WO2022216081A1 - 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지 - Google Patents

흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지 Download PDF

Info

Publication number
WO2022216081A1
WO2022216081A1 PCT/KR2022/005038 KR2022005038W WO2022216081A1 WO 2022216081 A1 WO2022216081 A1 WO 2022216081A1 KR 2022005038 W KR2022005038 W KR 2022005038W WO 2022216081 A1 WO2022216081 A1 WO 2022216081A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
active material
graphite
trifluoroethyl
secondary battery
Prior art date
Application number
PCT/KR2022/005038
Other languages
English (en)
French (fr)
Inventor
송승완
트란티하이옌
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220042207A external-priority patent/KR20220140421A/ko
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to DE112022001023.1T priority Critical patent/DE112022001023T5/de
Publication of WO2022216081A1 publication Critical patent/WO2022216081A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a graphite active material, a method for manufacturing the same, and a high-capacity secondary battery for high-speed charging and discharging including the same.
  • a lithium secondary battery consists of a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the negative electrode is a counter electrode that stores energy by inserting and desorbing lithium ions that are inserted and moved during charging and discharging of the positive electrode. Complete the discharge cycle.
  • a graphite anode is used in a lithium ion battery, but a staging phenomenon occurs due to the intrinsic properties of graphite having a high structural order, and it is charged at a slow rate until one lithium ion per 6 carbons is inserted.
  • the graphite active material has disadvantages in high-speed use of the battery, such as requiring 20 hours or more of charging and discharging time, respectively, in order to achieve the theoretical capacity of 372 mAh/g.
  • the above characteristics are the characteristics of the graphite electrode, which occupies the largest share of the lithium secondary battery market, for electric vehicle batteries. It is the biggest factor that makes it difficult to apply.
  • the amount of the active material mixture per area of the negative electrode decreases, which lowers the energy density and increases the manufacturing cost.
  • the irreversible capacity generated during initial charging is large.
  • the irreversible capacity is caused by lithium and electrons consumed in the formation of an electrochemical SEI (Solid-Electrolyte Interface) that occurs in the negative electrode during the first charge.
  • the larger the irreversible capacity the more lithium provided from the positive electrode is irreversibly consumed and the maximum capacity of the battery. There is a problem of reducing
  • a method for manufacturing a magnetically oriented negative active material for fast charging (Nature Energy, 1, 16097, 2016) is known.
  • the above known method uses a process of coating magnetically reactive iron oxide nanoparticles on graphite and a process of arranging a slurry of an active material placed on a metal current collector using a magnetic field, to obtain a negative electrode in which the active material is oriented in a batch to favor the insertion of ions and has an advantage of having a high fast charge/discharge capacity compared to an electrode without an orientation that is normally used.
  • the above methods have high irreversible capacity, high manufacturing cost, or low fast charging capacity, so they are not suitable for application to fast charging technology of electric vehicles.
  • the present invention is a graphite active material having an increased interlayer distance of graphite, and an object of the present invention is to improve the high-speed charge/discharge performance and increase the capacity of a secondary battery when it is used as an anode material.
  • Another object of the present invention is to provide a secondary battery that can be installed in various electric mobility and energy storage systems (ESS), including small and medium-sized electronic devices such as portable telephones and commercial electric vehicles.
  • ESS electric mobility and energy storage systems
  • the present invention relates to a graphite active material having an interlayer distance (d 002 ) increased by 0.001 ⁇ to 0.003 ⁇ .
  • the graphite active material is a natural graphite active material or an artificial graphite active material.
  • the lithium secondary battery containing the natural graphite active material as an electrode active material has an initial coulombic efficiency of 90 to 95%, a discharge capacity per weight of 360 mAh/g or more at 0.1C charge/discharge, and a capacity retention rate of 30 to 99 during 2C charge/discharge It can be %.
  • the lithium secondary battery including the graphite active material as an electrode active material has a discharge capacity of 320 mAh/g or more per weight during 1C (charge within 1 hour) charge/discharge, and 1C charge/discharge cycle is possible.
  • the interlayer distance (d 002 ) of the artificial graphite active material may be 3.368 ⁇ to 3.370 ⁇ .
  • the lithium secondary battery including the artificial graphite active material as an electrode active material has an initial coulombic efficiency of 65 to 92%, a discharge capacity per weight of 345 to 360 mAh/g at 0.1C charge/discharge, and a capacity retention rate of 10 to It can be 45%.
  • the graphite active material may have an increased BET surface area of 127% or more.
  • the electrode for a secondary battery according to another embodiment of the present invention may include the graphite active material.
  • the secondary battery electrode may be a positive electrode material or a negative electrode material of the secondary battery.
  • the secondary battery according to another embodiment of the present invention may include the secondary battery electrode.
  • a method for producing a graphite active material according to another embodiment of the present invention comprises the steps of supporting graphite in an organic solvent; low-temperature treatment of graphite supported in the organic solvent; and drying the low-temperature-treated graphite, wherein the interlayer distance (d 002 ) may increase from 0.001 ⁇ to 0.003 ⁇ .
  • the organic solvent may be selected from the group consisting of a linear alcohol-based organic solvent, a linear carbonate-based organic solvent, a cyclic carbonate-based organic solvent, a linear ester-based organic solvent, a ketone-based organic solvent, and mixtures thereof.
  • the low-temperature treatment may be performed at 0 to -40°C for 0.1 to 168 hours.
  • the graphite active material according to the present invention increases the distance between the graphite layers, so that when used as an electrode for a secondary battery, the high-speed charge/discharge performance of the secondary battery can be greatly improved.
  • the secondary battery since the secondary battery has a higher coulombic efficiency than a conventional secondary battery, an irreversible capacity can be reduced, suppressing a decrease in the capacity of a full cell, and a capacity close to the theoretical capacity of the battery can be used.
  • the secondary battery provided in the present invention is compatible with materials widely used in the existing lithium secondary battery market, so the battery manufacturing cost is low, and no separate optimization is required.
  • the secondary battery provided in the present invention improves high-speed charge/discharge performance and performance per weight, which are causes that are difficult to apply conventional secondary batteries to electric vehicles, thereby achieving high-speed charging and weight reduction, which are key factors in the development of electric vehicle technology.
  • EIS electrochemical impedance spectroscopy
  • the present invention relates to a graphite active material having an interlayer distance (d 002 ) increased by 0.001 ⁇ to 0.003 ⁇ .
  • the negative electrode material included in the lithium secondary battery accounts for about 15% of the material cost of the lithium ion battery, which is the third after the positive electrode material and the separator. is the material
  • Types of graphite anode materials currently in use can be divided into natural graphite and artificial graphite.
  • the anode material manufactured using natural graphite has superior price competitiveness compared to artificial graphite because it is produced and processed from underground resources, and the initial charging efficiency is more than 90% due to the development of surface treatment or spheroidization technology. is expanding
  • the anode material manufactured using artificial graphite is produced by firing and carbonizing with coke and pitch as raw materials, and heating it again at ⁇ 3,000°C in an electric furnace. Price competitiveness with graphite may decrease.
  • the graphite active material has a problem in that the staging phenomenon occurs due to the inherent characteristics of graphite having a high structural order, and the charging rate is slow until one lithium ion per 6 carbons is inserted.
  • the graphite active material has disadvantages in high-speed use of the battery, such as requiring 20 hours or more of charging and discharging time, respectively, in order to achieve the theoretical capacity of 372 mAh/g.
  • the conventional surface treatment or spheroidization process and a variety of methods such as high-temperature treatment over 1200 °C to manufacture the negative electrode active material, but has a high manufacturing cost or low fast charging capacity, high-speed charging of electric vehicles for long-distance driving
  • the problem is that it is not suitable for application to technology.
  • the present invention is characterized in that the high-speed charge/discharge cycle performance and capacity of the secondary battery are improved by using a conventionally used graphite active material that has not undergone a separate surface treatment or spheronization process.
  • the graphite active material according to an embodiment of the present invention is characterized in that the interlayer distance (d 002 ) is increased by 0.001 ⁇ to 0.003 ⁇ .
  • the graphite active material is characterized in that it has a layered structure in terms of crystal structure.
  • the carbon atoms of the sp 2 hybrid orbital are bonded to each other in a hexagonal plane to form a carbon hexagonal network (graphene layer), and ⁇ electrons positioned above and below the carbon mesh surface bind the carbon hexagonal network.
  • the electron conductivity of graphite is excellent because the ⁇ electrons can move relatively freely between the hexagonal carbon planes.
  • the ⁇ bond bonding these graphite layers forms a weak van der Waals bond, but the bond in the hexagonal carbon plane is a very strong covalent bond, showing anisotropy.
  • Lithium ions are intercalated and deintercalated between these graphite layers.
  • the graphite active material basically means hexagonal graphite in which the plane of the graphite layer is stacked in the c-axis direction in the ABAB method, but the stacking order is partially modified and includes a rhombohedral graphite structure stacked in the ABCABC method. can do.
  • electrochemical properties such as reaction potential and lithium storage capacity may differ depending on the crystallinity, microstructure, and particle shape of the graphite active material.
  • the interlayer distance (d 002 ) on the crystal structure of the graphite active material may be 3.359 to 3.367 ⁇ for artificial graphite, and 3.355 to 3.550 ⁇ for natural graphite.
  • the interlayer distance is not limited to the above range and may vary.
  • lithium ions are inserted during charging, and lithium ions are desorbed during discharging.
  • the interlayer distance (d 002 ) of the graphite active material increases by 0.001 ⁇ to 0.003 ⁇ , thereby increasing the charging speed and charging capacity.
  • the mechanism is that lithium ions are inserted into the layered structure of the graphite active material, which is an anode material, to form a Li x C compound.
  • the interlayer distance (d 002 ) of the graphite active material is increased by 0.001 ⁇ to 0.003 ⁇ , the insertion of lithium ions is facilitated, and as the amount of lithium ions that can be inserted increases, lithium The charging capacity of the secondary battery may be increased.
  • the graphite active material according to an embodiment of the present invention is an artificial graphite active material, and the interlayer distance d 002 of the artificial graphite active material may be 3.368 ⁇ to 3.370 ⁇ .
  • a typical artificial graphite active material has an interlayer distance (d 002 ) of 3.359 to 3.367 ⁇ , and the artificial graphite active material of the present invention increases the interlayer distance (d 002 ) of an artificial graphite active material used as an existing negative electrode material by 0.001 to 0.002 ⁇ .
  • the lithium secondary battery including the artificial graphite active material as an electrode active material has an initial coulombic efficiency of 65 to 92%, a discharge capacity per weight of 345 to 360 mAh/g at 0.1C charge/discharge, and a capacity retention rate of 10 to It can be 45%.
  • the lithium secondary battery including the artificial graphite active material as an electrode active material may have an initial coulombic efficiency of 65 to 92%, preferably 75 to 90%, more preferably 82 to 88%.
  • the lithium secondary battery including the artificial graphite active material as an electrode active material has a discharge capacity per weight of 330 to 370 mAh/g at 0.1C charging and discharging, preferably 338 to 365 mAh/g, more preferably 345 to 360 mAh/g. can
  • the lithium secondary battery including the artificial graphite active material as an electrode active material may have a capacity retention rate of 10 to 30% during 2C charging and discharging, preferably 13 to 28.5%, and more preferably 18 to 27%.
  • the graphite active material is a natural graphite active material, and the interlayer distance (d 002 ) of the natural graphite active material may be 3.362 ⁇ to 3.363 ⁇ .
  • the interlayer distance (d 002 ) of a typical natural graphite active material is 3.355 to 3.550 ⁇ , and the natural graphite active material of the present invention increases the interlayer distance (d 002 ) of the natural graphite active material used as an existing negative electrode material by 0.002 to 0.003 ⁇ .
  • the lithium secondary battery including the graphite active material as an electrode active material has a discharge capacity of 320 mAh/g or more per weight during 1C (charge within 1 hour) charge/discharge, and 1C charge/discharge cycle is possible.
  • the lithium secondary battery including the natural graphite active material as an electrode active material has a discharge capacity per weight of 370 to 395 mAh/g at 0.1C charge/discharge, preferably 380 to 394 mAh/g, more preferably 385 to 393 mAh/g can
  • the lithium secondary battery including the natural graphite active material as an electrode active material may have a capacity retention rate of 30 to 99% during 2C charging and discharging, preferably 35 to 99%, and more preferably 50 to 99%.
  • the increase in the interlayer distance (d 002 ) of the graphite active material can be confirmed more clearly through an increase in the specific surface area.
  • the graphite active material is characterized in that the BET surface area is increased by 127% or more, specifically, the artificial graphite active material has a BET specific surface area increased by 127% to 130%, and the natural graphite active material has a BET specific surface area increased by 127% to 150% it has become
  • the increase in the interlayer distance (d 002 ) and the BET specific surface area of the graphite active material increases the interlayer distance of the crystal structure, thereby increasing the intercalation rate of lithium ions during charging and increasing the charging capacity.
  • Another embodiment of the present invention relates to a method for producing a graphite active material, comprising the steps of supporting graphite in an organic solvent; low-temperature treatment of graphite supported in the organic solvent; and drying the low-temperature-treated graphite, wherein the interlayer distance (d 002 ) may be increased by 0.001 ⁇ to 0.003 ⁇ .
  • the graphite is a natural graphite active material or an artificial graphite active material that can be used as a graphite active material, but is not limited to the above example, and those that can be used as a graphite active material can be used without limitation.
  • the organic solvent may be selected from the group consisting of a linear alcohol-based organic solvent, a linear carbonate-based organic solvent, a cyclic carbonate-based organic solvent, a linear ester-based organic solvent, a ketone-based organic solvent, and mixtures thereof.
  • the alcohol-based organic solvent may be methyl alcohol, ethyl alcohol, propyl alcohol, 2-propyl alcohol, 1-butyl alcohol, 2-butyl alcohol, isobutyl alcohol, or tert-butyl alcohol.
  • the linear carbonate-based organic solvent may be dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, methylpropyl carbonate, ethylpropyl carbonate and dipropyl carbonate.
  • the cyclic carbonate-based organic solvent may be ethylene carbonate (EC), propylene carbonate (PC), or the like.
  • fluoroethylene carbonate (FEC), 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-methyl-5-fluoroethylene carbonate, 4-methyl-5,5-di Fluoroethylene carbonate, 4- (fluoromethyl) ethylene carbonate, 4- (difluoromethyl) ethylene carbonate, 4- (trifluoromethyl) ethylene carbonate, 4- (2-fluoroethyl) ethylene carbonate, 4 Fluorinated cyclic carbonate-based organic solvents such as -(2,2-difluoroethyl)ethylene carbonate and 4-(2,2,2-trifluoroethyl)ethylene carbonate can also be used.
  • FEC fluoroethylene carbonate
  • 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate 4-methyl-5-fluoroethylene carbonate, 4-methyl-5,5-di Fluoroethylene carbonate
  • 4- (fluoromethyl) ethylene carbonate 4- (difluoromethyl
  • fluorinated dimethyl carbonate organic solvents can also be used.
  • the linear ester-based organic solvent may be methyl acetate, ethyl acetate, methyl propionate and ethyl propionate.
  • a fluorinated linear ester organic solvent such as roethyl propionate can also be used.
  • the ketone-based organic solvent may be acetone, methyl ethyl ketone, diethyl ketone, or the like.
  • Fluorinated ketone organic solvents such as 1,1,1,3,3-pentafluoropropan-2-one and 1,1,1,3,3,3-hexafluoropropan-2-one Available.
  • the solvent for supporting the graphite is different depending on artificial graphite or natural graphite. Specifically, it is particularly preferable to use Ethylmethyl carbonate (EMC) as a solvent for supporting the artificial graphite, and as a solvent for supporting the natural graphite Ethanol is particularly preferred.
  • EMC Ethylmethyl carbonate
