or less, still more preferably 60 mol % or less, still more preferably 40 mol % or less, and even more preferably 25 mol % or less.
  • the content (% by mass) of the structural unit B in all the structural units of the copolymer is preferably more than 10% by mass, more preferably 50% by mass, from the viewpoint of improving the dispersion stability of the semiconducting SWCNT dispersion. Above, more preferably 70% by mass or more, still more preferably 80% by mass or more, preferably less than 100% by mass, more preferably 97% by mass or less, still more preferably from the viewpoint of improving the separability of semiconducting SWCNTs It is 95% by mass or less.
  • the content (mol%) of the structural unit B in all the structural units of the copolymer is preferably more than 0 mol%, more preferably 10 mol% or more, from the viewpoint of improving the dispersion stability of the semiconducting SWCNT dispersion. More preferably 20 mol% or more, still more preferably 30 mol% or more, still more preferably 50 mol% or more, from the viewpoint of improving the separation of semiconducting SWCNTs, preferably less than 100 mol%, more preferably 97 mol% or less, and further It is preferably 95 mol % or less, and still more preferably 92 mol % or less.
  • the total content (% by mass) of the structural unit A and the structural unit B in all the structural units of the copolymer is, from the viewpoint of improving the separability of the semiconducting SWCNT and the dispersion stability of the semiconducting SWCNT dispersion liquid, It is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, still more preferably 99% by mass or more, and 100% by mass or less. From the viewpoint of improving the separability of semiconducting SWCNTs, it is more preferably substantially 100% by mass.
  • the total content (mol%) of the structural unit A and the structural unit B in all the structural units of the copolymer is, from the viewpoint of improving the separability of the semiconducting SWCNT and the dispersion stability of the semiconducting SWCNT dispersion liquid, It is preferably 80 mol % or more, more preferably 90 mol % or more, still more preferably 95 mol % or more, still more preferably 99 mol % or more, and 100 mol % or less. From the viewpoint of improving the separability of semiconducting SWCNTs, it is more preferably substantially 100 mol %.
  • the copolymer may contain a structural unit C other than the structural units A and B as long as the effects of the present disclosure are not impaired.
  • Structural unit C may be of one type or a combination of two or more types.
  • the monomer C that provides the structural unit C include carboxylic acid-based monomers other than the monomer A such as maleic acid, and structural units derived from nonionic monomers other than the structural unit B.
  • examples of the monomer C include methyl (meth)acrylate, ethyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. , lauryl (meth)acrylate, stearyl (meth)acrylate, and benzyl (meth)acrylate.
  • examples of the monomer C include at least one selected from acrylamide, methacrylamide, dimethylacrylamide, and dimethylmethacrylamide.
  • examples of the monomer C include styrene and methylstyrene.
  • examples of the monomer C include acrylonitrile and methacrylonitrile.
  • the content of the structural unit C in the copolymer is preferably 20% by mass or less, more preferably 10% by mass or less, from the viewpoint of achieving both improved separability of semiconducting SWCNTs and dispersion stability of the semiconducting SWCNT dispersion. , more preferably 5% by mass or less, still more preferably 1% by mass or less, and even more preferably substantially free.
  • substantially free means that it is not intentionally contained, for example, it is contained in the raw material monomers constituting the structural unit A and the structural unit B, and is unintentionally included. case falls under “substantially not included”.
  • the mass ratio (A/B) of the structural unit A and the structural unit B in the copolymer is preferably greater than 0, more preferably 0.01 or more, and still more preferably from the viewpoint of improving the separability of semiconducting SWCNTs. is 0.03 or more, still more preferably 0.05 or more, and from the viewpoint of improving the dispersion stability of the semiconducting SWCNT dispersion, preferably 10 or less, more preferably 5 or less, and still more preferably 3 or less , still more preferably 1.5 or less, still more preferably 0.5 or less, still more preferably 0.4 or less.
  • the molar ratio (A/B) of the structural unit A and the structural unit B in the copolymer is preferably greater than 0, more preferably 0.01 or more, and still more preferably from the viewpoint of improving the separability of the semiconducting SWCNT. is 0.05 or more, still more preferably 0.1 or more, and from the viewpoint of improving the dispersion stability of the semiconducting SWCNT dispersion, preferably 30 or less, more preferably 10 or less, and even more preferably 5 or less , still more preferably 3 or less, still more preferably 2 or less, still more preferably 1.1 or less, and even more preferably 0.5 or less.
  • the weight-average molecular weight of the copolymer is preferably 1,000 or more, more preferably 2,000 or more, still more preferably 3,000 or more, still more preferably 4, from the viewpoint of improving the separability of semiconducting SWCNTs. 000 or more, preferably 250,000 or less, more preferably 150,000 or less, even more preferably 120,000 or less, still more preferably 110,000 or less from the viewpoint of improving the separability of semiconducting SWCNTs.
  • the weight average molecular weight of the copolymer is determined by gel permeation chromatography, and specifically, can be measured by the method described in Examples.
  • the mass ratio (copolymer/SWCNT) of the copolymer to the SWCNTs in the mixed liquid A and in the SWCNT dispersion to be separated is, from the viewpoint of improving the separability of semiconducting SWCNTs and improving productivity, It is preferably 0.5 or more, more preferably 1 or more, still more preferably 2 or more, still more preferably 4 or more, and from the viewpoint of improving the separation of semiconducting SWCNTs and improving productivity, it is preferably 100 Below, more preferably 70 or less, still more preferably 50 or less, and even more preferably 20 or less.
  • the content of the copolymer in the mixed liquid A and in the SWCNT dispersion to be separated is preferably 0.05% by mass or more, from the viewpoint of improving the separability of semiconducting SWCNTs and improving productivity, More preferably 0.1% by mass or more, still more preferably 0.15% by mass or more, still more preferably 0.2% by mass or more, and from the same viewpoint, preferably 10% by mass or less, more preferably It is 7% by mass or less, more preferably 5% by mass or less.
  • SWCNT There are no particular restrictions on the mixed solution A and the SWCNTs used in preparing the SWCNT dispersion to be separated. SWCNTs are synthesized by conventionally known synthesis methods such as the HiPco method and the e-DIPS method, and may include those with various winding methods and diameters. Although metallic SWCNTs and semiconducting SWCNTs may be included in any ratio, generally synthesized SWCNTs are SWCNT mixtures containing about 1/3 metallic SWCNTs and about 2/3 semiconducting SWCNTs. be.
  • the average diameter of SWCNTs is preferably 0.5 nm or more, more preferably 0.8 nm or more, from the viewpoint of improving the separability of semiconducting SWCNTs, and from the same viewpoint, preferably 3 nm or less, more preferably 2 nm. It is below.
  • the average diameter of SWCNTs can be calculated by measuring and averaging the diameters of 10 or more CNTs from an image obtained using a transmission electron microscope.
  • the average length of the SWCNTs is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, and still more preferably 0.5 ⁇ m or more from the viewpoint of electrical properties. From the viewpoint of improving productivity, it is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the average length of SWCNTs can be calculated, for example, by measuring the lengths of 10 or more CNTs from an image obtained using a transmission electron microscope and averaging them.
  • the content of SWCNTs in the mixed liquid A and in the SWCNT dispersion to be separated is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, from the viewpoint of improving the separability of semiconducting SWCNTs. , More preferably 0.03% by mass or more, and from the viewpoint of improving the separability of semiconducting SWCNTs and improving productivity, preferably 5% by mass or less, more preferably 1% by mass or less, and still more preferably It is 0.5% by mass or less.
  • the mixed solution A and the SWCNT dispersion to be separated contain an aqueous medium as a dispersion medium.
  • the aqueous medium is preferably water, and water is preferably pure water, ion-exchanged water, purified water, or distilled water, more preferably pure water, from the viewpoint of improving the separability of semiconducting SWCNTs and improving productivity.
  • the mixed liquid A and the SWCNT dispersion to be separated may contain lower alcohols such as methanol, ethanol, and isopropyl alcohol, and water-soluble organic solvents such as acetone, tetrahydrofuran, and dimethylformamide, in addition to water, as aqueous media. good.
  • lower alcohols such as methanol, ethanol, and isopropyl alcohol
  • water-soluble organic solvents such as acetone, tetrahydrofuran, and dimethylformamide
  • the proportion of water in the dispersion medium is preferably 70% by mass or more, more preferably 80% by mass, from the viewpoint of improving the separability of semiconducting SWCNTs. % or more, more preferably 90 mass % or more.
  • the content of the aqueous medium in the mixed liquid A and in the SWCNT dispersion to be separated is preferably 85% by mass or more, more preferably 92% by mass, from the viewpoint of improving the separability of semiconducting SWCNTs and improving productivity. % by mass or more, more preferably 96% by mass or more, and from the same viewpoint, preferably 99.9% by mass or less, more preferably 99.8% by mass or less, still more preferably 99.5% by mass or less, Even more preferably, it is 99.0% by mass or less.
  • Dispersion treatment for mixed liquid A can be performed using, for example, a dispersing machine such as a bath-type ultrasonic dispersing machine, a homomixer, a high-pressure homogenizer, an ultrasonic homogenizer, a jet mill, a bead mill, or a miller.
  • a dispersing machine such as a bath-type ultrasonic dispersing machine, a homomixer, a high-pressure homogenizer, an ultrasonic homogenizer, a jet mill, a bead mill, or a miller.
  • step A defoaming treatment may be performed on mixed liquid A before dispersion treatment.
  • Step B In the step B in the method for producing a dispersion of the present disclosure and the separation method of the present disclosure, the SWCNT dispersion to be separated obtained in the step A is subjected to centrifugation, and the semiconductor in the centrifuged SWCNT dispersion to be separated The supernatant containing type SWCNTs is collected. The supernatant has a higher ratio of semiconducting SWCNTs than the ratio of semiconducting SWCNTs and metallic SWCNTs in the SWCNT dispersion to be separated before centrifugation.
  • the ratio varies depending on the centrifugation conditions, etc., but the rotation speed of the centrifuge is preferably 5,000 rpm or more, more preferably 10,000 rpm or more, from the viewpoint of improving the separability of semiconducting SWCNTs and improving productivity. From the same point of view, it is preferably 100,000 rpm or less, more preferably 70,000 rpm or less.
  • Gravitational acceleration of the centrifuge is preferably 10 kG or more, more preferably 50 kG or more, from the viewpoint of improving the separability of semiconducting SWCNTs and improving productivity, and from the same viewpoint, preferably 1000 kG or less, more preferably. is 500 kG or less.
  • Semiconducting SWCNTs can be produced by extracting the semiconducting SWCNTs from the semiconducting SWCNT dispersion produced by the method for producing a semiconducting SWCNT dispersion of the present disclosure.
  • the semiconducting SWCNTs can be collected from the semiconducting SWCNT dispersion liquid, for example, by filtering the semiconducting SWCNTs from the semiconducting SWCNT dispersion liquid with a membrane filter and then drying it.
  • the semiconducting SWCNTs in the semiconducting SWCNT dispersion may be filtered after pretreatment such as reprecipitation. Alternatively, it can be carried out by drying the semiconducting SWCNT dispersion and removing the co-existing copolymer by means of washing, thermal decomposition, or the like. Therefore, in one aspect, the present disclosure includes a step of filtering the semiconducting SWCNT dispersion obtained by the method for producing a semiconducting SWCNT dispersion of the present disclosure to collect the semiconducting SWCNTs.
  • the present invention relates to a method (hereinafter also referred to as “method A for producing semiconducting SWCNTs of the present disclosure”).
  • the present disclosure provides a step of drying the semiconducting SWCNT dispersion obtained by the method for producing a semiconducting SWCNT dispersion of the present disclosure to obtain a mixture containing the semiconducting SWCNTs and the copolymer. and a step of removing the copolymer from the mixture to collect semiconducting SWCNTs (hereinafter also referred to as “method B for producing semiconducting SWCNTs of the present disclosure”).
  • the present disclosure also relates to semiconducting SWCNTs obtained by the method A or B for producing semiconducting SWCNTs of the present disclosure (hereinafter also referred to as “semiconducting SWCNTs of the present disclosure”).
