WO2022217863A1 - 油气分离器、空调器及进气管安装方法 - Google Patents

油气分离器、空调器及进气管安装方法 Download PDF

Info

Publication number
WO2022217863A1
WO2022217863A1 PCT/CN2021/122672 CN2021122672W WO2022217863A1 WO 2022217863 A1 WO2022217863 A1 WO 2022217863A1 CN 2021122672 W CN2021122672 W CN 2021122672W WO 2022217863 A1 WO2022217863 A1 WO 2022217863A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
intake pipe
gas separator
reinforcing sheet
cylinder
Prior art date
Application number
PCT/CN2021/122672
Other languages
English (en)
French (fr)
Inventor
崔渊博
张铁钢
崔春雷
劳同炳
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110390994.2A external-priority patent/CN115200271B/zh
Priority claimed from CN202120844323.4U external-priority patent/CN215373064U/zh
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2022217863A1 publication Critical patent/WO2022217863A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • Embodiments of the present disclosure relate to the technical field of oil separation of refrigerants, and in particular, to an oil-gas separator, an installation method of an air intake pipe of the oil-gas separator, and an air conditioner using the above-mentioned oil-gas separator.
  • the axis of the intake pipe of the centrifugal oil separator deviates from the axis of the cylinder of the centrifugal oil separator.
  • the refrigerant containing oil droplets is deflected on the inner wall of the cylinder and descends spirally.
  • the oil droplets with heavier weight are under the action of greater centrifugal force.
  • the lower part is separated from the gaseous refrigerant and collected at the bottom of the centrifugal oil separator, and the gaseous refrigerant flows out from the outlet pipe (still contains a small amount of tiny oil droplets).
  • the centrifugal oil separator reduces the number of parts and the volume of the oil separator, which is a new direction for the development of oil separators.
  • the air inlet pipe of this centrifugal oil separator is often inserted into the cylinder obliquely, and the axis of the air inlet pipe deviates from the axis of the cylinder body, so that the opening on the cylinder body is an oval hole that is difficult to flange. At present, it is still impossible to flange the oval hole, so that the centrifugal oil separator with large vibration (in a cantilever state) is prone to fatigue fracture or leakage there.
  • the penetration depth of the solder is only the wall thickness of the cylinder (the wall thickness of the stainless steel cylinder is generally 0.8-1.5 mm), and the corrosion resistance is low.
  • the quality of the seam and the precision of the oval hole are extremely high, and the product defect rate and scrap rate are high, which increases the risk of air conditioner leakage.
  • the air inlet pipe of the centrifugal oil-gas separator is usually inserted obliquely into the air inlet pipe insertion hole on the cylinder body, so that the central axis of the air inlet pipe is deviated from the central axis of the cylinder body, and the outer periphery of the air inlet pipe insertion hole on the cylinder body cannot.
  • the intake pipe hole on the cylinder usually needs to be designed to be oval, and it is more difficult to set the flange around the oval intake pipe hole, so that the intake pipe
  • the welding strength of the cylinder and the cylinder at the position of the intake pipe jack is low, while in the related art, the centrifugal oil-gas separator is usually installed in a cantilever manner, and the vibration is large, which makes the intake pipe and the cylinder easily welded at the intake pipe jack. Fatigue fracture occurs, resulting in leakage problems.
  • the penetration depth of the solder at the inlet pipe hole is limited, the corrosion resistance of the welded structure at the inlet pipe hole is low, and the quality of the weld seam and the machining accuracy of the inlet pipe hole are high. , the product defect rate is high, which increases the risk of leakage.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the embodiments of the present disclosure propose an oil and gas separator, which reduces the risk of fatigue fracture and leakage, has high structural strength, strong corrosion resistance, and improves reliability in use.
  • the embodiment of the present disclosure also provides an installation method of the air intake pipe of the above-mentioned oil and gas separator.
  • the embodiments of the present disclosure also provide an air conditioner applying the above-mentioned oil-gas separator.
  • An oil-gas separator includes: a cylindrical body having an inner cavity; a reinforcing member provided on at least one of an outer wall and an inner wall of the cylindrical body; an air intake pipe, the reinforcing member A part is arranged on the outer peripheral side of the air intake pipe, the air intake pipe is sealingly connected to at least one of the reinforcement part and the cylinder body, and the air intake pipe is communicated with the inner cavity of the cylinder body, and the intake air pipe is in communication with the inner cavity of the cylinder body.
  • the trachea has an air outlet, and there is an eccentric distance between the center line of the air outlet and the center line of the cylinder.
  • the oil and gas separator of the embodiment of the present disclosure reduces the risk of fatigue fracture and the risk of leakage, has high structural strength, strong corrosion resistance, and improves the reliability of use.
  • the cylinder body is provided with an insertion hole setting area, the insertion hole setting area is provided with an air intake pipe insertion hole, and the central axis of the air intake pipe insertion hole is deviated from the central axis of the cylinder body;
  • the reinforcing member is a reinforcing sheet, the reinforcing sheet is fixed on at least one of the outer wall and the inner wall of the cylinder body and is located in the insertion hole setting area, and the air inlet pipe insertion hole penetrates the reinforcing sheet;
  • the air intake pipe is penetrated in the air intake pipe insertion hole, and the air intake pipe is welded with the cylinder body and the reinforcing sheet.
  • the reinforcing sheet is welded to at least one of the outer wall and the inner wall of the barrel.
  • the reinforcing sheet is in close contact with at least one of the outer wall and the inner wall of the barrel.
  • the reinforcing sheet is rectangular, circular, oval or square.
  • the minimum distance between the outer peripheral contour of the reinforcing sheet and the outer peripheral contour of the air intake pipe insertion hole is greater than the larger value of the thickness of the reinforcing sheet and the wall thickness of the barrel.
  • the minimum spacing is 1 mm to 5 mm.
  • the material of the reinforcing sheet is the same as the material of the barrel.
  • the outer peripheral contour of the reinforcing sheet coincides with the outer peripheral contour of the insertion hole setting area.
  • the cylinder body is provided with an air inlet hole
  • the air intake pipe includes a pipe body and a flange, the flange is arranged around the outer surface of the pipe body, and is close to an air outlet of the pipe body, the air outlet is communicated with the air inlet hole, and the air inlet is connected to the air inlet.
  • a flange is provided on the outer surface of the cylindrical body, and the flange forms the reinforcement.
  • the minimum distance between the outer edge of the flange and the edge of the air inlet is greater than the wall thickness of the cylinder.
  • the distance between the outer edge of the flange and the edge of the air intake hole is 2 mm to 10 mm.
  • the outer surface of the cylindrical body includes an installation area, the air inlet hole is opened in the installation area, the flange is fitted on the installation area, and the shape of the flange is the same as that of the installation area.
  • the shape of the mounting area is adapted.
  • the end of the tube at the air outlet is flush with the outer surface of the barrel.
  • the flange and the outer surface of the barrel are connected by tunnel furnace brazing.
  • the air inlet hole is an eccentric hole, the center line of the eccentric hole coincides with the center of the air outlet, wherein the diameter of the eccentric hole is greater than or equal to the inner diameter of the air intake pipe.
  • the air inlet holes are concentric holes.
  • the edge of the air inlet is located outside the edge of the air outlet.
  • the method for installing an air intake pipe of an oil-gas separator includes the following steps: welding a reinforcing sheet to the insertion hole setting area on at least one of the outer wall and the inner wall of the cylinder of the oil-gas separator; the inlet pipe insertion hole of the sheet and the cylinder body, wherein the central axis of the inlet pipe insertion hole is deviated from the central axis of the cylinder body; insert the inlet pipe into the inlet pipe insertion hole to make a part of the inlet pipe Fitting in the air inlet pipe insertion hole; welding the air inlet pipe, the reinforcing sheet and the cylinder body.
  • the method for installing an air intake pipe of an oil-gas separator further comprises, before welding the reinforcing sheet to the cylindrical body, at least one of the reinforcing sheet and/or the outer wall and the inner wall of the cylindrical body solder paste is applied to the receptacle setting area on the air intake duct, and solder paste is applied to a portion of the air intake duct and/or the stiffener and the A welding ring is placed at the junction of the air intake pipe; wherein the reinforcing sheet is fixed to the cylinder body by spot welding; wherein the welding of the air intake pipe, the reinforcing sheet and the cylindrical body is carried out by placing it in a tunnel furnace for brazing Welding is complete.
  • An air conditioner of an embodiment of the present disclosure includes a compressor and an oil-gas separator according to any one of the above-mentioned embodiments; an air outlet pipe is provided on the compressor; the air intake pipe communicates with the air outlet pipe.
  • the air conditioner of the embodiment of the present disclosure has the advantages of long service life, low manufacturing cost and high reliability.
  • FIG. 1 is a schematic perspective view of an oil-gas separator according to an embodiment of the present disclosure.
  • FIG. 2 is a top perspective schematic diagram of an oil-gas separator according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic top view of an oil-gas separator according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic front view of an oil-gas separator according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic cross-sectional view at A-A in FIG. 4 .
  • FIG. 6 is a schematic cross-sectional view of a cylinder of an oil-gas separator according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a reinforcing sheet on an oil-gas separator according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a reinforcing sheet according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a reinforcing sheet according to yet another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram 1 of the installation method of the intake pipe of the oil-gas separator of the present disclosure.
  • FIG. 11 is a second schematic diagram of the installation method of the intake pipe of the oil-gas separator of the present disclosure.
  • FIG. 12 is a schematic diagram 3 of the installation method of the intake pipe of the oil-gas separator of the present disclosure.
  • FIG. 13 is a schematic diagram 4 of the installation method of the intake pipe of the oil-gas separator of the present disclosure.
  • FIG. 14 is a schematic diagram of an oil-gas separator according to another embodiment of the present disclosure.
  • FIG. 15 is a schematic view of the disassembly of the cylinder body and the intake pipe of the oil-gas separator in FIG. 14 .
  • Fig. 16 is a schematic diagram showing the position of the eccentric hole of the oil-gas separator in Fig. 14 on the cylinder.
  • FIG. 17 is a schematic diagram of the cooperation between the eccentric hole of the oil-gas separator in FIG. 14 and the intake pipe.
  • Fig. 18 is a schematic diagram showing the position of the centering hole of the oil-gas separator in Fig. 14 on the cylinder.
  • FIG. 19 is a schematic diagram of the cooperation between the centering hole of the oil-gas separator in FIG. 14 and the air intake pipe.
  • FIG. 20 is a schematic view of applying solder paste on the flange and the outer surface of the cylinder of the oil-gas separator in FIG. 14 .
  • FIG. 21 is a schematic diagram of placing a welding ring on the flanged outer ring of the air intake pipe of the oil-gas separator in FIG. 14 .
  • Oil and gas separator 100
  • Cylinder body 1 air inlet hole 11; eccentric hole 111; centering hole 112; installation area 12;
