WO2022215353A1 - フィルタ装置およびそれを備えた高周波フロントエンド回路 - Google Patents

フィルタ装置およびそれを備えた高周波フロントエンド回路 Download PDF

Info

Publication number
WO2022215353A1
WO2022215353A1 PCT/JP2022/005889 JP2022005889W WO2022215353A1 WO 2022215353 A1 WO2022215353 A1 WO 2022215353A1 JP 2022005889 W JP2022005889 W JP 2022005889W WO 2022215353 A1 WO2022215353 A1 WO 2022215353A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
filter device
resonators
electrode
main body
Prior art date
Application number
PCT/JP2022/005889
Other languages
English (en)
French (fr)
Inventor
誠之 菊田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280025944.7A priority Critical patent/CN117099303A/zh
Priority to JP2023512845A priority patent/JP7568070B2/ja
Publication of WO2022215353A1 publication Critical patent/WO2022215353A1/ja
Priority to US18/376,006 priority patent/US20240030884A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the present disclosure relates to a filter device and a high-frequency front-end circuit including the same, and more specifically to technology for improving the characteristics of a filter device configured with stacked LC resonators.
  • Patent Document 1 discloses a filter device configured by a multi-stage laminated LC resonator.
  • the filter device as described above is used, for example, in mobile terminals typified by mobile phones or smart phones, or in communication equipment such as personal computers having communication functions. There is still a strong demand for further miniaturization and thinning of these communication devices, and the electronic components used accordingly are also required to be miniaturized.
  • a filter device In a filter device, it is generally desired to pass signals within the target passband with low loss and to have high attenuation characteristics for signals outside the passband. However, when further miniaturizing the filter device, there may be a case where sufficient attenuation characteristics outside the passband cannot be ensured.
  • the present disclosure was made to solve the above problems, and the purpose thereof is to improve attenuation characteristics in a filter device including stacked LC resonators.
  • a filter device includes a main body, an input terminal, an output terminal, a ground terminal, a first ground electrode, a second ground electrode, and a plurality of resonators.
  • An input terminal, an output terminal and a ground terminal are provided on the body.
  • the first ground electrode and the second ground electrode are arranged at different positions in the normal direction of the main body and connected to the ground terminal.
  • a plurality of resonators are arranged between the first ground electrode and the second ground electrode in the normal direction and are electromagnetically coupled with each other.
  • Each of the plurality of resonators includes a first capacitor electrode, a second capacitor electrode and a first via.
  • the first capacitor electrode When the main body is viewed from the normal direction, the first capacitor electrode at least partially overlaps the first ground electrode, and the second capacitor electrode at least partially overlaps the second ground electrode.
  • the first via connects the first capacitor electrode and the second capacitor electrode.
  • the plurality of resonators includes a first resonator connected to the input terminal, a second resonator connected to the output terminal, and a third resonator arranged in a region between the first resonator and the second resonator. A resonator and a fourth resonator are included.
  • the filter device has a second via arranged in a region between the third resonator and the fourth resonator when the main body is viewed from the normal direction, and connected to the first ground electrode and the second ground electrode. further provide.
  • the filter device includes four resonators, and when the filter device is viewed from above, a ground A via (second via) connected to the electrode is arranged.
  • the degree of coupling between resonators can be adjusted by this second via. Therefore, attenuation characteristics can be improved in a filter device including laminated resonators.
  • FIG. 1 is a block diagram of a communication device having a high-frequency front-end circuit to which the filter device according to Embodiment 1 is applied;
  • FIG. 2 is an equivalent circuit diagram of the filter device according to Embodiment 1.
  • FIG. 1 is an external perspective view of a filter device according to Embodiment 1.
  • FIG. 2 is an exploded perspective view showing the internal structure of the filter device according to Embodiment 1;
  • FIG. 4 is a diagram for explaining the state of coupling between resonators in the filter device according to Embodiment 1;
  • FIG. 4 is a diagram for explaining the state of coupling between resonators in the filter device according to the first embodiment;
  • FIG. 4 is a diagram showing pass characteristics of the filter device according to the first embodiment and the filter device according to the comparative example;
  • FIG. 6 is an exploded perspective view showing the structure of a filter device according to Embodiment 2;
  • FIG. 1 is a block diagram of a communication device 10 having a high frequency front-end circuit 20 to which a filter device according to Embodiment 1 is applied.
  • the communication device 10 is, for example, a mobile terminal typified by a smart phone, or a mobile phone base station.
  • communication device 10 includes antenna 12, high-frequency front-end circuit 20, mixer 30, local oscillator 32, D/A converter (DAC) 40, and RF circuit 50. .
  • High frequency front end circuit 20 also includes bandpass filters 22 and 28 , amplifier 24 and attenuator 26 .
  • the high-frequency front-end circuit 20 includes a transmission circuit that transmits a high-frequency signal from the antenna 12 will be described. may contain
  • the communication device 10 up-converts the signal transmitted from the RF circuit 50 into a high-frequency signal and radiates it from the antenna 12 .
  • a modulated digital signal output from the RF circuit 50 is converted to an analog signal by the D/A converter 40 .
  • the mixer 30 mixes the signal converted into the analog signal by the D/A converter 40 with the oscillation signal from the local oscillator 32 and up-converts it into a high frequency signal.
  • a band-pass filter 28 removes unnecessary waves generated by the up-conversion and extracts only signals in a desired frequency band.
  • Attenuator 26 adjusts the strength of the signal.
  • Amplifier 24 power-amplifies the signal that has passed through attenuator 26 to a predetermined level.
  • the band-pass filter 22 removes unwanted waves generated in the amplification process and allows only signal components in the frequency band specified by the communication standard to pass.
  • a signal that has passed through the bandpass filter 22 is radiated from the antenna 12 as a transmission signal.
  • a filter device corresponding to the present disclosure can be employed as the bandpass filters 22 and 28 in the communication device 10 as described above.
  • FIG. 2 is an equivalent circuit diagram of the filter device 100 according to Embodiment 1.
  • filter device 100 includes an input terminal T1 (IN), an output terminal T2 (OUT), inductors L1 and L2, and resonators RC10 to RC40.
  • Each of resonators RC10-RC40 is an LC resonator including an inductor and a capacitor.
  • Resonator RC10 is connected to input terminal T1 via inductor L1.
  • Resonator RC20 is connected to output terminal T2 via inductor L2.
  • Resonators RC30 and RC40 are arranged between resonator RC10 and resonator RC20.
  • the resonator RC10 includes inductors L10, L13 and capacitors C11, C12.
  • Inductor L10 includes series-connected inductors L11 and L12. One end of inductor L11 is connected to ground terminal GND via capacitor C11. One end of inductor L12 is connected to ground terminal GND via capacitor C12.
  • Inductor L13 is connected between a connection node of inductors L11 and L12 and ground terminal GND.
  • Capacitor C11 is connected to input terminal T1 via inductor L1.
  • Inductor L1 is connected to ground terminal GND.
  • the resonator RC20 includes inductors L20, L23 and capacitors C21, C22.
  • Inductor L20 includes series-connected inductors L21 and L22. One end of inductor L21 is connected to ground terminal GND via capacitor C21. One end of inductor L22 is connected to ground terminal GND via capacitor C22.
  • Inductor L23 is connected between a connection node of inductors L21 and L22 and ground terminal GND.
  • Capacitor C21 is connected to output terminal T2 via inductor L2.
  • Inductor L2 is connected to ground terminal GND.
  • a filter device By connecting the input terminal T1 and the output terminal T2 to the ground terminal GND of the corresponding resonator, the high-frequency signal propagating between the resonators is excited in a TE (Transversal Electric) mode.
  • TE Transversal Electric
  • a filter device can be configured with a resonator having a high Q value.
  • the resonator RC30 includes inductors L31 and L32 and capacitors C31 and C32. One end of inductor L31 is connected to ground terminal GND via capacitor C31. The other end of inductor L31 is connected to ground terminal GND via capacitor C32. Inductor L32 is connected in parallel with inductor L31. Inductors L31 and L32 are DC-insulated from ground terminal GND by capacitors C31 and C32.
  • the resonator RC40 includes inductors L41, L42 and capacitors C41, C42. One end of inductor L41 is connected to ground terminal GND via capacitor C41. The other end of inductor L41 is connected to ground terminal GND via capacitor C42. Inductor L42 is connected in parallel with inductor L41. Inductors L41 and L42 are DC-insulated from ground terminal GND by capacitors C41 and C42.
  • the filter device 100 has a configuration in which four stages of resonators that are electromagnetically coupled to each other are arranged between the input terminal T1 and the output terminal T2.