  • the low-temperature treatment may be performed at a temperature of 0 to -40°C for 0.1 to 168 hours. At this time, the temperature is preferably -5 to -35 °C, more preferably -10 to -30 °C.
  • the interlayer distance of the graphite active material increases, and when used as a negative electrode material for a lithium secondary battery, the charging speed can be improved, and the charging capacity can be increased. .
  • Another embodiment of the present invention relates to an electrode for a secondary battery including a graphite active material and a secondary battery including the same.
  • the graphite active material may be used as a cathode material or a cathode material of a secondary battery.
  • the graphite active material may be processed by being included in the electrode for a secondary battery together with a conductive material and a binder through a method commonly practiced in the art.
  • the conductive material is used to impart conductivity to the electrode, and may be used without any particular limitation as long as it has electronic conductivity without causing chemical change.
  • Specific examples include graphite, carbon black, superfib, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, carbon nanotube, carbon nanowire, graphene, graphitized mesocarbon microbead , carbon-based materials such as fullerene and amorphous carbon; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or a conductive polymer such as a polyphenylene derivative, and the like, and one or a mixture of two or more thereof may be used.
  • the binder improves adhesion between the active material and the conductive material particles or between the active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), polyimide (PI), fluoropolyimide (FPI), polyacrylic acid (PAA), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), starch, hydro Roxypropyl Cellulose, Regenerated Cellulose, Polyvinylpyrrolidone (PVP), Tetrafluoroethylene, Polyethylene, Polypropylene, Polyurethane, Ethylene-Propylene-Diene Polymer (EPDM), Sulfonated-EPDM, Styrene- butadiene rubber, fluororubber or copolymers thereof, algin, and the like, and one or a mixture of two or more thereof may be used, but this is only an example and is not limited as long as it is a known binder.
  • the graphite active material may be used as a negative electrode material for a lithium secondary battery.
  • the anode material of a lithium secondary battery provides electrical energy by inserting and storing lithium when charging the battery, and releasing lithium when discharging.
  • the lithium secondary battery may include a positive electrode for a lithium secondary battery; electrolyte for lithium secondary batteries; and a separation membrane.
  • the positive electrode for the lithium secondary battery may further include a conductive material and a binder, which are the same as the above-described conductive material and binder, and thus a duplicate description thereof will be omitted.
  • the electrolyte for the lithium secondary battery may include a lithium salt and a mixed organic solvent containing the same; polymer matrix; Or it may be made of an all-solid electrolyte.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC 6 H 5 SO 3 , LiN(C 2 F 5 ) SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiN(FSO 2 ) 2 LiN(C x F 2x+1 SO 2 )(C y F 2y+1 SO 2 ) (provided that x and y are 0 or a natural number)
  • LiCl LiI, LiSCN, LiB(C 2 ) O 4 ) 2 , LiF 2 BC 2 O 4 , LiPF 4 (C 2 O 4 ), LiPF 2 (C 2 O 4 ) 2 , and LiP(C 2 O 4 ) 3
  • the mixed organic solvent is a group consisting of cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate;
  • fluorinated cyclic carbonates such as fluoroethylene carbonate, difluoroethylene carbonate, and fluoropropylene carbonate
  • linear carbonates such as dimethyl carbonate, methylethyl carbonate, and diethyl carbonate
  • It may be any one or a mixture of two or more selected from, but is not necessarily limited thereto.
  • the mixed organic solvent may further include an additive.
  • the additive may serve to assist in the formation of a cathode-electrolyte interface (CEI).
  • CI cathode-electrolyte interface
  • TMB trimethyl boroxine
  • TEB triethyl boroxine
  • TEB triethyl borate
  • TEB triethyl borate
  • TMSB tris (trimethylsilyl) borate (tris (trimethylsilyl)) borate
  • LiTPBOB lithium trifluoro (perfluoro-tert-butyloxyl) borate
  • LiDFOB lithium difluoro (oxalato) borate ) borate
  • LiDFOB lithium difluoro (oxalato) borate
  • LiDFOB lithium difluoro (oxalato) borate
  • FEMC 2,2,2-trifluoroethyl carbonate
  • DFMAc methyl difluroacetate
  • DFEAc ethyl difluoroacetate
  • the additive may directly form or assist SEI (Solid-Electrolyte Interface).
  • SEI Solid-Electrolyte Interface
  • FEC fluoroethylene carbonate
  • VC vinylene carbonate
  • VEC vinylethylene carbonate
  • allylethyl carbonate allylethyl carbonate
  • vinyl acetate vinyl acetate
  • di Vinyl adipate acrylic acid nitrile
  • 2-vinyl pyridine ⁇ -butyrolactone (GBL)
  • GBL ⁇ -butyrolactone
  • succinimide cyclic compounds such as succinic imide, maleic anhydride, methyl chloroformate, methyl cinnamate, and furan derivatives having double bonds
  • the group consisting of phosphonate compounds the group consisting of vinyl-containing silane compounds
  • any one or two or more selected from the group consisting of nitrate (nitrate) and nitrite (nitrite) compound but is not necessarily limited thereto, if it is an additive that
  • the additive may serve to remove active materials such as HF and PF5.
  • the additive may serve to prevent overcharging.
  • metallocenes tetracyano ethylene, tetramethyl phenylene diamine, dihydrophenazine, bipyridyl carbonates, biphenyl carbonate (biphenyl carbonates), the group consisting of organic compounds such as 2,7-diacetyl thianthrene and phenothiazine; the group consisting of lithium salts such as Li2B12FxH12-x (lithium fluorododecaborates) and lithium bis(oxalato)borate (LiBOB); And xylene, cyclohexyl benzene (cyclohexyl benzene), hexaethyl benzene (hexaethyl benzene), biphenyl (biphenyl), 2,2-diphenyl propane (2,2-diphenyl propane), 2,5-di tertbutyl-1,4-dimethoxy
  • the additive may be added to increase the flame retardancy of the secondary battery.
  • alkyl phosphates such as trimethyl phosphate, triethyl phosphate; the group consisting of halogenated phosphates such as tris(2,2,2-trifluoroethyl)phosphate; the group consisting of phosphazenes such as hexamethoxy cyclo phosphazene; It may be any one or two or more selected from the group consisting of fluorinated ethers and fluorinated carbonates such as methyl nonafluorobutyl ether (MFE) and fluoropropylene carbonate, but is not necessarily limited thereto. It is not particularly limited as long as it is an additive that increases the known flame retardancy.
  • MFE methyl nonafluorobutyl ether
  • the additive may be added for uniform reduction deposition of lithium.
  • tetrahydrofuran tetrahydrofuran
  • 2-methyltetrahydrofuran (2-methyltetrahydrofuran
  • thiophene thiophene
  • 2-methylthiophene 2-methylthiophene
  • nitromethane nitromethane
  • tetraalkylammonium chloride tetraalkylammonium chloride
  • cetyl trimethyl ammonium chloride lithium perfluorooctane sulfonate, tetraethylammonium perfluorooctane sulfonate, perfluoropolyether ( perfluoropolyethers), and may be any one or two or more selected from AlI3 and SnI2.
  • the additive may be added to help the solvation phenomenon of ions.
  • the additive may be added to prevent corrosion of the aluminum current collector.
  • the content of the additive may be adjusted within the range of 0.01 to 10 wt % depending on desired physical properties.
  • the concentration of the electrolyte composed of the mixed organic solvent containing the lithium salt may be adjusted to a level commonly used in the art, specifically, for example, the concentration of the lithium salt may be 0.1 to 60M, more preferably 0.5 to 2M. have.
  • the electrolyte may include the polymer electrolyte matrix to improve mechanical properties or high-temperature stability of the battery, and specifically, polyacrylate, polymethacrylate, polyvinyledene fluoride, PVDF), polyhexafluoro propylene (PHFP), polyethylene oxide (PEO), polypropylene oxide (PPO), polydimethyl siloxane, polyacrylonitrile ) and polyvinyl chloride (PVC), may be any one or a mixture of two or more selected from the group consisting of polymers such as high molecular weight polymers and PEGDME mixed copolymers, if it is a known polymer material for lithium secondary batteries, it is not limited does not
  • the polymer matrix may include crosslinking units for crosslinking with each other.
  • the all-solid electrolyte is a composite of the polymer matrix and the lithium salt, in which they are mixed, and the components constituting it are the same as those of the polymer matrix and the lithium salt, and thus overlapping descriptions will be omitted.
  • the separation membrane is a porous polymer membrane of any one of polyethylene and polypropylene; Or it may be a porous polymer membrane coated with a ceramic material.
  • the lithium secondary battery may be manufactured in various shapes, such as a square shape, a cylindrical shape, a coin type, or a pouch type.
  • the lithium secondary battery may be a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium all-solid secondary battery, and may be used in a wearable electronic device, a power tool, and an energy storage system (ESS).
  • ESS energy storage system
  • EVs electric vehicles
  • portable electronic devices such as smart phones, electric bicycles and electric scooters, etc., drones, electric airplanes, or electric golf carts, etc., which have high value of high-speed charging technology do.
  • the graphite active material may be used as a cathode material of a dual ion battery (DIB). At this time, the graphite active material inserts and stores the negative ions contained in the electrolyte when the battery is charged, and releases the negative ions during discharging.
  • DIB dual ion battery
  • the dual ion battery includes an aluminum negative electrode; electrolyte for dual ion batteries; and a separation membrane; may further include.
  • lithium When the aluminum negative electrode is charged, lithium is reduced on the surface and precipitated on the surface, and lithium is oxidized during discharging to release electrical energy.
  • the interlayer distance (d 002 ) of the graphite electrode active material was measured through X-ray diffraction (XRD) and described in Table 1.
  • the specific surface area of the graphite electrode active material was measured by Brunauer-Emmett-Teller (BET) and is shown in Table 1.
  • a coin-type lithium secondary battery composed of an electrode prepared in Examples 1 to 5 and Comparative Examples 1 to 2, a lithium metal electrode, and an additive-free 1.0M LiPF 6 /EC:EMC (3:7 volume ratio) electrolyte and a separator was produced.
  • a low-speed (0.1C) charge/discharge cycle was performed 5 times in a voltage range of 0.01-1.5V.
  • the cycle is CC (Constant current)/CV (Constant voltage) charging and CC discharging conditions, charging to 0.01V at 0.1C-rate CC, then charging to CV until the current reaches 0.005C, and in CC condition Discharged to 1.5V.
  • CC Constant current
  • CV Constant voltage
  • 0.1C discharge capacity/theoretical capacity (%) (0.1C charge/discharge capacity/theoretical capacity (372mAh/g)) ⁇ 100
  • a coin-type lithium secondary battery composed of an electrode prepared in Examples 1 to 5 and Comparative Examples 1 to 2, a lithium metal electrode, and an additive-free 1.0M LiPF 6 /EC:EMC (3:7 volume ratio) electrolyte and a separator was produced.
  • a charge/discharge cycle was performed three times at a rate of 0.2 to 2C-rate in a voltage range of 0.01-1.5V.
  • the cycle is under CC (Constant current)/CV (Constant voltage) charging and CC discharging conditions, after charging up to 0.01 at a CC of 0.2 to 2C-rate, the current will reach 0.05 times the C-rate input during CC charging. It was charged at CV until the time of charging, and discharged to 1.5V under CC conditions at the same current as the C-rate during charging.
  • the discharge capacity was measured by performing a charge/discharge cycle at 0.2 to 2C in a voltage range of 0.01-1.5V.
  • Capacity retention rate (%) (discharge capacity according to C-rate/0.1C discharge capacity) ⁇ 100
  • a coin-type lithium secondary battery composed of an electrode prepared in Examples 4 to 5 and Comparative Example 2, a lithium metal electrode, and an additive-free 1.0M LiPF 6 /EC:EMC (3:7 volume ratio) electrolyte and a separator did.
  • a low-speed (0.1C) charge/discharge cycle was performed three times in a voltage range of 0.01-1.5V.
  • the cycle is CC (Constant current)/CV (Constant voltage) charging and CC discharging conditions, charging to 0.01V at 0.1C-rate CC, then charging to CV until the current reaches 0.005C, and in CC condition Discharged to 1.5V.
  • Discharge capacity was measured by performing 100 charge/discharge cycles at 1C in a voltage range of 0.01-1.5V.
  • the specific gravimetric capacity per weight of the lithium secondary battery was measured at one time and 100 times of the charge/discharge 1C cycle, and is shown in Table 4.
  • Capacity retention rate (%) (100 discharge capacity/1 discharge capacity) ⁇ 100
  • PC proylene carbonate
  • DMDEC di-(2,2,2 trifluoroethyl)carbonate
  • a charge/discharge cycle was performed three times at a rate of 0.2 to 2C-rate in a voltage range of 0.01-1.5V.
  • the cycle is under CC (Constant current)/CV (Constant voltage) charging and CC discharging conditions, after charging up to 0.01 at a CC of 0.2 to 2C-rate, the current will reach 0.05 times the C-rate input during CC charging. It was charged at CV until the time of charging, and discharged to 1.5V under CC conditions at the same current as the C-rate during charging.
  • the discharge capacity was measured by performing a charge/discharge cycle at 0.2 to 2C in a voltage range of 0.01-1.5V.
  • a graphite electrode using artificial graphite as an electrode active material was prepared.
  • the graphite electrode was supported on Ethyl Methyl Carbonate (EMC) and treated at -20°C for 24 hours.
  • EMC Ethyl Methyl Carbonate
  • the organic solvent to be supported was changed as shown in Table 1 instead of EMC, and all processes were performed in the same manner as in Example 1 except that the treatment time was changed to 48 hours.
  • a graphite electrode using natural graphite as an electrode active material was prepared.
  • the graphite electrode was supported on Ethyl Methyl Carbonate (EMC) and treated at -20°C for 48 hours.
  • EMC Ethyl Methyl Carbonate
  • a graphite electrode using natural graphite as an electrode active material was prepared.
  • the graphite electrode was supported in ethanol and treated at -20°C for 48 hours.
  • a graphite electrode using artificial graphite without pretreatment as an active material was prepared.
  • a graphite electrode using natural graphite without pretreatment as an active material was prepared.
  • Examples 1 to 5 and Comparative Examples 1 to 2 were supported in the organic solvent, treatment time, and the interlayer distance was measured and shown in Table 1.
  • a chemical conversion process was performed to calculate the discharge capacity per weight of the graphite electrode, the discharge capacity compared to the theoretical capacity, and the initial coulombic efficiency based on 0.1C charge and discharge. indicated.
  • Example 1 Discharge capacity per weight (0.1C) (mAh/g) 0.1C discharge capacity/theoretical capacity (%) Initial Coulombic Efficiency (%) Comparative Example 1 327 87.9 61.0 Example 1 338 90.9 75.2 Example 2 355 95.4 85.3 Example 3 351 94.4 76.2 Comparative Example 2 353 94.9 88.5 Example 4 385 103.5 90.9 Example 5 390 104.8 93.0
  • Examples 1 to 3 using the artificial graphite negative active material satisfy the organic solvent conditions and treatment conditions (-40 to 0° C.) for 0.1 to 168 hours) presented in the present invention.
  • the discharge capacity per weight was 330 to 355 mAh/g, and the discharge capacity per weight corresponding to 90.9 to 95.4% of the theoretical capacity was obtained.
  • the most advantageous organic solvent for the artificial graphite negative electrode is Ethyl methyl carbonate (EMC), and treatment is preferably performed for 36 to 60 hours.
  • EMC Ethyl methyl carbonate
  • Example 4 using a natural graphite anode active material satisfies the organic solvent conditions and treatment conditions suggested in the present invention, and as can be seen from Table 1, the interlayer distance was increased, and the discharge capacity per weight was 385 mAh/g, which resulted in an effect of increasing the capacity corresponding to 103.5% of the theoretical capacity.
  • the initial coulombic efficiency of Example 5 is 90.9%, which is effective in reducing the irreversible reaction to prevent a decrease in the capacity of the battery.
  • Example 5 satisfies the organic solvent conditions and treatment conditions presented in the present invention, and as can be seen from Table 1 above, the interlayer distance increased, and the discharge capacity per weight was 390 mAh/g, and the theoretical capacity It was possible to obtain a dose increase effect equivalent to 104.8% of In addition, the initial coulombic efficiency of Example 5 is 93.0%, which is effective in reducing the irreversible reaction to prevent the capacity reduction of the battery.
  • the organic solvent advantageous for the natural graphite electrode is EMC or Ethanol, and it is particularly preferable to use Ethanol.
  • the natural graphite electrode is supported in the organic solvent and treated for 36 to 60 hours.
  • the discharge capacity per weight at 0.1C charging and discharging of Comparative Example 2 without pretreatment is 353 mAh/g, which shows a performance of 94.9% compared to the theoretical capacity, which is the same as the performance of generally known natural graphite, and the initial coulombic efficiency is also It wasn't as good as the invention.
  • Example 5 the interfacial resistance of the chemical conversion process was reduced and the increase of the initial cycle interface resistance was also suppressed, and it can be confirmed that this function contributed to the improvement of the high-speed charge/discharge performance.
  • Example 5 As can be seen from Table 4, in the case of Comparative Example 2, cycle operation was impossible under high-speed charge/discharge conditions. On the other hand, in Example 5 according to the present invention, the capacity retention rate after 100 cycles of fast charging and discharging was very high, exceeding 95%. It can be seen that the present invention has a great effect on improving fast charging performance.
  • the present invention relates to a graphite active material, a method for manufacturing the same, and a high-capacity secondary battery for high-speed charging and discharging including the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지에 관한 것으로, 흑연의 층간 거리가 증가한 흑연 활물질로, 이를 음극재로 사용 시 이차 전지의 고속 충방전 성능 향상과 용량을 증대시킬 수 있고, 휴대용전화기 등의 소형 및 중형 전자기기, 상용 전기차 포함 다양한 전기 모빌리티와 에너지저장장치 (ESS)에 탑재가 가능한 이차전지를 제공할 수 있다.