  • Intake pipe 2 pipe body 21; air outlet 22; flange 23; inlet straight section 24; arc section 25; outlet straight section 26;
  • the oil-gas separator includes a cylinder body 1 , a reinforcing member (not shown) and an air intake pipe 2 .
  • the cylindrical body 1 may be cylindrical, and the cylindrical body 1 is provided with an inner cavity, and the cross section of the inner cavity is circular.
  • the reinforcing member can be a reinforcing sheet or a reinforcing block, and the reinforcing member can be fixed on the inner wall or the outer wall of the cylinder 1 by welding.
  • the air intake pipe 2 can pass through the cylindrical wall and the reinforcing member of the cylindrical body 1 and be inserted into the inner cavity of the cylindrical body 1.
  • the air intake pipe 2 can be inserted into the inner cavity of the cylindrical body 1. It is only connected to the reinforcement member in a sealed manner.
  • the reinforcement member and the cylinder wall of the cylinder body 1 are provided with through holes, and the air intake pipe 2 is communicated with the inner cavity of the cylinder body 1 through the through holes.
  • the air intake pipe 2 can only be connected to the cylinder body 1 in a sealed manner. 1 is connected to the inner cavity.
  • the extension direction of the center line of the air outlet of the air intake pipe 2 and the center line (central axis) of the cylinder 1 have an eccentric distance, that is, the center line of the air outlet and the center line of the cylinder 1 are neither parallel nor intersecting in space, As a result, centrifugal action can be generated, and the separation of oil droplets and gaseous refrigerant can be achieved.
  • an oil-gas separator includes a cylinder body 1 , a reinforcing sheet 3 and an air intake pipe 2 .
  • the cylinder body 1 is provided with an insertion hole setting area 7 , and an air inlet pipe insertion hole 6 is arranged in the insertion hole installation area 7 .
  • the cylinder body 1 can be cylindrical, the cylinder body 1 extends in the up-down direction, and a socket setting area 7 is provided on the cylinder wall of the cylinder body 1 , and the socket setting area 7 is located in the cylinder body 1 .
  • a selected area on the wall of the cylinder, the jack setting area 7 is set on the top of the cylinder body 1 .
  • the air inlet pipe insertion hole 6 is arranged in the insertion hole setting area 7 , and the air inlet pipe insertion hole 6 penetrates the cylinder wall of the cylinder body 1 .
  • the central axis of the intake pipe insertion hole 6 runs through the cylinder wall of the cylinder body 1 along the left-right direction, and the extension direction of the intake pipe insertion hole 6 is the tangential direction of the corresponding position of the cylinder wall, which can produce centrifugal separation. Separation of oil droplets and gaseous refrigerant is achieved.
  • the central axis of the cylinder body 1 extends along the up-down direction, so that the central axis of the cylinder body 1 and the central axis of the intake pipe insertion hole 6 are vertically arranged, and the central axis of the cylinder body 1 and the central axis of the intake pipe insertion hole 6 are arranged vertically. spaced in the front-rear direction.
  • the central axis of the intake pipe insertion hole 6 may also be arranged non-perpendicular to the central axis of the cylinder 1.
  • the central axis of the intake pipe insertion hole 6 may be along the It extends in the direction from the upper left to the lower right, and can also extend in the direction from the lower left to the upper right.
  • the reinforcing piece is a reinforcing sheet 3 .
  • the reinforcing sheet 3 is fixed on at least one of the outer wall and the inner wall of the cylinder 1 and is located in the insertion hole setting area 7 .
  • the reinforcing sheet 3 is fixed on the outer wall of the cylinder 1 , and the reinforcing sheet 3 is located in the insertion hole setting area 7 , that is, the outer peripheral contour of the reinforcing sheet 3 does not exceed the outer peripheral contour of the insertion hole setting area 7 .
  • a part of the intake pipe insertion hole 6 is formed in the reinforcement sheet 3 , that is, the intake pipe insertion hole 6 also penetrates the reinforcement sheet 3 .
  • a part of the intake pipe 2 is fitted in the intake pipe insertion hole 6 and the intake pipe 2 is welded with the cylinder body 1 and the reinforcing sheet 3 .
  • the intake pipe 2 is inserted into the intake pipe insertion hole 6 .
  • the outer peripheral wall of the intake pipe 2 and the hole wall of the intake pipe insertion hole 6 are connected by sealing and welding, thereby not only realizing the connection and fixing of the intake pipe 2 and the cylinder 1, but also making a space between the intake pipe 2 and the intake pipe insertion hole 6. Better sealing to avoid leakage.
  • the end of the air inlet pipe 2 for being inserted into the air inlet pipe insertion hole 6 is flush with the inner peripheral wall of the cylinder body 1 . In this way, the cost can be saved, and the insertion of the end portion into the cylinder body 1 can also prevent the influence of the airflow circulation in the cylinder body 1 and cause excessive noise.
  • the length of the inlet pipe insertion hole 6 is increased, thereby increasing the contact area between the inlet pipe 2 and the hole wall of the inlet pipe insertion hole 6, and enhancing the fixing structure. strength.
  • the penetration depth of the solder is not limited by the wall thickness of the cylinder, and the solder can melt into the reinforcing sheet 3 and the cylinder wall at the same time, which further strengthens the intake pipe 2 and the cylinder.
  • the strength of the connection structure of the body 1 reduces the risk of fatigue fracture and leakage at the welding position of the intake pipe 2 and the cylinder wall. reliability.
  • the reinforcing sheet 3 is welded to at least one of the outer wall and the inner wall of the barrel 1 .
  • the reinforcing sheet 3 can be welded and fixed on the outer wall of the cylindrical body 1 , and can also be welded on the inner wall of the cylindrical body 1 .
  • the inner wall and the outer wall of the cylinder body 1 can also be welded and fixed with the reinforcement sheet 3 at the same time, so that the use of the reinforcement sheet 3 is more flexible, and it is also beneficial to further improve the welding position of the intake pipe 2 and the cylinder body 1 connection strength.
  • the reinforcing sheet 3 is in close contact with at least one of the outer wall and the inner wall of the barrel 1 .
  • the cross section of the cylinder body 1 is circular, as shown in FIG. 6 , the central angle corresponding to the insertion hole setting area 7 is ⁇ .
  • the reinforcing sheet 3 is attached to the outer wall of the cylindrical body 1,
  • the curvature of the inner side of the reinforced sheet 3 is the same as the curvature of the insertion hole setting area 7. Therefore, when the reinforcing sheet 3 is fixed on the outer wall of the cylindrical body 1, the inner side of the reinforcing sheet 3 will fully fit with the outer wall of the cylindrical body 1. It is beneficial to enhance the fixing effect of the reinforcing sheet 3 and the cylindrical body 1 , and also to enhance the sealing performance between the reinforcing sheet 3 and the cylindrical body 1 .
  • the curvature of the outer side of the reinforcing sheet 3 is the same as the curvature of the inner wall corresponding to the insertion hole setting area 7 of the cylinder body 1 .
  • the cylindrical body 1 may also be prismatic, and the inner side or outer side of the reinforcing sheet 3 may be a plane at this time.
  • the reinforcing sheet 3 is rectangular, circular, oval or square. Specifically, as shown in FIG. 8 , the reinforcing sheet 3 may be a circular plate, and as shown in FIG. 9 , the reinforcing sheet 3 may be a rectangular plate. In some other embodiments, the reinforcing sheet 3 can also be an oval plate, a square plate, a triangular plate, a polygonal plate, a special-shaped plate, etc., and the shape of the reinforcing plate can be selected according to the actual situation.
  • the shape of the reinforcing plate is a rectangle with rounded corners.
  • the minimum distance between the outer peripheral contour of the reinforcing sheet 3 and the outer peripheral contour of the intake pipe insertion hole 6 is greater than the larger value of the thickness of the reinforcing sheet 3 and the wall thickness of the cylinder 1 .
  • the outer peripheral contour of the intake pipe insertion hole 6 is located within the outer peripheral contour of the reinforcing sheet 3, and in any radial direction along the intake pipe insertion hole 6, the outer peripheral contour of the reinforcement sheet 3 and the intake pipe insertion There is a minimum distance M between the outer peripheral contours of the holes 6 , the minimum distance M is greater than the thickness of the reinforcing sheet 3 , and the minimum distance M is also greater than the wall thickness of the cylindrical body 1 . Thereby, it can be avoided that the reinforcement piece 3 is welded through in the radial direction along the intake pipe insertion hole 6 .
  • the minimum distance M is 1 mm to 5 mm.
  • the minimum distance M may be any value between 1 mm and 5 mm, for example, the minimum distance M may be 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, and so on.
  • the material of the reinforcing sheet 3 is the same as that of the barrel 1 .
  • the material of the reinforcing sheet 3 and the cylindrical body 1 can be carbon steel, stainless steel, copper, etc., so as to facilitate the brazing of the tunnel furnace. It can be understood that, in other embodiments, the material of the reinforcing sheet 3 and the cylinder body 1 may also be different, for example, the material of the reinforcing sheet 3 may be carbon steel, and the material of the cylinder body 1 may be copper or the like.
  • the outer peripheral contour of the reinforcing sheet 3 coincides with the outer peripheral contour of the insertion hole setting area 7 .
  • the outer peripheral contour of the reinforcing sheet 3 and the outer peripheral contour of the insertion hole setting area 7 are the same in size and shape.
  • the peripheral contours of zone 7 are completely coincident.
  • the outer peripheral contour of the reinforcing sheet 3 may be located inside the outer peripheral contour of the insertion hole setting area 7 . At this time, at least part of the outer peripheral contour of the reinforcement sheet 3 may be aligned with the insertion hole setting area.
  • the peripheral contours of 7 coincide.
  • At least part of the air intake pipe 2 passes through the air intake pipe insertion hole 6 and penetrates deep into the inner cavity of the cylindrical body 1 . In this way, the structural strength of the installation of the air intake pipe 2 can be ensured, and the sealing performance of the installation of the air intake pipe 2 can be enhanced.
  • the oil-gas separator further includes an air outlet pipe 4 and an oil return pipe 5.
  • the air outlet pipe 4 is arranged at the top of the cylinder body 1 and communicates with the inner cavity of the cylinder body 1.
  • the oil return pipe 5 is arranged at the bottom of the cylinder body 1 and communicated with the inner cavity of the cylinder body 1. The inner cavity of the cylindrical body 1 is communicated.
  • the installation method of the air intake pipe 2 of the oil-gas separator according to the embodiment of the present disclosure includes the following steps:
  • S1 Weld the reinforcing sheet 3 into the insertion hole setting area 7 on at least one of the outer wall and the inner wall of the cylinder body 1 of the oil-gas separator. Specifically, first determine the insertion hole setting area 7 on the outer wall and/or inner wall of the cylinder body 1, and then fix the reinforcing sheet 3 in the insertion hole setting area 7 of the cylinder body 1. As shown in FIG. 11, the reinforcement sheet 3 can be It is fixed on the outer wall of the cylinder body 1 by spot welding, and four welding points 9 are formed between the reinforcing sheet 3 and the outer wall of the cylinder body 1 .
  • the reinforcing sheet 3 can also be fixed on the inner wall of the cylinder body 1 by spot welding.
  • the shape of the intake pipe insertion hole 6 is an ellipse.
  • the welding of the air intake pipe 2, the reinforcing sheet 3 and the cylinder body 1 can be a welding method of tunnel furnace brazing. During welding, the assembled air intake pipe 2, the reinforcing sheet 3 and the cylindrical body 1 are put into the tunnel furnace Can.
  • the installation method of the air intake pipe 2 of the oil-gas separator further comprises welding the reinforcing sheet 3 and/or on at least one of the outer wall and the inner wall of the cylindrical body 1 before welding the reinforcing sheet 3 to the cylindrical body 1 .
