WO2022215366A1 - 光伝送システム、光伝送路及び光電複合ケーブル - Google Patents
光伝送システム、光伝送路及び光電複合ケーブル Download PDFInfo
- Publication number
- WO2022215366A1 WO2022215366A1 PCT/JP2022/006478 JP2022006478W WO2022215366A1 WO 2022215366 A1 WO2022215366 A1 WO 2022215366A1 JP 2022006478 W JP2022006478 W JP 2022006478W WO 2022215366 A1 WO2022215366 A1 WO 2022215366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical transmission
- optical signal
- transmission line
- transmission system
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 679
- 230000005540 biological transmission Effects 0.000 title claims abstract description 489
- 239000002131 composite material Substances 0.000 title claims description 8
- 239000013307 optical fiber Substances 0.000 claims abstract description 97
- 230000005284 excitation Effects 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 79
- 238000010168 coupling process Methods 0.000 claims description 39
- 238000005859 coupling reaction Methods 0.000 claims description 39
- 230000008878 coupling Effects 0.000 claims description 38
- 239000011521 glass Substances 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 11
- 230000006866 deterioration Effects 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 61
- 230000000052 comparative effect Effects 0.000 description 54
- 229920000642 polymer Polymers 0.000 description 50
- 239000011162 core material Substances 0.000 description 44
- 239000002019 doping agent Substances 0.000 description 35
- 238000005259 measurement Methods 0.000 description 25
- 238000006116 polymerization reaction Methods 0.000 description 23
- 238000009826 distribution Methods 0.000 description 20
- 239000000835 fiber Substances 0.000 description 20
- 239000010410 layer Substances 0.000 description 20
- 239000000178 monomer Substances 0.000 description 20
- 239000011737 fluorine Chemical group 0.000 description 16
- 229910052731 fluorine Inorganic materials 0.000 description 16
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical group [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000013308 plastic optical fiber Substances 0.000 description 14
- 238000001125 extrusion Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229920002313 fluoropolymer Polymers 0.000 description 10
- 239000004811 fluoropolymer Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000000155 melt Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000012986 chain transfer agent Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 5
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000003505 polymerization initiator Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- RFJVDJWCXSPUBY-UHFFFAOYSA-N 2-(difluoromethylidene)-4,4,5-trifluoro-5-(trifluoromethyl)-1,3-dioxolane Chemical compound FC(F)=C1OC(F)(F)C(F)(C(F)(F)F)O1 RFJVDJWCXSPUBY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- -1 Peroxide compounds Chemical class 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 125000001309 chloro group Chemical group Cl* 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000005693 optoelectronics Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XKTYXVDYIKIYJP-UHFFFAOYSA-N 3h-dioxole Chemical compound C1OOC=C1 XKTYXVDYIKIYJP-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229920005548 perfluoropolymer Polymers 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- 125000003367 polycyclic group Chemical group 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 238000012662 bulk polymerization Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 125000004431 deuterium atom Chemical group 0.000 description 2
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000009878 intermolecular interaction Effects 0.000 description 2
- 230000008863 intramolecular interaction Effects 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 2
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- PPVPVKZXQJZBRA-UHFFFAOYSA-N (2,3,4,5,6-pentafluorobenzoyl) 2,3,4,5,6-pentafluorobenzenecarboperoxoate Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C(=O)OOC(=O)C1=C(F)C(F)=C(F)C(F)=C1F PPVPVKZXQJZBRA-UHFFFAOYSA-N 0.000 description 1
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 1
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- SYVNSELUWFDWOQ-UHFFFAOYSA-N 1,2,3,4,5,6,7,8,9,10-decafluoroanthracene Chemical compound FC1=C(F)C(F)=C(F)C2=C(F)C3=C(F)C(F)=C(F)C(F)=C3C(F)=C21 SYVNSELUWFDWOQ-UHFFFAOYSA-N 0.000 description 1
- ONUFSRWQCKNVSL-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenyl)benzene Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F ONUFSRWQCKNVSL-UHFFFAOYSA-N 0.000 description 1
- QDVWPKMURRLIKV-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-[2,3,4-trifluoro-5,6-bis(2,3,4,5,6-pentafluorophenyl)phenyl]benzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(C=2C(=C(F)C(F)=C(F)C=2F)F)=C1C1=C(F)C(F)=C(F)C(F)=C1F QDVWPKMURRLIKV-UHFFFAOYSA-N 0.000 description 1
- OPYHNLNYCRZOGY-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-iodobenzene Chemical compound FC1=C(F)C(F)=C(I)C(F)=C1F OPYHNLNYCRZOGY-UHFFFAOYSA-N 0.000 description 1
- MMYVDBHFYSHDSL-UHFFFAOYSA-N 1,2-dichloro-4-(3,4-dichlorophenyl)sulfonylbenzene Chemical compound C1=C(Cl)C(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C(Cl)=C1 MMYVDBHFYSHDSL-UHFFFAOYSA-N 0.000 description 1
- UCWKDDQEZQRGDR-UHFFFAOYSA-N 1,3-dibromo-2,4,5,6-tetrafluorobenzene Chemical compound FC1=C(F)C(Br)=C(F)C(Br)=C1F UCWKDDQEZQRGDR-UHFFFAOYSA-N 0.000 description 1
- QFTZULJNRAHOIY-UHFFFAOYSA-N 1,4-dibromo-2,3,5,6-tetrafluorobenzene Chemical compound FC1=C(F)C(Br)=C(F)C(F)=C1Br QFTZULJNRAHOIY-UHFFFAOYSA-N 0.000 description 1
- ZRKMQKLGEQPLNS-UHFFFAOYSA-N 1-Pentanethiol Chemical compound CCCCCS ZRKMQKLGEQPLNS-UHFFFAOYSA-N 0.000 description 1
- KKAQUAVWHSDTHU-UHFFFAOYSA-N 1-bromo-2,3,4,5,6,7,8-heptafluoronaphthalene Chemical compound BrC1=C(F)C(F)=C(F)C2=C(F)C(F)=C(F)C(F)=C21 KKAQUAVWHSDTHU-UHFFFAOYSA-N 0.000 description 1
- XEKTVXADUPBFOA-UHFFFAOYSA-N 1-bromo-2,3,4,5,6-pentafluorobenzene Chemical compound FC1=C(F)C(F)=C(Br)C(F)=C1F XEKTVXADUPBFOA-UHFFFAOYSA-N 0.000 description 1
- HFTSBCADMASJCQ-UHFFFAOYSA-N 1-bromo-2,3,4,5-tetrafluoro-6-(trifluoromethyl)benzene Chemical compound FC1=C(F)C(F)=C(C(F)(F)F)C(Br)=C1F HFTSBCADMASJCQ-UHFFFAOYSA-N 0.000 description 1
- JNPCNDJVEUEFBO-UHFFFAOYSA-N 1-butylpyrrole-2,5-dione Chemical compound CCCCN1C(=O)C=CC1=O JNPCNDJVEUEFBO-UHFFFAOYSA-N 0.000 description 1
- VZYPIIAORNIFKP-UHFFFAOYSA-N 1-chloro-2,3,4,5,6,7,8-heptafluoronaphthalene Chemical compound ClC1=C(F)C(F)=C(F)C2=C(F)C(F)=C(F)C(F)=C21 VZYPIIAORNIFKP-UHFFFAOYSA-N 0.000 description 1
- YYTSGNJTASLUOY-UHFFFAOYSA-N 1-chloropropan-2-ol Chemical compound CC(O)CCl YYTSGNJTASLUOY-UHFFFAOYSA-N 0.000 description 1
- BQTPKSBXMONSJI-UHFFFAOYSA-N 1-cyclohexylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1CCCCC1 BQTPKSBXMONSJI-UHFFFAOYSA-N 0.000 description 1
- NQDOCLXQTQYUDH-UHFFFAOYSA-N 1-propan-2-ylpyrrole-2,5-dione Chemical compound CC(C)N1C(=O)C=CC1=O NQDOCLXQTQYUDH-UHFFFAOYSA-N 0.000 description 1
- YEKDUBMGZZTUDY-UHFFFAOYSA-N 1-tert-butylpyrrole-2,5-dione Chemical compound CC(C)(C)N1C(=O)C=CC1=O YEKDUBMGZZTUDY-UHFFFAOYSA-N 0.000 description 1
- IUGNCEABJSRDPG-UHFFFAOYSA-N 2,2,2-trichloroethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(Cl)(Cl)Cl IUGNCEABJSRDPG-UHFFFAOYSA-N 0.000 description 1
- IIDKLGQPNPUKBQ-UHFFFAOYSA-N 2,2,2-trifluoro-1-(2,3,4,5,6-pentafluorophenyl)ethanone Chemical compound FC1=C(F)C(F)=C(C(=O)C(F)(F)F)C(F)=C1F IIDKLGQPNPUKBQ-UHFFFAOYSA-N 0.000 description 1
- GUETVOYAVZCLET-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)pentanoic acid Chemical compound CC(C)(C)OOC(CCC)(OOC(C)(C)C)C(O)=O GUETVOYAVZCLET-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- VZIQXGLTRZLBEX-UHFFFAOYSA-N 2-chloro-1-propanol Chemical compound CC(Cl)CO VZIQXGLTRZLBEX-UHFFFAOYSA-N 0.000 description 1
- LAXBNTIAOJWAOP-UHFFFAOYSA-N 2-chlorobiphenyl Chemical compound ClC1=CC=CC=C1C1=CC=CC=C1 LAXBNTIAOJWAOP-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- AHWAAQOJHMFNIV-UHFFFAOYSA-N 2-tert-butylperoxy-2-ethylhexanoic acid Chemical compound CCCCC(CC)(C(O)=O)OOC(C)(C)C AHWAAQOJHMFNIV-UHFFFAOYSA-N 0.000 description 1
- JBTDFRNUVWFUGL-UHFFFAOYSA-N 3-aminopropyl carbamimidothioate;dihydrobromide Chemical compound Br.Br.NCCCSC(N)=N JBTDFRNUVWFUGL-UHFFFAOYSA-N 0.000 description 1
- HNGQQUDFJDROPY-UHFFFAOYSA-N 3-bromobenzenethiol Chemical compound SC1=CC=CC(Br)=C1 HNGQQUDFJDROPY-UHFFFAOYSA-N 0.000 description 1
- UJTRCPVECIHPBG-UHFFFAOYSA-N 3-cyclohexylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C2CCCCC2)=C1 UJTRCPVECIHPBG-UHFFFAOYSA-N 0.000 description 1
- WRXOZRLZDJAYDR-UHFFFAOYSA-N 3-methylbenzenethiol Chemical compound CC1=CC=CC(S)=C1 WRXOZRLZDJAYDR-UHFFFAOYSA-N 0.000 description 1
- GPAPPPVRLPGFEQ-UHFFFAOYSA-N 4,4'-dichlorodiphenyl sulfone Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C=C1 GPAPPPVRLPGFEQ-UHFFFAOYSA-N 0.000 description 1
- SIJLTAVFEHEPTJ-UHFFFAOYSA-N 4,4,5-trifluoro-2,5-bis(trifluoromethyl)-1,3-dioxolane-2-carboxylic acid Chemical compound OC(=O)C1(C(F)(F)F)OC(F)(F)C(F)(C(F)(F)F)O1 SIJLTAVFEHEPTJ-UHFFFAOYSA-N 0.000 description 1
- LJXIAGFHONGPJU-UHFFFAOYSA-N 4,5,6-tris(2,3,4,5,6-pentafluorophenyl)triazine Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C1=NN=NC(C=2C(=C(F)C(F)=C(F)C=2F)F)=C1C1=C(F)C(F)=C(F)C(F)=C1F LJXIAGFHONGPJU-UHFFFAOYSA-N 0.000 description 1
- FTBCOQFMQSTCQQ-UHFFFAOYSA-N 4-bromobenzenethiol Chemical compound SC1=CC=C(Br)C=C1 FTBCOQFMQSTCQQ-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- WLHCBQAPPJAULW-UHFFFAOYSA-N 4-methylbenzenethiol Chemical compound CC1=CC=C(S)C=C1 WLHCBQAPPJAULW-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- JJHHIJFTHRNPIK-UHFFFAOYSA-N Diphenyl sulfoxide Chemical compound C=1C=CC=CC=1S(=O)C1=CC=CC=C1 JJHHIJFTHRNPIK-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- VQEZJTIPLFPILL-UHFFFAOYSA-N FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F VQEZJTIPLFPILL-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical class C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- BMPVIOJNXPGHOC-UHFFFAOYSA-N bis(2,3,3-trimethylbutan-2-yl)diazene Chemical compound CC(C)(C)C(C)(C)N=NC(C)(C)C(C)(C)C BMPVIOJNXPGHOC-UHFFFAOYSA-N 0.000 description 1
- WWQLXRAKBJVNCC-UHFFFAOYSA-N bis(2,3,4,5,6-pentafluorophenyl)methanone Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C(=O)C1=C(F)C(F)=C(F)C(F)=C1F WWQLXRAKBJVNCC-UHFFFAOYSA-N 0.000 description 1
- RYQCEARGGAZJGN-UHFFFAOYSA-N bis(2,3-dimethylbutan-2-yl)diazene Chemical compound CC(C)C(C)(C)N=NC(C)(C)C(C)C RYQCEARGGAZJGN-UHFFFAOYSA-N 0.000 description 1
- CSOXCCBZHKJVLZ-UHFFFAOYSA-N bis(2,3-dimethylpentan-3-yl)diazene Chemical compound CCC(C)(C(C)C)N=NC(C)(CC)C(C)C CSOXCCBZHKJVLZ-UHFFFAOYSA-N 0.000 description 1
- WPKWPKDNOPEODE-UHFFFAOYSA-N bis(2,4,4-trimethylpentan-2-yl)diazene Chemical compound CC(C)(C)CC(C)(C)N=NC(C)(C)CC(C)(C)C WPKWPKDNOPEODE-UHFFFAOYSA-N 0.000 description 1
- XRUJEOCEPGTJNX-UHFFFAOYSA-N bis(2,4-dimethylpentan-2-yl)diazene Chemical compound CC(C)CC(C)(C)N=NC(C)(C)CC(C)C XRUJEOCEPGTJNX-UHFFFAOYSA-N 0.000 description 1
- ZGXHUGQEDPPKGZ-UHFFFAOYSA-N bis(2-methylbutan-2-yl)diazene Chemical compound CCC(C)(C)N=NC(C)(C)CC ZGXHUGQEDPPKGZ-UHFFFAOYSA-N 0.000 description 1
- PEDAIVKHTRIDMZ-UHFFFAOYSA-N bis(2-methylhexan-2-yl)diazene Chemical compound CCCCC(C)(C)N=NC(C)(C)CCCC PEDAIVKHTRIDMZ-UHFFFAOYSA-N 0.000 description 1
- HAPMLSSJGUUMQE-UHFFFAOYSA-N bis(2-methylpentan-2-yl)diazene Chemical compound CCCC(C)(C)N=NC(C)(C)CCC HAPMLSSJGUUMQE-UHFFFAOYSA-N 0.000 description 1
- ZOWMMXPOOKBMLD-UHFFFAOYSA-N bis(3-ethylpentan-3-yl)diazene Chemical compound CCC(CC)(CC)N=NC(CC)(CC)CC ZOWMMXPOOKBMLD-UHFFFAOYSA-N 0.000 description 1
- KPPBDZVMVVWVGA-UHFFFAOYSA-N bis(3-methylhexan-3-yl)diazene Chemical compound CCCC(C)(CC)N=NC(C)(CC)CCC KPPBDZVMVVWVGA-UHFFFAOYSA-N 0.000 description 1
- HJXOEVAWGZCKGE-UHFFFAOYSA-N bis(3-methylpentan-3-yl)diazene Chemical compound CCC(C)(CC)N=NC(C)(CC)CC HJXOEVAWGZCKGE-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 229910052805 deuterium Chemical group 0.000 description 1
- QDGONURINHVBEW-UHFFFAOYSA-N dichlorodifluoroethylene Chemical group FC(F)=C(Cl)Cl QDGONURINHVBEW-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 150000004887 dithianes Chemical class 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- XJELOQYISYPGDX-UHFFFAOYSA-N ethenyl 2-chloroacetate Chemical compound ClCC(=O)OC=C XJELOQYISYPGDX-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- XNICETZFWREDRJ-UHFFFAOYSA-N ethyl 2-[(1-ethoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound CCOC(=O)C(C)(C)N=NC(C)(C)C(=O)OCC XNICETZFWREDRJ-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 238000007526 fusion splicing Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000013847 iso-butane Nutrition 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- ZQMHJBXHRFJKOT-UHFFFAOYSA-N methyl 2-[(1-methoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound COC(=O)C(C)(C)N=NC(C)(C)C(=O)OC ZQMHJBXHRFJKOT-UHFFFAOYSA-N 0.000 description 1
- XGLLQDIWQRQROJ-UHFFFAOYSA-N methyl 3,3,3-trifluoro-2-oxopropanoate Chemical compound COC(=O)C(=O)C(F)(F)F XGLLQDIWQRQROJ-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- RHSWMKFUVRFEDV-UHFFFAOYSA-N tert-butyl 2-methyl-2-[[2-methyl-1-[(2-methylpropan-2-yl)oxy]-1-oxopropan-2-yl]diazenyl]propanoate Chemical compound CC(C)(C)OC(=O)C(C)(C)N=NC(C)(C)C(=O)OC(C)(C)C RHSWMKFUVRFEDV-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
- H04B10/541—Digital intensity or amplitude modulation
Definitions
- the present invention relates to an optical transmission system, an optical transmission line, and an optoelectronic composite cable.