Description

흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지
본 발명은 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지에 관한 것이다.
리튬 이차전지는 양극, 음극, 분리막 및 전해액으로 이루어져 있으며, 음극은 양극의 충방전 시 탈리, 삽입되며 이동하는 리튬이온을 삽입, 탈리시켜 에너지를 저장하는 상대전극으로써, 리튬을 이용하는 이차전지의 충방전 사이클을 완성한다.
통상 리튬이온 전지에는 흑연 음극이 사용되는데, 높은 구조 질서도를 가지는 흑연의 고유특성으로 인해 스테이징 현상이 발생하며, 6개의 탄소 당 1개의 리튬이온이 삽입되기까지 느린 속도로 충전된다. 특히, 흑연 소재 활물질은 이론용량인 372mAh/g을 달성하기 위해서는 충전과 방전 시간을 각각 20시간 이상 소요하는 등, 전지의 고속 사용에 불리한 특성이 있다.
최근 전기차의 상용화가 활발하게 진행되면서 전기차를 빠르게 충전하기 위한 기술, 즉 이차전지의 고속충전 성능 향상에 초점을 맞추면서, 상기한 특성은 리튬 이차전지 시장을 가장 많이 점유하는 흑연 소재 전극을 전기차용 전지에 적용하기 어렵게 하는 가장 큰 요인이 되고 있다.
상기 특성을 해결하기 위하여, 흑연 전극의 합재 밀도와 두께를 조절하는 방법(J. Electrochem. Soc., 152, A474-A481, 2005)이 공지되었으나, 상기 공지에서 시간당 2회(2C) 이상의 고속 충방전 시에도 이론용량에 근접하는 성능을 가지는, 고속 충방전이 가능하면서 쿨롱효율이 좋은 결과는 전극 활물질이 집전체에 매우 얇고 낮은 밀도로 합재된 경우이다.
이 경우 음극의 면적 당 활물질 합재량이 줄어들어 에너지 밀도가 낮아지고 제작 단가가 높아지며, 합재밀도 감소로 인해 활물질의 단위 무게 당 표면적이 넓어져 초기 충전 시 발생하는 비가역 용량이 크다. 비가역 용량은 첫 충전 시 음극에서 발생하는 전기화학적 SEI(Solid-Electrolyte Interface) 형성에 소모되는 리튬과 전자로 인해 발생하며, 상기 비가역 용량이 클수록 양극에서 제공된 리튬을 비가역적으로 소모하여 전지의 최대 용량을 감소시키는 문제가 있다.
상기한 문제를 해결하기 위해 양극과 음극의 최적화를 유지하면서, 자기적으로 배향된 고속충전용 음극활물질의 제조방법(Nature Energy, 1, 16097, 2016)이 공지되었다. 상기 공지는 흑연에 자기 반응성 산화철 나노 입자를 코팅하는 공정과 금속 집전체 위에 놓인 활물질 슬러리를 자기장을 이용하여 배열하는 공정을 이용하여, 이온의 삽입에 유리하도록 활물질을 일괄적으로 배향한 음극을 얻을 수 있으며, 통상적으로 사용하는 배향이 없는 전극에 비해 높은 고속 충방전 용량을 가지는 이점이 있다. 그러나 여전히 전기차용 고속충전 기술에 적용하기에는 시간당 2회 충방전(2C) 시 용량이 100mAh/g 미만으로, 이론용량의 30% 미만이라는 문제가 있다. 또한, 공정의 효율성이 떨어져 전지의 제작 단가가 높아지는 문제가 있다.
즉, 상기한 방법들은 높은 비가역 용량, 높은 제작 단가 또는 낮은 고속충전 용량을 가지고 있어, 전기차의 고속충전 기술에 적용하기에는 적합하지 않다.
이에 따라, 통상적인 이차전지의 제작 단가와 효율성 및 최적화를 유지하며, 고속충전에 적합한 이차전지 전극용 흑연 소재의 개발이 필요한 실정이다.
[선행기술문헌]
[비특허문헌]
(0001) Hilmi Buqa et al., High rate capability of graphite negative electrodes for Lithium-Ion batteries, J. Electrochem. Soc., 152, A474-A481, 2005
(0002) Juliette Billaud, Florian Bouville et al., Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries, Nature Energy, 1, 16097, 2016
상기와 같은 문제점을 해결하기 위하여 본 발명은 흑연의 층간 거리가 증가한 흑연 활물질로, 이를 음극재로 사용 시 이차 전지의 고속 충방전 성능 향상과 용량을 증대시키는 것을 목적으로 한다.
또한, 휴대용전화기 등의 소형 및 중형 전자기기, 상용 전기차 포함 다양한 전기 모빌리티와 에너지저장장치 (ESS)에 탑재가 가능한 이차전지를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 층간 거리 (d002)가 0.001 Å 내지 0.003Å 증가된 흑연 활물질에 관한 것이다.
상기 흑연 활물질은 천연흑연 활물질 또는 인조흑연 활물질이다.
상기 천연흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 초기 쿨롱효율이 90 내지 95%이며, 0.1C 충방전 시 무게당 방전용량이 360mAh/g 이상이며, 2C 충방전 시 용량 유지율이 30 내지 99%일 수 있다.
상기 흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지가 1C (1시간내 충전) 충방전시 무게당 방전용량이 320 mAh/g 이상이며, 1C 충방전 사이클이 가능하다.
상기 인조흑연 활물질의 층간 거리(d002)가 3.368 Å 내지 3.370 Å일 수 있다.
상기 인조흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 초기 쿨롱효율이 65 내지 92%이며, 0.1C 충방전 시 무게당 방전용량이 345 내지 360mAh/g이며, 2C 충방전 시 용량 유지율이 10 내지 45%일 수 있다.
상기 흑연 활물질은 BET 표면적이 127% 이상 증가될 수 있다.
본 발명의 다른 일 실시예에 따른 이차전지용 전극은 상기 흑연 활물질을 포함할 수 있다.
상기 이차전지용 전극은 이차전지의 양극재 또는 음극재일 수 있다.
본 발명의 다른 일 실시예에 따른 이차전지는 상기 이차전지용 전극을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 흑연 활물질의 제조 방법은 흑연을 유기용매에 담지하는 단계; 상기 유기용매에 담지된 흑연을 저온 처리하는 단계; 및 상기 저온 처리된 흑연을 건조하는 단계를 포함하며, 층간 거리 (d002)가 0.001 Å 내지 0.003Å 증가할 수 있다.
상기 유기용매는 선형 알코올계 유기용매, 선형 카보네이트계 유기용매, 환형 카보네이트계 유기용매, 선형 에스테르계 유기용매, 케톤계 유기용매 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.
상기 저온 처리는 0 내지 -40℃에서 0.1 내지 168시간 동안 처리할 수 있다.
본 발명에 따른 흑연 활물질은 종래 이차전지용 전극에 포함되는 흑연 활물질과 달리, 흑연 층간의 거리가 증가되어, 이차전지용 전극으로 이용 시, 이차전지의 고속 충방전 성능을 크게 개선할 수 있다. 또한, 상기 이차전지는 종래의 이차전지보다 쿨롱효율이 높아 비가역 용량을 줄일 수 있어, 완전지(full cell)의 용량 감소를 억제하여, 전지의 이론용량에 근접한 용량을 사용할 수 있다.
본 발명에서 제공하는 이차전지는, 기존 리튬 이차전지 시장에서 널리 쓰이는 재료와 호환되어 전지의 제작 단가가 낮고, 별도의 최적화가 필요하지 않다.
또한, 본 발명에서 제공하는 이차전지는, 기존 이차전지를 전기차에 적용하기 힘든 원인인 고속 충방전 성능과 무게당 성능을 향상하여, 전기차 기술 발전에 핵심요소인 고속충전과 무게 절감을 동시에 달성할 수 있다.
도 1은 본 발명의 일 실시예에 따른 리튬 반전지(half cell)의 화성공정 및 초기 충전 시 전기화학적 임피던스(Electrochemical Impedance Spectroscopy, EIS)의 측정 결과이다.
본 발명은 층간 거리 (d002)가 0.001 Å 내지 0.003Å 증가된 흑연 활물질에 관한 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
리튬이차전지에 포함되는 음극재는 리튬이온전지 재료비에서의 비중이 약 15%로, 양극재, 분리막에 이어 세 번째이나, 양극재의 상대극(Counter electrode) 소재로서 전지의 용량 등 성능을 결정하는 핵심소재이다.
현재 사용 중인 흑연 음극재 종류는 천연흑연 및 인조흑연으로 구분될 수 있다.
천연흑연을 이용하여 제조되는 음극재는 지하자원에서 산출·가공하여 제조하기에 가격 경쟁력이 인조흑연 대비 우수하고, 표면처리 또는 구형화하는 기술의 발달로 초기 충전효율이 90% 이상이 되기에 사용량이 확대되고 있다.
인조흑연을 이용하여 제조되는 음극재는 코크스(Cokes)와 피치(Pitch)를 원료로 소성·탄화처리를 하고, 다시 전기로에서 ~3,000℃ 고온으로 가열하여 제조하기에, 천연흑연보다 수명이 우수하나 천연흑연과의 가격 경쟁력이 떨어질 수 있다.
다만 앞서 설명한 바와 같이, 흑연 활물질은 높은 구조 질서도를 가지는 흑연의 고유특성으로 인해 스테이징 현상이 발생하며, 6개의 탄소 당 1개의 리튬이온이 삽입되기까지 충전 속도가 느린 문제가 있다. 특히, 흑연 소재 활물질은 이론용량인 372mAh/g을 달성하기 위해서는 충전과 방전 시간을 각각 20시간 이상 소요하는 등, 전지의 고속 사용에 불리한 특성이 있다.
이러한 문제를 해결하기 위해, 종래 표면처리 또는 구형화 공정과 1200 ℃ 이상의 고온처리 등 다양한 방식으로 음극 활물질을 제조하고자 하였으나, 높은 제작 단가 또는 낮은 고속충전 용량을 가지고 있어, 장거리 주행용 전기차의 고속충전 기술에 적용하기에는 적합하지 않은 것이 문제이다.
이에 본 발명에서는, 별도의 표면처리 또는 구형화 공정을 거치지 않은 종래 사용하는 흑연 활물질을 이용하여, 이차 전지의 고속 충방전 사이클 성능 향상과 용량을 증대시키는 것을 특징으로 한다.
구체적으로, 본 발명의 일 실시예에 따른 흑연 활물질은 층간 거리 (d002)가 0.001 Å 내지 0.003Å 증가된 것을 특징으로 한다.
상기 흑연 활물질은 결정 구조 측면에서 층상 구조로 된 것을 특징으로 한다.
구체적으로 흑연 결정 구조는 sp2 혼성 궤도의 탄소 원자가 육각 평면으로 서로 결합하여 탄소 육각망면(graphene layer)을 형성하고, 상기 탄소 망면 상하에 위치하는 ð전자가 상기 탄소 육각망면을 결합시킨다.
상기 ð전자는 탄소 육각망면 사이를 비교적 자유롭게 이동할 수 있기 때 문에 흑연의 전자 전도성이 우수하다. 이러한 흑연 층간을 결합하고 있는 ð결합은 약한 반데르발스 결합(van der Waals bond)을 이루지만, 탄소 육각망면 안의 결합은 매우 강한 공유결합으로 이루어져 이방적 성질(anisotropy)을 나타낸다. 리튬이온은 이러한 흑연층 사이로 삽입 및 탈리하게 된다. 흑연 활물질은 기본적으로 흑연층 평면이 c축 방향으로 ABAB 방식으로 적층되는 육방격자 흑연(hexagonal graphite)을 의미하지만 부분적으로 적층 순서가 변형되어 ABCABC방식으로 적층된 능면체형 흑연 (rhombohedral graphite) 구조를 포함할 수 있다.
상기 흑연 활물질은 충전 시, 환원 반응이 진행되어 리튬 이온이 흑연의 층상구조 내로 삽입되면, LixC의 화합물을 형성하고, 이때 층간 적층 방식이 AAAA 방식으로 바뀌게 된다. 반면, 방전 시에는 흑연에서 산화반응이 일어나면서 리튬 이온이 탈리한다.
상기와 같은 충전 및 방전 시, 반응 전위 및 리튬 저장용량 등의 전기 화학적 특성은 흑연 활물질의 결정성, 미세구조 및 입자 형상 등에 따라 차이가 나타날 수 있다.
다만, 일반적으로 흑연 활물질의 결정 구조 상 층간 거리(d002)는 인조흑연의 경우, 3.359~3.367Å이며, 천연흑연은 3.355~3.550Å일 수 있다. 다만, 천연흑연의 경우, 인공적으로 제조하는 것이 아니므로, 층간거리가 상기 범위에 국한되지 않고 다양할 수 있다.
상기와 같은 층간 거리 내에, 충전 시, 리튬 이온이 삽입되고, 방전 시, 리튬 이온이 탈리한다.
이에, 본 발명에서는 흑연 활물질의 층간 거리(d002)가 0.001 Å 내지 0.003Å 증가하여, 충전 속도 및 충전 용량을 증대시킬 수 있다.
앞서 설명한 바와 같이, 리튬 이차 전지의 충전 시, 메커니즘은 음극재인 흑연 활물질의 층상 구조 내로 리튬 이온이 삽입되어, LixC의 화합물을 형성하는 것이다.
이에, 본 발명에서와 같이, 흑연 활물질의 층간 거리(d002)를 0.001 Å 내지 0.003Å만큼 증가시키면, 리튬 이온의 삽입을 원활하게 하며, 삽입될 수 있는 리튬 이온의 양이 증가함에 따라, 리튬 이차 전지의 충전 용량이 증대될 수 있다.
본 발명의 일 실시예에 따른 상기 흑연 활물질은 인조흑연 활물질이며, 상기 인조흑연 활물질의 층간 거리(d002)가 3.368 Å 내지 3.370 Å일 수 있다. 일반적인 인조흑연 활물질은 층간 거리(d002)가 3.359~3.367 Å이며, 본 발명의 인조흑연 활물질은 기존 음극재로 사용하는 인조흑연 활물질의 층간 거리(d002)를 0.001 내지 0.002 Å 증가시킨 것이다.
상기 인조흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 초기 쿨롱효율이 65 내지 92%이며, 0.1C 충방전 시 무게당 방전용량이 345 내지 360mAh/g이며, 2C 충방전 시 용량 유지율이 10 내지 45%일 수 있다.
상기 인조흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 초기 쿨롱효율이 65 내지 92%이며, 바람직하게는 75 내지 90%, 더욱 바람직하게는 82 내지 88%일 수 있다.
상기 인조흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 0.1C 충방전 시 무게당 방전용량이 330 내지 370mAh/g이며, 바람직하게는 338 내지 365mAh/g, 더욱 바람직하게는 345 내지 360mAh/g일 수 있다.
상기 인조흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 2C 충방전 시 용량 유지율이 10 내지 30%이며, 바람직하게는 13 내지 28.5%, 더욱 바람직하게는 18 내지 27%일 수 있다.
상기 흑연 활물질은 천연흑연 활물질이며, 상기 천연흑연 활물질의 층간 거리(d002)가 3.362 Å 내지 3.363 Å일 수 있다.
일반적인 천연흑연 활물질의 층간 거리(d002)는 3.355 내지 3.550 Å이며, 본 발명의 천연흑연 활물질은 기존 음극재로 사용하는 천연흑연 활물질의 층간 거리(d002)를 0.002 내지 0.003 Å 증가시킨 것이다.
상기 흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지가 1C (1시간내 충전) 충방전시 무게당 방전용량이 320 mAh/g 이상이며, 1C 충방전 사이클이 가능하다.
상기 천연흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 0.1C 충방전 시 무게당 방전용량이 370 내지 395mAh/g이며, 바람직하게는 380 내지 394mAh/g, 더욱 바람직하게는 385 내지 393mAh/g일 수 있다.
상기 천연흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 2C 충방전 시 용량 유지율이 30 내지 99%이며, 바람직하게는 35 내지 99%, 더욱 바람직하게는 50 내지 99%일 수 있다.
상기와 같이 흑연 활물질의 층간 거리(d002)가 증가하는 것은, 비표면적의 증가를 통해 보다 명확하게 확인이 가능하다.
상기 흑연 활물질은 BET 표면적이 127% 이상 증가한 것을 특징으로 하며, 구체적으로, 인조흑연 활물질은 BET 비표면적이 127% 내지 130% 증가된 것이며, 천연흑연 활물질은 BET 비표면적이 127% 내지 150% 증가된 것이다.
상기와 같이 흑연 활물질의 층간 거리(d002) 및 BET 비표면적이 증가함은, 결정 구조의 층 간 거리가 증가하여, 충전 시, 리튬 이온의 삽입 속도가 증가하고, 충전 용량을 증대시킬 수 있다.
다만, 상기 범위를 초과하여 층간 거리가 증대되는 경우에는, 리튬 이온이 흑연 층 사이에 고정되지 못하는 문제가 있으며, 상기 범위 미만으로 거리가 증대되는 경우는, 층간 거리가 증가함에 따른 충전 속도 증대 효과 및 충전 용량의 증대 효과가 미비할 수 있다.
본 발명의 다른 일 실시예는 흑연 활물질의 제조방법에 관한 것으로, 흑연을 유기용매에 담지하는 단계; 상기 유기용매에 담지된 흑연을 저온 처리하는 단계; 및 상기 저온 처리된 흑연을 건조하는 단계를 포함하며, 층간 거리 (d002)가 0.001 Å 내지 0.003Å 증가시킬 수 있다.
상기 흑연은 흑연 활물질로 이용될 수 있는 천연흑연 활물질 또는 인조흑연 활물질이나, 상기 예시에 국한되지 않고, 흑연 활물질로 사용될 수 있는 것은 제한 없이 사용 가능하다.
상기 유기용매는 선형 알코올계 유기용매, 선형 카보네이트계 유기용매, 환형 카보네이트계 유기용매, 선형 에스테르계 유기용매, 케톤계 유기용매 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다.
상기 알코올계 유기용매는 메틸 알코올, 에틸 알코올, 프로필 알코올, 2-프로필 알코올, 1-부틸 알코올, 2-부틸 알코올, 이소부틸 알코올, 터트-부틸 알코올 등일 수 있다.
상기 선형 카보네이트계 유기용매는 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트 및 디프로필 카보네이트 등일 수 있다.
상기 환형 카보네이트계 유기용매는 에틸렌 카보네이트(EC) 및 프로필렌 카보네이트(PC) 등일 수 있다.
또한, 플루오로에틸렌 카보네이트(FEC), 4,4-디플루오로에틸렌카보네이트, 4,5-디플루오로에틸렌카보네이트, 4-메틸-5-플루오로에틸렌 카보네이트, 4-메틸-5,5-디플루오로에틸렌 카보네이트, 4-(플루오로메틸)에틸렌 카보네이트, 4-(디플루오로메틸)에틸렌 카보네이트, 4-(트리플루오로메틸)에틸렌 카보네이트, 4-(2-플루오로에틸)에틸렌 카보네이트, 4-(2,2-디플루오로에틸)에틸렌 카보네이트 및 4-(2,2,2-트리플루오로에틸)에틸렌 카보네이트 등의 플루오르화 환형 카보네이트계 유기용매도 이용할 수 있다.
플루오로메틸메틸 카보네이트, 디플루오로메틸메틸 카보네이트, 트리플루오로메틸메틸 카보네이트, 비스(플루오로메틸) 카보네이트, 비스(디플루오로메틸) 카보네이트, 비스(트리플루오로메틸) 카보네이트, (플루오로메틸)(디플루오로메틸) 카보네이트, (플루오로메틸)(트리플루오로메틸) 카보네이트, (디플루오로메틸)(트리플루오로메틸) 카보네이트 등의 플루오르화 디메틸 카보네이트계 유기용매도 이용할 수 있다.
2-플루오로에틸에틸 카보네이트, 2,2-디플루오로에틸에틸 카보네이트, 2,2,2-트리플루오로에틸에틸 카보네이트, 비스(2-플루오로에틸) 카보네이트, 비스(2,2-디플루오로에틸) 카보네이트, 비스(2,2,2-트리플루오로에틸) 카보네이트, (2-플루오로에틸)(2,2-디플루오로에틸) 카보네이트, (2-플루오로에틸)(2,2,2-트리플루오로에틸) 카보네이트 및 (2,2-디플루오로에틸)(2,2,2-트리플루오로에틸) 카보네이트 등의 플루오르화 디에틸 카보네이트계 유기용매도 이용할 수 있다.