  • a high-frequency signal input to the input terminal T1 is transmitted by electromagnetic field coupling of the resonators RC10 to RC40 and output from the output terminal T2.
  • the filter device 100 functions as a bandpass filter that passes signals in a desired frequency band by adjusting the resonance frequency of each resonator.
  • FIG. 3 is an external perspective view of the filter device 100.
  • FIG. 4 is an exploded perspective view showing an example of the structure of the filter device 100.
  • FIG. 4 is an exploded perspective view showing an example of the structure of the filter device 100.
  • the filter device 100 includes a rectangular parallelepiped or substantially rectangular parallelepiped main body 110 formed by stacking a plurality of dielectric layers LY1 to LY7 along a predetermined direction.
  • the direction in which the plurality of dielectric layers LY1 to LY7 are stacked is defined as the stacking direction.
  • Each dielectric layer of main body 110 is made of ceramic such as low temperature co-fired ceramics (LTCC) or resin.
  • LTCC low temperature co-fired ceramics
  • a plurality of electrodes provided on each dielectric layer and a plurality of vias provided between the dielectric layers form inductors and capacitors for forming an LC resonant circuit.
  • the term "via” refers to a conductor provided in a dielectric layer for connecting electrodes provided on different dielectric layers. Vias are formed, for example, by conductive paste, plating, and/or metal pins.
  • the stacking direction of the main body 110 is defined as the “Z-axis direction,” the direction perpendicular to the Z-axis direction and along the long side of the main body 110 is defined as the “X-axis direction,” and the short direction of the main body 110 is defined as the “X-axis direction.”
  • the positive direction of the Z-axis in each drawing may be referred to as the upper side
  • the negative direction may be referred to as the lower side.
  • a directional mark DM for specifying the direction of the filter device 100 is arranged on the upper surface 111 (dielectric layer LY1) of the main body 110 .
  • An input terminal T1, an output terminal T2, and a ground terminal GND are arranged on the bottom surface 112 (dielectric layer LY7) of the main body 110 .
  • Filter device 100 is connected to an external device using input terminal T 1 , output terminal T 2 and ground terminal GND arranged on lower surface 112 of main body 110 .
  • Each of the input terminal T1, the output terminal T, and the ground terminal GND is a plate-shaped electrode.
  • the ground terminal GND has a substantially H-shape with notches in the positive and negative directions of the X-axis.
  • the input terminal T1 has a rectangular shape and is arranged inside the notch of the ground terminal GND in the negative direction of the X axis.
  • the output terminal T2 has a rectangular shape and is arranged inside the notch in the positive direction of the X-axis of the ground terminal GND.
  • a flat plate-shaped ground electrode PG1 having a rectangular shape is arranged on the dielectric layer LY2 of the main body 110 .
  • a flat plate-shaped ground electrode PG2 is arranged on the dielectric layer LY6 of the main body 110 .
  • the ground electrodes PG1 and PG2 are connected to a ground terminal GND provided on the dielectric layer LY7 by vias VG1 to VG5.
  • the vias VG1 to VG4 are arranged at the four corners of the ground electrode PG1.
  • the via VG5 is arranged substantially at the center of the ground electrode PG1.
  • the ground electrode PG2 is connected to the input terminal T1 of the dielectric layer LY7 by a via VG1. Also, the ground electrode PG2 is connected to the output terminal T2 of the dielectric layer LY7 by a via VG2. Vias VG1 and VG2 form inductors L1 and L2 in FIG. 2, respectively.
  • the filter device 100 includes four resonators RC10 to RC40, as described with reference to FIG. More specifically, resonator RC10 is composed of via V11, capacitor electrodes PC11 and PC12, and plate electrode P1.
  • the resonator RC20 is composed of a via V21, capacitor electrodes PC21 and PC22, and a plate electrode P2.
  • the resonator RC30 is composed of vias V31, V32 and capacitor electrodes PC31, PC32.
  • the resonator RC40 is composed of vias V41, V42 and capacitor electrodes PC41, PC42.
  • the capacitor electrode PC11 of the resonator RC10 is a rectangular flat plate electrode provided on the dielectric layer LY3. When viewed in plan from the normal direction (Z-axis direction) of the main body 110, a portion of the capacitor electrode PC11 overlaps the ground electrode PG1 provided on the dielectric layer LY2.
  • the capacitor C11 in FIG. 2 is configured by the capacitor electrode PC11 and the ground electrode PG1.
  • the capacitor electrode PC12 is a rectangular flat plate electrode provided on the dielectric layer LY5. When viewed from the normal direction of the main body 110, a portion of the capacitor electrode PC12 overlaps the ground electrode PG2 provided on the dielectric layer LY6.
  • Capacitor C12 in FIG. 2 is configured by capacitor electrode PC12 and ground electrode PG2.
  • the capacitor electrode PC11 is connected to the capacitor electrode PC12 by a via V11.
  • the via V11 is also connected to the plate electrode P1 provided on the dielectric layer LY4.
  • the plate electrode P1 has a substantially C-shape and is connected to the ground electrodes PG1 and PG2 and the ground terminal GND by vias VG1 and VG2.
  • Vias V12 and V13 are connected to each end of the projecting portion of the flat plate electrode P1 in the substantially C shape.
  • the vias V12 and V13 are connected to the ground electrode PG2 of the dielectric layer LY6 and the ground terminal GND of the dielectric layer LY7.
  • the via V11 constitutes the inductor L10 in FIG.
  • Inductor L13 in FIG. 2 is configured by plate electrode P1 and vias VG1, VG2, V12, and V13.
  • the capacitor electrode PC21 of the resonator RC20 is a rectangular flat plate electrode provided on the dielectric layer LY3. When viewed from the normal direction of the main body 110, part of the capacitor electrode PC21 overlaps the ground electrode PG1 provided on the dielectric layer LY2.
  • the capacitor C21 in FIG. 2 is configured by the capacitor electrode PC21 and the ground electrode PG1.
  • the capacitor electrode PC22 is a rectangular plate electrode provided on the dielectric layer LY5. When viewed from the normal direction of the main body 110, a part of the capacitor electrode PC22 overlaps the ground electrode PG2 provided on the dielectric layer LY6.
  • the capacitor C22 in FIG. 2 is configured by the capacitor electrode PC22 and the ground electrode PG2.
  • the capacitor electrode PC21 is connected to the capacitor electrode PC22 by a via V21. Also, the via V21 is connected to the plate electrode P2 provided on the dielectric layer LY4.
  • the plate electrode P2 has a substantially C shape and is connected to the ground electrodes PG1 and PG2 and the ground terminal GND by vias VG1 and VG2.
  • Vias V22 and V23 are connected to each of the end portions of the projecting portion of the substantially C-shaped plate electrode P2.
  • the vias V22 and V23 are connected to the ground electrode PG2 of the dielectric layer LY6 and the ground terminal GND of the dielectric layer LY7.
  • the via V21 constitutes the inductor L20 in FIG.
  • Inductor L23 in FIG. 2 is configured by plate electrode P2 and vias VG1, VG2, V22, and V23.
  • the plate electrodes P1 and P2 By providing the plate electrodes P1 and P2 and connecting the input/output side resonators RC10 and RC20 to the ground terminal, there is an effect of generating an attenuation pole on the lower frequency side than the passband. Since the plate electrodes P1 and P2 are connected to the ground electrodes PG1 and PG2 and the ground terminal GND, the impedance on the low frequency side of the resonators RC10 and RC20 is reduced, and the via V11 connected in series to the capacitor electrodes PC12 and PC22. , V21 causes an attenuation pole on the low frequency side of the passband.
  • the capacitor electrode PC31 of the resonator RC30 has a flat plate shape and is arranged in the region between the capacitor electrode PC11 and the capacitor electrode PC21 in the dielectric layer LY3. When viewed from the normal direction of the main body 110, a portion of the capacitor electrode PC31 overlaps the ground electrode PG1 arranged on the dielectric layer LY2.
  • the capacitor C31 in FIG. 2 is configured by the capacitor electrode PC31 and the ground electrode PG1.
  • the capacitor electrode PC32 has a flat plate shape and is provided on the dielectric layer LY5. When viewed from the normal direction of the main body 110, a portion of the capacitor electrode PC32 overlaps the ground electrode PG2 provided on the dielectric layer LY6.
  • the capacitor C32 in FIG. 2 is configured by the capacitor electrode PC32 and the ground electrode PG2.
  • the capacitor electrode PC31 is connected to the capacitor electrode PC32 by vias V31 and V32.
  • the capacitor electrode PC41 of the resonator RC40 has a flat plate shape and is arranged in the region between the capacitor electrode PC11 and the capacitor electrode PC21 in the dielectric layer LY3.
  • the capacitor electrode PC41 is arranged in the dielectric layer LY3 so as to face the capacitor electrode PC31 of the resonator RC30 in the Y-axis direction.
  • a portion of the capacitor electrode PC41 overlaps the ground electrode PG1 arranged on the dielectric layer LY2.
  • the capacitor C41 in FIG. 2 is configured by the capacitor electrode PC41 and the ground electrode PG1.
  • the capacitor electrode PC42 has a flat plate shape, and is arranged in the dielectric layer LY5 so as to face the capacitor electrode PC32 of the resonator RC30 in the Y-axis direction. When viewed from the normal direction of the main body 110, a portion of the capacitor electrode PC42 overlaps the ground electrode PG2 arranged on the dielectric layer LY6.
  • Capacitor C42 in FIG. 2 is configured by capacitor electrode PC42 and ground electrode PG2.