- FEC Forward Error Correction
- the present invention has been made in view of the above, and it is an object of the present invention to provide an optical transmission system, an optical transmission line, and an optical/electrical composite cable that can realize high-quality and large-capacity communication with a simple configuration.
- one aspect of the present invention provides an optical signal transmitter that transmits an optical signal output from a light source, an optical signal receiver that receives the optical signal, and an optical transmission line that optically connects the optical signal transmitter and the optical signal receiver and transmits the optical signal, wherein the product of the scattering loss and the length of the optical signal is 6 dB or less,
- a first optical transmission line is disposed immediately after the light source and outputs a Gaussian beam emitted from the single-mode optical fiber with a beam diameter expanded by a factor of three or more when the Gaussian beam is input with central excitation; It is an optical transmission system optically connected to two optical transmission lines.
- an optical signal transmitter that transmits an optical signal output from a light source, an optical signal receiver that receives the optical signal, and an optical signal transmitter and the optical signal receiver that are combined optically. and an optical transmission line for transmitting the optical signal, wherein the product of scattering loss and length for the optical signal is 6 dB or less, and the Gaussian beam emitted from the single-mode optical fiber is center-excited.
- a first optical transmission line that expands a beam diameter by three times or more and outputs it when the light is input through the light source; It is an optical transmission system that is optically connected.
- an optical signal transmitter that outputs an optical signal
- an optical signal receiver that receives the optical signal
- the optical signal transmitter and the optical signal receiver are optically connected, and an optical transmission line for transmitting an optical signal, wherein the optical transmission line has a product of scattering loss and length for the optical signal of 6 dB or less, and a Gaussian beam emitted from a single-mode optical fiber is center-excited.
- a first optical transmission line that expands the beam diameter by three times or more and outputs it when input at , and is optically connected to the first optical transmission line, is longer than the first optical transmission line
- Second optical transmission in which the transmission loss for an optical signal is 100 dB/km or less, and the beam diameter is expanded less than three times when a Gaussian beam emitted from a single-mode optical fiber is input with center excitation. and an optical transmission system.
- an optical signal transmitter that outputs an optical signal
- an optical signal receiver that receives the optical signal
- the optical signal transmitter and the optical signal receiver are optically connected, and an optical transmission line for transmitting an optical signal
- the optical transmission line has a product of scattering loss and length for the optical signal of 6 dB or less, and a Gaussian beam emitted from a single-mode optical fiber is center-excited.
- the beam diameter is enlarged three times or more when input at , and the modulation method of the optical signal is a multi-level modulation method, and the error is 10 ⁇ 12 or less without using an error correction method. It is an optical transmission system that realizes error rate.
- an optical signal transmitter that outputs an optical signal
- an optical signal receiver that receives the optical signal
- the optical signal transmitter and the optical signal receiver are optically connected, and and an optical transmission line for transmitting an optical signal, wherein the optical transmission line is the maximum value of the beam diameter of the output beam when the Gaussian beam emitted from the single-mode optical fiber is input with a position shift. is 0.7 or more.
- an optical signal transmitter that transmits an optical signal output from a light source, an optical signal receiver that receives the optical signal, and an optical signal transmitter and the optical signal receiver that are combined optically.
- an optical transmission line for transmitting the optical signal wherein the optical transmission line is configured by connecting two or more optical transmission lines, and each optical transmission line is connected to At least one point is connected through an air layer, and among the connected optical transmission lines, at least the optical transmission line arranged immediately after the light source is center-excited by the Gaussian beam emitted from the single-mode optical fiber.
- the maximum beam diameter of the output beam when the Gaussian beam emitted from the single-mode optical fiber is input with a displacement of the Gaussian beam is 0.7 or more, and the product of scattering loss and length for the optical signal is 6 dB or less.
- an optical signal transmitter that outputs an optical signal
- an optical signal receiver that receives the optical signal
- the optical signal transmitter and the optical signal receiver are optically connected
- the optical transmission line is configured by connecting two or more optical transmission lines, and the optical transmission lines are connected to each other at at least one connection point
- Each optical transmission line is connected via an air layer, and when a Gaussian beam emitted from a single-mode optical fiber is input with central excitation, the beam diameter is expanded by three times or more and output, and single-mode light is output.
- the ratio of the minimum value to the maximum value of the beam diameter of the output beam is 0.7 or more, and the scattering loss and length of the optical signal is 6 dB or less.
- One aspect of the present invention is an optoelectronic composite cable including the optical transmission system.
- One aspect of the present invention is an optical transmission line used in an optical signal transmitter that outputs an optical signal having a baud rate of 10 Gbaud or more, wherein the product of the scattering loss and the length of the optical signal is 6 dB or less, and a single
- This is an optical transmission line that enlarges the beam diameter by three times or more and outputs it when a Gaussian beam emitted from a mode optical fiber is input with central excitation.
- FIG. 1 is a schematic configuration diagram of an optical transmission system according to the first embodiment.
- FIG. 2 is a diagram for explaining a beam diameter measuring method.
- FIG. 3 is a diagram showing measurement results of beam diameters of input light and output light when a glass optical fiber is used as the second optical transmission line of Reference Example 1.
- FIG. 4 is a diagram showing measurement results of beam diameters of input light and output light when a plastic optical fiber is used as the first optical transmission line.
- FIG. 5 is a diagram showing the relationship between the ratio of the beam diameter r1 of the output light to the beam diameter r0 of the input light and the length when a plastic optical fiber is used as the first optical transmission line. .
- FIG. 6 is a diagram showing the relationship between the modulation voltage and the common logarithm of the error rate (BER).
- FIG. 7 is a schematic configuration diagram of an optical transmission system according to the second embodiment.
- FIG. 8 is a diagram showing measurement results of beam diameters of input light and output light when a plastic optical fiber is used as an optical transmission line.
- FIG. 9 is a diagram showing the relationship between the ratio of the beam diameter r1 of the output light to the beam diameter r0 of the input light and the length when a plastic optical fiber is used as the optical transmission line.
- FIG. 10 is a diagram showing a constellation map of Comparative Example 4.
- FIG. 11 is a diagram showing a constellation map of Example 10.
- FIG. 12 is a diagram showing error vector amplitudes in 30 measurements for Example 10 and Comparative Example 4.
- FIG. FIG. 13 is a diagram for explaining the setting of the x-axis and z-axis in the optical transmission line.
- 14 is a diagram showing the relationship between ⁇ x and the beam diameter of output light in Reference Example 1, Comparative Example 5, and Example 8.
- FIG. 15 is a diagram showing the relationship between ⁇ z and the beam diameter of output light in Reference Example 1, Comparative Example 5, and Example 8.
- FIG. FIG. 16 is a diagram showing the relationship between ⁇ x and the emitted beam diameter in Reference Example 1, Comparative Example 5, and Example 8.
- FIG. FIG. 17 is a diagram showing the relationship between ⁇ z and the emitted beam diameter in Reference Example 1, Comparative Example 5, and Example 8.
- FIG. 18 is a diagram standardizing the exit beam diameter of FIG.
- FIG. 19 is a diagram standardizing the exit beam diameter of FIG. 20A is a diagram showing the relationship between ⁇ x and error rate in Reference Example 1.
- FIG. 20B is a diagram showing the relationship between ⁇ x and error rate in Comparative Example 5.
- FIG. 20C is a diagram showing the relationship between ⁇ x and error rate in Example 8.
- FIG. 21A is a diagram showing the relationship between ⁇ z and error rate in Reference Example 1.
- FIG. 21B is a diagram showing the relationship between ⁇ z and the error rate in Comparative Example 5.
- FIG. 21C is a diagram showing the relationship between ⁇ z and the error rate in Example 8.
- FIG. 22A is a diagram showing the relationship between ⁇ x and coupling loss in Reference Example 1.
- FIG. 22B is a diagram showing the relationship between ⁇ x and coupling loss in Comparative Example 5.
- FIG. 22C is a diagram showing the relationship between ⁇ x and coupling loss in Example 8.
- FIG. 23A is a diagram showing the relationship between ⁇ z and coupling loss in Reference Example 1.
- FIG. 23B is a diagram showing the relationship between ⁇ z and coupling loss in Comparative Example 5.
- FIG. 23C is a diagram showing the relationship between ⁇ z and coupling loss in Example 8.
- FIG. FIG. 24 is a diagram showing conditions for realizing error-free transmission.
- FIG. 25 is a schematic diagram of an experimental system for investigating the effects of inter-fiber gaps.
- 26A is a diagram showing the relationship between the modulation voltage and the error rate in Reference Example 1.
- FIG. 26B is a diagram showing the relationship between the modulation voltage and the error rate in Comparative Example 5.
- FIG. 26C is a diagram showing the relationship between the modulation voltage and the error rate in Example 8.
- FIG. 26A is a diagram
- FIG. 1 is a schematic configuration diagram of an optical transmission system according to the first embodiment.
- the optical transmission system 100 includes optical signal transceivers 10 and 20 , second optical transmission lines 31 and 32 , and signal processing circuits 40 and 50 .
- the optical signal transceivers 10 and 20 are an example of an optical signal transmitter and an example of an optical signal receiver.
- the optical signal transceivers 10 and 20 are configured as modules or configured as On-Board Optics (OBO), for example.
- OBO On-Board Optics
- the optical signal transmitter/receiver 10 includes a transmitter/receiver 11 , a first optical transmission line 12 , an intra-device optical transmission line 13 , and connectors 14 and 15 .
- the optical signal transmitter/receiver 20 includes a transmitter/receiver 21 , a first optical transmission line 22 , an internal optical transmission line 23 , and connectors 24 and 25 .
- the transmitting/receiving unit 11 includes an LD (Laser Diode: LD) 11a as a light source, a PD (Photo-Diode) 11b as a light receiving element, a driver-IC 11c, and a TIA (Trans-Impedance Amplifier)-IC 11d. .
