WO2022215468A1 - 導電性に優れた積層造形用の銅合金粉末 - Google Patents

導電性に優れた積層造形用の銅合金粉末 Download PDF

Info

Publication number
WO2022215468A1
WO2022215468A1 PCT/JP2022/012026 JP2022012026W WO2022215468A1 WO 2022215468 A1 WO2022215468 A1 WO 2022215468A1 JP 2022012026 W JP2022012026 W JP 2022012026W WO 2022215468 A1 WO2022215468 A1 WO 2022215468A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
alloy powder
peak intensity
powder
additive manufacturing
Prior art date
Application number
PCT/JP2022/012026
Other languages
English (en)
French (fr)
Inventor
哲嗣 久世
芳和 相川
将啓 坂田
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Publication of WO2022215468A1 publication Critical patent/WO2022215468A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a copper alloy powder suitable for processes involving rapid melting, rapid cooling and solidification, such as three-dimensional additive manufacturing, thermal spraying, laser coating, and overlaying.
  • the present invention relates to a copper alloy powder suitable for additive manufacturing using a powder bed method (powder bed fusion bonding method).
  • 3D printers have begun to be used to create objects made of metal.
  • This 3D printer is a model that is manufactured by the additive manufacturing method, and the representative methods of the metal additive manufacturing method include the powder bed method (powder bed fusion method) and the metal deposition method (directed energy deposition). method), etc.
  • the powder bed method irradiated portions of the spread powder are melted and solidified by irradiation with a laser beam or an electron beam. This melting and solidification binds the powder particles together. The irradiation is selectively applied to a portion of the metal powder, the non-irradiated portion does not melt, and a bonding layer is formed only on the irradiated portion.
  • New metal powder is spread over the formed bonding layer, and the metal powder is irradiated with a laser beam or an electron beam. The irradiation then melts and solidifies the metal particles to form a new bonding layer.
  • the new tie layer is also bonded to the existing tie layer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-81840 describes iron-based powder, nickel, nickel-based alloy, copper, copper-based alloy, and 1 selected from the group consisting of graphite. It is disclosed that a mixed powder with more than one kind of powder is used as a metal powder for metal stereolithography.
  • a powder layer forming step of spreading these metal powders, a sintered layer forming step of irradiating the powder layer with a beam to form a sintered layer, and a removing step of cutting the surface of the modeled object are repeated.
  • a procedure of forming a sintered layer to manufacture a three-dimensional shaped article is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2019-44260 discloses a copper alloy containing Cu as a main component and containing 0.1 to 20% by mass of Cr and 0 to 0.2% by mass of Zr. It is
  • Patent Document 3 International Publication No. 2019/039058 proposes a copper alloy powder for additive manufacturing containing an additive element whose solid solution amount in copper is less than 0.2 at%. This proposal intends to obtain mechanical strength while reducing the decrease in electrical conductivity due to solid solubility in copper by using an additive element having a low solid solubility in copper. In this method, an element that is difficult to form a solid solution with copper in a binary phase diagram or the like is added in a non-solubilized form.
  • the additive manufacturing method is a process of forming a modeled object by irradiating it with an electron beam or laser, and energy absorption by metal powder is an important factor in modeling.
  • the lower the laser light reflectance with respect to the laser wavelength to be irradiated the easier the energy absorption becomes, and the more efficient the molding can be performed.
  • An object of the present invention is to provide a copper alloy powder that is suitable for processes involving rapid melting, rapid cooling, and solidification such as additive manufacturing, and that can produce high-density, high-conductivity molded objects.
  • the inventors have found that, in addition to the component composition of the copper alloy powder, predetermined conditions regarding the components (Cu, Zr and O) of the film (Cu, CuZr and ZrO 2 ) formed on the outermost surface of the powder. It was found that the laser beam reflectance can be reduced by filling the gap.
  • Zr is an essential component.
  • the element M may be Zr alone, or may contain one or more of Cr, Fe, Ni, and Nb as optional additional components in addition to Zr.
  • the total amount of these elements M is 0.1-10%.
  • the copper alloy powder for additive manufacturing satisfies 0.5 ⁇ [ O]/([Cu]+[M]) ⁇ 2.0 is satisfied.
  • the copper alloy powder for additive manufacturing has a laser light reflectance of 75% or less at a laser wavelength of 1064 nm.
  • the copper alloy powder according to the present invention exhibits reduced laser light reflectance, it is possible to obtain a high-density shaped object. Moreover, when the copper alloy powder of the present invention is used, it is possible to obtain a shaped article having a high electrical conductivity of 70% IACS or more by performing a heat treatment suitable for the obtained shaped article.
  • Example 4 A diffraction profile of Example 4 is shown as an example of the XRD diffraction pattern of the copper alloy powder of the present invention.
  • % of each component means % by mass.
  • the copper alloy powder of the present invention contains 0.1 to 10% in total of the element M, which is Zr alone or a combination of Zr and at least one selected from the group consisting of Cr, Fe, Ni and Nb. . That is, the element M may be the essential component Zr alone, or may contain one or more of the optional additional components Cr, Fe, Ni, Zr and Nb in addition to Zr. Zr, Cr, Fe, Ni and Nb have small solid solubility limits in Cu on their respective equilibrium diagrams. However, when the powder is obtained by a process involving rapid solidification such as the atomization method, these elements of element M form a supersaturated solid solution in Cu.