  • a method for producing a semiconducting SWCNT-containing ink includes, for example, the method A or B for producing a semiconducting SWCNT according to the present disclosure as one step, and a step of mixing at least one of them and optionally at least one of a surfactant and a resin.
  • another embodiment of the method for producing a semiconducting SWCNT-containing ink of the present disclosure includes, for example, the method for producing a semiconducting SWCNT dispersion of the present disclosure as one step, and the semiconducting SWCNT dispersion and, if necessary, and mixing at least one of an organic solvent, a surfactant and a resin that are miscible with the dispersion.
  • the organic solvent examples include aliphatic solvents such as n-hexane, n-octane and n-decane; alicyclic solvents such as cyclohexane; aromatic solvents such as benzene and toluene; Examples include alcohol solvents, glycol ether solvents such as diethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and butyl cellosolve.
  • the semiconducting SWCNT-containing ink may further contain, from the viewpoint of film-forming property improvement, a resin that can be dissolved or dispersed in a solvent, for example, a polystyrene resin, an acrylic resin, a vinyl resin, etc., or as a dispersant. It may contain known surfactants and other additives.
  • the content of semiconducting SWCNTs in the ink containing semiconducting SWCNTs may be appropriately set according to the application.
  • the present disclosure includes semiconducting single-layer SWCNTs, at least one of an organic solvent and water, a structural unit A derived from the monomer represented by the above formula (1), and the above formula (3)
  • a semiconducting SWCNT-containing ink (hereinafter also referred to as "semiconducting SWCNT-containing ink of the present disclosure") containing a copolymer containing a structural unit B derived from a monomer represented by
  • One embodiment of the semiconducting SWCNT-containing ink of the present disclosure is represented by at least the semiconducting SWCNT of the present disclosure, the structural unit A derived from the monomer represented by the above formula (1), and the above formula (3). and at least one of an organic solvent and water, and optionally a surfactant and a resin.
  • the present disclosure includes a step of forming a semiconductor layer by printing or applying a semiconducting SWCNT-containing ink obtained by the method for producing a semiconducting SWCNT-containing ink of the present disclosure on a substrate. It relates to a manufacturing method.
  • the present disclosure is a method for manufacturing a semiconductor device comprising a substrate and a gate electrode, a source electrode and a drain electrode arranged on the substrate, wherein the ink containing the semiconducting SWCNT is printed.
  • the present invention relates to a method of manufacturing a semiconductor device including a step of forming a semiconductor circuit or a semiconductor film (semiconductor layer) by coating. Examples of the method for printing the semiconducting SWCNT-containing ink include inkjet printing, screen printing, offset printing, letterpress printing, and the like. A step of forming a circuit by etching or the like after forming a semiconductor film by printing or coating may be included.
  • the present application further provides the following methods for producing a semiconducting single-walled carbon nanotube dispersion, a method for separating semiconducting single-walled carbon nanotubes and metallic single-walled carbon nanotubes, a method for producing an ink containing semiconducting single-walled carbon nanotubes, and a semiconducting single-walled carbon nanotube-containing ink.
  • an ink containing single-walled carbon nanotubes Disclosed is an ink containing single-walled carbon nanotubes.
  • a step of preparing a single-walled carbon nanotube dispersion to be separated which contains a single-walled carbon nanotube containing a semiconducting single-walled carbon nanotube and a metallic single-walled carbon nanotube, an aqueous medium, and a polymer; After centrifuging the single-walled carbon nanotube dispersion to be separated, collecting a supernatant liquid containing the semiconducting single-walled carbon nanotubes from the centrifuged single-walled carbon nanotube dispersion,
  • the polymer is a copolymer containing a structural unit A derived from a monomer represented by the following formula (1) and a structural unit B derived from a monomer represented by the following formula (3)
  • a method for producing a semiconducting single-walled carbon nanotube dispersion A method for producing a semiconducting single-walled carbon nanotube dispersion.
  • R 0 represents a hydrogen atom or a methyl group.
  • M represents any one of a hydrogen atom, a metal atom, and a group having a structure represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 or more and 2 or less carbon atoms which may have a hydroxyl group.
  • CH2 CR5- COO- (EO) p- (PO) q -R6 ( 3 )
  • R5 represents a hydrogen atom or a methyl group.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms
  • EO represents an ethyleneoxy group
  • PO represents a propyleneoxy group
  • p represents the average number of added moles of ethyleneoxy groups, and is 1 or more. It is 120 or less
  • q represents the average added mole number of propyleneoxy groups, and is 0 or more and 50 or less.
  • a step of preparing a single-walled carbon nanotube dispersion to be separated which contains a single-walled carbon nanotube containing a semiconducting single-walled carbon nanotube and a metallic single-walled carbon nanotube, an aqueous medium, and a polymer; After centrifuging the single-walled carbon nanotube dispersion to be separated, collecting a supernatant liquid containing the semiconducting single-walled carbon nanotubes from the centrifuged single-walled carbon nanotube dispersion,
  • the polymer is a copolymer containing a structural unit A derived from a monomer represented by the following formula (1) and a structural unit B derived from a monomer represented by the following formula (3) and A semiconducting single layer, wherein the content of the structural unit A in all structural units of the copolymer is more than 0 mol% and less than 100 mol%, and the content of the structural unit B is more than 0 mol% and less than 100 mol%.
  • R 0 represents a hydrogen atom or a methyl group.
  • M represents any one of a hydrogen atom, a metal atom, and a group having a structure represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 or more and 2 or less carbon atoms which may have a hydroxyl group.
  • CH2 CR5- COO- (EO) p- (PO) q -R6 ( 3 )
  • R5 represents a hydrogen atom or a methyl group.
  • R 6 represents a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms
  • EO represents an ethyleneoxy group
  • PO represents a propyleneoxy group
  • p represents the average number of added moles of ethyleneoxy groups, and is 1 or more. It is 120 or less
  • q represents the average added mole number of propyleneoxy groups, and is 0 or more and 50 or less.
  • a step of preparing a single-walled carbon nanotube dispersion to be separated which contains a single-walled carbon nanotube containing a semiconducting single-walled carbon nanotube and a metallic single-walled carbon nanotube, an aqueous medium, and a polymer; After centrifuging the single-walled carbon nanotube dispersion to be separated, collecting a supernatant liquid containing the semiconducting single-walled carbon nanotubes from the centrifuged single-walled carbon nanotube dispersion,
  • the polymer is a copolymer containing a structural unit A derived from a monomer represented by the following formula (1) and a structural unit B derived from a monomer represented by the following formula (3) and A semiconducting single layer, wherein the content of the structural unit A in all structural units of the copolymer is more than 0 mol% and less than 100 mol%, and the content of the structural unit B is more than 0 mol% and less than 100 mol%.
  • R 0 represents a hydrogen atom or a methyl group.
  • M represents any one of a hydrogen atom, a metal atom, and a group having a structure represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 or more and 2 or less carbon atoms which may have a hydroxyl group.
  • CH2 CR5- COO- (EO) p- (PO) q -R6 ( 3 )
  • R5 represents a hydrogen atom or a methyl group.
  • R6 represents a hydrogen atom or a methyl group
  • EO represents an ethyleneoxy group
  • PO represents a propyleneoxy group
  • p represents the average number of added moles of the ethyleneoxy group and is 1 or more and 120 or less
  • q represents a propyleneoxy group. It represents the average addition mole number of the group, and is 0 or more and 50 or less.
  • ⁇ 5> Any one of ⁇ 1> to ⁇ 3>, wherein the molar ratio (A/B) of the structural unit A and the structural unit B in the copolymer is 0.05 or more and 30 or less 3.
  • ⁇ 6> The semiconductor according to any one of ⁇ 1> to ⁇ 5>, wherein the content (mol%) of the structural unit A in all structural units of the copolymer is 1 mol% or more and less than 100 mol%.
  • ⁇ 7> The semiconductor according to any one of ⁇ 1> to ⁇ 6>, wherein the content (mol%) of the structural unit B in all structural units of the copolymer is more than 0 mol% and less than 100 mol%.
  • the structural unit B contained in the copolymer is a structural unit B 1 having an average added mole number p of ethyleneoxy groups of 4 or more and 120 or less, and an average added mole number p of ethyleneoxy groups of 1 or more and less than 4
  • the method for producing a semiconducting single-walled carbon nanotube dispersion according to any one of ⁇ 1> to ⁇ 7>, which is a combination of the structural units B 2 of ⁇ 9> The semiconductor-type single layer according to ⁇ 8>, wherein the molar ratio (B 1 /B 2 ) of the structural unit B 1 and the structural unit B 2 in the copolymer is 0.01 or more and 0.5 or less.
  • a method for producing a carbon nanotube dispersion is a method for producing a carbon nanotube dispersion.
  • the semiconducting single-walled carbon nanotube dispersion obtained by the method for producing a semiconducting single-walled carbon nanotube dispersion according to any one of ⁇ 1> to ⁇ 10> is dried to obtain a semiconducting single-walled carbon nanotube.
  • a method for producing a semiconducting single-walled carbon nanotube comprising the steps of obtaining a mixture containing the nanotube and the copolymer, and removing the copolymer from the mixture to collect the semiconducting single-walled carbon nanotube.
  • a semiconducting single-walled carbon nanotube at least one of an organic solvent and water, a structural unit A derived from a monomer represented by the following formula (1), and a structural unit A represented by the following formula (3)
  • R 0 represents a hydrogen atom or a methyl group.
  • M represents any one of a hydrogen atom, a metal atom, and a group having a structure represented by the following formula (2).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or an alkyl group having 1 or more and 2 or less carbon atoms which may have a hydroxyl group.
  • R5 represents a hydrogen atom or a methyl group.
  • R6 represents a hydrogen atom or a methyl group, EO represents an ethyleneoxy group, PO represents a propyleneoxy group, p represents the average number of added moles of the ethyleneoxy group and is 1 or more and 120 or less, and q represents a propyleneoxy group. It represents the average addition mole number of the group, and is 0 or more and 50 or less.
  • the average diameter and length of SWCNTs were calculated by measuring the diameters and lengths of 10 or more CNTs from an image obtained using a transmission electron microscope and averaging them.
  • M-90G 35 g in dropping funnel 1 (28.8 mol%)) and 10 g of ethanol was added to the dropping funnel 2, and 1.59 g of 3-mercapto-1,2-propanediol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (6. 0 mol % of the total monomers) and 0.304 g (0.304 g of 2,2′-azobis(2,4-dimethylvaleronitrile) (“V-65B” manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) as a polymerization initiator.
  • V-65B 2,2′-azobis(2,4-dimethylvaleronitrile
  • Copolymers b to i were obtained in the same manner as in the production method of copolymer a, except that the monomers, amount of monomers, amount of chain transfer agent, and amount of polymerization initiator shown in Table 1 were changed.
  • the physical properties of the obtained copolymers a to i are shown in Table 1 below.
  • the monomers used in the production of polymers a to i are as follows.
  • MAA methacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • AA Acrylic acid (Fuji Film Wako Pure Chemical Co., Ltd.
  • Comparative Example 1 A separated SWCNT dispersion and a supernatant (semiconducting SWCNT dispersion) of Comparative Example 1 were obtained in the same manner as in Example 1, except that the copolymer f was used instead of the copolymer a.
  • the contents of the SWCNT mixture and copolymer in the SWCNT dispersion to be separated are as shown in Table 2, and the content of the aqueous medium is the remainder after removing the SWCNT mixture and the compound.
  • both high separability of semiconducting SWCNTs and dispersion stability of semiconducting SWCNTs in the semiconducting SWCNT dispersion can be satisfactorily achieved.
  • an improvement in the quality of semiconducting SWCNT-containing inks can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本開示は、一態様において、半導体型SWCNTと金属型SWCNTとを含むSWCNTと、水性媒体と、重合体とを含む、被分離SWCNT分散液を遠心分離した後、前記半導体型SWCNTを含む上澄み液を採取する工程を含み、前記重合体が、下記の式(1)で表される単量体に由来の構成単位Aと、下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体である、半導体型単層カーボンナノチューブ分散液の製造方法に関する。 CH2=CR0-COOM (1) CH2=CR5-COO-(EO)p-(PO)q-R6  (3)