- LD Laser Diode
- PD Photo-Diode
- TIA Trans-Impedance Amplifier
- the LD 11a is, for example, a VCSEL (Vertical Cavity Surface Emitting Laser) and oscillates at a wavelength of 850 nm, for example.
- the LD 11a is controlled by the driver-IC 11c and outputs to the first optical transmission line 12 an optical signal modulated by a predetermined modulation method and having a predetermined modulation speed.
- the modulation method is a digital modulation method, for example, a binary modulation method such as NRZ (Non Return to Zero) or a multi-value modulation method such as PAM4, and the baud rate is, for example, 10 Gbaud or higher, or 25 Gbaud or higher.
- the LD 11a is a 4-channel array, but may be an array of any number of 2 or more channels, or may be a single unit.
- the first optical transmission line 12 is optically connected to the LD 11 a by the connector 14 and optically connected to the second optical transmission line 32 by the connector 15 . That is, the first optical transmission line 12 is arranged directly with the LD 11a, which is the light source, or via a lens system. (The case through the lens is omitted in FIG. 1.)
- the connectors 14 and 15 may be, for example, MT connectors, MPO connectors, or connectors of any other shape.
- the first optical transmission line 12 will be detailed later. In this embodiment, the first optical transmission line 12 has four lanes like a ribbon, but it may have any number of lanes of two or more lanes, or may be a single lane.
- the LD 11 a transmits the optical signal output from the LD 11 a to the optical signal transmitter/receiver 20 by transmitting it through the first optical transmission line 12 , the second optical transmission line 32 , and the internal optical transmission line 23 .
- the PD 11b receives optical signals transmitted from the optical signal transmitter/receiver 20 through the first optical transmission line 22, the second optical transmission line 31, and the intra-apparatus optical transmission line 13, and converts the optical signals into current signals. do.
- the TIA-IC 11d amplifies the current signal from the PD 11b, converts it into a voltage signal, and outputs it to the signal processing circuit 40.
- FIG. In this embodiment, the PD 11b and the TIA-IC 11d are 4-channel arrays, but they may be arrays of any number of 2 or more channels, or they may be single units.
- the signal processing circuit 40 is electrically connected to the optical signal transmitter/receiver 10 by soldering, connector connection, or the like.
- the signal processing circuit 40 supplies the modulated signal superimposed on the optical signal to the driver-IC 11c and processes the voltage signal from the TIA-IC 11d.
- the transmitter/receiver 21 includes an LD 21a, a PD 21b, a driver-IC 21c, and a TIA-IC 21d.
- the LD 21a is, for example, a VCSEL, and oscillates at a wavelength of, for example, 850 nm.
- the LD 21a is controlled by the driver-IC 21c, and outputs to the first optical transmission line 22 an optical signal modulated by a predetermined modulation method and having a predetermined modulation speed, like the LD 11a.
- the LD 21a is a 4-channel array, but may be an array of any number of 2 or more channels, or may be a single unit.
- the first optical transmission line 22 is optically connected to the LD 21 a by a connector 24 and optically connected to the second optical transmission line 31 by a connector 25 . That is, the first optical transmission line 22 is arranged directly with the LD 21a, which is the light source, or via a lens system. Connectors 24, 25 may be, for example, MT connectors, MPO connectors, or any other type of connector.
- the first optical transmission line 22 will be detailed later. In this embodiment, the first optical transmission line 22 has four lanes like a ribbon, but it may have any number of lanes of two or more lanes, or may be a single lane.
- the LD 21 a transmits the optical signal output from the LD 21 a to the optical signal transmitter/receiver 10 by transmitting it through the first optical transmission line 22 , the second optical transmission line 31 and the internal optical transmission line 13 .
- the PD 21b receives an optical signal transmitted from the optical signal transmitter/receiver 10 through the first optical transmission line 12, the second optical transmission line 32, and the intra-device optical transmission line 23, and converts the optical signal into a current signal. do.
- the TIA-IC 21 d amplifies the current signal from the PD 21 b, converts it into a voltage signal, and outputs it to the signal processing circuit 50 .
- the PD 21b and the TIA-IC 21d are 4-channel arrays, but may be arrays of any number of 2 or more channels, or may be single units.
- the signal processing circuit 50 is electrically connected to the optical signal transmitter/receiver 20 by soldering, connector connection, or the like.
- the signal processing circuit 50 supplies the modulated signal superimposed on the optical signal to the driver-IC 21c and processes the voltage signal from the TIA-IC 21d.
- the optical transmission system 100 is configured to enable bidirectional optical transmission, and the first optical transmission line 22, the second optical transmission line 31, and the in-device optical transmission line 13 transmit optical signals. It constitutes an optical transmission line 61 .
- the first optical transmission line 12, the second optical transmission line 32, and the in-device optical transmission line 23 constitute an optical transmission line 62 for transmitting optical signals.
- the second optical transmission lines 31 and 32 and the optical signal transceivers 10 and 20 may be integrated to form an AOC (Active Optical Cable).
- the second optical transmission lines 31 and 32 are multi-mode optical fibers (MMF) made of glass such as silica-based glass or plastic.
- the transmission loss for the optical signal of the second optical transmission lines 31 and 32 (for example, the transmission loss at a wavelength of 850 nm) is, for example, 100 dB/km or less, 50 dB/km or less, 10 dB/km or less, or 3 dB/km or less.
- the core diameter is, for example, about 50 ⁇ m
- the numerical aperture (NA) is, for example, about 0.2.
- the second optical transmission lines 31 and 32 are longer than the first optical transmission lines 12 and 22 and the in-apparatus optical transmission lines 13 and 23 .
- the second optical transmission lines 31 and 32 may be of graded-index (GI) type.
- the first optical transmission lines 12 and 22 are optical fibers made of glass such as quartz-based glass, or optical fibers made of plastic (Plastic Optical Fiber: POF), which are MMF.
- the first optical transmission lines 12 and 22 may be of the GI type. If the length of the first optical transmission line is several centimeters to several tens of centimeters or less, a sufficient transmission band is ensured, so a GI distribution is not necessary and an SI (Step-Index) type distribution may be used.
- the shape of the first optical transmission line is not particularly limited, such as an optical waveguide shape, an optical fiber shape, etc., as long as it is a transmission line in which scattering is controlled as defined in the present invention. That is, the cross-sectional shape of the first optical transmission line may be, for example, circular, rectangular, or any other shape.
- the first optical transmission lines 12 and 22 have a scattering loss (for example, a scattering loss at a wavelength of 850 nm) for an optical signal of, for example, 50 dB/km or more, or 100 dB/km or more, or 200 dB/km or more, or 500 dB/km or more. is greater than or equal to 1000 dB/km.
- a scattering loss for example, a scattering loss at a wavelength of 850 nm
- an optical signal is transmitted while being mode-coupled with a higher-order mode due to forward scattering.
- the first optical transmission lines 12 and 22 expand the beam diameters of the optical signals input to them by a factor of three or more and output them.
- the second optical transmission lines 31 and 32 expand the beam diameters of the optical signals input thereto to less than three times and output them.
- the beam diameter is enlarged three times or more and output (Fig. 2).
- the second optical transmission lines 31 and 32 expand the beam diameter less than three times when the Gaussian beam emitted from the single-mode optical fiber is input with central excitation, and output the beam.
- the present inventor spreads the beam diameter of the optical signal output from the LD 11a or LD 21a through the first optical transmission line 12 or 22, transmits it through the second optical transmission line 31 or 32, and We conducted an experiment to receive light. Surprisingly, it was found that the error rate in optical transmission is lower than when the optical transmission lines 61 and 62 do not have the first optical transmission lines 12 and 22 .
- the optical transmission system 100 adds the first optical transmission lines 12 and 22 with extremely large beam diameter expansion ratios to the second optical transmission lines 31 and 32 with small beam diameter expansion ratios that are normally used.
- High-quality and large-capacity communication can be realized with a simple configuration of
- the first optical transmission lines 12 and 22 preferably have a product of scattering loss and length of the optical signal of 6 dB or less.
- the length of the first optical transmission lines 12 and 22 can be 1 to several tens of centimeters.
- the optical signal transceivers 10, 20 are configured as optical transceiver modules, it may be from 1 to several cm.
- the length can be several tens of centimeters as they are routed inside the housing.
- the intra-device optical transmission lines 13 and 23 are of the same type as either of the second optical transmission lines 31 and 32, for example.
- the intra-apparatus optical transmission lines 13 and 23 may be of the same type as either of the first optical transmission lines 12 and 22, for example.
- the length of the intra-apparatus optical transmission lines 13 and 23 may be approximately the same as either of the first optical transmission lines 12 and 22, for example.
- first optical transmission lines 12 and 22 are described in detail.
- the core of an optical fiber has a microscopic heterogeneous structure with a correlation length of about several hundred angstroms or longer, the so-called Rayleigh scattering observed in silica-based glass-based optical fibers It is possible to increase the forward scattering that is different from that.
- a polymer chain with a molecular weight of 100,000 has a coiled structure and a radius of inertia of about several hundred angstroms.
- polymer coils may be slightly associated to form large heterogeneous structures.
- a micro heterogeneous structure can also be formed by a copolymer.
- Copolymers generally have a composition distribution and are more likely to form heterogeneous structures than homopolymers, such as association of monomer units of the same type. These heterogeneous structures depend on the manufacturing conditions of extrusion molding, the molecular weight of the polymer, and the heat history, but if the enthalpy relaxation phenomenon can be effectively utilized and an appropriate metastable enthalpy state can be achieved, there will be no problems in use, and specific Polymers with micro-heterogeneous structures can be mass-produced.
- Quartz glass does not have such a micro-heterogeneous structure.
- it is also effective to add particles to the polymer or glass as a method of controlling scattering. For example, when considering a first optical transmission line of several centimeters or less that can be accommodated in an optical signal transmitter/receiver, scattering that enables stronger mode coupling is required. To this end, it is effective to add submicron or micron-order particles having different refractive indices into the core.
- Particle candidates are not limited as long as they have a refractive index different from that of the polymer or glass medium constituting the core, and include metal particles such as iron, silicon particles, silica particles, mineral particles such as calcium carbonate, and the like. are not limited to these. Larger micron-sized particles are desirable over nano-sized particles in order to enhance forward scattering by those particles. Instead of adding particles, the formation of microvoids has a similar effect and works well.
- a refractive index profile is created by radially varying the concentration of a small molecule dopant that has a different refractive index than the polymer matrix.
- the size of the dopant is about several to several tens of angstroms, and the intensity of light scattering generated from a single molecule is so small that it can be ignored. , a micro-heterogeneous structure is formed and forward light scattering is induced. This slight dopant fluctuation/association is caused by slight compatibility differences between the polymer matrix and the dopant. Therefore, by examining the difference in compatibility between the polymer and the dopant using the solubility parameter as a guideline, it becomes possible to control the microheterogeneous structure due to the fluctuation/association of the dopant, thereby controlling the mode coupling. In addition to dopants for forming a refractive index distribution, it is also possible to control mode coupling caused by forward scattering by adding low-molecular weight molecules to form a micro-inhomogeneous structure. becomes.
- acrylic polymers have intramolecular and intermolecular interactions due to the ester groups present in the molecule.
- perfluorinated polymers such as dioxolene lack such ester groups. Therefore, intramolecular and intermolecular interactions are smaller than those of acrylic polymers.
- both polymers are assemblies of molecular coils with radii of inertia as large as several hundred angstroms, and can control relatively stable microheterogeneous structures, for example, during extrusion molding.
- the polymers that make up the core and clad portions of the first optical transmission lines 12, 22 can be manufactured by methods known in the art. Examples thereof include a method of subjecting a mixture of monomers constituting the polymer to solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization, or the like. Among them, the bulk polymerization method is preferable from the viewpoint of preventing contamination by foreign substances and impurities.
- the polymerization temperature at this time is not particularly limited, and for example, about 80 to 150°C is suitable.
- the reaction time can be appropriately adjusted according to the amount and type of monomers, the amounts of polymerization initiators, chain transfer agents, etc., which will be described later, the reaction temperature, etc., and about 20 to 60 hours is suitable. These polymers may be produced simultaneously or continuously during molding of the core portion and/or the clad portion.
- the polymer constituting the core portion is, for example, a (meth)acrylic acid ester compound such as ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, ethyl acrylate, n-propyl acrylate, n-acrylate -butyl and the like; styrene compounds such as styrene, ⁇ -methylstyrene, chlorostyrene, bromostyrene, etc.; vinyl esters such as vinyl acetate, vinyl benzoate, vinylphenyl acetate, vinyl chloroacetate; and maleimides such as N-n -Butylmaleimide, N-tert-butylmaleimide, N-isopropylmaleimide, N-cyclohexylmaleimide, etc.
- a (meth)acrylic acid ester compound such as ethyl methacrylate, n-propyl methacrylate,
- a polymerization initiator and/or a chain transfer agent when producing a polymer.
- the polymerization initiator include ordinary radical initiators. For example, benzoyl peroxide, t-butylperoxy-2-ethylhexanate, di-t-butylperoxide, t-butylperoxyisopropyl carbonate, n-butyl 4,4, bis(t-butylperoxy)valerate.
- Peroxide compounds such as; , 2′-azobis(2-methylpropane), 2,2′-azobis(2-methylbutane), 2,2′-azobis(2-methylpentane), 2,2′-azobis(2,3-dimethylbutane) ), 2,2′-azobis(2-methylhexane), 2,2′-azobis(2,4-dimethylpentane), 2,2′-azobis(2,3,3-trimethylbutane), 2,2 '-azobis (2,4,4-trimethylpentane), 3,3'-azobis (3-methylpentane), 3,3'-azobis (3-methylhexane), 3,3'-azobis (3,4 -dimethylpentane), 3,3′-azobis(3-ethylpentane), dimethyl-2,2′-azobis(2-methylpropionate), diethyl-2,2′-azobis(2-methylpropionate) ), di-t-butyl-2,2′-azobis(2-methylprop
- a known chain transfer agent can be used without any particular limitation.