  • Zr is a particularly preferable component, and when a Zr compound is present, particularly excellent electrical conductivity can be obtained, so Zr is an essential component.
  • the element M is also an element for reducing laser light reflectance. If the total content of the element M is 0.1% or more, a high-density shaped article can be obtained. However, if the total content of the element M exceeds 10%, the electrical conductivity of the shaped article is greatly reduced compared to that of pure copper. Therefore, in order to obtain a shaped article having a high density and high electrical conductivity, the total amount of the element M should be 0.1 to 10%, preferably 0.1 to 5.0%, more preferably 0.1%. ⁇ 2.0%, more preferably 0.2-2.0%.
  • Si, P, and S are all optional components, and the content of each may be 0%.
  • Si 0% or more and 0.2% or less
  • Si dissolves in Cu and inhibits the electrical and heat transfer of the copper alloy.
  • the upper limit of the Si content is 0.2%, preferably 0.1%, more preferably 0.05%, and still more preferably 0.01%.
  • P 0% or more and 0.2% or less
  • P forms a solid solution in Cu and inhibits electrical and heat transfer of the copper alloy.
  • the upper limit of the P content is 0.2%, preferably 0.1%, more preferably 0.05%, and still more preferably 0.01%.
  • S dissolves in Cu and inhibits the electrical and heat transfer of the copper alloy. From this point of view, the upper limit of the S content is 0.2%, preferably 0.1%, more preferably 0.05%, and still more preferably 0.01%.
  • O is an element that forms an oxide film. If O is 50 ppm or more, the laser beam reflectance of the copper alloy powder is reduced. However, if O exceeds 500 ppm, oxides will remain inside the laminate-molded product, resulting in a decrease in electrical conductivity. Therefore, in order to reduce the laser light reflectance and obtain a model having high electrical conductivity, O is set to 50 to 500 ppm, more preferably 100 to 300 ppm.
  • the peak intensity as used in the present invention refers to the integrated intensity (area) of each peak.
  • the peak intensity ratio is the ratio of the integrated intensities of these peaks, that is, the integrated intensity ratio. Overlapping peaks can be easily separated using a general multiple peak separation program attached to the X-ray diffractometer, so the integrated intensity of each peak can be compared on software.
  • the peak intensity ratio (1)/(3) of the peak intensity (1) to the peak intensity (3) is 1.5 or more, a model having high electrical conductivity can be obtained.
  • the peak intensity ratio (1)/(3) exceeds 2.5, the laser light reflectance increases, making molding difficult. Therefore, the peak intensity ratio (1)/(3) is preferably 1.5 to 2.5.
  • the peak intensity ratio (2)/(3) of the peak intensity (2) to the peak intensity (3) is 2.5 or more, the laser light reflectance can be reduced, and high-density modeling is facilitated.
  • the peak intensity ratio (2)/(3) exceeds 3.5, the electric conductivity of the shaped article is lowered. Therefore, the peak intensity ratio (2)/(3) is preferably 2.5 to 3.5.
  • the element ratio [O]/([Cu]+[M]) is 2.0 or less, oxides are less likely to remain inside the modeled article, and electrical conductivity is improved.
  • the element ratio [O]/([Cu]+[M]) is more preferably 0.6 to 1.7%, more preferably 0.5 to 1.5%.
  • the laser beam reflectance of the copper alloy powder is preferably 75% or less at a laser wavelength of 1064 nm.
  • the laser beam can be efficiently absorbed during molding, and molding can be performed with a lower energy density.
  • the laser light reflectance of the powder at a laser wavelength of 1064 nm is preferably 75% or less, more preferably 65% or less. Since it is desirable that the copper alloy powder have a lower laser light reflectance, the lower limit is not particularly limited, but it is typically 10% or more, more typically 25% or more.
  • the wavelength of 1064 nm is the wavelength of Yb fiber laser light, which is a general-purpose energy source for laser lamination molding apparatuses.
  • the average particle size D50 of the copper alloy powder of the present invention is preferably 10 ⁇ m to 100 ⁇ m. Since fine particles tend to agglomerate, it becomes impossible to spread the powder smoothly as in layered manufacturing. Therefore, when the average particle size of the copper alloy powder of the present invention is 10 ⁇ m or more, the fluidity is excellent. On the other hand, if it exceeds 100 ⁇ m, the relative density of the resulting shaped article will decrease. Therefore, the average particle diameter D50 of the copper alloy powder is preferably 10 ⁇ m to 100 ⁇ m. More preferably, the lower limit of the average particle diameter D50 is 20 ⁇ m or more, and still more preferably 30 ⁇ m or more. Moreover, the upper limit of the average particle diameter D50 is more preferably 80 ⁇ m or less, and still more preferably 60 ⁇ m or less.
  • the average particle size D50 For the measurement of the average particle size D50 , the total volume of the powder is taken as 100% and the cumulative curve is determined. The particle size at the point where the cumulative volume is 50% on this curve is the average particle size D50 .
  • the average particle size D50 can be measured by a laser diffraction scattering method. For example, as an apparatus suitable for this measurement, Nikkiso Co., Ltd.'s laser diffraction/scattering particle size distribution measuring apparatus "Microtrac MT3000" can be mentioned. Powder is poured into the cell of this device together with pure water, and the particle size is detected based on the light scattering information of the particles.
  • [About copper alloy powder] The production of the copper alloy powder of the present invention is described below.
  • methods for producing copper alloy powder include water atomization, single roll quenching, twin roll quenching, gas atomization, disc atomization and centrifugal atomization.
  • preferred methods for producing copper alloy powder are the single roll cooling method, the gas atomization method, and the disc atomization method.
  • mechanical milling or the like can be performed to pulverize the powder to obtain a powder. Examples of milling methods include ball milling, bead milling, planetary ball milling, attritor milling and vibratory ball milling.
