WO2022213457A1 - 声学装置 - Google Patents

声学装置 Download PDF

Info

Publication number
WO2022213457A1
WO2022213457A1 PCT/CN2021/095504 CN2021095504W WO2022213457A1 WO 2022213457 A1 WO2022213457 A1 WO 2022213457A1 CN 2021095504 W CN2021095504 W CN 2021095504W WO 2022213457 A1 WO2022213457 A1 WO 2022213457A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
pressure relief
hole
acoustic
cavity
Prior art date
Application number
PCT/CN2021/095504
Other languages
English (en)
French (fr)
Inventor
李永坚
谢帅林
柯浩
张磊
王真
王力维
童珮耕
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to JP2023534195A priority Critical patent/JP2023552427A/ja
Priority to KR1020237019017A priority patent/KR20230104247A/ko
Priority to EP21935678.9A priority patent/EP4213494A4/en
Priority to CN202180066638.3A priority patent/CN116325783A/zh
Priority to TW111112855A priority patent/TWI832198B/zh
Publication of WO2022213457A1 publication Critical patent/WO2022213457A1/zh
Priority to US18/301,281 priority patent/US20230254634A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • H04R9/066Loudspeakers using the principle of inertia
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2815Enclosures comprising vibrating or resonating arrangements of the bass reflex type
    • H04R1/2823Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • H04R1/2826Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • H04R1/2846Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material
    • H04R1/2849Vents, i.e. ports, e.g. shape thereof or tuning thereof with damping material for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/02Transducers using more than one principle simultaneously
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/023Screens for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2811Enclosures comprising vibrating or resonating arrangements for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/03Transducers capable of generating both sound as well as tactile vibration, e.g. as used in cellular phones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/11Aspects relating to vents, e.g. shape, orientation, acoustic properties in ear tips of hearing devices to prevent occlusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • H04R5/0335Earpiece support, e.g. headbands or neckrests

Definitions

  • the at least one pressure relief hole may include a first pressure relief hole and a second pressure relief hole. Compared with the second pressure relief hole, the first pressure relief hole may be disposed away from the sound outlet hole. The area of the outlet end of the first pressure relief hole may be larger than the area of the outlet end of the second pressure relief hole.
  • the at least one sound hole may include a first sound hole and a second sound hole.
  • the first sound adjustment hole may be disposed away from the sound outlet hole.
  • the area of the outlet end of the first sound adjustment hole may be larger than the area of the outlet end of the second sound adjustment hole.
  • the first pressure relief hole and the first sound adjustment hole may be disposed adjacent to each other.
  • the second pressure relief hole and the second sound adjustment hole may be disposed adjacent to each other.
  • the area of the outlet end of the pressure relief hole among the adjacently arranged pressure relief holes and the sound adjustment hole may be larger than the area of the outlet end of the sound adjustment hole.
  • the outlet ends of the adjacently arranged pressure relief holes and sound adjustment holes may be covered with a first sound resistance net and a second sound resistance net, respectively.
  • the porosity of the first acoustic resistance mesh may be greater than the porosity of the second acoustic resistance mesh.
  • the outer surface of the housing may be provided with a receiving area.
  • a boss may be formed in the accommodating area.
  • the outlet ends of the adjacently arranged sound adjustment holes and pressure relief holes may be located on the top of the boss.
  • the boss and the side wall of the accommodating area may be spaced apart to form an accommodating groove surrounding the boss.
  • the shield may include annular side panels.
  • the annular side plate and the edge of the main cover plate can be connected by bending.
  • the annular side plate can be inserted into the accommodating groove, and is fixedly connected to the casing through the colloid in the accommodating groove.
  • the acoustic device may further comprise a first annular film.
  • the first annular film can be arranged around the adjacently arranged pressure relief holes and sound adjustment holes.
  • the first acoustic resistance net and the second acoustic resistance net may be fixed on the top of the boss through the first annular film.
  • the second sub-cavity may be filled with colloid.
  • the vibration direction of the first microphone and the vibration direction of the transducer device may be perpendicular to each other.
  • the acoustic device may further comprise a second microphone.
  • the included angle between the vibration direction of the second microphone and the vibration direction of the first microphone may be 65-115 degrees.
  • the vibration direction of the second microphone and the vibration direction of the first microphone may be perpendicular to each other.
  • the frequency response curve of the bone conduction sound may have at least one resonance peak.
  • the peak resonance frequency of the at least one resonance peak may satisfy the relational expression:
  • the peak resonance frequency of the resonance peak, f2 may be the peak resonance frequency of the resonance peak when the diaphragm is disconnected from either the transducer device or the housing.
  • FIG. 2 is a schematic structural diagram of an exemplary acoustic device according to some embodiments of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of a housing according to some embodiments of the present application.
  • FIG. 6 is a schematic diagram of a frequency response curve of a skin contact area of a casing of a movement module according to some embodiments of the present application.
  • FIG. 8 is a schematic diagram of an acoustic resistance net according to some embodiments of the present application.
  • FIG. 9 is a schematic diagram of a frequency response curve of the air-conducted sound transmitted outward through the sound outlet according to some embodiments of the present application.
  • 12A-12B are schematic diagrams of sound pressure distribution of the second cavity according to some embodiments of the present application.
  • FIG. 13 is a schematic diagram of a frequency response curve of the air-conducted sound transmitted outward through the sound outlet according to some embodiments of the present application.
  • FIG. 16 is a schematic cross-sectional structure diagram of a housing according to some embodiments of the present application.
  • 17 is a schematic diagram of an exploded structure of the movement module 10 according to some embodiments of the present application.
  • FIG. 18 is a schematic cross-sectional structure diagram of the movement module 10 according to some embodiments of the present application.
  • FIG. 19 is a schematic cross-sectional structural diagram of the movement module 10 according to some embodiments of the present application.
  • system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
  • device means for converting signals into signals.
  • unit means for converting signals into signals.
  • module means for converting signals into signals.
  • the acoustic device may include a housing, a transducer device and a diaphragm.
  • the housing may be configured to form a receiving cavity.
  • the transducer device can be arranged in the accommodating cavity and connected with the housing, and can vibrate under the driving of the electric signal.
  • the diaphragm can vibrate under the drive of the transducer device to generate air-conducted sound.
  • the diaphragm can be connected between the transducer device and the housing to divide the accommodating cavity into a first cavity and a second cavity.
  • the housing may be provided with at least one pressure relief hole communicating with the first cavity and at least one sound adjusting hole communicating with the second cavity.
  • the transducing device can only cause the housing to vibrate weakly and barely perceptible to the user.
  • the acoustic device can be considered to only generate air-conducted sound transmitted to the user, and for convenience, it can be called an air-conducted acoustic device.
  • the structures related to the generated air conduction sound for example, sound outlet holes, sound adjustment holes, pressure relief holes, sound resistance nets, etc.
  • the case of generating bone-conducted sound and air-conducted sound can also be considered to be equally applicable to the case where the above-mentioned acoustic device only generates air-conducted sound without creative efforts by those skilled in the art.
  • the acoustic device can output bone-conducted sound and air-conducted sound at the same time, so that the complementarity of the bone-conducted sound and the air-conducted sound in a specific frequency band can be achieved, which is helpful for Improve the sound quality of your acoustic installations.
  • the first cavity and the second cavity are separated by structural members such as a diaphragm and a transducer device, the variation rule of the air pressure in the first cavity is opposite to the variation rule of the air pressure in the second cavity, Thus changes in air pressure in the second chamber may be blocked by the first chamber.
  • the first cavity is communicated with the external environment by arranging at least one pressure relief hole in communication with the first cavity, which can reduce the resistance of the first cavity to the change of the air pressure in the second cavity, thereby improving the acoustics
  • the sound quality of the device eg, acoustic performance.
  • the high pressure region of the second cavity can be destroyed, thereby reducing the wavelength of the standing wave in the second cavity, so that the air conduction output to the outside of the acoustic device through the sound outlet hole
  • the peak resonant frequency of the sound is shifted to high frequencies to improve the acoustic performance of the acoustic device.
  • FIG. 1 is a schematic structural diagram of an exemplary acoustic device according to some embodiments of the present application.
  • the acoustic device 1 may include a core module 10 .
  • the movement module 10 can convert the electrical signal into mechanical vibration, so that the user can hear the sound through the acoustic device 1 .
  • the number of core modules 10 included in the acoustic device 1 may be one or more (eg, two).
  • the two core modules 10 may be disposed near the user's left and right ears, respectively, when the user wears the acoustic device 1 .
  • the two movement modules 10 may communicate in a wired or wireless manner.
  • each core module 10 can be equipped with a separate ear-hook structure, and each ear-hook structure can independently fix its corresponding core module 10 near the user's left ear or right ear, or two The ear-hook structures can be further fixedly connected together by connecting rods.
  • the casing 11 may be a closed or semi-closed structure with a hollow interior, and other components of the acoustic device 1 (eg, the transducer device 12 , the diaphragm 13 ) are located in or on the casing 11 .
  • the housing 11 may form an accommodating cavity, and other components of the acoustic device 1 may be disposed in the accommodating cavity and physically connected with the housing 11 .
  • physical connections may include injection connections, welding, riveting, bolting, gluing, snap-fitting, etc., or any combination thereof.
  • the shape of the casing 11 may be a regular or irregular three-dimensional structure such as a cuboid, a cylinder, a truncated cone, etc.
  • the housing 11 or a portion thereof may have a shape (eg, circular, semi-circular, oval, polygonal (regular or irregular), U-shaped, V-shaped, semi-circular) adapted to the human ear etc.) so that the housing 11 can be hung on or near the user's ear.
  • the casing 11 may have a certain thickness to ensure sufficient strength, so as to better protect the components of the acoustic device 1 (eg, the transducer device 12 , Diaphragm 13).
  • the housing 11 when the acoustic device 1 is an air conduction acoustic device, the housing 11 may or may not be in contact with the user's skin. In some embodiments, when the acoustic device 1 is an acoustic device combined with air conduction and bone conduction, at least one side of the housing 11 may be in contact with the user's skin.
  • the case 11 may include a first case (which may also be referred to as a front case) and a second case (which may also be referred to as a rear case) physically connected (eg, snapped) to the first case.
  • the first casing and the second casing may jointly enclose an accommodating cavity.
  • the first housing can be in contact with the user's skin, that is, when the housing 11 is in contact with the user's skin, the first housing is closer to the user than the second housing.
  • the area of the first housing in contact with the user's skin may be referred to as a skin contact area.
  • the transducer device 12 may be disposed in the accommodating cavity formed by the housing 11 and physically connected with the housing 11 .
  • the transducer device 12 may include a coil and a magnetic circuit assembly.
  • the transducer device 12 may convert electrical signals (eg, current in a coil) into mechanical vibrations (eg, relative motion of the coil and magnetic circuit assembly) in an energized state.
  • the coil in the transducer device 12 can be directly fixed on the diaphragm 13 .
  • the vibration of the transducer device 12 can directly drive the vibration of the diaphragm 13 to generate air conduction sound.
  • the skin contact area of the housing 11 For the acoustic device combined with air conduction and bone conduction, the skin contact area of the housing 11 generates relatively obvious vibration under the action of the transducer device 12 (for example, the coil or magnetic circuit assembly in the transducer device 12 passes through a structure with a certain rigidity directly connected to the skin contact area of the housing 11).
  • the mechanical vibrations generated by the skin contact area can be transmitted to the user's auditory nerve through the user's bones and/or tissues, thereby allowing the user to hear bone-conducted sound.
  • FIG. 3, FIG. 5 For more information on the transducer device 12, reference may be made elsewhere in this specification, eg, FIG. 3, FIG. 5 and their corresponding descriptions.
  • the vibrating membrane 13 can divide the accommodating cavity formed by the housing 11 into a first cavity (which may also be referred to as a front cavity) and a second cavity (which may also be referred to as a rear cavity).
  • the first cavity may be close to the skin contact area of the housing 11, and the second cavity may be far away from the skin contact area of the housing 11, that is, when the user wears the acoustic device 1, the first cavity is compared with the second cavity. can be closer to the user.
