WO2022218060A1 - 柔性透明led显示屏 - Google Patents

柔性透明led显示屏 Download PDF

Info

Publication number
WO2022218060A1
WO2022218060A1 PCT/CN2022/079458 CN2022079458W WO2022218060A1 WO 2022218060 A1 WO2022218060 A1 WO 2022218060A1 CN 2022079458 W CN2022079458 W CN 2022079458W WO 2022218060 A1 WO2022218060 A1 WO 2022218060A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible transparent
layer
led display
display screen
low
Prior art date
Application number
PCT/CN2022/079458
Other languages
English (en)
French (fr)
Inventor
汤立文
叶宗和
董宇坤
尹志安
莫春鉴
丁武
马晓鑫
Original Assignee
珠海华萃科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海华萃科技有限公司 filed Critical 珠海华萃科技有限公司
Publication of WO2022218060A1 publication Critical patent/WO2022218060A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED

Definitions

  • the invention relates to the technical field of LED display, in particular to a flexible transparent LED display screen.
  • Transparent LED displays have gradually been widely used in the market, and various product forms have been developed.
  • a transparent LED display technology that distributes LED lamps in an array on a transparent substrate has begun to appear.
  • Such LED display screens generally use transparent conductive materials to make power supply lines and signal transmission lines for LED lamp beads.
  • the transparent conductive material is usually ITO (indium tin oxide), but ITO is expensive and has low economic benefits.
  • ITO indium tin oxide
  • an LED display screen using copper as a conductive material has appeared on the market, but the reflectivity of copper wire is high, which is not conducive to improving the transparency of the LED display screen.
  • the main purpose of the present invention is to provide a flexible transparent LED display, which aims to provide a low-cost and high-transparency LED display.
  • the flexible transparent LED display screen proposed by the present invention includes a flexible transparent substrate, a conductive layer, a first low reflection layer, a welding layer and LED lamp beads, wherein,
  • the conductive layer is arranged on one side or both sides of the flexible transparent substrate, the conductive layer is used to form a lamp bead circuit, and the lamp bead circuit is at least partially arranged in a grid shape;
  • the first low-reflection layer is disposed on the conductive layer, and the reflectivity of the first low-reflection layer is less than 35%;
  • the soldering layer is arranged on the first low-reflection layer or the conductive layer, and the soldering layer is used to form the pad of the lamp bead circuit;
  • the LED lamp beads are welded to the welding layer.
  • the thickness of the first low-reflection layer ranges from 1 nm to 3000 nm.
  • the material of the first low reflection layer includes at least one of pure metal, alloy, metal compound and metal oxide.
  • the flexible transparent LED display further includes an adhesive layer, the adhesive layer is disposed on the flexible transparent substrate, and the conductive layer is adhered to the flexible transparent substrate through the adhesive layer, wherein , the adhesive force between the adhesive layer and the flexible transparent substrate is not less than 0.5kg/cm 2 .
  • the material of the adhesive layer includes at least one of metals, alloys, metal compounds, metal oxides and transparent macromolecules.
  • the thickness of the adhesive layer ranges from 1 nm to 3000 nm; and/or,
  • the thickness of the adhesive layer is between 1 um and 100 um.
  • the flexible transparent LED display further includes a second low-reflection layer, the second low-reflection layer is disposed between the adhesive layer and the conductive layer, and the second low-reflection layer
  • the reflectivity is not more than 35%.
  • the material of the conductive layer is a metal or a mixture of a metal and a polymer substance.
  • the thickness of the conductive layer ranges from 0.1 um to 300 um.
  • the projections of the lamp bead circuits on both sides of the flexible transparent substrate on the flexible transparent substrate are overlapped or staggered.
  • the first low-reflection layer is arranged on the conductive layer, and the reflectivity of the first low-reflection layer is controlled to be less than 35%.
  • the first low-reflection layer can reduce the Therefore, even if low-cost but high-reflectivity conductive materials (such as copper, nickel, iron, etc.) are used to make the lamp bead circuit of the transparent LED display, The low visibility of the lamp bead circuit can still be guaranteed, thereby reducing the manufacturing cost of the high-transparency LED display.
  • the flexible transparent LED display screen of the present application has the advantages of low cost and high light transmission.
  • FIG. 1 is a schematic structural diagram of an embodiment of a flexible transparent LED display screen of the present invention.
  • Fig. 2 is the partial enlarged view of A place in Fig. 1;
  • FIG. 3 is a schematic cross-sectional structure diagram of the embodiment shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of the lamp bead circuit on both sides of the flexible transparent substrate in another embodiment of the flexible transparent LED display screen of the present invention.
  • FIG. 5 is a schematic structural diagram of the lamp bead circuit on both sides of the flexible transparent substrate in another embodiment of the flexible transparent LED display screen of the present invention.
  • FIG. 6 is a schematic cross-sectional structure diagram of another embodiment of the flexible transparent LED display screen of the present invention.
  • FIG. 7 is a schematic cross-sectional structure diagram of yet another embodiment of the flexible transparent LED display screen of the present invention.
  • the invention provides a flexible transparent LED display screen.
  • the flexible transparent LED display screen includes a flexible transparent substrate 10 , a conductive layer 20 , a first low reflection layer 30 , a welding layer 40 and LED lamp beads 50 .
  • the flexible transparent substrate 10 may be glass, quartz, single crystal alumina, PA, PET, PEEK, CPI, PEI, PEN, PMMA, COC, COP, PC, LSR, FEP, SMMA, GPPS, PETG or PPSU Mixing of one or more materials, the thickness is between 9um-10mm, preferably between 12um-300um; the average transmittance of visible light (wavelength 400-800nm) is ⁇ 50%, ⁇ 70% is preferred, ⁇ 90% optimal.
  • glass substrates include but are not limited to soda silicate glass, soda lime silicate glass, potassium silicate glass, and aluminosilicate glass.