  • the gas atomization method is particularly preferable for the copper alloy powder used for additive manufacturing in the present invention, from the viewpoint of supersaturated solid solution and spheroidization of additive components such as Zr. Therefore, in the following embodiments, a copper alloy powder obtained by gas atomization will be used for explanation.
  • the irradiated parts of the spread powder are melted and solidified by irradiation with a laser beam or an electron beam. This melting and solidification binds the powder particles together. Irradiation is selectively applied to a portion of the copper alloy powder such that the non-irradiated portion does not melt and a bonding layer is formed only on the irradiated portion.
  • New copper alloy powder is spread over the formed bonding layer, and the copper alloy powder is irradiated with a laser beam or an electron beam. The irradiation then melts and solidifies the copper alloy particles to form a new bonding layer.
  • the new tie layer is also bonded to the existing tie layer.
  • the energy density for sintering in a rapid melting, rapid cooling and solidification process such as additive manufacturing is preferably 120 to 250 J/mm 3 .
  • the energy density is 120 J/mm 3 or more, sufficient heat is applied to the powder, so that unmelted powder is suppressed from remaining inside the model, and a model with a high relative density can be easily obtained. Therefore, more preferably, the energy density is 140 J/mm 3 or higher.
  • the energy density is 250 J/mm 3 or less, excessive heat more than necessary for melting is prevented, so bumping of the molten metal is suppressed and defects inside the model are suppressed. Therefore, more preferably, the energy density is 230 J/mm 3 or less.
  • the sphericity of the powder is preferably 0.80 or more and 0.95 or less.
  • a powder having a sphericity of 0.80 or more has excellent fluidity. From this point of view, the sphericity is more preferably 0.83 or more, and particularly preferably 0.85 or more.
  • a powder having a sphericity of 0.95 or less can suppress laser reflection. From this point of view, the sphericity is more preferably 0.93 or less, particularly preferably 0.90 or less.
  • sphericity In the measurement of sphericity, a test piece in which powder is embedded in resin is prepared. This test piece is subjected to mirror polishing, and the polished surface is observed with an optical microscope. The magnification of the microscope is 100x. Image analysis is performed on 20 randomly selected particles to measure the sphericity of the particles. The average of 20 measurements is the sphericity of the powder.
  • the sphericity means the maximum length of one powder particle and the ratio of the length in the direction perpendicular to the maximum length.
  • Heat treatment In the heat treatment of the copper alloy shaped article, a step of subjecting the unheated shaped article to aging heat treatment is performed. Due to the aging heat treatment, a single phase of the elemental component of the element M and/or a compound of Cu and the elemental component of the element M are precipitated at the grain boundaries. This precipitation can increase the purity of Cu in the mother phase. This mother phase can contribute to the electrical conductivity of the shaped article.
  • the temperature of the aging heat treatment is 350°C or higher, a structure in which a single phase of the elemental component of the element M and/or a compound of Cu and the elemental component of the element M are sufficiently precipitated is obtained. Therefore, the temperature of the aging heat treatment is more preferably 400° C. or higher. When the temperature of the aging heat treatment is 1000° C. or lower, solid solution of the element M into the matrix phase is suppressed. Therefore, the temperature of the aging heat treatment is more preferably 950° C. or less.
  • the time of the aging heat treatment is 1 hour or longer, a structure in which a single phase of the elemental component of the element M and/or a compound of Cu and the elemental component of the element M are sufficiently precipitated is obtained.
  • the time for the aging heat treatment is preferably 1 hour or more and 10 hours or less.
  • the electric conductivity of the shaped article after heat treatment is preferably 70% IACS or more.
  • a model having an electrical conductivity of 70% IACS or more has excellent electrical conductivity. More preferably, the electrical conductivity is 75%IACS or higher, more preferably 80%IACS or higher.
  • gas atomization was performed to obtain copper alloy powders composed of the chemical components of Examples 1 to 18 listed in Table 1 and Comparative Examples 1 to 17 listed in Table 2 and the balance being Cu.
  • a raw material having a predetermined composition was heated by high-frequency induction heating in an alumina crucible and melted.
  • argon gas was sprayed toward this molten metal to obtain a large number of particles. These particles were classified to remove particles having a diameter exceeding 63 ⁇ m to obtain a copper alloy powder.
  • peak intensity (1) at diffraction angle 2 ⁇ 43.0 ⁇ 0.2°
  • peak intensity (2) at diffraction angle 2 ⁇ 43.5 ⁇ 0.2°
  • diffraction angle 2 ⁇ 50
  • the peak intensity ratio (1)/(3) and the peak intensity ratio (2)/(3) were calculated based on the peak intensity (3) at .2 ⁇ 0.5°.
  • Tables 1 and 2 show the XRD intensity ratio results.
  • XPS can quantitatively observe the outermost surface because, in principle, the mean free path of photoelectrons is only a few nanometers. Of course, other means that can quantitatively observe the outermost surface can also be substituted.
  • the copper alloy powders of Examples 1 to 18 are copper alloy powders within the ranges of the composition and peak intensity ratio of the present invention, so that the energy efficiency is high, the shaped article can be produced appropriately, and the obtained shaped article
  • the electrical conductivity was also 70% or more, and a high electrical conductivity was secured.
  • Comparative Examples 1 to 9 the peak intensity ratio of (1)/(3) is low, and the electrical conductivity of the model is low.
  • Comparative Examples 10 to 17 the peak intensity ratio of (2)/(3) exceeds 3.5, indicating that the electrical conductivity of the shaped article is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