  • the insertion hole setting area 7 is coated with solder paste 8 , and the solder paste 8 is applied on a part of the intake pipe 2 before inserting the intake pipe 2 into the intake pipe insertion hole 6 .
  • solder paste can be applied to the inner side of the reinforcement sheet 3 and the outer wall of the cylinder 1. 8. In this way, sufficient welding and bonding between the reinforcing sheet 3 and the outer wall of the cylindrical body 1 can be ensured.
  • solder paste 8 may be applied on the outer peripheral side of the air intake pipe 2 first, and the application position of the solder paste 8 corresponds to the part where the air intake pipe 2 is inserted into the air intake pipe insertion hole 6 . Ensure the welding strength of the intake pipe 2.
  • the oil-gas separator 100 includes a cylinder body 1 and an air intake pipe 2 installed in the cylinder body.
  • the cylinder body 1 is provided with an air intake hole 11 .
  • the intake pipe 2 includes a pipe body 21 and a flange 23 .
  • the flange 23 is arranged around the outer surface (outer peripheral surface) of the pipe body 21 and is close to the air outlet 22 of the pipe body 21 .
  • the air outlet 22 communicates with the air intake hole 11 .
  • the flange 23 is arranged on the outer surface of the cylindrical body 1, and the flange 23 forms a reinforcement.
  • the center line of the air inlet pipe deviates from the center line of the cylinder body, so that the air inlet hole on the cylinder body is difficult to flange. shaped hole.
  • the intake pipe of the oil-gas separator with large vibration which is arranged near the compressor, is prone to fatigue fracture or leakage at the opening of the intake hole on the cylinder.
  • the flange 23 is arranged on the pipe body 21 , and the flange 23 is arranged around the outer surface of the pipe body 21 , and the flange 23 is arranged on the outer surface of the cylinder body 1 .
  • the structure of the intake pipe 2 can be enhanced, and the risk of fatigue fracture of the intake pipe 2 can be reduced. That is to say, connecting the intake pipe 2 to the cylinder body 1 through the flange 23 can increase the connection strength of the intake pipe 2 and the cylinder body 1, thereby reducing the risk of fatigue fracture of the intake pipe 2 from the connection with the cylinder body 1. In turn, the service life of the oil-gas separator 100 can be increased.
  • the air intake pipe 2 can be connected to the cylindrical body 1 through the flange 23 , the air intake pipe does not need to be obliquely inserted into the air intake hole 11 on the cylindrical body 1 . Therefore, it is no longer necessary to precisely control the size of the gap between the intake pipe 2 and the intake hole 11 . Therefore, the requirement for the machining accuracy of the air inlet holes 11 on the cylinder body 1 can be reduced, so as to reduce the difficulty of machining the air inlet holes 11 , the processing cost and the scrap rate, and further reduce the production cost of the oil-gas separator 100 .
  • the air intake pipe 2 can be connected to the cylindrical body 1 through the flange 23, it is convenient to control the solder penetration depth (solder penetration) by controlling the minimum distance from the outer edge of the flange 23 to the edge of the air intake hole 11. In this way, the corrosion resistance of the weld between the intake pipe 2 and the cylinder 1 in the external environment can be increased, and the risk of leakage of the medium in the cylinder 1 at the weld can be reduced, thereby improving the performance of the oil-gas separator 100 reliability.
  • solder penetration depth solder penetration
  • the oil-gas separator 100 of the embodiment of the present disclosure has the advantages of long service life, low manufacturing cost and high reliability.
  • the oil-gas separator 100 includes a cylindrical body 1 and an air intake pipe 2 installed in the cylindrical body.
  • the cylinder body 1 is provided with an air intake hole 11 .
  • the intake pipe 2 includes a pipe body 21 and a flange 23 .
  • the flange 23 is arranged around the outer surface (outer peripheral surface) of the pipe body 21 and is close to the air outlet 22 of the pipe body 21 .
  • the flange 23 is provided on the outer surface of the cylindrical body 1 .
  • the air outlet 22 communicates with the air intake hole 11 .
  • the pipe body 21 of the intake pipe 2 may be configured as a curved pipe including an inlet straight section 24 , an arc section 25 and an outlet straight section 26 connected in sequence.
  • the intake pipe 2 can also be set as a straight pipe (not shown in the figure).
  • the minimum distance A between the outer edge of the flange 23 and the edge of the air inlet hole 11 is greater than the wall thickness of the cylindrical body 1 .
  • This can increase the solder penetration depth (solder penetration) of the weld between the intake pipe 2 and the cylinder 1 , which is equivalent to increasing the solder penetration depth (solder penetration) from the wall thickness of the cylinder 1 to the flange 23 .
  • Width distance from the outer edge of the flange 23 to the edge of the air inlet 11). Therefore, the corrosion resistance of the weld in the external use environment can be effectively increased, and the leakage risk of the medium in the cylinder 1 at the weld can be effectively reduced, thereby effectively improving the reliability of the oil-gas separator 100 .
  • the distance between the outer edge of the flange 23 and the edge of the air intake hole 11 is 2 mm to 10 mm.
  • the outer surface of the cylinder body 1 includes an installation area 12 , and the installation area 12 is provided with an air intake hole 11 .
  • the flange 23 is attached to the installation area 12 .
  • the shape of the flange 23 is adapted to the shape of the mounting area 12 . In this way, the flanges 23 can be more closely attached to the mounting area 12 of the cylinder body 1, so that the solder can be evenly distributed between the flanges 23 and the outer surface of the cylinder body 1, thereby reducing the amount of solder and improving the flanging.
  • the welding strength between the side 23 and the cylinder 1 increases the corrosion resistance of the welding seam between the intake pipe 2 and the cylinder 1 in the external environment, and at the same time reduces the leakage risk of the medium in the cylinder 1 at the welding seam .
  • the end of the pipe body 21 located at the air outlet 22 is flush with the outer surface of the cylindrical body 1 .
  • the air outlet 22 can be closely connected with the air inlet hole 11, so that the gas in the air inlet pipe 2 can flow into the cylinder 1 more smoothly and be deflected on the inner wall surface of the cylinder 1, and the air outlet 22 and the air inlet can be reduced as much as possible.
  • the outer edge of the unfolded surface of the flange 23 can be set as a rectangle with rounded corners, so that the outer edge of the flange 23 can be relatively closer to the shape of the oval air outlet 22 . Therefore, the distance between the outer edge of the flange 23 and the edge of the oval air outlet 22 in the circumferential direction can be relatively more uniform, and solder or solder rings can be saved. At the same time, the four corners of the rounded rectangle are rounded corners, so that the welding ring can be conveniently placed on the outer edge of the flange 23 .
  • the processing difficulty of the outer edge of the flange 23 can be reduced, and the processing cost can be reduced.
  • the flange 23 and the outer surface of the cylindrical body 1 are connected by tunnel furnace brazing. That is, when the flange 23 of the intake pipe 2 is welded to the outer surface of the cylindrical body 1, tunnel furnace brazing is used.
  • the tunnel furnace brazing can weld all the welding ports on the oil and gas separator 100 at one time, with high efficiency and good weld consistency.
  • solder paste 8 ie, smeared on the flange 23 and/or the outer surface of the cylinder 1
  • the welding ring 10 can also be placed on the outer ring of the flange 23 of the intake pipe 2.
  • the material of the intake pipe 2 may be the same as or different from the material of the cylindrical body 1 .
  • the material of the air intake pipe 2 may specifically be carbon steel, stainless steel, copper and other materials that can be brazed in a tunnel furnace.
  • the air intake hole 11 is an eccentric hole 111 .
  • the center line of the eccentric hole 111 coincides with the center of the air outlet 22 .
  • the diameter of the eccentric hole 111 is greater than or equal to the inner diameter of the intake pipe 2 .
  • the shape of the eccentric hole 111 on the cylindrical body 1 is substantially oval.
  • the end of the air outlet 22 of the air intake pipe 2 is flush with the outer surface of the cylindrical body 1 , and the shape of the air outlet 22 is also substantially oval. Therefore, the air outlet 22 of the intake pipe 2 can be aligned with the eccentric hole 111 , so that the diameter of the eccentric hole 111 can be equal to or larger than the inner diameter of the intake pipe 2 .
  • the hole wall of the eccentric hole 111 and the hole wall of the air intake pipe 2 can smoothly transition, thereby reducing the influence of the connection between the air outlet 22 and the air intake hole 11 on the gas flow.
  • the minimum distance between the outer edge of the flange 23 and the edge of the intake hole 11 can be relatively large, so that the distance between the intake pipe 2 and the cylinder 1 can be made relatively large.
  • solder penetration depth (solder penetration) of the welding seam between the two parts is large, which can effectively increase the corrosion resistance of the welding seam in the external environment, reduce the leakage risk of the medium in the cylinder at the welding seam, and effectively improve the oil and gas Separator 100 reliability.
  • the gas in the intake pipe 2 can flow into the cylinder body 1 more smoothly and be deflected on the inner wall surface of the cylinder body 1 , so as to avoid the diameter of the eccentric hole 111 being smaller than that of the intake pipe 2
  • the inner diameter of the gas outlet 22 and the inlet hole 11 are connected, part of the outer surface of the cylinder disturbs the gas flow field and hinders the gas flow, so as to minimize the influence of the connection between the gas outlet 22 and the inlet hole 11 on the gas flow.
  • the air intake hole 11 is a centering hole 112 .
  • the center line of the centering hole 112 intersects and is perpendicular to the center line of the cylindrical body 1 .
  • the centering hole 112 is easy to process, thereby further reducing the difficulty of machining the air intake hole 11 on the cylinder body 1 , thereby further reducing the manufacturing cost of the oil-gas separator 100 .
  • the edge of the air inlet hole 11 is located outside the edge of the air outlet 22 .
  • the shape of the centering hole 112 on the cylindrical body 1 is substantially elliptical.
  • the end of the air outlet 22 of the air intake pipe 2 is flush with the outer surface of the cylindrical body 1 , and the shape of the air outlet 22 is substantially oval. Therefore, the centering hole 112 cannot be completely aligned with the air outlet 22 of the air intake pipe 2 .
  • the edge of the air intake hole 11 is located outside the edge of the air outlet 22 , so that the gas in the air intake pipe 2 can flow into the cylindrical body 1 more smoothly and be deflected on the inner wall surface of the cylindrical body 1 to avoid the air intake hole 11 .
  • part of the outer surface of the cylinder where the gas outlet 22 joins the air inlet hole 2 disturbs the gas flow field and hinders the gas flow. Therefore, the influence on the gas flow at the joint of the air outlet 22 and the air inlet hole 11 can be reduced as much as possible.
  • the air conditioner includes a compressor and the oil-gas separator 100 according to the embodiment of the present disclosure.
  • the compressor is provided with an air outlet pipe, and the air inlet pipe 2 communicates with the air outlet pipe.
  • the air conditioner of the embodiment of the present disclosure has the advantages of long service life, low manufacturing cost and high reliability.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • installed installed
  • connected connected
  • fixed a detachable connection
  • it can be a mechanical connection or an electrical connection or can communicate with each other
  • it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between the two components, unless otherwise expressly qualified.
  • the specific meanings of the above terms in the present disclosure can be understood according to specific situations.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or indirectly through an intermediary between the first and second features touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cyclones (AREA)

