WO2019177068A1 - 一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法 - Google Patents

一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法 Download PDF

Info

Publication number
WO2019177068A1
WO2019177068A1 PCT/JP2019/010419 JP2019010419W WO2019177068A1 WO 2019177068 A1 WO2019177068 A1 WO 2019177068A1 JP 2019010419 W JP2019010419 W JP 2019010419W WO 2019177068 A1 WO2019177068 A1 WO 2019177068A1
Authority
WO
WIPO (PCT)
Prior art keywords
light transmission
batch
light
transmission sheet
molded multi
Prior art date
Application number
PCT/JP2019/010419
Other languages
English (en)
French (fr)
Inventor
小池 康博
Original Assignee
小池 康博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小池 康博 filed Critical 小池 康博
Priority to JP2020506630A priority Critical patent/JP7504457B2/ja
Priority to US16/980,202 priority patent/US11828977B2/en
Priority to KR1020207026251A priority patent/KR102507575B1/ko
Priority to CN201980018297.5A priority patent/CN111868593B/zh
Publication of WO2019177068A1 publication Critical patent/WO2019177068A1/ja
Priority to US18/457,541 priority patent/US20230400623A1/en
Priority to US18/457,918 priority patent/US20230400624A1/en
Priority to US18/493,464 priority patent/US20240053529A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3865Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using moulding techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure

Definitions

  • the present invention relates to a batch-molded multi-light transmission sheet, a batch-molded multi-light transmission sheet connector, and a manufacturing method thereof.
  • optical fibers have been developed and used for the purpose of increasing the distance of high-speed communication in medium- and long-haul trunk systems.
  • HDMI High-Definition Multimedia Interface
  • Some semiconductor laser modules used in optical communication systems employ an optical isolator in order to attenuate reflected return light from an optical fiber so that noise caused by the reflected return light is less likely to occur. .
  • Patent Document 1 discloses a technique in which a polarizer is installed so as to coincide with a polarization plane of emitted light in a semiconductor laser module employing an optical isolator, and reflected return light is attenuated by both the polarizer and the optical isolator. Is disclosed.
  • the conventional optical fiber may be used in the state of a tape core.
  • a tape core is a plurality of, for example, four optical fibers arranged in parallel in a plane, covered with a resin tape layer so as to surround the outer periphery, and further covered with a collective coating layer so as to surround the outer periphery. And has a covered structure.
  • Such a tape core wire is connected to an apparatus or another tape core wire by attaching an MT connector at one end.
  • the present invention has been made in view of the above, and is completely different from the conventional optical fiber, can realize high-speed signal transmission of short distance and high quality, and work when connecting to other optical elements. It is an object of the present invention to provide a batch molded multi light transmission sheet, a batch molded multi light transmission sheet connector, and a method for manufacturing the same.
  • a batch-molded multi-optical transmission sheet includes a sheet-like covering portion made of plastic, and the covering portion inside the covering portion.
  • a plurality of optical transmission regions each having a core region made of plastic, and a clad region made of plastic and surrounding an outer periphery of the core region.
  • the light transmission regions are arranged in a line substantially parallel to each other along the main surface of the covering portion, and light is incident from one end surface side of the plurality of light transmission regions to direct the light toward the other end surface side.
  • the M 2 value of the beam of emitted light when transmitted is 1.7 or more.
  • the batch-molded multi-light transmission sheet according to one aspect of the present invention is provided in a sheet-like covering portion made of plastic and inside the covering portion so as to extend along the extending direction of the covering portion, A plurality of light transmission regions having a core region made of plastic and a cladding region made of plastic and surrounding an outer periphery of the core region, wherein the plurality of light transmission regions are along a main surface of the covering portion.
  • the maximum noise power density in the low frequency region of the noise spectrum of the electric signal is less than ⁇ 108 dBm / Hz.
  • the batch-molded multi-light transmission sheet according to one aspect of the present invention is provided in a sheet-like covering portion made of plastic and inside the covering portion so as to extend along the extending direction of the covering portion, A plurality of light transmission regions having a core region made of plastic and a cladding region made of plastic and surrounding an outer periphery of the core region, wherein the plurality of light transmission regions are along a main surface of the covering portion.
  • the core regions of the plurality of optical transmission regions are made of a core material having a micro non-uniformity correlation length of 100 angstroms or more, and are in a single mode condition at a predetermined wavelength. It is characterized by satisfying.
  • the batch-molded multi-light transmission sheet connector includes the batch-molded multi-light transmission sheet, and an insertion hole having an inner shape corresponding to the outer shape of the cross-section of the batch-molded multi-light transmission sheet, And a ferrule in which at least one end of the light transmission sheet is inserted into the insertion hole.
  • this invention is not limited to this, It is also possible to connect the said batch formation multi-light transmission sheet
  • a batch-molded multi-light transmission sheet manufacturing method comprising: supplying a core material to a plurality of regions arranged in a row at intervals in a predetermined direction; and an outer periphery of the core material.
  • an optical transmission region is formed.
  • the manufacturing method of the batch-molded multi-light transmission sheet connector according to one aspect of the present invention is such that one end of the batch-molded multi-light transmission sheet manufactured by the manufacturing method corresponds to the outer shape of the cross-section of the batch-molded multi-light transmission sheet. It inserts in the said insertion hole of the ferrule which has the insertion hole of the inner shape made.
  • FIG. 1 is a schematic view of a batch-molded multi-light transmission sheet according to the first embodiment.
  • FIG. 2 is a diagram for explaining a manufacturing method of a batch-molded multi-light transmission sheet.
  • FIG. 3A is a diagram illustrating a supply state of each material in a die.
  • FIG. 3B is a diagram illustrating the structure of the T die.
  • FIG. 4 is a diagram illustrating an optical connection state between the batch-molded multi-light transmission sheet and the VCSEL array.
  • FIG. 5 is a schematic diagram of an optical transmission sheet having a microlens array on an end surface.
  • FIG. 6A is a schematic diagram of a batch-molded multi-optical transmission sheet according to the second embodiment.
  • FIG. 6B is a schematic diagram of a batch-molded multi-optical transmission sheet according to Embodiment 3.
  • FIG. 6C is a schematic diagram of a batch-molded multi-optical transmission sheet according to Embodiment 4.
  • FIG. 7A is a schematic view of a conventional ferrule for a tape core wire.
  • FIG. 7B is a schematic diagram of a conventional ferrule for a tape core wire.
  • FIG. 8A is a diagram illustrating a batch-molded multi-light transmission sheet connector.
  • FIG. 8B is a diagram for explaining a manufacturing method of a batch-molded multi-light transmission sheet connector.
  • FIG. 9 is a diagram showing an optical link for short-distance communication using a batch-molded multi-optical transmission sheet.
  • FIG. 10 is a diagram showing an NFP and FFP measurement system.
  • FIG. 11 is a diagram showing M 2 values for two multimode optical fibers.
  • FIG. 12 is a diagram showing an experimental system for a short-distance optical link.
  • FIG. 13 is a diagram showing a measurement system of the scattering angle dependence of the light scattering intensity.
  • FIG. 14 is a diagram showing the angle dependency of the light scattering intensity.
  • FIG. 15 is a diagram showing a noise power density spectrum.
  • FIG. 1 is a schematic view of a batch-molded multi-light transmission sheet according to the first embodiment.
  • the batch-molded multi-light transmission sheet 10 includes a covering part 11 and a plurality of light transmission regions 12 provided inside the covering part 11. 1 has four cores and four light transmission regions 12, but the number of light transmission regions 12 is not particularly limited.
  • all the light transmission regions 12 have the same configuration, but the present invention is not necessarily limited to this, and one or more may be different from the others.
  • the covering portion 11 is made of plastic, has a sheet shape, and extends in the extending direction D1.
  • the respective light transmission regions 12 are provided so as to extend along the extending direction D1, and are arranged in a line in parallel with each other along the main surface 11a of the covering portion 11. However, as long as it is within the allowable accuracy range, it does not have to be exactly parallel, and may be arranged substantially in parallel.
  • the optical transmission region 12 includes a core region 12a having a circular cross section made of plastic, and a clad region 12b having a circular cross section made of plastic and surrounding the outer periphery of the core region 12a.
  • the core region 12a and the cladding region 12b are formed substantially coaxially.
  • the core region 12a has a graded index (GI) type (for example, square distribution) refractive index profile, and the cladding region 12b has a lower refractive index than the core region 12a. Since the optical transmission region 12 has such a refractive index distribution, when light propagates in a multimode, it propagates in a straight line as indicated by an arrow Ar1 in the base mode, and in a higher-order mode as a sine wave as indicated by an arrow Ar2. Propagate to. As a result, the optical transmission region 12 can suppress a difference in propagation speed between modes and transmit pulsed light with less distortion.
  • the diameter of the core region 12a is, for example, 50 ⁇ m or 62 ⁇ m, but is not particularly limited.
  • the diameter of the core region 12a can be controlled to 10 ⁇ m or less, and the core region 12a can be configured to satisfy a single mode condition.
  • the diameter of the core region 12a can be controlled to 10 ⁇ m or less, and the core region 12a can be configured to satisfy a single mode condition.
  • the optical transmission areas 12 are arranged at equal intervals at a distance d1.
  • the distance d1 is a distance between the central axes of the adjacent core regions 12a.
  • it does not have to be exactly at regular intervals, and may be arranged at substantially regular intervals.
  • it is easy to intentionally design the distance d1.
  • FIG. 2 is a diagram for explaining a method of manufacturing a 12-core batch molded multi-light transmission sheet.
  • the production apparatus 1000 includes an extrusion apparatus 1001, 1002, 1003, a die 1004, a T die 1005, a cooling roll 1006, a capstan roll 1007, stretching rolls 1008, 1009, 1010, a winding roll (not shown), It has.
  • Extruders 1001, 1002, and 1003 are devices that melt a transparent plastic material for optical use at a predetermined temperature and extrude it toward a die 1004.
  • the extrusion apparatus 1001 extrudes a core material that is a material of the core region 12 a of the batch-molded multi-light transmission sheet 10.
  • the extrusion apparatus 1002 extrudes and supplies a clad material that is a material of the clad region 12b of the batch-molded multi-light transmission sheet 10.
  • the extrusion apparatus 1003 extrudes and supplies the coating material that is the material of the coating portion 11 of the batch-molded multi-light transmission sheet 10.
  • known plastic material extrusion apparatuses can be used. In general, a screw extruder is used, but melt extrusion may be performed at a pressure such as nitrogen gas.
  • each plastic material is supplied to the die 1004 via a separate flow path.
  • the die 1004 has a plurality of core materials M1 arranged in a row at intervals in the direction D2 with respect to the T die 1005, as shown in FIG. 3A (the regions A1, A2, A3, and A4 are illustrated in FIG. 3A), the cladding material M2 is supplied so as to surround the outer periphery of the core material M1 in each region, and the outer periphery of the cladding material is surrounded. Is supplied with a coating material M3.
  • the core material M1, the cladding material M2, and the coating material M3 merge, but flow separately without mixing.
  • the T die 1005 includes a flow path P1 in which the core material M1 and the cladding material M2 flow in a double structure and a flow path P2 in which the coating material M3 flows.
  • the flow path P1 is made of, for example, a pipe material that passes through the flow path P2, and has a nozzle-like tip.
  • the T die 1005 integrally extrudes the core material M1, the clad material M2, and the coating material M3 from the slit-like discharge port into a sheet shape. Thereby, the main surface of the extruded sheet-like body is formed along the direction D2 in which the core materials M1 are arranged in a line.
  • the refractive index imparting material that is the dopant of the core material M1 spreads stepwise in the radial direction. It is formed.
  • the extruded sheet-like body is brought into contact with the surface of the cooling roll 1006 by the capstan roll 1007 and uniformly cooled.
  • the fully cooled sheet-like body is further stretched at a desired magnification with stretching rolls 1008, 1009, and 1010, whereby a batch-molded multi-light transmission sheet can be manufactured.
  • the manufactured light transmission sheet is wound around a winding roll.
  • the distance d1 of the arrangement of the four light transmission regions 12 in the batch-molded multi-light transmission sheet 10 can be set with high accuracy with respect to a desired distance. Can be matched.
  • FIG. 4 is a diagram showing an optical connection state between a four-core batch-formed multi-optical transmission sheet 10 and a VCSEL (Vertical Cavity Surface Emitting Laser) array 20.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • four VCSELs 22 are arranged on a substrate 21 in a line at an arrangement distance d2.
  • the arrangement distance d2 is 250 ⁇ m, for example.
  • the VCSEL array 20 is an example of a light source that emits light incident on each of the four optical transmission regions 12.
  • the batch-formed multi-light transmission sheet 10 and the VCSEL array 20 are brought close to the VCSEL array 20 through an optical coupling system (not shown) such as a lens. And optically connect.
  • an optical coupling system such as a lens.
  • the accuracy of the coincidence of the distance d1 in the batch-formed multi-light transmission sheet 10 with the arrangement distance d2 in the VCSEL array 20 is an element that determines the quality of optical coupling.
  • the distance d1 can be made equal to the arrangement distance d2 with high accuracy, so that high-quality optical coupling is possible.
  • the batch-molded multi-light transmission sheet 10 does not require a complicated operation when optically connected to the VCSEL array 20. Therefore, the batch-molded multi-light transmission sheet 10 has high workability for optical connection to a light source such as the VCSEL array 20.
  • a microlens array 14 may be provided on the end face 13 of the batch-molded multi-light transmission sheet 10 as shown in FIG.
  • the microlens array 14 is formed by forming lenses such as a collimator lens and a condensing lens corresponding to the four light transmission regions 12.
  • the microlens array 14 is a combination of the batch molded multi-light transmission sheet 10 and other optical elements. It has the effect of increasing efficiency.
  • the microlens array 14 is made of a transparent optical material such as a glass material or a plastic material. Moreover, you may provide the coating layer for reflection prevention or an end surface protection in the end surface 13 of the collective shaping
  • FIG. 1 is schematic views of a batch-molded multi-optical transmission sheet according to the second, third, and fourth embodiments.
  • Each of the batch-molded multi-light transmission sheets 10 ⁇ / b> A, 10 ⁇ / b> B, and 10 ⁇ / b> C includes a covering portion 11 and a plurality of light transmission regions 12 provided inside the covering portion 11. Since both the covering portion 11 and the light transmission region 12 have the same configuration as the corresponding elements of the batch-molded multi-light transmission sheet 10, description thereof is omitted.
  • the batch molded multi-light transmission sheet 10A eight light transmission regions 12 are arranged in a line.
  • the batch-molded multi-light transmission sheet 10B a structure in which four light transmission regions 12 are arranged in a line is laminated in three stages.
  • the batch-molded multi-light transmission sheets 10A and 10B all have high workability when optically connected to other optical elements, like the batch-molded multi-light transmission sheet 10. Further, the batch-formed multi-light transmission sheet 10A can be made into two four-core batch-formed multi-light transmission sheets 10 by cutting along the cutting line CL. Since the batch-molded multi-light transmission sheet 10A is made of plastic, such cutting can be easily performed using a cutting tool such as a cutter.
  • an optical transmission sheet including optical transmission areas of a multiple of 2 such as 16, 24 is included.
  • the optical transmission regions are arranged in a line or stacked in a plurality of stages of two or more stages.
  • a batch-molded multi-light transmission sheet 10 ⁇ / b> C in FIG. 6C is obtained by arranging 48 light transmission regions 12 in a 12 ⁇ 4 stage inside the covering portion 11.
  • the cross section of the batch-molded multi-light transmission sheet 10C The size is very small with a width of 3000 ⁇ m and a height of 1000 ⁇ m.
  • a hole 33 is formed in the upper part.
  • 12 upper guide grooves 34 and 12 lower guide grooves 35 for arranging optical fibers are formed.
  • the batch-molded multi-light transmission sheet connector 50 can be configured very simply as shown in FIGS. 8A and 8B.
  • the ferrule 41 has an insertion hole 41a having an inner shape corresponding to the outer shape of the cross section of the batch molded multi-light transmission sheet 10C.
  • One end of the batch molded multi-light transmission sheet 10C is inserted into the insertion hole 41a.
  • the batch-molded multi-light transmission sheet connector 50 is manufactured, as shown in FIG. 8B, one end of the batch-molded multi-light transmission sheet 10C is inserted into the insertion hole 41a of the ferrule 41 and fixed with an adhesive or the like.
  • the side surface of the ferrule 41 may be formed with a hole communicating with the insertion hole 41a and injecting an adhesive therefrom.