2-플루오로에틸메틸 카보네이트, 2,2-디플루오로에틸메틸 카보네이트, 2,2,2-트리플루오로에틸메틸 카보네이트, (2-플루오로에틸)(플루오로메틸) 카보네이트, (2-플루오로에틸)(디플루오로메틸) 카보네이트, (2-플루오로에틸)(트리플루오로메틸) 카보네이트, (2,2-디플루오로에틸)(플루오로메틸) 카보네이트, (2,2-디플루오로에틸)(디플루오로메틸) 카보네이트, (2,2-디플루오로에틸)(트리플루오로메틸) 카보네이트, (2,2,2-트리플루오로에틸)(플루오로메틸) 카보네이트, (2,2,2-트리플루오로에틸)(디플루오로메틸) 카보네이트 및 (2,2,2-트리플루오로에틸)(트리플루오로메틸) 카보네이트 등의 플루오르화 에틸메틸 카보네이트계 유기용매도 이용할 수 있다.
상기 선형 에스테르계 유기용매는 메틸 아세테이트, 에틸 아세테이트, 메틸 프로피오네이트 및 에틸 프로피오네이트 등 일 수 있다.
또한, 플루오로메틸 아세테이트, 디플루오로메틸 아세테이트, 트리플루오로메틸 아세테이트, 2-플루오로에틸 아세테이트, 2,2-디플루오로에틸 아세테이트, 2,2,2-트리플루오로에틸 아세테이트, 플루오로메틸 프로피오네이트, 디플루오로메틸 프로피오네이트, 트리플루오로메틸 프로피오네이트, 2-플루오로에틸 프로피오네이트, 2,2-디플루오로에틸 프로피오네이트 및 2,2,2-트리플루오로에틸 프로피오네이트 등의 플루오르화 선형 에스테르계 유기용매도 이용할 수 있다.
케톤계 유기용매는 아세톤, 메틸 에틸 케톤 및 디에틸 케톤 등일 수 있다.
또한, 1-플루오로-프로판-2-온, 1,1-디플루오로프로판-2-온, 1,1,1-트리플루오로프로판-2-온, 1,3-디플루오로프로판-2-온, 1,1,3-트리플루오로프로판-2-온, 1,1,1,3-테트라플루오로프로판-2-온, 1,1,3,3-테트라플루오로프로판-2온, 1,1,1,3,3-펜타플루오로프로판-2-온 및 1,1,1,3,3,3-헥사플루오로프로판-2-온 등의 플루오르화 케톤계 유기용매도 이용할 수 있다.
상기 흑연을 담지하는 용매는 인조흑연 또는 천연흑연에 따라 차이가 있으며, 구체적으로, 인조흑연을 담지하는 용매로는 EMC(Ethylmethyl carbonate)를 사용하는 것이 특히 바람직하며, 천연흑연을 담지하는 용매로는 에탄올이 특히 바람직하다.
상기 저온 처리는 0 내지 -40℃의 온도에서 0.1 내지 168시간 동안 수행하는 것일 수 있다. 이때, 온도는 -5 내지 -35℃인 것이 바람직하며, -10 내지 -30℃인 것이 더욱 바람직하다.
상기와 같이 담지하는 용매 및 저온 처리 조건하에서 흑연 활물질을 처리하는 경우, 흑연 활물질의 층간 거리가 증가하여, 리튬 이차전지의 음극재로 이용 시, 충전 속도를 향상시키고, 충전 용량을 증대할 수 있다.
본 발명의 다른 일 실시예는 흑연 활물질을 포함하는 이차전지용 전극 및 이를 포함하는 이차전지에 관한 것이다.
상기 흑연 활물질은 이차전지의 양극재 또는 음극재로 사용이 가능한 것일 수 있다.
구체적으로, 상기 흑연 활물질은 당업계에서 통상적으로 실시하는 방식을 통해 도전재 및 바인더와 함께 이차전지용 전극에 포함되어 가공될 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이라면 특별한 제한 없이 사용가능하다. 구체적인 예로는 흑연, 카본 블랙, 수퍼피, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브, 탄소나노와이어, 그래핀, 흑연화 메조카본 마이크로비드, 플러렌 및 비정질탄소 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있으나, 이는 일 예시일 뿐 기 공지된 도전재라면 제한되지 않는다.
상기 바인더는 활물질과 도전재 입자들 간 또는 활물질과 집전체와의 접착력을 향상시킨다. 구체적인 예로는 폴리비닐리덴플루오라이드(PVDF), 폴리이미드(PI), 플루오르폴리이미드(FPI), 폴리아크릴산(PAA), 폴리비닐알코올(PVA), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필 셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈(PVP), 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리우레탄, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무 또는 이들의 공중합체, 알긴 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있으나, 이는 일 예시일 뿐 기 공지된 바인더라면 제한되지 않는다.
상기 흑연 활물질은 리튬 이차전지의 음극재로 사용되는 것일 수 있다. 리튬 이차전지의 음극재는 전지 충전 시 리튬을 삽입하여 저장하고, 방전 시 리튬을 방출하여 전기에너지를 제공한다.
상기 리튬 이차전지는 리튬 이차전지용 양극; 리튬 이차전지용 전해질; 및 분리막을 더 포함할 수 있다.
상기 리튬 이차전지용 양극은 양극활물질로 LiCoO2, LiMnO2, LiNiO2 LiMn2O4, LiNi1-xCoxO2, LiNixCoyMnzO2(x+y+z=1), LiNixCoyAlzO2(x+y+z=1), LiNixMnyMzO2 (x+y+z=1, M은 2가 또는 3가 금속 또는 전이금속), LiFePO4, LiMnPO4, LiCoPO4, LiFe1-xMxPO4 (M은 전이금속), a(Li2MnO3) b(LiNIxCoyMnzO2)(a+b=1, x+y+z=1), Li1.2Ni0.13Co0.13-xMn0.54AlxO2(1-y)F2y(x, y는 서로 독립적인 0 내지 0.05인 실수), Li1.2Mn(0.8-a)MaO2 (M은 2가 또는 3가 금속 또는 전이금속), Li2N1-xMxO3 (N은 2가, 3가 또는 4가 금속 또는 전이금속, M은 2가 또는 3가 금속 또는 전이금속), Li1+xNy-zMzO2 (N은 Ti 또는 Nb,, M은 V, Ti, Mo 또는 W), Li4Mn2-xMxO5 (M는 금속 또는 전이금속), LixM2-xO2 (M은 Ti, Zr, Nb, Mn 등 금속 또는 전이금속), Li2O/Li2Ru1-xMxO3 (M은 금속 또는 전이금속) 중에서 선택되는 어느 하나 또는 둘 이상의 혼합물 등이 사용될 수 있으나, 이는 일 예시일 뿐 기 공지된 양극활물질이라면 제한되지 않는다.
또한, 상기 리튬 이차전지용 양극은 도전재 및 바인더를 더 포함할 수 있으며, 이는 전술한 도전재 및 바인더와 동일하여 중복된 설명은 생략한다.
상기 리튬 이차전지용 전해질은 리튬염과 이를 포함하는 혼합 유기용매; 고분자 매트릭스; 또는 전고체 전해질로 이루어진 것일 수 있다.
상기 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAlO4, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiC6H5SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiN(FSO2)2, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단, x, y는 0 또는 자연수), LiCl, LiI, LiSCN, LiB(C2O4)2, LiF2BC2O4, LiPF4(C2O4), LiPF2(C2O4)2, 및 LiP(C2O4)3 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있으며, 이는 일 예시일 뿐 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있어 반드시 이에 제한되는 것은 아니다.
상기 혼합 유기용매는 에틸렌 카보네이트, 프로필렌 카보네이트, 비닐렌 카보네이트 등의 환형 카보네이트계로 이루어진 군;
플루오로에틸렌 카보네이트, 디플루오로에틸렌 카보네이트, 플루오로프로필렌 카보네이트 등의 플루오르화 환형 카보네이트계로 이루어진 군;
디메틸 카보네이트, 메틸에틸 카보네이트, 디에틸 카보네이트 등의 선형 카보네이트계로 이루어진 군;
플루오로메틸메틸 카보네이트, 디플루오로메틸메틸 카보네이트, 트리플루오로메틸메틸 카보네이트, 비스(플루오로메틸) 카보네이트, 비스(디플루오로메틸) 카보네이트, 비스(트리플루오로메틸) 카보네이트, (플루오로메틸)(디플루오로메틸) 카보네이트, (플루오로메틸)(트리플루오로메틸) 카보네이트 및 (디플루오로메틸)(트리플루오로메틸) 카보네이트 등의 플루오르화 디메틸 카보네이트계로 이루어진 군;
2-플루오로에틸메틸 카보네이트, 2,2-디플루오로에틸메틸 카보네이트, 2,2,2-트리플루오로에틸메틸 카보네이트, (2-플루오로에틸)(플루오로메틸) 카보네이트, (2-플루오로에틸)(디플루오로메틸) 카보네이트, (2-플루오로에틸)(트리플루오로메틸) 카보네이트, (2,2-디플루오로에틸)(플루오로메틸) 카보네이트, (2,2-디플루오로에틸)(디플루오로메틸) 카보네이트, (2,2-디플루오로에틸)(트리플루오로메틸) 카보네이트, (2,2,2-트리플루오로에틸)(플루오로메틸) 카보네이트, (2,2,2-트리플루오로에틸)(디플루오로메틸) 카보네이트, (2,2,2-트리플루오로에틸)(트리플루오로메틸) 카보네이트 등의 불소 함유 에틸메틸 카보네이트계로 이루어진 군; 및 2-플루오로에틸에틸 카보네이트, 2,2-디플루오로에틸에틸 카보네이트, 2,2,2-트리플루오로에틸에틸 카보네이트, 비스(2-플루오로에틸) 카보네이트, 비스(2,2-디플루오로에틸) 카보네이트, 비스(2,2,2-트리플루오로에틸) 카보네이트, (2-플루오로에틸)(2,2-디플루오로에틸) 카보네이트, (2-플루오로에틸)(2,2,2-트리플루오로에틸) 카보네이트, (2,2-디플루오로에틸)(2,2,2-트리플루오로에틸) 카보네이트 등의 플루오르화 디에틸 카보네이트계로 이루어진 군;
플루오로메틸 아세테이트, 디플루오로메틸 아세테이트, 트리플루오로메틸 아세테이트, 2-플루오로에틸 아세테이트, 2,2-디플루오로에틸 아세테이트, 2,2,2-트리플루오로에틸 아세테이트, 플루오로메틸 프로피오네이트, 디플루오로메틸 프로피오네이트, 트리플루오로메틸 프로피오네이트, 2-플루오로에틸 프로피오네이트, 2,2-디플루오로에틸 프로피오네이트 및 2,2,2-트리플루오로에틸 프로피오네이트, 2-플루오로에틸 부티레이트, 2,2-디플루오로에틸 부티레이트, 2,2,2-트리플루오로에틸 부티레이트(TFEB) 등의 플루오르화 에스테르계로 이루어진 군;
디메틸 에테르, 에틸메틸 에테르, 디에틸 에테르, 프로필메틸 에테르, 프로필에틸 에테르, 디프로필 에테르, 아이소프로필메틸 에테르, 아이소프로필에틸 에테르, 디아이소프로필 에테르, n-부틸메틸 에테르, n-부틸에틸 에테르, n-부틸프로필 에테르, n-부틸아이소프로필 에테르, n-디부틸 에테르, tert-부틸메틸 에테르, tert-부틸에틸 에테르, tert-부틸프로필 에테르, tert-부틸아이소프로필 에테르, tert-디부틸 에테르, 에틸렌글리콜 메틸 에테르, 에틸렌글리콜 에틸 에테르, 에틸렌글리콜 프로필 에테르, 에틸렌글리콜 아이소프로필 에테르, 에틸렌글리콜 n-부틸 에테르, 에틸렌글리콜 tert-부틸 에테르, 디에틸렌글리콜 에테르, 프로필렌글리콜 메틸 에테르, 프로필렌글리콜 에틸 에테르, 프로필렌글리콜 프로필 에테르, 프로필렌글리콜 아이소프로필 에테르, 프로필렌글리콜 n-부틸 에테르, 프로필렌글리콜 tert-부틸 에테르, 디프로필렌글리콜 에테르 등의 에테르계로 이루어진 군;
플루오로메틸 메틸 에테르, 디플루오로메틸 메틸 에테르, 트리플루오로메틸 메틸 에테르, 디(플루오로메틸) 에테르, 디플루오로메틸 플루오로메틸 에테르, 트리플루오로메틸 플루오로메틸 에테르, 디(디플루오로메틸) 에테르, 트리플루오로메틸 디플루오로메틸 에테르, 디(트리플루오로메틸) 에테르, 1-플루오로에틸 메틸 에테르, 2-플루오로에틸 메틸 에테르, 1,1-디플루오로에틸 메틸 에테르, 1,2-디플루오로에틸 메틸 에테르, 2,2-디플루오로에틸 메틸 에테르, 1,1,1-트리플루오로에틸 메틸 에테르, 1,1,2-트리플루오로에틸 메틸 에테르, 1,2,2-트리플루오로에틸 메틸 에테르, 2,2,2-트리플루오로에틸 메틸 에테르, 1,1,1,2-테트라플루오로에틸 메틸 에테르, 1,1,2,2-테트라플루오로에틸 메틸 에테르, 1,2,2,2-테트라플루오로에틸 메틸 에테르, 1,1,1,2,2-펜타플루오로에틸 메틸 에테르, 1,1,2,2,2-펜타플루오로에틸 메틸 에테르, 헥사플루오로에틸 메틸 에테르, 1-플루오로에틸 플루오로메틸 에테르, 2-플루오로에틸 플루오로메틸 에테르, 1,1-디플루오로에틸 플루오로메틸 에테르, 1,2-디플루오로에틸 플루오로메틸 에테르, 2,2-디플루오로에틸 플루오로메틸 에테르, 1,1,1-트리플루오로에틸 플루오로메틸 에테르, 1,1,2-트리플루오로에틸 플루오로메틸 에테르, 1,2,2-트리플루오로에틸 플루오로메틸 에테르, 2,2,2-트리플루오로에틸 플루오로메틸 에테르, 1,1,1,2-테트라플루오로에틸 플루오로메틸 에테르, 1,1,2,2-테트라플루오로에틸 플루오로메틸 에테르, 1,2,2,2-테트라플루오로에틸 플루오로메틸 에테르, 1,1,1,2,2-펜타플루오로에틸 플루오로메틸 에테르, 1,1,2,2,2-펜타플루오로에틸 플루오로메틸 에테르, 헥사플루오로에틸 플루오로메틸 에테르, 1-플루오로에틸 디플루오로메틸 에테르, 2-플루오로에틸 디플루오로메틸 에테르, 1,1-디플루오로에틸 디플루오로메틸 에테르, 1,2-디플루오로에틸 디플루오로메틸 에테르, 2,2-디플루오로에틸 디플루오로메틸 에테르, 1,1,1-트리플루오로에틸 디플루오로메틸 에테르, 1,1,2-트리플루오로에틸 디플루오로메틸 에테르, 1,2,2-트리플루오로에틸 디플루오로메틸 에테르, 2,2,2-트리플루오로에틸 디플루오로메틸 에테르, 1,1,1,2-테트라플루오로에틸 디플루오로메틸 에테르, 1,1,2,2-테트라플루오로에틸 디플루오로메틸 에테르, 1,2,2,2-테트라플루오로에틸 디플루오로메틸 에테르, 1,1,1,2,2-펜타플루오로에틸 디플루오로메틸 에테르, 1,1,2,2,2-펜타플루오로에틸 디플루오로메틸 에테르, 헥사플루오로에틸 디플루오로메틸 에테르, 1-플루오로에틸 트리플루오로메틸 에테르, 2-플루오로에틸 트리플루오로메틸 에테르, 1,1-디플루오로에틸 트리플루오로메틸 에테르, 1,2-디플루오로에틸 트리플루오로메틸 에테르, 2,2-디플루오로에틸 트리플루오로메틸 에테르, 1,1,1-트리플루오로에틸 트리플루오로메틸 에테르, 1,1,2-트리플루오로에틸 트리플루오로메틸 에테르, 1,2,2-트리플루오로에틸 트리플루오로메틸 에테르, 2,2,2-트리플루오로에틸 트리플루오로메틸 에테르, 1,1,1,2-테트라플루오로에틸 트리플루오로메틸 에테르, 1,1,2,2-테트라플루오로에틸 트리플루오로메틸 에테르, 1,2,2,2-테트라플루오로에틸 트리플루오로메틸 에테르, 1,1,1,2,2-펜타플루오로에틸 트리플루오로메틸 에테르, 1,1,2,2,2-펜타플루오로에틸 트리플루오로메틸 에테르, 헥사플루오로에틸 트리플루오로메틸 에테르, 1-플루오로에틸 에틸 에테르, 2-플루오로에틸 에틸 에테르, 1,1-디플루오로에틸 에틸 에테르, 1,2-디플루오로에틸 에틸 에테르, 2,2-디플루오로에틸 에틸 에테르, 1,1,1-트리플루오로에틸 에틸 에테르, 1,1,2-트리플루오로에틸 에틸 에테르, 1,2,2-트리플루오로에틸 에틸 에테르, 2,2,2-트리플루오로에틸 에틸 에테르, 1,1,1,2-테트라플루오로에틸 에틸 에테르, 1,1,2,2-테트라플루오로에틸 에틸 에테르, 1,2,2,2-테트라플루오로에틸 에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 에틸 에테르헥사플루오로에틸 에틸 에테르, 1-플루오로에틸 1-플루오로에틸 에테르, 2-플루오로에틸 1-플루오로에틸 에테르, 1,1-디플루오로에틸 1-플루오로에틸 에테르, 1,2-디플루오로에틸 1-플루오로에틸 에테르, 2,2-디플루오로에틸 1-플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1-플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1-플루오로에틸 에테르, 1,2,2-트리플루오로에틸 1-플루오로에틸 에테르, 2,2,2-트리플루오로에틸 1-플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1-플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 1-플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 1-플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 1-플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 1-플루오로에틸 에테르, 헥사플루오로에틸 1-플루오로에틸 에테르, 1-플루오로에틸 2-플루오로에틸 에테르, 2-플루오로에틸 2-플루오로에틸 에테르, 1,1-디플루오로에틸 2-플루오로에틸 에테르, 1,2-디플루오로에틸 2-플루오로에틸 에테르, 2,2-디플루오로에틸 2-플루오로에틸 에테르, 1,1,1-트리플루오로에틸 2-플루오로에틸 에테르, 1,1,2-트리플루오로에틸 2-플루오로에틸 에테르, 1,2,2-트리플루오로에틸 2-플루오로에틸 에테르, 2,2,2-트리플루오로에틸 2-플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 2-플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 2-플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 2-플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 2-플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 2-플루오로에틸 에테르, 헥사플루오로에틸 2-플루오로에틸 에테르, 1-플루오로에틸 1,2-디플루오로에틸 에테르, 2-플루오로에틸 1,2-디플루오로에틸 에테르, 1,1-디플루오로에틸 1,2-디플루오로에틸 에테르, 디(1,2-디플루오로에틸) 에테르, 2,2-디플루오로에틸 1,2-디플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1,2-디플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1,2-디플루오로에틸 에테르, 1,2,2-트리플루오로에틸 1,2-디플루오로에틸 에테르, 2,2,2-트리플루오로에틸 1,2-디플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1,2-디플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 1,2-디플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 1,2-디플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 1,2-디플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 1,2-디플루오로에틸 에테르, 헥사플루오로에틸 1,2-디플루오로에틸 에테르, 1,1-디플루오로에틸 2-2디플루오로에틸 에테르, 1,2-디플루오로에틸 