Description

半導体型単層カーボンナノチューブ分散液の製造方法
 本開示は、半導体型単層カーボンナノチューブ分散液の製造方法、及び当該製造方法を工程として含む半導体型単層カーボンナノチューブの製造方法、金属型単層カーボンナノチューブと半導体型単層カーボンナノチューブの分離方法等に関する。
 近年、ナノメートルサイズの炭素材料は、その物理的特性、化学的特性により、種々の分野への応用が期待されている。そのような材料の一つとして、カーボンナノチューブ(以下、「CNT」と称する場合もある。)がある。CNTは、グラフェンシートを円筒状に丸めた構造をしており、円筒が1層のみからなるCNTは、単層カーボンナノチューブ(Single-walled Cabon Nanotube 以下「SWCNT」と称する場合もある。)と呼ばれている。
 CNTは、グラフェンシートの巻き方や直径等によって、電気物性等が異なることが知られている。特にSWCNTは量子効果の影響が大きいために、金属性を示すもの(金属型SWCNT)と半導体性を示すもの(半導体型SWCNT)が存在する。SWCNTの製造方法としては、高圧一酸化炭素不均化法(HiPco法)、改良直噴熱分解合成法(e-DIPS法)、アーク放電法、レーザーアブレーション法等の合成方法が知られているが、現時点ではいずれか一方のタイプのCNTのみを製造する技術は確立されておらず、SWCNTを、各種用途に応用する際には、その混合物から、目的とするタイプのSWCNTを分離することが必要とされる。金属型SWCNTは、その優れた導電性を利用して、タッチパネルや太陽電池用の透明電極、デバイスの微細配線への利用等が期待されており、半導体型SWCNTは、トランジスターやセンサー等への応用が期待されている。
 金属型SWCNTと半導体型SWCNTとを分離する方法は既にいくつか報告されているが、特開2019-202912号公報(特許文献1)には、分離剤として特定の共重合体を用いることにより、被分離SWCNT分散液中の金属型SWCNTと半導体型SWCNTとの分離が、簡単な操作により行える、分離方法が開示されている。具体的には、ポリアクリル酸を分散剤として含む被分離SWCNT分散液を遠心分離した後、遠心分離された前記分散液から、半導体型SWCNTを含む上澄み液を採取する工程を含む半導体型SWCNT分散液の製造方法が開示されている。
 本開示は、一態様において、
 半導体型SWCNTと金属型SWCNTとを含むSWCNTと、水性媒体と、重合体とを含む、被分離SWCNT分散液を調製する工程と、
 前記被分離SWCNT分散液を遠心分離した後、遠心分離された前記被分離SWCNT分散液から、前記半導体型SWCNTを含む上澄み液を採取する工程と、を含み、
 前記重合体が、下記の式(1)で表される単量体に由来の構成単位Aと、下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体である、半導体型SWCNT分散液の製造方法に関する。
 CH2=CR0-COOM      (1)
 式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
 CH2=CR5-COO-(EO)p-(PO)q-R6       (3)
 式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
 本開示は、一態様において、上記本開示の半導体型SWCNT分散液の製造方法により得られた半導体型SWCNT分散液を濾過して、半導体型SWCNTを採取する工程を含む、半導体型SWCNTの製造方法に関する。
 本開示は、一態様において、上記本開示の半導体型SWCNT分散液の製造方法により得られた半導体型SWCNT分散液を乾燥して半導体型SWCNTと前記共重合体とを含む混合物を得る工程と、前記混合物から前記共重合体を除去して、半導体型SWCNTを採取する工程を含む、半導体型SWCNTの製造方法に関する。
 本開示は、一態様において、
 半導体型SWCNTと金属型SWCNTとを含むSWCNTと、水性媒体と、重合体とを含む、被分離SWCNT分散液を調製する工程と、
 前記被分離SWCNT分散液を遠心分離した後、遠心分離された前記被分離SWCNT分散液から、前記半導体型SWCNTを含む上澄み液を採取する工程と、を含み、
 前記重合体が、下記の式(1)で表される単量体に由来の構成単位Aと、下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体である、半導体型SWCNTと金属型SWCNTの分離方法に関する。
 CH2=CR0-COOM      (1)
 式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000005
 式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
 CH2=CR5-COO-(EO)p-(PO)q-R6     (3)
 式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
 本開示は、一態様において、本開示の半導体型SWCNT分散液の製造方法、又は、本開示の半導体型SWCNTの製造方法を、一工程として含む半導体型SWCNT含有インクの製造方法に関する。
 本開示は、一態様において、半導体型SWCNTと、有機溶媒及び水のうち少なくとも1種と、下記の式(1)で表される単量体に由来の構成単位Aと下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体とを含む、半導体型SWCNT含有インクに関する。
 CH2=CR0-COOM      (1)
 式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
 CH2=CR5-COO-(EO)p-(PO)q-R6      (3)
 式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
 半導体型SWCNTの分離性が高いことに加えて、得られた半導体型SWCNT分散液の分散安定性が良好であることも望まれる。
 本開示は、一態様において、半導体型SWCNTの高い分離性と、得られた半導体型SWCNT分散液の分散安定性との両立を可能とする、半導体型SWCNT分散液の製造方法、及び半導体型SWCNTと金属型SWCNTの分離方法に関する。また、本開示は、一態様において、前記製造方法を一工程として含む半導体型SWCNTの製造方法、及び半導体型SWCNT含有インクの製造方法に関し、一態様において、半導体型SWCNT含有インクに関する。
 本開示は、被分離SWCNT分散液に特定の重合体が含まれることにより、半導体型SWCNTの高い分離性と、得られた半導体型SWCNT分散液における半導体型SWCNTの分散安定性との両立が良好に行える、という知見に基づく。
 本開示の効果発現のメカニズムの詳細は明らかではないが、以下のように推察される。本開示では、被分離SWCNT分散液が、上記式(1)で表される単量体に由来の構成単位Aを含む共重合体を含むので、半導体型SWCNTが前記分散液中で選択的に分散され、一方、金属型SWCNTについては凝集するので、これを遠心分離の対象とすることにより、金属型SWCNTと半導体型SWCNTとの良好な分離が可能となり、半導体型SWCNTの分離性の向上が可能となっているものと推察される。また、前記共重合体が上記式(3)で表される単量体に由来の構成単位Bを含むため、得られた半導体型SWCNT分散液における半導体型SWCNTの分散安定性が良好となっているものと推察される。ただし、本開示はこれらのメカニズムに限定して解釈されない。
 本開示によれば、半導体型SWCNTの高い分離性と、得られた半導体型SWCNT分散液の分散安定性との両立を可能とする、半導体型SWCNT分散液の製造方法、及び半導体型SWCNTと金属型SWCNTの分離方法を提供できる。また、本開示は、一態様において、前記製造方法を一工程として含む半導体型SWCNTの製造方法、及び半導体型SWCNT含有インクの製造方法を提供でき、半導体型SWCNT含有インクを提供できる。
 [半導体型SWCNT分散液の製造方法、半導体型SWCNTと金属型SWCNTの分離方法]
 本開示は、一態様において、下記工程A及び工程Bを含む、半導体型SWCNT分散液の製造方法(以下、「本開示の分散液の製造方法」ともいう)に関する。また、本開示は、その他の態様において、下記工程A及び工程Bを含む、半導体型SWCNTと金属型SWCNTの分離方法(以下、「本開示の分離方法」ともいう)に関する。
(工程A)半導体型SWCNTと金属型SWCNTとを含むSWCNT(以下「SWCNT混合物」ともいう)と、下記式(1)で表される単量体(以下「単量体A」ともいう)に由来の構成単位Aと下記(3)で表される単量体(以下「単量体B」ともいう)に由来の構成単位Bを含む共重合体と、水性媒体とを含む、被分離SWCNT分散液を調製する。
(工程B)前記被分離SWCNT分散液を遠心分離した後、遠心分離された前記被分離SWCNT分散液から、前記半導体型SWCNTを含む上澄み液を採取する。
 CH2=CR0-COOM      (1)
 式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000007
 式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
 CH2=CR5-COO-(EO)p-(PO)q-R6      (3)
 式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基(以下「EO基」ともいう)、POはプロピレンオキシ基(以下「PO基」ともいう)を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
 本開示において、「前記半導体型SWCNTを含む上澄み液を採取する」とは、本開示の分散液の製造方法及び本開示の分離方法における前記工程Aで得られた被分離SWCNT分散液中の半導体型SWCNTと金属型SWCNTの比率に対して、前記半導体型SWCNTの比率が向上した上澄み液を採取することを意味し、前記上澄み液が、半導体型SWCNT分散液である。本開示では、上澄み液中に、半導体型SWCNTと比較して相対的に少ない量の金属型SWCNTが含まれることを排除しない。半導体型SWCNTの分離性が向上すると、上澄み液中のSWCNTにおける半導体型SWCNTの割合が高まり、半導体デバイス用の材料として一層有用になる。
 本開示の分散液の製造方法及び本開示の分離方法における前記工程Bにおいて、上澄み液を採取する事は、例えば、上澄み液とその残余とを分離することにより行える。前記残余は、金属型SWCNTを半導体型SWCNTよりも相対的に多く含む沈降物を含む。
 [工程A]
 本開示の分散液の製造方法及び本開示の分離方法における前記工程Aは、一又は複数の実施形態において、少なくとも、前記単量体Aに由来の構成単位Aと前記単量体Bに由来の構成単位Bとを含む共重合体と、前記SWCNT混合物と、水性媒体とを含む混合液(以下「混合液A」と略称する場合もある。)を調製した後、当該混合液Aを分散処理の対象とする。混合液Aは、例えば、前記共重合体の水溶液に、前記SWCNT混合物を添加することにより、調製できる。
 [単量体Aに由来の構成単位Aと単量体Bに由来の構成単位Bとを含む共重合体]
 前記共重合体は、半導体型SWCNTの分離性を向上させる観点から、水溶性である。本開示において、「水溶性」とは、20℃の水100gに重合体が1g以上溶解することをいう。
 (単量体Aに由来の構成単位A)
 前記共重合体に含まれる構成単位Aは、上記式(1)で表される単量体Aに由来の構成単位である。上記式(1)中、R0は、半導体型SWCNTの分離性向上の観点から、メチル基が好ましい。上記式(1)中、Mは、半導体型SWCNTの分離性向上及び生産性向上の観点から、水素原子、金属原子、又は、上記式(2)で表される構造の基であるが、半導体型SWCNTの分離性向上の観点、生産性向上の観点、及び汎用性向上の観点から、好ましくは水素原子又は上記式(2)で表される構造の基であり、より好ましくは水素原子である。構成単位Aを与える単量体Aは、好ましくは、メタクリル酸である。
 (単量体Bに由来の構成単位B)
 前記共重合体に含まれる構成単位Bは、上記式(3)で表される単量体Bに由来の構成単位である。前記共重合体に含まれる構成単位Bは、1種でもよいし、2種以上の組み合わせでもよい。
 上記式(3)中、R5は、半導体型SWCNTの分離性向上の観点から、メチル基が好ましい。