  • the ferrule 41 may be compatible with, for example, an MT ferrule, and the batch-formed multi-optical transmission sheet connector 50 may be configured to be connectable to a 48-core tape core wire with an MT ferrule.
  • the batch-molded multi-optical transmission sheet connector 50 When manufacturing the batch-molded multi-optical transmission sheet connector 50, the resin tape layer and the batch coating layer are peeled off as in a conventional tape core, the optical fibers are taken out, one optical fiber at a time, and each ferrule The operation
  • the batch molded multi-light transmission sheet 10C can make the distance d1 of the arrangement of the 48 light transmission regions 12 highly accurate.
  • the batch-molded multi-light transmission sheet connector 50 has a good yield and enables high-quality optical coupling.
  • the batch-molded multi-light transmission sheet 10 has an M 2 value of a beam of emitted light of 1.7 or more when light is incident from one end surface side of the light transmission region 12 and transmitted toward the other end surface side. It is.
  • the length in the stretching direction D1 is preferably 200 m or less, more preferably 100 m or less, and even more preferably 50 m or less.
  • FIG. 9 is a diagram showing an optical link 100 for short-distance communication using the batch molded multi-optical transmission sheet 10.
  • Return light is a part of the light that is emitted from the light emitting element 101 such as a VCSEL and is incident and propagated from one end surface side (end A) that is the end face on the light emitting element side of the batch-molded multi-light transmission sheet 10.
  • end A one end surface side
  • end B light receiving element
  • connector etc.
  • the returning light from the vicinity of the light emitting element can be considered, but the returning light from such a vicinity does not cause destabilization of the light emitting element. it is conceivable that.
  • the inventors of the present invention also focused on the M 2 value conventionally used as a parameter representing the quality of the light beam as a factor representing the characteristics of the optical fiber that can reduce the return light from a distance.
  • the M 2 value is based on the wavelength ⁇ , the beam radius W (D4 ⁇ ) defined using the second moment, and the beam divergence angle ⁇ (half angle) with reference to the Gaussian beam (TEM00 mode). It is a parameter indicating the quality related to the degree of light beam concentration expressed as the following equation (1):
  • the beam radius W (D4 ⁇ ) can be obtained from the near-field image (Near Field Pattern (NFP)) of the emitted laser light, and the spread angle ⁇ (half angle) is the far-field image (Far Field Pattern (FFP)).
  • NFP Near Field Pattern
  • FFP Far Field Pattern
  • the M 2 value is 1.
  • the M 2 value depends on the propagation mode.
  • the M 2 value of the emitted light is a superposition of different M 2 value modes, and higher-order mode components increase due to mode coupling caused by light scattering (condensation).
  • M 2 value increases and beam quality deteriorates as the property deteriorates.
  • the present inventors in particular, in the case of short-range communication, It was found that the influence of return light from a distance can be reduced by using an optical fiber whose M 2 value is controlled to a specific value.
  • the present inventors have obtained the knowledge that this knowledge can also be applied to the light transmission region 12 of the batch-molded multi-light transmission sheet 10.
  • the optical transmission region 12 has a micro-inhomogeneous structure with a correlation length of about several hundred angstroms, it becomes possible to increase mode coupling due to forward scattering. It is considered possible to effectively control the M 2 value of the light emitted from the optical transmission region 12 while controlling the propagation loss.
  • the batch-molded multi-optical transmission sheet 10 having the optical transmission region 12 in which the M 2 value is controlled to a specific value it is farther than the transmission loss caused by the increase in higher-order modes due to mode coupling. It is considered that the reduction of noise due to the reduction of the influence of the reflected return light from the light becomes dominant and the transmission quality is improved.
  • FIG. 10 is a diagram showing an NFP and FFP measurement system.
  • the outgoing light 203 (mode field diameter 5.3 ⁇ m) from the polarization maintaining single mode optical fiber 202 pigtail (APC polishing) of a single frequency DBR laser 201 having a center wavelength of 850 nm is incident on the optical fiber 205 using the lens 204.
  • APC polishing polarization maintaining single mode optical fiber 202 pigtail
  • light is incident on the core center of the optical fiber 205 through the lens 204 using microscopic observation by the CCD camera 206, and evaluation is performed under the central excitation condition.
  • the NFP of the light 207 emitted from the end surface opposite to the incident end surface of the optical fiber 205 is used for the NFP measurement device 208 (A6501 made by Hamamatsu Photonics), and the FFP is used for the FFP measurement device (A3267-12 made by Hamamatsu Photonics).
  • the NFP measurement device 208 A6501 made by Hamamatsu Photonics
  • the FFP is used for the FFP measurement device (A3267-12 made by Hamamatsu Photonics).
  • the M 2 value can be calculated.
  • This measurement system can also be used for the measurement of NFP and FFP of the batch-molded multi-light transmission sheet 10, thereby calculating the M 2 value.
  • FIG. 11 shows a multi-mode optical fiber (low-noise GI POF) having an M 2 value of 1.7 or more and a conventional quartz glass-based multi-mode optical fiber (with a central excitation by linearly polarized Gaussian beams). for silica GI MMF) and a diagram showing the M 2 value.
  • the incident light source is a polarization-maintaining single-mode optical fiber (SMF) pigtail output linearly polarized single frequency laser (Thorlabs, DBR852P).
  • SMF polarization-maintaining single-mode optical fiber
  • the exit end face of the pigtail is APC because it does not destabilize the laser, and stable M 2 value measurement is possible.
  • the horizontal axis represents the length of the optical fiber, and the vertical axis represents the M 2 value.
  • the M 2 value is small, and even if the length of the optical fiber is large, M 2 Optical fibers that do not increase in value were considered desirable. Even in optical communication using a multimode optical fiber, naturally, the transmission loss increases as the M 2 value increases, so the same characteristics are required.
  • the inventors have surprisingly found that in the case of short-distance transmission using a multimode optical fiber, rather than the transmission loss, the influence of reflected return light from a distance is reduced when the M 2 value is relatively large. Thus, it has been found that the transmission quality is improved. This result can also be applied to the batch-molded multi-light transmission sheet 10.
  • the magnitude of the M 2 value is controlled by the type of material constituting the core region 12a in the light transmission region 12 in the batch molded multi light transmission sheet 10, the core refractive index distribution, and the manufacturing conditions of the batch molded multi light transmission sheet 10. can do. Further, although depending on the laser diameter of the laser used and the incident conditions, the M 2 value of the micro-inhomogeneous structure can be evaluated based on the M 2 value of the emitted light measured according to the experimental system and the evaluation conditions. Control can be performed with good reproducibility. What can cause fluctuations in the M 2 value is basically not in the optical system, and if the laser diameter changes, the divergence angle becomes narrower and the product is preserved, so that the M 2 value is not affected. . Therefore, it is considered that only the wavelength can be a fluctuation factor of the M 2 value.
  • the batch-molded multi-light transmission sheet 10 has an M 2 value of 1.7 or more at the lower limit length of a practically usable length. If the M 2 value is smaller than 1.7, the transmission quality deteriorates due to the influence of the reflected return light, which is not preferable.
  • the batch-molded multi-light transmission sheet 10 has a length of, for example, 200 m or less, and preferably has an M 2 value of 5.0 or less in the upper limit length of the length to be used.
  • An M 2 value larger than 5.0 is not preferable because transmission loss caused by an increase in higher-order modes increases.
  • the length of the batch-molded multi-light transmission sheet 10 is preferably 200 m or less, more preferably 100 m or less, and even more preferably 50 m or less. If the length is too long, the influence of scattering loss due to forward scattering becomes greater than the effect of reducing the return light, and on the contrary, the transmission quality deteriorates.
  • the M 2 value of the batch-molded multi-light transmission sheet 10 can be obtained according to the type of core material and manufacturing conditions.
  • the core region 12a has a micro non-uniform structure with a correlation length of about several hundred angstroms. This makes it possible to increase forward scattering, which is different from so-called Rayleigh scattering observed in silica-based optical fibers. As a result, it is possible to reduce noise by inducing effective mode coupling while controlling propagation loss.
  • an acrylic polymer has intramolecular and intermolecular interactions due to ester groups present in the molecule.
  • perfluorinated polymers such as dioxolene do not have such ester groups.
  • intramolecular and intermolecular interactions are small compared to acrylic polymers. Due to this difference, the conformation of the polymer chain itself can be changed, and the size of the heterogeneous structure and the refractive index fluctuation can be controlled.
  • the polymer is generally an assembly of molecular coils with a radius of inertia on the order of hundreds of angstroms, but there is no micro-heterogeneous structure in quartz glass without such molecules.
  • the batch-molded multi-light transmission sheet 10 has light incident from one end surface side of the light transmission region 12 and transmitted toward the other end surface side.
  • the maximum noise power density in the low frequency region of the noise spectrum of the electric signal is less than ⁇ 108 dBm / Hz.
  • the present inventors constructed an experiment system of an optical link as shown in FIG. Specifically, the laser light L output from the VCSEL (oscillation wavelength 850 nm, 14 Gbps, hereinafter referred to as VCSEL 301) is input to the first end surface 303a of the optical transmission body 303 by the condenser lens 302 and directed toward the second end surface 13b. Propagated. Then, the laser beam L output from the second end surface 303 b of the optical transmission body 303 was input to the PD 305 through the condenser lens system 3044. Then, the current signal output from the PD 305 was analyzed by the spectrum analyzer 306.
  • a silica optical fiber having a length of 1 m (GI type multimode optical fiber (MMF)) is used as the optical transmission body 303, a substantially periodic noise peak is generated in a low frequency region (for example, a region of 1 GHz or less). I found it to appear.
  • the present inventors return such a periodic noise peak by reflecting a part of the laser beam L from the VCSEL 301 as the light source on the reflection surface on the far end side, that is, the surface of the second end surface 303b or the PD 305.
  • the light returned to the VCSEL 301, which caused the unstable operation of the VCSEL 301.
  • the correlation length of the micro non-uniformity of the material for manufacturing the optical fiber is made of a material having a thickness of 100 angstroms or more is determined by irradiating the optical fiber preform with light and determining the angle dependence of the light scattering intensity. It can be determined by measuring. Therefore, the optical fiber preform can be selected from the measurement result of the angle dependence so that an optical fiber that can suppress a substantially periodic noise peak in the low frequency region can be manufactured.
  • FIG. 13 is a diagram showing an example of a measurement system of the scattering angle dependence of the light scattering intensity.
  • a cylindrical polymer bulk 401 of an optical fiber preform is manufactured, and laser light L from a laser light source 402 is irradiated from the side surface of the cylindrical polymer bulk 401, and light scattering intensity is measured by a light receiving element 403. taking measurement.
  • the angle ⁇ dependency of the light scattering intensity can be measured by moving the light receiving element 403 so as to revolve around the cylindrical polymer bulk 401.
  • the optical fiber is preferably 200 m or less, more preferably 100 m or less, and even more preferably 50 m or less. This is because if the length is too long, the increase in transmission loss due to the nonlinear distortion reduction effect due to the increase in higher-order mode components exceeds the effect of suppressing the influence of return light.
  • an optical fiber using a material having a correlation length of micro nonuniformity of material of 100 angstroms or more, forward scattering different from Rayleigh scattering can be increased. As a result, it is considered that effective mode coupling can be induced and noise can be reduced while controlling propagation loss.
  • the above knowledge can also be applied to the batch-molded multi-light transmission sheet 10. That is, in the batch-molded multi-optical transmission sheet 10 manufactured using a core material having a correlation length of micro nonuniformity of material of 100 angstroms or more, a substantially periodic noise peak in the low frequency region is suppressed. Moreover, the batch-molded multi-light transmission sheet 10 is preferably 200 m or less, more preferably 100 m or less, and further preferably 50 m or less. In measuring the scattering angle dependence of the light scattering intensity, a rod-shaped core material may be used instead of the optical fiber preform.
  • the maximum noise power density is preferably less than ⁇ 108 dBm / Hz.
  • silica optical fiber is considered to have a maximum noise power density exceeding this value.
  • the batch-molded multi-optical transmission sheet 10 manufactured using a core material having a micro non-uniformity correlation length of 100 angstroms or more is controlled at a predetermined wavelength by controlling the diameter of the core region 12a to 10 ⁇ m or less. You may comprise so that single mode conditions may be satisfied.
  • the core material and the clad material need to transmit light. Therefore, the core material and the clad material are preferably transparent in the wavelength band of the light source to be used and have few foreign matters.
  • -Based resin materials partially chlorinated resin materials, and acrylic materials are used, but are not particularly limited.
  • a partially deuterated resin in which hydrogen atoms in the resin are substituted with deuterium atoms may be used.
  • the coating material a transparent and low-cost acrylic material, polycarbonate material or the like is used, but is not limited thereto.
  • plastic materials can be manufactured using a general polymerization method in which a monomer is used for polymerization.
  • examples of the polymerization method include solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization.
  • the bulk polymerization method is preferred from the viewpoint of preventing the introduction of foreign substances and impurities.
  • the polymerization temperature at this time is not particularly limited, and for example, about 80 to 150 ° C. is suitable.
  • the reaction time can be appropriately adjusted according to the amount and type of monomer, the amount of polymerization initiator and chain transfer agent described below, the reaction temperature, etc., and about 20 to 60 hours is suitable.
  • the product names TEFRON-AF DuPont
  • HyflonAD Solvay
  • CYTOP Asahi Glass Co., Ltd.
  • TEFRON-AF DuPont
  • HyflonAD Solvay
  • CYTOP Asahi Glass Co., Ltd.
  • a perfluoropolymer having a dioxolene skeleton can also be used.
  • the polymer constituting the core region is, for example, a (meth) acrylic acid ester compound such as ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, ethyl acrylate, n-propyl acrylate, n-acrylate.
  • a (meth) acrylic acid ester compound such as ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, ethyl acrylate, n-propyl acrylate, n-acrylate.
  • styrene compounds such as styrene, ⁇ -methylstyrene, chlorostyrene, bromostyrene
  • vinyl esters vinyl acetate, vinyl benzoate, vinyl phenyl acetate, vinyl chloroacetate, etc .
  • maleimides NN -Butylmaleimide, N-tert-butylmaleimide, N-isopropylmaleimide, N-cyclohexylmaleimide, and the like are exemplified by substances in which some of the hydrogen atoms of the CH bond of these monomers are substituted with chlorine, fluorine, or deuterium .
  • a polymerization initiator When producing a polymer, it is preferable to use a polymerization initiator and / or a chain transfer agent.
  • the polymerization initiator include ordinary radical initiators.
  • the polymerization initiator is suitably used in an amount of about 0.01 to 2% by weight based on the total monomers.
  • the chain transfer agent is not particularly limited, and known ones can be used. For example, alkyl mercaptans (n-butyl mercaptan, n-pentyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, t-dodecyl mercaptan, etc.), thiophenols (thiophenol, m-bromothiophenol, p-bromothio) Phenol, m-toluenethiol, p-toluenethiol, etc.).
  • alkyl mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-lauryl mercaptan, t-dodecyl mercaptan are preferably used.
  • a chain transfer agent in which a hydrogen atom of a C—H bond is substituted with a deuterium atom or a fluorine atom may be used. These may be used alone or in combination of two or more.