Abstract

公开了一种油气分离器、空调器及进气管安装方法,油气分离器包括筒体、加强件和进气管,所述筒体具有内腔;所述加强件设在所述筒体的外壁和内壁的至少一者上;所述加强件设在所述进气管的外周侧,所述进气管与所述加强件和所述筒体的至少一者密封相连,且所述进气管和所述筒体的内腔连通,所述进气管具有出气口,所述出气口的中心线与所述筒体的中心线之间具有偏心距。本公开的油气分离器,降低了疲劳断裂的风险和泄露的风险,结构强度高,耐腐蚀能力强,提高了使用的可靠性。

Description

油气分离器、空调器及进气管安装方法
相关申请的交叉引用
本公开要求申请号为202110390994.2、申请日为2021年4月12日的中国专利申请,申请号为202120844323.4、申请日为2021年4月22日的中国专利申请的优先权和权益,上述两篇中国专利申请的全部内容在此通过引用并入本公开。
技术领域
本公开的实施例涉及制冷剂的油分离技术领域,具体地,涉及一种油气分离器、该油气分离器的进气管的安装方法以及应用上述油气分离器的空调器。
背景技术
离心式油分离器的进气管的轴线偏离离心式油分离器的筒体的轴线,含有油滴的制冷剂偏射在筒体内壁面而螺旋下降,重量较大的油滴在较大离心力的作用下与气态制冷剂分离,聚集在离心式油分离器的底部,气态制冷剂则从出气管流出(仍含有少量微小油滴)。相比传统的过滤式油分离器,离心式油分离器减少了零部件数量及油分离器的体积,是油分离器发展的新方向。但是这种离心式油分离器的进气管往往斜插入筒体,进气管的轴线偏离筒体的轴线,使得筒体上的开孔为难以翻边的卵形孔。目前尚无法对该卵形孔翻边,使得振动较大的(处于悬臂状态的)离心式油分离器容易在该处疲劳断裂或泄露。
另外斜插入筒体的进气管采用隧道炉钎焊与筒体焊接时,焊料渗透深度仅为筒体壁厚(不锈钢筒体的壁厚一般为0.8-1.5毫米),耐腐蚀能力低,对焊缝质量、卵形孔精度要求极高,产品不良率和报废率高,增加了空调机泄露风险。
对于不锈钢油分离器,如果采用氩弧焊或激光焊,自动焊接非规则焊缝的难度大,焊缝仍为整个油分离器的薄弱点。而且不锈钢油分离器与铜套的焊接必须采用隧道炉钎焊,如果进气管与筒体采用氩弧焊或激光焊,则同一个油分离器需要采用不同的焊接方式,效率低下,成本增加。
发明内容
本公开是基于发明人对以下事实和问题的发现和认识做出的:
相关技术中,离心式油气分离器的进气管通常斜插入筒体上的进气管插孔内,使得进 气管的中心轴线偏离筒体的中心轴线,筒体上的进气管插孔的外周边无法设置翻边,特别是,为了方便进气管的斜向插入,筒体上的进气管插孔通常需要设计为椭圆形,在椭圆形进气管插孔的周边更难以设置翻边,从而使得进气管和筒体在进气管插孔位置的焊接强度低,而相关技术中,离心式油气分离器通常为悬臂方式安装,振动较大,导致进气管和筒体很容易在进气管插孔的焊接位置产生疲劳断裂,进而产生泄露的问题。
另外,受制于筒体壁厚的限制,进气管插孔位置的焊料渗透深度有限,进气管插孔处焊接结构的耐腐蚀能力低,且对焊缝质量、进气管插孔的加工精度要求高,产品不良率高,增加了泄露风险。
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开实施例提出一种油气分离器,该油气分离器降低了疲劳断裂的风险和泄露的风险,结构强度高,耐腐蚀能力强,提高了使用的可靠性。
本公开实施例还提出一种上述油气分离器的进气管的安装方法。
本公开实施例还提出一种应用上述油气分离器的空调器。
本公开实施例的油气分离器包括:筒体,所述筒体具有内腔;加强件,所述加强件设在所述筒体的外壁和内壁的至少一者上;进气管,所述加强件设在所述进气管的外周侧,所述进气管与所述加强件和所述筒体的至少一者密封相连,且所述进气管和所述筒体的内腔连通,所述进气管具有出气口,所述出气口的中心线与所述筒体的中心线之间具有偏心距。
本公开实施例的油气分离器,降低了疲劳断裂的风险和泄露的风险,结构强度高,耐腐蚀能力强,提高了使用的可靠性。
在一些实施例中,所述筒体上设有插孔设置区,所述插孔设置区内设有进气管插孔,所述进气管插孔的中心轴线偏离所述筒体的中心轴线;
所述加强件为加强片,所述加强片固定在所述筒体的外壁和内壁中的至少一者上且位于所述插孔设置区内,所述进气管插孔贯穿所述加强片;
所述进气管穿设在所述进气管插孔内,且所述进气管与所述筒体和所述加强片焊接。
在一些实施例中,所述加强片焊接在所述筒体的外壁和内壁中的至少一者上。
在一些实施例中,所述加强片与所述筒体的外壁和内壁中的至少一者紧密贴合。
在一些实施例中,所述加强片为矩形、圆形、椭圆形或正方形。
在一些实施例中,所述加强片的外周轮廓和所述进气管插孔的外周轮廓之间的最小间距大于所述加强片的厚度和所述筒体的壁厚中的较大值。
在一些实施例中,所述最小间距为1毫米至5毫米。
在一些实施例中,所述加强片的材质和所述筒体的材质相同。
在一些实施例中,所述加强片的外周轮廓与所述插孔设置区的外周轮廓重合。
在一些实施例中,所述筒体上设有进气孔;
所述进气管包括管体以及翻边,所述翻边环绕设置在所述管体的外表面,并靠近所述管体的出气口,所述出气口与所述进气孔连通,所述翻边设置在所述筒体的外表面,所述翻边形成所述加强件。
在一些实施例中,所述翻边的外沿与所述进气孔的边沿的最小距离大于所述筒体的壁厚。
在一些实施例中,所述翻边的外沿距离所述进气孔的边沿的距离为2毫米-10毫米。
在一些实施例中,所述筒体的外表面包括安装区,所述安装区开设有所述进气孔,所述翻边贴合在所述安装区上,所述翻边的形状与所述安装区的形状适配。
在一些实施例中,所述管体位于出气口的端部与所述筒体的外表面齐平。
在一些实施例中,所述翻边和所述筒体的外表面通过隧道炉钎焊相连。
在一些实施例中,所述进气孔为偏心孔,所述偏心孔的中心线与所述出气口的中心重合,其中所述偏心孔的直径大于或等于所述进气管的内径。
在一些实施例中,所述进气孔为对心孔。
在一些实施例中,所述进气孔的边沿位于所述出气口的边沿的外侧。
本公开实施例的油气分离器的进气管安装方法包括以下步骤:将加强片焊接到油气分离器的筒体的外壁和内壁中的至少一者上的插孔设置区内;开设贯穿所述加强片和所述筒体的进气管插孔,其中所述进气管插孔的中心轴线偏离所述筒体的中心轴线;将进气管插入所述进气管插孔内以使所述进气管的一部分配合在所述进气管插孔内;将所述进气管与所述加强片和所述筒体焊接。
在一些实施例中,油气分离器的进气管安装方法还包括在将所述加强片焊接到所述筒体上之前在所述加强片和/或所述筒体的外壁和内壁中的至少一者上的插孔设置区涂覆焊膏,以及在将所述进气管插入所述进气管插孔内之前在所述进气管的一部分上涂覆焊膏和/或在所述加强片与所述进气管的交界处放置焊环;其中所述加强片通过点焊固定到所述筒体上;其中所述进气管与所述加强片和所述筒体的焊接通过放入隧道炉进行钎焊完成。
本公开的实施例的空调器包括压缩机和根据上述任一实施例中所述的油气分离器;所述压缩机上设有出气管;所述进气管与所述出气管连通。
本公开实施例的空调器具有使用寿命长、制作成本低和可靠性高等优点。
附图说明
图1是本公开实施例的油气分离器的立体示意图。
图2是本公开实施例的油气分离器的俯视立体示意图。
图3是本公开实施例的油气分离器的俯视示意图。
图4是本公开实施例的油气分离器的主视示意图。
图5是图4中A-A处的剖视示意图。
图6是本公开实施例的油气分离器的筒体横截面示意图。
图7是本公开实施例的油气分离器上加强片处示意图。
图8是本公开另一实施例的加强片的示意图。
图9是本公开又一实施例的加强片的示意图。
图10是本公开的油气分离器的进气管安装方法的示意图一。
图11是本公开的油气分离器的进气管安装方法的示意图二。
图12是本公开的油气分离器的进气管安装方法的示意图三。
图13是本公开的油气分离器的进气管安装方法的示意图四。
图14是本公开另一实施例的油气分离器的示意图。
图15是图14中油气分离器的筒体与进气管的拆分示意图。
图16是图14中油气分离器的偏心孔在筒体上位置示意图。
图17是图14中油气分离器的偏心孔与进气管配合的示意图。
图18是图14中油气分离器的对心孔在筒体上位置示意图。
图19是图14中油气分离器的对心孔与进气管配合的示意图。
图20是图14中油气分离器的在翻边上和筒体的外表面上涂抹焊膏的示意图。
图21是图14中油气分离器的在进气管的翻边外圈放置焊环的示意图。
附图标记:
油气分离器100;
筒体1;进气孔11;偏心孔111;对心孔112;安装区12;
进气管2;管体21;出气口22;翻边23;进口直线段24;弧形段25;出口直线段26;
加强片3;
出气管4;
回油管5;