- alkyl mercaptans n-butyl mercaptan, n-pentyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, t-dodecyl mercaptan, etc.
- thiophenols thiophenol, m-bromothiophenol, p-bromothio phenol, m-toluenethiol, p-toluenethiol, etc.
- alkyl mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan and t-dodecyl mercaptan are preferably used.
- a chain transfer agent in which the hydrogen atoms in the C—H bond are replaced with deuterium atoms or fluorine atoms may also be used. These may be used alone or in combination of two or more.
- a chain transfer agent is usually used to adjust the molecular weight to an appropriate level for molding and physical properties.
- the chain transfer constant of the chain transfer agent for each monomer is, for example, polymer handbook 3rd edition (edited by J. BRANDRUP and E.H.IM M ERGUT, published by John W. Iley & Son) "Experimental Method for Polymer Synthesis” (Takayuki Otsu, Masayoshi Kinoshita) It can be obtained by experiments with reference to Co-authored, Kagaku Dojin, published in 1972. Therefore, it is preferable to appropriately adjust the type and amount to be added according to the type of monomer, etc., taking into consideration the chain transfer constant. For example, about 0.1 to 4 parts by weight can be used with respect to 100 parts by weight of all the monomer components.
- the weight average molecular weight of the polymer constituting the core part and/or the clad part is suitable in the range of about 50,000 to 300,000, preferably about 100,000 to 250,000. This is to ensure appropriate flexibility, transparency, and the like.
- the core portion and the clad portion may have different molecular weights, for example, for viscosity adjustment.
- a weight average molecular weight points out the value of polystyrene conversion measured by GPC (gel permeation chromatography), for example.
- Polymers constituting the first optical transmission lines 12 and 22 may optionally contain compounding agents, such as heat stabilization aids, as long as they do not impair performance such as transparency and heat resistance as optical fibers. Processing aids, heat resistance improvers, antioxidants, light stabilizers, and the like may be blended. Each of these can be used alone or in combination of two or more. Examples of methods for mixing these formulations with monomers or polymers include hot blending, cold blending, and solution mixing. be done.
- fluorine-containing polymer used for the first optical transmission line When a fluorine-containing polymer (including fully-fluorinated and partially-fluorinated materials) is used as the core material of the first optical transmission lines 12 and 22, it can be synthesized by the following method.
- Synthesis Example A Method for synthesizing fully fluorine-based material
- the product names TEFRON-AF (DuPont), HyflonAD (Solvay), and CYTOP (AGC) can generally be used.
- a wholly fluoropolymer obtained by copolymerizing these main ring structures with tetrafluoroethylene or the like may also be used.
- a fully fluoropolymer having a dioxolene skeleton can also be used.
- a method for synthesizing a fully fluorinated material having a dioxolene skeleton will be described.
- This potassium salt was vacuum-dried and further decomposed under an argon atmosphere to obtain perfluoro-4-methyl-2-methylene-1,3-dioxolane.
- the perfluoro-4-methyl-2-methylene-1,3-dioxolane and perfluorobenzoyl peroxide obtained above were placed in a glass tube, degassed with a freeze/thaw vacuum machine, and argon was again supplied. Filled and heated for several hours. The contents became solid and a clear polymer was obtained. An optical fiber was produced using this polymer.
- the melt viscosity of the fluorine-containing polymer is preferably 10 3 to 10 5 poise at a melting temperature of 200°C to 300°C. If the melt viscosity is too high, not only is melt spinning difficult, but also the diffusion of the dopant necessary for forming the refractive index profile becomes difficult, making it difficult to form the refractive index profile. On the other hand, if the melt viscosity is too low, problems arise in practice. That is, when used as an optical transmission medium in electronic equipment, automobiles, etc., it is exposed to high temperatures and softened, resulting in a decrease in optical transmission performance.
- the number average molecular weight of the fluoropolymer is preferably 10,000 to 5000,000, more preferably 50,000 to 1000,000. If the molecular weight is too small, the heat resistance may be impaired.
- Partially chlorinated polymer used for the first optical transmission line When a partially chlorinated material is used as the core material of the first optical transmission lines 12 and 22, it can be synthesized by a method similar to the method of synthesizing the all-fluorine material, which is a general preparation method described above.
- the solution was thoroughly mixed, it was passed through a membrane filter having a fine pore size and placed in a glass polymerization vessel for filtration.
- a membrane filter having a fine pore size
- dissolved air was removed by a freeze deaeration method.
- the glass polymerization tube was placed in an oven and the temperature of the polymerization vessel was raised while introducing argon gas to polymerize the monomers, and the temperature was further raised to complete the polymerization reaction.
- the glass tube was opened to yield a solidified transparent polymeric rod.
- the solubility parameter of the dopant is equal to the solubility parameter of the polymer and the compatibility is good, the dopant will be homogeneously present in the polymer matrix.
- the difference between the solubility parameters of the dopant and the polymer increases, the tendency of the dopants to agglomerate increases, forming a non-uniform refractive index structure due to the concentration distribution of the dopant.
- the micro concentration distribution of dopants can also be obtained by adding local interactions between dopants and polymers (e.g., secondary electronic polarization corresponding to specific functional groups). can be formed.
- the substance dopant is a substance that does not substantially have a C--H bond for the same reason as the perfluoropolymer, and preferably has a refractive index greater than that of the perfluoropolymer by 0.05 or more.
- a higher refractive index requires less dopant content to form a desired refractive index profile, so the glass transition temperature is less likely to drop, and as a result, the heat resistance of the optical fiber increases. , is particularly preferred to be greater than 0.1.
- a dopant a low-molecular-weight compound, an oligomer, or a polymer containing an aromatic ring such as a benzene ring, a halogen atom such as chlorine, bromine, or iodine, or a linking group such as an ether bond is preferable.
- the compatibility with the wholly fluoropolymer is lowered, and as a result, the light scattering loss is increased.
- the number average molecular weight of the dopant is preferably 3 ⁇ 10 2 to 2 ⁇ 10 3 , more preferably 3 ⁇ 10 2 to 1 ⁇ 10 3 .
- Specific compounds of the dopant include oligomers that are penta- to octa-mers of chlorotrifluoroethylene, oligomers that are penta- to octa-mers of dichlorodifluoroethylene, or Among the monomers forming the perfluorinated polymer, there are dimeric to pentamer oligomers obtained by polymerizing monomers that give high refractive index oligomers (for example, monomers containing chlorine atoms).
- halogenated aromatic hydrocarbons and halogen-containing polycyclic compounds that do not contain hydrogen atoms bonded to carbon atoms can also be used.
- fluorinated aromatic hydrocarbons and fluorine-containing polycyclic compounds containing only fluorine atoms as halogen atoms (or containing fluorine atoms and a relatively small number of chlorine atoms) are compatible with fluoropolymers is preferred.
- fluoropolymers it is more preferable that these halogenated aromatic hydrocarbons and halogen-containing polycyclic compounds do not have a polar functional group such as a carbonyl group or a cyano group.
- Such halogenated aromatic hydrocarbons include, for example, the formula ⁇ r-Zb [ ⁇ r is a b-valent fluorinated aromatic ring residue in which all hydrogen atoms are substituted with fluorine atoms, Z is a halogen atom other than fluorine, - Rf, -CO-Rf, -O-Rf, or -CN.
- Rf is a perfluoroalkyl group, a polyfluoroperhaloalkyl group, or a monovalent ⁇ r.
- b is an integer of 0 or 1 or more;
- Aromatic rings include a benzene ring and a naphthalene ring.
- the perfluoroalkyl group or polyfluoroperhaloalkyl group represented by Rf preferably has 5 or less carbon atoms.
- a chlorine atom and a bromine atom are preferable as halogen atoms other than fluorine.
- Specific compounds include, for example, 1,3-dibromotetrafluorobenzene, 1,4-dibromotetrafluorobenzene, 2-bromotetrafluorobenzotrifluoride, clopentafluorobenzene, bromopentafluorobenzene, iodopentafluorobenzene, Decafluorobenzophenone, perfluoroacetophenone, perfluorobiphenyl, chloroheptafluoronaphthalene, bromoheptafluoronaphthalene, and the like.
- a particularly preferable dopant as an example of a fluorine-containing polycyclic compound has good compatibility with a wholly fluoropolymer, particularly a fluoropolymer having a ring structure in its main chain, and has good heat resistance. , chlorotrifluoroethylene oligomers, perfluoro(triphenyltriazine), perfluoroterphenyl, perfluoroquatrophenyl, perfluoro(triphenylbenzene), perfluoroanthracene. Due to the good compatibility, the fluoropolymer, especially the fluoropolymer having a ring structure in the main chain, and the substance to be mixed can be easily mixed by heating and melting at 200 to 300°C. Further, by dissolving and mixing in a fluorine-containing solvent and then removing the solvent, the two can be uniformly mixed.
- Examples of dopants used in partially chlorine-based or partially fluorine-based core materials include low-molecular-weight compounds or compounds in which hydrogen atoms present in these compounds are replaced with deuterium atoms.
- Examples of low-molecular-weight compounds having a high refractive index include diphenylsulfone (DPSO) and diphenylsulfone derivatives (for example, diphenyl chloride such as 4,4'-dichlorodiphenylsulfone and 3,3',4,4'-tetrachlorodiphenylsulfone).
- TPP triphenyl phosphate
- phosphate compounds such as tricresyl phosphate
- benzyl benzoate benzyl n-butyl phthalate
- phthalate acid diphenyl biphenyl; diphenylmethane and the like.
- low-molecular-weight compounds having a low refractive index include tris-2-ethylhexylphosphate (TOP). These may be used alone or in combination of two or more.
- the temperature and drawing speed during spinning of the optical fiber may be controlled.
- a preform method and a melt extrusion method are well known as general methods for producing an optical fiber using a fluorine-containing polymer.
- rod-shaped plastic moldings called core and clad rods are prepared in advance. This core rod is arranged at the center, and the clad rods have hollow portions and are integrated so as to be covered with the outer peripheral portion of the core to produce a rod-shaped object called a preform.
- This preform is set in a general spinning device, the outer periphery of the preform is uniformly heated and melted with a cylindrical heater or the like, the tip portion is drawn at a constant speed to form a fiber, and the optical fiber is cooled and wound up. is a method of obtaining
- melt extrusion a polymer premixed with a predetermined amount of dopant is used as a core polymer, and a polymer containing no dopant is used as a clad polymer.
- Co-extrusion is a method of ejecting both polymers from a nozzle to obtain an optical fiber.
- an extruder having a screw may be used, but melt extrusion may be performed under pressure such as nitrogen gas.
- a coating layer can also be provided as needed.
- micro-heterogeneous structure by a heat treatment process after co-extrusion of the molten core polymer and molten cladding polymer. For example, quenching after coextrusion vitrifies the polymer with a large volume before enthalpy relaxation of the polymer occurs. On the other hand, if a sufficient heat treatment step is performed near the glass transition temperature, the volume will decrease slightly due to enthalpy relaxation. If the enthalpy relaxation is formed in the micro-domain, it forms a so-called micro-heterogeneous structure.
- the molecules of the melt-extruded fiber are oriented, and orientation birefringence occurs depending on the degree of orientation.
- the orientation birefringence will result in birefringence not only in the axial direction of the fiber, but also in the radial direction and specific directions. This birefringent structure also facilitates mode coupling.
- a method for manufacturing the optical fiber of the present invention a method known in the art can be used.
- interfacial gel polymerization, rotary polymerization, melt extrusion dopant diffusion, composite melt spinning and rod-in-tube are used to form one or more cladding layers on the outer periphery of one or more core layers. Laws, etc. can be used.
- a preform may be formed in advance and stretched, drawn, or the like.
- a method of producing a hollow clad part and producing a core part in the hollow part of the clad part can be mentioned.
- a monomer forming the core is introduced into the hollow portion of the clad, and the polymer is polymerized while rotating the clad to form the core having a higher refractive index than the clad.
- This operation may be performed only once to form a single-layer core portion, or by repeating this operation, a core portion composed of a plurality of layers may be formed.
- the polymerization vessel used is a glass, plastic, or metal cylindrical vessel (tube) that has mechanical strength to withstand external forces such as centrifugal force due to rotation and heat resistance during heat polymerization.
- the rotation speed of the polymerization vessel during polymerization is exemplified at about 500 to 3000 rpm.
- the monomer composition ratio is kept constant, a dopant is added, and the monomer is formed into a mass at the interface of the polymer.
- Interfacial gel polymerization that polymerizes and imparts a dopant concentration distribution by the reaction or a rotational gel polymerization method in which the reaction mechanism of the interfacial gel polymerization is a rotational polymerization method and gradually changing the charged composition ratio of monomers having different refractive indices,
- the polymerization rate of the previous layer is controlled (reduced), the next layer with a higher refractive index is polymerized, and the refractive index distribution gradually increases from the interface with the cladding to the center. , rotational polymerization, and the like.
- a method of forming the core portion and the clad portion using two or more melt extruders, two or more multilayer dies, and a multilayer spinning nozzle may be used. That is, the polymers and the like constituting the core portion and the clad portion are heated and melted, respectively, and injected into the multi-layer die and the multi-layer spinning nozzle from individual flow paths.
- a fiber or a preform can be formed by extruding a core portion with this die and nozzle and simultaneously extruding one or more layers of concentric clad portions on the outer circumference of the core portion and welding and integrating them.
- the dopant is added to the peripheral or central part in a subsequently provided heat treatment zone.