  • Chain transfer agents are usually used to adjust the molecular weight to an appropriate molecular weight in terms of molding and physical properties.
  • the chain transfer constant of the chain transfer agent for each monomer is, for example, Polymer Handbook 3rd edition (edited by J. BRANDRUP and EHIMMERGUT, published by JOHN WILEY & SON) “Experimental Methods for Polymer Synthesis” (Co-authored by Takayuki Otsu and Masami Kinoshita, Chemical It can be obtained by experiment with reference to the same person, published in 1972. Therefore, in consideration of the chain transfer constant, it is preferable to appropriately adjust the type and addition amount according to the type of monomer. For example, the amount is about 0.1 to 4 parts by weight with respect to 100 parts by weight of all monomer components.
  • the polymer constituting the core region 12a and / or the cladding region 12b has a weight average molecular weight in the range of about 50,000 to 300,000, preferably about 100,000 to 250,000. This is to ensure appropriate flexibility and transparency.
  • the core region 12a and the cladding region 12b may have different molecular weights, for example, for viscosity adjustment.
  • a weight average molecular weight refers to the value of polystyrene conversion measured by GPC (gel permeation chromatography), for example.
  • a compounding agent for example, a heat stabilization aid, as long as it does not impair the performance such as transparency and heat resistance for light transmission.
  • Processing aids, heat resistance improvers, antioxidants, light stabilizers and the like may be blended. Each of these can be used alone or in combination of two or more. Examples of the method of mixing these blends with the monomer or polymer include a hot blend method, a cold blend method, and a solution mixing method. It is done.
  • This potassium salt is vacuum-dried and further decomposed under an argon atmosphere to obtain perfluoro-4-methyl-2-methylene-1,3-dioxolane.
  • Perfluoro-4-methyl-2-methylene-1,3-dioxolane and perfluorobenzoyl peroxide obtained above are put into a glass tube, degassed with a freezing / thawing vacuum machine, and then re-arged with argon. Fill and heat for several hours. The contents become solid and a transparent polymer is obtained.
  • a batch-molded multi-light transmission sheet 10 can be produced using this polymer.
  • the viscosity of the fluoropolymer (including all fluorine and partially fluorine materials) in the molten state is preferably 103 to 105 poise at a melting temperature of 200 ° C to 300 ° C. If the melt viscosity is too high, the formation of the core region 12a and the cladding region 12b is difficult, and the diffusion of the dopant necessary for the formation of the refractive index distribution hardly occurs and the formation of the refractive index distribution becomes difficult. Moreover, when melt viscosity is too low, a problem will arise practically. That is, when it is used as an optical transmission body in an electronic device or an automobile, it is softened by being exposed to a high temperature, and the light transmission performance is lowered.
  • the number average molecular weight of the fluoropolymer is preferably 10,000 to 5,000,000, more preferably 50,000 to 1,000,000. If the molecular weight is too small, heat resistance may be inhibited, and if it is too large, formation of an optical transmission body having a refractive index distribution becomes difficult, which is not preferable.
  • a partially chlorinated material is used as the core material of the batch-molded multi-light transmission sheet 10, it can be synthesized by a method similar to the synthesis method of the all-fluorine material, which is a general production method described above.
  • the solution is filtered through a pore-diameter membrane filter into a glass polymerization vessel.
  • the dissolved air is removed by freeze degassing while introducing argon gas into the glass polymerization tube containing the solution.
  • the glass polymerization tube is put into an oven, the temperature of the polymerization vessel is raised while introducing argon gas, the monomer is polymerized, and the temperature is further raised to complete the polymerization reaction.
  • the glass tube is opened to obtain a solidified transparent polymerization rod.
  • the dopant is uniformly present in the polymer matrix.
  • the difference between the solubility parameters of the dopant and the polymer increases, the tendency of the dopants to aggregate increases, and a refractive index non-uniform structure due to the concentration distribution of the dopant is formed.
  • the dopant micro-concentration distribution can also be increased by adding local interaction between the dopant and polymer (for example, secondary electronic polarization corresponding to a specific functional group). It becomes possible to form.
  • the substance dopant is a substance that substantially does not have a C—H bond for the same reason as in the perfluoropolymer, and it is more preferable that the refractive index is 0.05 or more higher than that of the perfluoropolymer. If the refractive index is higher, the dopant content necessary to form the desired refractive index profile may be smaller, so that the glass transition temperature can be reduced less. As a result, the heat resistance of the optical fiber is increased. It is particularly preferable that it is 0.1 or more.
  • the dopant is preferably an aromatic ring such as a benzene ring, a halogen atom such as chlorine, bromine or iodine, or a low molecular weight compound, oligomer or polymer containing a bonding group such as an ether bond.
  • a polymer the molecular weight increases. Since the compatibility with the perfluoropolymer is lowered, and as a result, the light scattering loss is increased, those having a very high molecular weight are not preferred.
  • the number average molecular weight of the dopant is preferably 3 ⁇ 10 2 to 2 ⁇ 10 3, and more preferably 3 ⁇ 10 2 to 1 ⁇ 10 3 .
  • the dopant compound examples include an oligomer that is a 5- to 8-mer of chlorotrifluoroethylene, an oligomer that is a 5- to 8-mer of dichlorodifluoroethylene, as described in JP-A-8-5848, or Among the monomers that form the perfluoropolymer, there are dimer to pentamer oligomers obtained by polymerizing a monomer that gives an oligomer with a high refractive index (for example, a monomer having a chlorine atom).
  • halogenated aromatic hydrocarbons and halogen-containing polycyclic compounds that do not contain hydrogen atoms bonded to carbon atoms can also be used.
  • fluorinated aromatic hydrocarbons or fluorine-containing polycyclic compounds containing only fluorine atoms as halogen atoms (or containing a relatively small number of chlorine atoms and fluorine atoms) are compatible with fluorine-containing polymers. Is preferable.
  • these halogenated aromatic hydrocarbons and halogen-containing polycyclic compounds do not have a polar functional group such as a carbonyl group or a cyano group.
  • halogenated aromatic hydrocarbons include the formula ⁇ r-Zb [ ⁇ r is a b-valent fluorinated aromatic ring residue in which all of the hydrogen atoms are substituted with fluorine atoms, Z is a halogen atom other than fluorine, ⁇ Rf, —CO—Rf, —O—Rf, or —CN.
  • Rf is a perfluoroalkyl group, a polyfluoroperhaloalkyl group, or a monovalent ⁇ r.
  • b is 0 or an integer of 1 or more.
  • Aromatic rings include benzene and naphthalene rings.
  • the number of carbon atoms of the perfluoroalkyl group or polyfluoroperhaloalkyl group as Rf is preferably 5 or less.
  • a halogen atom other than fluorine a chlorine atom or a bromine atom is preferable.
  • the compound examples include 1,3-dibromotetrafluorobenzene, 1,4-dibromotetrafluorobenzene, 2-bromotetrafluorobenzotrifluoride, clopentafluorobenzene, bromopentafluorobenzene, iodopentafluorobenzene, There are decafluorobenzophenone, perfluoroacetophenone, perfluorobiphenyl, chloroheptafluoronaphthalene, bromoheptafluoronaphthalene and the like.
  • a particularly preferred dopant as an example of the fluorinated polycyclic compound is that the compatibility with a perfluorinated polymer, particularly a fluorinated polymer having a ring structure in the main chain, is good, and the heat resistance is good. Chlorotrifluoroethylene oligomer, perfluoro (triphenyltriazine), perfluoroterphenyl, perfluoroquatrophenyl, perfluoro (triphenylbenzene), perfluoroanthracene. Due to the good compatibility, the fluoropolymer, particularly the fluoropolymer having a ring structure in the main chain, and the substance to be mixed can be easily mixed by heating and melting at 200 to 300 ° C. Moreover, after dissolving and mixing in a fluorine-containing solvent, both can be mixed uniformly by removing a solvent.
  • Examples of the dopant used for the partially chlorinated or partially fluorinated core material include low molecular compounds or compounds in which hydrogen atoms present in these compounds are substituted with deuterium atoms. Low molecular weight compounds having a high refractive index.
  • Examples of the compound include diphenylsulfone (DPSO) and diphenylsulfone derivatives (for example, diphenylsulfone chloride such as 4,4′-dichlorodiphenylsulfone, 3,3 ′, 4,4′-tetrachlorodiphenylsulfone), diphenylsulfide (DPS).
  • TPP triphenyl phosphate
  • phosphate compounds such as tricresyl phosphate
  • benzyl benzoate benzyl n-butyl phthalate
  • diphenyl phthalate diphenyl phthalate
  • biphenyl Is mentioned Examples of the low molecular compound having a low refractive index include tris-2-ethylhexyl phosphate (TOP), etc. These may be used alone or in combination of two or more. Decafluorobiphenyl, perfluorodiphenyl sulfide, and perfluorotriazine can also be used.
  • the temperature and extrusion speed when forming the batch-molded multi-light transmission sheet 10 may be controlled.
  • a micro-inhomogeneous structure by a heat treatment step after co-extrusion of the core material, cladding material, and coating material.
  • a heat treatment step after co-extrusion of the core material, cladding material, and coating material.
  • the polymer is vitrified with a large volume before enthalpy relaxation of the polymer occurs.
  • the volume slightly decreases due to enthalpy relaxation.
  • the melt-extruded fiber molecules receive orientation, and orientation birefringence occurs depending on the degree of orientation.
  • the orientation birefringence causes birefringence not only in the extending direction of the light transmission region but also in the radial direction and in a specific direction. This birefringent structure also promotes mode coupling.
  • a batch-molded multi-light transmission sheet can be manufactured using a manufacturing apparatus similar to the manufacturing apparatus shown in FIG.
  • a core material CYTOP (Asahi Glass Co., Ltd.) containing a predetermined amount of decafluorobiphenyl as a refractive index imparting material can be used as a raw material from a base material rod.
  • CYTOP not containing a refractive index imparting material can be used.
  • the coating material polycarbonate (product name: Xylex7200, manufactured by Sabic) resin can be used.
  • a general screw-type extrusion device may be used as an extrusion device for each material, but not limited to a screw, there is no limitation on a molding method using a high-pressure gas, for example, a gas gas such as nitrogen gas, argon gas, or air.
  • a high-pressure gas for example, a gas gas such as nitrogen gas, argon gas, or air.
  • the T-die used here is an extremely important component for producing the target batch-molded multi-optical transmission sheet.
  • the accuracy of the structure of the T-die allows the batch-molded multi-optical transmission.
  • the accuracy of the sheet is determined.
  • the structure of this T die is completely different from a so-called general T die.
  • the T-die used has a structure in which three types of resins, that is, a core material resin, a clad material resin, and a coating material resin that protects the core material, melt and pass through independent flow paths.
  • a core material resin a clad material resin
  • a coating material resin that protects the core material, melt and pass through independent flow paths.
  • the core material channel and the clad material channel have a double structure, processing accuracy is particularly required.
  • the concentration distribution of the dopant in the core radial direction that is, the refractive index distribution in the core radial direction (the shape of the GI distribution) is determined.
  • FIG. 3B shows the flow paths P1 of the core material and the clad material. Each of the flow paths P1 is arranged in the T die 1005 with high accuracy.
  • the accuracy of the interval between one channel P1 and the adjacent channel P1 is also very important, and the interval between the channels P1 in the direction D2 is constant no matter where it is taken. Designed to be an interval of In this way, an extremely accurate T die for a batch molded multi-light transmission sheet is produced.
  • SUS may be used for ease of processing, but Hastelloy having corrosion resistance at high temperature may be used.
  • a sheet-like body having a uniform thickness This sheet-like body has a width of about 1 cm and a thickness of about 1.5 mm. Furthermore, a thin batch-formed multi-light transmission sheet having a width of 1 mm and a thickness of about 170 ⁇ m can be obtained by stretching the sheet-like body by about 8 times with a stretching roll. When the cross section of the batch molded multi-light transmission sheet is confirmed, an optical transmission region having eight core regions and a cladding region is formed.
  • a 4-core batch molded multi-optical transmission sheet was manufactured using a manufacturing apparatus similar to the manufacturing apparatus shown in FIG.
  • CYTOP Asahi Glass Co., Ltd.
  • CYTOP containing a predetermined amount of decafluorobiphenyl as a refractive index imparting material was used as a raw material from a base material rod.
  • CYTOP containing no refractive index imparting material was used.
  • the coating material polycarbonate (product name: Xylex7200, manufactured by Sabic) resin was used. In order to extrude them all at once, melt extrusion molding was performed using high-pressure nitrogen gas.
  • These resin materials are respectively supplied to the core and clad hopper of the extrusion apparatus, the core part is heated by a band heater at about 210 ° C. to 230 ° C., and the clad part is similarly heated at about 220 ° C. to 230 ° C.
  • the resin was melted. From the state where the resin was uniformly heated and melted, the resin was allowed to stand for a certain period of time for stabilization. Thereafter, nitrogen gas was supplied at an average pressure of 0.5 MPa from a nitrogen gas introduction part connected to the upper part of the core and clad supply part, and coextrusion was performed.
  • the resin discharged from the T die was stretched and cooled to obtain a sheet.
  • This sheet was about 1 mm wide and about 600 ⁇ m thick and uniform in the length direction.
  • the four cores were linearly arranged at an interval of 250 ⁇ m and were a four-core batch-formed multi-light transmission sheet.
  • the core diameters of the four cores were all about 30 ⁇ m, and it was confirmed that a GI-type refractive index distribution was given from the center of the core region to the cladding region.
  • a batch molded multi-light transmission sheet having a core with a core diameter of 10 ⁇ m or less was also produced by gradually decreasing the pressure of the nitrogen gas from 0.5 MPa to 0.1 MPa.
  • the control of the core diameter is achieved not only by pressure control but also by a combination with various stretching conditions. For example, by using a manufacturing method such as quenching without including a diffusion process region after melt extrusion, a batch-molded multi-optical transmission sheet including a single mode waveguide in which the refractive index distribution of the core and the clad has a step distribution (SI type) Is manufactured.
  • SI type step distribution
  • An example of the refractive index difference between the core material (fully fluorinated polymer + dopant) and the clad material (fully fluorinated polymer only) used in this production example is approximately 0.005.
  • the core diameter is 10 ⁇ m or less
  • the single mode condition is satisfied at a predetermined wavelength, for example, a light source wavelength of 1550 nm.
  • the single mode condition is satisfied with a larger core diameter.
  • the angle dependence of the light scattering intensity was measured using the rod of the core material.
  • the angular dependence of light scattering intensity was measured using a silica glass optical fiber preform.
  • the correlation length was calculated to be 590 angstroms, and the relative dielectric constant fluctuation was calculated to be 5.8 ⁇ 10 ⁇ 12 .
  • the silica glass-based GI-type MMF of the comparative example manufactured from the batch-molded multi-optical transmission sheet of Example 1 and the silica glass-based optical fiber preform was cut out and measured in the experimental system shown in FIG.
  • the power density spectrum is as shown in FIG. That is, the maximum noise power density was ⁇ 114 dBm / Hz and less than ⁇ 108 dBm / Hz in the example, and ⁇ 108 dBm / Hz in the comparative example.
  • a BER (Bit Error Rate) measuring device is added to the experimental system of FIG. 12, and the VCSEL 301 is directly modulated with a 10 Gbps NRZ pseudo-random pattern signal to generate the laser light L as the laser signal light.
  • the laser signal light was propagated using the batch-molded multi-optical transmission sheet and the optical fiber of the comparative example as the optical transmission body 303, and then received by the PD 305, and BER was measured.
  • the Log 10 (BER) value with respect to a length of 1 m was ⁇ 7.14 in the example, but not ⁇ 6.00 in the comparative example.
  • the present invention is suitable for high-speed signal transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一括成型マルチ光伝送シートは、プラスチックからなるシート状の被覆部と、前記被覆部の内部に、該被覆部の延伸方向に沿って延伸するように設けられており、プラスチックからなるコア領域と、プラスチックからなり前記コア領域の外周を囲むクラッド領域と、を有する複数の光伝送領域と、を備え、前記複数の光伝送領域は、前記被覆部の主表面に沿って互いに略平行に一列に並んで配列され、前記複数の光伝送領域の一端面側から光を入射して該光を他端面側に向けて伝送させた場合に、出射光のM値が1.7以上である。