进气管插孔6;
插孔设置区7;
焊膏8;
焊点9;
焊环10。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元夹具必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
如图1所示,本公开实施例的油气分离器包括筒体1、加强件(未示出)和进气管2。
筒体1可以为圆筒状,筒体1内设有内腔,内腔的横截面为圆形。
加强件可以为加强片或加强块,加强件可以通过焊接的方式固定在筒体1的内壁或外壁上,可以理解的是,筒体1的内壁和外壁上也可以均设有加强件。
进气管2可以穿过筒体1的筒壁和加强件并插入筒体1的内腔内,在其他一些实施例中,当加强件仅设在筒体1的外壁上时,进气管2可以仅与加强件密封相连,加强件和筒体1的筒壁上设有通孔,进气管2通过通孔与筒体1的内腔连通。当加强件仅设在筒体1的内壁上时,进气管2可以仅与筒体1密封相连,加强件和筒体1的筒壁上设有通孔,进气管2通过通孔与筒体1的内腔连通。
进气管2的出气口的中心线的延伸方向和筒体1的中心线(中心轴线)具有偏心距,即出气口的中心线和筒体1的中心线在空间上既不平行也不相交,由此,可以产生离心作用,可以实现油滴和气态制冷剂的分离。
如图1至图7所示,本公开一个实施例的油气分离器包括筒体1、加强片3和进气管2。
筒体1上设有插孔设置区7,插孔设置区7内设有进气管插孔6,进气管插孔6的中心轴线偏离筒体1的中心轴线。
如图1所示,筒体1可以为圆筒状,筒体1沿着上下方向延伸,筒体1的筒壁上设有插孔设置区7,插孔设置区7即为在筒体1的筒壁上选定的一块区域,插孔设置区7设在筒体1的顶部。进气管插孔6设在插孔设置区7内,进气管插孔6贯穿筒体1的筒壁。
如图3所示,进气管插孔6的中心轴线沿着左右方向贯穿筒体1的筒壁,进气管插孔6的延伸方向为筒壁对应位置的切线方向,这样能够产生离心分离作用,实现了油滴和气态制冷剂的分离。筒体1的中心轴线则沿着上下方向延伸,由此,筒体1的中心轴线和进气管插孔6的中心轴线垂直布置,且筒体1的中心轴线和进气管插孔6的中心轴线在前后方向上间隔布置。
可以理解的是,在其他一些实施例中,进气管插孔6的中心轴线也可以与筒体1的中心轴线非垂直布置,例如,在图1中,进气管插孔6的中心轴线可以沿着从左上至右下的方向延伸、也可以沿着从左下至右上的方向延伸。
加强件为加强片3,加强片3固定在筒体1的外壁和内壁中的至少一者上且位于插孔设置区7内,进气管插孔6贯穿加强片3。
具体地,如图1所示,加强片3固定在筒体1的外壁上,且加强片3位于插孔设置区7内,即加强片3的外周轮廓不超出插孔设置区7的外周轮廓。进气管插孔6的一部分形成在加强片3内,即进气管插孔6也贯穿加强片3。
进气管2的一部分配合在进气管插孔6内且进气管2与筒体1和加强片3焊接。如图5所示,进气管2插入进气管插孔6内。进气管2的外周壁和进气管插孔6的孔壁密封焊接连接,由此,既实现了进气管2和筒体1的连接固定,还使得进气管2和进气管插孔6之间具有较好的密封性,避免了泄露。可选的,进气管2用于插入进气管插孔6的端部与筒体1的内周壁平齐。这样可以节省成本,也能够避免端部插入筒体1内对筒体1内的气流环流造成影响,而导致噪声过大。
本公开实施例的油气分离器,由于增设了加强片3,进气管插孔6的长度得以增加,进而增大了进气管2和进气管插孔6的孔壁的接触面积,增强了固定结构强度。另外,在将进气管2和筒体1焊接固定时,焊料熔深不受筒壁壁厚的限制,焊料可以同时熔入加强片3和筒壁内,一方面进一步增强了进气管2和筒体1的连接结构强度,降低了进气管2和筒壁焊接位置疲劳断裂、产生泄露的风险,另一方面由于焊料熔深增加,焊接位置的耐腐蚀能力加强,进一步提高了油气分离器使用的可靠性。
在一些实施例中,加强片3焊接在筒体1的外壁和内壁中的至少一者上。具体地,加强片3既可以焊接固定在筒体1的外壁上,也可以焊接在筒体1的内壁上。在其他一些实施例中,筒体1的内壁和外壁上也可以同时焊接固定有加强片3,由此,加强片3的使用更加灵活,也有利于进一步提高进气管2和筒体1焊接位置的连接强度。
在一些实施例中,加强片3与筒体1的外壁和内壁中的至少一者紧密贴合。当筒体1的横截面为圆形时,如图6所示,插孔设置区7所对应的圆心角为α,此时,加强片3贴合在筒体1的外壁上,加强片3的内侧面的曲率和插孔设置区7的曲率相同,由此,当加强片3固定在筒体1的外壁上时,加强片3的内侧面会与筒体1的外壁充分贴合,既有利于增强加强片3和筒体1的固定效果,还有利于增强加强片3和筒体1之间的密封性。
需要说明的是,在其他一些实施例中,在加强片3固定在筒体1的内壁上时,加强片3的外侧面的曲率和筒体1的插孔设置区7所对应地内壁曲率一致。可以理解的是,在其他一些实施例中,筒体1也可以棱柱状,此时加强片3的内侧面或外侧面可以为平面。
在一些实施例中,加强片3为矩形、圆形、椭圆形或正方形。具体地,如图8所示,加强片3可以为圆形板,如图9所示,加强片3可以为矩形板。在其他一些实施例中,加强片3还可以是椭圆形板、正方形板、三角形板、多边形板、异形板等,加强板的形状可以根据实际情况进行选取。
优选地,如图7所示,加强板的形状为圆角矩形。
在一些实施例中,加强片3的外周轮廓和进气管插孔6的外周轮廓之间的最小间距大于加强片3的厚度和筒体1的壁厚中的较大值。
具体地,如图7所示,进气管插孔6的外周轮廓位于加强片3外周轮廓内,在沿着进气管插孔6的任意径向方向上,加强片3的外周轮廓和进气管插孔6的外周轮廓之间具有最小间距M,最小间距M大于加强片3的厚度,最小间距M也同时大于筒体1的壁厚。由此,可以避免加强片3在沿着进气管插孔6的径向方向上焊穿的情况。
优选地,最小间距M为1毫米至5毫米。具体地,最小间距M可为1毫米至5毫米之间的任意数值,例如,最小间距M可以为1毫米、2毫米、3毫米、4毫米、5毫米等。
在一些实施例中,加强片3的材质和筒体1的材质相同。例如,加强片3和筒体1的材质可以均为碳钢、不锈钢、铜等,从而方便了进行隧道炉钎焊。可以理解的是,在其他一些实施例中,加强片3和筒体1的材质也可以不同,例如,加强片3的材质可以为碳钢、筒体1的材质可以为铜等。
在一些实施例中,加强片3的外周轮廓与插孔设置区7的外周轮廓重合。如图1所示,加强片3的外周轮廓和插孔设置区7的外周轮廓大小、形状相同,当加强片3安装在插孔设置区7内后,加强片3的外周轮廓和插孔设置区7的外周轮廓完全重合。在其他一些实施例中,如图7所示,加强片3的外周轮廓可以位于插孔设置区7的外周轮廓的内部,此时,加强片3的外周轮廓的至少部分可以与插孔设置区7的外周轮廓重合。
在一些实施例中,如图5所示,进气管2的至少部分从进气管插孔6穿出并深入筒体1的内腔内。由此,可以既保证进气管2安装的结构强度,也有利于增强进气管2安装的密封性。
在一些实施例中,油气分离器还包括出气管4和回油管5,出气管4设在筒体1的顶部并与筒体1的内腔连通,回油管5设置筒体1的底部并与筒体1的内腔连通。
下面参考附图描述本公开实施例的油气分离器的进气管安装方法。
本公开实施例的油气分离器的进气管2安装方法包括以下步骤:
S1:将加强片3焊接到油气分离器的筒体1的外壁和内壁中的至少一者上的插孔设置区7内。具体地,首先在筒体1的外壁和/或内壁上确定插孔设置区7,然后将加强片3固定在筒体1的插孔设置区7内,如图11所示,加强片3可以通过点焊的方式固定在筒体1 的外壁上,加强片3和筒体1的外壁之间形成有四个焊点9。
可以理解的是,在其他一些实施例中,加强片3也可以通过点焊的方式固定在筒体1的内壁上。
S2:开设贯穿加强片3和筒体1的进气管插孔6,其中进气管插孔6的中心轴线偏离筒体1的中心轴线。如图12所示,可以通过车床在加强片3上加工出进气管插孔6,加工时,刀具的切入方向应与筒体1的轴线方向垂直,刀具的切入点还应与筒体1的轴线偏离一定的间距。
优选地,进气管插孔6的形状为椭圆形。
S3:将进气管2插入进气管插孔6内以使进气管2的一部分配合在进气管插孔6内。具体地,组装进气管2和筒体1时,可以直接将进气管2的对应端插入进气管插孔6内即可,进气管2的插入深度可以根据实际情况进行调整。
S4:将进气管2与加强片3和筒体1焊接。具体地,焊接时,可以在进气管2和加强片3的交界处放置焊环10,焊接过程中,焊环10会融化,从而有利于保证焊接品质。
优选地,进气管2与加强片3和筒体1的焊接可以为隧道炉钎焊的焊接方式,焊接时,将组装后的进气管2、加强片3、筒体1放入隧道炉内即可。
在一些实施例中,油气分离器的进气管2安装方法还包括在将加强片3焊接到筒体1上之前在加强片3和/或筒体1的外壁和内壁中的至少一者上的插孔设置区7涂覆焊膏8,以及在将进气管2插入进气管插孔6内之前在进气管2的一部分上涂覆焊膏8。