積層造形に適した、高密度かつ高導電率の造形物を作製可能な銅合金粉末が提供される。この積層造形用の銅合金粉末は、Zr単独、又はZrとCr、Fe、NiおよびNbからなる群から選択される少なくとも1種との組合せである元素M:合計で0.1~10%、O:50~500ppm、Si:0%以上0.2%以下、P:0%以上0.2%以下、S:0%以上0.2%以下、残部Cuおよび不可避的不純物からなる。この銅合金粉末は、CuKα線を用いたX線回折より得られる回折パターンにおいて、回折角2θ=43.0±0.2°におけるピーク強度を(1)、回折角2θ=43.5±0.2°におけるピークの強度を(2)、回折角2θ=50.2±0.5°におけるピーク強度を(3)としたとき、ピーク強度比(1)/(3)が1.5~2.5であり、かつ、ピーク強度比(2)/(3)が2.5~3.5である。

Description

導電性に優れた積層造形用の銅合金粉末
 本発明は、三次元積層造形法、溶射法、レーザーコーティング法、肉盛法等の、急速溶融急冷凝固を伴うプロセスに適した銅合金粉末に関する。とりわけ、パウダーベッド方式(粉末床溶融結合方式)による積層造形法に好適な銅合金粉末に関する。
 金属からなる造形物の製作に、3Dプリンターが使用されはじめている。この3Dプリンターとは、積層造形法によって造形物が製作するものであり、金属積層造形法の代表的な方式にはパウダーベッド方式(粉末床溶融結合方式)やメタルデポジション方式(指向性エネルギー堆積方式)などがある。パウダーベッド方式では、レーザービームまたは電子ビームの照射によって、敷き詰められた粉末のうち照射された部位が溶融し凝固する。この溶融と凝固により、粉末粒子同士が結合する。照射は、金属粉末の一部に選択的になされ、照射がなされなかった部分は、溶融せず、照射がなされた部分のみにおいて、結合層が形成される。
 形成された結合層の上に、さらに新しい金属粉末が敷き詰められ、それらの金属粉末にレーザービームまたは電子ビームの照射が行われる。すると、照射により、金属粒子が溶融、凝固し、新たな結合層が形成される。また、新たな結合層は、既存の結合層とも結合される。
 照射による溶融及び凝固が順次繰り返されていくことにより、結合層の集合体が徐々に成長する。この成長により、三次元形状を有する造形体が得られる。こうした積層造形法を用いると、複雑な形状の造形物が、容易に得られる。
 パウダーベッド方式の積層造形法として、特許文献1(特開2008-81840号公報)には、鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末との混合粉末を金属光造形用金属粉末として用いることが開示されている。この文献には、これらの金属粉末を敷く粉末層形成ステップと、粉末層にビームを照射して焼結層を形成する焼結層形成ステップと、造形物の表面を切削する除去ステップを繰り返して焼結層を形成して、三次元形状造形物を製造するといった手順が開示されている。
 高周波誘導加熱装置やモーター冷却用ヒートシンク等の合金には、高伝導度が要求される。このような用途には、Cu基合金が適している。例えば、特許文献2(特開2019-44260号公報)には、主成分がCuであり、Crを0.1~20質量%、およびZrを0~0.2質量%含有した銅合金が開示されている。
 特許文献3(国際公開第2019/039058号公報)には、銅に対する固溶量が0.2at%未満である添加元素を含有する積層造形用銅合金粉末が提案されている。この提案は、銅に対する固溶量の低い添加元素を用いることで銅への固溶による導電率の低下を低減させつつ、機械強度を得ることを意図したものである。この手法は、二元状態図などで銅に固溶しにくい元素を非固溶に添加するものである。
特開2008-81840号公報 特開2019-44260号公報 国際公開第2019/039058号公報
 積層造形法は、電子ビームやレーザーを照射することで造形物を形成するプロセスであって、金属粉末に対するエネルギー吸収は、造形における重要な因子である。例えば、レーザー積層造形法の場合、照射するレーザー波長に対するレーザー光反射率が低いほど、エネルギー吸収がしやすくなり、高効率に造形を行うことができる。
 しかしながら、銅はレーザー光反射率が高いため、エネルギーが吸収されづらく、効率を高めることが難しいので、高密度な造形が困難である。
 本発明の目的は、積層造形などの急速溶融急冷凝固を伴うプロセスに適した、高密度かつ高導電率の造形物を作製可能な銅合金粉末を提供することである。
 発明者らは、鋭意検討の結果、銅合金粉末の成分組成に加えて、粉末最表面に形成される膜(Cu、CuZrおよびZrO)の成分(Cu、ZrおよびO)に関する所定の条件を満たすことで、レーザー光反射率を低減しうることを見出した。
 そこで、本発明の一態様によれば、質量%で、
 Zr単独、又はZrとCr、Fe、NiおよびNbからなる群から選択される少なくとも1種との組合せである、元素M:合計で0.1~10%、
 O:50~500ppm、
 Si:0%以上0.2%以下、
 P:0%以上0.2%以下、
 S:0%以上0.2%以下、
 残部Cuおよび不可避的不純物
からなる銅合金粉末であって、CuKα線を用いたX線回折により得られる回折パターンにおいて、
 回折角2θ=43.0±0.2°におけるピーク強度を(1)、
 回折角2θ=43.5±0.2°におけるピーク強度を(2)、
 回折角2θ=50.2±0.5°におけるピーク強度を(3)としたとき、
 ピーク強度比(1)/(3)が1.5~2.5であり、かつ、
 ピーク強度比(2)/(3)が2.5~3.5である、
積層造形用の銅合金粉末が提供される。
 すなわち、元素Mにおいて、Zrは必須成分である。元素Mは、Zr単独でもよいが、Zrに加えてCr、Fe、Ni、およびNbのいずれか1種もしくは2種以上を任意的付加的成分として含んでいてもよい。これら元素Mの合計量は、0.1~10%である。
 好ましくは、前記積層造形用の銅合金粉末は、粉末の最表面におけるO、Cu、および元素Mの質量%をそれぞれ[O]、[Cu]および[M]としたとき、0.5≦[O]/([Cu]+[M])≦2.0を満たす。
 好ましくは、前記積層造形用の銅合金粉末は、レーザー波長1064nmにおけるレーザー光反射率が75%以下である。
 本発明による銅合金粉末は、低減されたレーザー光反射率を呈するので、高密度な造形物を得ることが可能である。また、本発明の銅合金粉末を用いると、得られた造形物に適した熱処理を行うことで、70%IACS以上の高い導電率を有する造形物を得ることが可能である。
本発明の銅合金粉末のXRD回折パターンの一例として、実施例4の回折プロファイルを示す。
 本発明の積層造形用の銅合金粉末の実施の形態の説明に先立って、まずは、銅合金粉末に用いられている化学成分および粉末表面の膜と元素成分比を規定した理由について以下に説明する。なお、各成分の%とは質量%のことである。