  • the capacitor electrode PC41 is connected to the capacitor electrode PC42 by vias V41 and V42.
  • the vias VG1, V12, V22, VG3 are arranged along the side surface of the main body 110 in the X-axis direction. Also, the vias VG2, V13, V23, and VG4 are arranged along the side surface of the main body 110 in the X-axis direction. In other words, the vias VG1 to VG4, V12, V13, V22, V23 are arranged along the outer circumference of the main body 110.
  • the via VG5 is an area between the capacitor electrode PC11 of the resonator RC10 and the capacitor electrode PC21 of the resonator RC20, and is located between the capacitor electrode PC31 of the resonator RC30 and the resonator. It is arranged in a region between RC40 and capacitor electrode PC41.
  • FIG. 5 is a diagram for explaining the state of coupling between resonators in the filter device 100.
  • a high-frequency signal input to input terminal T1 passes through resonator RC10, resonator RC30, resonator RC40, and resonator RC20 along paths indicated by arrows AR1, AR2, and AR3 in FIG. They are transmitted in order and output from the output terminal T2.
  • the high-frequency signal input to the input terminal T1 is also transmitted from the resonator RC10 to the resonator RC40 as indicated by the dashed arrow AR4 in FIG.
  • the high frequency signal transmitted to the resonator RC30 is also transmitted to the resonator RC20 as indicated by the dashed arrow AR5 in FIG.
  • An attenuation pole is generated by such a so-called interlaced coupling that bypasses a part of the main path.
  • via VG5 connected to ground terminal GND is provided in the region between resonator RC10 and resonator RC20 and in the region between resonator RC30 and resonator RC40. are placed. This can ensure isolation between the input terminal T1 and the output terminal T2. Further, the degree of coupling between the resonators RC30 and RC40 is adjusted by the positions of the vias V31, V32, V41, V42 included in the resonators RC30 and RC40 and the via VG5.
  • FIG. 6 is a diagram for explaining in more detail the coupling state between the resonator RC30 and the resonator RC40 in the filter device 100.
  • FIG. FIG. 6 is a plan view of the dielectric layer LY3 in FIG. Referring to FIG. 6, as described above, via VG5 is arranged in the region between capacitor electrode PC31 of resonator RC30 and capacitor electrode PC41 of resonator RC40.
  • the position of the via V31 in the X-axis direction is more negative than the position of the via VG5, and the position of the via V32 in the X-axis direction is more positive than the position of the via VG5.
  • the position of the via V41 in the X-axis direction is more negative than the position of the via VG5, and the position of the via V42 in the X-axis direction is more positive than the position of the via VG5.
  • the via VG5 is arranged in the region where the path connecting the via V31 and the via V42 and the path connecting the via V32 and the via V41 intersect. This arrangement cuts off or weakens the coupling between the via V31 and the via V42 and the coupling between the via V32 and the via V41 indicated by the dashed arrows AR23 and AR24 in FIG.
  • the connection between via V31 and via V41 (arrow AR21) and the connection between via V32 and via V42 (arrow AR22) are not blocked by via VG5. That is, the coupling between resonator RC30 and resonator RC40 is weakened compared to the case where via VG5 is not arranged.
  • the via VG5 is arranged on the path connecting the via V11 of the resonator RC10 and the via V21 of the resonator RC20. This cuts off the coupling between the resonator RC10 and the resonator RC20. Therefore, isolation between the resonator RC10 and the resonator RC20 can be ensured.
  • the via VG5 does not necessarily have to be placed in the center of the main body 110, and can be placed at any position in the hatched region RG1 in FIG. 9 according to the required degree of coupling between the resonators. .
  • FIG. 7 is a diagram showing pass characteristics of the filter device 100 of the first embodiment and pass characteristics of a comparative filter device in which the via VG5 is not provided.
  • the horizontal axis indicates frequency
  • the vertical axis indicates insertion loss.
  • a solid line LN10 indicates the case of the filter device 100 of the first embodiment
  • a dashed line LN11 indicates the case of the filter device of the comparative example.
  • the attenuation at each attenuation pole is larger than in the comparative example, Also, an attenuation amount of about 50 dB or more can be secured on the high frequency side of the attenuation pole near 32.5 GHz.
  • the degree of coupling between the resonators is adjusted by arranging the vias connected to the ground terminal between the resonators. be. Therefore, even when the distance between the resonators becomes narrow due to the downsizing of the filter device, the increase in the degree of coupling between the resonators is suppressed. Therefore, it is possible to secure the isolation between the input and output terminals in the filter device and to suppress the deterioration of the attenuation characteristic.
  • the “ground electrodes PG1 and PG2" in Embodiment 1 respectively correspond to the “first ground electrode” and the “second ground electrode” in the present disclosure.
  • Each of the “capacitor electrodes PC11, PC21, PC31, PC41” in Embodiment 1 corresponds to the "first capacitor electrode” in the present disclosure.
  • Each of the “capacitor electrodes PC12, PC22, PC32, PC42” in the first embodiment corresponds to the “second capacitor electrode” in the present disclosure.
  • Each of the “vias V11, V21, V31, V32, V41, V42" in Embodiment 1 corresponds to the "first via” in the present disclosure.
  • FIG. 8 is an exploded perspective view showing the structure of the filter device 100A according to Embodiment 2.
  • FIG. Filter device 100A is different in that two vias VG6 and VG7 are arranged in the region between resonator RC30 and resonator RC40 instead of via VG5 of filter device 100 of the first embodiment.
  • FIG. 8 other configurations are the same as those of the filter device 100 of FIG. In the description of FIG. 8, the description of elements overlapping those of FIG. 4 will not be repeated.
  • the via VG6 is arranged at a position offset from the center of the dielectric layer toward the input terminal T1 in the region between the resonator RC30 and the resonator RC40. Also, the via VG7 is arranged at a position offset from the center of the dielectric layer toward the output terminal T2 in the region between the resonator RC30 and the resonator RC40. Vias VG6 and VG7 are connected to ground electrodes PG1 and PG2 and ground terminal GND, respectively.
  • FIG. 9 is a diagram for explaining the coupling state between the resonator RC30 and the resonator RC40 in the filter device 100A.
  • 9 is a plan view of the dielectric layer LY3 in FIG. 8.
  • FIG. 9 is a diagram for explaining the coupling state between the resonator RC30 and the resonator RC40 in the filter device 100A.
  • 9 is a plan view of the dielectric layer LY3 in FIG. 8.
  • vias VG6 and VG7 are arranged in a region between capacitor electrode PC31 of resonator RC30 and capacitor electrode PC41 of resonator RC40.
  • the position of via VG6 in the X-axis direction is more negative than vias V31, V32, V41, and V42.
  • the position of the via VG7 in the X-axis direction is more positive than the vias V31, V32, V41, and V42. Therefore, in the example of the filter device 100A, vias VG6 and VG7 provide coupling between resonator RC30 and resonator RC40, that is, coupling between via V31 and via V41 (arrow AR31), coupling between via V32 and via V41. (arrow AR32), via V31 and via V42 (arrow AR33), and via V32 and via V42 (arrow AR34) are hardly affected.
  • the positions of the vias VG6 and VG7 are shifted toward the center from the position in FIG.
  • the degree of coupling between the vias V31, V32, V41 and V42 is weakened by the presence of the vias. This makes it possible to increase the amount of attenuation in the non-passband.
  • the positions of the vias VG6 and VG7 are appropriately selected depending on the desired pass characteristics (insertion loss in the pass band and attenuation in the non-pass band).
  • the isolation between the input and output terminals can be secured and the attenuation characteristic can be improved. It is possible to suppress the decrease in By providing a plurality of vias, the coupling state between the resonators is adjusted more finely.
  • vias VG6, VG7 in the second embodiment correspond to “second vias” in the present disclosure.
  • FIG. 10 is an equivalent circuit diagram of the filter device 100B according to the third embodiment.
  • Filter device 100B of the third embodiment differs from filter device 100 of the first embodiment in the connection position of input terminal T1 in resonator RC10 and the connection position of output terminal T2 in resonator RC20. .
  • the description of elements that overlap with filter device 100 will not be repeated.
  • the inductor L1 connected to the input terminal T1 is connected to the connection node between the capacitor C11 and the inductor L10 in the resonator RC10.
  • the inductor L2 connected to the output terminal T2 is connected to the connection node between the capacitor C21 and the inductor L20 in the resonator RC20.
  • the via V1 connected to the input terminal T1 in FIG. 4 is not connected to the ground electrode PG2, but is connected to the capacitor electrode PC12.
  • the via V2 connected to the output terminal T2 is not connected to the ground electrode PG2, but is connected to the capacitor electrode PC22.
  • vias connected to the ground terminal GND are arranged in the region between the resonators RC10 and RC20 and between the resonators RC30 and RC40.
  • the degree of coupling between the resonators is adjusted. Therefore, it is possible to secure the isolation between the input and output terminals in the filter device and to suppress the deterioration of the attenuation characteristic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filters And Equalizers (AREA)