2-2디플루오로에틸 에테르, 디(2,2-디플루오로에틸) 에테르, 1,1,1-트리플루오로에틸 2-2디플루오로에틸 에테르, 1,1,2-트리플루오로에틸 2-2디플루오로에틸 에테르, 1,2,2-트리플루오로에틸 2-2디플루오로에틸 에테르, 2,2,2-트리플루오로에틸 2-2디플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 2-2디플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 2-2디플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 2-2디플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 2-2디플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 2-2디플루오로에틸 에테르, 헥사플루오로에틸 2-2디플루오로에틸 에테르, 1,1-디플루오로에틸 1,1,1-트리플로오로에틸 에테르, 1,2-디플루오로에틸 1,1,1-트리플로오로에틸 에테르, 2,2-디플루오로에틸 1,1,1-트리플로오로에틸 에테르, 디(1,1,1-트리플루오로에틸) 에테르, 1,1,2-트리플루오로에틸 1,1,1-트리플로오로에틸 에테르, 1,2,2-트리플루오로에틸 1,1,1-트리플로오로에틸 에테르, 2,2,2-트리플루오로에틸 1,1,1-트리플로오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1,1,1-트리플로오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 1,1,1-트리플로오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 1,1,1-트리플로오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 1,1,1-트리플로오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 1,1,1-트리플로오로에틸 에테르, 헥사플루오로에틸 1,1,1-트리플로오로에틸 에테르, 1,1-디플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,2-디플루오로에틸 1,1,2-트리플루오로에틸 에테르, 2,2-디플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,2,2-트리플루오로에틸 1,1,2-트리플루오로에틸 에테르, 2,2,2-트리플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 1,1,2-트리플루오로에틸 에테르, 헥사플루오로에틸 1,1,2-트리플루오로에틸 에테르, 1,1-디플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,2-디플루오로에틸 1,2,2-트리플루오로에틸 에테르, 2,2-디플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1,2,2-트리플루오로에틸 에테르, 디(1,2,2-트리플루오로에틸) 에테르, 2,2,2-트리플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 1,2,2-트리플루오로에틸 에테르, 헥사플루오로에틸 1,2,2-트리플루오로에틸 에테르, 1,1-디플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,2-디플루오로에틸 2,2,2-트리플루오로에틸 에테르, 2,2-디플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,1,1-트리플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,1,2-트리플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,2,2-트리플루오로에틸 2,2,2-트리플루오로에틸 에테르, 디(2,2,2-트리플루오로에틸) 에테르, 1,1,1,2-테트라플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 2,2,2-트리플루오로에틸 에테르, 헥사플루오로에틸 2,2,2-트리플루오로에틸 에테르, 1,1-디플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 1,2-디플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 2,2-디플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 1,2,2-트리플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 2,2,2-트리플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 디(1,1,1,2-테트라플루오로에틸) 에테르, 1,1,2,2-테트라플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 헥사플루오로에틸 1,1,1,2-테트라플루오로에틸 에테르, 1,1-디플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 1,2-디플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 2,2-디플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 1,2,2-트리플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 2,2,2-트리플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 디(1,1,2,2-테트라플루오로에틸) 에테르, 1,2,2,2-테트라플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 헥사플루오로에틸 1,1,2,2-테트라플루오로에틸 에테르, 1,1-디플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 1,2-디플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 2,2-디플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 1,2,2-트리플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 2,2,2-트리플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 디(1,2,2,2-테트라플루오로에틸) 에테르, 1,1,1,2,2-펜타플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 1,1,2,2,2-펜타플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 헥사플루오로에틸 1,2,2,2-테트라플루오로에틸 에테르, 1,1-디플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 1,2-디플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 2,2-디플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 1,2,2-트리플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 2,2,2-트리플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 디(1,1,1,2,2-펜타플루오로에틸) 에테르, 1,1,2,2,2-펜타플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 헥사플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 1,1-디플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 1,2-디플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 2,2-디플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 1,1,1-트리플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 1,1,2-트리플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 1,2,2-트리플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 2,2,2-트리플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 1,1,1,2-테트라플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 1,1,2,2-테트라플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 1,2,2,2-테트라플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 1,1,1,2,2-펜타플루오로에틸 1,1,2,2,2-펜타플루오로에틸 에테르, 디(1,1,2,2,2-펜타플루오로에틸) 에테르, 헥사플루오로에틸 1,1,1,2,2-펜타플루오로에틸 에테르, 디헥사플루오로에틸 에테르 등의 플루오르화 에테르로 이루어진 군;
비스(플루오로메틸)설페이트, 비스(2-플루오로에틸)설페이트, 비스(3-플루오로프로필)설페이트, 비스(디플루오로메틸)설페이트, 비스(2,2-디플루오로에틸)설페이트, 비스(3,3-디플루오로프로필)설페이트, 비스(트리플루오로메틸)설페이트, 비스(2,2,2-트리플루오로에틸)설페이트, 비스(3,3,3-트리플루오로프로필)설페이트, 메틸(플루오로메틸)설페이트, 메틸(2-플루오로에틸)설페이트, 메틸(3-플루오로프로필)설페이트, 메틸(디플루오로메틸)설페이트, 메틸(2,2-디플루오로에틸)설페이트, 메틸(3,3-디플루오로프로필)설페이트, 메틸(트리플루오로메틸)설페이트, 메틸(2,2,2-트리플루오로에틸)설페이트, 메틸(3,3,3-트리플루오로프로필)설페이트, 에틸(플루오로메틸)설페이트, 에틸(2-플루오로에틸)설페이트, 에틸(3-플루오로프로필)설페이트, 에틸(디플루오로메틸)설페이트, 에틸(2,2-디플루오로에틸)설페이트, 에틸(3,3-디플루오로프로필)설페이트, 에틸(트리플루오로메틸)설페이트, 에틸(2,2,2-트리플루오로에틸)설페이트, 에틸(3,3,3-트리플루오로프로필)설페이트, 프로필(플루오로메틸)설페이트, 프로필(2-플루오로에틸)설페이트, 프로필(3-플루오로프로필)설페이트, 프로필(디플루오로메틸)설페이트, 프로필(2,2-디플루오로에틸)설페이트, 프로필(3,3-디플루오로프로필)설페이트, 프로필(트리플루오로메틸)설페이트, 프로필(2,2,2-트리플루오로에틸)설페이트, 프로필(3,3,3-트리플루오로프로필)설페이트, (플루오로메틸)(2-플루오로에틸)설페이트, (플루오로메틸)(3-플루오로프로필)설페이트, (플루오로메틸)(디플루오로메틸)설페이트, (플루오로메틸)(2,2-디플루오로에틸)설페이트, (플루오로메틸)(3,3-디플루오로프로필)설페이트, (플루오로메틸)(트리플루오로메틸)설페이트, (플루오로메틸)(2,2,2-트리플루오로에틸)설페이트, (플루오로메틸)(3,3,3-트리플루오로프로필)설페이트, (2-플루오로에틸)(3-플루오로프로필)설페이트, (2-플루오로에틸)(디플루오로메틸)설페이트, (2-플루오로에틸)(2,2-디플루오로에틸)설페이트, (2-플루오로에틸)(3,3-디플루오로프로필)설페이트, (2-플루오로에틸)(트리플루오로메틸)설페이트, (2-플루오로에틸)(2,2,2-트리플루오로에틸)설페이트, (2-플루오로에틸)(3,3,3-트리플루오로프로필)설페이트, (3-플루오로프로필)(디플루오로메틸)설페이트, (3-플루오로프로필)(2,2-디플루오로에틸)설페이트, (3-플루오로프로필)(3,3-디플루오로프로필)설페이트, (3-플루오로프로필)(트리플루오로메틸)설페이트, (3-플루오로프로필)(2,2,2-트리플루오로에틸)설페이트, (3-플루오로프로필)(3,3,3-트리플루오로프로필)설페이트, (디플루오로메틸)(2,2-디플루오로에틸)설페이트, (디플루오로메틸)(3,3-디플루오로프로필)설페이트, (디플루오로메틸)(트리플루오로메틸)설페이트, (디플루오로메틸)(2,2,2-트리플루오로에틸)설페이트, (디플루오로메틸)(3,3,3-트리플루오로프로필)설페이트, (2,2-디플루오로에틸)(3,3-디플루오로프로필)설페이트, (2,2-디플루오로에틸)(트리플루오로메틸)설페이트, (2,2-디플루오로에틸)(2,2,2-트리플루오로에틸)설페이트, (2,2-디플루오로에틸)(3,3,3-트리플루오로프로필)설페이트, (3,3-디플루오로프로필)트리플루오로메틸)설페이트, (3,3-디플루오로프로필)(2,2,2-트리플루오로에틸)설페이트 및 (3,3-디플루오로프로필)(3,3,3-트리플루오로프로필)설페이트 등의 설페이트(sulfate)계로 이루어진 군;
에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있으나, 반드시 이에 제한되는 것은 아니다.
상기 혼합 유기용매는 첨가제를 더 포함할 수 있다.
상기 첨가제는 CEI(Cathode-Electrolyte Interface) 형성을 보조하는 역할을 하는 것일 수 있다. 구체적으로, 트리메틸 보록사인(trimethyl boroxine, TMB), 트리에틸 보록사인(triethyl boroxine), 트리메틸 보레이트(trmethyl borate), 트리에틸 보레이트 (triethyl borate, TEB), 트리스(트리메틸실릴) 보레이트(tris(trimethylsilyl) borate, TMSB), 리튬 트리플루오로(퍼플루오로-터트-부틸옥실) 보레이트(lithium trifluoro(perfluoro-tert-butyloxyl) borate, LiTPBOB) 및 리튬 디플루오로(옥살라토) 보레이트(lithium difluoro(oxalato) borate, LiDFOB)등의 붕소 계열로 이루어진 군; 4,4-bi(1,3,2-dioxathiolane)2,2-dioxide(BDTD), 2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphospholane-2-oxide(TFEOP) 등의 황 계열로 이루어진 군; 및 메틸 2,2,2-트리플루오로에틸 카보네이트(methyl 2,2,2-trifluoroethyl carbonate, FEMC), 메틸 디플루오로아세테이트(methyl difluroacetate, DFMAc) 및 에틸 디플루오로아세테이트(ethyl difluoroacetate, DFEAc)등을 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC)와 병용하여 첨가하는 플루오르화 계열로 이루어진 군;에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 반드시 이에 제한되지는 않으며, 기 공지된 CEI 형성을 보조하는 첨가제라면 특별히 제한되지 않는다.
상기 첨가제는 SEI(Solid-Electrolyte Interface)를 직접 형성하거나 보조하는 역할을 하는 것일 수 있다. 구체적으로, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC), 비닐렌 카보네이트(vinylene carbonate, VC), 비닐에틸렌 카보네이트(vinylethylene carbonate, VEC), 알릴에틸 카보네이트(allylethyl carbonate), 비닐 아세테이트(vinyl acetate), 디비닐 아디페이트(divinyl adipate), 아크릴산 나이트릴(acrylic acid nitrile), 2-비닐 피리딘(2-vinyl pyridine), γ-부티로락톤(γ-butyrolactone, GBL), 메틸페닐 카보네이트(methyphenyl carbonate), 숙신 이미드(succinic imide), 말레산 무수물(maleic anhydride), 메틸 클로로포메이트(methyl chloroformate), 메틸 신나메이트(methyl cinnamate) 및 이중결합을 가진 퓨란 유도체 등의 환형 화합물로 이루어진 군; 포스포네이트(phosphonate) 화합물로 이루어진 군; 비닐 함유 실란(vinyl-containing silane) 화합물로 이루어진 군; 및 나이트레이트(nitrate) 및 나이트라이트(nitrite) 화합물로 이루어진 군;에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 반드시 이에 제한되는 것은 아니며, 기 공지된 SEI를 형성하거나 형성을 보조하는 첨가제라면 특별히 제한되지 않는다.
상기 첨가제는 HF, PF5와 같은 활성 물질을 제거하는 역할을 하는 것일 수 있다. 구체적으로, p-톨루엔 술포닐 아이소시아네이트(p-toluene sulfonyl isocyanate, PTSI)등의 아이소시아네이트(isocyanate, N=C=O) 작용기를 갖는 군; 1-메틸-2-피롤리디논(1-methyl-2-pyrrolidinone)등의 피롤리디논 군; 디메톡시 디메틸 실란(dimethoxy dimethyl silane, DODSi), 디페닐 디메톡시 실란(diphenyl dimethoxy silane, DPDMS) 등의 Si-O 구조를 갖는 실란(silane) 유도체로 이루어진 군; 헥사메틸 포스포아마이드(hexamethyl phosphoramide)등의 포스포아마이드로 이루어진 군; 트리스(2,2,2-트리플루오로에틸)포스파이트(tris(2-2-2-trifluoroethyl)phosphite), 트리스(트리메톡시 실릴)포스파이트(tris(trimethyl silyl)phosphite, TMSPi)등의 포스파이트(phosphite)로 이루어진 군; 및 디에틸 페닐 포스포나이트(diethyl phenyl phosphonite, DEPP)등의 포스포나이트(phosphonites)로 이루어진 군;에서 선택되는 어느 하나 또는 둘 이상이나, 반드시 이에 제한되지는 않으며, 기 공지된 활성물질을 제거하는 첨가제라면 특별히 제한되지 않는다.
상기 첨가제는 과충전을 방지하는 역할을 하는 것일 수 있다. 구체적으로, 메탈로센(metallocenes), 테트라사이아노 에틸렌(tetracyano ethylene), 테트라메틸 페닐렌 디아민(tetramethyl phenylene diamine), 디하이드로페나진(dihydrophenazine), 바이피리딜 카보네이트(bipyridyl carbonates), 바이페닐 카보네이트(biphenyl carbonates), 2,7-디아세틸 티안트렌(2,7-diacetyl thianthrene) 및 페노싸이아진(phenothiazine)등의 유기화합물로 이루어진 군; Li2B12FxH12-x(lithium fluorododecaborates), 리튬 비스(옥살라토)보레이트(lithium bis(oxalato)borate, LiBOB)등의 리튬염으로 이루어진 군; 및 자일렌(xylene), 사이클로헥실 벤젠(cyclohexyl benzene), 헥사에틸 벤젠(hexaethyl benzene), 바이페닐(biphenyl), 2,2-디페닐 프로판(2,2-diphenyl propane), 2,5-디터트부틸-1,4-디메톡시 벤젠(2,5-di-tert-butyl-1,4-dimethoxy benzene), 페닐-터트-부틸 카보네이트(phenyl-tert-butyl carbonate), 아니솔(anisole), 디플루오로아니솔(difluoroanisole) 및 싸이오펜-3-아세토나이트릴(thiophene-3-acetonitrile)등의 방향족으로 이루어진 군;에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 반드시 이에 제한되지는 않으며, 기 공지된 과충전을 방지하는 첨가제라면 특별히 제한되지 않는다.