具体的,在上述步骤S1之前,如图10所示,以加强片3固定在筒体1的外壁上为例,可以在加强片3的内侧面和筒体1的外壁行均涂抹上焊膏8。由此,可以保证加强片3和筒体1外壁之间的充分焊接贴合。
在另一些实施例中,在步骤S之前,可以首先在进气管2的外周侧涂抹焊膏8,焊膏8的涂抹位置与进气管2插入进气管插孔6的部分对应,由此,可以保证进气管2的焊接强度。
下面参考图14-图21描述本公开另一个实施例的油气分离器100。
如图14-图21所示,本公开实施例的油气分离器100包括筒体1和安装在筒体的进气管2。筒体1上设有进气孔11。进气管2包括管体21以及翻边23。翻边23环绕设置在管体21的外表面(外周面),并靠近管体21的出气口22。出气口22与进气孔11连通。出气口22的中心线与筒体1的中心线之间具有偏心距。翻边23设置在筒体1的外表面,翻边23形成加强件。
由于原有的离心式油气分离器的进气管是斜插入离心式油气分离器的筒体,进气管的中心线偏离筒体的中心线,使得筒体上的进气孔为难以翻边的卵形孔。从而使得靠近压缩 机设置的振动较大的油气分离器的进气管容易在筒体上的进气孔开孔处疲劳断裂或泄露。
本公开实施例的油气分离器100通过在管体21上设置翻边23,且使翻边23环绕设置在管体21的外表面,并使翻边23设在筒体1的外表面上。能够增强进气管2的结构,降低进气管2疲劳断裂的风险。也就是说,使进气管2通过翻边23与筒体1连接,能够增加进气管2与筒体1的连接强度,从而能够降低进气管2从与筒体1的连接处疲劳断裂的风险,进而能够增加油气分离器100的使用寿命。
另外,由于进气管2能够通过翻边23连接在筒体1上,进气管不需要斜插入筒体1上的进气孔11内。因此不再需要精确控制进气管2与进气孔11之间的间隙的尺寸。由此能够降低对筒体1上进气孔11的加工精度的要求,从而能够降低加工进气孔11的难度、加工成本和报废率,进而能够降低油气分离器100的制作成本。
而且,由于进气管2能够通过翻边23连接在筒体1上,可以方便通过控制翻边23的外沿到进气孔11的边沿的最小距离来控制焊料渗透深度(焊料熔深)。由此能够增加进气管2与筒体1之间的焊缝在外界使用环境中的耐腐蚀能力,同时降低筒体1内的介质在焊缝处的泄露风险,从而能够提高油气分离器100的可靠性。
因此,本公开实施例的油气分离器100具有使用寿命长、制作成本低和可靠性高等优点。
如图14和图15所示,本公开实施例的油气分离器100包括筒体1和安装在筒体的进气管2。筒体1上设有进气孔11。进气管2包括管体21以及翻边23。翻边23环绕设置在管体21的外表面(外周面),并靠近管体21的出气口22。翻边23设置在筒体1的外表面。
出气口22与进气孔11连通。出气口22的中心线与筒体1的中心线之间具有偏心距。即筒体1的中心线在预设平面的投影与出气口22的中心线在预设平面的投影不相交且具有一定距离,预设平面可以为垂直于筒体中心线的平面。
需要说明的是,进气管2的管体21可以设置为包括依次连接的进口直线段24、弧形段25和出口直线段26的弯管。同时进气管2也可以设置为直管(图中未示出)。
如图14所示,翻边23的外沿与进气孔11的边沿的最小距离A大于筒体1的壁厚。由此能够增加进气管2与筒体1之间的焊缝的焊料渗透深度(焊料熔深),相当于将焊料渗透深度(焊料熔深)从筒体1的壁厚增加到了翻边23的宽度(从翻边23的外沿到进气孔11边沿的距离)。从而能够有效增加焊缝在外界使用环境中的耐腐蚀能力,同时有效降低筒体1内的介质在焊缝处的泄露风险,进而能够有效提高油气分离器100的可靠性。
具体地,翻边23的外沿距离进气孔11的边沿的距离为2毫米-10毫米。由此能够可靠保证进气管2与筒体1之间的焊缝在外界使用环境中的耐腐蚀能力,同时可以可靠保证降低筒体1内的介质在焊缝处的泄露风险,进而能够保证提高油气分离器100的可靠性。
如图14和图15所示,筒体1的外表面包括安装区12,安装区12开设有进气孔11。翻边23贴合在安装区12上。翻边23的形状与安装区12的形状适配。由此能够使翻边23更紧密地贴合在筒体1的安装区12上,从而能使焊料在翻边23与筒体1的外表面之间均匀分布,进而能够降低焊料用量、提高翻边23与筒体1之间的焊接强度、增加进气管2与筒体1之间的焊缝在外界使用环境中的耐腐蚀能力,同时降低筒体1内的介质在焊缝处的泄露风险。
如图17和图19所示,管体21位于出气口22的端部与筒体1的外表面齐平。由此能够使出气口22与进气孔11紧密衔接,从而能够使进气管2内的气体更顺畅地流入筒体1并偏射在筒体1的内壁面,能够尽量降低出气口22与进气孔11衔接处对气体流动的影响。
可选地,翻边23的展开面的外沿可以设置为圆角矩形,能够使翻边23的外沿相对来说更接近卵形的出气口22的形状。从而能够使翻边23的外沿与卵形的出气口22的边沿的周向的距离相对更均匀,能够节省焊料或焊环。同时圆角矩形的四角为圆角能够方便在翻边23的外沿放置焊环。另外相比将翻边23的展开面的外沿设置为卵形,能够降低翻边23外沿的加工难度,降低加工成本。
优选地,翻边23和筒体1的外表面通过隧道炉钎焊相连。也就是说,进气管2的翻边23焊接到筒体1的外表面时采用隧道炉钎焊。采用隧道炉钎焊可以一次焊接油气分离器100上所有的焊口,效率高,焊缝一致性好。
如图20和图21所示,翻边23和筒体1的外表面采用隧道炉钎焊焊接时,可以在翻边23上和/或筒体1的外表面涂抹焊膏8(即涂抹其中之一或两者均涂抹),也可以在进气管2的翻边23外圈放置焊环10。另外进气管2的材质可以与筒体1的材质相同,也可以不同。进气管2的材质具体可以为碳钢、不锈钢、铜等可采用隧道炉钎焊的材料。
如图16和图17所示,进气孔11为偏心孔111。偏心孔111的中心线与出气口22的中心重合。其中,偏心孔111的直径大于或等于进气管2的内径。
由于筒体1上的偏心孔111的形状实质是卵形。而进气管2的出气口22的端部与筒体1的外表面齐平,出气口22的形状实质上也是卵形。由此能够使进气管2的出气口22能够与偏心孔111对齐,从而使偏心孔111的直径可以等于进气管2的内径,也可以大于进气管2的内径。
当偏心孔111的直径等于进气管2的内径,偏心孔111的孔壁与进气管2的孔壁能够平滑过渡,从而能够减小出气口22与进气孔11衔接处对气体流态的影响。另外在进气管2外的翻边23的尺寸一定的情况下,能够使翻边23的外沿与进气孔11的边沿的最小距离相对较大,从而能够使进气管2与筒体1之间的焊缝的焊料渗透深度(焊料熔深)较大,进而能够有效增加焊缝在外界使用环境中的耐腐蚀能力,降低筒体内的介质在焊缝处的泄 露风险,进而能够有效提高油气分离器100的可靠性。
当偏心孔111的直径大于进气管2的内径,能够使进气管2内的气体更顺畅地流入筒体1并偏射在筒体1的内壁面,以避免偏心孔111的直径小于进气管2的内径时出气口22与进气孔11衔接处的部分筒体外表面扰乱气体流场、阻碍气体流动,从而能够尽量降低出气口22与进气孔11衔接处对气体流动的影响。
如图18和图19所示,进气孔11为对心孔112。对心孔112的中心线与筒体1的中心线相交且垂直。对心孔112加工方便,由此能够进一步降低在筒体1上加工进气孔11的难度,从而进一步降低油气分离器100的制作成本。
优选地,进气孔11的边沿位于出气口22的边沿的外侧。由于筒体1上的对心孔112的形状实质是椭圆形。而进气管2的出气口22的端部与筒体1的外表面齐平,出气口22的形状实质上是卵形。所以对心孔112与进气管2的出气口22不能完全对齐。由此使进气孔11的边沿位于出气口22的边沿的外侧,能够使进气管2内的气体更顺畅地流入筒体1并偏射在筒体1的内壁面,以避免进气孔11的边沿位于出气口22的边沿的内侧时出气口22与进气孔2衔接处的部分筒体外表面扰乱气体流场、阻碍气体流动。从而能够尽量降低出气口22与进气孔11衔接处对气体流动的影响。
下面参考图14-图21描述本公开实施例的空调器。
如图14-图21所示,本公开实施例的空调器包括压缩机和本公开实施例的油气分离器100,压缩机上设有出气管,进气管2与出气管连通。
本公开实施例的空调器具有使用寿命长、制作成本低和可靠性高等优点。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体地限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间 接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (21)