  • the housing 11 may be provided with a sound outlet that communicates with the first cavity and/or the second cavity. Under the driving of the transducer device 12, the diaphragm 13 can generate sound that is transmitted to the human ear through the sound outlet. Air conduction sound.
  • the sound generated in the first cavity and/or the second cavity can be transmitted through the sound outlet and transmitted to the eardrum of the user through the air, so that the user can hear the air conduction sound.
  • the diaphragm 13 can be physically connected to two opposite side walls of the housing 11 respectively, and the diaphragm 13 can be directly driven by the coil in the transducer device 12 to generate vibration.
  • the diaphragm 13 may be connected between the transducer device 12 and the housing 11 (for example, the diaphragm 13 may be attached to or wrapped around the magnetic circuit) On one side of the assembly, the vibration of the magnetic circuit assembly drives the vibration of the diaphragm 13), and the relative movement of the transducer device 12 and the housing 11 drives the diaphragm 13 to generate air-conducted sound that is transmitted to the human ear through the sound outlet.
  • the vibration of the magnetic circuit assembly drives the vibration of the diaphragm 13
  • the relative movement of the transducer device 12 and the housing 11 drives the diaphragm 13 to generate air-conducted sound that is transmitted to the human ear through the sound outlet.
  • the acoustic device 1 may include a fixed structure (not shown).
  • the fixing structure may be configured to fix the acoustic device 1 at or near the user's ear, and the acoustic device 1 may or may not block the user's ear.
  • the securing structure may be physically connected (eg, snapped, screwed, etc.) with the housing 11 of the acoustic device 1 .
  • the housing 11 of the acoustic device 1 may be part of a fixed structure.
  • the fixing structure may include ear hooks, back hooks, elastic bands, temples, etc., so that the acoustic device 1 can be better fixed to the user's ear or a position close to the user's ear, preventing the user from falling during use .
  • the securing structure may be an earhook, which may be configured to be worn around the ear area.
  • the earhook can be a continuous hook and can be elastically stretched to fit on the user's ear, while the earhook can also exert pressure on the user's auricle, so that the acoustic device 1 is firmly Fixed to a specific location on the user's ear or head.
  • the earhook may be a discontinuous band.
  • an earhook may include a rigid portion and a flexible portion.
  • the rigid part may be made of rigid material (eg, plastic or metal), and the rigid part may be fixed with the housing 11 of the acoustic device 1 by means of physical connection (eg, snap connection, screw connection, etc.).
  • the flexible portion may be made of elastic material (eg, cloth, composite or/and neoprene).
  • the securing structure may be a neck strap configured to be worn around the neck/shoulder area.
  • the fixing structure may be an eyeglass leg, which, as a part of the eyeglasses, is erected on the user's ear.
  • the acoustic device 1 is only for example and illustration, and does not limit the scope of application of the present specification.
  • various modifications and changes can be made to the acoustic device 1 under the guidance of this specification.
  • the acoustic device 1 may also include other components, such as a main control circuit board, a battery, and the like. Such corrections and changes are still within the scope of this application.
  • FIG. 2 is a schematic structural diagram of an exemplary acoustic device according to some embodiments of the present application.
  • the acoustic device 100 may include two core modules 10 and a fixing structure connected between the two core modules 10 .
  • the fixing structure may include two ear hook assemblies 20 and a rear hook assembly 30 .
  • the earhook assembly 20 when the acoustic device 100 is worn, the earhook assembly 20 can be hung over the user's ear.
  • the ear-hook assembly 20 can also be provided in a curved shape so as to be hung on the user's ear.
  • the ear hanging assembly 20 can be connected to the rear hanging assembly 30 and the core module 10 respectively and arranged between the rear hanging assembly 30 and the core module 10 .
  • the end of the ear hanging assembly 20 facing away from the rear hanging assembly 30 is connected to the movement module 10 .
  • Two ends of the rear hanging assembly 30 are respectively connected to an ear hanging assembly 20 .
  • the rear hanging assembly 30 may be provided in a curved shape, and when the acoustic device 100 is worn, the rear hanging assembly 30 may be wrapped around the back side of the user's head or neck, so that the acoustic device 100 is stably worn.
  • the acoustic device 100 eg, the earhook assembly 20 and the backhook assembly 30
  • the acoustic device 100 can also be worn in other ways, for example, the earhook assembly 20 covers or wraps the user's ears, the backhook assembly 30 straddles the top of the user's head, or the rearhook assembly 30 can be removed, Each ear-hook assembly 20 can independently hang its corresponding core module 10 near the user's ear.
  • the two core modules 10 may be located on the left and right sides of the user's head, respectively.
  • the sound outlet holes on the casings of the two core modules 10 may be located in the user's left and right ear canals or near the ear canals, so that the user can hear the output of the acoustic device 100 air conduction sound.
  • the two core modules 10 can be pressed and held on the user's head under the cooperation of the ear hanging assembly 20 and the rear hanging assembly 30, so that the The bone conduction sound generated by the acoustic device 100 is transmitted to the user's auditory nerve through the user's bones and/or tissues, so that the user can hear the bone conduction sound.
  • both core modules 10 can generate air conduction sound and/or bone conduction sound, so that the acoustic device 100 can achieve a stereo effect.
  • the acoustic device 100 can also be a single-sided acoustic device, that is, only one core module 10 is provided.
  • the acoustic device 100 may further include a main control circuit board 40 and a battery 50 .
  • the main control circuit board 40 may be used to control other components of the acoustic device 100 (eg, the core module 10 ) to realize the functions of the acoustic device 100 .
  • the main control circuit board 40 may be electrically connected to the movement module 10 through wires, so as to control the movement module 10 to convert electrical signals into mechanical vibrations.
  • the battery 50 may be used to provide power to other components of the acoustic device 100 (eg, the core module 10 , the main control circuit board 40 ).
  • the battery 50 may be electrically connected to the core module 10 through wires to provide power to the core module 10 .
  • the main control circuit board 40 and the battery 50 may be disposed in the same ear hook assembly 20, or may be disposed in two ear hook assemblies 20 respectively.
  • the acoustic device 100 may further include auxiliary devices (not shown) to extend the functionality of the acoustic device 100 .
  • auxiliary devices may include buttons (which may also be referred to as function buttons), microphones (which may also be referred to as pickups), communication elements (eg, Bluetooth, near-field communication (NFC)), and the like.
  • the buttons may be responsive to the user's pressing to implement some functions of the acoustic device 100 (eg, play/pause, power on/off), thereby expanding the interaction capabilities of the acoustic device 100 with the user.
  • the microphone may be configured to pick up the voice of the user speaking.
  • the acoustic device 100 may implement some functions based on the sound of the user's speech picked up by the microphone, such as speaking with other users, recording a voice message, or controlling the acoustic device 100 based on the sound of the user's speech picked up by the microphone.
  • the main control circuit board 40 can be connected with auxiliary devices through wires to control the auxiliary devices.
  • the battery 50 can be connected to the auxiliary device through wires to supply power to the auxiliary device.
  • the auxiliary device may be disposed in the accommodating cavity formed by the casing 11 of the core module 10 .
  • the auxiliary device may be integrated with the movement module 10 or be part of the movement module 10 .
  • the above description about the acoustic device 100 is only for example and illustration, and does not limit the scope of application of the present specification.
  • various modifications and changes can be made to the acoustic device 100 under the guidance of the present application.
  • the main control circuit board 40 and/or the battery 50 may be provided in the rear hanging assembly 30 .
  • the auxiliary device may be provided in the ear-hook assembly 20 or the rear-hook assembly 30 . Such corrections and changes are still within the scope of this application.
  • FIG. 3 is a schematic cross-sectional structural diagram of an exemplary movement module according to some embodiments of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of the housing 11 according to some embodiments of the present application.
  • FIG. 5 is a schematic cross-sectional structure diagram of the transducer device 12 according to some embodiments of the present application.
  • the core module 10 may include a casing 11 .
  • the housing 11 may include a first housing 116 and a second housing 115 that is physically connected (eg, snapped) to the first housing 116 .
  • the first casing 116 and the second casing 115 may together form an accommodating cavity.
  • the first housing 116 may include a bottom plate 1161 and a side plate 1162 .
  • the bottom plate 1161 and the side plate 1162 may be integrally connected. One end of the side plate 1162 facing away from the bottom plate 1161 may be connected to the second housing 115 .
  • the area where the base plate 1161 is located may serve as the skin contact area 1160 of the housing 11 .
  • the second housing 115 may include a bottom plate 1151 and a side plate 1152 .
  • the bottom plate 1151 and the side plate 1152 may be integrally connected.
  • One end of the side plate 1152 facing away from the bottom plate 1151 may be connected to the first housing 116 .
  • an annular platform 1153 may also be provided on the inner side of the housing 11 .
  • the annular platform 1153 may be provided at the end of the side plate 1152 facing away from the bottom plate 1151 . Taking the bottom plate 1151 as a reference, the annular bearing platform 1153 may be slightly lower than the end surface of the side plate 1152 away from the bottom plate 1151 .
  • the movement module 10 may include a transducer device 12 .
  • the transducer device 12 may be disposed in the accommodating cavity enclosed by the first housing 116 and the second housing 115 .
  • the transducer device 12 can be connected to the first housing 116 , so that the transducer device 12 can drive the skin contact area 1160 of the housing 11 to generate mechanical vibration.
  • the transducer device 12 can convert electrical signals into mechanical vibrations in an electrified state, so that the skin contact area 1160 of the housing 11 generates mechanical vibrations under the action of the transducer device 12 .
  • the acoustic device eg, the acoustic device 1, the acoustic device 100
  • the mechanical vibration generated by the skin contact area 1160 of the housing 11 is transmitted to the user's auditory nerve through the user's bones and/or tissues, so that the user can listen to to bone conduction.
  • the movement module 10 may include a diaphragm 13 connected between the transducer device 12 and the housing 11 .
  • the diaphragm 13 can be connected to the second casing 115 or the first casing 116 , or can be connected to the splicing point between the second casing 115 or the first casing 116 .
  • the diaphragm 13 may be fixed on the annular platform 1153 .
  • the diaphragm 13 can divide the inner space of the casing 11 (ie, the above-mentioned accommodating cavity) into a first cavity 111 close to the first casing 116 and a second cavity 112 close to the second casing 115 .
  • the first cavity 111 may be closer to the user than the second cavity 112 .
  • the housing 11 may be provided with a sound outlet hole 113 communicating with the second cavity 112 .
  • the sound outlet 113 may be provided in the second casing 115 of the casing 11 .
  • the sound outlet hole 113 may be provided on the side plate 1152 .
  • the sound outlet 113 in the vibration direction of the transducer device 12 , the sound outlet 113 may be located between the annular platform 1153 and the bottom plate 1151 .
  • the cross-sectional area of the sound outlet 113 may gradually decrease from the inside to the outside of the housing 11 .
  • the diaphragm 13 can generate air-conducted sound that is transmitted outward through the sound outlet hole 113 . Further, the air-conducted sound can be transmitted to the user's eardrum through air, so that the user can hear the air-conducted sound.
  • the wall surrounding the second cavity 112 can be as smooth and round as possible, which can improve the acoustic performance of the air-conducted sound of the acoustic device.
  • the transducer device 12 when the transducer device 12 moves the skin contact area 1160 in a direction close to the user's face (ie, upward along the vibration direction in FIG. 3 ), it can be considered as bone conduction Sound enhancement.
  • the transducer device 12 and the diaphragm 13 connected to the transducer device 12 move toward the direction away from the face of the user (ie, downward along the vibration direction in FIG. 3 ) due to the reaction force, so that the The air is squeezed and the air pressure increases, creating a high pressure zone.
  • the sound transmitted through the sound outlet hole 113 is enhanced, which can be regarded as enhanced air conduction sound.