상기 첨가제는 이차전지의 난연성을 높이기 위해 첨가되는 것일 수 있다. 구체적으로, 트리메틸 포스페이트(trimethyl phosphate), 트리에틸 포스페이트(triethyl phosphate) 등의 알킬 포스페이트로 이루어진 군; 트리스(2,2,2-트리플루오로에틸)포스페이트(tris(2,2,2-trifluoroethyl)phosphate) 등의 할로젠화 포스페이트로 이루어진 군; 헥사메톡시 사이클로포스파젠(hexamethoxy cyclo phosphazene) 등의 포스파젠으로 이루어진 군; 메틸 노나플루오로부틸 에테르(methyl nonafluorobutyl ether, MFE), 플루오르화프로필렌 카보네이트(fluoropropylene carbonate) 등의 플루오르화 에테르 및 플루오르화 카보네이트로 이루어진 군;에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 반드시 이에 제한되지는 않으며, 기 공지된 난연성을 높이는 첨가제라면 특별히 제한되지 않는다.
상기 첨가제는 리튬의 균일한 환원 침적을 위해 첨가되는 것일 수 있다. 구체적으로, 테트라하이드로퓨란(tetrahydrofuran), 2-메틸테트라하이드로퓨란(2-methyltetrahydrofuran), 싸이오펜(thiophene), 2-메틸싸이오펜(2-methylthiophene), 나이트로메탄(nitromethane), 테트라알킬암모늄 클로라이드(tetraalkylammonium chloride), 세틸 트리메틸 암모늄 클로라이드(cetyl trimethyl ammonium chloride), 리튬 퍼플루오로옥탄 술포네이트(lithium perfluorooctane sulfonate), 테트라에틸암모늄 퍼플루오로옥탄 술포네이트(tetraethylammonium perfluorooctane sulfonate), 퍼플루오로폴리에테르(perfluoropolyethers), AlI3 및 SnI2 등에서 선택되는 어느 하나 또는 둘 이상일 수 있다.
상기 첨가제는 이온의 용매화 현상을 돕기 위해 첨가되는 것일 수 있다. 구체적으로, 12-크라운-4 및 그 유도체, 트리스(펜타플루오로페닐)보레인(tris(pentafluorophenyl)borane), 환형 아자-에테르(aza-ether) 화합물 및 보롤(borole) 화합물 등에서 선택되는 어느 하나 또는 둘 이상일 수 있다.
상기 첨가제는 알루미늄 집전체의 부식을 방지하기 위해 첨가되는 것일 수 있다. 구체적으로, LiN(SO2CnF2n+1)2(n=2 내지 4)의 화학식을 갖는 리튬염 화합물을 포함하는 것일 수 있다.
상기 첨가제의 함량은 원하는 물성에 따라 0.01 내지 10 중량% 범위 내에서 조절할 수 있다.
상기 리튬염을 포함하는 혼합 유기용매로 이루어진 전해질의 농도는 당업계에서 통상적으로 사용되는 수준으로 조절될 수 있으며, 구체적으로 예를 들면 리튬염의 농도는 0.1 내지 60M, 더욱 바람직하게 0.5 내지 2M일 수 있다.
상기 전해질은 전지의 기계적 물성 또는 고온 안정성을 향상시키기 위해 상기 고분자 전해질 매트릭스를 포함할 수 있으며, 구체적으로 폴리아크릴레이트(polyacrylate), 폴리메타아크릴레이트(polymethacrylate), 폴리비닐리덴플루오라이드(polyvinyledene fluoride, PVDF), 폴리헥사플루오로프로필렌(polyhexafluoro propylene, PHFP), 폴리에틸렌 옥사이드(polyethylene oxide, PEO), 폴리프로필렌옥사이드(polypropylene oxide, PPO), 폴리디메틸 실록세인(polydimethyl siloxane), 폴리아크릴로나이트릴(polyacrylonitrile) 및 폴리비닐 클로라이드(polyvinyl chloride, PVC), PEGDME 등의 고분자 중합체 및 이를 혼합한 공중합체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있으며, 기 공지된 리튬 이차전지용 고분자 물질이라면 제한되지 않는다.
상기 고분자 매트릭스는 서로 가교하기 위한 가교 단위체를 포함할 수 있다.
상기 전고체 전해질은 상기 고분자 매트릭스와 상기 리튬염의 복합체로 이들을 혼합한 형태이며, 이를 구성하는 성분은 전술한 고분자 매트릭스 및 리튬염의 성분과 같으므로 중복되는 설명은 생략한다.
상기 분리막은 폴리에틸렌, 폴리프로필렌 중 어느 하나인 다공성 고분자막; 또는 세라믹 소재가 코팅된 다공성 고분자막;일 수 있다.
상기 리튬 이차전지는 각형, 원통형, 코인형 또는 파우치형 등 다양한 형상으로 제작할 수 있다.
상기 리튬 이차전지는 리튬 이온 이차전지, 리튬 폴리머 이차전지 또는 리튬 전고체 이차전지일 수 있으며, 웨어러블 전자기기, 파워툴, 에너지 저장 장치(ESS, energy storage system)에 활용될 수 있다. 특히 고속충전 기술의 가치가 높은 전기자동차(EV, electric vehicle), 스마트폰 등의 휴대용 전자기기, 전기 자전거 및 전기 스쿠터 등을 포함하는 전기이륜차, 드론, 전기 비행기, 또는 전기 골프 카트 등에 활용하기 적합하다.
상기 흑연 활물질은 듀얼 이온 전지(Dual ion battery, DIB)의 양극재로 사용되는 것일 수 있다. 이때, 흑연 활물질은 전지 충전 시 전해질에 포함된 음이온을 삽입하여 저장하고, 방전 시 음이온을 방출한다.
상기 듀얼 이온 전지는 알루미늄 음극; 듀얼 이온 전지용 전해질; 및 분리막;을 더 포함할 수 있다.
상기 알루미늄 음극은 충전 시 표면에 리튬이 환원되어 표면에 석출되며, 방전 시 리튬이 산화되어 전기에너지를 방출한다.
상기 듀얼 이온 전지용 전해질의 구성은 전술한 리튬 이차전지용 전해질과 동일하므로 중복되는 설명은 생략한다.
상기 분리막은 전술한 바와 동일하므로 중복되는 설명은 생략한다.
이하, 실시예를 통해 본 발명에 따른 흑연 활물질 및 이를 포함하는 고속 충방전용 고용량 이차전지에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한, 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한, 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.
[특성 평가 방법]
1) 활물질의 층간 거리 (d002) 측정
흑연 전극 활물질의 층간 거리(d002)를 X선 회절(XRD)을 통해 측정하여 표 1에 기재하였다.
2) 활물질의 비표면적 측정
흑연 전극 활물질의 비표면적을 Brunauer-Emmett-Teller (BET)을 통해 측정하여 표 1에 기재하였다.
3) 충방전 테스트 1:
실시예 1 내지 5 및 비교예 1 내지 2에서 제조된 전극, 리튬 금속 전극, 첨가제를 포함하지 않은 1.0M LiPF6/EC:EMC (3:7 부피 비) 전해액 및 분리막으로 구성된 코인형 리튬 이차전지를 제작하였다.
저속(0.1C) 충방전 사이클을 0.01-1.5V 전압 구간에서 5회 수행하였다. 사이클은 CC(Constant current)/CV(Constant voltage) 충전 및 CC 방전 조건으로, 0.1C-rate의 CC로 0.01V까지 충전한 다음 전류가 0.005C에 도달할 때까지 CV로 충전하고, CC 조건에서 1.5V까지 방전하였다. 상기 충방전 사이클에서 리튬 이차전지의 저속 충방전 시 무게당 전기용량(specific gravimetric capacity) 및 쿨롱효율(Coulombic efficiency)을 측정하여 표 2에 기재하였다.
또한, 하기 계산식 1에 따라 0.1C 방전용량/이론용량(%)를 산출하였다.
[계산식 1]
0.1C 방전용량/이론용량(%) = (0.1C 충방전 시 용량/이론용량(372mAh/g)) × 100
상기 계산식에 따라 산출한 0.1C 방전용량/이론용량(%)를 표 2에 기재하였다.
4) 충방전 테스트 2:
실시예 1 내지 5 및 비교예 1 내지 2에서 제조된 전극, 리튬 금속 전극, 첨가제를 포함하지 않은 1.0M LiPF6/EC:EMC (3:7 부피 비) 전해액 및 분리막으로 구성된 코인형 리튬 이차전지를 제작하였다.
0.01-1.5V 전압구간에서 0.2 내지 2C-rate로 충방전 사이클을 3회 수행하였다. 사이클은 CC(Constant current)/CV(Constant voltage) 충전 및 CC 방전 조건으로, 0.2 내지 2C-rate의 CC로 0.01까지 충전한 다음 전류가 CC 충전 시에 입력한 C-rate의 0.05배에 도달할 때까지 CV로 충전하고, 충전 시의 C-rate와 같은 전류로 CC 조건에서 1.5V까지 방전하였다. 0.01-1.5V 전압구간에서 0.2 내지 2C로 충방전 사이클을 수행하여 방전용량을 측정하였다.
또한, 하기 계산식 2에 따라 용량유지율을 산출하였다.
[계산식 2]
용량유지율(%) = (C-rate에 따른 방전용량/0.1C 방전용량) × 100
상기 충방전 테스트 2의 결과에 따른 용량유지율을 계산하여 표 3에 기재하였다.
5) 충방전 테스트 3:
실시예 4 내지 5 및 비교예 2에서 제조된 전극, 리튬 금속 전극, 첨가제를 포함하지 않은 1.0M LiPF6/EC:EMC (3:7 부피 비) 전해액 및 분리막으로 구성된 코인형 리튬 이차전지를 제작하였다.
저속(0.1C) 충방전 사이클을 0.01-1.5V 전압 구간에서 3회 수행하였다. 사이클은 CC(Constant current)/CV(Constant voltage) 충전 및 CC 방전 조건으로, 0.1C-rate의 CC로 0.01V까지 충전한 다음 전류가 0.005C에 도달할 때까지 CV로 충전하고, CC 조건에서 1.5V까지 방전하였다. 0.01-1.5V 전압구간에서 1C로 충방전 사이클을 100회 수행하여 방전용량을 측정하였다. 상기 충방전 1C 사이클의 1회와 100회에서 리튬 이차전지의 무게당 전기용량(specific gravimetric capacity)을 측정하여 표 4에 기재하였다.
또한, 하기 계산식 2에 따라 용량유지율을 산출하였다.
[계산식 3]
용량 유지율(%) = (100회 방전용량/1회 방전용량) × 100
6) 충방전 테스트 4:
실시예 1 내지 3 및 비교예 1에서 제조된 전극, 리튬 금속 전극, 첨가제를 포함하지 않은 1.0 M LiPF6/proylene carbonate(PC):di-(2,2,2 trifluoroethyl)carbonate (DFDEC) (3:7 부피 비) 전해액 및 분리막으로 구성된 코인형 리튬 이차전지를 제작하였다.
0.01-1.5V 전압구간에서 0.2 내지 2C-rate로 충방전 사이클을 3회 수행하였다. 사이클은 CC(Constant current)/CV(Constant voltage) 충전 및 CC 방전 조건으로, 0.2 내지 2C-rate의 CC로 0.01까지 충전한 다음 전류가 CC 충전 시에 입력한 C-rate의 0.05배에 도달할 때까지 CV로 충전하고, 충전 시의 C-rate와 같은 전류로 CC 조건에서 1.5V까지 방전하였다. 0.01-1.5V 전압구간에서 0.2 내지 2C로 충방전 사이클을 수행하여 방전용량을 측정하였다.
또한, 상기 계산식 2에 따라 용량유지율을 산출하였다.
[실시예 1]
인조흑연을 전극활물질로 사용한 흑연 전극을 준비하였다. 상기 흑연 전극을 Ethyl Methyl Carbonate(EMC)에 담지하여 -20℃에서 24시간 동안 처리하였다.
[실시예 2]
처리하는 시간을 하기 표 1에 기재한 사항에 따라 달리한 것 외 모든 과정을 실시예 1과 동일하게 진행하였다.
[실시예 3]
담지하는 유기용매를 EMC 대신 하기 표 1에 기재한 사항과 같이 달리하였고, 처리하는 시간을 48시간으로 달리한 것 외 모든 과정을 실시예 1과 동일하게 진행하였다.
[실시예 4]
천연흑연을 전극활물질로 사용한 흑연 전극을 준비하였다. 상기 흑연 전극을 Ethyl Methyl Carbonate(EMC)에 담지하여 -20℃에서 48시간 동안 처리하였다.
[실시예 5]
천연흑연을 전극활물질로 사용한 흑연 전극을 준비하였다. 상기 흑연 전극을 Ethanol에 담지하여 -20℃에서 48시간 동안 처리하였다.
[비교예 1]
전처리를 수행하지 않은 인조흑연을 활물질로 사용한 흑연 전극을 준비하였다.
[비교예 2]
전처리를 수행하지 않은 천연흑연을 활물질로 사용한 흑연 전극을 준비하였다.
실시예 1 내지 5 및 비교예 1 내지 2를 담지한 유기용매, 처리 시간, 층간 거리를 측정하여 표 1에 나타내었다. 또한, 이를 포함한 리튬 반전지(half cell)를 제조 후 화성공정을 수행하여, 0.1C 충방전을 기준으로 흑연 전극의 무게당 방전용량, 이론용량 대비 방전용량 및 초기 쿨롱 효율을 계산하여 표 2에 나타내었다.
흑연 종류 유기용매 처리 시간(hr) 층간 거리(Å) BET 표면적(m2/g)
비교예 1 인조흑연 - - 3.367 2.095
실시예 1 EMC 24 3.368 -
실시예 2 EMC 48 3.370 2.677
실시예 3 Ethanol 48 3.370 -
비교예 2 천연흑연 - - 3.360 3.446
실시예 4 EMC 48 3.362 4.436
실시예 5 Ethanol 48 3.363 5.064
무게당 방전용량 (0.1C)
(mAh/g)
0.1C 방전용량/이론용량
(%)
초기 쿨롱 효율(%)
비교예 1 327 87.9 61.0
실시예 1 338 90.9 75.2
실시예 2 355 95.4 85.3
실시예 3 351 94.4 76.2
비교예 2 353 94.9 88.5
실시예 4 385 103.5 90.9
실시예 5 390 104.8 93.0
A. 인조흑연 전극
상기 표 2를 통해 알 수 있는 바와 같이, 인조흑연 음극활물질을 사용한 실시예 1 내지 3은 본원발명에서 제시한 유기용매 조건과 처리 조건(-40 내지 0℃)에서 0.1 내지 168시간 처리)을 만족함으로써, 상기 표 1을 통해 알 수 있는 바와 같이, 무게당 방전용량이 330 내지 355mAh/g으로, 이론용량의 90.9 내지 95.4%에 해당하는 무게당 방전용량을 얻을 수 있었다.
또한, 실시예 1 내지 3의 초기 쿨롱효율은 70.6 내지 85.3%로, 비가역 용량의 발생을 억제하는 효과가 있어 초기 전지 용량 감소 현상을 방지할 수 있었다.
특히 바람직하게, 본원발명에 있어 인조흑연 음극에 가장 유리한 유기용매는 EMC(Ethyl methyl carbonate)이며, 36 내지 60시간 처리하는 것이 바람직하다.
반면, 전처리를 하지 않은 비교예 1의 경우 무게당 방전용량이 327mAh/g으로, 이론용량의 87.9%에 불과하며, 비교예 1의 초기 쿨롱효율은 61.0%로 비가역 용량이 크기 때문에 전지의 최대 용량 감소 현상이 나타나, 본원발명 대비 효율이 낮았다.
B. 천연흑연 전극
상기 표 2를 통해 알 수 있는 바와 같이, 천연흑연 음극활물질을 사용한 실시예 4는 본원발명에서 제시한 유기용매 조건과 처리 조건을 만족함으로써, 상기 표 1을 통해 알 수 있는 바와 같이, 층간 거리가 증가하였고, 무게당 방전용량이 385mAh/g으로, 이론용량의 103.5%에 해당하는 용량 증가 효과를 얻을 수 있었다. 또한, 실시예 5의 초기 쿨롱효율은 90.9%로, 비가역 반응을 줄여 전지의 용량 감소를 방지하는데 효과적이다.
또한, 실시예 5는 본원발명에서 제시한 유기용매 조건과 처리 조건을 만족함으로써, 상기 표 1을 통해 알 수 있는 바와 같이, 층간 거리가 증가하였고, 무게당 방전용량이 390mAh/g으로, 이론용량의 104.8%에 해당하는 용량 증가 효과를 얻을 수 있었다. 또한, 실시예 5의 초기 쿨롱효율은 93.0%로, 비가역 반응을 줄여 전지의 용량 감소를 방지하는데 효과적이다.
본원발명에 있어 천연흑연 전극에 유리한 유기용매는 EMC 또는 Ethanol이며, Ethanol을 사용하는 것이 특히 바람직하다. 또한, 천연흑연 전극을 상기 유기용매에 담지하여 36 내지 60시간 처리하는 것이 바람직하다.
반면, 전처리를 하지 않은 비교예 2의 0.1C 충방전 시 무게당 방전용량은 353mAh/g으로, 이론용량 대비 94.9%의 성능을 보여 일반적으로 알려진 천연흑연의 성능과 같으며, 초기 쿨롱효율 역시 본원발명 대비 좋지 않았다.
용량 유지율(%)
0.2C 0.5C 1C 2C
비교예 1 95 74 37 13
실시예 1 96 69 36 13
실시예 2 98 88 56 24
실시예 3 97 84 50 21
비교예 2 97 84 57 32
실시예 4 98 89 63 42
실시예 5 99.8 99.7 99.6 99.0
상기 표 3을 통해 알 수 있는 바와 같이, 본원발명에 따른 실시예 1 내지 3에서, 유기용매에 담지한 처리 시간이 36 내지 60 시간일 때 고속 충방전 성능이 가장 크게 향상되었다. 또한, 실시예 4와 5도 전술한 바와 동일하게 고속 충방전 성능이 향상되어, 본원발명이 인조흑연과 천연흑연 모두에 효과가 있고, 특히 천연흑연에 효과가 있음을 확인할 수 있다.
더욱 상세하게, 도 1에서 볼 수 있는 바와 같이, 실시예 5는 화성공정 계면저항이 감소하고 초기 사이클 계면저항 증가도 억제되어, 이와 같은 기능이 고속 충방전 성능 향상에 기여한 것을 확인할 수 있다.
1C (1시간 충전) 충방전 사이클 성능
1회 방전용량 100회 방전용량 용량 유지율(%)
비교예 2 371 작동 불가 -
실시예 5 388 371 95.6
상기 표 4를 통해 알 수 있는 바와 같이, 비교예 2의 경우 고속 충방전 조건에서 사이클 작동이 불가능하였다. 반면, 본원발명에 따른 실시예 5에서는 고속 충방전 100 사이클 후 용량 유지율이 95% 초과하여 매우 높았다. 본원발명이 고속 충전 성능 향상에 큰 효과가 있음을 확인할 수 있다.
[실시예 6]
상기 실시예 2로 제조된 인조흑연을 전극활물질로 사용한 흑연 전극을 포함한 리튬 반전지(half cell)를 제조 후 화성공정을 수행하여, 0.1C 충방전을 기준으로 흑연 전극의 무게당 방전용량, 이론용량 대비 방전용량 및 초기 쿨롱 효율을 계산하여 표 5와 같다.
용량 유지율(%)
0.2C 0.5C 1C 2C
비교예 1 95 74 37 13
실시예 2 98 88 56 24
실시예 6 99 96 85 40
상기 표 5와 같이, 실시예 2의 상용 전해액 뿐 아니라 본원발명에 따른 실시예 10의 불소화 용매 포함 전해액에서도 동일하게 고속 충전이 가능하다. 특히, 실시예 6의 불소화 용매 포함 전해액에서 0.5C 내지 2C에서의 고속 충방전 성능이 가장 크게 향상되어, 본원발명의 흑연이 불소화 용매 포함 전해액 큰 효과가 있음을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지에 관한 것이다.