 上記式(3)中、R6は、半導体型SWCNTの分離性向上と半導体型SWCNT分散液の分散安定性との両立の観点、及びモノマーの入手性の観点から、水素原子または炭素数が1以上5以下の炭化水素基を示す。R6が炭化水素基である場合、半導体型SWCNTの分離性向上と半導体型SWCNT分散液の分散安定性との両立の観点、及びモノマーの入手性の観点から、その炭素数は、好ましくは1以上4以下、より好ましくは1以上3以下である。R6の炭化水素基は、例えば、アルキル基が挙げられる。R6の具体例としては、ブチル基、エチル基、メチル基、及び水素原子から選ばれる少なくとも1種が挙げられ、上記分離性向上と上記分散安定性の両立の観点から、メチル基又は水素原子が好ましく、メチル基がより好ましい。前記共重合体は、半導体型SWCNTの分離性向上と半導体型SWCNT分散液の分散安定性との両立の観点から、R6が炭化水素基であり、その炭素数が、好ましくは1以上4以下、より好ましくは1以上3以下の構成単位Bと、R6が水素である構成単位Bの両方を含んでいるとより好ましい。構成単位Bの末端炭素数、即ち、R6の炭素数は、核磁気共鳴における化学シフトから算出でき、具体的には、実施例に記載の方法により算出できる。
 構成単位Bを与える単量体Bは、好ましくは、2-ヒドロキシエチルメタクリレート(HEMA)、ブトキシポリエチレングリコールメタクリレート、エトキシポリエチレングリコールメタクリレート、メトキシポリエチレングリコール(メタ)アクリレート(PEG(M)A)であり、より好ましくは、メトキシポリエチレングリコールメタクリレート(PEGMA)を含む。
 式(3)中、pは、半導体型SWCNTの分離性向上の観点から、1以上であり、そして、半導体型SWCNTの分離性向上の観点、及びモノマーの入手性の観点から、120以下であって、好ましくは100以下、より好ましくは90以下、更に好ましくは60以下、更により好ましくは45以下、更により好ましくは25以下である。
 式(3)中、qは、共重合体の水溶性の観点、半導体型SWCNTの分離性向の観点、及びモノマーの入手性の観点から、0以上50以下であって、好ましくは0以上30以下、より好ましくは0以上10以下、更に好ましくは0以上5以下、更により好ましくは0以上3以下、更により好ましくは0である。
 式(3)において、q/(p+q)は、共重合体の水溶性の観点、半導体型SWCNTの分離性向上の観点、及びモノマーの入手性の観点から、好ましくは0.7以下、より好ましくは0.4以下、更に好ましくは0である。
 式(3)において、EO基とPO基の付加順序は問わず、qが2以上である場合は、ブロック結合又はランダム結合のいずれであってもよい。
 前記共重合体に含まれる構成単位Bが、2種以上の組み合わせである場合、半導体型SWCNTの分離性向上の観点から、EO基の平均付加モル数pが4以上120以下の構成単位B1と、pが1以上4未満の構成単位B2の組み合わせであると好ましい。構成単位B1の平均付加モル数pは、半導体型SWCNTの分離性向上の観点から、好ましくは100以下、より好ましくは90以下、更に好ましくは60以下、更により好ましくは45以下、更により好ましくは25以下である。構成単位B2の平均付加モル数pは、半導体型SWCNTの分離性向上の観点から、好ましくは3以下、より好ましくは2以下、更に好ましくは1である。
 構成単位B1のR6は、好ましくは炭素数が1以上5以下の炭化水素基であり、より好ましくは炭素数が1以上4以下の炭化水素基、更に好ましくは炭素数が1以上3以下の炭化水素基である。構成単位B2のR6は、好ましくは水素原子である。
 前記共重合体に含まれる構成単位Bが、構成単位B1と構成単位B2の組み合わせである場合、前記共重合体中の構成単位B1と構成単位B2のモル比(B1/B2)は、半導体型SWCNTの分離性向上の観点から、好ましくは0.01以上、より好ましくは0.03以上、更に好ましくは0.05以上であり、そして、半導体型SWCNTの分離性向上の観点から、好ましくは0.5以下、より好ましくは0.4以下、更に好ましくは0.3以下である。
 前記共重合体に含まれる構成単位Bが、構成単位B1と構成単位B2の組み合わせである場合、前記共重合体中の構成単位B1と構成単位B2の質量比(B1/B2)は、半導体型SWCNTの分離性向上の観点から、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.4以上であり、そして、半導体型SWCNTの分離性向上の観点から、好ましくは5以下、より好ましくは3以下、更に好ましくは1以下である。
 前記共重合体の全構成単位中の構成単位Aの含有量(質量%)は、半導体型SWCNTの分離性向上の観点から、好ましくは0質量%超、より好ましくは1質量%以上、更に好ましくは2質量%以上、更により好ましくは3質量%以上であり、そして、半導体型SWCNT分散液の分散安定性の向上の観点から、好ましくは80質量%以下、より好ましくは50質量%以下、更に好ましくは30質量%以下、更により好ましくは20質量%以下である。
 前記共重合体の全構成単位中の構成単位Aの含有量(mol%)は、半導体型SWCNTの分離性向上の観点から、好ましくは0mol%超、より好ましくは1mol%以上、更に好ましくは3mol%以上、更により好ましくは5mol%以上、更により好ましくは8mol%以上であり、半導体型SWCNT分散液の分散安定性の向上の観点から、好ましくは100mol%未満、より好ましくは90mol%以下、更に好ましくは80mol%以下、更により好ましくは60mol%以下、更により好ましくは40mol%以下、更により好ましくは25mol%以下である。
 前記共重合体の全構成単位中の構成単位Bの含有量(質量%)は、半導体型SWCNT分散液の分散安定性の向上の観点から、好ましくは10質量%超、より好ましくは50質量%以上、更に好ましくは70質量%以上、更により好ましくは80質量%以上であり、半導体型SWCNTの分離性向上の観点から、好ましくは100質量%未満、より好ましくは97質量%以下、更に好ましくは95質量%以下である。
 前記共重合体の全構成単位中の構成単位Bの含有量(mol%)は、半導体型SWCNT分散液の分散安定性の向上の観点から、好ましくは0mol%超、より好ましくは10mol%以上、更に好ましくは20mol%以上、更により好ましくは30mol%以上、更により好ましくは50mol%以上であり、半導体型SWCNTの分離性向上の観点から、好ましくは100mol%未満、より好ましくは97mol%以下、更に好ましくは95mol%以下、更により好ましくは92mol%以下である。
 前記共重合体の全構成単位中の構成単位Aと構成単位Bの合計含有量(質量%)は、半導体型SWCNTの分離性向上と半導体型SWCNT分散液の分散安定性の両立の観点から、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、更により好ましくは99質量%以上であり、100質量%以下である。半導体型SWCNTの分離性向上の観点から、更により好ましくは実質100質量%である。
 前記共重合体の全構成単位中の構成単位Aと構成単位Bの合計含有量(mol%)は、半導体型SWCNTの分離性向上と半導体型SWCNT分散液の分散安定性の両立の観点から、好ましくは80mol%以上、より好ましくは90mol%以上、更に好ましくは95mol%以上、更により好ましくは99mol%以上であり、100mol%以下である。半導体型SWCNTの分離性向上の観点から、更により好ましくは実質100mol%である。
 前記共重合体は、本開示の効果を損なわない範囲で、構成単位A、B以外の構成単位Cを含んでもよい。構成単位Cは、1種でもよいし、2種以上の組み合わせでもよい。構成単位Cを与える単量体Cとしては、例えば、マレイン酸等の単量体A以外のカルボン酸系単量体、構成単位B以外の非イオン性単量体由来の構成単位が挙げられる。非イオン性単量体としては、(メタ)アクリル酸エステル系単量体、(メタ)アクリルアミド系単量体、スチレン系単量体、および(メタ)アクリロニトリル系単量体から選ばれる少なくとも1種の単量体が挙げられ、これらの中でも、(メタ)アクリル酸エステル系単量体が好ましい。
 単量体Cが(メタ)アクリル酸エステル系単量体である場合、単量体Cとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、及び(メタ)アクリル酸ベンジルから選ばれる少なくとも1種が挙げられる。
 単量体Cが(メタ)アクリルアミド系単量体である場合、単量体Cとしては、例えば、アクリルアミド、メタクリルアミド、ジメチルアクリルアミド、及びジメチルメタクリルアミドから選ばれる少なくとも1種が挙げられる。
 単量体Cがスチレン系単量体である場合、単量体Cとしては、例えば、スチレン、又はメチルスチレンが挙げられる。
 単量体Cが(メタ)アクリロニトリル系単量体である場合、単量体Cとしては、例えば、アクリロニトリル、又はメタクリロニトリルが挙げられる。
 共重合体中の構成単位Cの含有量は、半導体型SWCNTの分離性向上と半導体型SWCNT分散液の分散安定性の両立の観点から、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下、更により好ましくは1質量%以下、更により好ましくは実質的に含まないことである。ここで「実質的に含まない」とは、故意に含有させないことを意味し、例えば、構成単位A、構成単位Bを構成する原料単量体等に含まれており、意図せずに含まれる場合は「実質的に含まない」に該当する。
 前記共重合体中の構成単位Aと構成単位Bとの質量比(A/B)は、半導体型SWCNTの分離性向上の観点から、好ましくは0超、より好ましくは0.01以上、更に好ましくは0.03以上、更により好ましくは0.05以上であり、そして、半導体型SWCNT分散液の分散安定性の向上の観点から、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下、更により好ましくは1.5以下、更により好ましくは0.5以下、更により好ましくは0.4以下である。
 前記共重合体中の構成単位Aと構成単位Bとのモル比(A/B)は、半導体型SWCNTの分離性向上の観点から、好ましくは0超、より好ましくは0.01以上、更に好ましくは0.05以上、更により好ましくは0.1以上であり、そして、半導体型SWCNT分散液の分散安定性の向上の観点から、好ましくは30以下、より好ましくは10以下、更に好ましくは5以下、更により好ましくは3以下、更により好ましくは2以下、更により好ましくは1.1以下、更により好ましくは0.5以下である。
 前記共重合体の重量平均分子量は、半導体型SWCNTの分離性向上の観点から、好ましくは1,000以上、より好ましくは2,000以上、更に好ましくは3,000以上、更により好ましくは4,000以上であり、半導体型SWCNTの分離性向上の観点から、好ましくは25万以下、より好ましくは15万以下、更に好ましくは12万以下、更により好ましくは11万以下である。本開示において、前記共重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー法によるものであり、具体的には、実施例に記載の方法により測定できる。
 前記混合液A中における、及び被分離SWCNT分散液中におけるSWCNTに対する前記共重合体の質量比(共重合体/SWCNT)は、半導体型SWCNTの分離性向上の観点及び生産性向上の観点から、好ましくは0.5以上、より好ましくは1以上、更に好ましくは2以上、更により好ましくは4以上であり、そして、半導体型SWCNTの分離性向上の観点及び生産性向上の観点から、好ましくは100以下、より好ましくは70以下、更に好ましくは50以下、更により好ましくは20以下である。
 前記混合液A中における、及び被分離SWCNT分散液中における前記共重合体の含有量は、半導体型SWCNTの分離性向上の観点及び生産性向上の観点から、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.15質量%以上、更により好ましくは0.2質量%以上であり、そして、同様の観点から、好ましくは10質量%以下、より好ましくは7質量%以下、更に好ましくは5質量%以下である。
 [SWCNT]
 前記混合液A、及び被分離SWCNT分散液の調製に使用されるSWCNTについて、特に制限はない。SWCNTは、例えば、HiPco法やe-DIPS法等の従来から公知の合成方法により合成されたものであり、様々な巻き方・直径のものを含んでいてもよい。金属型SWCNTと半導体型SWCNTを任意の比率で含んでいてもよいが、一般的に合成されるSWCNTは、約1/3の金属型SWCNTと約2/3の半導体型SWCNTを含むSWCNT混合物である。