  • the air pressure in the second cavity 112 is reduced, thereby forming a low pressure area, and the air conduction sound is also weakened. Therefore, the phases of the bone conduction sound and the air conduction sound generated by the movement module 10 are the same.
  • the air conduction sound and bone conduction sound generated by the core module 10 originate from the same vibration source (ie, the transducer device 12 ) and have the same phase, so that the sound heard by the user through the acoustic device is stronger, and the acoustic device is also More power saving, thus extending the battery life of the acoustic device.
  • the air conduction sound and the bone conduction sound generated by the core module 10 can also cooperate with each other in frequency response.
  • the low frequency band of bone conduction sound is compensated by air conduction sound.
  • the mid-range and/or mid-high frequency bands of bone-conduction sound are enhanced through air conduction sound.
  • the acoustic performance of the acoustic device in a specific frequency band can be improved.
  • the frequency range corresponding to the low frequency band may be 20-150Hz
  • the frequency range corresponding to the middle frequency band may be 150-5kHz
  • the frequency range corresponding to the high frequency band may be 5k-20kHz
  • the corresponding frequency range of the middle and low frequency bands may be 5k-20kHz.
  • the frequency range can be 150-500Hz
  • the frequency range corresponding to the middle and high frequency bands can be 500-5kHz.
  • the through holes (sound outlet hole 113, pressure relief hole 114, sound adjustment hole 117, etc.) opened on the casing 11 have a certain depth, so that these through holes have a certain depth.
  • An inlet end close to the accommodating cavity and an outlet end far from the accommodating cavity.
  • the area of the outlet end of the sound outlet hole 113 may be greater than or equal to 8 mm 2 to ensure that the user can hear the air conduction sound of sufficient intensity.
  • the area of the inlet end of the sound outlet hole 113 may be greater than or equal to the area of the outlet end of the sound outlet hole 113 .
  • the transducer device 12 may include a coil support 121 , a magnetic circuit system 122 , a coil 123 and a spring leaf 124 .
  • the coil holder 121 and the spring sheet 124 may be disposed in the first cavity 111 .
  • the central area of the spring piece 124 can be connected with the magnetic circuit system 122 , and both ends of the spring piece 124 can be connected with the housing 11 through the coil support 121 to suspend the magnetic circuit system 122 in the housing 11 .
  • the coil 123 can be connected with the coil support 121 and protrude into the gap of the magnetic circuit system 122 . As shown in FIG.
  • the diaphragm 13 is located on the lower side of the transducer device 12 as a whole and wraps around the bottom wall and part of the side wall of the transducer device 12 .
  • the diaphragm 13 is centrally symmetric around the central axis of the transducer device 12 (ie, an axis passing through the center of the transducer device and parallel to the vibration direction).
  • the part of the diaphragm 13 close to the central axis is attached to the bottom wall of the transducer device 12 , and the edge part of the diaphragm 13 away from the central axis can be connected to the casing 11 .
  • the edge portion of the diaphragm 13 away from the central axis can be connected to the coil support 121 , so that the coil support 121 can press and hold the edge portion of the diaphragm 13 on the annular support 1153 .
  • the magnetic circuit system 122 may include a magnetic conductive cover 1221 and a magnet 1222 .
  • the magnetic conductive cover 1221 and the magnet 1222 can cooperate to form a magnetic field.
  • the magnetic shield 1221 may include a bottom plate 1223 and a side plate 1224 .
  • the bottom plate 1223 and the side plate 1224 may be integrally connected.
  • the magnets 1222 may be disposed within the side plates 1224 and fixed to the bottom plate 1223 .
  • the side of the magnet 1222 facing away from the bottom plate 1223 can be connected to the middle region of the spring piece 124 through the connecting piece 1225 .
  • one end of the diaphragm 13 may be connected with the magnetic conductive cover 1221 (eg, the side plate 1224 ).
  • the diaphragm 13 may include a diaphragm body 131 and a reinforcing ring 136 .
  • the material of the diaphragm body 131 may include polycarbonate (Polycarbonate, PC), polyamide (Polyamides, PA), acrylonitrile-butadiene-styrene copolymer (Acrylonitrile Butadiene Styrene, ABS), polystyrene Ethylene (Polystyrene, PS), High Impact Polystyrene (HIPS), Polypropylene (Polypropylene, PP), Polyethylene Terephthalate (PET), Polyvinyl Chloride (Polyvinyl Chloride, PVC), Polyurethanes (PU), Polyethylene (Polyethylene, PE), Phenol Formaldehyde (PF), Urea-Formaldehyde (UF), Melamine-Formaldehyde (MF)
  • the thickness of the diaphragm body 131 may be less than or equal to 0.2 mm. Preferably, the thickness of the diaphragm body 131 may be less than or equal to 0.1 mm. In some embodiments, the hardness of the reinforcing ring 136 may be greater than that of the diaphragm body 131 to increase the structural strength of the edge of the diaphragm 13 , thereby increasing the connection strength between the diaphragm 13 and the housing 11 .
  • the housing 11 may be provided with at least one pressure relief hole 114 communicating with the first cavity 111 .
  • At least one pressure relief hole 114 may be provided in the first housing 116 .
  • at least one pressure relief hole 114 may be provided in the side plate 1162 .
  • the arrangement of at least one pressure relief hole 114 enables the first cavity 111 to communicate with the external environment, that is, air can freely enter and exit the first cavity 111 . In this way, the change of the air pressure in the second cavity 112 may not be blocked by the first cavity 111 , thereby effectively improving the acoustic performance of the air conduction sound generated by the movement module 10 .
  • the at least one pressure relief hole 114 and the sound outlet hole 113 may be staggered from each other (ie not Adjacent), for example, at least one pressure relief hole 114 may be disposed as far away as possible from the sound outlet hole 113 , and at least one pressure relief hole 114 and sound outlet hole 113 may be located on opposite or opposite sides of the housing 11 , respectively.
  • at least part of the outlet end of the pressure relief hole 114 may be covered with a first acoustic resistance net 1140 .
  • the first acoustic resistance net 1140 can improve the acoustic performance and waterproof and dustproof performance of the acoustic device.
  • the coil holder 121 may be provided with an escape hole 1214 communicating with the at least one pressure relief hole 114 to prevent the coil holder 121 from blocking the at least one pressure relief hole 114 and the first cavity Connectivity between 111.
  • the core module 10 may further include a sound guide member 14 connected to the housing 11 .
  • the sound guide member 14 may be provided with a sound guide channel 141 .
  • the sound guide channel 141 may communicate with the sound outlet hole 113 and is used to guide the air conduction sound transmitted through the sound outlet hole 113 to the outside.
  • the sound guide member 14 can be used to change the propagation path and/or direction of the air-conducted sound transmitted outward through the sound outlet 113, thereby changing the directivity of the air-conducted sound.
  • the sound guide member 14 can also be used to shorten the distance between the sound outlet 113 and the user's ear, so as to increase the strength of the air conduction sound.
  • the sound guide member 14 can make the actual output position of the air conduction sound on the acoustic device away from the area where the bottom plate 1151 of the casing 11 is located, so as to reduce the sound leakage that may exist at the bottom plate 1151 to the air conduction sound output by the sound outlet hole 113 The inverse phase cancels out, thereby improving the effect of the air conduction sound heard by the user when wearing the acoustic device.
  • the distance between the outlet end of the sound guiding channel 141 and the bottom plate 1151 of the housing 11 may be greater than or equal to 3 mm. In some embodiments, as shown in FIG.
  • the outlet end of the sound guiding channel 141 may be covered with a third acoustic resistance net 140 .
  • a third acoustic resistance net 140 For more introduction about the third acoustic resistance net 140, reference may be made to other places in this application, for example, FIG. 8 and its corresponding description.
  • the above description about the movement module 10 and its components is for example only and description, but do not limit the scope of application of this specification.
  • various modifications and changes can be made to the movement module 10 and its components under the guidance of the present application. Such corrections and changes are still within the scope of this application.
  • the bone conduction sound emitted by the movement module 10 has at least one resonance peak.
  • the peak resonant frequency of this resonant peak can satisfy the relation (1):
  • f1 is the peak resonance frequency of the resonance peak of the bone conduction sound when the diaphragm 13 is connected to the transducer device 12 and the casing 11
  • f2 is the disconnection of the diaphragm 13 from either the transducer device 12 or the casing 11 .
  • /f1 can be used to measure the influence of the diaphragm 13 on the movement of the skin contact area 1160 of the housing 11 driven by the transducer device 12 .
  • /f1 the smaller this effect.
  • the introduction of the diaphragm 13 enables the core module 10 to synchronously output bone conduction sound and air conduction sound with the same phase. , thereby improving the acoustic performance of the movement module 10 and making the acoustic device more power-saving.
  • the structural characteristics (eg, structural strength and elasticity) of the diaphragm 13 may affect the difference between the resonant frequency corresponding to f1 and the peak resonant frequency corresponding to f2 (ie
  • the diaphragm 13 does not affect the transducer device 12 to drive the skin contact area 1160 of the housing 11 to move, and the diaphragm 13 has a certain structural strength and Elasticity, thereby reducing fatigue deformation during use and prolonging the service life of the diaphragm 13 .
  • the structural strength and/or elasticity of the diaphragm 13 may be adjusted so that the resonance frequency corresponding to f1 is the same as that of f2 The difference between the corresponding peak resonance frequencies is less than or equal to 50 Hz.
  • the structural strength and/or elasticity of the diaphragm 13 can be adjusted so that the resonance frequency corresponding to f1 and the peak resonance frequency corresponding to f2 have a difference between them. The difference is greater than or equal to 5Hz.
  • FIG. 6 is a schematic diagram of a frequency response curve of the skin contact area 1160 of the casing 11 of the movement module 10 according to some embodiments of the present application.
  • the skin contact area 1160 of the housing 11 has a first frequency response curve (eg, shown as k1+k2 in FIG. 6 ).
  • the skin contact area 1160 of the housing 11 has a second frequency response curve (eg, as shown by k1 in FIG. 6 ).
  • the horizontal axis may represent the frequency, and the unit is Hz, and the vertical axis may represent the sound intensity, and the unit is dB.
  • the peak resonance intensity corresponding to the first frequency response curve is between the peak resonance intensity corresponding to the second frequency response curve The difference can be less than or equal to 5db.
  • FIG. 7 is a schematic cross-sectional structural diagram of a sound guide member according to some embodiments of the present application.
  • the frequency response curve of the air-conducted sound transmitted outward through the sound outlet 113 may have a resonance peak.
  • the frequency response curve of the air-conducted sound transmitted through the sound outlet 113 should be relatively flat in a wider frequency band, that is, the resonance peak of the frequency response curve should be located at a higher frequency position as much as possible.
  • the peak resonance frequency of the resonance peak may be greater than or equal to 1 kHz.
  • the peak resonance frequency of the resonance peak may be greater than or equal to 2 kHz. More preferably, the peak resonance frequency of the resonance peak may be greater than or equal to 3.5 kHz. More preferably, the peak resonance frequency may be further greater than or equal to 4.5 kHz.
  • the sound guide channel 141 communicates with the second cavity 112 through the sound outlet hole 113, and can form a typical Helmholtz resonance cavity.
  • the relationship between the resonant frequency f of the Helmholtz resonant cavity and the volume V of the second cavity 112, the cross-sectional area S of the sound guiding channel 141, the equivalent radius R and the length L can satisfy the relational formula (2):
  • the length of the acoustic channel 141 may be less than or equal to 7 mm.
  • the length of the sound guide channel 141 may be between 2mm and 5mm.
  • the cross-sectional area of the acoustic channel 141 may be greater than or equal to 4.8 mm 2 .
  • the cross-sectional area of the sound guide channel 141 may be greater than or equal to 8 mm 2 .
  • the cross-sectional area of the sound guiding channel 141 may gradually increase along the transmission direction of the air-conducting sound (ie, the direction away from the sound exit hole 113 ), so that the sound guiding channel 141 may be in the shape of a horn.
  • the sound guiding channel 141 may extend toward the first housing 116 to guide the air-conducting sound transmitted outward from the sound hole 113 .