- a melt extrusion dopant diffusion method in which the concentration distribution of the dopant is imparted by diffusing toward the part, introducing a polymer with a different dopant amount into two or more melt extruders, etc., to form a multilayer structure in the core part and / or A method of extruding the clad portion is exemplified.
- Example 1 to 3 Reference Example 1
- the GI-POF manufactured by the melt extrusion method described above was used as the first optical transmission line.
- the characteristics of the optical transmission lines of Examples 1 to 3 and the transmission loss at a wavelength of 850 nm made of silica-based optical fiber are 2.3 dB/km, the core diameter is about 50 ⁇ m, and the NA is about 0.2.
- the characteristics of the second optical transmission line of Reference Example 1 were measured.
- FIG. 2 is a diagram explaining a method of measuring the beam diameter.
- the beam diameter is obtained from near-field pattern (NFP) measurements. That is, the emitted light 203 (mode field diameter 4.9 ⁇ m, Gaussian beam) from the pigtail (APC polishing) of the polarization-maintaining single-mode optical fiber 202 of the single-frequency DBR laser 201 with a center wavelength of 850 nm is passed through a half mirror.
- a lens 204 was used to enter an optical transmission line 205 (first optical transmission line or second optical transmission line). At this time, light is input to the center of the core of the optical transmission line 205 through the lens 204 using microscopic observation by the CCD camera 206, and the evaluation is performed under the center excitation condition.
- the NFP of the light 207 output from the end face on the opposite side of the input end face of the optical transmission line 205 is measured using the NFP measuring device 208 (NFP1006 manufactured by Precise Gauges), and the light output from the optical transmission line 205 is measured.
- the beam diameter of Also, the beam diameter of the light input to the optical transmission line 205 was obtained by measuring the light output from the lens 204 in the measurement system of FIG.
- FIG. 3 is a diagram showing measurement results of beam diameters of input light and output light in the second optical transmission line of Reference Example 1.
- FIG. 3 shows an image measured as NFP.
- An optical signal to be input is indicated by "Input”
- an optical signal to be output is indicated by "Output”.
- the white bar in the figure is a scale with a length of 10 ⁇ m.
- the beam diameter (D4 ⁇ width) was calculated using the second-order moment method.
- the beam diameter of the input light was 4.9 ⁇ m.
- the magnification ratio was less than 100%.
- FIG. 4 is a diagram showing the measurement results of the beam diameter of the output light in the first optical transmission line of Examples 1-3.
- FIG. 4 shows an image measured as NFP. Note that the beam diameter of the incident light is the same as "Input" in FIG. 3, so illustration is omitted.
- the characteristics of the first optical transmission line are as follows.
- the first optical transmission line of Example 1 had an OTDR loss of 460 dB/km measured by an OTDR (Optical Time Domain Reflectometer) at a wavelength of 850 nm. This loss is believed to be mostly due to scattering loss. Also, the core diameter was about 40 ⁇ m to 45 ⁇ m.
- the OTDR loss of the first optical transmission line of Example 2 was 870 dB/km. This loss is believed to be mostly due to scattering loss. Also, the core diameter was about 42.8 ⁇ m.
- the OTDR loss of the first optical transmission line of Example 3 was 2190 dB/km. This loss is believed to be mostly due to scattering loss. Also, the core diameter was about 45.1 ⁇ m.
- the lengths of the first optical transmission lines of Examples 1 to 3 were 0.15 m, 0.30 m, 0.50 m, 1.0 m, 2.0 m, and 3.0 m.
- the beam diameter has already expanded at a length of 0.15 m, and greatly expanded at a length of 3.0 m.
- FIG. 5 shows the ratio r 1 /r 0 of the beam diameter r 1 of output light to the beam diameter r 0 of input light in the first optical transmission line of Examples 1 to 3, and the length (fiber length). is a diagram showing the relationship of As can be seen from FIG. 5, all of the first optical transmission lines of Examples 1 to 3 expand the beam diameter of the input optical signal by a factor of three or more before outputting. That is, in any of the first optical transmission lines of Examples 1 to 3, r 1 /r 0 was 3 or more, and especially in Example 3, r 1 /r 0 was 6 or more regardless of the length. . This is considered to mean that mode coupling occurs more remarkably in an optical transmission line having a larger scattering loss among the first optical transmission lines.
- Example 4 Comparative Examples 1 and 2
- Example 3 Next, using the first optical transmission line (OTDR loss: 2190 dB/km) of Example 3, an optical transmission system having a configuration similar to that of the optical transmission system 100 according to Embodiment 1 was constructed, and the error rate was measured. gone.
- An optical transmission system was constructed by using the optical signal transmitter/receiver 10 as an optical transmitter and the optical signal transmitter/receiver 20 as an optical receiver without connecting the path 23 .
- the first optical transmission line in Example 3 is set to 0.15 m
- the intra-equipment optical transmission line 23 is not connected
- the optical signal transmitter/receiver 10 is used as an optical transmitter
- the optical signal transmitter/receiver 20 is used as an optical receiver. Constructed a transmission system.
- the first optical transmission line 12 and the second optical transmission line 32 are connected via an air layer (air gap) having a gap length of 50 ⁇ m, and the axial deviation in the radial direction and the angular direction can be ignored. Measurements were taken at the base.
- the first optical transmission line 12 is set to 0.30 m of the first optical transmission line of Example 3, and an optical transmission system is constructed. .
- the first optical transmission line 12 is set to 0.50 m of the first optical transmission line of Example 3, and an optical transmission system is constructed. .
- the first optical transmission line 12 is set to 1.0 m of the first optical transmission line of Example 3 in the configuration of the optical transmission system of Example 6, and an optical transmission system is constructed. .
- the LD is a VCSEL
- the wavelength is 850 nm
- the modulation method is NRZ (Non Return to Zero) PRBS (Pseudo Random Bit Sequence)
- the bit rate is 10 Gbps
- the pattern length is 2 31 ⁇ 1
- the bias current was set to 5 mA
- the modulation voltage was varied from 0.10 V to 0.40 V at intervals of 0.02 V
- the measurement time was set to 10 minutes.
- FIG. 6 is a diagram showing the relationship between the modulation voltage and the common logarithm of the error rate (BER).
- BER error rate
- the refractive index distribution shape in the core of the first optical transmission line is represented by the refractive index distribution coefficient g in the commonly used power law approximation (Bell Syst. Tech. J., vol.52, no.9, pp. 1563-1578, (1973).).
- the g value that minimizes the modal dispersion is usually around 2, although it depends on the material dispersion.
- the first optical transmission line may be several centimeters or less, in which case the modal dispersion can be almost ignored.
- the refractive index distribution coefficient g of the first optical transmission line of Example 3 used in Examples 4 to 7 was around 7.5, the BER was dramatically reduced as shown in FIG. showing the effect.
- the first optical transmission line may have an SI-shaped refractive index distribution in which the g-value of the refractive index distribution shape in the core is larger.
- a large g value that makes the refractive index distribution at the center of the core nearly flat may be used.
- the optical transmission system 100 has the effect of realizing high-quality and large-capacity communication with a simple configuration. This means that signal degradation is suppressed when the optical transmission line also includes the first optical transmission line as compared to when the optical transmission line includes only the second optical transmission line.
- the optical transmission system 100 can realize an error rate of 10 ⁇ 12 or less without using an error correction method, the configuration becomes complicated due to the addition of a processor such as a DSP when using the error correction method, and the transmission delay and , problems such as deterioration of coding efficiency and increase in heat generation and power consumption due to processor load do not occur.
- FIG. 7 is a schematic configuration diagram of an optical transmission system according to the second embodiment.
- the optical transmission system 100A has a configuration in which the connectors 15 and 25 are removed from the optical transmission system 100 shown in FIG. 1, the optical transmission line 61 is replaced with an optical transmission line 61A, and the optical transmission line 62 is replaced with an optical transmission line 62A. have.
- the optical transmission lines 61A and 62A are MMF made of glass such as quartz glass or plastic.
- the optical transmission lines 61A and 62A may be of the GI type.
- the optical transmission lines 61A and 62A have a product of scattering loss and length for an optical signal (for example, a wavelength of 850 nm) of 6 dB or less, and a beam diameter of a Gaussian beam emitted from a single-mode optical fiber and input with central excitation. is enlarged by 3 times or more and output.
- the transmission loss for an optical signal (for example, the transmission loss at a wavelength of 850 nm) is, for example, 50 dB/km or more, or 100 dB/km or more, the core diameter is, for example, about 50 ⁇ m, and the NA is, for example, about 0.2.
- the optical transmission lines 61A and 62A have, for example, a maximum length (transmission distance) of 100 m.
- optical transmission lines 61A and 62A are used like this optical transmission system 100A, high-quality and large-capacity communication can be realized with a simple configuration, like the optical transmission system 100.
- the optical signal modulation method is a multi-level modulation method such as PAM4, and an error rate of 10 ⁇ 12 or less, which is error-free, can be realized without using an error correction method.
- Example 8 As Example 8, the GI-POF produced by the melt extrusion method described above was used as the optical transmission line.
- the optical transmission line of Example 8 had a transmission loss of 120 dB/km at a wavelength of 850 nm. This loss is believed to be mostly due to scattering loss.
- the core diameter was about 50 ⁇ m and the NA was about 0.185.
- the characteristics of the optical transmission line of Example 8 were measured. Specifically, using the measurement method shown in FIG. 2, the beam diameters of light input to and output from the optical transmission line of Example 8 were measured.
- FIG. 8 is a diagram showing the measurement results of the beam diameter of the output light in the optical transmission line of Example 8.
- FIG. FIG. 8 shows an image measured as NFP. The lengths were 1m, 5m, 10m, 30m, 50m and 100m. As can be seen from FIG. 8, the beam diameter gradually expanded as the length of the optical transmission line increased.
- FIG. 9 shows the relationship between the ratio r 1 /r 0 of the beam diameter r 1 of output light to the beam diameter r 0 of input light in the optical transmission line of Example 8 and the length (fiber length). It is a diagram. As can be seen from FIG. 9, the optical transmission line of the eighth embodiment expands the beam diameter of the input optical signal by three times or more and outputs the signal. That is, in the optical transmission line of Example 8, r 1 /r 0 was 3 or more, specifically, r 1 /r 0 was 4 or more when the length was 1 m or more.
- Example 9 Comparative Example 3
- an optical transmission system of Example 9 having a configuration similar to that of the optical transmission system 100A according to Embodiment 2 was constructed, and the error rate was measured.
- the optical transmission line 62A composed of the optical transmission line of Example 8 with a length of 10 m was connected to the PD 11b, and loopback measurement of one channel was performed.
- the LD is a VCSEL
- the wavelength is 850 nm
- the modulation method is PAM4 PRBS
- the pattern length is 2 31 ⁇ 1
- the baud rate is 26.5625 Gbaud
- the bit rate is 53.125 Gbps
- the modulation voltage is 0.5625 Gbaud.
- the voltage was 6 V (differential signal, peak-to-peak value), and the measurement time was 30 minutes.
- reflected return optical noise In optical links, transmission quality deteriorates due to various types of noise (reflected return optical noise, mode noise, etc.) that depend on the connection state of the optical fiber.
- reflected return optical noise causes a significant increase in noise level and is considered to be a major factor in deterioration of transmission quality.
- the effect of mode coupling in the optical fiber can be ignored, so the reflected return light maintains high coherence, efficiently couples into the laser cavity, causes large noise, and affects the transmission quality ( bit error rate) may deteriorate.
- mode coupling randomizes the field pattern, coherence, and spatial distribution of polarization of the reflected return light, and reduces the coherence of light.
- the correlation between the reflected return light and the intra-cavity mode of the laser is lowered, the self-coupling ratio of the reflected return light to the laser cavity is lowered, and the reflected return light noise is reduced. Therefore, by using the GI-type POF, transmission quality degradation caused by reflected return light can be suppressed, and error-free transmission can be preferably achieved without using FEC.
- Radio over Fiber is a technology related to analog modulation optical transmission systems.
- RoF is a technology that transmits wireless signals using optical fibers, and is being used in the wireless communication and broadcasting fields.
- RoF is used for the transmission of wireless signals between a base station and an antenna.
- 5G and future Beyond 5G and 6G it is expected that the importance of RoF technology will increase further in the future, as more antennas will be required to be installed than before in order to improve transfer speeds and eliminate radio wave dead zones. be.
- the light source is directly modulated by a radio signal, and the radio signal waveform is converted into an optical signal waveform as it is and transmitted through the optical fiber. Since this corresponds to analog modulation of the optical signal, in RoF transmission, a slight noise generated in the optical transmission line is a factor in degrading the transmission quality. In other words, in order to establish a high-quality RoF transmission technology, it is important to reduce the noise of the optical transmission system.
- the analog modulation optical transmission system according to the embodiment of the present invention has the same configuration as the optical transmission system 100 according to the first embodiment shown in FIG. 1 or the optical transmission system 100A according to the second embodiment shown in FIG. be able to.
- an RF amplifier or the like is used instead of the TIA-IC.
- the analog modulation optical transmission system can be configured as a unidirectional system for distribution only, instead of a bidirectional configuration such as the optical transmission systems 100 and 100A.
- Example 10 Comparative Example 4
- An optical transmission system was constructed using the first optical transmission line as an optical transmission line.
- an optical transmission system of Comparative Example 4 was constructed using only the second optical transmission line of Reference Example 1 with a length of 100 m as an optical transmission line. Then, RoF transmission experiments were conducted on the optical transmission systems of the tenth embodiment and the fourth comparative example.
- the LD was a VCSEL with a wavelength of 850 nm and a bias current of 5 mA.
- the transmission signal was an orthogonal frequency division multiplexing (OFDM) radio signal, the modulation system was 64-level quadrature amplitude modulation (64QAM), the center frequency was 880 MHz, the bandwidth was 20 MHz, and the input signal strength was -10 dBm.