  • Transparent polymer substrates include but are not limited to PET (English name: Polyethylene terephthalate, Chinese name: polyethylene terephthalate), PMMA (English name: polymethyl methacrylate, Chinese name: polymethyl methacrylate), Transparent PI (English name: polyimide, Chinese name: Polyimide), PC (Chinese name: Polycarbonate, English name: Polycarbonate). Choosing a material with flexible and transparent properties to make the substrate is beneficial to improve the transparency of the LED display screen and to realize the free bending of the LED display screen.
  • the light transmittance of the flexible transparent substrate 10 is greater than 70%, preferably greater than 90%.
  • the transmittance of the flexible transparent substrate 10 may be 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82% , 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%.
  • the conductive layer 20 is disposed on one side or both sides of the flexible transparent substrate 10 .
  • the conductive layer 20 may be disposed on one side of the flexible transparent substrate 10 , or the conductive layer may be disposed on both sides of the flexible transparent substrate 10 . 20.
  • the flexible transparent LED display screen can be used for displaying images. Both sides of the LED display can be used to display images.
  • the conductive layer 20 can be selectively provided on one side or both sides of the flexible transparent substrate 10 according to the requirements of the time product.
  • the conductive layer 20 is used to form the LED display lamp bead circuit 20a, and the lamp bead circuit 20a is at least partially arranged in a grid shape.
  • the lamp bead line 20a includes an electrode line and a signal line, the electrode line is used to supply power to the LED lamp bead 50, and includes a positive electrode line and a negative electrode line; and the signal line is used for connecting the LED lamp bead 50 with the control Control signals are transmitted between chips (modules).
  • the electrode wire is made of metal, and its material can be selected from gold, silver, copper, stainless steel or alloys thereof.
  • the structure of the electrode lines can be solid lines or grid lines; the width of the grid lines is between 1um and 5mm; the thickness is between 0.1um and 300um; the grid line spacing is between 1um and 10mm. Preferably, the width of the grid lines is between 5um and 1.5mm; the thickness of the grid lines is between 1um and 200um; and the grid line spacing is preferably between 3-1mm.
  • the surface resistance before patterning is as follows: the surface resistance is less than or equal to 1 ohm, preferably less than or equal to 0.01 ohm, and preferably less than or equal to 0.001 ohm.
  • the resistance after patterning is: surface resistance ⁇ 10 ohms, preferably ⁇ 0.1 ohms, and optimally ⁇ 0.01 ohms.
  • both the positive electrode lines and the negative electrode lines are arranged in a grid shape (that is, the electrode lines are arranged in a grid shape).
  • light which is beneficial to improve the transparency of the flexible transparent LED display.
  • the electrode lines arranged in a grid shape are also beneficial to improve the heat dissipation capability of the electrode lines, so as to ensure the stability of the power supply of the electrode lines.
  • the first low reflection layer 30 is disposed on the conductive layer 20, and the reflectivity of the first low reflection layer 30 is less than 35%.
  • the reflectivity can be understood as the reflectivity.
  • the reflectivity of the first low-reflection layer 30 is less than 35%, that is, the reflectivity of the first low-reflection layer 30 is less than 35%. It is worth noting that when the reflectivity of the surface of the object is higher, the visibility of the object is higher at this time, and conversely, when the reflectivity of the surface of the object is lower, the visibility of the object is also lower. Generally, when the reflectivity is less than 35%, the visibility of the object in light is low.
  • the reflectivity of the conductive layer 20 can be reduced by the first low-reflection layer 30, which can reduce the lamp bead circuit 20a in the LED display screen. reflectivity.
  • a low-cost but high-reflectivity conductive material such as copper, nickel, iron, etc.
  • the low visibility of the lamp bead circuit 20a can still be ensured, thereby reducing the height of the lamp bead circuit 20a.
  • the soldering layer 40 is disposed on the first low-reflection layer 30 or the conductive layer 20 to form the pad 40a of the lamp bead circuit 20a, and the pad 40a is disposed corresponding to the lamp bead pad 20b of the lamp bead circuit 20a
  • the lamp bead line 20a of the LED display screen has a plurality of lamp bead welding areas 20b. In the lamp bead welding area 20b, the positive electrode line, the negative electrode line and each signal line are each provided with a pad 40a.
  • the soldering layer 40 is disposed in the lamp bead soldering area 20b to form pads 40a for electrode lines and signal lines.
  • the material of the soldering layer 40 is usually tin.
  • the LED lamp bead 50 has a plurality of solder pins 51 , and the solder pins 51 are in one-to-one correspondence with each pad 40 a in the lamp bead welding area 20 b , and the LED lamp bead 50 is welded to the soldering layer 40 through the solder pins 51 . More specifically, the length and width of the LED lamp beads 50 are 15umx 15um-50mmx50mm, and the thickness is 1nm-5mm.
  • the first low-reflection layer 30 is arranged on the conductive layer 20 and the reflectivity of the first low-reflection layer 30 is controlled to be less than 35%.
  • the reflective layer 30 reduces the reflectivity of the conductive layer 20 to reduce the reflectivity of the lamp bead circuit 20a on the transparent LED display screen, so that even if it is made of low-cost but high-reflectivity conductive materials (such as copper, nickel, iron, etc.)
  • the lamp bead circuit 20a of the transparent LED display screen can still ensure low visibility of the lamp bead circuit 20a, thereby reducing the manufacturing cost of the high-transparency LED display screen.
  • the flexible transparent LED display screen of the present application has the advantages of low cost and high light transmission.
  • the optical data of the grid circuit + transparent substrate of the flexible transparent LED display of this embodiment is ⁇ 10%, preferably ⁇ 30%, and preferably ⁇ 60%.
  • the design of the lamp bead circuit 20a with the same two sides is also beneficial to reduce the manufacturing cost of the flexible transparent LED display.
  • FIG. 4 is a schematic diagram of the lamp bead circuit structure on both sides of the flexible transparent substrate in an embodiment of the flexible transparent LED display screen of the present invention.
  • conductive layers 20 are provided on both sides of the flexible transparent substrate 10 , the projections of the lamp bead circuits 20 a on both sides of the flexible transparent substrate 10 on the flexible transparent substrate 10 are staggered.
  • the lamp bead lines 20a on both sides of the flexible transparent substrate 10 are staggered to form a grid structure.