Abstract

フィルタ装置(100)は、本体(110)と、接地端子(GND)と、接地電極(PG1,PG2)と、共振器(RC10~RC40)と、ビア(VG5)とを備える。接地電極は、本体の法線方向の異なる位置に配置される。共振器は、接地電極の間に配置され、互いに電磁界結合している。各共振器は、2つのキャパシタ電極と、それらを接続するビアとを含む。本体を平面視した場合に、一方のキャパシタ電極は接地電極(PG1)と重なっており、他方のキャパシタ電極は接地電極(PG2)と重なっている。共振器は、入力端子(T1)および出力端子(T2)にそれぞれ接続された共振器(RC10,RC20)と、共振器(RC10,RC20)の間に配置された共振器(RC30,RC40)とを含む。ビア(VG5)は、法線方向から本体を平面視した場合に、共振器(RC30,RC40)との間に配置され、接地電極に接続される。

Description

フィルタ装置およびそれを備えた高周波フロントエンド回路
 本開示はフィルタ装置およびそれを備えた高周波フロントエンド回路に関し、より特定的には、積層型LC共振器により構成されたフィルタ装置の特性を向上させるための技術に関する。
 国際公開第2018/100923号明細書(特許文献1)には、複数段の積層型LC共振器により構成されたフィルタ装置が開示されている。
国際公開第2018/100923号明細書
 上記のようなフィルタ装置は、たとえば、携帯電話またはスマートフォンに代表される携帯端末、あるいは通信機能を有するパーソナルコンピュータなどの通信機器に用いられる。これらの通信機器においては、さらなる小型化および薄型化の要求が依然として高く、それに伴って使用される電子部品についても小型化が必要とされている。
 フィルタ装置においては、一般的に、対象となる通過帯域内の信号に対しては低損失で通過させ、通過帯域外の信号に対しては高い減衰特性を有することが望まれる。しかしながら、フィルタ装置のさらなる小型化を行なう場合に、通過帯域外における減衰特性が十分に確保できない場合が生じ得る。
 本開示は、上記のような課題を解決するためになされたものであった、その目的は、積層型LC共振器を含むフィルタ装置における減衰特性を向上させることである。
 本開示に係るフィルタ装置は、本体と、入力端子と、出力端子と、接地端子と、第1接地電極および第2接地電極と、複数の共振器とを備える。入力端子、出力端子および接地端子は、本体に設けられる。第1接地電極および第2接地電極は、本体の法線方向の異なる位置に配置され、接地端子に接続される。複数の共振器は、法線方向において第1接地電極と第2接地電極との間に配置され、互いに電磁界結合している。複数の共振器の各々は、第1キャパシタ電極と、第2キャパシタ電極と、第1ビアとを含む。法線方向から本体を平面視した場合に、第1キャパシタ電極は第1接地電極と少なくとも一部が重なっており、第2キャパシタ電極は第2接地電極と少なくとも一部が重なっている。第1ビアは、第1キャパシタ電極と第2キャパシタ電極とを接続している。複数の共振器は、入力端子に接続された第1共振器と、出力端子に接続された第2共振器と、第1共振器と第2共振器との間の領域に配置された第3共振器および第4共振器とを含む。フィルタ装置は、法線方向から本体を平面視した場合に、第3共振器と第4共振器との間の領域に配置され、第1接地電極および第2接地電極に接続された第2ビアをさらに備える。
 本開示に係るフィルタ装置は4つの共振器を含んで構成されており、フィルタ装置を平面視した場合に、中段の2つの共振器(第3,第4共振器)の間の領域に、接地電極に接続されたビア(第2ビア)が配置されている。この第2ビアによって、共振器間の結合度合いを調整することができる。したがって、積層型共振器を含むフィルタ装置において、減衰特性を向上させることができる。
実施の形態1に係るフィルタ装置が適用される高周波フロントエンド回路を有する通信装置のブロック図である。 実施の形態1に係るフィルタ装置の等価回路図である。 実施の形態1に係るフィルタ装置の外観斜視図である。 実施の形態1に係るフィルタ装置の内部構造を示す分解斜視図である。 実施の形態1に係るフィルタ装置における、共振器間の結合状態を説明するための図である。 実施の形態1に係るフィルタ装置において、共振器間の結合状態を説明するための図である。 実施の形態1に係るフィルタ装置および比較例に係るフィルタ装置の通過特性を示す図である。 実施の形態2に係るフィルタ装置の構造を示す分解斜視図である。 実施の形態2に係るフィルタ装置において、共振器間の結合状態を説明するための図である。 実施の形態3に係るフィルタ装置の等価回路図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 (通信装置の基本構成)
 図1は、実施の形態1に係るフィルタ装置が適用される高周波フロントエンド回路20を有する通信装置10のブロック図である。通信装置10は、たとえば、スマートフォンに代表される携帯端末、あるいは、携帯電話基地局である。
 図1を参照して、通信装置10は、アンテナ12と、高周波フロントエンド回路20と、ミキサ30と、局部発共振器32と、D/Aコンバータ(DAC)40と、RF回路50とを備える。また、高周波フロントエンド回路20は、バンドパスフィルタ22,28と、増幅器24と、減衰器26とを含む。なお、図1においては、高周波フロントエンド回路20が、アンテナ12から高周波信号を送信する送信回路を含む場合について説明するが、高周波フロントエンド回路20はアンテナ12を介して高周波信号を受信する受信回路を含んでいてもよい。
 通信装置10は、RF回路50から伝達された信号を高周波信号にアップコンバートしてアンテナ12から放射する。RF回路50から出力された変調済みのデジタル信号は、D/Aコンバータ40によってアナログ信号に変換される。ミキサ30は、D/Aコンバータ40によってアナログ信号に変換された信号を、局部発共振器32からの発振信号と混合して高周波信号へとアップコンバートする。バンドパスフィルタ28は、アップコンバートによって生じた不要波を除去して、所望の周波数帯域の信号のみを抽出する。減衰器26は、信号の強度を調整する。増幅器24は、減衰器26を通過した信号を、所定のレベルまで電力増幅する。バンドパスフィルタ22は、増幅過程で生じた不要波を除去するとともに、通信規格で定められた周波数帯域の信号成分のみを通過させる。バンドパスフィルタ22を通過した信号は、送信信号としてアンテナ12から放射される。
 上記のような通信装置10におけるバンドパスフィルタ22,28として、本開示に対応したフィルタ装置を採用することができる。
 (フィルタ装置の構成)
 次に、図2~図4を用いて、実施の形態1のフィルタ装置100の詳細な構成について説明する。
 図2は、実施の形態1に係るフィルタ装置100の等価回路図である。図2を参照して、フィルタ装置100は、入力端子T1(IN)と、出力端子T2(OUT)と、インダクタL1,L2と、共振器RC10~RC40とを備える。共振器RC10~RC40の各々は、インダクタおよびキャパシタを含むLC共振器である。共振器RC10は、インダクタL1を介して入力端子T1に接続されている。共振器RC20は、インダクタL2を介して出力端子T2に接続されている。共振器RC30,RC40は、共振器RC10と共振器RC20との間に配置されている。
 共振器RC10は、インダクタL10,L13と、キャパシタC11,C12とを含む。インダクタL10は、直列接続されたインダクタL11,L12を含む。インダクタL11の一方端は、キャパシタC11を介して接地端子GNDに接続されている。また、インダクタL12の一方端は、キャパシタC12を介して接地端子GNDに接続されている。インダクタL13は、インダクタL11およびインダクタL12の接続ノードと接地端子GNDとの間に接続されている。キャパシタC11は、インダクタL1を介して入力端子T1に接続されている。インダクタL1は、接地端子GNDに接続されている。