 SWCNTの平均直径は、半導体型SWCNTの分離性向上の観点から、好ましくは0.5nm以上、より好ましくは0.8nm以上であり、そして、同様の観点から、好ましくは3nm以下、より好ましくは2nm以下である。SWCNTの平均直径は、透過型電子顕微鏡を用い得られた画像から10本以上のCNTについて直径を測定し平均することで算出できる。
 SWCNTの平均長さは、電気特性の観点から、好ましくは0.1μm以上、より好ましくは0.3μm以上、更に好ましくは0.5μm以上であり、そして、半導体型SWCNTの分離性向上の観点及び生産性向上の観点から、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは20μm以下、更により好ましくは10μm以下である。SWCNTの平均長さは、例えば、透過型電子顕微鏡を用い得られた画像から10本以上のCNTについて長さを測定し平均することで算出できる。
 前記混合液A中における、及び被分離SWCNT分散液中におけるSWCNTの含有量は、半導体型SWCNTの分離性向上の観点から、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、更に好ましくは0.03質量%以上であり、そして、半導体型SWCNTの分離性向上の観点及び生産性向上の観点から、好ましくは5質量%以下、より好ましくは1質量%以下、更に好ましくは0.5質量%以下である。
 [水性媒体]
 前記混合液A、及び被分離SWCNT分散液は、分散媒として水性媒体を含む。水性媒体としては水が好ましく、水は、半導体型SWCNTの分離性向上の観点及び生産性向上の観点から、純水、イオン交換水、精製水又は蒸留水が好ましく、純水がより好ましい。
 前記混合液A、及び被分離SWCNT分散液は、水性媒体として、水以外に、メタノール、エタノール、イソプロピルアルコール等の低級アルコールや、アセトン、テトラヒドロフラン、ジメチルホルムアミド等の水溶性有機溶媒を含んでいてもよい。
 水性媒体が、水と水以外の分散媒との併用である場合、分散媒における、水の割合は、半導体型SWCNTの分離性向上の観点から、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。
 前記混合液A中における、及び被分離SWCNT分散液中における水性媒体の含有量は、半導体型SWCNTの分離性向上の観点及び生産性向上の観点から、好ましくは85質量%以上、より好ましくは92質量%以上、更に好ましくは96質量%以上であり、そして、同様の観点から、好ましくは99.9質量%以下、より好ましくは99.8質量%以下、更に好ましくは99.5質量%以下、更により好ましくは99.0質量%以下である。
 混合液Aに対する分散処理は、例えば、バス型超音波分散器、ホモミキサー、高圧ホモジナイザー、超音波ホモジナイザー、ジェットミル、ビーズミル、ミルサー等の分散機を用いて行うことができる。
 工程Aにおいて、混合液Aに対して、分散処理をする前に、脱泡処理を行ってもよい。
 [工程B]
 本開示の分散液の製造方法及び本開示の分離方法における前記工程Bでは、工程Aで得られた被分離SWCNT分散液を遠心分離の対象とし、遠心分離された被分離SWCNT分散液中の半導体型SWCNTを含む上澄み液を採取する。前記上澄み液は、遠心分離の対象となる前の被分離SWCNT分散液中の半導体型SWCNTと金属型SWCNTの比率に対して、半導体型SWCNTの比率が向上したものである。当該比率は、遠心分離条件等により異なるが、遠心分離機の回転速度は、半導体型SWCNTの分離性向上及び生産性向上の観点から、好ましくは5,000rpm以上、より好ましくは10,000rpm以上であり、同様の観点から、好ましくは100,000rpm以下、より好ましくは70,000rpm以下である。遠心分離機の重力加速度は、半導体型SWCNTの分離性向上の観点及び生産性向上の観点から、好ましくは10kG以上、より好ましくは50kG以上であり、同様の観点から、好ましくは1000kG以下、より好ましくは500kG以下である。
 [半導体型SWCNTの製造方法及び半導体型SWCNT]
 本開示の半導体型SWCNT分散液の製造方法により製造された半導体型SWCNT分散液から、半導体型SWCNTを採取すれば、半導体型SWCNTを製造できる。半導体型SWCNT分散液からの半導体型SWCNTの採取は、例えば、メンブレンフィルターにより半導体型SWCNT分散液から半導体型SWCNTを濾過した後、それを乾燥させることにより行える。半導体型SWCNT分散液から半導体型SWCNTを濾過する場合、半導体型SWCNT分散液中の半導体型SWCNTを再沈殿する等の前処理を行ってから濾過してもよい。あるいは、半導体型SWCNT分散液を乾燥し、共存する前記共重合体を洗浄や加熱分解等の手段により除去することにより行える。したがって、本開示は、一態様において、本開示の半導体型SWCNT分散液の製造方法により得られた半導体型SWCNT分散液を濾過して、半導体型SWCNTを採取する工程を含む、半導体型SWCNTの製造方法(以下、「本開示の半導体型SWCNTの製造方法A」ともいう)に関する。また、本開示は、その他の態様において、本開示の半導体型SWCNT分散液の製造方法により得られた半導体型SWCNT分散液を乾燥して半導体型SWCNTと前記共重合体とを含む混合物を得る工程と、前記混合物から前記共重合体を除去して半導体型SWCNTを採取する工程を含む、半導体型SWCNTの製造方法(以下、「本開示の半導体型SWCNTの製造方法B」ともいう)に関する。また、本開示は、その他の態様において、本開示の半導体型SWCNTの製造方法AまたはBにより得られる半導体型SWCNT(以下、「本開示の半導体型SWCNT」ともいう)に関する。
 [半導体型SWCNT含有インクの製造方法]
 本開示は、一態様において、本開示の半導体型SWCNT分散液の製造方法、又は、本開示の半導体型SWCNTの製造方法を、一工程として含む、半導体型SWCNT含有インクの製造方法(以下、「本開示の半導体型SWCNT含有インクの製造方法」ともいう)に関する。本開示の半導体型SWCNT含有インクの製造方法の一実施形態は、例えば、本開示の半導体型SWCNTの製造方法AまたはBを一工程として含み、更に、前記半導体型SWCNTと、有機溶媒及び水のうち少なくとも1種と、必要に応じて界面活性剤及び樹脂のうちの少なくとも1種とを混合する工程を含む。また、本開示の半導体型SWCNT含有インクの製造方法の他の実施形態は、例えば、本開示の半導体型SWCNT分散液の製造方法を一工程として含み、前記半導体型SWCNT分散液と、必要に応じて、前記分散液と混和できる有機溶媒、界面活性剤及び樹脂のうちの少なくとも1種とを混合する工程を含む。
 前記有機溶媒としては、例えば、n-ヘキサン、n-オクタン,n-デカン等の脂肪族系溶媒:シクロヘキサン等の脂環式系溶媒:ベンゼン,トルエン等の芳香族系溶媒、メタノール、エタノール等のアルコール系溶媒、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ブチルセロソルブ等のグリコールエーテル系溶媒等が挙げられる。半導体型SWCNT含有インクは、成膜性向上の観点から、更に、溶媒に溶解又は分散可能な前記樹脂として、例えば、ポリスチレン樹脂、アクリル樹脂、ビニル樹脂等を含んでいてもよいし、分散剤として公知の界面活性剤や他の添加剤を含んでいてもよい。半導体型SWCNT含有インクにおける半導体型SWCNTの含有量については、用途に応じて適宜設定すればよい。
 [半導体型SWCNT含有インク]
 本開示は、一態様において、半導体型単層SWCNTと、有機溶媒及び水のうち少なくとも1種と、上記式(1)で表される単量体に由来の構成単位A及び上記式(3)で表される単量体に由来の構成単位Bを含む共重合体とを含む、半導体型SWCNT含有インク(以下、「本開示の半導体型SWCNT含有インク」ともいう)に関する。
 本開示の半導体型SWCNT含有インクの一実施形態は、少なくとも本開示の半導体型SWCNTと、上記式(1)で表される単量体に由来の構成単位A及び上記式(3)で表される単量体に由来の構成単位Bを含む共重合体と、有機溶媒及び水のうち少なくとも1種とを含み、必要に応じて界面活性剤及び樹脂を含有する。
 [半導体デバイスの製造方法]
 本開示は、一態様において、本開示の半導体型SWCNT含有インクの製造方法により得られた半導体型SWCNT含有インクを、基板に印刷又は塗布して、半導体層を形成する工程を含む、半導体デバイスの製造方法に関する。
 また、本開示は、その他の態様において、基板と、前記基板上に配置されたゲート電極、ソース電極及びドレイン電極を備えた、半導体素子の製造方法であり、前記半導体型SWCNT含有インクを、印刷又は塗布することにより半導体回路や半導体膜(半導体層)を形成する工程を含む、半導体デバイスの製造方法に関する。前記半導体型SWCNT含有インクの印刷方法としては、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等が挙げられる。印刷又は塗布することにより半導体膜を形成した後にエッチング等を行い、回路を形成する工程を含んでもよい。
 本願は、さらに以下の半導体型単層カーボンナノチューブ分散液の製造方法、半導体型単層カーボンナノチューブと金属型単層カーボンナノチューブの分離方法、半導体型単層カーボンナノチューブ含有インクの製造方法、及び半導体型単層カーボンナノチューブ含有インクを開示する。
 <1> 半導体型単層カーボンナノチューブと金属型単層カーボンナノチューブとを含む単層カーボンナノチューブと、水性媒体と、重合体とを含む、被分離単層カーボンナノチューブ分散液を調製する工程と、
 前記被分離単層カーボンナノチューブ分散液を遠心分離した後、遠心分離された前記被分離単層カーボンナノチューブ分散液から、前記半導体型単層カーボンナノチューブを含む上澄み液を採取する工程と、を含み、
 前記重合体が、下記の式(1)で表される単量体に由来の構成単位Aと、下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体である、半導体型単層カーボンナノチューブ分散液の製造方法。
 CH2=CR0-COOM      (1)
 式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000008
 式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
 CH2=CR5-COO-(EO)p-(PO)q-R6      (3)
 式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
<2> 半導体型単層カーボンナノチューブと金属型単層カーボンナノチューブとを含む単層カーボンナノチューブと、水性媒体と、重合体とを含む、被分離単層カーボンナノチューブ分散液を調製する工程と、
 前記被分離単層カーボンナノチューブ分散液を遠心分離した後、遠心分離された前記被分離単層カーボンナノチューブ分散液から、前記半導体型単層カーボンナノチューブを含む上澄み液を採取する工程と、を含み、
 前記重合体が、下記の式(1)で表される単量体に由来の構成単位Aと、下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体であり、
 前記共重合体の全構成単位中の前記構成単位Aの含有量が0モル%超100モル%未満、前記構成単位Bの含有量が0モル%超100モル%未満である、半導体型単層カーボンナノチューブ分散液の製造方法。
 CH2=CR0-COOM      (1)
 式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
 CH2=CR5-COO-(EO)p-(PO)q-R6      (3)
 式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
<3> 半導体型単層カーボンナノチューブと金属型単層カーボンナノチューブとを含む単層カーボンナノチューブと、水性媒体と、重合体とを含む、被分離単層カーボンナノチューブ分散液を調製する工程と、
 前記被分離単層カーボンナノチューブ分散液を遠心分離した後、遠心分離された前記被分離単層カーボンナノチューブ分散液から、前記半導体型単層カーボンナノチューブを含む上澄み液を採取する工程と、を含み、
 前記重合体が、下記の式(1)で表される単量体に由来の構成単位Aと、下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体であり、
 前記共重合体の全構成単位中の前記構成単位Aの含有量が0モル%超100モル%未満、前記構成単位Bの含有量が0モル%超100モル%未満である、半導体型単層カーボンナノチューブ分散液の製造方法。
 CH2=CR0-COOM      (1)