Claims (13)

  1. 층간 거리 (d002)가 0.001 Å 내지 0.003Å 증가된
    흑연 활물질.
  2. 제1항에 있어서,
    상기 흑연 활물질은 천연흑연 활물질 또는 인조흑연 활물질인
    흑연 활물질.
  3. 제2항에 있어서,
    상기 천연흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 초기 쿨롱효율이 90 내지 95%이며, 0.1C 충방전 시 무게당 방전용량이 360mAh/g 이상이며, 2C 충방전 시 용량 유지율이 30 내지 99%인
    흑연 활물질.
  4. 제2항에 있어서,
    상기 흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지가 1C (1시간내 충전) 충방전시 무게당 방전용량이 320 mAh/g 이상이며, 1C 충방전 사이클이 가능한
    흑연 활물질.
  5. 제2항에 있어서,
    상기 인조흑연 활물질의 층간 거리(d002)가 3.368 Å 내지 3.370 Å인 흑연 활물질.
  6. 제5항에 있어서,
    상기 인조흑연 활물질을 전극 활물질로 포함하는 리튬 이차전지는 초기 쿨롱효율이 65 내지 92%이며, 0.1C 충방전 시 무게당 방전용량이 345 내지 360mAh/g이며, 2C 충방전 시 용량 유지율이 10 내지 45%인
    흑연 활물질.
  7. 제1항에 있어서,
    BET 표면적이 127% 이상 증가된
    흑연 활물질.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 흑연 활물질을 포함하는
    이차전지용 전극.
  9. 제8항에 있어서,
    상기 이차전지용 전극은 이차전지의 양극재 또는 음극재인
    이차전지용 전극.
  10. 제9항에 따른 이차전지용 전극을 포함하는
    이차전지.
  11. 흑연을 유기용매에 담지하는 단계;
    상기 유기용매에 담지된 흑연을 저온 처리하는 단계; 및
    상기 저온 처리된 흑연을 건조하는 단계를 포함하며,
    층간 거리 (d002)가 0.001 Å 내지 0.003Å 증가된
    흑연 활물질의 제조방법.
  12. 제11항에 있어서,
    상기 유기용매는 선형 알코올계 유기용매, 선형 카보네이트계 유기용매, 환형 카보네이트계 유기용매, 선형 에스테르계 유기용매, 케톤계 유기용매 및 이들의 혼합으로 이루어진 군으로부터 선택되는
    흑연 활물질의 제조방법.
  13. 제11항에 있어서,
    상기 저온 처리는 0 내지 -40℃에서 0.1 내지 168시간 동안 처리하는
    흑연 활물질의 제조방법.
PCT/KR2022/005038 2021-04-08 2022-04-07 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지 WO2022216081A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022001023.1T DE112022001023T5 (de) 2021-04-08 2022-04-07 Graphitaktives material, verfahren zu seiner herstellung und hochleistungs-sekundärbatterie zum hochgeschwindigkeitsladen mit demselben