  • the cross-sectional area of the inlet end of the acoustic channel 141 may be greater than or equal to 10 mm 2 .
  • the cross-sectional area of the outlet end of the acoustic channel 141 may be greater than or equal to 15 mm 2 . It should be noted that the cross-sectional area of the sound guiding channel 141 may refer to the minimum area that can be intercepted when the sound guiding channel 141 is intercepted at a point on the sound guiding channel 141 . For example, the cross-sectional area of the outlet end of the sound guiding channel 141 may refer to the minimum area that can be intercepted when the sound guiding channel 141 is intercepted at a point on the outlet end of the sound guiding channel 141 .
  • the ratio of the volume of the acoustic channel 141 to the volume of the second cavity 112 may be between 0.05 and 0.9. In some embodiments, the volume of the second cavity 112 may be less than or equal to 400 mm 3 . Preferably, the volume of the second cavity 112 may be between 200 mm 3 and 400 mm 3 .
  • the sound guiding channel 141 may be a bent structure.
  • the bent structure may mean that the other end cannot be observed from either the inlet end and the outlet end of the sound guiding channel 141 or only a part of the other end can be observed.
  • the sound guiding channel of the bending structure can be divided into two or more sub sound guiding channels of the straight structure, and the sum of the lengths of the sub sound guiding channels of the straight structure can be regarded as the bending The length of the acoustic channel of the structure.
  • the sound guide channel 141 may have a straight-through structure.
  • the straight-through structure may mean that the other end can be observed from either the inlet end and the outlet end of the sound guiding channel 141 .
  • the geometric center of the inlet end of the sound guiding channel 141 (for example, point 7A) and the geometric center of the outlet end of the sound guiding channel 141 (for example, point 7B) can be determined first. Then, the geometric center of the inlet end and the geometric center of the outlet end are connected to form line segments 7A-7B, and the length of the line segment can be used as the length of the sound guiding channel 141 .
  • the outlet ends of the sound guiding channels 141 may be directed in the same or different directions.
  • the outlet end of the sound guide channel 141 may be directed away from the second cavity 112 .
  • the outlet end of the sound guiding channel 141 may be directed away from the movement module 10 .
  • the shapes of the outlet ends of the sound guide channels 141 may be the same or different. For example, as shown in (a) and (b) of FIG.
  • the shape of the outlet end of the sound guide channel 141 may be a plane (eg, a horizontal plane, a vertical plane).
  • the shape of the outlet end of the sound guiding channel 141 may be a slope, so that the area of the outlet end of the sound guiding channel 141 is not limited by the cross-sectional area of the sound guiding channel 141, The cross-sectional area of the sound guide channel 141 is increased, which is beneficial to the output of air-guided sound.
  • the wall surface of the sound guide channel 141 may be a plane or a curved surface.
  • the wall surface of the sound guide channel 141 is flat, which facilitates demolding during the manufacturing process of the sound guide channel 141 .
  • the wall of the sound guide channel 141 is a curved surface, which is conducive to the matching of the acoustic impedance of the sound guide channel 141 and the atmosphere, and is further conducive to the output of air-guided sound.
  • the outlet end of the sound guide channel 141 may be covered with a third sound resistance net 140 .
  • the third acoustic resistance net 140 can be used to adjust the acoustic resistance of the air-conducted sound transmitted through the sound outlet 113, so as to weaken the peak resonant frequency of the resonant peak of the air-conducted sound in the middle and high frequency bands or the high frequency band, so that the The frequency response curve of the air conduction sound is smoother, and the user's listening effect is better.
  • the third acoustic resistance net 140 can also separate the second cavity 112 from the outside to a certain extent, so as to increase the waterproof and dustproof performance of the movement module 10 .
  • the acoustic resistance of the third acoustic resistance mesh 140 may be less than or equal to 260 MKSrayls. In some embodiments, the porosity of the third acoustic resistance mesh 140 may be greater than or equal to 13%. In some embodiments, the pore size of the third acoustic resistance mesh 140 may be greater than or equal to 18 ⁇ m.
  • FIG. 8 is a schematic diagram of an acoustic resistance net according to some embodiments of the present application.
  • the acoustic resistance meshes eg, the first acoustic resistance mesh 1140 , the third acoustic resistance mesh 140
  • the filaments may include metal wires, yarns, and the like. The diameter and density of the filaments will affect the acoustic resistance of the acoustic resistance net.
  • the acoustic resistive mesh may be formed from a plurality of filaments spaced longitudinally and laterally. In the plurality of filaments, every four filaments intersecting with each other can be surrounded to form a void.
  • the area of the area enclosed by the center line of the filament can be represented as S1
  • the area of the area (ie, the pore) enclosed by the edge of the filament can be represented as S2
  • the porosity can be expressed as S2/S1.
  • the pore size can be expressed as the spacing between any two adjacent filaments.
  • the effective area of the through hole (for example, the pressure relief hole 114, the sound guide channel 141) or the opening may refer to the area (or actual area) of the through hole or the opening and the cover provided on the through hole or the opening.
  • the product of the porosity of the acoustic resistance mesh when the outlet end cover of the sound guiding channel 141 is provided with the third acoustic resistance net 140 , the effective area of the outlet end of the sound guiding channel 141 can be the area of the outlet end of the sound guiding channel 141 and the porosity of the third sound resistance net 140 product of .
  • the effective area of the outlet end of the sound guiding channel 141 may be the area of the outlet end of the sound guiding channel 141 .
  • the effective area of the outlet end of the pressure relief hole 114 may be the area of the outlet end of the pressure relief hole 114 and the pores of the first acoustic resistance net 1140 product of rates.
  • the effective area of the outlet end of the pressure relief hole 114 may be the area of the outlet end of the pressure relief hole 114 .
  • the effective area of the outlet end of the sound guide channel 141 may be larger than the effective area of the outlet end of each of the at least one pressure relief hole 114 .
  • FIG. 9 is a schematic diagram of a frequency response curve of the air-conducted sound transmitted outward through the sound outlet hole 113 according to some embodiments of the present application.
  • FIG. 9 compared with 9-2, in 9-1, as the actual area of the outlet end of the pressure relief hole 114 increases, the exhaust of the first cavity 111 becomes smoother, and the sound outlet hole 113 outwards
  • the peak resonance intensity of the transmitted air-conducted sound in the low frequency band or in the mid-low frequency band is significantly increased.
  • FIG. 9 compared with 9-2, in 9-1, as the actual area of the outlet end of the pressure relief hole 114 increases, the exhaust of the first cavity 111 becomes smoother, and the sound outlet hole 113 outwards
  • the peak resonance intensity of the transmitted air-conducted sound in the low frequency band or in the mid-low frequency band is significantly increased.
  • FIG. 9 compared with 9-2, in 9-1, as the actual area of the outlet end of the pressure relief hole 114 increases, the exhaust of the first cavity 111 becomes smoother
  • the effective area of the outlet end of the pressure relief hole 114 can be generally kept the same.
  • the actual area of the outlet end of the pressure relief hole 114 is larger, but the acoustic resistance of the corresponding acoustic resistance net is also larger, and finally 10
  • the effective areas of the pressure relief holes 114 corresponding to -1, 10-2 and 10-3 are generally the same, so that even if the pressure relief holes 114 have different actual areas and/or the acoustic resistance of the first acoustic resistance mesh 1140 is different, the sound
  • the frequency response curves of the air conduction sound transmitted outward from the hole 113 are generally consistent (as shown in FIG. 10 ).
  • the acoustic resistance of 0 can be regarded as not covered with the first acoustic resistance mesh 1140, and the first acoustic resistance mesh 1140 with a porosity of 14% can be formed of a single-layer mesh with a porosity of 7 % of the first acoustic resistance mesh 1140 may be formed from a stack of double-layer meshes.
  • FIG. 10 is a schematic diagram of a frequency response curve of the air-conducted sound transmitted outward through the sound outlet hole 113 according to some embodiments of the present application.
  • the effective areas of the pressure relief holes 114 corresponding to 10-1, 10-2 and 10-3 are generally the same, so that the exhaust patency of the first cavity 111 is generally the same, thereby making the air conduction sound transmitted through the sound outlet hole 113 to the outside.
  • the frequency response curves are roughly the same.
  • 11 is a schematic diagram of a frequency response curve of the air-conducted sound (ie, the leakage sound at the pressure relief hole 114 ) transmitted outward through the pressure relief hole 114 according to some embodiments of the present application. As shown in FIG.
  • the frequency response curves of the air-conducted sound transmitted through the sound outlet hole 113 are generally the same, the air-conducted sound transmitted through the pressure relief hole 114 to the outside (ie, the leakage sound at the pressure relief hole 114 ) However, the frequency response curves of , are different, that is, the sound leakage at the pressure relief hole 114 is different. As shown in FIG.
  • the size of the pressure relief hole 114 and/or the size of the pressure relief hole 114 can be increased as much as possible.
  • the acoustic resistance of the first acoustic resistance net 1140 on the pressure relief hole 114 makes the sound leakage at the pressure relief hole 114 as small as possible.
  • the pressure relief hole 114 cannot be too large. Accordingly, at least one pressure relief hole 114 may be provided, eg, two, three, or more.
  • the effective area and/or the actual area of the outlet end of the sound guide channel 141 may satisfy certain conditions.
  • the effective area of the outlet end of the sound guide channel 141 is larger than the effective area of the outlet end of each of the at least one pressure relief hole 114 .
  • the actual area of the outlet end of the sound guide channel 141 may be larger than the actual area of the outlet end of each of the at least one pressure relief hole 114 .
  • the effective area of the outlet end of the sound guide channel 141 may be greater than or equal to the sum of the effective areas of the outlet ends of the at least one pressure relief hole 114 .
  • the ratio between the sum of the effective areas of the outlet end of the at least one pressure relief hole 114 and the effective area of the outlet end of the sound guide channel 141 may be greater than or equal to 0.15.
  • the sum of the effective areas of the outlet ends of the at least one pressure relief hole 114 may be greater than or equal to 2.5 mm 2 . This arrangement can ensure the smooth exhaust of the first cavity 111 , improve the acoustic performance of the air-conducted sound transmitted through the sound outlet hole 113 , and reduce the sound leakage at the pressure relief hole 114 .
  • the actual area of the outlet end of the acoustic channel 141 may be greater than or equal to 4.8 mm 2 .
  • the actual area of the outlet end of the sound guide channel 141 may be greater than or equal to 8 mm 2 .
  • the actual area of the outlet end of the sound guide channel 141 may be greater than or equal to 25.3 mm 2 .
  • the sum of the actual areas of the outlet ends of the at least one pressure relief hole 114 may be greater than or equal to 2.6 mm 2 .
  • the sum of the actual areas of the outlet ends of the at least one pressure relief hole 114 may be greater than or equal to 10 mm 2 .
  • the at least one pressure relief hole 114 may include three pressure relief holes, eg, a first pressure relief hole, a second pressure relief hole, and a third pressure relief hole.
  • the actual areas of the outlet ends of the first pressure relief hole, the second pressure relief hole, and the third pressure relief hole may be 11.4 mm 2 , 8.4 mm 2 , and 5.8 mm 2 , respectively.
  • the porosity of the first acoustic resistance mesh 1140 covered at least partially at the outlet end of the pressure relief hole 114 may be less than or equal to the porosity of the third acoustic resistance mesh 140 covered at the outlet end of the sound guide channel 141 . In some embodiments, the porosity of the first acoustic resistance mesh 1140 may be greater than or equal to 7%. In some embodiments, the porosity of the third acoustic resistance mesh 140 may be greater than or equal to 13%.
  • the above description about the pressure relief hole 114 , the sound guide channel 141 , and the sound resistance net (eg, the first sound resistance net 1140 and the third sound resistance net 140 ) is only for illustration and description, and does not limit the present Scope of application of the manual.
  • various modifications and changes can be made to the above-mentioned pressure relief holes 114 , sound guide channels 141 , and acoustic resistance nets under the guidance of the present application. Such corrections and changes are still within the scope of this application.