Description

一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法
 本発明は、一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法に関するものである。
 従来、光ファイバは、中距離、長距離幹線系において、高速通信の長距離化を目的として開発、使用されてきた。
 一方、主に家庭内等において100m以下の映像機器間の短距離通信を行うことを目的とする場合には、HDMI(登録商標)(High-Definition Multimedia Interface)をはじめとする電気ケーブルが用いられてきた。
 近年、実用放送が予定されている4K、8K映像などの大容量データ伝送では、電気ケーブルの伝送容量の不足、消費電力の増加、電磁ノイズの増大が大きな問題となってきている。そこで、大容量の通信信号を伝送可能な光ファイバを家庭内におけるコンシューマ用光通信をはじめとする短距離伝送に用いることが検討されてきている。
 しかしながら、このような家庭内等の短距離の伝送に従来の光ファイバを用いると、長距離通信の場合にはほとんど考慮されていなかったノイズに関連する全く新たな課題が生じ、高品位の高速信号伝送が、このノイズの影響により困難になることが明らかとなった。
 光通信システムに使用される半導体レーザモジュールには、光ファイバからの反射戻り光を減衰させて、反射戻り光によるノイズが発生しにくいようにするために、光アイソレータを採用しているものもある。
 特許文献1には、光アイソレータを採用する半導体レーザモジュールにおいて、出射される光の偏波面と一致するように偏光子を設置して、偏光子と光アイソレータの両方によって反射戻り光を減衰させる技術が開示されている。
 一方、従来の光ファイバは、テープ心線の状態で使用される場合があった。テープ心線とは、複数、たとえば4本の光ファイバを平面状に平行に配列し、その外周を囲むように樹脂テープ層で一括して覆い、さらにその外周を囲むように一括被覆層で一括して覆った構造を有するものである。このようなテープ心線は、一端にMTコネクタを取り付けて、機器や他のテープ心線と接続される。
特開2003-014992号公報
 上述したように、短距離の伝送に従来の光ファイバを用いると、ノイズに関連する全く新たな課題が生じ、高品位の高速信号伝送が困難になるという課題がある。
 また、従来のテープ心線は、光部品や光機器などの他の光学要素(他のテープ心線を含む)と接続するために、たとえばMTコネクタを取り付ける際に、樹脂テープ層と一括被覆層とを剥がし、光ファイバを取り出して、各光ファイバをMTコネクタのコネクタハウジングに形成された各孔に1本ずつ挿入する作業が必要であった。そのため、MTコネクタの取り付けが煩雑であり、作業に時間が掛かるという問題があった。
 本発明は、上記に鑑みてなされたものであって、従来の光ファイバとは全く異なるものであり、短距離、高品位の高速信号伝送を実現でき、他の光学要素と接続する際の作業性も高い一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る一括成型マルチ光伝送シートは、プラスチックからなるシート状の被覆部と、前記被覆部の内部に、該被覆部の延伸方向に沿って延伸するように設けられており、プラスチックからなるコア領域と、プラスチックからなり前記コア領域の外周を囲むクラッド領域と、を有する複数の光伝送領域と、を備え、前記複数の光伝送領域は、前記被覆部の主表面に沿って互いに略平行に一列に並んで配列され、前記複数の光伝送領域の一端面側から光を入射して該光を他端面側に向けて伝送させた場合の出射光のビームのM値が1.7以上であることを特徴とする。
 本発明の一態様に係る一括成型マルチ光伝送シートは、プラスチックからなるシート状の被覆部と、前記被覆部の内部に、該被覆部の延伸方向に沿って延伸するように設けられており、プラスチックからなるコア領域と、プラスチックからなり前記コア領域の外周を囲むクラッド領域と、を有する複数の光伝送領域と、を備え、前記複数の光伝送領域は、前記被覆部の主表面に沿って互いに略平行に一列に並んで配列され、前記複数の光伝送領域の一端面側から光を入射して該光を他端面側に向けて伝送させた場合に、前記他端面側から出力した光を受光素子にて受光して電気信号に変換したときに、前記電気信号の雑音スペクトルの低周波領域における最大ノイズパワー密度が-108dBm/Hz未満であることを特徴とする。
 本発明の一態様に係る一括成型マルチ光伝送シートは、プラスチックからなるシート状の被覆部と、前記被覆部の内部に、該被覆部の延伸方向に沿って延伸するように設けられており、プラスチックからなるコア領域と、プラスチックからなり前記コア領域の外周を囲むクラッド領域と、を有する複数の光伝送領域と、を備え、前記複数の光伝送領域は、前記被覆部の主表面に沿って互いに略平行に一列に並んで配列され、前記複数の光伝送領域の前記コア領域は、材料のミクロな不均一性の相関長が100オングストローム以上のコア材料からなり、所定の波長においてシングルモード条件を満たすことを特徴とする。
 本発明の一態様に係る一括成型マルチ光伝送シートコネクタは、前記一括成型マルチ光伝送シートと、前記一括成型マルチ光伝送シートの断面の外形状に対応した内形状の挿入孔を有し、前記挿入孔に前記光伝送シートの少なくとも一端が挿入されているフェルールと、を備えることを特徴とする。なお、本発明はこれに限定されるものでなく、前記一括成型マルチ光伝送シートを光源および検出器に直接接続することも可能である。
 本発明の一態様に係る一括成型マルチ光伝送シートの製造方法は、コア材料を、所定の方向において互いに間隔を開けて一列に並んだ複数の領域に供給するステップと、前記コア材料の外周を囲むようにクラッド材料を供給するステップと、前記クラッド材料の外周を囲むように被覆材料を供給するステップと、前記供給したコア材料、クラッド材料、および被覆材料を一体的に、かつ前記所定の方向に主表面が形成されるようにシート状に押し出すステップと、を含み、前記被覆材料からなるシート状の被覆部と、前記コア材料からなるコア領域と前記クラッド材料からなるクラッド領域とを有する複数の光伝送領域と、を備える光伝送シートを形成する、ことを特徴とする。
 本発明の一態様に係る一括成型マルチ光伝送シートコネクタの製造方法は、前記製造方法で製造された一括成型マルチ光伝送シートの一端を、前記一括成型マルチ光伝送シートの断面の外形状に対応した内形状の挿入孔を有するフェルールの前記挿入孔に挿入する、ことを特徴とする。
 本発明によれば、短距離、高品位の高速信号伝送を実現でき、他の光学要素と接続する際の作業性も高いという効果を奏する。
図1は、実施形態1に係る一括成型マルチ光伝送シートの模式図である。 図2は、一括成型マルチ光伝送シートの製造方法を説明する図である。 図3Aは、ダイスにおける各材料の供給状態を説明する図である。 図3Bは、Tダイの構造を説明する図である。 図4は、一括成型マルチ光伝送シートとVCSELアレイとの光学接続状態を示す図である。 図5は、端面にマイクロレンズアレイを備える光伝送シートの模式図である。 図6Aは、実施形態2に係る一括成型マルチ光伝送シートの模式図である。 図6Bは、実施形態3に係る一括成型マルチ光伝送シートの模式図である。 図6Cは、実施形態4に係る一括成型マルチ光伝送シートの模式図である。 図7Aは、従来のテープ心線用のフェルールの模式図である。 図7Bは、従来のテープ心線用のフェルールの模式図である。 図8Aは、一括成型マルチ光伝送シートコネクタを説明する図である。 図8Bは、一括成型マルチ光伝送シートコネクタの製造方法を説明する図である。 図9は、一括成型マルチ光伝送シートを用いた短距離通信用光リンクを示す図である。 図10は、NFPおよびFFPの測定系を示す図である。 図11は、2つのマルチモード光ファイバについて、M値を示す図である。 図12は、短距離の光リンクの実験系を示す図である。 図13は、光散乱強度の散乱角度依存性の測定系を示す図である。 図14は、光散乱強度の角度依存性を示す図である。 図15は、ノイズパワー密度スペクトルを示す図である。
 以下に、図面を参照して本発明の実施形態を詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。
(実施形態1)
 図1は、実施形態1に係る一括成型マルチ光伝送シートの模式図である。一括成型マルチ光伝送シート10は、被覆部11と、被覆部11の内部に設けられた複数の光伝送領域12とを備えている。図1の一括成型マルチ光伝送シート10は4心であり、光伝送領域12は4本であるが、光伝送領域12の数には特に限定はない。なお、一括成型マルチ光伝送シート10では各光伝送領域12は全て同じ構成であるが、本発明は必ずしもこれに限定されず、1本以上が他のものと異なっていてもよい。
 被覆部11はプラスチックからなり、シート状の形状を有し、延伸方向D1に延伸している。各光伝送領域12は、延伸方向D1に沿って延伸するように設けられており、被覆部11の主表面11aに沿って互いに平行に一列に並んで配列されている。ただし、許容された精度の範囲であれば、正確に平行でなくてもよく、略平行に配列されていればよい。
 図1の実線枠内は、光伝送領域12の具体的な構成を示す。光伝送領域12は、プラスチックからなる断面円形のコア領域12aと、プラスチックからなり、コア領域12aの外周を囲む断面円形のクラッド領域12bとを有する。コア領域12aとクラッド領域12bとは略同軸に形成されている。
 コア領域12aはグレーデッドインデックス(GI)型(例えば2乗分布)の屈折率分布を有しており、クラッド領域12bはコア領域12aよりも屈折率が低い。光伝送領域12はこのような屈折率分布を有するため、光がマルチモードで伝搬する際に、基底モードでは矢印Ar1のように直線状に伝搬し、高次モードでは矢印Ar2のように正弦波状に伝搬する。その結果、光伝送領域12は、モード間での伝搬速度差を抑制し、パルス光を少ない歪みで伝送することができる。コア領域12aの直径はたとえば50μmや62μmであるが、特に限定されない。さらには、例えば、コア領域12aの直径を10μm以下に制御することも可能であり、シングルモード条件を満足するように構成することも可能である。また、クラッド領域12bの外側に更にクラッド領域12bより屈折率の低い層を設ける、いわゆるダブルクラッド構造を付与することも何ら制限を受けない。
 また、各光伝送領域12は、距離d1で等間隔に配列されている。ここで、距離d1は、隣接するコア領域12aの中心軸間の距離である。ただし、許容された精度の範囲であれば、正確に等間隔でなくてもよく、略等間隔に配列されていればよい。更に、意図的に距離d1を設計することも容易である。
 このような一括成型マルチ光伝送シートの製造方法の一例について説明する。図2は、12心の一括成型マルチ光伝送シートの製造方法を説明する図である。
 製造装置1000は、押出装置1001、1002、1003と、ダイス1004と、Tダイ1005と、冷却ロール1006と、キャプスタンロール1007と、延伸ロール1008、1009、1010と、不図示の巻取ロールと、を備えている。
 押出装置1001、1002、1003は、透明な光学用途のプラスチック材料を所定の温度にて溶融し、ダイス1004に向けて押し出す装置である。押出装置1001は、一括成型マルチ光伝送シート10のコア領域12aの材料となるコア材料を押し出す。押出装置1002は、一括成型マルチ光伝送シート10のクラッド領域12bの材料となるクラッド材料を押し出して供給する。押出装置1003は、一括成型マルチ光伝送シート10の被覆部11の材料となる被覆材料を押し出して供給する。これらの押出装置1001、1002、1003としては、公知のプラスチック材料押出装置を使用できる。一般的にはスクリュー押出装置を使用するが、窒素ガス等の圧力で溶融押出してもよい。
 各プラスチック材料は、それぞれ別の流路を経由してダイス1004に供給される。このとき、ダイス1004は、図3Aに、材料の流れの方向から見た図を示すように、Tダイ1005に対して、コア材料M1を、方向D2において互いに間隔を開けて一列に並んだ複数の領域(図3Aでは領域A1、A2、A3、A4を図示する)に供給し、各領域のそれぞれのコア材料M1の外周を囲むようにクラッド材料M2を供給し、クラッド材料の外周を囲むように被覆材料M3を供給する。コア材料M1とクラッド材料M2と被覆材料M3とは合流するが、混合することなく、それぞれ別に流れる。
 Tダイ1005は、図3Bに示すように、コア材料M1およびクラッド材料M2が二重構造で流れる流路P1と被覆材料M3が流れる流路P2とを備える。流路P1は流路P2内を通るたとえば管材で構成されており、先端がノズル状になっている。Tダイ1005は、コア材料M1、クラッド材料M2、および被覆材料M3を、そのスリット状の吐出口から一体的にシート状に押し出す。これにより、押し出されたシート状体の主表面は、コア材料M1が一列に並んだ方向D2に沿って形成される。
 コア材料M1がクラッド材料M2と合流してTダイ1005から吐出される過程において、コア材料M1のドーパントである屈折率付与材が半径方向に段階的に広がることで、GI型の屈折率分布が形成される。
 図2に戻って、押し出されたシート状体を、キャプスタンロール1007にて冷却ロール1006の表面に接触させて均一に冷却する。十分冷却されたシート状体をさらに延伸ロール1008、1009、1010で所望の倍率で延伸することで、一括成型マルチ光伝送シートを製造することができる。製造された光伝送シートは巻取ロールに巻き取られる。
 ここで、Tダイ1005における流路P2の位置を高精度に設計することによって、一括成型マルチ光伝送シート10における4つの光伝送領域12の配列の距離d1を所望の距離に対して高精度に一致させることができる。
 たとえば、図4は、4心の一括成型マルチ光伝送シート10とVCSEL(Vertical Cavity Surface Emitting Laser)アレイ20との光学接続状態を示す図である。VCSELアレイ20は、基板21上に4つのVCSEL22が、配列距離d2で一列に並んで配列されている。配列距離d2はたとえば250μmである。VCSELアレイ20は、4つの光伝送領域12のそれぞれに入射させる光を出射する光源の一例である。
 図4に示すように、一括成型マルチ光伝送シート10の端面13とVCSELアレイ20とを近接させ、レンズなどの不図示の光学結合系を介して、一括成型マルチ光伝送シート10とVCSELアレイ20とを光学的に接続する。このとき、一括成型マルチ光伝送シート10における距離d1がVCSELアレイ20における配列距離d2との一致の正確性が、光学結合の品質を決定する要素となる。
 一括成型マルチ光伝送シート10では、距離d1を配列距離d2に対して高精度に等しくすることができるので、高品質な光学結合が可能となる。
 また、従来のテープ心線では、樹脂テープ層と一括被覆層とを剥がし、光ファイバを取り出して、光ファイバを1本ずつ、VCSELアレイ20に対して位置合わせする作業が必要であったが、一括成型マルチ光伝送シート10では、VCSELアレイ20と光学的に接続させる場合の煩雑な作業が不要である。そのため、一括成型マルチ光伝送シート10は、VCSELアレイ20などの光源に対して光学接続するための作業性も高い。
 また、一括成型マルチ光伝送シート10の端面13には、図5に示すようにマイクロレンズアレイ14を設けてもよい。マイクロレンズアレイ14は、たとえばコリメートレンズや集光レンズなどのレンズが、4つの光伝送領域12に対応して形成されたものであり、一括成型マルチ光伝送シート10と他の光学要素との結合効率を高める作用がある。マイクロレンズアレイ14はガラス材料やプラスチック材料などの透明な光学材料からなる。また、一括成型マルチ光伝送シート10の端面13には反射防止用や端面保護用のためのコーティング層を設けてもよい。
(実施形態2、3、4)
 図6A、6B、6Cは、実施形態2、3、4に係る一括成型マルチ光伝送シートの模式図である。一括成型マルチ光伝送シート10A、10B、10Cは、いずれも、被覆部11と、被覆部11の内部に設けられた複数の光伝送領域12とを備えている。被覆部11、光伝送領域12は、いずれも一括成型マルチ光伝送シート10の対応する要素と同様の構成なので、説明を省略する。
 一括成型マルチ光伝送シート10Aでは8つの光伝送領域12が一列に配列されている。一括成型マルチ光伝送シート10Bでは4つの光伝送領域12が一列に配列された構造が3段に積層している。
 一括成型マルチ光伝送シート10A、10Bは、いずれも、一括成型マルチ光伝送シート10と同様に、他の光学要素に対して光学接続する際の作業性が高い。また、一括成型マルチ光伝送シート10Aは、切断線CLに沿って切断すれば、2つの4心の一括成型マルチ光伝送シート10にすることができる。一括成型マルチ光伝送シート10Aはプラスチック製であるので、このような切断は、例えばカッター等の切断具を用いて容易に実施することができる。
 本発明のさらなる実施形態として、光伝送領域が16、24など、2の倍数の数だけ含まれる光伝送シートが含まれる。この場合、光伝送領域は、1列に並べられたり、2段以上の複数段で積層されたりする。図6Cの一括成型マルチ光伝送シート10Cは、被覆部11の内部に光伝送領域12を12本×4段の48本配列したものである。ここで、光伝送領域12の中心間の距離を250μmとし、最も外周側の光伝送領域12の外縁から被覆部11の外縁までの最短距離を125μmとすると、一括成型マルチ光伝送シート10Cの断面サイズは、幅3000μm、高さ1000μmときわめて小型である。
 ここで、図7A、7Bに示す、従来の24心テープ心線用のフェルール30は、12個×2段=24個の光ファイバ挿通孔31と、ガイドピン孔32とを有しており、上部には孔33が形成されている。孔33内には、光ファイバを配置するための12本の上段ガイド溝34と12本の下段ガイド溝35とが形成されている。このフェルール30を24心テープ心線に取り付ける際には、24心テープ心線の樹脂テープ層と一括被覆層とを剥がし、24本の光ファイバを個々に取り出して、光ファイバを1本ずつ、上段ガイド溝34、下段ガイド溝35のそれぞれに載置して、各光ファイバ挿通孔31に挿入するというきわめて煩雑な作業が必要であった。
 これに対して、一括成型マルチ光伝送シート10Cを用いれば、図8A、8Bに示すようにきわめて簡易に、一括成型マルチ光伝送シートコネクタ50を構成できる。フェルール41は、一括成型マルチ光伝送シート10Cの断面の外形状に対応した内形状の挿入孔41aを有している。挿入孔41aには一括成型マルチ光伝送シート10Cの一端が挿入されている。一括成型マルチ光伝送シートコネクタ50を製造する際には、図8Bに示すように、一括成型マルチ光伝送シート10Cの一端を、フェルール41の挿入孔41aに挿入し、接着剤等で固定する。フェルール41の側面には、挿入孔41aと連通し、そこから接着剤を注入する孔が形成されていてもよい。フェルール41は、たとえばMTフェルールと互換性を有してもよく、一括成型マルチ光伝送シートコネクタ50は、48心のMTフェルール付テープ心線と接続可能に構成されてもよい。
 一括成型マルチ光伝送シートコネクタ50の製造の際は、従来のテープ心線のように、樹脂テープ層と一括被覆層とを剥がし、光ファイバを取り出して、光ファイバを1本ずつ、フェルールの各光ファイバ挿通孔に挿入する作業が不要である。そのため、一括成型マルチ光伝送シートコネクタ50は、VCSELアレイなどの光源に対して光学接続するための作業性も高い。