- OFDM orthogonal frequency division multiplexing
- 64QAM 64-level quadrature amplitude modulation
- the center frequency was 880 MHz
- the bandwidth was 20 MHz
- the input signal strength was -10 dBm.
- FIG. 10 is a diagram showing a constellation map of Comparative Example 4.
- FIG. The error vector magnitude (EVM) in this case was 9.93%.
- FIG. 11 is a diagram showing a constellation map of the tenth embodiment.
- the error vector magnitude (EVM) in this case was 3.97%.
- FIGS. 10 and 11 in Example 10, compared to Comparative Example 4, variations in signal points in the constellation map were greatly reduced, and the EVM of the transmission signal was reduced. It is considered that this is because the mode coupling inside the first optical transmission line significantly reduces the noise generated in the optical transmission line.
- FIG. 12 is a diagram showing error vector amplitudes in 30 measurements for Example 10 and Comparative Example 4.
- the above results show that the optical transmission system according to the embodiment of the present invention is useful not only for digital data transmission but also for RoF transmission.
- Embodiment 3 will be described below as an embodiment thereof.
- the optical transmission system according to Embodiment 3 has the same configuration as the optical transmission system according to Embodiment 2 shown in FIG.
- the maximum value of the beam diameter of the output Gaussian beam is The ratio of minimum values is 0.7 or more. This greatly relaxes the optical fiber alignment requirements for achieving high-quality optical transmission. As a result, high-precision alignment of optical elements (light source, lens, optical fiber, etc.) is not required, so that an optical transmission system can be manufactured easily at low cost.
- the optical transmission line preferably has a product of scattering loss and length of the optical signal of 6 dB or less.
- the GI-POF of the eighth embodiment can be used as the optical transmission line of the optical transmission system according to the third embodiment. Therefore, the results of experiments using the optical transmission line of Reference Example 1, the optical transmission line of Example 8, and the optical transmission line of Comparative Example 5, which is a commercially available GI-POF, will be described below.
- the optical transmission line of Comparative Example 5 had an OTDR loss of about 60 dB/km. This loss is believed to be mostly due to scattering loss. Moreover, the core diameter was about 50 ⁇ m.
- the relationship between the positional deviation and the beam diameter was measured using the measurement system shown in FIG.
- FIG. 13 taking the optical axis direction of the emitted light 203 (or lens 204) as the z-axis and the radial direction as the x-axis, The optical transmission path 205 was shifted in the z-axis direction or the x-axis direction to cause the emitted light 203 to enter.
- the NFP of the light output from the end surface of the optical transmission line 205 opposite to the input end surface is measured using an NFP measuring device, and the beam diameter (D4 ⁇ width) of the light output from the optical transmission line 205 is It was obtained from NFP using the second moment method.
- the beam diameter of the light input to the optical transmission line 205 was obtained by measuring the light output from the lens 204 in the measurement system of FIG.
- FIG. 14 is a diagram showing the relationship between ⁇ x and the beam diameter of output light in Reference Example 1, Comparative Example 5, and Example 8.
- FIG. 14 shows an image measured as NFP.
- the white bar in the figure is the scale with a length of 10 ⁇ m.
- the beam diameter of the emitted beam increased as the shift amount ⁇ x increased.
- higher-order modes are excited by moving the beam incident position from the center of the core of the optical transmission line to the outer periphery of the core.
- the size of the emitted beam was substantially constant regardless of the amount of deviation ⁇ x. It is believed that this is because strong mode coupling in the optical transmission line excites higher-order modes regardless of excitation conditions.
- FIG. 15 is a diagram showing the relationship between ⁇ z and the beam diameter of output light in Reference Example 1, Comparative Example 5, and Example 8.
- FIG. As in the case of .DELTA.x, in the case of Reference Example 1 and Comparative Example 5, there was a tendency that the beam diameter of the output beam increased as the shift amount .DELTA.z increased. On the other hand, in the case of Example 8, the size of the emitted beam was substantially constant regardless of the amount of deviation ⁇ z.
- FIG. 16 is a diagram showing the relationship between ⁇ x and the emitted beam diameter in Reference Example 1, Comparative Example 5, and Example 8.
- FIG. 17 is a diagram showing the relationship between ⁇ z and the emitted beam diameter in Reference Example 1, Comparative Example 5, and Example 8.
- FIG. 18 is a standardized diagram of the outgoing beam diameter of FIG.
- FIG. 19 is a diagram standardizing the exit beam diameter of FIG.
- the output beam diameter was standardized by dividing the output beam diameter at each shift amount by the maximum value of the output beam diameter. That is, the vertical axis in FIGS. 18 and 19 is (exit beam diameter)/(maximum value of exit beam diameter).
- an optical transmission system similar to the optical transmission system 100A according to the second embodiment is constructed. was used as an optical transmitter, and the optical signal transceiver 20 was used as an optical receiver. Then, the error rate was measured by variously changing the amount of deviation in the x-axis direction and the amount of deviation in the z-axis direction.
- the LD is a VCSEL
- the wavelength is 850 nm
- the modulation method is NRZ PRBS
- the bit rate is 10 Gbps
- the pattern length is 2 31 ⁇ 1
- the bias current is 5 mA
- the modulation voltage is 0.12 V.
- the measurement time was 5 minutes.
- 20A, 20B, and 20C are diagrams showing the relationship between ⁇ x and the error rate in Reference Example 1, Comparative Example 5, and Example 8, respectively.
- 21A, 21B, and 21C are diagrams showing the relationship between ⁇ z and the error rate in Reference Example 1, Comparative Example 5, and Example 8, respectively.
- the coupling loss was measured by variously changing the amount of deviation in the x-axis direction and the amount of deviation in the z-axis direction.
- 22A, 22C, and 22C are diagrams showing the relationship between ⁇ x and coupling loss in Reference Example 1, Comparative Example 5, and Example 8, respectively.
- 23A, 23B, and 23C are diagrams showing the relationship between ⁇ z and coupling loss in Reference Example 1, Comparative Example 5, and Example 8, respectively. In all cases of Reference Example 1, Comparative Example 5, and Example 8, it was observed that the coupling loss tended to increase as the amount of deviation increased.
- FIG. 24 is a diagram showing conditions for realizing error-free transmission using the optical transmission line of Example 8, obtained from the results of FIGS. 20C, 21C, 22C, and 23C.
- the optical transmission line of Example 8 was used, error-free transmission was achieved in the range of ⁇ 14.5 ⁇ m ⁇ x ⁇ +18 ⁇ m.
- the optical transmission line of Example 8 was used, error-free transmission was achieved in the range of ⁇ 850 ⁇ m ⁇ z ⁇ +730 ⁇ m.
- the worst value of the error rate is 10 ⁇ 8 under the optical coupling condition where the coupling loss between the optical signal transmitter (light source) and the optical transmission line is 1 dB or less. It is below.
- optical fibers are often connected to configure an optical transmission line to transmit an optical signal.
- optical fibers are connected to each other, if there is an air gap (air layer) between the fibers, it becomes a factor of increasing reflection loss and reflected return optical noise. Therefore, it is important to suppress the reflection at the fiber connection portion in order to perform high-quality optical transmission.
- PC Physical Contact
- FIG. 25 is a schematic diagram of an experimental system for investigating the effects of inter-fiber gaps.
- the inventor of the present invention used the experimental system shown in FIG. 25 to evaluate the influence of the reflection occurring at the optical fiber connection on the transmission quality.
- a connector C12 of an optical fiber F1 having a length of 1 m provided with connectors C11 and C12 and a connector C21 of an optical fiber F2 having a length of 10 m provided with connectors C21 and C22 are connected. They were connected at the fiber connection portion C to form an optical transmission line.
- An optical signal 302 from a light source 301 is condensed on the end surface of the connector C11 by a lens 303 and transmitted through the optical transmission line.
- the optical signal 304 emitted from the connector C22 was condensed by the lens system 305 and received by the photodetector 306, which is a PD, to measure the BER.
- the photodetector 306 which is a PD
- the two optical fibers F1 and F2 were precisely aligned, and the measurement was performed after eliminating axial deviation in the radial direction and the angular direction.
- the optical signal was a 10 Gbps NRZ signal, the PRBS pattern length was 2 31 ⁇ 1, and the BER measurement time was 5 minutes.
- the light source 301 is a VCSEL with a wavelength of 850 nm, the bias current is 5 mA, and the excitation condition is center excitation.
- FIGS. 26A, 26B, and 26C show, respectively, when the optical fibers F1 and F2 are the optical transmission line of Reference Example 1, when the optical fibers F1 and F2 are the optical transmission line of Comparative Example 5, and when the optical fibers F1 and F2 are FIG. 12 is a diagram showing the relationship between the modulation voltage and the error rate (worst value) in the case of the optical transmission line of Example 8; As shown in FIGS. 26A, 26B, and 26C, in all of Reference Example 1, Comparative Example 5, and Example 8, when there is no air gap in the optical fiber connection portion C, the BER is 10 ⁇ An error-free transmission of 12 or less was obtained.
- Example 8 On the other hand, in Example 8, a slight deterioration in BER was observed when the modulation voltage was 0.1 V, but when the modulation voltage was 0.12 V or higher, error-free transmission (BER ⁇ 10 ⁇ 12 ) was achieved.
- the above results show that by using the optical transmission line (POF) of Example 8, low-noise signal transmission is possible regardless of the presence or absence of reflection at the optical fiber connection C, and the optical fiber connection such as PC connection is possible. It shows that the conventional fitting technique for suppressing the reflection of C becomes unnecessary, and high-quality optical transmission can be realized even with extremely simple optical fiber connection.
- POF optical transmission line
- the optical fibers F1 and F2 are the optical transmission lines of the eighth embodiment is an example in which the optical transmission lines are configured by connecting two or more optical transmission lines, and each optical transmission line This is an example of a case where they are connected via an air layer, and among the optical transmission lines to be connected, at least the optical transmission line arranged immediately after the light source is centered on the Gaussian beam emitted from the single-mode optical fiber.
- the beam diameter When input by excitation, the beam diameter is expanded three times or more and output, and when the position of the Gaussian beam emitted from the single-mode optical fiber is shifted and input, the beam diameter of the output beam
- This is an example of an optical transmission line in which the ratio of the minimum value to the maximum value is 0.7 or more and the product of the scattering loss and the length for the optical signal is 6 dB or less. If there are a plurality of connection points between the optical transmission lines, the optical transmission lines may be connected to each other via an air layer at at least one of the connection points. Further, when there are a plurality of connection points between the optical transmission lines, the optical transmission lines may be connected to each other via an air layer at all of the connection points.
- the optical fibers F1 and F2 are the optical transmission lines of the eighth embodiment
- each optical transmission line expands the beam diameter more than three times when a Gaussian beam emitted from a single-mode optical fiber is input with central excitation.
- the ratio of the minimum value to the maximum value of the beam diameter of the output beam is 0.7 or more
- connection points between the optical transmission lines it is sufficient that the optical transmission lines are connected to each other via an air layer at at least one of the connection points. Further, when there are a plurality of connection points between the optical transmission lines, the optical transmission lines may be connected to each other via an air layer at all of the connection points.
- the first optical transmission line, the second optical transmission line, and the optical transmission line are all optical fibers, but the first optical transmission line, the second optical transmission line, and the optical transmission line are However, it may be an optical waveguide or a collectively molded multi-optical transmission sheet as disclosed in International Publication No. 2019/177068.
- the second optical transmission line is not limited to being longer than the first optical transmission line. That is, the length of the second optical transmission line may be less than or equal to the length of the first optical transmission line.
- the optical transmission line of the present disclosure can also configure an optoelectronic composite cable that is combined with a metal cable that transmits power and low-speed signals. It can also be used for a transmission path between new devices, when combining signals of existing standards (for example, HDMI (registered trademark), USB, etc.) with an optical system to increase the speed.
- existing standards for example, HDMI (registered trademark), USB, etc.
- the shape of the optoelectronic composite connector can be backward compatible with existing standards or can be new.
- the optical transmission system of the present disclosure uses a plurality of LDs of different wavelengths and is configured as a wavelength division multiplexing (WDM) system that can speed up by a multiple of the number of wavelengths used without increasing the number of optical transmission lines.
- WDM wavelength division multiplexing
- the emitted lights (optical signals) of LDs with different wavelengths are coupled to the first optical transmission line in Embodiment 1 or the optical transmission line in Embodiment 2 using a multiplexer, Send.
- An optical signal transmitted through an optical transmission line is demultiplexed into optical signals of respective wavelengths by a demultiplexer and received by a PD.
- a set of LDs, multiplexers, demultiplexers, and PDs with different wavelengths can be used to support a plurality of optical transmission lines.
- the present invention is not limited by the above embodiments.