  • the sound guiding channel 141 communicates with the second cavity 112 through the sound outlet hole 113 , which can constitute a typical Helmholtz resonance cavity.
  • the Helmholtz resonant cavity resonates.
  • 12A-12B are schematic diagrams of sound pressure distribution of the second cavity 112 according to some embodiments of the present application. As shown in FIG. 12A , a high pressure region far from the sound outlet 113 and a low pressure region close to the sound outlet 113 may be formed in the second cavity 112 .
  • the Helmholtz resonant cavity resonates, it can be considered that a standing wave occurs in the second cavity 112 .
  • the wavelength of the standing wave may be related to the size of the second cavity 112 .
  • the deeper the second cavity 112 that is, the longer the distance between the low pressure region and the high pressure region, the longer the wavelength of the standing wave, which leads to a lower resonant frequency of the Helmholtz resonant cavity.
  • the high-pressure area can be destroyed, so that the sound originally in the high-pressure area cannot be reflected, so that standing waves cannot be formed.
  • disposing a through hole eg, a sound-tuning hole in the high-pressure region that communicates with the second cavity 112 can destroy the high-pressure region. As shown in FIG.
  • the Helmholtz resonant cavity after the high-voltage region is destroyed, when the Helmholtz resonant cavity resonates, the high-voltage region in the second cavity 112 will move inward toward the low-voltage region, so that the wavelength of the standing wave becomes shorter, In turn, the resonant frequency of the Helmholtz resonant cavity is increased.
  • the frequency response curve of the air-conducted sound transmitted outward through the sound outlet 113 has a resonance peak.
  • adjusting the actual area of the outlet end of the sound adjustment hole 117 can control the damage degree of the sound adjustment hole to the high pressure area, and then adjust the air transmitted through the sound outlet hole 113.
  • the peak resonant frequency of the acoustically conductive resonant peak It should be noted that, in Table 3, if the actual area of the outlet end of the sound adjustment hole 117 is 0, it can be regarded that the sound adjustment hole 117 is in a closed state.
  • FIG. 13 is a schematic diagram of a frequency response curve of the air-conducted sound transmitted outward through the sound outlet hole 113 according to some embodiments of the present application.
  • comparing 13-1 to 13-4 the larger the actual area of the outlet end of the sound-adjusting hole 117, the more obvious the damage effect on the high-pressure area, and the resonance of the air-conducted sound transmitted outward through the sound-outlet hole 113.
  • the peak-to-peak resonance frequency is higher.
  • the peak resonant frequency of the resonance peak when the sound tuning hole 117 is in the open state is shifted to high frequencies, and the The amount can be greater than or equal to 500 Hz.
  • the aforementioned offset may be greater than or equal to 1 kHz.
  • the aforementioned offset may be greater than or equal to 2 kHz.
  • the peak resonance frequency of the resonance peak when the sound adjustment hole 117 is in an open state may be greater than or equal to 2 kHz, so that the acoustic device has a better music output effect.
  • the peak resonance frequency of the resonance peak when the sound tuning hole 117 is in the open state may be greater than or equal to 3.5 kHz.
  • the peak resonance frequency of the resonance peak when the sound tuning hole 117 is in an open state may be greater than or equal to 4.5 kHz.
  • the second cavity 112 is provided with the sound adjustment hole 117 , a part of the sound leaks out from the sound adjustment hole 117 , and a sound leakage is formed at the sound adjustment hole 117 , which causes the sound to be transmitted outward through the sound outlet hole 113 .
  • the frequency response curve of the air-conducted sound shifts down as a whole.
  • at least part of the outlet end of the sound adjustment hole 117 may be covered with a second acoustic resistance net 1170 (as shown in FIG. 3 ).
  • the second acoustic resistance net 1170 can improve the acoustic performance and waterproof and dustproof performance of the acoustic device, reduce the sound leakage at the sound adjustment hole 117 to a certain extent, and enable more air conduction sound to be transmitted outward through the sound outlet hole 113 .
  • the parameters of the sound adjustment hole 117 are adjusted, for example, the actual area of the outlet end of the sound adjustment hole 117 , the sound resistance of the second acoustic resistance net 1170 covered on the outlet end of the sound adjustment hole 117 , the second sound
  • the porosity of the blocking screen 1170 and the like can adjust the effective area of the outlet end of the sound adjustment hole 117 , thereby changing the frequency response curve of the air conduction sound transmitted through the sound outlet hole 113 .
  • Table 4 adjust the acoustic resistance of the second acoustic resistance net 1170 covered on the outlet end of the sound adjustment hole 117, so that the frequency response curve of the air conduction sound transmitted through the sound outlet hole 113 changes (as shown in FIG. 14 ). shown). It should be noted that, in Table 4, if the acoustic resistance is 0, it can be considered that the second acoustic resistance net 1170 is not covered.
  • FIG. 14 is a schematic diagram of a frequency response curve of the air-conducted sound transmitted outward through the sound outlet 113 according to some embodiments of the present application. As shown in Fig. 14, comparing 14-1 and 14-2, after the sound adjustment hole 117 is installed, the peak resonance intensity of the air conduction sound transmitted through the sound outlet hole 113 in the middle and low frequency bands is significantly reduced, that is, the sound adjustment hole 117 The sound leakage is formed, and the volume of the air conduction sound transmitted outward through the sound outlet hole 113 is reduced.
  • At least one tuning hole 117 may be provided, for example, two, three or more.
  • the effective area and/or the actual area of the outlet end of the sound guide channel 141 may satisfy certain conditions.
  • the effective area of the outlet end of the sound guide channel 141 may be larger than the effective area of the outlet end of each of the at least one sound tuning hole 117 .
  • the actual area of the outlet end of the sound guide channel 141 may be larger than the actual area of the outlet end of each of the at least one sound adjustment hole 117 .
  • the effective area of the outlet end of the sound guide channel 141 may be greater than the sum of the effective areas of the outlet ends of the at least one sound adjustment hole 117 .
  • the ratio between the sum of the effective areas of the outlet ends of the at least one sound adjustment hole 117 and the effective area of the outlet ends of the sound guide channel 141 may be greater than or equal to 0.08.
  • the sum of the effective areas of the outlet ends of the at least one sound-tuning hole 117 may be greater than or equal to 1.5 mm 2 . This arrangement can make the peak resonant frequency of the resonant peak of the air-conducted sound transmitted through the sound outlet 113 to be shifted to a high frequency as much as possible, and reduce the sound leakage at the sound adjustment hole 117 .
  • the sum of the actual areas of the outlet ends of the at least one sound-tuning hole 117 may be greater than or equal to 5.6 mm 2 .
  • the at least one sound adjustment hole 117 may include two sound adjustment holes, eg, a first sound adjustment hole 1171 and a second sound adjustment hole 1172 .
  • the actual areas of the outlet ends of the first sound adjustment hole 1171 and the second sound adjustment hole 1172 may be 7.6 mm 2 and 5.6 mm 2 , respectively.
  • the porosity of the second acoustic resistance net 1170 covered at least partially at the outlet end of the sound tuning hole 117 may be less than or equal to the porosity of the third acoustic resistance net 140 covered at the outlet end of the sound guide channel 141 .
  • the porosity of the third acoustic resistance mesh 140 may be greater than or equal to 13%.
  • the porosity of the second acoustic resistance mesh 1170 may be less than or equal to 16%.
  • the region where the sound exit hole 113 is located is regarded as a low pressure region in the second cavity 112
  • the region in the second cavity 112 that is farthest from the region where the sound exit hole 113 is located is regarded as a high pressure region in the second cavity 112
  • At least one sound-tuning hole 117 may be disposed in the high-pressure area in the second cavity 112 to destroy the high-pressure area and move the high-pressure area to the low-pressure area. Therefore, at least one sound-adjusting hole 117 may be disposed as far as possible from the sound-exiting hole 113 .
  • the at least one pressure relief hole 114 communicates with the first cavity 111
  • at least one sound adjustment hole 117 communicates with the second cavity 112
  • the at least one pressure relief hole 114 and the at least one sound adjustment hole 117 go outward respectively.
  • the transmitted air-conducted sound ie, the leakage sound at the at least one pressure relief hole 114 and the at least one sound adjustment hole 117
  • the transmitted air-conducted sound has opposite phases. Therefore, the air conduction sound transmitted outward through the at least one pressure relief hole 114 and the at least one sound adjustment hole 117 respectively can be canceled by interference, thereby reducing the sound leakage at the at least one pressure relief hole 114 and the at least one sound adjustment hole 117 .
  • At least part of the pressure relief hole 114 and at least part of the sound adjustment hole 117 may be disposed adjacent to each other.
  • the distance between the adjacent pressure relief holes 114 and the sound adjustment holes 117 may be as small as possible.
  • the distance between the adjacently arranged pressure relief holes 114 and the outlet ends of the sound adjustment holes 117 may be less than or equal to 2 mm.
  • the peak resonance of the resonant peak of the air-conducted sound (that is, the leakage sound at the adjacently arranged pressure relief holes 114 and the sound adjustment holes 117 ) transmitted to the outside through the adjacent pressure relief holes 114 and the sound adjustment holes 117 respectively.
  • the frequencies and/or peak resonance strengths should also be matched as closely as possible (eg, the same, not much different).
  • 15 is the frequency response curve of the air conduction sound transmitted outward through the adjacently arranged pressure relief holes 114 and sound adjustment holes 117 according to some embodiments of the present application (eg, 15-1, 15-2 and 15). -3) Schematic diagram.
  • Table 5 shows the peak resonant frequencies of the resonant peaks of the air-conducted sound transmitted outward through the adjacently arranged pressure relief holes 114 and sound adjustment holes 117 obtained according to FIG. 15 .
  • the air conduction sound transmitted outward through the pressure relief hole 114 has a first resonance peak f1
  • the air conduction sound transmitted outward through the sound adjustment hole 117 has a second resonance peak f2.
  • the peak resonance frequency of the first resonance peak f1 and the peak resonance frequency of the second resonance peak f2 may be greater than or equal to 2 kHz, respectively, and
  • the peak resonant frequency of the first resonant peak f1 and the peak resonant frequency of the second resonant peak f2 may be greater than or equal to 3.5k, respectively, and
  • the air-conducted sound transmitted outwards interferes and cancels out as much as possible in the high frequency band.
  • the difference between the peak resonance frequency of the first resonance peak f1 and the peak resonance frequency of the second resonance peak f2 gradually decreases, that is, the frequency response curve gradually tends to This indicates that the frequency bandwidth of the sound leakage reduction is gradually widened, and the sound leakage of the acoustic device is gradually reduced, that is, the interference of the air conduction sound transmitted outward through the pressure relief hole 114 and the sound adjustment hole 117 respectively cancels out. The effect is also better.
  • the wavelength of the standing wave in the first cavity 111 is relatively long, so the pressure relief through the first cavity 111
  • the peak resonant frequency of the first resonant peak f1 of the air conduction sound transmitted outward from the hole 114 is relatively small.
  • the arrangement of the sound tuning holes 117 destroys the high pressure region in the second cavity 112 , so that the wavelength of the standing waves in the second cavity 112 is relatively short, so the air conduction through the sound tuning holes 117 communicated with the second cavity 112 is transmitted to the outside.
  • the peak resonance frequency of the acoustic second resonance peak f2 is relatively large.
  • the peak resonance frequency of the first resonance peak f1 is generally lower than the peak resonance frequency of the second resonance peak f2.
  • the peak resonance frequency of the first resonance peak f1 can be shifted to the high frequency as much as possible, so as to minimize the interference.
  • the effective area of the outlet ends of the pressure relief holes 114 in the adjacently arranged pressure relief holes 114 and the sound adjustment holes 117 may be larger than the effective area of the outlet ends of the sound adjustment holes 117 and/or the adjacent pressure relief holes 114 and sound adjustment holes.
  • the actual area of the outlet end of the pressure relief hole 114 in the hole 117 may be larger than the actual area of the outlet end of the sound adjustment hole 117 .