 共振器RC20は、インダクタL20,L23と、キャパシタC21,C22とを含む。インダクタL20は、直列接続されたインダクタL21,L22を含む。インダクタL21の一方端は、キャパシタC21を介して接地端子GNDに接続されている。また、インダクタL22の一方端は、キャパシタC22を介して接地端子GNDに接続されている。インダクタL23は、インダクタL21およびインダクタL22の接続ノードと接地端子GNDとの間に接続されている。キャパシタC21は、インダクタL2を介して出力端子T2に接続されている。インダクタL2は、接地端子GNDに接続されている。
 入力端子T1および出力端子T2が、対応する共振器における接地端子GNDに接続されていることによって、共振器間を伝播する高周波信号をTE(Transversal Electric)モードで励振する。これによって、Q値の高い共振器によってフィルタ装置を構成することができる。
 共振器RC30は、インダクタL31,L32と、キャパシタC31,C32とを含む。インダクタL31の一方端は、キャパシタC31を介して接地端子GNDに接続されている。インダクタL31の他方端は、キャパシタC32を介して接地端子GNDに接続されている。インダクタL32は、インダクタL31に並列に接続されている。インダクタL31,L32は、キャパシタC31,C32によって、接地端子GNDと直流的に絶縁されている。
 共振器RC40は、インダクタL41,L42と、キャパシタC41,C42とを含む。インダクタL41の一方端は、キャパシタC41を介して接地端子GNDに接続されている。インダクタL41の他方端は、キャパシタC42を介して接地端子GNDに接続されている。インダクタL42は、インダクタL41に並列に接続されている。インダクタL41,L42は、キャパシタC41,C42によって、接地端子GNDと直流的に絶縁されている。
 各共振器同士は、電磁界結合Mにより結合されている。このように、フィルタ装置100は、入力端子T1と出力端子T2との間に、互いに電磁界結合する4段の共振器が配置された構成を有している。入力端子T1に入力された高周波信号は、共振器RC10~RC40の電磁界結合により伝達されて、出力端子T2から出力される。このとき、各共振器の共振周波数によって定まる周波数帯域の信号のみが出力端子T2に伝達される。すなわち、フィルタ装置100は各共振器の共振周波数を調整することによって、所望の周波数帯域の信号を通過させるバンドパスフィルタとして機能する。
 図3は、フィルタ装置100の外観斜視図である。また、図4はフィルタ装置100の構造の一例を示す分解斜視図である。
 図3および図4を参照して、フィルタ装置100は、複数の誘電体層LY1~LY7が所定の方向に沿って積み上げられて形成された、直方体または略直方体の本体110を備えている。本体110において、複数の誘電体層LY1~LY7が積み上げられている方向を積層方向とする。本体110の各誘電体層は、たとえば低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)などのセラミック、あるいは樹脂により形成されている。本体110の内部において、各誘電体層に設けられた複数の電極、および、誘電体層間に設けられた複数のビアによって、LC共振回路を構成するためのインダクタおよびキャパシタが構成される。なお、本明細書において「ビア」とは、異なる誘電体層に設けられた電極を接続するために、誘電体層中に設けられる導体を示す。ビアは、たとえば、導電ペースト、めっき、および/または金属ピンなどによって形成される。
 なお、以降の説明においては、本体110の積層方向を「Z軸方向」とし、Z軸方向に垂直であって本体110の長辺に沿った方向を「X軸方向」とし、本体110の短辺に沿った方向を「Y軸方向」とする。また、以下では、各図におけるZ軸の正方向を上側、負方向を下側と称する場合がある。
 本体110の上面111(誘電体層LY1)には、フィルタ装置100の方向を特定するための方向性マークDMが配置されている。本体110の下面112(誘電体層LY7)には、入力端子T1、出力端子T2および接地端子GNDが配置されている。フィルタ装置100は、本体110の下面112に配置された入力端子T1、出力端子T2および接地端子GNDを用いて外部機器と接続される。
 入力端子T1、出力端子Tおよび接地端子GNDの各々は平板形状の電極である。接地端子GNDは、X軸の正方向および負方向に切欠部が設けられた略H字形状を有している。入力端子T1は矩形形状を有しており、接地端子GNDにおけるX軸の負方向の切欠部の内部に配置されている。出力端子T2は矩形形状を有しており、接地端子GNDのX軸における正方向の切欠部の内部に配置されている。
 本体110の誘電体層LY2には、矩形形状を有する平板形状の接地電極PG1が配置されている。また、本体110の誘電体層LY6には、平板形状の接地電極PG2が配置されている。接地電極PG1,PG2は、ビアVG1~VG5によって、誘電体層LY7に設けられた接地端子GNDに接続されている。ビアVG1~VG4は、接地電極PG1の四隅にそれぞれ配置されている。ビアVG5は、接地電極PG1のほぼ中心に配置されている。
 接地電極PG2は、ビアVG1によって誘電体層LY7の入力端子T1に接続されている。また、接地電極PG2は、ビアVG2によって誘電体層LY7の出力端子T2に接続されている。ビアVG1,VG2によって、図2におけるインダクタL1,L2がそれぞれ構成される。
 フィルタ装置100は、図2で説明したように、4つの共振器RC10~RC40を含む。より具体的には、共振器RC10は、ビアV11、キャパシタ電極PC11,PC12および平板電極P1により構成されている。共振器RC20は、ビアV21、キャパシタ電極PC21,PC22および平板電極P2により構成されている。共振器RC30は、ビアV31,V32およびキャパシタ電極PC31,PC32により構成されている。共振器RC40は、ビアV41,V42およびキャパシタ電極PC41,PC42により構成されている。
 共振器RC10のキャパシタ電極PC11は、矩形形状の平板電極であり、誘電体層LY3に設けられている。本体110の法線方向(Z軸方向)から平面視した場合、キャパシタ電極PC11の一部は、誘電体層LY2に設けられた接地電極PG1と重なっている。キャパシタ電極PC11と接地電極PG1とによって、図2のキャパシタC11が構成される。キャパシタ電極PC12は矩形形状の平板電極であり、誘電体層LY5に設けられている。本体110の法線方向から平面視した場合、キャパシタ電極PC12の一部は、誘電体層LY6に設けられた接地電極PG2と重なっている。キャパシタ電極PC12と接地電極PG2とによって、図2のキャパシタC12が構成される。
 キャパシタ電極PC11は、ビアV11によってキャパシタ電極PC12に接続されている。また、ビアV11は、誘電体層LY4に設けられた平板電極P1にも接続されている。平板電極P1は、略C字形状を有しており、ビアVG1,VG2によって、接地電極PG1,PG2および接地端子GNDに接続されている。また、平板電極P1の略C字形状における突出部の端部の各々には、ビアV12,V13が接続されている。ビアV12,V13は、誘電体層LY6の接地電極PG2および誘電体層LY7の接地端子GNDに接続されている。ビアV11によって、図2のインダクタL10が構成される。また、平板電極P1およびビアVG1,VG2,V12,V13によって、図2のインダクタL13が構成される。
 共振器RC20のキャパシタ電極PC21は、矩形形状の平板電極であり、誘電体層LY3に設けられている。本体110の法線方向から平面視した場合、キャパシタ電極PC21の一部は、誘電体層LY2に設けられた接地電極PG1と重なっている。キャパシタ電極PC21と接地電極PG1とによって、図2のキャパシタC21が構成される。キャパシタ電極PC22は矩形形状の平板電極であり、誘電体層LY5に設けられている。本体110の法線方向から平面視した場合、キャパシタ電極PC22の一部は、誘電体層LY6に設けられた接地電極PG2と重なっている。キャパシタ電極PC22と接地電極PG2とによって、図2のキャパシタC22が構成される。