 しかも、一括成型マルチ光伝送シート10Cは、48本の光伝送領域12の配列の距離d1を高精度にできる。その結果、一括成型マルチ光伝送シートコネクタ50は、歩留まりがよく、高品質な光学結合が可能となる。なお、本発明の実施形態に係る一括成型マルチ光伝送シートを光源および検出器に直接接続することも可能である。
(一括成型マルチ光伝送シートの特性)
 つぎに、本発明の一括成型マルチ光伝送シートの特性について、一括成型マルチ光伝送シート10を例としてより具体的に説明する。一括成型マルチ光伝送シート10は、光伝送領域12の一端面側から光を入射して該光を他端面側に向けて伝送させた場合の出射光のビームのM値が1.7以上である。また、延伸方向D1における長さは、200m以下が好ましく、100m以下がより好ましく、50m以下がさらに好ましい。
 図9は、一括成型マルチ光伝送シート10を用いた短距離通信用光リンク100を示す図である。戻り光とは、VCSELなどの発光素子101から出射され、一括成型マルチ光伝送シート10の発光素子側の端面である一端面側(端部A)から入射して伝搬した光の一部が、受光素子102の側の一括成型マルチ光伝送シート10の端部である他端面側(端部B、受光素子(PD)、あるいはコネクタ等)で反射されて、再び発光素子側に戻る、遠方からの戻り光のことである。発光素子側に戻る光としては、発光素子近傍(端部A等)からの戻り光も考えられるが、このような近傍からの戻り光は、発光素子を不安定化させる原因になるものではないと考えられる。
 本発明者等は、鋭意研究した末に、遠方からの戻り光が引き起こす、発光素子の緩和周波数よりも低周波の揺らぎが、特に短距離伝送における伝送品質の劣化の主たる原因であるとの知見を得た。
 本発明者等はまた、遠方からの戻り光を低減させることのできる光ファイバの特性を表す因子として、光ビームの品質を表すパラメータとして従来使用されているM値に着目した。
 M値とは、ガウシアンビーム(TEM00モード)を基準として、波長λと、2次モーメントを用いて定義されるビーム半径W(D4σ)と、ビームの広がり角θ(半角)とを用いて、次式(1)のように表される、光ビームの集光度に関する品質を示すパラメータである:
Figure JPOXMLDOC01-appb-M000001
 ここで、ビーム半径W(D4σ)は、出射されるレーザ光の近視野像(Near Field Pattern (NFP))から求めることができ、広がり角θ(半角)は、レーザ光の遠視野像(Far Field Pattern (FFP))から求めることができる。理想的なガウシアンビームでは、M値は1になる。
 光ファイバから出射されるレーザ光の場合、そのM値は伝搬モードに依存する。シングルモード光ファイバでは、伝搬モードは一つ(HE11モード)であるため、光散乱等により長さによってM値が変化することはない。一方、伝搬モードが複数存在するマルチモード光ファイバでは、出射光のM値は異なるM値のモードの重ね合わせとなり、光散乱に起因するモード結合により高次モード成分が多くなる(集光性が悪くなる)ほどM値が大きくなり、ビーム品質が悪くなる。その結果、放射損失が大きくなることに加えて、光ファイバからの出射光のすべてを受光できなくなることから、光信号の伝送品質が低下することになる。このため、マルチモード光ファイバから出射されるレーザ光のM値を小さくしておくことが、光信号の伝送品質の維持に重要であると考えられていた。
 本発明者等は、従来レーザビームの品質を表すパラメータとして用いられてきたM値を、マルチモード光ファイバの設計値として使用することについて鋭意研究した結果、特に短距離通信の場合には、M値が特定の値に制御されるような光ファイバを使用することで、遠方からの戻り光の影響を低減することができるとの知見を得た。
 さらに、本発明者らは、この知見は、一括成型マルチ光伝送シート10の光伝送領域12にも適用可能であるとの知見を得た。
 いかなる理論にも拘束されるものではないが、光伝送領域12が数100オングストローム程度の相関長のミクロな不均一構造を有している場合、前方性散乱によるモード結合を大きくすることが可能となり、伝搬損失を制御しながら光伝送領域12から出射される光のM値を効果的に制御することが可能であると考えられる。M値が特定の値に制御されるような光伝送領域12を有する一括成型マルチ光伝送シート10を使用することにより、モード結合による高次モードの増加に伴って生じる伝送損失よりも、遠方からの反射戻り光の影響が減少することによるノイズの低減の方が優勢となり、伝送品質が向上するものと考えられる。
 図10は、NFP及びFFPの測定系を示す図である。中心波長850nmの単一周波数のDBRレーザ201の偏波保持シングルモード光ファイバ202ピグテール(APC研磨)からの出射光203(モードフィールド径5.3μm)をレンズ204を用いて光ファイバ205に入射した。この際CCDカメラ206による顕微観察を用いて光ファイバ205のコア中心に光がレンズ204を介して入射するようにし、中心励振条件での評価を行うこととする。そして光ファイバ205の入射端面とは反対側の端面から出射された光207のNFPをNFP測定装置208(浜松フォトニクス製A6501)を、FFPをFFP測定装置(浜松フォトニクス製A3267-12)を用いて測定し、2次モーメントを用いた定義のビーム径W(Dσ4)及び広がり角θ(半角)を特定する。これによりM値を算出できる。なお、この測定系は一括成型マルチ光伝送シート10のNFP及びFFPの測定にも用いることができ、これによりM値を算出できる。
 図11は、直線偏光の近似的なガウシアンビームによる中心励振において、M値が1.7以上のマルチモード光ファイバ(low-noise GI POF)と、従来の石英ガラス系のマルチモード光ファイバ(silica GI MMF)とについて、M値を示す図である。入射光源は偏波保持シングルモード光ファイバ(SMF)ピグテール出力の直線偏波単一周波数レーザ(Thorlabs製,DBR852P)である。入射光のM値は1.32である。このファイバピグテールからの出射光をレンズによりコリメート、集光し、評価ファイバ中心に入射した。当実験系により、入射時に励振されるガウシアンビームに近似可能な最低次モードから、光散乱を介したモード結合によるM値の変化の推移を測定することが可能となり、low-noise GI POFの雑音低減効果を表す指標とすることが可能となる。また、ピグテールの出射端面がAPCであるのはレーザを不安定化させないためであり、安定したM値の測定が可能となる。横軸は光ファイバの長さ、縦軸はM値を示す。
 従来の光ファイバでは、光ファイバの長さによらず、M値はM=1.3-1.5付近でほぼ一定の値を示している。一方、low-noise GI POFの場合、M=1.7以上であって、光ファイバの長さが大きくなるにしたがって、M値も大きくなっていることがわかる。一括成型マルチ光伝送シート10においても、M=1.7以上であって、長さが大きくなるにしたがってM値も大きくなる。
 従来は、主にレーザ加工の分野において長さに依存せず安定で高品質な出射光ビームを得る等の観点から、M値が小さく、しかも光ファイバの長さが大きくなってもM値は大きくならない光ファイバが望ましいと考えられていた。マルチモード光ファイバを用いた光通信用においても、当然、M値が大きくなると伝送損失が大きくなるため、同様の特性が求められる。本発明者等は、驚くべきことに、マルチモード光ファイバを用いた短距離伝送の場合、むしろM値が比較的大きい場合に、伝送損失よりも遠方からの反射戻り光の影響が減少することにより、伝送品質が向上することを見出したものである。そして、この結果は、一括成型マルチ光伝送シート10にも適用できる。
 M値の大きさは、一括成型マルチ光伝送シート10における光伝送領域12内のコア領域12aを構成する材料の種類、コア屈折率分布及び一括成型マルチ光伝送シート10の製造条件により、制御することができる。また、使用するレーザのレーザ径や入射条件にも依存するが、実験系および評価条件に従って測定された出射光のM値を基準とすることにより、ミクロ不均一構造によるM値の評価および制御を再現性良く行うことが可能となる。M値の変動要因になりうるものは、基本的には光学系にはなく、レーザ径が変化すると発散角が狭くなり、その積は保存されるので、M値には影響を与えない。そのため、M値の変動要因になり得るものは波長のみと考えられる。
 一括成型マルチ光伝送シート10は、実用的に使用できる長さの下限長において、M値が1.7以上となるものである。M値が1.7よりも小さいと、反射戻り光による影響により伝送品質が低下するため好ましくない。
 一括成型マルチ光伝送シート10はまた、その長さが例えば200m以下であるところ、使用する長さの上限長において、M値が5.0以下であることが好ましい。M値が5.0よりも大きいと、高次モードの増加によって生じる伝送損失が大きくなるため好ましくない。
 一括成型マルチ光伝送シート10の長さは、200m以下が好ましく、100m以下がより好ましく、50m以下がさらに好ましい。長さが長すぎると、前方散乱による散乱損失の影響が戻り光の低減効果よりも大きくなってしまい、かえって伝送品質が低下する。
 上記のとおり、一括成型マルチ光伝送シート10のM値は、コア材料の種類や製造条件により得ることができる。
 M値を大きくするには、例えば、コア領域12a内に数100オングストローム程度の相関長のミクロな不均一構造を有するようなものとすることが考えられる。これにより、石英系ガラス系の光ファイバで観測されるいわゆるレイリー散乱とは異なる前方性散乱を大きくすることが可能となる。その結果、伝搬損失を制御しながら、有効なモード結合を誘起してノイズを低減することができる。
 例えば、アクリル系ポリマーは、分子内に存在するエステル基により分子内および分子間での相互作用が存在する。これに対して、ジオキソレン等の全フッ素化ポリマーは、そのようなエステル基が存在しない。このため、分子内、分子間相互作用は、アクリル系ポリマーに比べて小さい。この違いにより、高分子鎖自身のコンフォメーションが変化し、不均一構造の大きさならびに屈折率揺らぎを制御することができる。いずれにしても、ポリマーは一般に数百オングストロームの大きさの慣性半径を持つ分子コイルの集合体であるが、そのような分子を持たない石英ガラスには、ミクロな不均一構造は存在しない。
 または、一括成型マルチ光伝送シート10の別の特性として、一括成型マルチ光伝送シート10は、光伝送領域12の一端面側から光を入射して該光を他端面側に向けて伝送させた場合に、他端面側から出力した光を受光素子にて受光して電気信号に変換したときに、電気信号の雑音スペクトルの低周波領域における最大ノイズパワー密度が-108dBm/Hz未満である。
 本発明者らは、図12に示すような光リンクの実験系を構築し、実験を行った。具体的には、VCSEL(発振波長850nm、14Gbps、以下VCSEL301)から出力されるレーザ光Lを集光レンズ302にて光伝送体303の第1端面303aに入力し、第2端面13bに向けて伝搬させた。そして、光伝送体303の第2端面303bから出力したレーザ光Lを集光レンズ系3044にてPD305に入力した。そして、PD305から出力される電流信号をスペクトラムアナライザ306にて解析した。
 すると、光伝送体303として、長さが1mのシリカ光ファイバ(GI型マルチモード光ファイバ(MMF))を用いた場合、低周波領域(例えば1GHz以下の領域)に略周期的なノイズピークが現れることを見出した。
 本発明者らは、このような周期的なノイズピークは、レーザ光Lの一部が、光源であるVCSEL301から遠端側の反射面、すなわち第2端面303bやPD305の表面で反射して戻り光となってVCSEL301に戻り、VCSEL301の動作不安定を引き起こし、発生したものと考えた。一方、VCSEL301から近端側の反射面、すなわち第1端面303aからの反射はこのようなVCSEL301の動作不安定を引き起こさないと考えた。
 そこで、このような遠端側からの反射に起因するノイズピークの発生を抑制するために、光ファイバの特性について精査したところ、ある種の材料を用いて作製した光ファイバでは、低周波領域の略周期的なノイズピークが抑制されることを見出した。本発明者がさらに精査を行ったところ、材料のミクロな不均一性の相関長が100オングストローム以上の材料を用いて製造した光ファイバでは、低周波領域の略周期的なノイズピークが抑制されることに想到した。
 光ファイバを製造するための材料のミクロな不均一性の相関長が100オングストローム以上の材料からなるか否かについては、光ファイバ母材に光を照射してその光散乱強度の角度依存性を測定することで判定することができる。したがって、当該角度依存性の測定結果から、低周波領域の略周期的なノイズピークを抑制することができる光ファイバを製造できるように、光ファイバ母材を選別することができる。
 図13は、光散乱強度の散乱角度依存性の測定系の一例を示す図である。図13に示すように、光ファイバ母材の円筒状ポリマーバルク401を作製し、円筒状ポリマーバルク401の側面からレーザ光源402からのレーザ光Lを照射し、受光素子403にて光散乱強度を測定する。受光素子403を、円筒状ポリマーバルク401を中心として公転するように移動させることで、光散乱強度の角度θ依存性を測定できる。
 なお、光ファイバは、200m以下が好ましく、100m以下がより好ましく、50m以下がさらに好ましい。長すぎる場合、高次モード成分の増加による非線形歪低減効果に伴う伝送損失の増加が、戻り光の影響の抑制の効果を上回るからである。
 ここで、材料のミクロな不均一性の相関長が100オングストローム以上の材料を用いて光ファイバを製造することで、レイリー散乱とは異なる前方性散乱を大きくすることが可能となる。その結果、伝搬損失を制御しながら、有効なモード結合を誘起してノイズを低減することができると考えられる。
 さらに、上記の知見は、一括成型マルチ光伝送シート10に対しても適用できる。すなわち、材料のミクロな不均一性の相関長が100オングストローム以上のコア材料を用いて製造した一括成型マルチ光伝送シート10では、低周波領域の略周期的なノイズピークが抑制される。また、一括成型マルチ光伝送シート10は、200m以下が好ましく、100m以下がより好ましく、50m以下がさらに好ましい。なお、光散乱強度の散乱角度依存性を測定する際には、光ファイバ母材のかわりに、ロッド状のコア材料を用いればよい。以上のポリマーに固有のミクロ不均一構造を有する一括成型マルチ光伝送シートでは、前記最大ノイズパワー密度が-108dBm/Hz未満であることが好ましい。一方、シリカ光ファイバはこの値を上回る最大ノイズパワー密度を有すると考えられる。材料のミクロな不均一性の相関長が100オングストローム以上のコア材料を用いて製造した一括成型マルチ光伝送シート10は、コア領域12aの直径を10μm以下に制御するなどして、所定の波長においてシングルモード条件を満足するように構成してもよい。
 つぎに、一括成型マルチ光伝送シート10におけるコア材料、クラッド材料、被覆材料の好適な例について説明する。これらの透明なプラスチック材料は、当該分野で公知の方法によって製造することができる。一般的にはコア材料及びクラッド材料は、光を伝送する必要があるため、使用する光源の波長帯で透明であり、異物が少ない材料であることが好ましく、たとえば全フッ素系樹脂材料、部分フッ素系樹脂材料、部分塩素系樹脂材料、アクリル系材料が用いられるが特に限定されるものではない。また樹脂中の水素原子を重水素原子に置換された部分重水素化系樹脂を用いてもよい。被覆材料には、透明で低価格なアクリル系材料、ポリカーボネート材料等を用いるがこれらに限定されるものではない。これらのプラスチック材料は、モノマーを用いて重合する一般的な重合法を用いて製造することができる。例えば、重合法としては、溶液重合、塊状重合、乳化重合又は懸濁重合等などが挙げられる。なかでも、異物、不純物の混入を防ぐという観点から、塊状重合法が好ましい。
 この際の重合温度は、特に限定されず、例えば、80~150℃程度が適している。反応時間は、モノマーの量、種類、後述する重合開始剤、連鎖移動剤等の量、反応温度等に応じて適宜調整することができ、20~60時間程度が適している。
 全フッ素材料としては、一般的に製品名TEFRON-AF(DuPont社)やHyflonAD(Solvay社)や、CYTOP(旭硝子株式会社)を用いる事ができる。またこれらの主環構造にテトラフルオロエチレン等で共重合した全フッ素重合体を用いてもよい。またジオキソレン骨格を有する全フッ素重合体も用いる事ができる。
 コア領域を構成する重合体は、例えば、(メタ)アクリル酸エステル系化合物として、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル等;スチレン系化合物として、スチレン、α-メチルスチレン、クロロスチレン、ブロモスチレン等;ビニルエステル類として、ビニルアセテート、ビニルベンゾエート、ビニルフェニルアセテート、ビニルクロロアセテート等;マレイミド類として、N―n-ブチルマレイミド、N―tert-ブチルマレイミド、N―イソプロピルマレイミド、N―シクロヘキシルマレイミド等、これらモノマーのC-H結合の水素原子の一部が塩素置換、フッ素置換、重水素置換された物質が例示される。
 重合体を製造する際、重合開始剤及び/又は連鎖移動剤を使用することが好ましい。重合開始剤としては、通常のラジカル開始剤が挙げられる。例えば、過酸化ベンゾイル、t-ブチルパーオキシ-2-エチルヘキサネート、ジ-t-ブチルパーオキシド、t-ブチルパーオキシイソプロピルカーボネート、n-ブチル4,4,ビス(t-ブチルパーオキシ)バラレートなどのパーオキサイド系化合物;2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2-メチルブチロニトリル)、1,1'―アゾビス(シクロヘキサン-1-カルボニトリル)、2,2'-アゾビス(2-メチルプロパン)、2,2'-アゾビス(2-メチルブタン)、2,2'-アゾビス(2-メチルペンタン)、2,2'-アゾビス(2,3-ジメチルブタン)、2,2'-アゾビス(2-メチルヘキサン)、2,2'-アゾビス(2,4-ジメチルペンタン)、2,2'-アゾビス(2,3,3-トリメチルブタン)、2,2'-アゾビス(2,4,4-トリメチルペンタン)、3,3'-アゾビス(3-メチルペンタン)、3,3'-アゾビス(3-メチルヘキサン)、3,3'-アゾビス(3,4-ジメチルペンタン)、3,3'-アゾビス(3-エチルペンタン)、ジメチル-2,2'-アゾビス(2-メチルプロピオネート)、ジエチル-2,2'-アゾビス(2-メチルプロピオネート)、ジ-t-ブチル-2,2'-アゾビス(2-メチルプロピオネート)などのアゾ系化合物等が挙げられる。これらは、単独で用いてもよいし、2種類以上を併用してもよい。
 重合開始剤は、全モノマーに対して0.01~2重量%程度で用いることが適している。連鎖移動剤としては、特に限定されることなく、公知のものを用いることができる。例えば、アルキルメルカプタン類(n-ブチルメルカプタン、n-ペンチルメルカプタン、n-オクチルメルカプタン、n-ラウリルメルカプタン、t-ドデシルメルカプタン等)、チオフェノール類(チオフェノール、m-ブロモチオフェノール、p-ブロモチオフェノール、m-トルエンチオール、p-トルエンチオール等)等が挙げられる。なかでも、n-ブチルメルカプタン、n-オクチルメルカプタン、n-ラウリルメルカプタン、t-ドデシルメルカプタン等のアルキルメルカプタンが好適に用いられる。また、C-H結合の水素原子が重水素原子又はフッ素原子で置換された連鎖移動剤を用いてもよい。これらは、単独で用いてもよいし、2種類以上を併用してもよい。