  • FIG. 5 is a schematic diagram of the lamp bead circuit structure on both sides of the flexible transparent substrate in another embodiment of the flexible transparent LED display screen of the present invention; in this embodiment, conductive layers are provided on both sides of the flexible transparent substrate 10 20.
  • the projections of the lamp bead circuits 20a on both sides of the flexible transparent substrate 10 on the flexible transparent substrate 10 are staggered.
  • the lamp bead circuits 20a on both sides of the flexible transparent substrate 10 are arranged in a grid shape, and the lamp bead circuits 20a on both sides of the flexible transparent substrate 10 are staggered to form a new grid structure.
  • the material of the conductive layer 20 is a metal or a mixture of a metal and a polymer substance.
  • metals include pure metals and metal alloys, wherein pure metals include but are not limited to nickel, titanium, chromium, copper, and iron.
  • the alloy may be an alloy of at least two metals among nickel, titanium, chromium, copper, and iron.
  • Polymer substances include, but are not limited to, non-volatile acrylic resins, non-volatile epoxy resins, non-volatile epoxy-acrylic resins, modified products of any of the foregoing three, silica gels, and solvent-free thermoplastic resins.
  • thermoplastic resins include, but are not limited to, hot melt adhesives, polyphenylene ether (PPS), polysulfone (PSU), polysulfone (PES), polyetheretherketone (PEEK), aromatic polyester liquid crystals Polymer (LCP), Polyetherimide (PEI), Polyamideimide (PAI), Polyacetal (POM), Nylon (Nylon/Nylon) (PA), Polycarbonate (PC), Polyamide Butylene terephthalate (PBT), polyethylene terephthalate (polyester, dacron) (PET), polyphenylene ether (polyoxyxylene, PPE, PPO), ABS resin (ABS), Styrene Acrylic Adhesive Acrylonitrile (ASA), Polystyrene (PS), Polymethyl Methacrylate (PMMA), Styrene Copolymer (MS), Cellulose Acetate (CA), Thermoplastic Polyurethane (TPU), Thermoplastic polyester elastomer (TPEE),
  • PPS poly
  • the use of metal to prepare the conductive layer 20 has the advantage of good conductivity, and the use of a mixture of metal and polymer substances to make the conductive layer 20 can improve the transparency of the conductive layer 20 on the basis of ensuring the conductivity of the conductive layer 20. And it is beneficial to improve the adhesion performance of the conductive layer 20 on the transparent substrate.
  • the thickness of the conductive layer 20 ranges from 0.1 um to 300 um. Among them, if the thickness of the conductive layer 20 is too thin, such as less than 0.1um, the conductivity of the lamp bead circuit 20a formed by the conductive layer 20 will be weak, and the power supply capability will be weak, which will affect the display effect of the LED display, such as brightness and uniformity. etc., and if the thickness of the conductive layer 20 is too large, such as more than 300um, the light transmittance of the conductive layer 20 will be affected, thereby affecting the transparency of the LED display screen and increasing the manufacturing cost of the LED display screen. Therefore, limiting the thickness of the conductive layer 20 to 0.1 ⁇ m ⁇ 300 ⁇ m can simultaneously take into account the conductivity and transparency of the conductive layer 20 and the manufacturing cost of the LED display screen.
  • the thickness of the conductive layer 20 can be 0.1um, 0.2um, 0.3um, 0.4um, 0.5um, 0.6um, 0.7um, 0.8um, 0.9um, 1um, 2um, 3um, 4um, 5um, 6um , 7um, 8um, 9um, 10um, 20um, 30um, 40um, 50um, 60um, 70um, 80um, 90um, 100um, 110um, 120um, 130um, 140um, 150um, 160um, 170um, 180um, 190um, 200um, 210um, 220um , 230um, 240um, 250um, 300um, 400um, 500um, 600um, 700um, 800um, 900um, 1000um, 1500um, 2000um, 2500um, 3000um, etc.
  • the thickness of the conductive layer 20 ranges from 0.5um to 50um. Within the range of 0.5um to 50um, not only can the conductive layer 20 have good conductivity and transparency, but also the manufacturing cost of the LED display screen can be effectively controlled.
  • the thickness of the first low-reflection layer 30 ranges from 1 nm to 3000 nm. Among them, if the thickness of the first low reflection layer 30 is too thin, such as less than 1 nm, on the one hand, the coverage effect of the conductive layer 20 will be reduced, and the reflectivity of the conductive layer 20 cannot be guaranteed to be reduced; The fabrication process of the low-reflection layer 30 is complicated, which is not conducive to cost control. However, if the thickness of the first low-reflection layer 30 is too thick, eg, greater than 3000 nm, it is not conducive to controlling the reflectivity and transmittance of the first low-reflection layer 30, and affects the transparency of the LED display screen.
  • the excessive thickness of the first low-reflection layer 30 will also lead to an increase in the cost of the LED display screen. Therefore, limiting the thickness of the first low-reflection layer 30 to 1 nm ⁇ 3000 nm can simultaneously take into account the low reflectivity of the first low-reflection layer 30 and the production cost of the LED display screen.
  • the thickness of the first low reflection layer 30 may be 1 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170 nm , 180nm, 190nm, 200nm, 210nm, 220nm, 230nm, 240nm, 250nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1000nm, 1500nm, 2000nm, 2500nm, 3000nm, etc.
  • the thickness of the first low reflection layer 30 ranges from 20 nm to 250 nm. Within the range of 20 nm to 250 nm, it can not only ensure that the first low reflection layer 30 has a good low reflectivity, but also easily control the manufacturing cost of the LED display screen.
  • the material of the first low reflection layer 30 includes at least one of metals, alloys, metal compounds and metal oxides.
  • metals include but are not limited to nickel, titanium, chromium, copper, and iron.
  • the alloy may be an alloy of at least two metals among nickel, titanium, chromium, copper, and iron.
  • the metal compound can be obtained by combining any two metals among nickel, titanium, chromium, copper and iron.
  • the metal oxide can be obtained by reacting any one of nickel, titanium, chromium, copper and iron with the oxide.
  • the first low-reflection layer 30 prepared by using at least one of metals, alloys, metal compounds and metal oxides has electrical conductivity, so the first low-reflection layer 30 can be used to assist in improving the lamp bead circuit 20a of the LED display screen
  • the conductive properties, such as power supply uniformity and conductivity, etc., are further improved to improve the working stability of the LED display.
  • the preparation of the first low-reflection layer 30 containing metal materials is also beneficial to improve the stability of the combination of the first low-reflection layer 30 and the conductive layer 20, so as to extend the LED display screen. working life.