 キャパシタ電極PC21は、ビアV21によってキャパシタ電極PC22に接続されている。また、ビアV21は、誘電体層LY4に設けられた平板電極P2に接続されている。平板電極P2は、略C字形状を有しており、ビアVG1,VG2によって、接地電極PG1,PG2および接地端子GNDに接続されている。また、平板電極P2の略C字形状における突出部の端部の各々には、ビアV22,V23が接続されている。ビアV22,V23は、誘電体層LY6の接地電極PG2および誘電体層LY7の接地端子GNDに接続されている。ビアV21によって、図2のインダクタL20が構成される。また、平板電極P2およびビアVG1,VG2,V22,V23によって、図2のインダクタL23が構成される。
 平板電極P1,P2を設けて、入出力側の共振器RC10,RC20を接地端子に接続することによって、通過帯域よりも低周波数側に減衰極を発生させる効果がある。平板電極P1,P2が接地電極PG1,PG2および接地端子GNDに接続されていることにより、共振器RC10,RC20の低周波数側のインピーダンスが低減され、キャパシタ電極PC12,PC22に直列接続されるビアV11,V21のインダクタンスによって通過帯域の低周波数側に減衰極が生じる。
 共振器RC30のキャパシタ電極PC31は平板形状を有しており、誘電体層LY3において、キャパシタ電極PC11とキャパシタ電極PC21との間の領域に配置されている。本体110の法線方向から平面視した場合、キャパシタ電極PC31の一部は、誘電体層LY2に配置された接地電極PG1と重なっている。キャパシタ電極PC31と接地電極PG1とによって、図2のキャパシタC31が構成される。キャパシタ電極PC32は平板形状を有しており、誘電体層LY5に設けられている。本体110の法線方向から平面視した場合、キャパシタ電極PC32の一部は、誘電体層LY6に設けられた接地電極PG2と重なっている。キャパシタ電極PC32と接地電極PG2とによって、図2のキャパシタC32が構成される。キャパシタ電極PC31は、ビアV31,V32によってキャパシタ電極PC32に接続されている。
 共振器RC40のキャパシタ電極PC41は平板形状を有しており、誘電体層LY3において、キャパシタ電極PC11とキャパシタ電極PC21との間の領域に配置されている。キャパシタ電極PC41は、誘電体層LY3において、共振器RC30のキャパシタ電極PC31に対して、Y軸方向に対向して配置されている。本体110の法線方向から平面視した場合、キャパシタ電極PC41の一部は、誘電体層LY2に配置された接地電極PG1と重なっている。キャパシタ電極PC41と接地電極PG1とによって、図2のキャパシタC41が構成される。キャパシタ電極PC42は平板形状を有しており、誘電体層LY5において、共振器RC30のキャパシタ電極PC32に対して、Y軸方向に対向して配置されている。本体110の法線方向から平面視した場合、キャパシタ電極PC42の一部は、誘電体層LY6に配置された接地電極PG2と重なっている。キャパシタ電極PC42と接地電極PG2とによって、図2のキャパシタC42が構成される。キャパシタ電極PC41は、ビアV41,V42によってキャパシタ電極PC42に接続されている。
 ビアVG1,V12,V22,VG3は、本体110の側面に沿ってX軸方向に配置されている。また、ビアVG2,V13,V23,VG4は、本体110の側面に沿ってX軸方向に配置されている。言い換えれば、ビアVG1~VG4,V12,V13,V22,V23は、本体110の外周に沿って配置されている。
 本体110を積層方向から平面視した場合に、ビアVG5は、共振器RC10のキャパシタ電極PC11と共振器RC20のキャパシタ電極PC21との間の領域で、かつ、共振器RC30のキャパシタ電極PC31と共振器RC40のキャパシタ電極PC41との間の領域に配置されている。
 図5は、フィルタ装置100における、共振器間の結合状態を説明するための図である。フィルタ装置100において、入力端子T1に入力された高周波信号は、図5の矢印AR1,AR2,AR3で示される経路を主経路として、共振器RC10、共振器RC30、共振器RC40および共振器RC20の順に伝達されて、出力端子T2から出力される。
 また、入力端子T1に入力された高周波信号は、図5の破線矢印AR4のように、共振器RC10から共振器RC40にも伝達される。さらに、共振器RC30に伝達された高周波信号は、図5の破線矢印AR5のように、共振器RC20にも伝達される。このような、主経路の一部をバイパスする、いわゆる飛越結合を行なうことによって減衰極が生じる。
 このような複数の共振器を備えたフィルタ装置において、さらなる小型化を行なう場合、各共振器の間隔が狭くなるため共振器間の結合が強くなる。そうすると、入力端子と出力端子との間のアイソレーションの低下、および/または、非通過帯域における減衰特性の低下を招く可能性がある。
 実施の形態1のフィルタ装置100においては、共振器RC10と共振器RC20との間の領域、かつ、共振器RC30と共振器RC40との間の領域に、接地端子GNDに接続されたビアVG5が配置されている。これによって、入力端子T1と出力端子T2との間のアイソレーションを確保することができる。さらに、共振器RC30,RC40に含まれるビアV31,V32,V41,V42と、ビアVG5との位置によって、共振器RC30と共振器RC40との間の結合度合いが調整される。
 図6は、フィルタ装置100において、共振器RC30と共振器RC40との間の結合状態を、より詳細に説明するための図である。図6は、図4における誘電体層LY3の平面図である。図6を参照して、上述のように、ビアVG5は、共振器RC30のキャパシタ電極PC31と共振器RC40のキャパシタ電極PC41との間の領域に配置されている。
 共振器RC30においては、ビアV31のX軸方向の位置はビアVG5の位置よりも負方向に配置されており、ビアV32のX軸方向の位置はビアVG5の位置よりも正方向である。また、共振器RC40においては、ビアV41のX軸方向の位置はビアVG5の位置よりも負方向であり、ビアV42のX軸方向の位置はビアVG5の位置よりも正方向である。
 フィルタ装置100においては、ビアV31およびビアV42を結ぶ経路と、ビアV32およびビアV41を結ぶ経路とが交差する領域に、ビアVG5が配置されている。このような配置により、図6中の破線矢印AR23,AR24で示される、ビアV31とビアV42との結合、および、ビアV32とビアV41との結合が遮断あるいは弱められる。一方で、ビアV31とビアV41との間の結合(矢印AR21)、および、ビアV32とビアV42との間の結合(矢印AR22)については、ビアVG5により阻害されない。すなわち、ビアVG5が配置されない場合に比べて、共振器RC30と共振器RC40との間の結合が弱められる。したがって、小型化により共振器RC30,RC40との間の距離が近づいた場合に、ビアVG5によって共振器RC30と共振器RC40との間の結合が調整されるので、非通過帯域における減衰量を確保することが可能となる。
 また、ビアVG5は、共振器RC10のビアV11と、共振器RC20のビアV21とを結ぶ経路上に配置されている。これによって、共振器RC10と共振器RC20との結合が遮断される。したがって、共振器RC10と共振器RC20との間のアイソレーションを確保することができる。
 なお、ビアVG5は、必ずしも本体110の中央に配置されなくてもよく、必要とされる各共振器間の結合度合いに応じて、図9においてハッチングされた領域RG1の任意の位置に配置される。
 (通過特性)