(銅合金粉末の成分について)
[元素M:合計0.1~10%]
 本発明の銅合金粉末は、Zr単独、又はZrとCr、Fe、NiおよびNbからなる群から選択される少なくとも1種との組合せである元素Mを、合計で0.1~10%含有する。すなわち、元素Mは、必須成分のZr単独でもよいが、Zrに加えてさらに任意的付加的成分Cr、Fe、Ni、ZrおよびNbを1種または2種以上を含むものであってもよい。
 Zr、Cr、Fe、NiおよびNbは、それぞれの平衡状態図上におけるCuへの固溶限は小さい。しかし、粉末がアトマイズ法のような急冷凝固を伴うプロセスで得られると、これらの元素Mの元素はCuに過飽和に固溶する。この過飽和固溶体によってレーザー光反射率が低減されるため、効率よく造形物を作製することが可能であり、高密度の造形物を得ることができる。元素Mのうち、特に好ましい成分はZrであり、Zrの化合物が存在する場合には特に優れた電気伝導率が得られるため、Zrを必須成分とする。
 元素Mは、レーザー光反射率を低減するための元素でもある。元素Mの含有率が合計で0.1%以上であれば、高密度の造形物が得られる。もっとも、元素Mの含有率が合計で10%を超えると、造形物の導電率が、純銅に比べて大きく低下する。
 そこで、密度が高く、高い導電率を有する造形物を得るためには、元素Mの合計量は0.1~10%とし、好ましくは0.1~5.0%、より好ましくは0.1~2.0%、さらに好ましくは0.2~2.0%である。
 Si、P、およびSは、いずれも任意成分であり、各々の含有量は0%であってもよいが、含有する場合には次のとおりとする。
[Si:0%以上0.2%以下]
 SiはCuに固溶し、銅合金の電気伝導および熱伝達を阻害する。この観点から、Si含有量の上限は0.2%であり、好ましくは0.1%、より好ましくは0.05%、さらに好ましくは0.01%である。
[P:0%以上0.2%以下]
 PはCuに固溶し、銅合金の電気伝導および熱伝達を阻害する。この観点から、P含有量の上限は0.2%であり、好ましくは0.1%、より好ましくは0.05%、さらに好ましくは0.01%である。
[S:0%以上0.2%以下]
 SはCuに固溶し、銅合金の電気伝導および熱伝達を阻害する。この観点から、Sを含有量の上限は0.2%であり、好ましくは0.1%、より好ましくは0.05%、さらに好ましくは0.01%である。
[O:50~500ppm以下]
 Oは、酸化膜を形成する元素である。Oが50ppm以上であれば、銅合金粉末のレーザー光反射率が低減される。もっとも、Oが500ppmを超えると、積層造形物の内部に酸化物が残存することとなって、電気伝導率が低下することとなる。そこで、レーザー光反射率を低減し、高い電気伝導率を有する造形物を得ることができるためには、Oは、50~500ppmとし、より好ましくは100~300ppmである。
[XRDのピーク強度比]
 CuKα線を用いた粉末X線回折(XRD)測定により得られる回折パターンにおいて、回折角2θ=43.0±0.2°におけるピーク強度を(1)、回折角2θ=43.5±0.2°におけるピーク強度を(2)、回折角2θ=50.2±0.5°におけるピーク強度を(3)としたとき、ピーク強度比(1)/(3)が1.5~2.5であり、かつ、ピーク強度比(2)/(3)が2.5~3.5であるのが好ましい。
 なお、本発明でいうピーク強度とは、各ピークの積分強度(面積)をいう。ピーク強度比はそれらピークの積分強度同士の比、すなわち積分強度比のことである。なお、ピークの重なり合いについては、X線回折装置に付属の一般的な多重ピーク分離プログラムを用いて容易に分離することができるので、ピーク毎の積分強度はソフトウェア上で対比可能に求まる。
 本発明の銅合金粉末をCuKα線を用いたX線回折法で測定したとき、回折角2θ=43.0±0.2°におけるピーク強度(1)は、Cuの(111)面に相当する。回折角2θ=43.5±0.2°におけるピーク強度(2)は、CuZrの(111)面に相当する。回折角2θ=50.2±0.2°におけるピーク強度(3)は、ZrOの(220)面に相当する。
 このとき、ピーク強度(1)のピーク強度(3)に対するピーク強度比(1)/(3)が1.5以上であると、高い電気伝導率を有する造形物が得られる。他方、ピーク強度比(1)/(3)が2.5を超えると、レーザー光反射率が高くなり、造形が困難になる。そこで、ピーク強度比(1)/(3)は1.5~2.5であることが好ましい。
 また、ピーク強度(2)のピーク強度(3)に対するピーク強度比(2)/(3)が2.5以上になると、レーザー光反射率を低減可能であり、高密度の造形が容易になる。他方、ピーク強度比(2)/(3)が3.5を超えると、造形物の電気伝導率が低下する。そこで、ピーク強度比(2)/(3)は、2.5~3.5であることが好ましい。
[0.5≦[O]/([Cu]+[M])≦2.0]
 銅合金粉末の最表面におけるO、Cuおよび元素Mの質量%をそれぞれ[O]、[Cu]および[M]としたとき、[O]/([Cu]+[M])で表される元素比が0.5~2.0であるのが、レーザー光反射率を低減し、高い電気伝導率を有する造形物を得られる点で好ましい。すなわち、元素比[O]/([Cu]+[M])が0.5以上になると、粉末表面のすべてが酸化膜に覆われることになるため、レーザー光反射率を大きく低減することが可能であり、より高密度の造形が容易になる。また、元素比[O]/([Cu]+[M])が2.0以下であると、造形物内部に酸化物が残存しにくくなり、電気伝導率が向上する。元素比[O]/([Cu]+[M])は0.6~1.7%がより好ましく、さらに好ましくは0.5~1.5%である。
 たとえば、Zrが添加されているCu合金粉末の最表面の成分が質量%でO:49.5%、Cu:24.1%、Zr:8.9%であるときには、その最表面の元素比は、[O]/([Cu]+[Zr]=1.5となる。
[レーザー光反射率:75%以下]
 銅合金粉末のレーザー光反射率は、レーザー波長1064nmにおいて、75%以下が好ましい。銅合金粉末のレーザー光反射率が75%以下である場合、造形時にレーザー光を効率よく吸収することができ、より低いエネルギー密度で造形することが可能である。この観点から、レーザー波長1064nmにおける粉末のレーザー光反射率は、75%以下であることが好ましく、より好ましくは65%以下である。銅合金粉末のレーザー光反射率は低い方が望ましいためその下限値は特に限定されるものではないが、典型的には10%以上であり、より典型的には25%以上である。
 なお、波長1064nmとは、レーザー積層造形装置の汎用的なエネルギー源であるYbファイバレーザー光の波長である。
[銅合金粉末の粒子径]