  • the ratio between the effective area of the outlet end of the pressure relief hole 114 and the effective area of the outlet end of the sound adjustment hole 117 in the adjacently disposed pressure relief holes 114 and the sound adjustment holes 117 may be less than or equal to 2.
  • the outlet ends of the adjacently arranged pressure relief holes 114 and sound adjustment holes 117 may be covered with a first acoustic resistance net 1140 and a second acoustic resistance net 1170, respectively.
  • the porosity of the first acoustic resistance mesh 1140 may be greater than the porosity of the second acoustic resistance mesh 1170 .
  • FIG. 16 is a schematic cross-sectional structure diagram of a housing according to some embodiments of the present application. Due to the limited size of the housing 11, the pressure relief hole 114 cannot be too large, so in order to meet the exhaust requirements of the first cavity 111, two or more pressure relief holes may be provided. As shown in (a) of FIG. 16 , the at least one pressure relief hole 114 may include a first pressure relief hole 1141 and a second pressure relief hole 1142 . In some embodiments, the first pressure relief hole 1141 may be disposed farther from the sound outlet hole 113 than the second pressure relief hole 1142 , and the area of the outlet end of the first pressure relief hole 1141 may be larger than the area of the outlet end of the second pressure relief hole 1142 . area.
  • the at least one pressure relief hole 114 may further include a third pressure relief hole 1143 .
  • the first pressure relief hole 1141 may be disposed farther from the sound outlet hole 113 than the third pressure relief hole 1143 , and the area of the outlet end of the second pressure relief hole 1142 may also be larger than the outlet of the third pressure relief hole 1143 end area.
  • the sound outlet hole 113 and the first pressure relief hole 1141 may be located on opposite sides of the transducer device 12 .
  • the second pressure relief hole 1142 and the third pressure relief hole 1143 may be disposed opposite to each other and located between the sound outlet hole 113 and the first pressure relief hole 1141 .
  • the effective area of the outlet end of the pressure relief hole 114 can be the area of the outlet end of the pressure relief hole 114 and the first acoustic resistance net 1140 .
  • at least part of the outlet end of the pressure relief hole 114 may be covered with a first acoustic resistance net 1140 to adjust the effective area of the outlet end of the pressure relief hole 114 .
  • the effective area of the outlet end of the first pressure relief hole 1141 may be larger than the effective area of the outlet end of the second pressure relief hole 1142 .
  • the effective area of the outlet end of the second pressure relief hole 1142 may be larger than the effective area of the outlet end of the third pressure relief hole 1143 .
  • At least one sound adjustment hole 117 may include a first sound adjustment hole 1171 and a second sound adjustment hole 1172 .
  • the first sound adjustment hole 1171 may be disposed farther from the sound outlet hole 113 than the second sound adjustment hole 1172 , and the actual area of the outlet end of the first sound adjustment hole 1171 may be larger than the outlet of the second sound adjustment hole 1172 actual area of the end.
  • the first sound-adjusting hole 1171 with relatively large damage to the high-pressure region of the second cavity 112 is far away from the sound-outlet hole 113 as much as possible, so that the resonant frequency of the air-conducting sound at the sound-outlet hole 113 is as high as possible.
  • the area of the outlet end of the first sound tuning hole 1171 may be greater than or equal to 3.8 mm 2 .
  • the actual area of the outlet end of the second sound tuning hole 1172 may be greater than or equal to 2.8 mm 2 .
  • the sound exit hole 113 and the first sound adjustment hole 1171 may be located on opposite sides of the transducer device 12 .
  • the second sound adjustment hole 1172 may be located between the sound outlet hole 113 and the first sound adjustment hole 1171 .
  • the effective area of the outlet end of the sound tuning hole 117 can be the product of the area of the outlet end of the sound tuning hole 117 and the porosity of the second sound resistance net 1170 .
  • at least part of the outlet end of the sound adjustment hole 117 may be provided with a second acoustic resistance net 1170 to adjust the effective area of the outlet end of the sound adjustment hole 117 .
  • the effective area of the outlet end of the first sound adjustment hole 1171 may be larger than the effective area of the outlet end of the second sound adjustment hole 1172 .
  • the first pressure relief hole 1141 and the first sound adjustment hole 1171 may be disposed adjacent to each other, so that the first pressure relief hole 1141 and the first sound adjustment hole 1171 pass through the first pressure relief hole 1141 and the first sound adjustment hole 1171 respectively.
  • the outgoing air-conducted sound can interfere with each other and cancel each other out.
  • the second pressure relief hole 1142 and the second sound adjustment hole 1172 may also be disposed adjacent to each other, so that the second pressure relief hole 1142 and the second sound adjustment hole respectively pass through the second pressure relief hole 1142 and the second sound adjustment hole.
  • the air-conducted sound transmitted by the 1172 can also be canceled by interference.
  • the effective area of the outlet end of the adjacently disposed first pressure relief holes 1141 may be larger than the effective area of the outlet end of the first sound adjustment hole 1171 , so that the air conduction sound transmitted outward through the first pressure relief hole 1141 The peak resonant frequency is shifted to high frequencies as far as possible, so as to be as close as possible to the peak resonant frequency of the air-conducted sound transmitted through the first sound adjustment hole 1171, so that the first pressure relief hole 1141 and the first The air-conducted sound transmitted outward from the sound-tuning hole 1171 can better interfere and cancel out.
  • the effective area of the outlet end of the second pressure relief hole 1142 may be larger than the effective area of the outlet end of the second sound adjustment hole 1172 .
  • the housing 11 may include first and second side walls 16A and 16B spaced apart from each other and connecting the first and second side walls 16A and 16A wall 16B and a third side wall 16C and a fourth side wall 16D spaced from each other.
  • the housing 11 can be simplified as a rectangular frame.
  • the shape of the housing 11 here is only for illustration and description, and is not intended to be limiting.
  • the housing 11 may have other shapes, for example, the third side wall 16C and the fourth side wall 16D may be arranged in an arc shape, so that the housing 11 has a racetrack shape.
  • the first side wall 16A is closer to the user's ear than the second side wall 16B when the user wears the acoustic device.
  • the third side wall 16C is closer to the earhook assembly 20 than the fourth side wall 16D.
  • the sound outlet hole 113 may be provided on the first side wall 16A, so that the user can hear the air conduction sound transmitted outward through the sound outlet hole 113 .
  • the first pressure relief hole 1141 and the first sound adjustment hole 1171 may be provided on the second side wall 16B, so that the first pressure relief hole 1141 and the first sound adjustment hole 1171 are away from the sound outlet hole 113 .
  • the second pressure relief hole 1142 and the second sound adjustment hole 1172 may be formed in one of the third side wall 17C and the fourth side wall 17D, and the third pressure relief hole 1143 may be formed in the third side wall 17C and the fourth side wall 17D in the other.
  • the above descriptions of components such as the pressure relief hole 114 and the sound adjustment hole 117 and their arrangement are only for illustration and description, and do not limit the scope of application of this specification.
  • various modifications and changes can be made to these components and their arrangement under the guidance of the present application.
  • the at least one pressure relief hole 114 may not include the third pressure relief hole 1143 .
  • the outlet ends of some of the pressure relief holes 114 and/or some of the sound adjustment holes 117 may not be covered with an acoustic resistance net. Such corrections and changes are still within the scope of this application.
  • FIG. 17 is a schematic diagram of an exploded structure of a movement module according to some embodiments of the present application.
  • the casing 11 of the core module 10 is provided with a pressure relief hole 114 communicating with the first cavity 111 and a sound adjusting hole 117 communicating with the second cavity 112 , the pressure relief hole 114 and the sound adjusting hole 117 can be placed adjacent to each other.
  • the core module 10 may include a protective cover 15 .
  • the protective cover 15 may be provided on the periphery of the adjacently arranged pressure relief holes 114 and sound adjustment holes 117 .
  • the shield 15 may be a mesh structure woven from filaments.
  • the filaments may be metal wires or plastic wires of some strength.
  • the filaments can have a certain diameter.
  • the diameter of the wire may be less than or equal to 0.1 mm.
  • the mesh structure can have a certain number of meshes.
  • the mesh number of the shield 15 may be 90-100.
  • This arrangement enables the protective cover 15 to have a certain structural strength and good air permeability. Besides, it can also reduce or prevent foreign objects from intruding into the core module 10 without affecting the acoustic performance of the acoustic device.
  • the protective cover 15 simultaneously covers the adjacently arranged pressure relief holes 114 and sound adjustment holes 117, which can reduce the materials for making the acoustic device and improve the appearance quality of the acoustic device.
  • the outer surface of the housing 11 may be provided with a receiving area 118 .
  • the accommodating area 118 may communicate with the outlet ends of the pressure relief holes 114 and the sound adjustment holes 117 arranged adjacently.
  • the shield 15 may be secured within the receiving area 118 by a physical connection (eg, snap fit, glue, weld, etc.).
  • the protective cover 15 may be arranged in a plate shape to be glued to the bottom of the accommodating area 118 .
  • the outer surface of the protective cover 15 may be flush with the outer surface of the housing 11 or have an arc transition to improve the appearance quality of the acoustic device.
  • bosses 1181 may be formed in the accommodating area 118 .
  • the bosses 1181 may be spaced apart from the sidewalls of the accommodating regions 118 to form accommodating grooves 1182 surrounding the bosses 1181 .
  • the groove width of the receiving groove 1182 may be less than or equal to 0.3 mm.
  • the outlet ends of the pressure relief hole 114 and the sound adjustment hole 117 may be located at the top of the boss 1181 , that is, the accommodating groove 1182 may surround the pressure relief hole 114 and the sound adjustment hole 117 .
  • the shield 15 may include a main cover panel 151 and an annular side panel 152 .
  • the annular side plate 152 may be connected with the edge of the main cover plate 151 by bending, and extend to the side of the main cover plate 151 .
  • the lateral extension height of the annular side plate 152 relative to the main cover plate 151 may be between 0.5 mm and 1.0 mm.
  • the extended annular side plate 152 can be inserted into and fixed in the accommodating groove 1182 , which can increase the distance between the protective cover 15 and the housing 11 . connection strength.
  • the annular side plate 152 may be physically connected (eg, glued) to the housing 11 at the receiving groove 1182 .
  • colloid may be provided in the accommodating groove 1182 , and the annular side plate 152 may be connected to the housing 11 through the colloid in the accommodating groove 1182 .
  • the main cover plate 151 may be physically connected (eg, welded) to the top of the bosses 1181 .
  • the top of the boss 1181 may be slightly lower than the outer surface of the housing 11, for example, the height difference between the two may be approximately equal to the thickness of the main cover 151, so that when the protective cover 15 is fixed in the accommodating area 118, The outer surface of the main cover 151 is flush with the outer surface of the housing 11, thereby improving the appearance quality of the acoustic device.
  • the outlet end of the pressure relief hole 114 may be covered with a first acoustic resistance net 1140 and/or the outlet end of the sound adjustment hole 117 may be covered with a second acoustic resistance net 1170 to adjust the pressure relief hole 114 and the adjustment The effective area of the outlet end of the sound hole 117, and improve the acoustic performance of the acoustic device.
  • the movement module 10 may include a first acoustic resistance net 1170 .
  • a circular film 1183 may be used to cover the outlet end of the pressure relief hole 114 and/or the outlet end of the sound adjustment hole 117 may be covered with a second acoustic resistance net 1170 to adjust the pressure relief hole 114 and the adjustment The effective area of the outlet end of the sound hole 117, and improve the acoustic performance of the acoustic device.
  • the first annular film 1183 may be disposed around the pressure relief hole 114 and/or the sound adjustment hole 117 and expose the outlet end of the pressure relief hole 114 and/or the sound adjustment hole 117 .
  • the first acoustic resistance net 1140 and/or the second acoustic resistance net 1170 may be fixed on the top of the boss 1181 through the first annular film 1183 .