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0045580 2021-04-08
KR20210045580 2021-04-08
KR10-2022-0042207 2022-04-05
KR1020220042207A KR20220140421A (ko) 2021-04-08 2022-04-05 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지

Publications (1)

Publication Number Publication Date
WO2022216081A1 true WO2022216081A1 (ko) 2022-10-13

Family

ID=83546445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/005038 WO2022216081A1 (ko) 2021-04-08 2022-04-07 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지

Country Status (2)

Country Link
DE (1) DE112022001023T5 (ko)
WO (1) WO2022216081A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030097608A (ko) * 1996-08-08 2003-12-31 히다치 가세고교 가부시끼가이샤 흑연 입자 및 이를 음극으로 이용하는 리튬 2차 전지
KR20130105806A (ko) * 2010-08-31 2013-09-26 가부시키가이샤 아데카 비수 전해액 이차전지
KR101384817B1 (ko) * 2012-10-25 2014-04-15 울산대학교 산학협력단 내부 층간 간격이 산발적으로 증가된 그래핀 종이의 제조방법 및 이를 이용한 리튬이온전지용 음극
KR20160127885A (ko) * 2015-04-27 2016-11-07 전자부품연구원 층상 구조의 2차원 물질의 반응성 증가방법 및 이를 이용한 산화그래핀 제조방법
KR20190071293A (ko) * 2017-12-14 2019-06-24 포항공과대학교 산학협력단 마이크로웨이브를 이용한 그래핀의 제조방법
JP2020188017A (ja) * 2014-04-25 2020-11-19 株式会社Gsユアサ リチウムイオン二次電池、組電池、蓄電装置及び自動車

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030097608A (ko) * 1996-08-08 2003-12-31 히다치 가세고교 가부시끼가이샤 흑연 입자 및 이를 음극으로 이용하는 리튬 2차 전지
KR20130105806A (ko) * 2010-08-31 2013-09-26 가부시키가이샤 아데카 비수 전해액 이차전지
KR101384817B1 (ko) * 2012-10-25 2014-04-15 울산대학교 산학협력단 내부 층간 간격이 산발적으로 증가된 그래핀 종이의 제조방법 및 이를 이용한 리튬이온전지용 음극
JP2020188017A (ja) * 2014-04-25 2020-11-19 株式会社Gsユアサ リチウムイオン二次電池、組電池、蓄電装置及び自動車
KR20160127885A (ko) * 2015-04-27 2016-11-07 전자부품연구원 층상 구조의 2차원 물질의 반응성 증가방법 및 이를 이용한 산화그래핀 제조방법
KR20190071293A (ko) * 2017-12-14 2019-06-24 포항공과대학교 산학협력단 마이크로웨이브를 이용한 그래핀의 제조방법

Also Published As

Publication number Publication date
DE112022001023T5 (de) 2023-11-23

Similar Documents

Publication Publication Date Title
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2023027547A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023043190A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020256440A1 (ko) 복합 음극, 및 상기 복합 음극을 포함한 리튬 이차 전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023121028A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022149951A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2019078685A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2022216081A1 (ko) 흑연 활물질, 이의 제조 방법 및 이를 포함하는 고속 충방전용 고용량 이차전지
WO2020197093A1 (ko) 리튬 이차전지용 전해질 첨가제를 포함하는 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2023113253A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2023191572A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2023204566A1 (ko) 음극재, 이의 제조방법, 이를 포함한 음극 및 상기 음극을 포함하는 리튬 이차전지
WO2022158899A1 (ko) 양극 활물질의 제조방법 및 양극 활물질
WO2023149685A1 (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18286102

Country of ref document: US

Ref document number: 112022001023

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784990

Country of ref document: EP

Kind code of ref document: A1