  • using the above materials to prepare the first low-reflection layer 30 is also beneficial to realize the dark color treatment of the first low-reflection layer 30 , that is, it is beneficial to reduce the reflectivity of the first low-reflection layer 30 .
  • the flexible transparent LED display screen of the present application further includes an adhesive layer 60 , the adhesive layer 60 is disposed on the flexible transparent substrate 10 , and the conductive layer 20 is adhered to the flexible transparent substrate 10 through the adhesive layer 60 .
  • the adhesive force between the adhesive layer 60 and the flexible transparent substrate 10 is not less than 0.5 kg/cm 2 .
  • the adhesive force refers to the adhesive strength between the adhesive layer 60 and the flexible transparent substrate 10 , which can be understood as the adhesiveness between the adhesive layer 60 and the flexible transparent substrate 10 .
  • the larger the adhesive force is the stronger the adhesion between the adhesive layer 60 and the flexible transparent substrate 10 is, and the more stable the adhesion between the adhesive layer 60 and the flexible transparent substrate 10 is.
  • the flexible transparent substrate 10 is made of glass material or organic polymer material, and the conductive layer 20 is made of metal material, the two are not the same type of material, the conductive layer 20 is directly disposed on the flexible transparent substrate 10, and the conductive layer 20 is made of metal.
  • the stability of bonding with the flexible transparent substrate 10 is not good.
  • the flexible transparent LED display screen of the present application provides an adhesive layer 60 on the flexible transparent substrate 10 to bond the flexible transparent substrate 10 and the conductive layer 20, which is beneficial to increase the adhesion of the conductive layer 20 on the flexible transparent substrate 10. of stability.
  • the adhesive force between the adhesive layer 60 and the flexible transparent substrate 10 to be no less than 0.5 kg/cm 2 , the stability of the adhesive layer 60 on the flexible transparent substrate 10 can be ensured.
  • the material of the adhesive layer 60 includes at least one of metals, alloys, metal compounds, metal oxides and transparent polymer substances.
  • the metals include but are not limited to nickel, titanium, chromium, copper, and iron.
  • the alloy may be an alloy of at least two metals among nickel, titanium, chromium, copper, and iron.
  • the metal compound can be obtained by combining any two metals among nickel, titanium, chromium, copper and iron.
  • the metal oxide can be obtained by reacting any one of nickel, titanium, chromium, copper and iron with the oxide.
  • the transparent macromolecular substance can be at least one of non-volatile acrylic resin, non-volatile epoxy resin, non-volatile epoxy-acrylic resin and modification of these three.
  • the thickness of the adhesive layer 60 ranges from 1 nm to 3000 nm. Among them, if the thickness of the adhesive layer 60 is too thin, such as less than 1 nm, on the one hand, the adhesive ability of the adhesive layer 60 will be reduced, and it is difficult to ensure the adhesive strength between the flexible transparent substrate 10 and the conductive layer 20. On the other hand, the manufacturing process of the adhesive layer 60 is complicated, which is not conducive to cost control. However, if the thickness of the adhesive layer 60 is too thick, such as greater than 3000 nm, the thickness of the LED display screen will be increased, which will affect the transparency of the LED display screen. And will lead to an increase in the cost of the LED display. Therefore, by limiting the thickness of the adhesive layer 60 to 1 nm ⁇ 3000 nm, both the adhesive ability of the adhesive layer 60 and the production cost of the LED display screen can be taken into consideration.
  • the thickness of the adhesive layer 60 can be 1 nm, 10 nm, 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 130 nm, 140 nm, 150 nm, 160 nm, 170 nm, 180 nm , 190nm, 200nm, 210nm, 220nm, 230nm, 240nm, 250nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1000nm, 1500nm, 2000nm, 2500nm, 3000nm, etc.
  • the thickness of the adhesive layer 60 ranges from 20 nm to 250 nm. Within the range of 20nm to 250nm, it can not only ensure good adhesion of the adhesive layer 60, but also effectively control the production cost of the LED display screen.
  • the thickness of the adhesive layer 60 ranges from 1 um to 100 um.
  • a transparent organic coating can be produced first, and then the transparent organic coating can be coated on the flexible transparent substrate 10 . Since there are certain limitations in the coating method, and the transparent organic polymer material has good light transmittance, the thickness of the adhesive layer 60 produced by the method can be between 1 um and 100 um. Among them, if the thickness of the adhesive layer 60 is less than 1um, it is not conducive to exert the adhesive performance, and if the thickness of the adhesive layer 60 is greater than 100um, the adhesive layer 60 is too thick, which will affect the thickness of the LED display. Therefore, the thickness of the adhesive layer 60 is limited to 1 ⁇ m ⁇ 100 ⁇ m, so that both the adhesive ability of the adhesive layer 60 and the production cost of the LED display screen can be taken into consideration.
  • the thickness of the adhesive layer 60 can be 1um, 2um, 3um, 4um, 5um, 6um, 7um, 8um, 9um, 10um, 15um, 20um, 25um, 30um, 40um, 50um, 60um, 70um, 80um , 90um, 100um, etc.
  • the thickness of the adhesive layer 60 is between 5um and 30um. Within the range of 5um to 30um, not only can the adhesive layer 60 have good adhesion, but also the production cost of the LED display screen can be effectively controlled.
  • the flexible transparent LED display further includes a second low-reflection layer 70 , the second low-reflection layer 70 is disposed between the adhesive layer 60 and the conductive layer 20 , and the second low-reflection layer The reflectivity of 70 is not more than 35%.
  • the material and fabrication method of the second low-reflection layer 70 may refer to the first low-reflection layer 30 , which will not be repeated here. It can be understood that the provision of the second reflective layer between the adhesive layer 60 and the conductive layer 20 can effectively reduce the reflectivity of the adhesive layer 60 , thereby helping to improve the transparency of the LED display screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开一种柔性透明LED显示屏,包括柔性透明基板、导电层、第一低反射层、焊接层及LED灯珠,其中,导电层设于柔性透明基板的一侧或两侧,导电层用以形成灯珠线路,灯珠线路至少部分呈网格状设置;第一低反射层设于导电层上,第一低反射层的反射率小于35%;焊接层设于第一低反射层或导电层上,焊接层用以形成灯珠线路的焊盘;LED灯珠焊接于焊接层。本发明技术方案的柔性透明LED显示屏具有低成本、高透光的优点。