 式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000010
 式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
 CH2=CR5-COO-(EO)p-(PO)q-R6      (3)
 式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、またはメチル基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
<4> 前記共重合体中の構成単位Aと構成単位Bとの質量比(A/B)が0.01以上10以下である、<1>乃至<3>のいずれかの一つに記載の半導体型単層カーボンナノチューブ分散液の製造方法。
<5> 前記共重合体中の前記構成単位Aと前記構成単位Bとのモル比(A/B)が0.05以上30以下である、<1>乃至<3>のいずれかの一つに記載の半導体型単層カーボンナノチューブ分散液の製造方法。
<6> 前記共重合体の全構成単位中の構成単位Aの含有量(mol%)が1mol%以上100mol%未満である、<1>乃至<5>のいずれかの一つに記載の半導体型単層カーボンナノチューブ分散液の製造方法。
<7> 前記共重合体の全構成単位中の構成単位Bの含有量(mol%)が0mol%超100mol%未満である、<1>乃至<6>のいずれかの一つに記載の半導体型単層カーボンナノチューブ分散液の製造方法。
<8> 前記共重合体に含まれる構成単位Bが、エチレンオキシ基の平均付加モル数pが4以上120以下の構成単位B1と、エチレンオキシ基の平均付加モル数pが1以上4未満の構成単位B2の組み合わせである、<1>乃至<7>のいずれかの一つに記載の半導体型単層カーボンナノチューブ分散液の製造方法。
<9> 前記共重合体中の構成単位B1と構成単位B2のモル比(B1/B2)が0.01以上0.5以下である、<8>に記載の半導体型単層カーボンナノチューブ分散液の製造方法。
<10>前記共重合体中の構成単位B1と構成単位B2の質量比(B1/B2)が0.1以上5以下である、<8>に記載の半導体型単層カーボンナノチューブ分散液の製造方法。
<11> <1>乃至<10>のいずれか一つに記載の半導体型単層カーボンナノチューブ分散液の製造方法により得られた半導体型単層カーボンナノチューブ分散液を濾過して、半導体型単層カーボンナノチューブを採取する工程を含む、半導体型単層カーボンナノチューブの製造方法。
<12> <1>乃至<10>のいずれか一つに記載の半導体型単層カーボンナノチューブ分散液の製造方法により得られた半導体型単層カーボンナノチューブ分散液を乾燥して半導体型単層カーボンナノチューブと前記共重合体とを含む混合物を得る工程と、前記混合物から前記共重合体を除去して、半導体型単層カーボンナノチューブを採取する工程を含む、半導体型単層カーボンナノチューブの製造方法。
<13> <1>乃至<10>のいずれか一つに記載の製造方法を、一工程として含む半導体型単層カーボンナノチューブ含有インクの製造方法。
<14> 半導体型単層カーボンナノチューブと、有機溶媒及び水のうち少なくとも1種と、下記の式(1)で表される単量体に由来の構成単位Aと下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体とを含む、半導体型単層カーボンナノチューブ含有インク。
 CH2=CR0-COOM      (1)
 式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
Figure JPOXMLDOC01-appb-C000011
 式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
 CH2=CR5-COO-(EO)p-(PO)q-R6       (3)
 式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、またはメチル基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
 以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。
1.各種パラメーターの測定方法
 [共重合体の重量平均分子量の測定]
 被分離SWCNT分散液の調製に使用した共重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下「GPC」ともいう)法を用いて下記条件で測定した。
 <GPC条件>
測定装置:HLC―8320GPC(東ソー株式会社製)
カラム:α―M + α―M(東ソー株式会社製)
溶離液:60mmol/L H3PO4および50mmol/L LiBrのN,N-ジメチルホルムアミド(DMF)溶液
流量:1.0mL/min
カラム温度:40℃
検出:RI
サンプルサイズ:0.5mg/mL
標準物質:単分散ポリスチレン(東ソー株式会社製)
 [EO,PO付加モル数の測定方法]
 被分離SWNT分散液の調製に使用した共重合体のEOPO付加モル数は、核磁気共鳴法(以下「NMR」ともいう)を用いて下記条件で測定した。EO、およびPO付加モル数は化学シフトの積分値より算出した。
 <NMR条件>
測定装置:Vnmrs400(Agilent社製)
測定溶媒:重クロロホルム(0.05%TMS含有)(富士フィルム和光純薬株式会社製)
測定化学種:1H
 [共重合体におけるPEGMAの末端炭素数の測定方法]
 被分離SWNT分散液の調製に使用した共重合体におけるPEGMAの末端炭素数は、核磁気共鳴法(以下「NMR」ともいう)を用いて下記条件で測定した。末端炭素数は化学シフトの積分値より算出した。
 <NMR条件>
測定装置:Vnmrs400(Agilent社製)
測定溶媒:重クロロホルム(0.05%TMS含有)(富士フィルム和光純薬株式会社製)
測定化学種:1H、13C
 [水溶性の評価]
 20℃の水100gに共重合体1gを加え、5分間攪拌し、目視で不溶解物の有無を観察した。不溶解物が観察されない場合、水溶性と判断した。表1及び2において、水溶性があると判断した場合はA、水溶性ではないと判断した場合はBと記載した。
 [SWCNTの平均直径及び平均長さの測定]
 SWCNTの平均直径及び平均長さは、透過型電子顕微鏡を用い得られた画像から10本以上のCNTについて直径及び長さをそれぞれ測定し平均することで算出した。
2.共重合体a~iの製造
 [共重合体a]
 撹拌機、還流管、温度計、滴下ロート1及び滴下ロート2を備えた反応容器にエタノール(富士フィルム和光純薬(株)製)15gを仕込み、撹拌しながら反応系を窒素置換した後、90℃まで昇温した。滴下ロート1にモノマー(メタクリル酸(富士フィルム和光純薬(株)製)15g(71.2mol%)とメトキシポリエチレングリコール(9)モノメタクリレート(新中村化学工業(株)製「M-90G」 35g(28.8mol%))とエタノール10gの混合溶液を、滴下ロート2に連鎖移動剤として3-メルカプト-1,2-プロパンジオール(富士フィルム和光純薬(株)製)1.59g(6.0mol%対全モノマー)と、重合開始剤として、2,2'-アゾビス(2,4-ジメチルバレロニトリル)(富士フィルム和光純薬(株)製「V-65B」)0.304g(0.5mol%対全モノマー)と、エタノール50.5gの混合溶液を、各々準備し、同時に1時間かけて反応容器へ滴下した。滴下終了後、撹拌しながら1時間かけて熟成して反応を終了させ、共重合体aを得た。
 [共重合体b~i]
 表1に示すモノマー、モノマー量、連鎖移動剤量、及び重合開始剤量に変えた以外は、共重合体aの製造方法と同様に行い、共重合体b~iを得た。
 得られた共重合体a~iの物性を下記表1に示す。
 重合体a~iの製造に用いたモノマーは以下のとおりである。
 (単量体A)
MAA:メタクリル酸(富士フィルム和光純薬(株)製)
AA:アクリル酸(富士フィルム和光純薬(株)製「特級」)
 (単量体B1
PEG(9)MA:メトキシポリエチレングリコール(9)モノメタクリレート[新中村化学工業(株)製「M-90G」](式(3)中、R6=メチル、R5=メチル、p=9、q=0)
 (単量体B1
PEG(23)MA:メトキシポリエチレングリコール(23)モノメタクリレート[新中村化学工業(株)製「M-230G」](式(3)中、R6=メチル、R5=メチル、p=23、q=0)
 (単量体B1
PEG(90)MA:メトキシポリエチレングリコール(90)モノメタクリレート[新中村化学工業(株)製「M-900G」](式(3)中、R6=メチル、R5=メチル、p=90、q=0)
 (単量体B1
PEG(20)PG(3)MA:メトキシポリエチレングリコール(20)ポリプロピレングリコール(3)モノメタクリレート[新中村化学工業(株)製「M-0320PE」](式(3)中、R6=メチル、R5=メチル、p=20、q=3)
 (単量体B1
PEG(45)MA:メトキシポリエチレングリコール(45)モノメタクリレート[新中村化学工業(株)製「M-450G」](式(3)中、R6=メチル、R5=メチル、p=45、q=0)
 (単量体B2
HEMA:メタクリル酸2-ヒドロキシエチル[富士フィルム和光純薬(株)製](式(3)中、R6=H、R5=メチル、p=1、q=0)
 (その他)
PDEA:フェノキシジオキシエチレンアクリレート[共栄社化学(株)製「ライトアクリレートP2H-A」]
Figure JPOXMLDOC01-appb-T000012
3.半導体型SWCNT分散液の調製
 [実施例1~8]
 表1に示す共重合体を、各々超純水(和光純薬工業製)で溶解した0.5質量%水溶液30mLに、HiPco法にて合成されたSWCNT混合物(NanoIntegris社製「HiPco-Raw」、平均直径:0.8-1.2nm、平均長さ:0.4-0.7μm)を30mg添加して、混合液を得た。
 次いで、混合液をスターラーで撹拌しながら超音波ホモジナイザー(BRANSON社製「450D」)でAMPLITUDE30%、10℃の条件にて10分間分散を行い、実施例1~8の被分離SWCNT分散液を得た。各被分離SWCNT分散液中の各成分の種類及び含有量は、表2に示す。被分離SWCNT分散液中のSWCNT混合物、共重合体の含有量は、表2に示すとおりであり、水性媒体の含有量は、SWCNT混合物、及び共重合体を除いた残余である。
 得られた被分離SWCNT分散液に対して、超遠心機(日立工機(株)製「CS100GXII」、ローターS50A)を用いて、回転数50000rpm、重力加速度210kG、20℃の条件にて30分間遠心処理を行った。その後、沈殿した堆積物を舞い上げないようにして上澄み液を体積基準で液面から80%採取し、実施例1~8の半導体型SWCNT分散液を得た。
 [比較例1]
 共重合体aの代わりに共重合体fを用いたこと以外、実施例1と同様にして、比較例1の被分離SWCNT分散液及び上澄み液(半導体型SWCNT分散液)を得た。被分離SWCNT分散液中のSWCNT混合物、共重合体の含有量は、表2に示すとおりであり、水性媒体の含有量は、SWCNT混合物、及び化合物を除いた残余である。
4.評価
 [分離性評価]
 可視光から赤外光まで測定可能な紫外可視近赤外分光光度計((株)島津製作所製「UV-3600Plus」)を用いて、吸光度を測定する。そして、半導体型SWCNTに固有の吸収波長のピーク強度と金属型SWCNTに固有の吸収波長のピーク強度との比を、半導体型SWCNTの分離性の評価値とした。算出した値が高いほど、半導体型SCNT分離性が高いと評価でき、値が1.2以上であれば、半導体型SCNT分離性は十分に高い。結果を表2に示した。
Figure JPOXMLDOC01-appb-M000013
 なお、使用したSWCNT(HIPCO)は、730nm付近に半導体型SWCNTに固有の吸収波長を有し、480nm付近に金属型SWCNTに固有の吸収波長を有する。
 [分散安定性評価]
 室温25℃下2週間放置後の半導体型SWCNT分散液における、半導体型SWCNTの分散状態を下記評価基準にしたがって評価し、結果を表2に示した。
 (評価基準)
A:目視では凝集物が確認できない。
B:目視で数個(6個未満)の凝集物が確認できる。
C:目視で多くの凝集物があることが確認できる。
Figure JPOXMLDOC01-appb-T000014
 表2に示すように、実施例1~8では、比較例1よりも、半導体型SWCNTの高い分離性と、半導体型SWCNT分散液における半導体型SWCNTの分散安定性との両立が良好に行えている。
 以上説明した通り、本開示の半導体型SWCNT分散液の製造方法によれば、半導体型SWCNTの高い分離性と、半導体型SWCNT分散液における半導体型SWCNTの分散安定性との両立が良好に行えるので、半導体型SWCNT含有インクの品質向上が期待できる。