 本発明の銅合金粉末の平均粒子径D50は、10μm~100μmが好ましい。微細な粒子は凝集しやすくなるため、積層造形のようにパウダーを敷き詰める際にスムーズに粉体を敷き詰めることができなくなる。そこで、本発明の銅合金粉末の平均粒子径が10μm以上であれば、流動性に優れる。他方、100μmを超えると、得られる造形物の相対密度が下がってしまうこととなる。そこで、銅合金粉末の平均粒子径D50は、10μm~100μmが好ましい。より好ましくは、平均粒子径D50の下限は20μm以上であり、さらに好ましくは、30μm以上である。また、平均粒子径D50の上限は、より好ましくは80μm以下であり、さらに好ましくは、60μm以下である。
 平均粒子径D50の測定では、粉末の全体積が100%とされて、累積カーブが求められる。このカーブ上の、累積体積が50%である点の粒子径が、平均粒子径D50である。平均粒子径D50は、レーザー回折散乱法によって測定することができる。たとえば、この測定に適した装置として、日機装社のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3000」が挙げられる。この装置のセル内に、粉末が純水と共に流し込まれ、粒子の光散乱情報に基づいて、粒子径が検出される。
[銅合金粉末について]
 以下、本発明の銅合金粉末の製造について説明する。
 銅合金粉末の製造方法の例としては、水アトマイズ法、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、ディスクアトマイズ法及び遠心アトマイズ法が挙げられる。このうち、銅合金粉末の好ましい製造方法は、単ロール冷却法、ガスアトマイズ法またはディスクアトマイズ法である。
 また、銅合金粉末の作製のために、メカニカルミリング等が施されて粉砕して粉体を得ることもできる。ミリング方法の例としては、ボールミル法、ビーズミル法、遊星ボールミル法、アトライタ法及び振動ボールミル法が挙げられる。
 本発明における積層造形に用いる銅合金粉末は、添加成分Zr等の過飽和固溶および球状化の観点からは、とりわけガスアトマイズ法が好ましい。そこで、以下の実施の形態では、ガスアトマイズによる製造で得られた銅合金粉末を用いて説明する。
[造形物の作製について]
 本発明の銅合金粉末を用いて造形物を作製する方法としては、銅合金粉末を溶融及び凝固する工程である急速溶融急冷凝固プロセスが挙げられる。このプロセスの具体例としては、三次元積層造形法、溶射法、レーザーコーティング法及び肉盛法が挙げられる。特に、本発明の銅合金粉末は、レーザー光を吸収して溶融凝固させることに好適であることから、パウダーベッド方式(粉末床溶融結合方式)の三次元積層造形法で造形物を積層しながら作製していくことに適している。
 パウダーベッド方式では、レーザービームまたは電子ビームの照射によって、敷き詰められた粉末のうち照射された部位が溶融し凝固する。この溶融と凝固により、粉末粒子同士が結合する。照射は、銅合金粉末の一部に選択的になされ、照射がなされなかった部分は、溶融せず、照射がなされた部分のみにおいて、結合層が形成される。
 形成された結合層の上に、さらに新しい銅合金粉末が敷き詰められ、それらの銅合金粉末にレーザービームまたは電子ビームの照射が行われる。すると、照射により、銅合金粒子が溶融および凝固し、新たな結合層が形成される。また、新たな結合層は、既存の結合層とも結合される。
 照射による溶融および凝固が順次繰り返されていくことにより、結合層の集合体が徐々に成長する。この成長により、三次元形状を有する造形体が得られる。こうした積層造形法を用いると、複雑な形状の造形物が、容易に得られる。
 なお、積層造形法などの急速溶融急冷凝固プロセスで焼結をおこなう時のエネルギー密度は、120~250J/mmであることが好ましい。エネルギー密度が120J/mm以上である場合、十分な熱が粉末に与えられるので、造形物内部における未溶融粉末の残存が抑制され、相対密度の大きな造形物が得られやすい。そこで、より好ましくは、エネルギー密度は140J/mm以上である。
 エネルギー密度が250J/mm以下である場合、溶融に必要以上の過剰な熱を防ぐため、溶融金属の突沸が抑制され、造形物の内部における欠陥が抑制される。そこで、より好ましくは、エネルギー密度は230J/mm以下である。
[球形度]
 粉末の球形度は、0.80以上0.95以下が好ましい。球形度が0.80以上である粉末は、流動性に優れる。この観点から、球形度は0.83以上がより好ましく、0.85以上が特に好ましい。球形度が0.95以下である粉末では、レーザーの反射が抑制されうる。この観点から、球形度は0.93以下がより好ましく、0.90以下が特に好ましい。
 球形度の測定では、粉末が樹脂に埋め込まれた試験片が準備される。この試験片が鏡面研磨に供され、研磨面が光学顕微鏡で観察される。顕微鏡の倍率は、100倍である。無作為に抽出された20個の粒子について画像解析がなされ、この粒子の球形度が測定される。20個の測定値の平均が、粉末の球形度である。球形度は、粉末1粒子の最大長と、最大長に対して垂直方向における長さの割合を意味している。
[熱処理]
 銅合金造形物の熱処理では、未熱処理造形物に時効熱処理を施す工程を行う。時効熱処理により、元素Mの元素成分単相および/またはCuと元素Mの元素成分との化合物が、粒界に析出する。この析出により、母相におけるCuの純度を高めることができる。この母相は、造形物の導電性に寄与しうる。
 時効熱処理の温度が、350℃以上である場合、元素Mの元素成分単相および/またはCuと元素Mの元素成分との化合物が、十分に析出した組織が得られる。そこで、時効熱処理の温度は、400℃以上がより好ましい。時効熱処理の温度が、1000℃以下である場合、元素Mの母相への固溶が抑制される。そこで、時効熱処理の温度は、950℃以下がより好ましい。
 時効熱処理の時間が1時間以上である場合、元素Mの元素成分単相および/またはCuと元素Mの元素成分との化合物が、十分に析出した組織が得られる。一方で、時効熱処理の時間が10時間以下である場合、エネルギーコストが抑制される。そこで、時効熱処理の時間は、1時間以上10時間以下が好ましい。
[造形物の電気伝導度]
 熱処理後の造形物の電気伝導度は、70%IACS以上が好ましい。電気伝導度が70%IACS以上である造形物は、導電性に優れる。電気伝導度は75%IACS以上がより好ましく、さらに好ましくは80%IACS以上である。
[電気伝導度の測定]
 試験片(3mm×2mm×60mm)を作製し、「JIS C 2525」に準拠した4端子法で、電気抵抗値(Ω)を測定した。測定には、アルバック理工社の装置「TER-2000RH型」を用いた。測定条件は、以下の通りである。
  温度:25℃
  電流:4A