  • the protective cover 15 may be located on the side of the first acoustic resistance mesh 1140 and/or the second acoustic resistance mesh 1170 away from the boss 1181 and fixed in the accommodating area 118 .
  • the movement module 10 may include the second annular film 1184 .
  • the second annular film 1184 may be disposed around the pressure relief hole 114 and the sound adjustment hole 117 .
  • the main cover 151 of the protective cover 15 can be fixed on the side of the first acoustic resistance mesh 1140 and/or the second acoustic resistance mesh 1170 away from the boss 1181 through the second annular film 1184 .
  • the ring width of the first annular film 1183 or the second annular film 1184 may be between 0.4 mm and 0.5 mm.
  • the thickness of the first annular film 1183 or the second annular film 1184 may be less than or equal to 0.1 mm.
  • the first acoustic resistance net 1140 and/or the second acoustic resistance net 1170 may be pre-fixed on the protective cover 15 to form a structural assembly with the protective cover 15, and then the structural assembly is fixed in the housing in District 118.
  • the first acoustic resistance net 1140 and/or the second acoustic resistance net 1170 can be fixed on the side where the annular side plate 152 of the main cover 151 of the protective cover 15 is located through the second annular film 1184, and the annular side Plate 152 surrounds.
  • the first acoustic resistance net 1140 and the second acoustic resistance net 1170 can be at least partially staggered from each other, so as to cover the outlet ends of the adjacent pressure relief holes 114 and the sound adjustment holes 117 respectively, and adapt to the spacing between the adjacent pressure relief holes 114 and the sound adjustment holes 117 .
  • the end of the sound guide member 14 facing away from the housing 11 may also be provided with a protective cover.
  • the arrangement of the protective cover may be the same as or similar to the arrangement of the protective cover 15 covering the outlet ends of the adjacent pressure relief holes 114 and the sound adjustment holes 117 , and will not be repeated here.
  • the outlet end of the sound guide member 14 may be covered with a third acoustic resistance net 140 .
  • the setting manner of the third acoustic resistance net 140 may be the same as or similar to the setting manner of the first acoustic resistance net 1140 and/or the second acoustic resistance net 1170 described above, which will not be repeated here.
  • the above descriptions about the protective cover 15 , the accommodating area 118 , and the acoustic resistance nets (eg, the first acoustic resistance net 1140 , the second acoustic resistance net 1170 ) and other components and their arrangement are only for example and description , but does not limit the scope of application of this specification.
  • various modifications and changes can be made to these components and their arrangement under the guidance of the present application.
  • the core module 10 may not include the first annular film 1183 and/or the second annular film 1184, and the first acoustic resistance mesh 1140 and/or the second acoustic resistance mesh 1170 may be connected by other means (for example, welding ) is fixed on the boss 1181 and the main cover 151 of the protective cover 15 .
  • the outlet ends of the pressure relief hole 114 and the sound adjustment hole 117 may not be covered with a sound resistance net, and the main cover 151 of the protective cover 15 may be directly fixed on the boss 1181. Such corrections and changes are still within the scope of this application.
  • the acoustic device (eg, the acoustic device 100 ) includes two core modules 10 , and the two core modules 10 may be located on the left and right sides of the user's head, respectively, when the acoustic device is in a wearing state. side.
  • the two movement modules 10 may include a first movement module and a second movement module.
  • the first core module and the second core module may have the same or different structures.
  • FIG. 18 is a schematic cross-sectional structural diagram of a movement module according to some embodiments of the present application.
  • FIG. 19 is a schematic cross-sectional structure diagram of a movement module according to some embodiments of the present application.
  • the structures of the first core module and the second core module can be as shown in FIG. 18 or 19 .
  • the structures of the first core module and the second core module can be as shown in FIGS. 18 and 19 , respectively. .
  • the core module 10 in addition to disposing the transducer device 12 and other structural components related to sound production, the core module 10 (for example, the first core module, the second core module Group) can also be provided with auxiliary devices (eg, buttons, microphones, communication elements, etc.) to enrich and expand the functions of the acoustic device.
  • auxiliary devices eg, buttons, microphones, communication elements, etc.
  • auxiliary devices when the first core module and the second core module have different structures, one of the first core module and the second core module may be provided with an auxiliary device, and the other Auxiliary devices may not be set.
  • both the first core module and the second core module may be provided with auxiliary components, and the auxiliary components provided by the first core module may be the same as or different from those of the second core module.
  • the auxiliary device provided by the first core module may be a button
  • the auxiliary device provided by the second core module may be a microphone.
  • the auxiliary device provided by the first core module may be a button and a microphone
  • the auxiliary device provided by the second core module may be a microphone.
  • the movement module 10 may include a button 16 provided on the housing 11 .
  • the button 16 may be exposed from the second housing 115 so that the user can press the button 16 .
  • the pressing direction of the trigger button 16 may be consistent with the vibration direction of the transducer device 12 .
  • the movement module 10 may include the first microphone 171 .
  • the first microphone 171 can collect the sound outside the movement module 10 .
  • the first microphone 171 may be disposed in the accommodating cavity of the housing 11 .
  • the included angle between the vibration direction of the first microphone 171 and the vibration direction of the transducer device 12 may be between 65 degrees and 115 degrees, which can reduce or prevent the first microphone 171 from changing with the changing direction.
  • the vibration of the energy device 12 generates mechanical resonance, thereby improving the sound pickup effect of the movement module 10 .
  • the included angle between the vibration direction of the first microphone 171 and the vibration direction of the transducer device 12 may be 90 degrees (ie, perpendicular to each other).
  • the movement module 10 may further include a second microphone 172 .
  • the second microphone 172 can also collect sounds outside the movement module 10 .
  • the second microphone 172 may also be disposed in the accommodating cavity of the housing 11 .
  • the included angle between the vibration direction of the second microphone 172 and the vibration direction of the first microphone 171 may be between 65 degrees and 115 degrees, so that the second microphone 172 and the first microphone 171 can be The sound from the same sound source is received in different directions, thereby improving the noise reduction capability of the acoustic device and improving the voice communication effect of the acoustic device.
  • the included angle between the vibration direction of the second microphone 172 and the vibration direction of the first microphone 171 may be 90 degrees (ie, perpendicular to each other).
  • the first microphone 171 and the second microphone 172 can be soldered on the same flexible circuit board, which can simplify the wiring structure of the core module 10 .
  • the acoustic device may also include processing circuitry (not shown).
  • the processing circuit may perform noise reduction processing on the sound signal collected by the first microphone 171 through the sound signal collected by the second microphone 172 .
  • the processing circuit may use the first microphone 171 as a main microphone for collecting the user's voice, and use the second microphone 172 as a secondary microphone for collecting ambient noise in the environment where the user is located.
  • the user's voice collected by the first microphone 171 may contain ambient noise of the environment where the user is located.
  • the processing circuit can remove the signal related to the environmental noise of the user's environment collected by the second microphone 172 from the user's voice collected by the first microphone 171 , thereby realizing noise reduction of the user's voice collected by the first microphone 171 .
  • the processing circuitry may be integrated on the main control circuit board 40 .
  • the movement module 10 may also include a partition 18 .
  • the partition 18 may be disposed in the second cavity 112 to separate the auxiliary device from the second cavity 112, so that the space where the second cavity 112 is located is not affected by the auxiliary device.
  • the transducer device 12 may be located on the side of the diaphragm 18 facing the first cavity 111 .
  • the partition 18 may partition the second cavity 112 into a first sub-cavity 1121 located close to the first cavity 111 and a second sub-cavity 1122 disposed away from the first cavity 111 .
  • some auxiliary devices may be disposed within second sub-cavity 1122 .
  • the button 16 and/or the second microphone 172 may be fixed between the bottom plate 1151 and the partition plate 18 of the movement module 10 , respectively.
  • the spacer 18 may be used to withstand the pressing force applied to the button 16 by the user.
  • the first microphone 171 may be disposed within the first sub-cavity 1121 . For example, as shown in FIG.
  • the first microphone 171 can be fixed in the groove of the side plate 1152 of the movement module 10 , which can prevent the transducer device 12 from colliding with the first microphone 171 during the vibration process, and further The stability of the movement module 10 is increased.
  • the movement module 10 may not include a baffle when no auxiliary components are included.
  • the acoustic device includes a first core module and a second core module located on the left and right sides of the user's head, respectively, one of the first core module and the second core module
  • the auxiliary device and the spacer 18 may be included, and the other may not include the auxiliary device and the spacer 18 .
  • the baffle 18 may be used to adjust the size of the first sub-cavity 1121 .
  • the acoustic device includes a first core module and a second core module located on the left and right sides of the user's head, respectively, and the first core module and the second core module emit sound
  • the holes 113 are respectively communicated with the first sub-cavities 1121.
  • the frequency response curves of the air conduction sound output by the core module and the second core module respectively tend to be consistent, which improves the acoustic performance of the acoustic device.
  • the volumes of the auxiliary components in the first core module and the second core module will not affect the size of the first sub-cavity 1121, so they are arranged in the first core module and the second core module.
  • the volumes of the auxiliary components in the two core modules can be different. For example, when the first core module and the second core module are respectively provided with the button 16 (as shown in FIG. 18 ) and the second microphone 172 (as shown in FIG. 19 ), the volume of the button 16 and the second microphone 172 can be different.
  • the movement module that does not include an auxiliary device may also include a partition, In order to adjust the size of the first sub-cavity 1121, the volume of the first sub-cavity 1121 of the first core module and the second core module is the same.
  • the core module that does not include the auxiliary device may not include the partition plate , in this case, the size of the second cavity 112 of the core module that does not include auxiliary components can be adjusted by other methods (such as setting fillers), so that the second cavity 112 of the core module that does not include auxiliary components
  • the size is the same as the volume of the first sub-cavity 1121 of the movement module including the auxiliary components.
  • the above-mentioned same volume can allow both (for example, the first sub-cavity 1121 of the first core module and the second core module, not There is a certain difference between the volumes of the second cavity 112 of the core module including auxiliary components and the first sub-cavity 1121) of the core module including auxiliary components, for example, less than or equal to 10%.
  • the second sub-cavity 1122 may be filled with colloid.
  • the filling rate of the colloid in the second sub-cavity 1122 can be greater than or equal to 90%, so that the second sub-cavity 1122 is as solid as possible, which can reduce or avoid the acoustic resonance between the hollow second sub-cavity 1122 and the first sub-cavity 1121, This in turn improves the acoustic performance of the acoustic device.
  • the filled colloid may be a photocurable glue.
  • Light-curable adhesives can be cured under the action of light.
  • other components in the core module can be fixed by glue (eg, light-curable glue).
  • the separator 18 and the second casing 115 may be pre-fixed by using a hot-melt column, and then, light-curing glue is filled between the pre-fixed separator 18 and the second casing 115 .
  • the groove of the side plate 1152 may be filled with light-curing glue for fixing after accommodating the second microphone 172 .
  • the baffle 18 may be made of a light transmissive material.
  • the magnetic conductive cover 1221 of the transducer device 12 is arranged spaced apart from the outer end surface of the first cavity 111 away from the partition 18 , which can avoid both The collision occurs during the vibration of the transducer device 12 .
  • the distance between the central region of the outer end surface of the magnetic conductive cover 1221 and the partition 18 may be greater than the distance between the edge region of the outer end surface of the magnetic conductive cover 1221 and the partition 18, that is, compared with the edge region, the distance of the first sub-cavity 1121
  • the space in the middle area is larger, which facilitates the flow of air in the first sub-cavity 1121 .
  • the central area of the side of the bottom plate 1223 of the magnetic guide cover 1221 facing the partition 18 may be recessed as an arc surface in the direction away from the partition 18 and/or the central area of the side of the partition 18 facing the magnetic guide 1221 may be facing The direction away from the magnetic conductive cover 1221 is recessed into an arc surface.
  • auxiliary devices such as auxiliary devices, processing circuits, and partitions and their arrangement are only for examples and descriptions, and do not limit the scope of application of the present specification.
  • various modifications and changes can be made to these components and their arrangement under the guidance of the present application.