Claims (10)

  1.  半導体型単層カーボンナノチューブと金属型単層カーボンナノチューブとを含む単層カーボンナノチューブと、水性媒体と、重合体とを含む、被分離単層カーボンナノチューブ分散液を調製する工程と、
     前記被分離単層カーボンナノチューブ分散液を遠心分離した後、遠心分離された前記被分離単層カーボンナノチューブ分散液から、前記半導体型単層カーボンナノチューブを含む上澄み液を採取する工程と、を含み、
     前記重合体が、下記の式(1)で表される単量体に由来の構成単位Aと、下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体である、半導体型単層カーボンナノチューブ分散液の製造方法。
     CH2=CR0-COOM      (1)
     式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
    Figure JPOXMLDOC01-appb-C000001
     式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
     CH2=CR5-COO-(EO)p-(PO)q-R6      (3)
     式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
  2.  前記共重合体の全構成単位中の前記構成単位Aの含有量が0モル%超90モル%以下である、請求項1に記載の半導体型単層カーボンナノチューブ分散液の製造方法。
  3.  前記共重合体の全構成単位中の前記構成単位Bの含有量が10モル%以上100モル%未満である、請求項1または2に記載の半導体型単層カーボンナノチューブ分散液の製造方法。
  4.  前記式(3)で表される単量体の末端構造R6が水素原子、またはメチル基である、請求項1から3のいずれかの項に記載の半導体型単層カーボンナノチューブ分散液の製造方法。
  5.  前記被分離単層カーボンナノチューブ分散液の調製に使用する前記単層カーボンナノチューブの平均直径は、0.5nm以上3nm以下である、請求項1から4のいずれかの項に記載の半導体型単層カーボンナノチューブ分散液の製造方法。
  6.  請求項1から5のいずれかの項に記載の半導体型単層カーボンナノチューブ分散液の製造方法により得られた半導体型単層カーボンナノチューブ分散液を濾過して、半導体型単層カーボンナノチューブを採取する工程を含む、半導体型単層カーボンナノチューブの製造方法。
  7.  請求項1から5のいずれかの項に記載の半導体型単層カーボンナノチューブ分散液の製造方法により得られた半導体型単層カーボンナノチューブ分散液を乾燥して半導体型単層カーボンナノチューブと前記共重合体とを含む混合物を得る工程と、前記混合物から前記共重合体を除去して、半導体型単層カーボンナノチューブを採取する工程を含む、半導体型単層カーボンナノチューブの製造方法。
  8.  半導体型単層カーボンナノチューブと金属型単層カーボンナノチューブとを含む単層カーボンナノチューブと、水性媒体と、重合体とを含む、被分離単層カーボンナノチューブ分散液を調製する工程と、
     前記被分離単層カーボンナノチューブ分散液を遠心分離した後、遠心分離された前記被分離単層カーボンナノチューブ分散液から、前記半導体型単層カーボンナノチューブを含む上澄み液を採取する工程と、を含み、
     前記重合体が、下記の式(1)で表される単量体に由来の構成単位Aと、下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体である、半導体型単層カーボンナノチューブと金属型単層カーボンナノチューブの分離方法。
     CH2=CR0-COOM      (1)
     式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
     CH2=CR5-COO-(EO)p-(PO)q-R6       (3)
     式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
  9.  請求項1から7のいずれかの項に記載の製造方法を、一工程として含む半導体型単層カーボンナノチューブ含有インクの製造方法。
  10.  半導体型単層カーボンナノチューブと、有機溶媒及び水のうち少なくとも1種と、下記の式(1)で表される単量体に由来の構成単位Aと下記の式(3)で表される単量体に由来の構成単位Bを含む共重合体とを含む、半導体型単層カーボンナノチューブ含有インク。
     CH2=CR0-COOM      (1)
     式(1)中、R0は水素原子、またはメチル基を示す。Mは水素原子、金属原子、および下記式(2)で表される構造の基のいずれかを示す。
    Figure JPOXMLDOC01-appb-C000003
     式(2)中、R1、R2、R3、R4はそれぞれ独立に、水素原子、又は水酸基を有していてもよい炭素数が1以上2以下のアルキル基を示す。
     CH2=CR5-COO-(EO)p-(PO)q-R6      (3)
     式(3)中、R5は水素原子、またはメチル基を示す。R6は水素原子、または炭素数が1以上5以下の炭化水素基を示し、EOはエチレンオキシ基、POはプロピレンオキシ基を示し、pはエチレンオキシ基の平均付加モル数を示し、1以上120以下であり、qはプロピレンオキシ基の平均付加モル数を示し、0以上50以下である。
PCT/JP2022/017585 2021-04-12 2022-04-12 半導体型単層カーボンナノチューブ分散液の製造方法 WO2022220239A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22788164.6A EP4324789A1 (en) 2021-04-12 2022-04-12 Production method for semiconducting single-walled carbon nanotube dispersion
CN202280027727.1A CN117120369A (zh) 2021-04-12 2022-04-12 半导体型单层碳纳米管分散液的制造方法
KR1020237032328A KR20230169097A (ko) 2021-04-12 2022-04-12 반도체형 단층 카본 나노튜브 분산액의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021067326 2021-04-12
JP2021-067326 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022220239A1 true WO2022220239A1 (ja) 2022-10-20