Description

柔性透明LED显示屏 技术领域
本发明涉及LED显示技术领域,特别涉及一种柔性透明LED显示屏。
背景技术
透明LED显示屏在市场中逐渐得到广泛的应用,并发展出各种产品形态。一种在透明基板上阵列分布LED灯的透明LED显示屏技术开始出现。这种LED显示屏普遍采用透明的导电材料制作LED灯珠的供电线路和信号传输线路。
该透明导电导电材料通常为ITO(氧化铟锡),但是ITO的价格昂贵,经济效益低。作为替代,市场上出现了以铜作为导电材料的LED显示屏,但是铜线的反光率较高,不利于提高LED显示屏的透明性。
故而,亟需提供一种低成本且透明性高的LED显示屏。
发明内容
本发明的主要目的是提出一种柔性透明LED显示屏,旨在提供一种低成本且透明度高的LED显示屏。
为实现上述目的,本发明提出的柔性透明LED显示屏,包括柔性透明基板、导电层、第一低反射层、焊接层及LED灯珠,其中,
所述导电层设于所述柔性透明基板的一侧或两侧,所述导电层用以形成灯珠线路,所述灯珠线路至少部分呈网格状设置;
所述第一低反射层设于所述导电层上,所述第一低反射层的反射率小于35%;
所述焊接层设于所述第一低反射层或所述导电层上,所述焊接层 用以形成所述灯珠线路的焊盘;
所述LED灯珠焊接于所述焊接层。
在一实施例中,所述第一低反射层的厚度介于1nm~3000nm。
在一实施例中,所述第一低反射层的材料包括纯金属、合金、金属化合物及金属氧化物中的至少一者。
在一实施例中,所述柔性透明LED显示屏还包括粘接层,所述粘接层设于柔性透明基板,所述导电层通过所述粘接层粘接于所述柔性透明基板,其中,所述粘接层与所述柔性透明基板的粘结力不小于0.5kg/cm 2
在一实施例中,所述粘接层的材料包括金属、合金、金属化合物、金属氧化物及透明高分子物质中的至少一者。
在一实施例中,当粘接层的材料包括金属、合金、金属化合物及金属氧化物中的至少一者时,所述粘接层的厚度介于1nm~3000nm;和/或,
当粘接层的材料为透明高分子物质时,所述粘接层的厚度介于1um~100um。
在一实施例中,所述柔性透明LED显示屏还包括第二低反射层,所述第二低反射层设于所述粘接层与所述导电层之间,所述第二低反射层的反射率不大于35%。
在一实施例中,所述导电层的材料为金属或金属与高分子物质的混合物。
在一实施例中,所述导电层的厚度介于0.1um~300um。
在一实施例中,当所述柔性透明基板的两侧均设置导电层时,所述柔性透明基板两侧的灯珠线路于所述柔性透明基板上的投影重叠或交错设置。
本申请技术方案的柔性透明LED显示屏,通过在导电层上设置第一低反射层,并控制第一低反射层的反射率小于35%,如此,可通过第一低反射层降低导电层的反射率,以降低透明LED显示屏上灯珠线路的反光率,从而,即使采用选用低成本但高反光率的导电材料(如铜、镍、铁等)制作透明LED显示屏的灯珠线路,仍可保证灯珠线路的低可视性,进而可降低高透明度的LED显示屏的制作成本。此外,通过使至少部分灯珠线路呈网格状设置,还有利于降低灯珠线路的占用面积,以提高透明显示面板的透光性,从而可进一步地提高透明LED显示屏的透明程度。可见,相较于一般的透明LED显示屏而言,本申请的柔性透明LED显示屏具有低成本、高透光的优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明柔性透明LED显示屏一实施例的结构示意图;
图2为图1中A处的局部放大图;
图3为图1所示实施例的剖面结构示意图;
图4为本发明柔性透明LED显示屏另一实施例中柔性透明基板两侧的灯珠线路结构示意图;
图5为本发明柔性透明LED显示屏又一实施例中柔性透明基板两侧的灯珠线路结构示意图;
图6为本发明柔性透明LED显示屏又一实施例的剖面结构示意图;
图7为本发明柔性透明LED显示屏再一实施例的剖面结构示意图。
附图标号说明:
10、柔性透明基板;20、导电层;20a、灯珠线路;20b、灯珠焊区;30、第一低反射层;40、焊接层;40a、焊盘;50、LED灯珠;51、焊脚;60、粘接层;70、第二低反射层
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如 附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种柔性透明LED显示屏。
在本发明实施例中,如图1至图3所示,该柔性透明LED显示屏包括柔性透明基板10、导电层20、第一低反射层30、焊接层40及LED灯珠50。
具体地,柔性透明基板10可以为玻璃、石英、单晶氧化铝、PA、PET、PEEK、CPI、PEI、PEN、PMMA、COC、COP、PC、LSR、FEP、SMMA、GPPS、PETG或PPSU中的一种或者多种材质混合,厚度是9um-10mm之间,以12um-300um之间尤佳;可见光(波长400-800nm)平均穿透率≥50%,≥70%尤佳,≥90%最佳。这其中,玻璃基材包括但不限于钠硅玻璃、钠钙硅玻璃、钾硅玻璃、铝硅玻璃。透明高分子基材包括但不限于PET(英文名称:Polyethylene terephthalate,中文名称:聚对苯二甲酸乙二醇酯)、PMMA(英文名称:polymethyl methacrylate,中文名称:聚甲基丙烯酸甲酯)、透明PI(英文名称:polyimide,中 文名称:聚酰亚胺)、PC(中文名称:聚碳酸酯,英文名称:Polycarbonate)。选择具有柔性及透明属性的材质制作基板,有利于提高LED显示屏的透明性,并有利于实现LED显示屏的自由弯曲。
可选地,该柔性透明基板10的透光率大于70%,并以透光率大于90%为佳。示例性的,该柔性透明基板10的透光率可以为71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%。
可以理解,选择透光率大于70%,乃至透光率大于90%的透明柔性基板,有利于提高本申请LED显示屏的透明性。
导电层20设于所述柔性透明基板10的一侧或两侧,具体而言,可在柔性透明基板10的一侧设置导电层20,也可在柔性透明基板10的两侧均设置导电层20。这其中,当仅在柔性透明基板10的一侧设置导电层20时,柔性透明LED显示屏仅一侧可用于显示画面;而当柔性透明基板10的两侧均设置导电层20时,柔性透明LED显示屏的两侧均可用于显示画面。具体可根据时间产品的需求,而选择性的在柔性透明基板10的一侧或两侧设置导电层20。
进一步地,该导电层20用以形成LED显示屏灯珠线路20a,该灯珠线路20a至少部分呈网格状设置。具体而言,该灯珠线路20a包括电极线和信号线,电极线用于为LED灯珠50供电,其包括正极电极线和负极电极线;而信号线则用于在LED灯珠50与控制芯片(模块)之间传输控制信号。
所述电极线为金属材质,其材料可选金、银、铜、不锈钢或其合金材料。电极线的结构可为实心线路或网格线路;网格线路宽度介于1um到5mm之间;厚度介于0.1um到300um之间;网格线距介于 1um到10mm之间。优选的,网格线路宽度介于5um到1.5mm之间;网格线路厚度介于1um到200um之间;网格线距介于3-1mm尤佳。图案化前的面电阻为:面电阻≤1欧姆,≤0.01欧姆尤佳,≤0.001欧姆最佳。图案化后面电阻为:面电阻≤10欧姆,≤0.1欧姆尤佳,≤0.01欧姆最佳。
在本实施例中,正极电极线和负极电极线均呈网格状设置(即电极线呈网格设置),可以理解,将电极线设置为网格状,有利于提高灯珠线路20a的透光性,进而有利于提高柔性透明LED显示屏的透明度。此外,网格状设置的电极线还有利于提升电极线的散热能力,以保证电极线供电的稳定性。
具体地,第一低反射层30设于所述导电层20上,该第一低反射层30的反射率小于35%。反射率可以理解为反光率,第一低反射层30的反射率小于35%即是说第一低反射层30反光率小于35%。值得说明的是,当物体表面的反光率越高时,此时物体的可见性越高,反之,当物体表面的反光率越低时,物体的可见性也就越低。通常,当反射率低于35%时,物体在光线下的可见性较低。因此,在导电层20上覆盖反射率低于35%的第一低反射层30,可通过第一低反射层30而降低导电层20的反射率,即可降低LED显示屏中灯珠线路20a的反光率。如此,即使选用低成本但高反光率的导电材料(如铜、镍、铁等)制作透明LED显示屏的灯珠线路20a,仍可保证灯珠线路20a的低可视性,进而可降低高透明度的LED显示屏的制作成本。