 図7は、本実施の形態1のフィルタ装置100の通過特性、および、ビアVG5が設けられてない比較例のフィルタ装置の通過特性を示す図である。図7においては、横軸に周波数が示されており、縦軸には挿入損失が示されている。図7において、実線LN10は、本実施の形態1のフィルタ装置100の場合を示しており、破線LN11は比較例のフィルタ装置の場合を示している。
 図7に示されるように、本実施の形態1のフィルタ装置100の場合には、各減衰極における減衰量が比較例に比べて大きくなっており、24GHz付近の減衰極よりも低周波数側、および、32.5GHz付近の減衰極よりも高周波数側において、約50dB以上の減衰量を確保することができている。
 以上のように、複数の積層型LC共振器を含んで構成されたフィルタ装置において、接地端子に接続されたビアが共振器間に配置されていることによって、共振器間の結合度合いが調整される。そのため、フィルタ装置の小型化によって共振器間の距離が狭くなる場合においても、共振器間の結合度合いが強くなってしまうことが抑制される。したがって、フィルタ装置における入出力端子間のアイソレーションを確保するとともに、減衰特性の低下を抑制することが可能となる。
 なお、実施の形態1における「接地電極PG1,PG2」は、本開示における「第1接地電極」および「第2接地電極」にそれぞれ対応する。実施の形態1における「キャパシタ電極PC11,PC21,PC31,PC41」の各々は、本開示における「第1キャパシタ電極」に対応する。実施の形態1における「キャパシタ電極PC12,PC22,PC32,PC42」の各々は、本開示における「第2キャパシタ電極」に対応する。実施の形態1における「ビアV11,V21,V31,V32,V41,V42」の各々は、本開示における「第1ビア」に対応する。実施の形態1における「共振器RC10,RC20,RC30,RC40」は、本開示における「第1共振器」~「第4共振器」にそれぞれ対応する。実施の形態1における「ビアVG5」は、本開示における「第2ビア」に対応する。実施の形態1における「ビアV31,V32,V41,V42」は、本開示における「第1導体」~「第4導体」にそれぞれ対応する。実施の形態1における「ビアVG1,VG2,VG3,VG4,V12,V13,V22,V23」の各々は、本開示における「第3ビア」に対応する。
 [実施の形態2]
 実施の形態2においては、共振器間の領域に、接地端子に接続された複数のビアが配置される場合について説明する。
 図8は、実施の形態2に係るフィルタ装置100Aの構造を示す分解斜視図である。フィルタ装置100Aにおいては、実施の形態1のフィルタ装置100のビアVG5に代えて、共振器RC30と共振器RC40との間の領域に、2つのビアVG6,VG7が配置されている点が異なっている。なお、図8において、その他の構成は図4のフィルタ装置100と同様である。図8の説明において、図4と重複する要素についての説明は繰り返さない。
 図8を参照して、ビアVG6は、共振器RC30と共振器RC40との間の領域において、誘電体層の中心よりも入力端子T1側にオフセットした位置に配置されている。また、ビアVG7は、共振器RC30と共振器RC40との間の領域において、誘電体層の中心よりも出力端子T2側にオフセットした位置に配置されている。そして、ビアVG6,VG7の各々は、接地電極PG1,PG2および接地端子GNDに接続されている。
 図9は、フィルタ装置100Aにおいて、共振器RC30と共振器RC40との間の結合状態を説明するための図である。図9は、図8における誘電体層LY3の平面図である。
 図9を参照して、ビアVG6,VG7は、共振器RC30のキャパシタ電極PC31と共振器RC40のキャパシタ電極PC41との間の領域に配置されている。ビアVG6のX軸方向の位置は、ビアV31,V32,V41,V42よりも負方向である。また、ビアVG7のX軸方向の位置は、ビアV31,V32,V41,V42よりも正方向である。そのため、フィルタ装置100Aの例においては、ビアVG6,VG7によって、共振器RC30と共振器RC40との間の結合、すなわち、ビアV31とビアV41との結合(矢印AR31)、ビアV32とビアV41との結合(矢印AR32)、ビアV31とビアV42との結合(矢印AR33)、およびビアV32とビアV42との結合(矢印AR34)は影響をほとんど受けない。
 一方で、共振器RC10および共振器RC20については、ビアV11とビアV21との間に2つのビアVG6,VG7が存在するため、共振器RC10と共振器RC20との結合をさらに低減することができる。したがって、入出力端子間のアイソレーションを向上させることができる。
 なお、図9のビアVG6,VG7の配置では共振器RC30と共振器RC40との間の結合への影響はほとんどないが、ビアVG6,VG7の位置が図9の位置から中央側にずらされていることによって、ビアV31,V32,V41,V42間の結合度合いは弱くなる。これにより、非通過帯域における減衰量を増加することができる。なお、ビアVG6,VG7の位置については、所望の通過特性(通過帯域における挿入損失,非通過帯域における減衰量)によって適宜選択される。
 以上のように、接地端子に接続された複数のビアを共振器間に配置する構成においても、当該ビアの配置が調整されることによって、入出力端子間のアイソレーションを確保するとともに、減衰特性の低下を抑制することが可能となる。ビアの数が複数であることによって、より細やかに共振器間の結合状態が調整される。
 なお、実施の形態2における「ビアVG6,VG7]は、本開示における「第2ビア」に対応する。
 [実施の形態3]
 図10は、実施の形態3に係るフィルタ装置100Bの等価回路図である。実施の形態3のフィルタ装置100Bにおいては、実施の形態1のフィルタ装置100と比較すると、共振器RC10における入力端子T1の接続位置、および、共振器RC20における出力端子T2の接続位置が異なっている。なお、フィルタ装置100Bにおいて、フィルタ装置100と重複する要素の説明は繰り返さない。
 より詳細には、フィルタ装置100Bにおいては、入力端子T1に接続されたインダクタL1は、共振器RC10において、キャパシタC11とインダクタL10との間の接続ノードに接続されている。また、出力端子T2に接続されたインダクタL2は、共振器RC20において、キャパシタC21とインダクタL20との間の接続ノードに接続されている。
 この場合、図4において入力端子T1に接続されるビアV1は、接地電極PG2には接続されず、キャパシタ電極PC12に接続される。また、出力端子T2に接続されるビアV2は、接地電極PG2には接続されず、キャパシタ電極PC22に接続される。
 このような構成においても、共振器RC10と共振器RC20との間の領域で、かつ、共振器RC30と共振器RC40との間の領域に、接地端子GNDに接続されたビアが配置されていることによって、共振器間の結合度合いが調整される。したがって、フィルタ装置における入出力端子間のアイソレーションを確保するとともに、減衰特性の低下を抑制することが可能となる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 通信装置、12 アンテナ、20 高周波フロントエンド回路、22,28 バンドパスフィルタ、24 増幅器、26 減衰器、30 ミキサ、32 局部発共振器、40 D/Aコンバータ、50 RF回路、100,100A,100B フィルタ装置、110 本体、111 上面、112 下面、C11,C12,C21,C22,C31,C32,C41,C42 キャパシタ、DM 方向性マーク、GND 接地端子、L1,L2,L10~L13,L20~L23,L31,L32,L34,L41,L42 インダクタ、LY1~LY7 誘電体層、P1,P2 平板電極、PC11,PC12PC21,PC22,PC31,PC32,PC41,PC42 キャパシタ電極、PG1,PG2 接地電極、RC10~RC40 共振器、RG1 領域、T1 入力端子、T2 出力端子、V1,V2,V11~V13,V21~V23,V31,V32,V41,V42,VG1~VG7 ビア。