 連鎖移動剤は、通常、成形上及び物性上、適当な分子量に調整するために用いられる。各モノマーに対する連鎖移動剤の連鎖移動定数は、例えば、ポリマーハンドブック第3版(J.BRANDRUP及びE.H.IMMERGUT編、JOHN WILEY&SON発行)「高分子合成の実験法」(大津隆行、木下雅悦共著、化学同人、昭和47年刊)等を参考にして、実験によって求めることができる。よって、連鎖移動定数を考慮して、モノマーの種類等に応じて、適宜、その種類及び添加量を調整することが好ましい。例えば、全モノマー成分100重量部に対して0.1~4重量部程度が挙げられる。
 コア領域12a及び/又はクラッド領域12bを構成する重合体は、重量平均分子量が、5~30万程度の範囲のものが適しており、10~25万程度のものが好ましい。適当な可撓性、透明性等を確保するためである。コア領域12aとクラッド領域12bとにおいては、例えば、粘度調整等のために、分子量が異なっていてもよい。重量平均分子量は、例えば、GPC(ゲルパーミエーションクロマトグラフィー)により測定されたポリスチレン換算の値を指す。
 一括成型マルチ光伝送シート10を構成する重合体には、光伝送のための透明性、耐熱性等の性能を損なわない範囲で、必要に応じて、配合剤、例えば、熱安定化助剤、加工助剤、耐熱向上剤、酸化防止剤、光安定剤等を配合してもよい。これらは、それぞれ、単独又は2種以上を組み合わせて用いることができ、これらの配合物とモノマー又は重合体とを混合する方法は、例えば、ホットブレンド法、コールドブレンド法、溶液混合法等が挙げられる。
<パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランの合成>
 2-クロロ-1-プロパノールと1-クロロ-2-プロパノールとトリフルオロピルビン酸メチルを脱水縮合反応により2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランの精製物を得る。次にパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランのフッ素化を行う。溶媒として1,1,2-トリクロロトリフルオロエタンを用い、窒素ガス及び、フッ素ガスを各々一定の流速で流し、窒素/フッ素の雰囲気下において、先に準備した2-カルボメチル-2-トリフルオロメチル-4-メチル-1,3-ジオキソランを反応槽にゆっくり加えることによりフッ素化処理を行いパーフルオロ-2,4-ジメチル-1,3-ジオキソラン-2-カルボン酸を得る。上記蒸留物を水酸化カリウム水溶液で中和し、パーフルオロ-2,4-ジメチル-2-カルボン酸カリウム-1,3-ジオキソランを得る。このカリウム塩を真空乾燥し、更にアルゴン雰囲気下で、塩を分解することで、パーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランを得る。上記にて得られたパーフルオロ-4-メチル-2-メチレン-1,3-ジオキソランとパーフルオロベンゾイルパーオキサイドをガラスチューブにいれ、これを冷凍/解凍真空機で脱気した後、アルゴンを再充填し、数時間加熱する。内容物は固体となり、透明なポリマーが得られる。このポリマーを用いて一括成型マルチ光伝送シート10を作製できる。
 含フッ素重合体(全フッ素、部分フッ素材料を含む)の溶融状態における粘度は、溶融温度200℃~300℃において103~105ポイズが好ましい。溶融粘度が高過ぎるとコア領域12aとクラッド領域12bとの形成が困難なばかりでなく、屈折率分布の形成に必要な、ドーバントの拡散が起こりにくくなり屈折率分布の形成が困難になる。また、溶融粘度が低過ぎると実用上問題が生じる。すなわち、電子機器や自動車等での光伝送体として用いられる場合に高温にさらされ軟化し、光の伝送性能が低下する。
 含フッ素重合体の数平均分子量は、10,000~5000,000が好ましく、より好ましくは50,000~1000,000である。分子量が小さ過ぎると耐熱性を阻害することがあり、大き過ぎると屈折率分布を有する光伝送体の形成が困難になるため好ましくない。
 一括成型マルチ光伝送シート10のコア材料として部分塩素系材料を使用する場合、上述した、一般的作成方法である全フッ素材料の合成方法と同様の方法により合成することができる。
[部分塩素材料の合成(特許第5419815号参照)]
 次に部分塩素系材料の作成方法について、簡単に述べる。予め蒸留精製したトリクロロエチルメタクリレートと昇華精製したシクロヘキシルマレイミドと屈折率付与剤のドーパントとしてジフェニルスルフィドを各々精秤し、ガラス容器に入れた。更に、全重量中の濃度に対し所定量の重合開始剤としてジターシャリーブチルパーオキサイド及び連鎖移動剤としてノルマル-ラウリルメルカブタンを添加する。この溶液を十分混合後、細孔径のメンブレンフィルタを通すことによりガラス製重合容器に入れ濾過を行う。次にこの溶液の入ったガラス製重合管にアルゴンガスを導入しながら、凍結脱気法により溶存空気を除去する。このガラス重合管をオーブンに入れアルゴンガスを導入しながら重合容器の温度を上げ、モノマーを重合し、更に温度をあげることで重合反応を完了させる。このガラス管を開封し、固化した透明な重合ロッドを得る。
 ドーパントの溶解性パラメータがポリマーの溶解性パラメータと等しく相溶性が良い場合には、ドーパントはポリマーマトリクス内に均一に存在する。一方、ドーパントとポリマーの溶解性パラメータの差が大きくなるにつれ、ドーパント同士が凝集しあう傾向が増加し、ドーパントの濃度分布による屈折率不均一構造が形成される。一般的な溶解性パラメータの知見にとどまらず、ドーパントとポリマーとの局所的相互作用(例えば、特定の官能基間に相当するセカンダリーな電子分極等)を加えることによってもドーパントのミクロな濃度分布を形成することが可能となる。全フッ素系のコア材料向けのドーパントとしては通常は全フッ素重合体よりも高屈折率の物質を用いる。すなわち、物質ドーパントは、全フッ素重合と同様な理由から実質的にC-H結合を有しない物質であり、全フッ素重合体より屈折率が0.05以上大きいことがより好ましい。より屈折率が大きいと所望の屈折率分布を形成するために必要なドーパントの含有量がより少なくて良いため、ガラス転移温度の低下が少なくてすみ、その結果、光ファイバの耐熱性が高まるので、0.1以上大きいことが特に好ましい。
 ドーパントとしては、ベンゼン環等の芳香族環、塩素、臭素、ヨウ素等のハロゲン原子、エーテル結合等の結合基を含む、低分子化合物、オリゴマ、ポリマーが好ましいが、ポリマーの場合、分子量が大きくなると全フッ素重合体との相溶性が低下し、その結果光散乱損失が大きくなるため、あまり分子量が大きいものは好ましくない。また、逆に分子量の小さな化合物の場合、含フッ素重合体との混合物におけるガラス転移温度が低くなり光ファイバの耐熱温度が低下する原因となるため、小さすぎても好ましくない。ゆえに、ドーパントの数平均分子量は3×10~2×10が好ましく、3×10~1×10がより好ましい。
 ドーパントの具体的な化合物としては、特開平8-5848号公報に記載されるようなクロロトリフルオロエチレンの5~8量体であるオリゴマ、ジクロロジフルオロエチレンの5~8量体であるオリゴマ、または前記全フッ素重合体を形成する単量体の内高い屈折率のオリゴマを与える単量体(例えば塩素原子を有する単量体)を重合することによって得られる2~5量体オリゴマがある。
 上記オリゴマのような含ハロゲン脂肪族化合物以外に、炭素原子に結合した水素原子を含まないハロゲン化芳香族炭化水素や含ハロゲン多環式化合物なども使用できる。特に、ハロゲン原子としてフッ素原子のみを含む(またはフッ素原子と相対的に少数の塩素原子を含む)フッ化芳香族炭化水素や含フッ素多環式化合物が、含フッ素重合体との相溶性の面で好ましい。また、これらのハロゲン化芳香族炭化水素や含ハロゲン多環式化合物は、カルボニル基、シアノ基などの極性のある官能基を有していないことがより好ましい。
 このようなハロゲン化芳香族炭化水素としては、例えば式Φr-Zb[Φrは水素原子のすべてがフッ素原子に置換されたb価のフッ素化芳香環残基、Zはフッ素以外のハロゲン原子、-Rf、-CO-Rf、-O-Rf、あるいは-CN。ただし、Rfはペルフルオロアルキル基、ポリフルオロペルハロアルキル基、または1価のΦr。bは0または1以上の整数。]で表される化合物がある。芳香環としてはベンゼン環やナフタレン環がある。Rfであるペルフルオロアルキル基やポリフルオロペルハロアルキル基の炭素数は5以下が好ましい。フッ素以外のハロゲン原子としては、塩素原子や臭素原子が好ましい。具体的な化合物としては例えば、1,3-ジブロモテトラフルオロベンゼン、1,4-ジブロモテトラフルオロベンゼン、2-ブロモテトラフルオロベンゾトリフルオライド、クロペンタフルオロベンゼン、ブロモペンタフルオロベンゼン、ヨードペンタフルオロベンゼン、デカフルオロベンゾフェノン、ペルフルオロアセトフェノン、ペルフルオロビフェニル、クロロヘプタフルオロナフタレン、ブロモヘプタフルオロナフタレンなどがある。含フッ素多環式化合物の例として特に好ましいドーパントは、全フッ素重合体、特に主鎖に環構造を有する含フッ素重合体との相溶性が良好であり、かつ耐熱性が良好であること等から、クロロトリフルオロエチレンオリゴマ、ペルフルオロ(トリフェニルトリアジン)、ペルフルオロターフェニル、ペルフルオロクアトロフェニル、ペルフルオロ(トリフェニルベンゼン)、ペルフルオロアントラセンである。相溶性が良好であることにより、含フッ素重合体、特に主鎖に環構造を有する含フッ素重合体と混合すべき物質とを200~300℃で加熱溶融により容易に混合させることができる。また、含フッ素溶媒に溶解させて混合した後、溶媒を除去することにより両者を均一に混合させることができる。
 部分塩素系、又は部分フッ素系のコア材料に用いるドーパントとしては、(低分子化合物又はこれら化合物中に存在する水素原子を重水素原子に置換した化合物等が挙げられる。高い屈折率をもつ低分子化合物としては、ジフェニルスルホン(DPSO)及びジフェニルスルホン誘導体(例えば、4,4'-ジクロロジフェニルスルホン、3,3',4,4'-テトラクロロジフェニルスルホン等の塩化ジフェニルスルホン)、ジフェニルスルフィド(DPS)、ジフェニルスルホキシド、ジベンゾチオフェン、ジチアン誘導体等の硫黄化合物;トリフェニルホスフェート(TPP)、リン酸トリクレジル等のリン酸化合物;安息香酸ベンジル;フタル酸ベンジルn-ブチル;フタル酸ジフェニル;ビフェニル;ジフェニルメタン等が挙げられる。低い屈折率をもつ低分子化合物としては、トリス-2-エチルヘキシルホスフェート(TOP)等が挙げられる。これらは、単独で用いてもよいし、2種以上を併用してもよい。また、ドーパントとしてデカフルオロビフェニル、パーフルオロジフェニルスルフィド、パーフルオロトリアジンも使用できる。
 ミクロな不均一構造を作りやすくするために、一括成型マルチ光伝送シート10を形成する際の温度や押し出し速度を制御してもよい。
 コア材料、クラッド材料、被覆材料を共押出しした後の熱処理工程により、ミクロ不均一構造を形成することも可能となる。例えば、共押出の後急冷を行うと、ポリマーのエンタルピー緩和が生じる前にポリマーは大きな体積を持ったままガラス状態化される。一方、十分な熱処理工程をガラス転移温度近辺で行うと、エンタルピー緩和により体積はわずかに減少する。そのエンタルピー緩和がミクロ領域で形成された場合、いわゆるミクロ不均一構造を形成する。また、共押出の後さらに延伸工程を加えると、溶融押出されたファイバの分子は配向を受けその配向度により配向複屈折が生じる。その配向複屈折は、光伝送領域の延伸方向のみならず、結果的に半径方向ならびに特異な方向においても複屈折を生じることになる。この複屈折構造もモード結合を促進する。
 図2に示す製造装置と同様の製造装置を用いて一括成型マルチ光伝送シートを製造できる。コア材料は屈折率付与材としてデカフルオロビフェニルを所定量含有するCYTOP(旭硝子株式会社)を母材ロッドから原料として使用できる。クラッド材料としては、屈折率付与材が入っていないCYTOPを使用できる。被覆材料としては、ポリカ-ボネート(製品名:Xylex7200 Sabic社製)樹脂を用いることができる。各材料に対する押出装置として一般的なスクリュー型押出装置を用いてもよいが、スクリューに限らず、高圧ガス、例えば窒素ガス、アルゴンガス、空気等の気体ガスを用いる成型方法も何ら制限を受けない。ここで用いるTダイは、図3(b)に示すように、目的の一括成型マルチ光伝送シートを作製するうえで極めて重要な部品であり、このTダイの構造の精度により一括成型マルチ光伝送シートの精度が決まる。このTダイの構造は、いわゆる一般的なTダイとは全く違う構造である。すなわち、用いるTダイは、コア材料の樹脂、クラッド材料の樹脂、さらにはこれを保護する被覆材料の樹脂の3種類の樹脂が溶融し、それぞれ独立した流路を通る構造を有する。特にコア材料用流路とクラッド材料用流路とは、二重構造になるため、特に加工精度が求められる。また、コア材料用流路の長さを調整することで、ドーパントのコア半径方向における濃度分布、すなわちコア半径方向における屈折率分布(GI分布の形状)が決まる。図3(b)にコア材料およびクラッド材料の流路P1を示すが、これらの流路P1の1本1本が精度よくTダイ1005の中に配列する。加えて、図3の方向D2で示すように、一つの流路P1とそれと隣り合う流路P1の間隔の精度も極めて重要であり、方向D2における流路P1間の間隔は、どこをとっても一定の間隔となるように設計される。こうして極めて精度のよい一括成型マルチ光伝送シート用のTダイが作られる。このTダイの材質は、加工のしやすさからSUS系を用いてもよいが、高温での耐蝕性を有するハステロイを用いてもよい。
 これらの材料を押出装置のホッパー部に供給し、約200℃~230℃で溶融してダイスに供給し、上記Tダイから共押出を行うことで均一な厚みを持つシート状体が得られる。このシート状体は、幅約1cm、厚み約1.5mm程度である。更にこのシート状体を延伸ロールにて約8倍の延伸を施す事で、幅1mm厚み約170μmの薄い一括成型マルチ光伝送シートを得ることができる。一括成型マルチ光伝送シートの断面を確認すると、8つのコア領域、クラッド領域を有する光伝送領域が形成されている。またコア領域の中心からクラッド領域にかけてGI型の屈折率分布が付与されていることを確認できる。8つのコア領域に光を入射し、出射強度を測定した結果、クロストークがないことを確認できる。また、この一括成型マルチ光伝送シートを1mの長さに切断しM値を測定すると、8つの光伝送領域ともに、1.8であることを確認できる。
 図2に示す製造装置と同様の製造装置を用いて4心の一括成型マルチ光伝送シートを製造した。上述したように、コア材料は屈折率付与材としてデカフルオロビフェニルを所定量含有するCYTOP(旭硝子株式会社)を母材ロッドから原料として使用した。クラッド材料としては、屈折率付与材が入っていないCYTOPを使用した。被覆材料としては、ポリカ-ボネート(製品名:Xylex7200 Sabic社製)樹脂を用いた。これらを一括で押出すため、高圧窒素ガスを用いて溶融押出成形を行った。
 これらの樹脂材料を押出装置のコア、クラッドのホッパーに各々供給し、コア部をバンドヒーターにより約210℃~230℃で加熱し、クラッド部も同様に約220℃~230℃で加熱し、内部の樹脂を溶融させた。樹脂が均一に加熱溶融した状態から一定時間静置し安定化させた。その後、コア、クラッドの供給部の上部に連結された窒素ガス導入部から窒素ガスを平均で0.5MPaの圧力で供給し、共押出を行った。Tダイから吐出した樹脂を延伸、冷却する事でシート状物を得た。このシート状物は、幅約1mm厚み約600μmで長さ方向に均一であった。シート状物の断面を確認したところ、4つのコアが直線状に250μmの間隔で配置しており、4心の一括成型マルチ光伝送シートであることを確認した。また、4つのコアのコア径はいずれも約30μmであり、コア領域の中心からクラッド領域にかけてGI型の屈折率分布が付与されていることを確認した。
 前記の窒素ガスの圧力を0.5MPaから0.1MPaまで徐々に減少させることによって、10μm以下のコア径のコアを有する一括成型マルチ光伝送シートも作製された。これらは、一括成型マルチ光伝送シートにおいて、マルチモード導波路のみならずシングルモード導波路が容易に製造されることを意味する。コア径の制御は、圧力制御のみならず延伸諸条件との組み合わせにより達成されることは言うまでもない。例えば、溶融押出後に拡散工程領域を含まず急冷するなどの製法を用いることにより、実質コアとクラッドの屈折率分布が階段分布(SI型)を有するシングルモード導波路を含む一括成型マルチ光伝送シートが製造される。本製造例で用いたコア材料(全フッ素化ポリマー+ドーパント)とクラッド材料(全フッ素化ポリマーのみ)の屈折率差の一例はおおよそ0.005である。SI型の場合、コア径が10μm以下であれば、所定の波長、例えば光源波長1550nmにおいてシングルモード条件が満足される。屈折率差が同じであるGI型の場合はより大きなコア径でシングルモード条件が満足される。
 また、上記のコア材料のロッドを用いて光散乱強度の角度依存性を測定した。また、比較例として、シリカガラス系光ファイバ母材を用いて光散乱強度の角度依存性を測定した。すると、実施例については図14のようになったが、比較例では散乱光強度が非常に微弱で検出が困難であり、ミクロな不均一構造は存在しないことが分かった。図14の結果から、実施例では相関長が590オングストローム、比誘電率ゆらぎが5.8×10-12であると算出された。
 実施例1の一括成型マルチ光伝送シート、シリカガラス系光ファイバ母材から製造した比較例のシリカガラス系GI型MMFを1mだけ切り出し、図12に示す実験系にて測定を行ったところ、ノイズパワー密度スペクトルは図15のようになった。すなわち、最大ノイズパワー密度については、実施例は-114dBm/Hzと-108dBm/Hz未満であり、比較例は-108dBm/Hzであった。
 つづいて、図12の実験系にBER(Bit Error Rate)測定装置を追加し、VCSEL301を10GbpsのNRZ疑似ランダムパターン信号で直接変調して、レーザ光Lをレーザ信号光として生成し、実施例の一括成型マルチ光伝送シート、比較例の光ファイバを光伝送体303としてレーザ信号光を伝搬後、PD305で受光し、BERを測定した。その結果、長さ1mに対するLog10(BER)値は、実施例では-7.14であったが、比較例では-6.00と良好ではなかった。
 以上説明したように、本発明によって、最大ノイズパワー密度が小さく、短距離、高品位の高速信号伝送を実現でき、他の光学要素と接続する際の作業性も高い一括成型マルチ光伝送シートを実現できることが確認された。
 本発明は、高速信号伝送に適用して好適なものである。
 10、10A、10B、10C 一括成型マルチ光伝送シート
 11 被覆部
 12 光伝送領域
 12a コア領域
 12b クラッド領域
 41 フェルール
 50 一括成型マルチ光伝送シートコネクタ