具体地,焊接层40设于第一低反射层30或该导电层20上,以形成该灯珠线路20a的焊盘40a,该焊盘40a对应该灯珠线路20a的灯珠焊区20b设置具体而言,LED显示屏的灯珠线路20a具有多个灯珠焊区20b,在该灯珠焊区20b内,正极电极线、负极电极线及每根 信号线各设有一个焊盘40a,该焊接层40设置在灯珠焊区20b内以形成电极线及信号线的焊盘40a。
示例性的,该焊接层40的材料通常为锡。
具体地,LED灯珠50具有多个焊脚51,该焊脚51与灯珠焊区20b中的各个焊盘40a一一对应,LED灯珠50通过焊脚51焊接于焊接层40。更具体的,LED灯珠50的长宽尺寸为15umx 15um-50mmx50mm,厚度为1nm-5mm。
可以理解,本申请技术方案的柔性透明LED显示屏,通过在导电层20上设置第一低反射层30,并控制第一低反射层30的反射率小于35%,如此,可通过第一低反射层30降低导电层20的反射率,以降低透明LED显示屏上灯珠线路20a的反光率,从而,即使采用选用低成本但高反光率的导电材料(如铜、镍、铁等)制作透明LED显示屏的灯珠线路20a,仍可保证灯珠线路20a的低可视性,进而可降低高透明度的LED显示屏的制作成本。此外,通过使至少部分灯珠线路20a呈网格状设置,还有利于降低灯珠线路20a的占用面积,以提高透明显示面板的透光性,从而可进一步地提高透明LED显示屏的透明度。可见,相较于一般的透明LED显示屏而言,本申请的柔性透明LED显示屏具有低成本、高透光的优点。具体的,本实施例的柔性透明LED显示屏的网格电路+透明基板的光学数据:可见光(波长400-800nm)平均穿透率≥10%,≥30%尤佳,≥60%最佳。
如图2所示,在一实施例中,当柔性透明基板10的两侧均设置导电层20时,柔性透明基板10两侧的灯珠线路20a于柔性透明基板10上的投影重叠。即是说,柔性透明基板10两侧的灯珠线路20a相互对应。这样设置,可保证呈网格状设置灯珠线路20a(电极线)中网眼的一致性,进而有利于提高柔性透明LED显示屏的透明度。并且, 两侧一致的灯珠线路20a设计还有利于降低柔性透明LED显示屏的制作成本。
如图4所示,图4为本发明柔性透明LED显示屏一实施例中柔性透明基板两侧的灯珠线路结构示意图,在该实施例中,柔性透明基板10的两侧均设置导电层20,柔性透明基板10两侧的灯珠线路20a于柔性透明基板10上的投影相互交错。
具体为,柔性透明基板10两侧的灯珠线路20a相互交错,以配合形成网格结构。
如图5所示,图5为本发明柔性透明LED显示屏另一实施例中柔性透明基板两侧的灯珠线路结构示意图;在该实施例中,柔性透明基板10的两侧均设置导电层20,柔性透明基板10两侧的灯珠线路20a于柔性透明基板10上的投影相互交错。
具体为,柔性透明基板10两侧的灯珠线路20a各呈网格状设置,且柔性透明基板10两侧的灯珠线路20a相互交错,以配合形成新的网格结构。
具体地,导电层20的材料为金属或金属与高分子物质的混合物。具体地,金属包括纯金属与金属合金,其中,纯金属包括但不限于镍、钛、铬、铜、铁。合金可以镍、钛、铬、铜、铁中至少两种金属的合金。高分子物质包括但不限于无挥发性丙烯酸树脂、无挥发性环氧树脂、无挥发性环氧-丙烯酸树脂、前述三者中任一者的改性物、硅胶及无溶剂型热塑性树脂等。示例性的,无溶剂型热塑性树脂包括但不限于热熔胶、聚苯琉醚(PPS)、聚砜(PSU)、聚砜(PES)、聚醚醚酮(PEEK)、芳香族聚酯液晶聚合物(LCP)、聚醚酰亚胺(PEI)、聚酰胺酰亚胺(PAI)、聚缩醛(POM)、锦纶(尼龙·耐纶)(PA)、聚碳酸酣(PC)、聚对苯二甲酸丁二酯(PBT)、聚对苯二甲酸乙二酯(涤纶·达克纶)(PET)、 聚苯醚(聚氧二甲苯、PPE、PPO)、ABS树脂(ABS)、苯乙烯亚克力胶丙烯腈(ASA)、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)、苯乙烯共聚物(MS)、醋酸纤维素(CA)、热塑性聚氨酣(TPU)、热塑性聚酯弹性体(TPEE)、苯乙烯系弹性体(TPS)、尼龙12弹性体(PAE)、聚四氟乙烯(PTFE)、维尼纶(vinylon)、聚丙烯(PP)、聚乙烯(PE)、乙烯/醋酸乙烯酯共聚物(EVA)、聚氯乙烯(PVC)等。
可以理解,采用金属制备导电层20具有导电性良好的优点,而采用金属与高分子物质的混合物制作导电层20,则可在保证导电层20导电性的基础上,提高导电层20的透明度,并有利于提高导电层20在透明基板上附着性能。
具体地,导电层20的厚度介于0.1um~300um。这其中,若导电层20的厚度过薄,如小于0.1um,则导电层20形成的灯珠线路20a的导电率,供电能力弱,从而会影响LED显示屏的显示效果,如亮度、均匀性等,而若是导电层20的厚度过大,如大于300um,则会影响导电层20的透光性,进而影响LED显示屏的透明度,并会增加LED显示屏的制作成本。故而,将导电层20的厚度限定在0.1um~300um可同时兼顾导电层20的导电率、透明度及LED显示屏制作成本。
示例性的,该导电层20的厚度可以为0.1um、0.2um、0.3um、0.4um、0.5um、0.6um、0.7um、0.8um、0.9um、1um、2um、3um、4um、5um、6um、7um、8um、9um、10um、20um、30um、40um、50um、60um、70um、80um、90um、100um、110um、120um、130um、140um、150um、160um、170um、180um、190um、200um、210um、220um、230um、240um、250um、300um、400um、500um、600um、700um、800um、900um、1000um、1500um、2000um、2500um、3000um等。
优选地,该导电层20的厚度介于0.5um~50um。在0.5um到50um范围内,既可以确保导电层20具有良好的导电率与透明度,又可有效控制LED显示屏的制作成本。
在一实施例中,该第一低反射层30的厚度介于1nm~3000nm。这其中,若第一低反射层30的厚度过薄,如小于1nm,则一方面会降低的导电层20的覆盖效果,而不能保证降低导电层20反射率;另一方面则会使第一低反射层30的制作工艺复杂化,不利于控制成本。而若是第一低反射层30厚度过厚,如大于3000nm,则不利于控制第一低反射层30的反射率与透射率,影响LED显示屏的透明度。此外,第一低反射层30过厚还将导致LED显示屏的成本增加。故而,将第一低反射层30的厚度限定在1nm~3000nm可同时兼顾第一低反射层30的低反射率与LED显示屏生产成本。
示例性的,该第一低反射层30的厚度可以为1nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm、150nm、160nm、170nm、180nm、190nm、200nm、210nm、220nm、230nm、240nm、250nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm、1500nm、2000nm、2500nm、3000nm等。
优选地,该第一低反射层30的厚度介于20nm~250nm。在20nm到250nm范围内,既可以确保第一低反射层30具有良好的低反射率,又易于控制LED显示屏的制作成本。
具体地,该第一低反射层30的材料包括金属、合金、金属化合物及金属氧化物中的至少一者。其中,金属包括但不限于镍、钛、铬、铜、铁。合金可以为镍、钛、铬、铜、铁中至少两种金属的合金。金属化合物可以由镍、钛、铬、铜、铁中任意两种金属化合得到。金属 氧化物可以为镍、钛、铬、铜、铁中任意一种金属与氧化物反应得到。