  電圧降下間距離:40mm
 下記数式に基づき、電気抵抗率ρ(Ωm)を算出した。
  ρ = R / I × S
 この数式において、Rは試験片の電気抵抗値(Ω)であり、Iは電流(A)であり、Sは試験片の断面積(m)である。電気伝導度(S/m)は、電気抵抗率ρの逆数から算出した。また、5.9×107(S/m)を100%IACSとして、各試験片の電気伝導度(%IACS)を算出した。
[実施例]
 以下、実施例によって本発明の効果が確認されることを示すが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。
 まず、ガスアトマイズすることで、表1に記載の実施例1~18および表2に記載の比較例1~17の化学成分及び残部Cuからなる銅合金粉末を得た。
 真空中にて、アルミナ製坩堝で、所定の組成を有する原料を高周波誘導加熱で加熱し、溶解した後、坩堝下にある直径が5mmのノズルから、溶湯を落下させた。次いで、この溶湯に向けてアルゴンガスを噴霧し、多数の粒子を得た。これらの粒子に分級を施して直径が63μmを超える粒子を除去し、銅合金粉末を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[レーザー光反射率の測定]
 実施例1~18の得られた各銅合金粉末について、分光光度計を用いて、レーザー波長1064nmにおけるレーザー光反射率を測定した。表1に粉末のレーザー光反射率を示す。
[XRD測定によるピーク強度比]
 実施例1~18および比較例1~17の各粉末について、X線回折装置(Rigaku社製の商品名「RINT-2500」)を用いて、下記条件にてXRD測定を行った。
 線源:CuKα
 2θ:20-80°
 ステップ角:0.02°
 得られた回折パターンから、回折角2θ=43.0±0.2°のピーク強度(1)、回折角2θ=43.5±0.2°のピーク強度(2)、回折角2θ=50.2±0.5°のピーク強度(3)に基づいて、ピーク強度比(1)/(3)及びピーク強度比(2)/(3)を算出した。表1および2にXRDの強度比の結果を示す。
[粉末最表面の元素比]
 実施例1~18の粉末に、X線光電子分光分析装置(XPS)(アルバック・ファイ社製の「Quantera SXM」)を用いて、粉末最表面の元素O、CuおよびZrの質量%を測定した。粉末最表面の元素比で、元素Oの質量%を[O]、元素Cuの質量%を[Cu]、元素Zrの質量%を[Zr]として、[O]/([Cu]+[Zr])の値を算出した。表1および2にこれらの元素比の結果を示す。
 そして、実施例1の粉末の最表面は、O:35.2%、Cu:25.6%、元素M:7.9%であるから、最表面の元素比は、[O]/([Cu]+[M])=1.05となった。
 なお、最表面の[O]、[Cu]、[M]の比率は次のとおりである。
 実施例 1:[O]35.2%、[Cu]25.6%、[M]7.9%
 実施例 2:[O]38.4%、[Cu]29.4%、[M]7.5%
 実施例 3:[O]46.9%、[Cu]35.6%、[M]8.6%
 実施例 4:[O]39.3%、[Cu]30.4%、[M]8.1%
 実施例 5:[O]39.5%、[Cu]29.5%、[M]7.8%
 実施例 6:[O]33.9%、[Cu]36.8%、[M]8.4%
 実施例 7:[O]33.1%、[Cu]34.1%、[M]8.9%
 実施例 8:[O]31.8%、[Cu]34.3%、[M]8.7%
 実施例 9:[O]34.4%、[Cu]39.5%、[M]9.0%
 実施例10:[O]36.0%、[Cu]38.1%、[M]8.6%
 実施例11:[O]48.9%、[Cu]30.1%、[M]9.0%
 実施例12:[O]52.5%、[Cu]30.6%、[M]9.5%
 実施例13:[O]56.0%、[Cu]27.8%、[M]8.1%
 実施例14:[O]55.2%、[Cu]21.0%、[M]9.0%
 実施例15:[O]47.3%、[Cu]29.4%、[M]8.4%
 実施例16:[O]52.0%、[Cu]28.3%、[M]7.1%
 実施例17:[O]56.4%、[Cu]24.3%、[M]9.7%
 実施例18:[O]31.1%、[Cu]38.5%、[M]9.4%
 比較例 1:[O]57.9%、[Cu]20.6%、[M]7.9%
 比較例 2:[O]63.4%、[Cu]20.7%、[M]8.0%
 比較例 3:[O]65.3%、[Cu]19.4%、[M]8.4%
 比較例 4:[O]54.0%、[Cu]20.6%、[M]5.6%
 比較例 5:[O]64.1%、[Cu]25.6%、[M]4.2%
 比較例 6:[O]62.5%、[Cu]21.9%、[M]6.9%
 比較例 7:[O]65.2%、[Cu]22.2%、[M]5.3%
 比較例 8:[O]64.1%、[Cu]23.4%、[M]6.0%
 比較例 9:[O]60.2%、[Cu]22.1%、[M]4.9%
 比較例10:[O]21.7%、[Cu]40.7%、[M]7.6%
 比較例11:[O]18.6%、[Cu]35.6%、[M]8.6%
 比較例12:[O]17.0%、[Cu]36.1%、[M]7.5%
 比較例13:[O]66.7%、[Cu]20.7%、[M]6.4%
 比較例14:[O]21.1%、[Cu]35.8%、[M]9.1%
 比較例15:[O]68.0%、[Cu]18.5%、[M]10.3%
 比較例16:[O]59.3%、[Cu]17.6%、[M]9.6%
 比較例17:[O]61.1%、[Cu]16.8%、[M]11.5%
 なお、XPSは、その原理上、光電子の平均自由行程が数nmにとどまることから、最表面を定量的に観察することができる。もちろん、同様に最表面を定量的に観察できる他の手段で代替することもできる。
[造形]
 銅合金粉末を原料として、それぞれ、3次元積層造形装置(EOS-M280)による積層造形法を実施し、造形物(未熱処理造形物)を得た。
[熱処理]
 造形物に対して、時効熱処理を施した。時効熱処理の温度は800℃、時効熱処理の時間は5hとした。
[電気伝導率測定]
 熱処理後の造形物について、それぞれ、試験片(3×2×60mm)を作製し、「JIS C 2525」に準拠した4端子法で、電気抵抗値(Ω)を測定した。結果を表1および2に示す。
 実施例1~18の銅合金粉末は、本発明の組成及びピーク強度比の範囲内にある銅合金粉末であるところ、エネルギー効率が高く、造形物が適切に作製でき、得られた造形物の電気伝導率も70%以上となり、高い導電率が確保されるものとなった。
 他方、比較例1~9では、(1)/(3)のピーク強度比が低く、造形物の電気伝導率が低いものとなっている。比較例10~17は、(2)/(3)のピーク強度比が3.5を超えており、造形物の電気伝導率が低いものとなっている。