  1. 一种油气分离器,其特征在于,包括:
    筒体,所述筒体具有内腔;
    加强件,所述加强件设在所述筒体的外壁和内壁的至少一者上;
    进气管,所述加强件设在所述进气管的外周侧,所述进气管与所述加强件和所述筒体的至少一者密封相连,且所述进气管和所述筒体的内腔连通,所述进气管具有出气口,所述出气口的中心线与所述筒体的中心线之间具有偏心距。
  2. 根据权利要求1所述的油气分离器,其特征在于,所述筒体上设有插孔设置区,所述插孔设置区内设有进气管插孔,所述进气管插孔的中心轴线偏离所述筒体的中心轴线;
    所述加强件为加强片,所述加强片固定在所述筒体的外壁和内壁中的至少一者上且位于所述插孔设置区内,所述进气管插孔贯穿所述加强片;
    所述进气管穿设在所述进气管插孔内,且所述进气管与所述筒体和所述加强片焊接。
  3. 根据权利要求2所述的油气分离器,其特征在于,所述加强片焊接在所述筒体的外壁和内壁中的至少一者上。
  4. 根据权利要求2或3所述的油气分离器,其特征在于,所述加强片与所述筒体的外壁和内壁中的至少一者紧密贴合。
  5. 根据权利要求2-4中任一项所述的油气分离器,其特征在于,所述加强片为矩形、圆形、椭圆形或正方形。
  6. 根据权利要求2-5中任一项所述的油气分离器,其特征在于,所述加强片的外周轮廓和所述进气管插孔的外周轮廓之间的最小间距大于所述加强片的厚度和所述筒体的壁厚中的较大值。
  7. 根据权利要求6所述的油气分离器,其特征在于,所述最小间距为1毫米至5毫米。
  8. 根据权利要求2-7中任一项所述的油气分离器,其特征在于,所述加强片的材质和所述筒体的材质相同。
  9. 根据权利要求2-8中任一项所述的油气分离器,其特征在于,所述加强片的外周轮廓与所述插孔设置区的外周轮廓重合。
  10. 根据权利要求1所述的油气分离器,其特征在于,所述筒体上设有进气孔;
    所述进气管包括管体以及翻边,所述翻边环绕设置在所述管体的外表面,并靠近所述管体的出气口,所述出气口与所述进气孔连通,所述翻边设置在所述筒体的外表面,所述翻边形成所述加强件。
  11. 根据权利要求10所述的油气分离器,其特征在于,所述翻边的外沿与所述进气孔 的边沿的最小距离大于所述筒体的壁厚。
  12. 根据权利要求10或11所述的油气分离器,其特征在于,所述翻边的外沿距离所述进气孔的边沿的距离为2毫米-10毫米。
  13. 根据权利要求10-12中任一项所述的油气分离器,其特征在于,所述筒体的外表面包括安装区,所述安装区开设有所述进气孔,所述翻边贴合在所述安装区上,所述翻边的形状与所述安装区的形状适配。
  14. 根据权利要求13所述的油气分离器,其特征在于,所述管体位于出气口的端部与所述筒体的外表面齐平。
  15. 根据权利要求10-14中任一项所述的油气分离器,其特征在于,所述翻边和所述筒体的外表面通过隧道炉钎焊相连。
  16. 根据权利要求10-15中任一项所述的油气分离器,其特征在于,所述进气孔为偏心孔,所述偏心孔的中心线与所述出气口的中心重合,其中所述偏心孔的直径大于或等于所述进气管的内径。
  17. 根据权利要求10-16中任一项所述的油气分离器,其特征在于,所述进气孔为对心孔。
  18. 根据权利要求17所述的油气分离器,其特征在于,所述进气孔的边沿位于所述出气口的边沿的外侧。
  19. 一种根据权利要求1-18中任一项所述的油气分离器的进气管安装方法,其特征在于,包括以下步骤:
    将加强片焊接到油气分离器的筒体的外壁和内壁中的至少一者上的插孔设置区内;
    开设贯穿所述加强片和所述筒体的进气管插孔,其中所述进气管插孔的中心轴线偏离所述筒体的中心轴线;
    将进气管插入所述进气管插孔内以使所述进气管的一部分配合在所述进气管插孔内;
    将所述进气管与所述加强片和所述筒体焊接。
  20. 根据权利要求19所述的油气分离器的进气管安装方法,其特征在于,还包括在将所述加强片焊接到所述筒体上之前在所述加强片和/或所述筒体的外壁和内壁中的至少一者上的插孔设置区涂覆焊膏,以及在将所述进气管插入所述进气管插孔内之前在所述进气管的一部分上涂覆焊膏和/或在所述加强片与所述进气管的交界处放置焊环;
    其中所述加强片通过点焊固定到所述筒体上;
    其中所述进气管与所述加强片和所述筒体的焊接通过放入隧道炉进行钎焊完成。
  21. 一种空调器,其特征在于,包括:
    压缩机,所述压缩机上设有出气管;和
    根据权利要求1-18任一项所述的油气分离器,所述进气管与所述出气管连通。
PCT/CN2021/122672 2021-04-12 2021-10-08 油气分离器、空调器及进气管安装方法 WO2022217863A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110390994.2 2021-04-12
CN202110390994.2A CN115200271B (zh) 2021-04-12 2021-04-12 油分离器及其进气管安装方法
CN202120844323.4 2021-04-22
CN202120844323.4U CN215373064U (zh) 2021-04-22 2021-04-22 油气分离器和空调器