可以理解,采用金属、合金、金属化合物及金属氧化物中至少一者制备的第一低反射层30,具有导电性,故而可通过第一低反射层30辅助提高LED显示屏的灯珠线路20a的导电性能,如供电均匀性及导电率等,进而以提高LED显示屏的工作稳定性。同时,由于导电层20也包括金属相关的材料,故而制备含有金属材料的第一低反射层30,还有利于提高第一低反射层30与导电层20结合的稳定性,以延长LED显示屏的工作寿命。此外,采用上述材料制备第一低反射层30还有利于实现第一低反射层30的深色处理,即有利于降低第一低反射层30的反射率。
如图6所示,在一实施例中,本申请的柔性透明LED显示屏还包括粘接层60,该粘接层60设于柔性透明基板10,导电层20通过粘接层60粘接于柔性透明基板10,其中,粘接层60与柔性透明基板10的粘结力不小于0.5kg/cm 2
具体而言,粘结力是指粘接层60与柔性透明基板10之间的粘接强度,可以理解为粘接层60与柔性透明基板10之间的粘性。通常,粘结力越大,说明粘接层60与柔性透明基板10之间粘性越强,粘接层60与柔性透明基板10之间粘接的越稳定。
可以理解,由于柔性透明基板10为玻璃材质或有机高分子材质,而导电层20则为金属材质,两者并非同类型的材质,直接将导电层20设于柔性透明基板10上,导电层20与柔性透明基板10之间粘接的稳固性不佳。针对这一问题,本申请的柔性透明LED显示屏通过在柔性透明基板10上设置粘接层60以粘接柔性透明基板10与导电层20,有利于增加导电层20在柔性透明基板10上附着的稳固性。此外,通过限定粘接层60与柔性透明基板10的粘结力不小于0.5kg/cm 2, 可确保粘接层60在柔性透明基板10上附着的稳定性。
具体地,粘接层60的材料包括金属、合金、金属化合物、金属氧化物及透明高分子物质中的至少一者。其中,金属包括但不限于为镍、钛、铬、铜、铁。合金可以镍、钛、铬、铜、铁中至少两种金属的合金。金属化合物可以为镍、钛、铬、铜、铁中任意两种金属化合得到。金属氧化物可以为镍、钛、铬、铜、铁中任意一种金属与氧化物反应得到。透明高分子物质可以为无挥发性丙烯酸树脂、无挥发性环氧树脂、无挥发性环氧-丙烯酸树脂及这三者的改性物中至少一者。
在一实施例中,当粘接层60的材料包括金属、合金、金属化合物及金属氧化物中的至少一者时,粘接层60的厚度介于1nm~3000nm。这其中,若粘接层60的厚度过薄,如小于1nm,则一方面会降低的粘接层60的粘接能力,而难以保证柔性透明基板10与导电层20之间的粘接强度,另一方面则会使粘接层60的制作工艺复杂化,不利于控制成本。而若是粘接层60厚度过厚,如大于3000nm,则会增加LED显示屏的厚度,影响LED显示屏的透明度。并将导致LED显示屏的成本增加。故而,将粘接层60的厚度限定在1nm~3000nm可同时兼顾粘接层60的粘接能力与LED显示屏的生产成本。
示例性的,该粘接层60的厚度可以为1nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、110nm、120nm、130nm、140nm、150nm、160nm、170nm、180nm、190nm、200nm、210nm、220nm、230nm、240nm、250nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm、1500nm、2000nm、2500nm、3000nm等。
优选地,该粘接层60的厚度介于20nm~250nm。在20nm到250nm范围内,既可以确保粘接层60的具有良好粘接性,又可有效控制LED 显示屏的生产成本。
在一实施例中,当粘接层60的材料为透明高分子物质时,粘接层60的厚度介于1um~100um。这其中,在使用透明有机高分子材质制作有机层时,可先制作透明有机涂料,再将该透明有机涂料涂布于柔性透明基板10上。由于涂布的方式存在一定的局限,且透明有机高分子材质的透光性良好,故而通过其制作的粘接层60厚度可介于1um至100um。这其中,若粘接层60的厚度低于1um,则不利于发挥粘接性能,而若粘接层60的厚度大于非100um,则粘接层60过厚,会影响LED显示屏的厚度与成本,故而将粘接层60的厚度限定在1um~100um可同时兼顾粘接层60的粘接能力与LED显示屏的生产成本。
示例性的,该粘接层60的厚度可以为1um、2um、3um、4um、5um、6um、7um、8um、9um、10um、15um、20um、25um、30um、40um、50um、60um、70um、80um、90um、100um等。
优选地,粘接层60的厚度介于5um-30um。在5um到30um范围内,既可以确保粘接层60具有良好粘接性,又可有效控制LED显示屏的生产成本。
如图7所示,在一实施例中,柔性透明LED显示屏还包括第二低反射层70,第二低反射层70设于粘接层60与导电层20之间,第二低反射层70的反射率不大于35%。
具体而言,该第二低反射层70的材料及制作方式可参照第一低反射层30,此处不再赘述。可以理解,在粘接层60与导电层20之间设置第二反射层,可有效降低粘接层60的反射率,进而有利于提高LED显示屏的透明性。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围, 凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种柔性透明LED显示屏,其特征在于,包括:
    柔性透明基板;
    导电层,设于所述柔性透明基板的一侧或两侧,所述导电层用以形成灯珠线路,所述灯珠线路至少部分呈网格状设置;
    第一低反射层,设于所述导电层上,所述第一低反射层的反射率小于35%;
    焊接层,设于所述第一低反射层或所述导电层上,所述焊接层用以形成所述灯珠线路的焊盘;以及
    LED灯珠,焊接于所述焊接层。
  2. 如权利要求1所述的柔性透明LED显示屏,其特征在于,所述第一低反射层的厚度介于1nm~3000nm。
  3. 如权利要求1所述的柔性透明LED显示屏,其特征在于,所述第一低反射层的材料包括纯金属、合金、金属化合物及金属氧化物中的至少一者。
  4. 如权利要求1至3中任一项所述的柔性透明LED显示屏,其特征在于,所述柔性透明LED显示屏还包括粘接层,所述粘接层设于柔性透明基板,所述导电层通过所述粘接层粘接于所述柔性透明基板,其中,所述粘接层与所述柔性透明基板的粘结力不小于0.5kg/cm 2
  5. 如权利要求4所述的柔性透明LED显示屏,其特征在于,所述粘接层的材料包括金属、合金、金属化合物、金属氧化物及透明高分子物质中的至少一者。
  6. 如权利要求4所述的柔性透明LED显示屏,其特征在于,当粘接层的材料包括金属、合金、金属化合物及金属氧化物中的至少一者时,所述粘接层的厚度介于1nm~3000nm;和/或,
    当粘接层的材料为透明高分子物质时,所述粘接层的厚度介于1um~100um。
  7. 如权利要求4所述的柔性透明LED显示屏,其特征在于,所述柔性透明LED显示屏还包括第二低反射层,所述第二低反射层设于所述粘接层与所述导电层之间,所述第二低反射层的反射率不大于35%。
  8. 如权利要求1所述的柔性透明LED显示屏,其特征在于,所述导电层的材料为金属或金属与高分子物质的混合物。
  9. 如权利要求1所述的柔性透明LED显示屏,其特征在于,所述导电层的厚度介于0.1um~300um。
  10. 如权利要求1所述的柔性透明LED显示屏,其特征在于,当所述柔性透明基板的两侧均设置导电层时,所述柔性透明基板两侧的灯珠线路于所述柔性透明基板上的投影重叠或交错设置。
PCT/CN2022/079458 2021-04-13 2022-03-07 柔性透明led显示屏 WO2022218060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110396976.5A CN112885254A (zh) 2021-04-13 2021-04-13 柔性透明led显示屏
CN202110396976.5 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022218060A1 true WO2022218060A1 (zh) 2022-10-20