 

Claims (3)

  1.  質量%で、
     Zr単独、又はZrとCr、Fe、NiおよびNbからなる群から選択される少なくとも1種との組合せである、元素M:合計で0.1~10%、
     O:50~500ppm、
     Si:0%以上0.2%以下、
     P:0%以上0.2%以下、
     S:0%以上0.2%以下、
     残部Cuおよび不可避的不純物
    からなる銅合金粉末であって、CuKα線を用いたX線回折により得られる回折パターンにおいて、
     回折角2θ=43.0±0.2°におけるピーク強度を(1)、
     回折角2θ=43.5±0.2°におけるピーク強度を(2)、
     回折角2θ=50.2±0.5°におけるピーク強度を(3)としたとき、
     ピーク強度比(1)/(3)が1.5~2.5であり、かつ、
     ピーク強度比(2)/(3)が2.5~3.5である、
    積層造形用の銅合金粉末。
  2.  前記銅合金粉末の最表面におけるO、Cuおよび元素Mの質量%をそれぞれ[O]、[Cu]および[M]としたとき、0.5≦[O]/([Cu]+[M])≦2.0を満たす、請求項1に記載の積層造形用の銅合金粉末。
  3.  レーザー波長1064nmにおけるレーザー光反射率が75%以下である、請求項1または2に記載の積層造形用の銅合金粉末。

     
PCT/JP2022/012026 2021-04-07 2022-03-16 導電性に優れた積層造形用の銅合金粉末 WO2022215468A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-065521 2021-04-07
JP2021065521A JP7419290B2 (ja) 2021-04-07 2021-04-07 導電性に優れた積層造形用の銅合金粉末

Publications (1)

Publication Number Publication Date
WO2022215468A1 true WO2022215468A1 (ja) 2022-10-13

Family

ID=83546219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012026 WO2022215468A1 (ja) 2021-04-07 2022-03-16 導電性に優れた積層造形用の銅合金粉末

Country Status (3)

Country Link
JP (1) JP7419290B2 (ja)
TW (1) TW202246069A (ja)
WO (1) WO2022215468A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162610A1 (ja) * 2022-02-28 2023-08-31 山陽特殊製鋼株式会社 電気伝導性に優れたCu基合金粉末

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039058A1 (ja) * 2017-08-21 2019-02-28 Jx金属株式会社 積層造形用銅合金粉末、積層造形物の製造方法及び積層造形物
WO2019230018A1 (ja) * 2018-06-01 2019-12-05 山陽特殊製鋼株式会社 Cu基合金粉末
WO2019239655A1 (ja) * 2018-06-14 2019-12-19 古河電気工業株式会社 銅合金粉末、積層造形物および積層造形物の製造方法ならびに各種金属部品
JP2020186429A (ja) * 2019-05-13 2020-11-19 三菱マテリアル株式会社 レーザー光の吸収率に優れた銅粉末
WO2021015119A1 (ja) * 2019-07-23 2021-01-28 山陽特殊製鋼株式会社 Cu基合金粉末

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039058A1 (ja) * 2017-08-21 2019-02-28 Jx金属株式会社 積層造形用銅合金粉末、積層造形物の製造方法及び積層造形物
WO2019230018A1 (ja) * 2018-06-01 2019-12-05 山陽特殊製鋼株式会社 Cu基合金粉末
WO2019239655A1 (ja) * 2018-06-14 2019-12-19 古河電気工業株式会社 銅合金粉末、積層造形物および積層造形物の製造方法ならびに各種金属部品
JP2020186429A (ja) * 2019-05-13 2020-11-19 三菱マテリアル株式会社 レーザー光の吸収率に優れた銅粉末
WO2021015119A1 (ja) * 2019-07-23 2021-01-28 山陽特殊製鋼株式会社 Cu基合金粉末

Also Published As

Publication number Publication date
JP2022160961A (ja) 2022-10-20
JP7419290B2 (ja) 2024-01-22
TW202246069A (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
JP7132751B2 (ja) Cu基合金粉末
WO2019239655A1 (ja) 銅合金粉末、積層造形物および積層造形物の製造方法ならびに各種金属部品
JP7288368B2 (ja) Cu合金粉末
CN113891948B (zh) Cu基合金粉末
WO2022215468A1 (ja) 導電性に優れた積層造形用の銅合金粉末
CN113412172A (zh) 制造铝合金零件的方法
JP7425634B2 (ja) Cu基合金粉末
JP7425617B2 (ja) 被覆Cu基合金粉末
JP2022148139A (ja) Cu基合金からなる造形体
WO2019168166A1 (ja) レーザー吸収率に優れた銅合金粉末
JP2022122462A (ja) カーボン固着炭素鋼粉末
WO2023162610A1 (ja) 電気伝導性に優れたCu基合金粉末
WO2023063018A1 (ja) 造形性および導電性に優れた三次元積層造形用の銅合金粉末
JP6559865B1 (ja) 銅合金造形物の製造方法および銅合金造形物
JP2023024164A (ja) 電気伝導性に優れた銅合金造形物
JP2023126091A (ja) 電気伝導性に優れたCu基合金粉末
JP2023024165A (ja) 急速溶融急速凝固用のCu基合金粉末
JP7424108B2 (ja) 熱処理済未燒結積層造形用銅合金粉末及びその製造方法
JP7318819B2 (ja) Ni基合金粉末およびこのNi基合金粉末を用いた積層造形品の製造方法
WO2024090450A1 (ja) 金属am用銅合金粉末および積層造形物の製造方法
WO2024004563A1 (ja) 積層造形用Ni基合金粉末および積層造形体
JP2022122461A (ja) 積層造形用Fe基合金粉末および積層造形物
JP2023081771A (ja) 酸化物ナノ粒子を混合した積層造形用金属粉末および積層造形体
CN118119722A (zh) 适于增材制造的Ni系合金粉末以及使用该粉末得到的增材制造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784453

Country of ref document: EP

Kind code of ref document: A1