Claims (9)

  1.  フィルタ装置であって、
     本体と、
     前記本体に設けられた入力端子、出力端子および接地端子と、
     前記本体の法線方向の異なる位置に配置され、前記接地端子に接続された第1接地電極および第2接地電極と、
     前記法線方向において前記第1接地電極と前記第2接地電極との間に配置され、互いに電磁界結合する複数の共振器とを備え、
     前記複数の共振器の各々は、
      前記法線方向から前記本体を平面視した場合に、前記第1接地電極と少なくとも一部が重なる第1キャパシタ電極と、
      前記法線方向から前記本体を平面視した場合に、前記第2接地電極と少なくとも一部が重なる第2キャパシタ電極と、
      前記第1キャパシタ電極と前記第2キャパシタ電極とを接続する第1ビアとを含み、
     前記複数の共振器は、
      前記入力端子に接続された第1共振器と、
      前記出力端子に接続された第2共振器と、
      前記第1共振器と前記第2共振器との間の領域に配置された第3共振器および第4共振器とを含み、
     前記フィルタ装置は、
     前記法線方向から前記本体を平面視した場合に、前記第3共振器と前記第4共振器との間の領域に配置され、前記第1接地電極および前記第2接地電極に接続された第2ビアをさらに備える、フィルタ装置。
  2.  前記第2ビアは、前記法線方向から前記本体を平面視した場合に、前記第1接地電極および前記第2接地電極が重なる領域に配置される、請求項1に記載のフィルタ装置。
  3.  前記法線方向から前記本体を平面視した場合に、前記第2ビアは、前記第1共振器の第1ビアと、前記第2共振器の第1ビアとを結ぶ経路上に配置されている、請求項1または2に記載のフィルタ装置。
  4.  前記第3共振器の第1ビアは、第1導体および第2導体を含み、
     前記第4共振器の第1ビアは、第3導体および第4導体を含み、
     前記第2ビアは、前記第1導体および前記第4導体を結ぶ経路と、前記第2導体および前記第3導体を結ぶ経路とが交差する領域に配置される、請求項1~3のいずれか1項に記載のフィルタ装置。
  5.  前記第3共振器の第1ビアは、第1導体および第2導体を含み、
     前記第4共振器の第1ビアは、第3導体および第4導体を含み、
     前記第2ビアは、第5導体および第6導体を含む、請求項1~3のいずれか1項に記載のフィルタ装置。
  6.  前記第1共振器に含まれるインダクタ、および、前記第2共振器に含まれるインダクタは、前記接地端子に接続される、請求項1~5のいずれか1項に記載のフィルタ装置。
  7.  前記入力端子および前記出力端子は、前記接地端子に接続される、請求項1~6のいずれか1項に記載のフィルタ装置。
  8.  前記本体において、前記本体の外周に沿って配置され、前記接地端子に電気的に接続された複数の第3ビアをさらに備える、請求項1~7のいずれか1項に記載のフィルタ装置。
  9.  請求項1~8のいずれか1項に記載のフィルタ装置を備えた、高周波フロントエンド回路。
PCT/JP2022/005889 2021-04-05 2022-02-15 フィルタ装置およびそれを備えた高周波フロントエンド回路 WO2022215353A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280025944.7A CN117099303A (zh) 2021-04-05 2022-02-15 滤波器装置及具备该滤波器装置的高频前端电路
JP2023512845A JP7568070B2 (ja) 2021-04-05 2022-02-15 フィルタ装置およびそれを備えた高周波フロントエンド回路
US18/376,006 US20240030884A1 (en) 2021-04-05 2023-10-03 Filter device, and radio-frequency front end circuit provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-064115 2021-04-05
JP2021064115 2021-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/376,006 Continuation US20240030884A1 (en) 2021-04-05 2023-10-03 Filter device, and radio-frequency front end circuit provided with same

Publications (1)

Publication Number Publication Date
WO2022215353A1 true WO2022215353A1 (ja) 2022-10-13

Family

ID=83546321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005889 WO2022215353A1 (ja) 2021-04-05 2022-02-15 フィルタ装置およびそれを備えた高周波フロントエンド回路

Country Status (4)

Country Link
US (1) US20240030884A1 (ja)
JP (1) JP7568070B2 (ja)
CN (1) CN117099303A (ja)
WO (1) WO2022215353A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057543A (ja) * 2000-08-09 2002-02-22 Murata Mfg Co Ltd 積層型lc部品
WO2015059964A1 (ja) * 2013-10-24 2015-04-30 株式会社村田製作所 複合lc共振器および帯域通過フィルタ
WO2016152211A1 (ja) * 2015-03-23 2016-09-29 株式会社村田製作所 帯域通過フィルタおよび積層型の帯域通過フィルタ
WO2020031838A1 (ja) * 2018-08-10 2020-02-13 株式会社村田製作所 バンドパスフィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057543A (ja) * 2000-08-09 2002-02-22 Murata Mfg Co Ltd 積層型lc部品
WO2015059964A1 (ja) * 2013-10-24 2015-04-30 株式会社村田製作所 複合lc共振器および帯域通過フィルタ
WO2016152211A1 (ja) * 2015-03-23 2016-09-29 株式会社村田製作所 帯域通過フィルタおよび積層型の帯域通過フィルタ
WO2020031838A1 (ja) * 2018-08-10 2020-02-13 株式会社村田製作所 バンドパスフィルタ

Also Published As

Publication number Publication date
JP7568070B2 (ja) 2024-10-16
US20240030884A1 (en) 2024-01-25
JPWO2022215353A1 (ja) 2022-10-13
CN117099303A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
US7339445B2 (en) BAW duplexer without phase shifter
US7423500B2 (en) Low-pass filter capable of preventing unnecessary electromagnetic coupling
US20230170870A1 (en) Filter device and radio-frequency front-end circuit including the same
JPH11112264A (ja) フィルタ
US6748207B1 (en) Power distributing and synthesizing device and mobile communication equipment using same
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
US20230420819A1 (en) Dielectric filter
US10998876B2 (en) Balun
US12107312B2 (en) Band pass filter and high frequency front-end circuit including same
WO2022215353A1 (ja) フィルタ装置およびそれを備えた高周波フロントエンド回路
JP7424483B2 (ja) Lcフィルタ
JP7448011B2 (ja) フィルタ装置およびそれを備える高周波フロントエンド回路
JP2001185972A (ja) 積層フィルタ
WO2024195697A1 (ja) フィルタ装置
JP7517442B2 (ja) フィルタ装置およびそれを備えた高周波フロントエンド回路
US9406989B2 (en) Two-port non-reciprocal circuit element
WO2023281942A1 (ja) フィルタ装置および高周波フロントエンド回路
WO2023017676A1 (ja) フィルタ装置およびそれを備える高周波フロントエンド回路
WO2022270185A1 (ja) フィルタ装置およびそれを搭載した高周波フロントエンド回路
JP3521868B2 (ja) フィルタ、アンテナ共用器及び通信機装置
WO2021241103A1 (ja) Lcフィルタ
JP2024023011A (ja) フィルタ装置およびそれを備えた高周波フロントエンド回路
JP2022077784A (ja) フィルタ装置およびそれを搭載した高周波フロントエンド回路
JP2010136288A (ja) バンドパスフィルタ、高周波部品および通信装置
CN118487571A (zh) 滤波器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512845

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280025944.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784338

Country of ref document: EP

Kind code of ref document: A1