Family

ID=76040153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079458 WO2022218060A1 (zh) 2021-04-13 2022-03-07 柔性透明led显示屏

Country Status (2)

Country Link
CN (1) CN112885254A (zh)
WO (1) WO2022218060A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112885254A (zh) * 2021-04-13 2021-06-01 深圳市蝉翼科技有限公司 柔性透明led显示屏

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080080181A1 (en) * 2006-09-29 2008-04-03 Polytron Technologies, Inc. Plane structure of light-emitting diode lighting apparatus
CN104427738A (zh) * 2013-08-21 2015-03-18 富葵精密组件(深圳)有限公司 印刷电路板及其制作方法
CN105316736A (zh) * 2014-08-05 2016-02-10 上海蓝沛信泰光电科技有限公司 一种低反射率透明导电线路的制备方法
CN207337957U (zh) * 2016-08-09 2018-05-08 东友精细化工有限公司 透明电极、包括其的触摸传感器及影像显示装置
CN110033711A (zh) * 2019-03-28 2019-07-19 深圳市晶泓科技有限公司 一种透明led显示屏
CN110061115A (zh) * 2019-04-28 2019-07-26 深圳市晶泓科技有限公司 一种透明led显示屏及其制备方法
CN112447116A (zh) * 2019-09-02 2021-03-05 深圳市晶泓科技有限公司 一种透明led显示屏及其制备方法
CN112885252A (zh) * 2021-04-13 2021-06-01 深圳市蝉翼科技有限公司 柔性透明led显示屏制作工艺
CN112885254A (zh) * 2021-04-13 2021-06-01 深圳市蝉翼科技有限公司 柔性透明led显示屏
CN215868475U (zh) * 2021-04-13 2022-02-18 珠海华萃科技有限公司 柔性透明led显示屏

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080080181A1 (en) * 2006-09-29 2008-04-03 Polytron Technologies, Inc. Plane structure of light-emitting diode lighting apparatus
CN104427738A (zh) * 2013-08-21 2015-03-18 富葵精密组件(深圳)有限公司 印刷电路板及其制作方法
CN105316736A (zh) * 2014-08-05 2016-02-10 上海蓝沛信泰光电科技有限公司 一种低反射率透明导电线路的制备方法
CN207337957U (zh) * 2016-08-09 2018-05-08 东友精细化工有限公司 透明电极、包括其的触摸传感器及影像显示装置
CN110033711A (zh) * 2019-03-28 2019-07-19 深圳市晶泓科技有限公司 一种透明led显示屏
CN110061115A (zh) * 2019-04-28 2019-07-26 深圳市晶泓科技有限公司 一种透明led显示屏及其制备方法
CN112447116A (zh) * 2019-09-02 2021-03-05 深圳市晶泓科技有限公司 一种透明led显示屏及其制备方法
CN112885252A (zh) * 2021-04-13 2021-06-01 深圳市蝉翼科技有限公司 柔性透明led显示屏制作工艺
CN112885254A (zh) * 2021-04-13 2021-06-01 深圳市蝉翼科技有限公司 柔性透明led显示屏
CN215868475U (zh) * 2021-04-13 2022-02-18 珠海华萃科技有限公司 柔性透明led显示屏

Also Published As

Publication number Publication date
CN112885254A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
TWI713176B (zh) 觸控面板及觸控面板和柔性印刷電路板的接合結構
TWI728402B (zh) 觸控面板
CN112885252B (zh) 柔性透明led显示屏制作工艺
JP5165000B2 (ja) タッチパネルおよびタッチパネル型表示装置
WO2022218060A1 (zh) 柔性透明led显示屏
TWI615743B (zh) 觸控面板及其製造方法
CN104679338A (zh) 防爆膜组件、触摸屏结构以及显示装置
CN215868475U (zh) 柔性透明led显示屏
CN102236451B (zh) 触控面板及其制造方法
CN112908200B (zh) 柔性透明led显示屏制作工艺
CN108319080B (zh) 显示基板及其制造方法和显示面板
CN204203914U (zh) 一种触摸传感器及显示装置
CN112885253B (zh) 柔性透明led显示屏制作工艺
TWM593003U (zh) 雙觸控感應器結構
CN111007685A (zh) 液晶显示面板及其侧面邦定方法
US20230296944A1 (en) Electronic device
KR102479227B1 (ko) 터치 감지 모듈 및 이를 구비한 디바이스
US11579724B2 (en) Touch-sensing module and device with the same
TWI803405B (zh) 觸控模組及其電子裝置
CN218038427U (zh) 一种高透明的led柔性显示屏保护结构
KR102466077B1 (ko) 터치 모듈 및 이를 구비하는 전자 장치
WO2018094731A1 (zh) 触控屏及柔性显示器
US20220164082A1 (en) Touch module and electronic device having the same
TWI776273B (zh) 觸控模組及其電子裝置
TWI442150B (zh) 薄型化觸控面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787290

Country of ref document: EP

Kind code of ref document: A1