Publications (1)

Publication Number Publication Date
WO2022217863A1 true WO2022217863A1 (zh) 2022-10-20

Family

ID=83640119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122672 WO2022217863A1 (zh) 2021-04-12 2021-10-08 油气分离器、空调器及进气管安装方法

Country Status (1)

Country Link
WO (1) WO2022217863A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185367A (ja) * 1996-12-24 1998-07-14 Matsushita Refrig Co Ltd 油分離器
CN203719278U (zh) * 2013-02-05 2014-07-16 大金工业株式会社 油分离器
CN205909573U (zh) * 2015-07-14 2017-01-25 东芝开利株式会社 离心分离式油分离器及冷冻循环装置
CN206539792U (zh) * 2017-02-13 2017-10-03 浙江三花智能控制股份有限公司 一种衬套及接管的安装结构
CN211836789U (zh) * 2020-03-18 2020-11-03 安徽威尔泰克机电设备有限公司 一种便于清洗检查的供高压油气立式油气分离器
CN212339697U (zh) * 2020-06-24 2021-01-12 广东美的暖通设备有限公司 油分离器、制冷系统以及空调

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185367A (ja) * 1996-12-24 1998-07-14 Matsushita Refrig Co Ltd 油分離器
CN203719278U (zh) * 2013-02-05 2014-07-16 大金工业株式会社 油分离器
CN205909573U (zh) * 2015-07-14 2017-01-25 东芝开利株式会社 离心分离式油分离器及冷冻循环装置
CN206539792U (zh) * 2017-02-13 2017-10-03 浙江三花智能控制股份有限公司 一种衬套及接管的安装结构
CN211836789U (zh) * 2020-03-18 2020-11-03 安徽威尔泰克机电设备有限公司 一种便于清洗检查的供高压油气立式油气分离器
CN212339697U (zh) * 2020-06-24 2021-01-12 广东美的暖通设备有限公司 油分离器、制冷系统以及空调

Similar Documents

Publication Publication Date Title
WO2022217863A1 (zh) 油气分离器、空调器及进气管安装方法
CN215373064U (zh) 油气分离器和空调器
CN211146997U (zh) 一种储液器
JP4636907B2 (ja) インテークマニホールド
CN215373065U (zh) 油分离器和空气调节设备
CN115200271B (zh) 油分离器及其进气管安装方法
CN111453638B (zh) 一种侧推千斤顶的深孔活塞杆及其加工方法和应用
CN212250469U (zh) 一种连接管组件及具有其的压缩机、热交换设备
CN204783692U (zh) 压缩机组件
CN218864542U (zh) 一种卧式储液器
CN218408698U (zh) 一种电子膨胀阀
CN114321543A (zh) 管组件及温控设备
CN205690762U (zh) 分液器及其冷媒管与上盖的连接结构
CN220851153U (zh) 用于蒸发器的法兰结构
CN219178041U (zh) 一种带压板结构的储液器
CN218031876U (zh) 配管装置
CN214307721U (zh) 管件连接结构及空调气液分离器
CN220134868U (zh) 矩形管衬管连接结构及制冷组件
CN212744534U (zh) 一种可更换的文丘里装置
CN219064275U (zh) 集流管焊接结构及换热器
CN216618980U (zh) 封口管和截止阀封口组件
CN221004242U (zh) 具有外衬座的管件连接结构及制冷组件
CN216080104U (zh) 一种配管集成模块和空调室外机
EP4265952A1 (en) Connecting pipe assembly and heat exchanger
CN111059031A (zh) 压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/02/2024)