- the present invention also includes those configured by appropriately combining the respective constituent elements described above. Further effects and modifications can be easily derived by those skilled in the art. Therefore, broader aspects of the present invention are not limited to the above-described embodiments, and various modifications are possible.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
[光伝送システムの構成]
図1は、実施形態1に係る光伝送システムの模式的な構成図である。光伝送システム100は、光信号送受信機10、20と、第2光伝送路31、32と、信号処理回路40、50と、を備えている。光信号送受信機10、20は、光信号送信機の一例でありかつ光信号受信機の一例である。光信号送受信機10、20は、例えばモジュールとして構成されたり、On-Board Optics(OBO)として構成されたりする。
次に、第1光伝送路12、22、第2光伝送路31、32、機器内光伝送路13、23の構成について説明する。
はじめに、第2光伝送路31、32は、石英系ガラスなどのガラスやプラスチックからなるマルチモード光ファイバ(Multi-Mode Fiber:MMF)である。第2光伝送路31、32の光信号に対する伝送損失(例えば波長850nmにおける伝送損失)は例えば100dB/km以下、又は50dB/km以下、更には10dB/km以下、また更には3dB/km以下であり、コア径は例えば50μm程度であり、開口数(NA)は例えば0.2程度である。また、第2光伝送路31、32は、第1光伝送路12、22、機器内光伝送路13、23のいずれよりも長い。第2光伝送路31、32は、屈折率分布(Graded-Index:GI)型でもよい。
次に、第1光伝送路12、22の好適な例について詳述する。例えば、光ファイバのコア内に数100オングストローム程度、あるいは、それよりも大きな相関長のミクロな不均一構造を有するようなものとすれば、石英系ガラス系の光ファイバで観測されるいわゆるレイリー散乱とは異なる前方性散乱を大きくすることが可能となる。
例えば、分子量数10万の高分子鎖はコイル状の構造を持ち、慣性半径は数100オングストローム程度である。さらに、高分子コイル同士がわずかに会合し大きな不均一構造を形成することもある。その場合には、例えば、デバイの散乱理論から導かれるように相関距離が大きくなり、さらに前方散乱が生じ、モードカップリングに寄与する。また、ミクロな不均一構造は、共重合体によっても形成することが出来る。一般に共重合体は、組成分布を持ち、同種のモノマーユニットが会合するなど、ホモポリマーよりもさらに不均一構造を形成しやすい。それらの不均一構造は、押出成形の製造条件・ポリマーの分子量・熱履歴にもよるが、エンタルピー緩和現象を有効に活用し、適切な準安定なエンタルピー状態を達成できれば、使用上問題なく特定のミクロ不均一構造を有するポリマーを量産することができる。石英ガラスにはそのようなミクロ不均一構造は存在しない。
ミクロ不均一構造をポリマーに持たせる以外に散乱を制御する方法として、ポリマーあるいはガラス内に粒子を添加することも有効である。例えば、光信号送受信器内に収まる数cm以下の第1光伝送路を考えた場合、より強いモード結合を可能とする散乱が必要となる。そのためには、コア内に屈折率の異なるサブミクロンあるいはミクロンオーダーの粒子を添加することが有効である。粒子の候補としては、コアを構成するポリマーまたはガラス媒体とは屈折率が異なるものであれば制限がなく、鉄などの金属粒子、シリコン粒子、シリカ粒子、炭酸カルシウムなどの鉱物粒子などが挙げられるがこれらに限定されるものではない。それらの粒子により、前方散乱を強めるためには、ナノサイズの粒子より、より大きなミクロンサイズの粒子が望ましい。粒子を添加する代わりに、マイクロボイドの形成は同様の効果をもたらし、有効に作用する。
GI型POFの一態様として、ポリマーマトリクスと異なる屈折率を有する低分子ドーパントの濃度を半径方向に変化させることにより、屈折率分布が形成される。ドーパントの大きさは数~数十オングストローム程度であり、一分子から生じる光散乱の強度は無視できるほど小さいが、数百~数千オングストローム程度のオーダーでわずかにドーパント濃度が揺らいでいると、それにより、ミクロ不均一構造が形成され、前方への光散乱が誘発される。このわずかなドーパントの揺らぎ/会合はポリマーマトリクスとドーパントとのわずかな相溶性の違いにより生じる。したがって、溶解性パラメータを指針に、ポリマーとドーパントとの相溶性の違いを検討することで、ドーパントの揺らぎ/会合によるミクロ不均一構造の制御が可能となり、モード結合を制御できる。また、屈折率分布形成のためのドーパントのみならず、ミクロ不均一構造を形成するための低分子を添加することによっても、同様の原理により、前方散乱に起因したモード結合を制御することが可能となる。
第1光伝送路12、22のコア部及びクラッド部を構成する重合体は、当該分野で公知の方法によって製造することができる。例えば、重合体を構成するモノマーの混合物を、溶液重合、塊状重合、乳化重合又は懸濁重合等に付す方法などが挙げられる。なかでも、異物、不純物の混入を防ぐという観点から、塊状重合法が好ましい。
第1光伝送路12、22のコア材料として含フッ素重合体(全フッ素、部分フッ素材料を含む)を使用する場合、次のような方法により合成することができる。
[合成例A] 全フッ素系材料の合成方法
全フッ素材料としては、一般的に製品名TEFRON-AF(DuPont社)やHyflonAD(Solvay社)や、CYTOP(AGC社)を用いる事ができる。またこれらの主環構造にテトラフルオロエチレン等で共重合した全フッ素重合体を用いてもよい。またジオキソレン骨格を有する全フッ素重合体も用いる事ができる。次にジオキソレン骨格を有する全フッ素材料の合成方法について述べる。
2-クロロ-1-プロパノールと1-クロロ-2-プロパノールとトリフルオロピルビン酸メチルを脱水縮合反応により2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの精製物を得た。次にパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランのフッ素化を行う。溶媒として1,1,2-トリクロロトリフルオロエタンを用い、窒素ガス及び、フッ素ガスを各々一定の流速で流し、窒素/フッ素の雰囲気下において、先に準備した2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランを反応槽にゆっくり加えることによりフッ素化処理を行いパーフルオロ-2,4-ジメチル-1,3-ジオキソラン-2-カルボン酸を得た。上記蒸留物を水酸化カリウム水溶液で中和し、パーフルオロ-2,4-ジメチル-2-カルボン酸カリウム-1,3-ジオキソランを得た。このカリウム塩を真空乾燥し、更にアルゴン雰囲気下で、塩を分解することで、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランを得た。上記にて得られたパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランとパーフルオロベンゾイルパーオキサイドをガラスチューブにいれ、これを冷凍/解凍真空機で脱気した後、アルゴンを再充填し、数時間加熱した。内容物は固体となり、透明なポリマーが得られた。このポリマーを用いて光ファイバを作製した。
第1光伝送路12、22のコア材料として部分塩素系材料を使用する場合、上述した、一般的作成方法である全フッ素材料の合成方法と同様の方法により合成することができる。
次に部分塩素系材料の作成方法について、簡単に述べる。予め蒸留精製したトリクロロエチルメタクリレートと昇華精製したシクロヘキシルマレイミドと屈折率付与剤のドーパントとしてジフェニルスルフィドを各々精秤し、ガラス容器に入れた。更に、全重量中の濃度に対し所定量の重合開始剤としてジターシャリーブチルパーオキサイド及び連鎖移動剤としてノルマル-ラウリルメルカブタンを添加した。この溶液を十分混合後、細孔径のメンブレンフィルタを通すことによりガラス製重合容器に入れ濾過を行った。次にこの溶液の入ったガラス製重合管にアルゴンガスを導入しながら、凍結脱気法により溶存空気を除去した。このガラス重合管をオーブンに入れアルゴンガスを導入しながら重合容器の温度を上げ、モノマーを重合し、更に温度をあげることで重合反応を完了させた。このガラス管を開封し、固化した透明な重合ロッドを得た。
ドーパントの溶解性パラメータがポリマーの溶解性パラメータと等しく相溶性が良い場合には、ドーパントはポリマーマトリクス内に均一に存在する。一方、ドーパントとポリマーの溶解性パラメータの差が大きくなるにつれ、ドーパント同士が凝集しあう傾向が増加し、ドーパントの濃度分布による屈折率不均一構造が形成される。一般的な溶解性パラメータの知見にとどまらず、ドーパントとポリマーとの局所的相互作用(例えば、特定の官能基間に相当するセカンダリーな電子分極等)を加えることによってもドーパントのミクロな濃度分布を形成することが可能となる。全フッ素系のコア材料向けのドーパントとしては通常は全フッ素重合体よりも高屈折率の物質を用いる。すなわち、物質ドーパントは、全フッ素重合と同様な理由から実質的にC-H結合を有しない物質であり、全フッ素重合体より屈折率が0.05以上大きいことがより好ましい。より屈折率が大きいと所望の屈折率分布を形成するために必要なドーパントの含有量がより少なくて良いため、ガラス転移温度の低下が少なくてすみ、その結果、光ファイバの耐熱性が高まるので、0.1以上大きいことが特に好ましい。
ミクロな不均一構造を作りやすくするために、光ファイバを紡糸する際の温度や引き出し速度を制御しても良い。含フッ素重合体を用いた光ファイバの一般的な作成方法としてはプリフォーム法及び溶融押出法が良く知られている。プリフォーム法は予めコアとクラッドのロッドと呼ばれる棒状のプラスチック成型体を作成する。このコアロッドを中心に配置し、クラッドロッドは中空部を有し、コアの外周部に覆われるように一体化しプリフォームと呼ばれる棒状物を作製する。このプリフォームを一般的な紡糸装置にセットし、プリフォーム外周部を筒状のヒータ等で均一に加熱溶融させ、先端部分を一定速度で引取延伸しファイバ状にし、冷却巻き取ることで光ファイバを得る方法である。
実施例1~3として、上記に記載した溶融押出法にて作製したGI-POFを第1光伝送路とした。そして、実施例1~3の光伝送路の特性と、石英系光ファイバからなる、波長850nmにおける伝送損失が2.3dB/km、コア径が50μm程度であり、NAが0.2程度である参考例1の第2光伝送路の特性とを測定した。
次に、実施例3の第1光伝送路(OTDR損失:2190dB/km)を用いて、実施形態1に係る光伝送システム100と類似する構成の光伝送システムを構築し、誤り率の測定を行った。
図7は、実施形態2に係る光伝送システムの模式的な構成図である。光伝送システム100Aは、図1に示す光伝送システム100において、コネクタ15、25を削除し、光伝送路61を光伝送路61Aに置き換え、光伝送路62を光伝送路62Aに置き換えた構成を有する。
実施例8として、上記に記載した溶融押出法にて作製したGI-POFを光伝送路とした。実施例8の光伝送路は、波長850nmにて伝送損失が120dB/kmであった。この損失は、殆どが散乱損失に起因するものと考えられる。また、コア径は50μm程度、NAは0.185程度であった。そして、実施例8の光伝送路の特性を測定した。具体的には、図2に示す測定方法を用いて、実施例8の光伝送路に対して入力される光と出力する光のビーム径を測定した。
次に、実施例8の光伝送路を長さ10mで用いて、実施形態2に係る光伝送システム100Aと類似する構成の実施例9の光伝送システムを構築し、誤り率の測定を行った。ただし、長さ10mの実施例8の光伝送路からなる光伝送路62AをPD11bに接続し、1チャネルのループバック測定とした。
上記実施形態、実施例および比較例では、変調方式がデジタル変調方式であるが、本発明は変調方式がアナログ変調方式の光伝送システムにも適用できる。アナログ変調方式の光伝送システムに関する技術として、Radio over Fiber(RoF)がある。
実施例10のアナログ変調方式の光伝送システムとして、実施例6と同様に、図3に示した参考例1の長さ100mの第2光伝送路と、実施例3の長さ0.50mの第1光伝送路とを光伝送路として光伝送システムを構築した。また、比較例4のアナログ変調方式の光伝送システムとして、参考例1の長さ100mの第2光伝送路のみを光伝送路として光伝送システムを構築した。そして、実施例10、比較例4の光伝送システムにおいてRoF伝送実験を行った。
ところで、光信号送信機におけるLDのような光源と、光伝送路の光ファイバとをレンズ等を介して光学的に接続した場合、光ファイバからの戻り光によって光源が不安定化し、雑音が増加し、伝送品質が損なわれる場合がある。
11、21:送受信部
11a、21a:LD
11b、21b:PD
11c、21c:ドライバ-IC
11d、21d:TIA-IC
12、22:第1光伝送路
13、23:機器内光伝送路
14、15、24、25、C11、C12、C21、C22:コネクタ
31、32:第2光伝送路
40、50:信号処理回路
61、62、61A、62A:光伝送路
100、100A:光伝送システム
201 :DBRレーザ
202 :偏波保持シングルモード光ファイバ
203 :出射光
204、303:レンズ
205 :光伝送路
206 :CCDカメラ
207 :光
208 :NFP測定装置
301 :光源
302、304:光信号
305 :レンズ系
306 :受光器
C :光ファイバ接続部
F1、F2:光ファイバ
Claims (29)
- 光源から出力された光信号を送信する光信号送信機と、
前記光信号を受信する光信号受信機と、
前記光信号送信機と前記光信号受信機とを光学的に接続し、前記光信号を伝送する光伝送路と、
を備え、
前記光信号に対する散乱損失と長さとの積が6dB以下であって、シングルモード光ファイバから出射されたガウシアンビームが中心励振にて入力された場合にビーム径を3倍以上に拡大して出力する第1光伝送路が、前記光源の直後に配置され、さらに、第2光伝送路に光学的に接続される
光伝送システム。 - 光源から出力された光信号を送信する光信号送信機と、
前記光信号を受信する光信号受信機と、
前記光信号送信機と前記光信号受信機とを光学的に接続し、前記光信号を伝送する光伝送路と、
を備え、
前記光信号に対する散乱損失と長さとの積が6dB以下であって、シングルモード光ファイバから出射されたガウシアンビームが中心励振にて入力された場合にビーム径を3倍以上に拡大して出力する第1光伝送路が、前記光源の直後に配置され、さらに、前記第1光伝送路よりも長い第2光伝送路に光学的に接続される
光伝送システム。 - 光信号を出力する光信号送信機と、
前記光信号を受信する光信号受信機と、
前記光信号送信機と前記光信号受信機とを光学的に接続し、前記光信号を伝送する光伝送路と、
を備え、
前記光伝送路は、前記光信号に対する散乱損失と長さとの積が6dB以下であって、シングルモード光ファイバから出射されたガウシアンビームが中心励振にて入力された場合にビーム径を3倍以上に拡大して出力する第1光伝送路と、前記第1光伝送路と光学的に接続され、前記第1光伝送路よりも長く、前記光信号に対する伝送損失が100dB/km以下であって、シングルモード光ファイバから出射されたガウシアンビームが中心励振にて入力された場合にビーム径を3倍未満に拡大して出力する第2光伝送路と、を有する
光伝送システム。 - 前記第1光伝送路は、前記光信号に対する散乱損失が100dB/km以上である
請求項1~3のいずれか一つに記載の光伝送システム。 - 前記光伝送路が光伝送路として前記第2光伝送路のみを有する場合よりも信号劣化が抑制される
請求項1~4のいずれか一つに記載の光伝送システム。 - 前記第1光伝送路は、入力された前記ガウシアンビームのビーム径を6倍以上に拡大して出力する
請求項1~5のいずれか一つに記載の光伝送システム。 - 前記第1光伝送路は、前記光信号に対する散乱損失が500dB/km以上である
請求項1~6のいずれか一つに記載の光伝送システム。 - 前記光信号の変調方式がデジタル変調方式であって、前記光信号のボーレートは10Gbaud以上である
請求項1~7のいずれか一つに記載の光伝送システム。 - 前記光信号の変調方式がデジタル変調方式であって、前記光信号のボーレートは25Gbaud以上である
請求項1~8のいずれか一つに記載の光伝送システム。 - 前記第1光伝送路は、プラスチックからなる
請求項1~9のいずれか一つに記載の光伝送システム。 - 前記第2光伝送路は、プラスチック又はガラスからなる
請求項1~10のいずれか一つに記載の光伝送システム。 - 前記光信号の変調方式がデジタル変調方式であって、誤り訂正方式を用いずに10-12以下の誤り率を実現する
請求項1~11のいずれか一つに記載の光伝送システム。 - 前記光信号の変調方式がデジタル変調方式であって、かつ多値変調方式である
請求項1~12のいずれか一つに記載の光伝送システム。 - 前記光信号の変調方式がPAM4である
請求項13に記載の光伝送システム。 - 前記第1光伝送路と前記第2光伝送路とが空気層を介して接続される
請求項1~14のいずれか一つに記載の光伝送システム。 - 光信号を出力する光信号送信機と、
前記光信号を受信する光信号受信機と、
前記光信号送信機と前記光信号受信機とを光学的に接続し、前記光信号を伝送する光伝送路と、
を備え、