Family

ID=83640082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017585 WO2022220239A1 (ja) 2021-04-12 2022-04-12 半導体型単層カーボンナノチューブ分散液の製造方法

Country Status (5)

Country Link
EP (1) EP4324789A1 (ja)
JP (1) JP7158087B1 (ja)
KR (1) KR20230169097A (ja)
CN (1) CN117120369A (ja)
WO (1) WO2022220239A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055375A (ja) * 2006-09-01 2008-03-13 Osaka Univ 単層カーボンナノチューブの分離方法
JP2010064904A (ja) * 2008-09-08 2010-03-25 Jsr Corp カーボンナノチューブを含有する組成物および膜
US20180099870A1 (en) * 2016-10-12 2018-04-12 Wisconsin Alumni Research Foundation Degradable conjugated polymers for the selective sorting of semiconducting carbon nanotubes
JP2018168018A (ja) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 半導体型カーボンナノチューブの分離方法および半導体素子の製造方法
JP2019525879A (ja) * 2016-06-12 2019-09-12 中国科学院蘇州納米技術与納米▲ファン▼生研究所 半導体性カーボンナノチューブを選択分散させ生産率を向上させる方法及び試薬
JP2019202912A (ja) 2018-05-23 2019-11-28 花王株式会社 半導体型単層カーボンナノチューブ分散液の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055375A (ja) * 2006-09-01 2008-03-13 Osaka Univ 単層カーボンナノチューブの分離方法
JP2010064904A (ja) * 2008-09-08 2010-03-25 Jsr Corp カーボンナノチューブを含有する組成物および膜
JP2019525879A (ja) * 2016-06-12 2019-09-12 中国科学院蘇州納米技術与納米▲ファン▼生研究所 半導体性カーボンナノチューブを選択分散させ生産率を向上させる方法及び試薬
US20180099870A1 (en) * 2016-10-12 2018-04-12 Wisconsin Alumni Research Foundation Degradable conjugated polymers for the selective sorting of semiconducting carbon nanotubes
JP2018168018A (ja) * 2017-03-30 2018-11-01 国立大学法人名古屋大学 半導体型カーボンナノチューブの分離方法および半導体素子の製造方法
JP2019202912A (ja) 2018-05-23 2019-11-28 花王株式会社 半導体型単層カーボンナノチューブ分散液の製造方法

Also Published As

Publication number Publication date
KR20230169097A (ko) 2023-12-15
JP7158087B1 (ja) 2022-10-21
CN117120369A (zh) 2023-11-24
EP4324789A1 (en) 2024-02-21
JP2022165404A (ja) 2022-10-31

Similar Documents

Publication Publication Date Title
US11708269B2 (en) Method for producing semiconducting single-walled carbon nanotube dispersion
US20060189822A1 (en) Dispersant for dispersing carbon nanotubes and carbon nanotube composition comprising the same
JP5611050B2 (ja) 金属性カーボンナノチューブの製造方法、カーボンナノチューブ分散液、カーボンナノチューブ含有膜、及び透明導電膜
TWI822331B (zh) 碳材料分散液及其使用
KR100735996B1 (ko) 탄소나노튜브용 분산제 및 그를 포함하는 탄소나노튜브조성물
Wang et al. Self-assembly of giant bottlebrush block copolymer surfactants from luminescent organic electronic materials
Shao et al. Self-assembly of luminescent triblock bottlebrush copolymers in solution
JP7158087B1 (ja) 半導体型単層カーボンナノチューブ分散液の製造方法
Yang et al. Grafting polymers onto carbon black surface by trapping polymer radicals
Yang et al. Preparation of polymer‐grafted carbon black nanoparticles by surface‐initiated atom transfer radical polymerization
JP7002517B2 (ja) 半導体型単層カーボンナノチューブ分散液の製造方法
Hayashida et al. Miscible blends of poly (butyl methacrylate) densely grafted on fumed silica with poly (vinyl chloride)
JP6900453B2 (ja) 半導体型単層カーボンナノチューブ分散液の製造方法
JP2008115286A (ja) フラーレンを規則的に配列させて含有する高分子膜
US12006218B2 (en) Method for producing semiconducting single-walled carbon nanotube dispersion
JP6952919B1 (ja) カーボン材料分散液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788164

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18285430

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022788164

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022788164

Country of ref document: EP

Effective date: 20231113