Claims (21)

  1.  プラスチックからなるシート状の被覆部と、
     前記被覆部の内部に、該被覆部の延伸方向に沿って延伸するように設けられており、プラスチックからなるコア領域と、プラスチックからなり前記コア領域の外周を囲むクラッド領域と、を有する複数の光伝送領域と、
     を備え、
     前記複数の光伝送領域は、前記被覆部の主表面に沿って互いに略平行に一列に並んで配列され、
     前記複数の光伝送領域の一端面側から光を入射して該光を他端面側に向けて伝送させた場合に、出射光のM値が1.7以上であることを特徴とする一括成型マルチ光伝送シート。
  2.  前記M値が5.0以下であることを特徴とする請求項1に記載の一括成型マルチ光伝送シート。
  3.  プラスチックからなるシート状の被覆部と、
     前記被覆部の内部に、該被覆部の延伸方向に沿って延伸するように設けられており、プラスチックからなるコア領域と、プラスチックからなり前記コア領域の外周を囲むクラッド領域と、を有する複数の光伝送領域と、
     を備え、
     前記複数の光伝送領域は、前記被覆部の主表面に沿って互いに略平行に一列に並んで配列され、
     前記複数の光伝送領域の一端面側から光を入射して該光を他端面側に向けて伝送させた場合に、前記他端面側から出力した光を受光素子にて受光して電気信号に変換したときに、前記電気信号の雑音スペクトルの低周波領域における最大ノイズパワー密度が-108dBm/Hz未満であることを特徴とする一括成型マルチ光伝送シート。
  4.  プラスチックからなるシート状の被覆部と、
     前記被覆部の内部に、該被覆部の延伸方向に沿って延伸するように設けられており、プラスチックからなるコア領域と、プラスチックからなり前記コア領域の外周を囲むクラッド領域と、を有する複数の光伝送領域と、
     を備え、
     前記複数の光伝送領域は、前記被覆部の主表面に沿って互いに略平行に一列に並んで配列され、
     前記複数の光伝送領域の前記コア領域は、材料のミクロな不均一性の相関長が100オングストローム以上のコア材料からなり、所定の波長においてシングルモード条件を満たすことを特徴とする一括成型マルチ光伝送シート。
  5.  前記複数の光伝送領域は、所定の距離で略等間隔に配列されていることを特徴とする請求項1~4のいずれか一つに記載の一括成型マルチ光伝送シート。
  6.  前記所定の距離は、前記複数の光伝送領域のそれぞれに入射させる光を出射する複数の光源の配列距離と等しいことを特徴とする請求項5に記載の一括成型マルチ光伝送シート。
  7.  前記コア領域がグレーデッドインデックス型の屈折率分布を有することを特徴とする請求項1~6のいずれか一つに記載の一括成型マルチ光伝送シート。
  8.  前記コア領域が全フッ素系、部分フッ素系、部分塩素系、または部分重水素化系の材料からなることを特徴とする請求項1~7のいずれか一つに記載の一括成型マルチ光伝送シート。
  9.  端面に設けられたマイクロレンズアレイをさらに備えることを特徴とする請求項1~8のいずれか一つに記載の一括成型マルチ光伝送シート。
  10.  端面に設けられたコーティング層をさらに備えることを特徴とする請求項1~9のいずれか一つに記載の一括成型マルチ光伝送シート。
  11.  請求項1~10のいずれか一つに記載の一括成型マルチ光伝送シートと、
     前記一括成型マルチ光伝送シートの断面の外形状に対応した内形状の挿入孔を有し、前記挿入孔に前記一括成型マルチ光伝送シートの少なくとも一端が挿入されているフェルールと、
     を備えることを特徴とする一括成型マルチ光伝送シートコネクタ。
  12.  コア材料を、所定の方向において互いに間隔を開けて一列に並んだ複数の領域に供給するステップと、
     前記コア材料の外周を囲むようにクラッド材料を供給するステップと、
     前記クラッド材料の外周を囲むように被覆材料を供給するステップと、
     前記供給したコア材料、クラッド材料、および被覆材料を一体的に、かつ前記所定の方向に主表面が形成されるようにシート状に押し出すステップと、
     を含み、
     前記被覆材料からなるシート状の被覆部と、前記コア材料からなるコア領域と前記クラッド材料からなるクラッド領域とを有する複数の光伝送領域と、を備える一括成型マルチ光伝送シートを形成する、ことを特徴とする一括成型マルチ光伝送シートの製造方法。
  13.  前記複数の光伝送領域のいずれか一つの一端面側から光を入射して該光を他端面側に向けて伝送させた場合に、出射光のM値が1.7以上であることを特徴とする請求項12に記載の一括成型マルチ光伝送シートの製造方法。
  14.  前記M値が5.0以下であることを特徴とする請求項13に記載の一括成型マルチ光伝送シートの製造方法。
  15.  前記複数の光伝送領域のいずれか一つの一端面側から光を入射して該光を他端面側に向けて伝送させた場合に、前記他端面側から出力した光を受光素子にて受光して電気信号に変換したときに、前記電気信号の雑音スペクトルの低周波領域における最大ノイズパワー密度が-108dBm/Hz未満であることを特徴とする請求項12に記載の一括成型マルチ光伝送シートの製造方法。
  16.  前記コア領域を供給する複数の領域を、所定の距離で略等間隔に配列することを特徴とする請求項12~15のいずれか一つに記載の一括成型マルチ光伝送シートの製造方法。
  17.  前記所定の距離を、前記複数の光伝送領域のそれぞれに入射させる光を出射する複数の光源の配列距離と等しくすることを特徴とする請求項16に記載の一括成型マルチ光伝送シートの製造方法。
  18.  前記コア領域がグレーデッドインデックス型の屈折率分布を有することを特徴とする請求項12~17のいずれか一つに記載の一括成型マルチ光伝送シートの製造方法。
  19.  前記コア材料が全フッ素系、部分フッ素系、部分塩素系、または部分重水素化系の材料であることを特徴とする請求項12~18のいずれか一つに記載の一括成型マルチ光伝送シートの製造方法。
  20.  端面にマイクロレンズアレイを設けることを特徴とする請求項12~19のいずれか一つに記載の一括成型マルチ光伝送シートの製造方法。
  21.  請求項12~20のいずれか一つに記載の製造方法で製造された一括成型マルチ光伝送シートの一端を、前記一括成型マルチ光伝送シートの断面の外形状に対応した内形状の挿入孔を有するフェルールの前記挿入孔に挿入する、
     ことを特徴とする一括成型マルチ光伝送シートコネクタの製造方法。
PCT/JP2019/010419 2018-03-13 2019-03-13 一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法 WO2019177068A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020506630A JP7504457B2 (ja) 2018-03-13 2019-03-13 一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法
US16/980,202 US11828977B2 (en) 2018-03-13 2019-03-13 Integrally molded multi-optical transmission sheet, integrally molded multi-optical transmission sheet connector and method for manufacturing the same
KR1020207026251A KR102507575B1 (ko) 2018-03-13 2019-03-13 일괄 성형 멀티 광전송 시트, 일괄 성형 멀티 광전송 시트 커넥터 및 그 제조방법
CN201980018297.5A CN111868593B (zh) 2018-03-13 2019-03-13 一体成型多光传输片、一体成型多光传输片连接器以及其制造方法
US18/457,541 US20230400623A1 (en) 2018-03-13 2023-08-29 Integrally molded multi-optical transmission sheet, integrally molded multi-optical transmission sheet connector and method for manufacturing the same
US18/457,918 US20230400624A1 (en) 2018-03-13 2023-08-29 Integrally molded multi-optical transmission sheet, integrally molded multi-optical transmission sheet connector and method for manufacturing the same
US18/493,464 US20240053529A1 (en) 2018-03-13 2023-10-24 Integrally molded multi-optical transmission sheet, integrally molded multi-optical transmission sheet connector and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045877 2018-03-13
JP2018-045877 2018-03-13

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US16/980,202 A-371-Of-International US11828977B2 (en) 2018-03-13 2019-03-13 Integrally molded multi-optical transmission sheet, integrally molded multi-optical transmission sheet connector and method for manufacturing the same
US18/457,918 Division US20230400624A1 (en) 2018-03-13 2023-08-29 Integrally molded multi-optical transmission sheet, integrally molded multi-optical transmission sheet connector and method for manufacturing the same
US18/457,541 Division US20230400623A1 (en) 2018-03-13 2023-08-29 Integrally molded multi-optical transmission sheet, integrally molded multi-optical transmission sheet connector and method for manufacturing the same
US18/493,464 Continuation US20240053529A1 (en) 2018-03-13 2023-10-24 Integrally molded multi-optical transmission sheet, integrally molded multi-optical transmission sheet connector and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2019177068A1 true WO2019177068A1 (ja) 2019-09-19

Family

ID=67907831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010419 WO2019177068A1 (ja) 2018-03-13 2019-03-13 一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法

Country Status (6)

Country Link
US (4) US11828977B2 (ja)
JP (1) JP7504457B2 (ja)
KR (1) KR102507575B1 (ja)
CN (1) CN111868593B (ja)
TW (1) TWI843720B (ja)
WO (1) WO2019177068A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049540A1 (ja) * 2019-09-13 2021-03-18 小池 康博 一括成型マルチ光伝送シートアセンブリ、接続構造体、光モジュール、アクティブ光ケーブルおよびその製造方法
WO2022215366A1 (ja) 2021-04-07 2022-10-13 康博 小池 光伝送システム、光伝送路及び光電複合ケーブル
TWI844131B (zh) * 2021-11-12 2024-06-01 日商白山股份有限公司 套管、光連接器及套管的製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341183A (zh) * 2020-11-09 2021-02-09 新沂市锡沂高新材料产业技术研究院有限公司 一种激光照明的荧光复合陶瓷光纤的制备方法
CN114603890A (zh) * 2020-12-08 2022-06-10 深南电路股份有限公司 一种有机光波导元件的制造装置及其喷头组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018985A1 (en) * 2003-07-24 2005-01-27 Samsung Electronics Co., Ltd. Method for controlling numerical aperture of graded index plastic optical fiber through end rounding treatment thereof
JP2007101924A (ja) * 2005-10-05 2007-04-19 Fujikura Ltd プラスチック光ファイバテープ心線、プラスチック光ファイバ単心線、それを用いたコード、ケーブル及びシート
JP2011095762A (ja) * 2010-12-13 2011-05-12 Asahi Glass Co Ltd プラスチック光ファイバ
JP2014021439A (ja) * 2012-07-23 2014-02-03 Toshiba Corp プラスチックファイバリボン及び被覆リムーブ方法
JP2015028645A (ja) * 2014-09-11 2015-02-12 三菱レイヨン株式会社 プラスチック光ファイバ及びその製造方法、並びにプラスチック光ファイバケーブル

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472384A3 (en) * 1990-08-16 1992-10-28 Yasuhiro Koike Plastic optical fiber and its manufacturing method
JP3719733B2 (ja) 1994-04-18 2005-11-24 小池 康博 屈折率分布型光学樹脂材料及びその製造方法
US6471892B1 (en) * 1997-12-04 2002-10-29 Sumitomo Electric Industries, Ltd. Method of producing tape type optical fiber core wire
JP2001235662A (ja) * 2000-02-23 2001-08-31 Yazaki Corp プラスチック光ファイバケーブル及びプラスチック光ファイバケーブルの製造方法
JP2003014992A (ja) 2001-07-02 2003-01-15 Matsushita Electric Ind Co Ltd 半導体レーザモジュールおよび光伝送システム
US6690867B2 (en) * 2001-08-31 2004-02-10 Corning Cable Systems Llc Optical interconnect assemblies and methods therefor
FR2851053B1 (fr) * 2003-02-07 2005-06-03 Nexans Ruban a fibres optiques et procede de fabrication d'un ruban a fibres optiques
JP2006163031A (ja) * 2004-12-08 2006-06-22 Fuji Photo Film Co Ltd プラスチック光学部材の製造方法及び製造装置
JP2007094148A (ja) * 2005-09-29 2007-04-12 Fujifilm Corp プラスチック光伝送部材の製造方法
US8611714B2 (en) 2009-07-10 2013-12-17 Sekisui Chemical Co., Ltd. Optical fiber and method for manufacturing same
CN101750676B (zh) * 2010-01-15 2011-12-28 清华大学 一种光纤端面的镀膜方法
US8740432B2 (en) * 2010-08-25 2014-06-03 Colorado State University Research Foundation Transmission of laser pulses with high output beam quality using step-index fibers having large cladding
US8870467B2 (en) * 2012-05-06 2014-10-28 Mellanox Technologies Ltd. Optical interface and splitter with micro-lens array
JP6052815B2 (ja) * 2014-09-30 2016-12-27 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 導波路用のコネクタおよびアライメント方法
CN106003647A (zh) * 2016-05-30 2016-10-12 湖北森沃光电科技有限公司 一种重叠包覆双芯塑料光纤的生产方法
CN205969859U (zh) * 2016-09-06 2017-02-22 深圳市圣诺光电科技有限公司 塑料光纤的制备装置
US10107966B1 (en) * 2017-09-06 2018-10-23 International Business Machines Corporation Single-mode polymer waveguide connector assembly
CN107561634B (zh) * 2017-09-12 2023-06-20 厦门华方软件科技有限公司 超高速通信用聚合物光纤及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018985A1 (en) * 2003-07-24 2005-01-27 Samsung Electronics Co., Ltd. Method for controlling numerical aperture of graded index plastic optical fiber through end rounding treatment thereof
JP2007101924A (ja) * 2005-10-05 2007-04-19 Fujikura Ltd プラスチック光ファイバテープ心線、プラスチック光ファイバ単心線、それを用いたコード、ケーブル及びシート
JP2011095762A (ja) * 2010-12-13 2011-05-12 Asahi Glass Co Ltd プラスチック光ファイバ
JP2014021439A (ja) * 2012-07-23 2014-02-03 Toshiba Corp プラスチックファイバリボン及び被覆リムーブ方法
JP2015028645A (ja) * 2014-09-11 2015-02-12 三菱レイヨン株式会社 プラスチック光ファイバ及びその製造方法、並びにプラスチック光ファイバケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMASHITA ET AL.: "Light Scattering Measurement in PMMA Optical Fibers", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 26, no. 11, November 1987 (1987-11-01), pages L1797 - L1799 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049540A1 (ja) * 2019-09-13 2021-03-18 小池 康博 一括成型マルチ光伝送シートアセンブリ、接続構造体、光モジュール、アクティブ光ケーブルおよびその製造方法
WO2022215366A1 (ja) 2021-04-07 2022-10-13 康博 小池 光伝送システム、光伝送路及び光電複合ケーブル
TWI844131B (zh) * 2021-11-12 2024-06-01 日商白山股份有限公司 套管、光連接器及套管的製造方法

Also Published As

Publication number Publication date
CN111868593B (zh) 2022-09-27
JP7504457B2 (ja) 2024-06-24
US20210011214A1 (en) 2021-01-14
TW201941552A (zh) 2019-10-16
KR102507575B1 (ko) 2023-03-09
JPWO2019177068A1 (ja) 2021-03-11
US20230400623A1 (en) 2023-12-14
CN111868593A (zh) 2020-10-30
KR20200118487A (ko) 2020-10-15
TWI843720B (zh) 2024-06-01
US20230400624A1 (en) 2023-12-14
US11828977B2 (en) 2023-11-28
US20240053529A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2019177068A1 (ja) 一括成型マルチ光伝送シート、一括成型マルチ光伝送シートコネクタおよびその製造方法
JP7382457B2 (ja) 光ファイバケーブル
KR20060135013A (ko) 플라스틱 광섬유 및 그 제조 방법
EP1644763B1 (en) Plastic optical fibers and processes for producing them
KR102706143B1 (ko) 광 파이버 케이블
JP4160918B2 (ja) 光通信方法
EP4322426A1 (en) Optical transmission system, optical transmission path, and optical-electrical composite cable
JP2005526273A (ja) 光伝送体、その製造方法及びその製造装置
US7590319B2 (en) Preform for plastic optical material, production method thereof, optical coupling method of plastic optical fiber and connector used for optical coupling
WO2024024050A1 (ja) 光伝送路、光伝送システムおよび光伝送路の接続方法
JP2006163031A (ja) プラスチック光学部材の製造方法及び製造装置
JP2007256674A (ja) 光結合素子、光コネクタ、及び光伝送システム
JP2004212722A (ja) 光学部材、その製造に用いられる重合性組成物及び製造方法、並びにそれを用いた光通信システム
JP2006293156A (ja) プラスチック光ファイバの製造方法
JP2004191925A (ja) プラスチック光学部材用プリフォームとその製造方法、およびプラスチック光ファイバ
JP2005292667A (ja) プラスチック光ファイバ及びその製造方法
JP2006126703A (ja) プラスチック光学部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506630

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207026251

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766980

Country of ref document: EP

Kind code of ref document: A1