前記光伝送路は、前記光信号に対する散乱損失と長さとの積が6dB以下であって、シングルモード光ファイバから出射されたガウシアンビームが中心励振にて入力された場合にビーム径を3倍以上に拡大して出力し、
前記光信号の変調方式が多値変調方式であり、
誤り訂正方式を用いずに10-12以下の誤り率を実現する
光伝送システム。 - 光信号を出力する光信号送信機と、
前記光信号を受信する光信号受信機と、
前記光信号送信機と前記光信号受信機とを光学的に接続し、前記光信号を伝送する光伝送路と、
を備え、
前記光伝送路は、シングルモード光ファイバから出射されたガウシアンビームを位置ずれさせて入力させたときに、出力されるビームのビーム径の最大値に対する最小値の比が0.7以上である
光伝送システム。 - 前記光伝送路は、前記光信号に対する散乱損失と長さとの積が6dB以下である
請求項17に記載の光伝送システム。 - 前記光信号の変調方式がバイナリ変調方式または多値変調方式であるデジタル変調方式であって、前記光信号送信機と前記光伝送路との結合損失が1dB以下となる光学結合条件において、誤り率の最悪値が10-8以下である
請求項17または18に記載の光伝送システム。 - 前記光信号の変調方式がバイナリ変調方式または多値変調方式であるデジタル変調方式であって、前記光信号送信機と前記光伝送路との結合損失が1dB以下となる光学結合条件において、位置ずれ量に依らずに10-12以下の誤り率を実現する
請求項17または18に記載の光伝送システム。 - 光源から出力された光信号を送信する光信号送信機と、
前記光信号を受信する光信号受信機と、
前記光信号送信機と前記光信号受信機とを光学的に接続し、前記光信号を伝送する光伝送路と、
を備え、
前記光伝送路は、2本以上の光伝送路を接続することによって構成され、
各光伝送路同士は、接続箇所のうち少なくとも一箇所では、空気層を介して接続され、
接続される光伝送路のうち、少なくとも前記光源の直後に配置される光伝送路は、シングルモード光ファイバから出射されたガウシアンビームが中心励振にて入力された場合にビーム径を3倍以上に拡大して出力し、シングルモード光ファイバから出射されたガウシアンビームを位置ずれさせて入力させたときに、出力されるビームのビーム径の最大値に対する最小値の比が0.7以上であって、前記光信号に対する散乱損失と長さとの積が6dB以下である、
光伝送システム。 - 光信号を出力する光信号送信機と、
前記光信号を受信する光信号受信機と、
前記光信号送信機と前記光信号受信機とを光学的に接続し、前記光信号を伝送する光伝送路と、
を備え、
前記光伝送路は、2本以上の光伝送路を接続することによって構成され、
各光伝送路同士は、接続箇所のうち少なくとも一箇所では、空気層を介して接続され、
各光伝送路は、シングルモード光ファイバから出射されたガウシアンビームが中心励振にて入力された場合にビーム径を3倍以上に拡大して出力し、シングルモード光ファイバから出射されたガウシアンビームを位置ずれさせて入力させたときに、出力されるビームのビーム径の最大値に対する最小値の比が0.7以上であって、前記光信号に対する散乱損失と長さとの積が6dB以下である、
光伝送システム。 - 前記光信号の変調方式がバイナリ変調方式または多値変調方式であるデジタル変調方式であって、前記光信号を中心励振した場合に誤り率が10-8以下である
請求項21または22に記載の光伝送システム。 - 前記光信号の変調方式がバイナリ変調方式または多値変調方式であるデジタル変調方式であって、前記光信号を中心励振した場合に10-12以下の誤り率を実現する
請求項21または22に記載の光伝送システム。 - 波長多重(WDM)システムである、請求項1~24のいずれか一つに記載の光伝送システム。
- 請求項1~25のいずれか一つに記載の光伝送システムを備えた光電複合ケーブル。
- ボーレートが10Gbaud以上の光信号を出力する光信号送信機に用いられる光伝送路であって、前記光信号に対する散乱損失と長さとの積が6dB以下であって、シングルモード光ファイバから出射されたガウシアンビームが中心励振にて入力された場合にビーム径を3倍以上に拡大して出力する光伝送路。
- 前記光信号に対する散乱損失が50dB/km以上である
請求項27に記載の光伝送路。 - 長さが10m未満である
請求項27又は28に記載の光伝送路。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280025808.8A CN117083818A (zh) | 2021-04-07 | 2022-02-17 | 光传输系统、光传输路以及光电复合线缆 |
KR1020237034039A KR20230153457A (ko) | 2021-04-07 | 2022-02-17 | 광 전송 시스템, 광 전송로 및 광전 복합 케이블 |
US18/554,359 US20240195503A1 (en) | 2021-04-07 | 2022-02-17 | Optical transmission system, optical transmission path, and photoelectric composite cable |
JP2022536645A JP7224082B1 (ja) | 2021-04-07 | 2022-02-17 | 光伝送システム、通信方法及び光電複合ケーブル |
EP22784351.3A EP4322426A1 (en) | 2021-04-07 | 2022-02-17 | Optical transmission system, optical transmission path, and optical-electrical composite cable |
JP2023012589A JP2023055825A (ja) | 2021-04-07 | 2023-01-31 | 光伝送システム及び光電複合ケーブル |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-065497 | 2021-04-07 | ||
JP2021065497 | 2021-04-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022215366A1 true WO2022215366A1 (ja) | 2022-10-13 |
Family
ID=83545875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006478 WO2022215366A1 (ja) | 2021-04-07 | 2022-02-17 | 光伝送システム、光伝送路及び光電複合ケーブル |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240195503A1 (ja) |
EP (1) | EP4322426A1 (ja) |
JP (2) | JP7224082B1 (ja) |
KR (1) | KR20230153457A (ja) |
CN (1) | CN117083818A (ja) |
WO (1) | WO2022215366A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993008488A1 (en) | 1991-10-22 | 1993-04-29 | Yasuhiro Koike | Optical resin material of refractive index distribution type, method of making said material, and optical transmitter |
JPH085848A (ja) | 1994-04-18 | 1996-01-12 | Yasuhiro Koike | 屈折率分布型光学樹脂材料及びその製造方法 |
JP2000151516A (ja) | 1998-11-05 | 2000-05-30 | Toshiba Corp | 光伝送システム、光送信機および光受信機 |
JP5419815B2 (ja) | 2009-07-10 | 2014-02-19 | 積水化学工業株式会社 | 光ファイバー及びその製造方法 |
WO2019177068A1 (ja) | 2018-03-13 | 2019-09-19 | 小池 康博 | 一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法 |
-
2022
- 2022-02-17 EP EP22784351.3A patent/EP4322426A1/en active Pending
- 2022-02-17 CN CN202280025808.8A patent/CN117083818A/zh active Pending
- 2022-02-17 KR KR1020237034039A patent/KR20230153457A/ko unknown
- 2022-02-17 US US18/554,359 patent/US20240195503A1/en active Pending
- 2022-02-17 JP JP2022536645A patent/JP7224082B1/ja active Active
- 2022-02-17 WO PCT/JP2022/006478 patent/WO2022215366A1/ja active Application Filing
-
2023
- 2023-01-31 JP JP2023012589A patent/JP2023055825A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993008488A1 (en) | 1991-10-22 | 1993-04-29 | Yasuhiro Koike | Optical resin material of refractive index distribution type, method of making said material, and optical transmitter |
JPH085848A (ja) | 1994-04-18 | 1996-01-12 | Yasuhiro Koike | 屈折率分布型光学樹脂材料及びその製造方法 |
JP2000151516A (ja) | 1998-11-05 | 2000-05-30 | Toshiba Corp | 光伝送システム、光送信機および光受信機 |
JP5419815B2 (ja) | 2009-07-10 | 2014-02-19 | 積水化学工業株式会社 | 光ファイバー及びその製造方法 |
WO2019177068A1 (ja) | 2018-03-13 | 2019-09-19 | 小池 康博 | 一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法 |
Non-Patent Citations (6)
Title |
---|
BELL SYST. TECH. J., vol. 52, no. 9, 1973, pages 1563 - 1578 |
INOUE AZUSA, KOIKE YASUHIRO: "Unconventional plastic optical fiber design for very short multimode fiber link", OPTICS EXPRESS, vol. 27, no. 9, 29 April 2019 (2019-04-29), pages 12061 - 12069, XP055976411, DOI: 10.1364/OE.27.012061 * |
KASEDA YUGO; INOUE AZUSA; KOIKE YASUHIRO: "Significantly Robust Data Transmission by Ballpoint-Pen Interconnect for Graded-Index Plastic Optical Fiber", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 36, no. 18, 15 September 2018 (2018-09-15), USA, pages 4167 - 4173, XP011688674, ISSN: 0733-8724, DOI: 10.1109/JLT.2018.2854376 * |
KOIKE YASUHIRO, MURAMOTO KENTA: "Error-free PAM-4 transmission by a high-speed plastic optical fiber without forward error correction", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, US, vol. 46, no. 15, 1 August 2021 (2021-08-01), US , pages 3709 - 3712, XP055976408, ISSN: 0146-9592, DOI: 10.1364/OL.433885 * |
KOIKE YASUHIRO; INOUE AZUSA: "High-Speed Graded-Index Plastic Optical Fibers and Their Simple Interconnects for 4K/8K Video Transmission", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 34, no. 6, 15 March 2016 (2016-03-15), USA, pages 1551 - 1555, XP011609184, ISSN: 0733-8724, DOI: 10.1109/JLT.2016.2517086 * |
TAKAYUKI OTSUMASAAKI KINOSHITAKAGAKU DOJIN: "Experimental Method for Polymer Synthesis", 1972, JOHN WILEY & SONS |
Also Published As
Publication number | Publication date |
---|---|
JP2023055825A (ja) | 2023-04-18 |
KR20230153457A (ko) | 2023-11-06 |
CN117083818A (zh) | 2023-11-17 |
JPWO2022215366A1 (ja) | 2022-10-13 |
US20240195503A1 (en) | 2024-06-13 |
JP7224082B1 (ja) | 2023-02-17 |
EP4322426A1 (en) | 2024-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI805615B (zh) | 光纖纜線 | |
JP7504457B2 (ja) | 一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法 | |
US7646959B2 (en) | Plastic optical fiber and manufacturing method thereof, and optical transmission system | |
JP7224082B1 (ja) | 光伝送システム、通信方法及び光電複合ケーブル | |
WO2024024050A1 (ja) | 光伝送路、光伝送システムおよび光伝送路の接続方法 | |
Ohdoko et al. | Propagating mode analysis and design of waveguide parameters of GI POF for very short-reach network use | |
JP4160918B2 (ja) | 光通信方法 | |
JP4520364B2 (ja) | 非晶質コポリマー、光学部材およびプラスチック光ファイバー | |
Ishigure et al. | Novel photonics polymers in high-speed telecommunication | |
US20080139768A1 (en) | Copolymer Having Cyclic Ether Structure in Main Chain, Optical Member Comprising the Copolymer, and Method of Producing the Same | |
JP2005099195A (ja) | 光伝送体及びその製造方法 | |
JPH08304639A (ja) | 光伝送システム | |
JP2005320470A (ja) | 重合性組成物、光学部材の製造方法及び光学部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022536645 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22784351 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280025808.8 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20237034039 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237034039 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18554359 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022784351 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022784351 Country of ref document: EP Effective date: 20231107 |