  • the core module 10 eg, the first core module and the second core module
  • Such corrections and changes are still within the scope of this application.
  • aspects of this application may be illustrated and described in several patentable categories or situations, including any new and useful process, machine, product, or combination of matter, or combinations of them. of any new and useful improvements. Accordingly, various aspects of the present application may be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.), or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of the present application may be embodied as a computer product comprising computer readable program code embodied in one or more computer readable media.
  • a computer storage medium may contain a propagated data signal with the computer program code embodied therein, for example, on baseband or as part of a carrier wave.
  • the propagating signal may take a variety of manifestations, including electromagnetic, optical, etc., or a suitable combination.
  • Computer storage media can be any computer-readable media other than computer-readable storage media that can communicate, propagate, or transmit a program for use by coupling to an instruction execution system, apparatus, or device.
  • Program code on a computer storage medium may be transmitted over any suitable medium, including radio, cable, fiber optic cable, RF, or the like, or a combination of any of the foregoing.

Abstract

本申请公开了一种声学装置。该声学装置可以包括壳体、换能装置和振膜。壳体可以被配置为形成容置腔。换能装置可以设置在所述容置腔内并与所述壳体连接,使得所述壳体在所述换能装置的作用下产生骨导声。振膜可以连接在所述换能装置与所述壳体之间,将所述容置腔分隔为第一腔和第二腔。所述壳体可以设有与所述第一腔连通的至少一个泄压孔和与所述第二腔连通的至少一个调声孔。至少部分所述泄压孔与至少部分所述调声孔可以相邻设置。所述壳体还可以设有与所述第二腔连通的出声孔。在所述换能装置与所述壳体相对运动的过程中所述振膜可以产生经所述出声孔向外传输的气导声。

Description

声学装置
交叉引用
本申请要求于2021年4月9日提交的申请号为202110383452.2的中国申请的优先权,其全部内容通过引用结合于此。
技术领域
本申请涉及电子设备技术领域,特别涉及一种声学装置。
背景技术
随着电子设备(例如,声学装置)的不断普及,电子设备已经成为人们日常生活中不可或缺的社交、娱乐工具,人们对于电子设备的要求也越来越高。但是,以声学装置为例,在使用过程中,仍然存在一些问题,例如,音质不佳、漏音、外物进入、结构复杂等。因此,希望提供一种声学装置,结构简单且可以提高音质、减少漏音,减少或避免外物进入,以满足用户需求。
发明内容
本申请实施例之一提供一种声学装置。该声学装置可以包括壳体、换能装置和振膜。壳体可以被配置为形成容置腔。换能装置可以设置在所述容置腔内并与所述壳体连接,使得所述壳体在所述换能装置的作用下产生骨导声。振膜可以连接在所述换能装置与所述壳体之间,将所述容置腔分隔为第一腔和第二腔。所述壳体可以设有与所述第一腔连通的至少一个泄压孔和与所述第二腔连通的至少一个调声孔。至少部分所述泄压孔与至少部分所述调声孔可以相邻设置。所述壳体还可以设有与所述第二腔连通的出声孔。在所述换能装置与所述壳体相对运动的过程中所述振膜可以产生经所述出声孔向外传输的气导声。
在一些实施例中,所述至少一个泄压孔可以包括第一泄压孔和第二泄压孔。所述第一泄压孔相较于所述第二泄压孔可以远离所述出声孔设置。所述第一泄压孔的出口端的面积可以大于所述第二泄压孔的出口端的面积。
在一些实施例中,所述至少一个调声孔可以包括第一调声孔和第二调声孔。所述第一调声孔相较于所述第二调声孔可以远离所述出声孔设置。所述第一调声孔的出口端的面积可以大于所述第二调声孔的出口端的面积。所述第一泄压孔与所述第一调声孔 可以相邻设置。所述第二泄压孔与所述第二调声孔可以相邻设置。
在一些实施例中,所述至少一个泄压孔可以进一步包括第三泄压孔。所述第一泄压孔相较于所述第三泄压孔可以远离所述出声孔设置。所述第二泄压孔的出口端的面积可以大于所述第三泄压孔的出口端的面积。
在一些实施例中,所述出声孔和所述第一泄压孔可以位于所述换能装置的相对两侧。
在一些实施例中,相邻设置的泄压孔和调声孔之间的距离可以小于或者等于2mm。
在一些实施例中,相邻设置的泄压孔和调声孔中泄压孔的出口端的面积可以大于调声孔的出口端的面积。
在一些实施例中,相邻设置的泄压孔和调声孔的出口端可以分别盖设有第一声阻网和第二声阻网。所述第一声阻网的孔隙率可以大于所述第二声阻网的孔隙率。
在一些实施例中,所述声学装置可以进一步包括防护罩。所述防护罩可以罩盖设在所述相邻设置的泄压孔和调声孔的外围。分别盖设于所述相邻设置的泄压孔和调声孔的出口端的第一声阻网和第二声阻网可以设置在所述防护罩靠近所述壳体的一侧。
在一些实施例中,所述壳体的外表面可以设置有容置区。所述容置区内可以形成有凸台。所述相邻设置的调声孔和泄压孔的出口端可以位于所述凸台的顶部。所述凸台与所述容置区的侧壁可以间隔设置形成环绕所述凸台的容置槽。
在一些实施例中,所述防护罩可以包括覆盖所述相邻设置的泄压孔和调声孔的主盖板。所述第一声阻网和所述第二声阻网可以固定在所述主盖板朝向所述泄压孔和所述调声孔的一侧。
在一些实施例中,所述防护罩可以包括环形侧板。所述环形侧板与所述主盖板的边缘可以弯折连接。所述环形侧板可以插入所述容置槽,并通过所述容置槽内的胶体与所述壳体固定连接。
在一些实施例中,所述声学装置可以进一步包括第一环状胶片。所述第一环状胶片可以环绕所述相邻设置的泄压孔和调声孔设置。所述第一声阻网和所述第二声阻网可以通过所述第一环状胶片固定在所述凸台的顶部。
在一些实施例中,所述声学装置可以进一步包括第二环状胶片。所述第二环状胶片可以环绕所述相邻设置的泄压孔和调声孔设置。所述第一声阻网和所述第二声阻网可以通过所述第二环状胶片固定在所述主盖板上。
在一些实施例中,所述声学装置可以包括隔板和辅助器件。所述隔板可以设置在所述第二腔内并将所述第二腔分隔成靠近所述第一腔的第一子腔和远离所述第一腔的第二子腔。所述出声孔可以与所述第一子腔连通。所述辅助器件可以包括按钮和麦克风中的至少一个。部分辅助器件可以设置在所述第二子腔内。
在一些实施例中,所述第二子腔内可以填充有胶体。
在一些实施例中,所述声学装置可以进一步包括第一麦克风。所述第一麦克风可以设置在所述容置腔内,并能够采集所述声学装置外部的声音。所述第一麦克风的振动方向与所述换能装置的振动方向之间的夹角可以为65-115度。
在一些实施例中,所述第一麦克风的振动方向与所述换能装置的振动方向可以彼此垂直。
在一些实施例中,所述声学装置可以进一步包括第二麦克风。所述第二麦克风的振动方向与所述第一麦克风的振动方向之间的夹角可以为65-115度。
在一些实施例中,所述第二麦克风的振动方向与所述第一麦克风的振动方向可以彼此垂直。
在一些实施例中,所述声学装置可以进一步包括处理电路。所述处理电路可以通过所述第二麦克风所采集的声音信号对所述第一麦克风所采集的声音信号进行降噪处理。
在一些实施例中,所述骨导声的频响曲线可以具有至少一个谐振峰。所述至少一个谐振峰的峰值谐振频率可以满足关系式:|f1-f2|/f1≤50%,其中,f1可以为所述振膜与所述换能装置和所述壳体连接时所述谐振峰的峰值谐振频率,f2可以为所述振膜与所述换能装置和所述壳体中任意一者断开连接时所述谐振峰的峰值谐振频率。
在一些实施例中,所述声学装置可以进一步包括与所述壳体连接的导声部件。所述导声部件可以设置有导声通道。所述导声通道可以与所述出声孔连通并用于引导所述气导声。所述导声通道的出口端的面积可以大于所述至少一个泄压孔中每一个的出口端的面积。
在一些实施例中,所述导声通道的出口端可以盖设有第三声阻网。所述第三声阻网的孔隙率可以大于盖设于至少部分泄压孔的出口端的第一声阻网的孔隙率。
本申请的一部分附加特性可以在下面的描述中进行说明。通过对以下描述和相应附图的研究或者对实施例的生产或操作的了解,本申请的一部分附加特性对于本领域技术人员是明显的。本申请的特征可以通过实践或使用以下详细实例中阐述的方法、工 具和组合的各个方面来实现和获得。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请的一些实施例所示的示例性声学装置的结构示意图;
图2是根据本申请的一些实施例所示的示例性声学装置的结构示意图;
图3是根据本申请的一些实施例所示的示例性机芯模组的截面结构示意图;
图4是根据本申请的一些实施例所示的壳体的截面结构示意图;
图5是根据本申请的一些实施例所示的换能装置的截面结构示意图;
图6是根据本申请的一些实施例所示的机芯模组的壳体的皮肤接触区域的频率响应曲线的示意图;
图7是根据本申请的一些实施例所示的导声部件的截面结构示意图;
图8是根据本申请的一些实施例所示的声阻网示意图;
图9是根据本申请的一些实施例所示的经出声孔向外传输的气导声的频率响应曲线的示意图;
图10是根据本申请的一些实施例所示的经出声孔向外传输的气导声的频率响应曲线的示意图;
图11是根据本申请的一些实施例所示的经泄压孔向外传输的气导声的频率响应曲线的示意图;
图12A-12B是根据本申请的一些实施例所示的第二腔的声压分布示意图;
图13是根据本申请的一些实施例所示的经出声孔向外传输的气导声的频率响应曲线的示意图;
图14是根据本申请的一些实施例所示的经出声孔向外传输的气导声的频率响应曲线的示意图;
图15是根据本申请的一些实施例所示的经相邻设置的泄压孔和调声孔向外传输的气导声的频率响应曲线的示意图;
图16是根据本申请的一些实施例所示的壳体的截面结构示意图;
图17是根据本申请的一些实施例所示的机芯模组10的分解结构示意图;
图18是根据本申请的一些实施例所示的机芯模组10的截面结构示意图;
图19是根据本申请的一些实施例所示的机芯模组10的截面结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本申请实施例中提供一种声学装置。该声学装置可以包括壳体、换能装置和振膜。壳体可以被配置为形成容置腔。换能装置可以设置在容置腔内并与壳体连接,并在电信号的驱动下产生振动。振膜可以在换能装置的带动下振动以产生气导声。振膜可以连接在换能装置与壳体之间,将容置腔分隔为第一腔和第二腔。壳体可以设有与第一腔连通的至少一个泄压孔和与第二腔连通的至少一个调声孔。至少部分泄压孔与至少部分调声孔可以相邻设置。壳体还可以设有与第二腔连通的出声孔。在一些实施例中,换能装置产生的振动传递到壳体后,会引起壳体产生较为明显的振动。壳体的振动经由壳体上与用户接触的区域会进一步传递给用户,从而形成用户可以感知的骨导声。同时,振膜产生的气导声可以经出声孔向外传输给用户,使得用户能听到气导声。此时,该声学装置可以同时产生传递给用户的骨导声和气导声,为方便起见,可以叫做气导骨导结合 的声学装置。在一些可替代的实施例中,换能装置仅能引起壳体产生微弱的且几乎无法被用户感知的振动。此时,该声学装置可以被认为仅产生传递给用户的气导声,为方便起见,可以叫做气导声学装置。在本申请的实施例中,除非特别说明,与产生的气导声有关的结构(例如,出声孔、调声孔、泄压孔、声阻网等)既可以适用于上述声学装置能够同时产生骨导声和气导声的情况,也可以在本领域技术人员不经过创造性劳动的情况下,认为同样适用于上述声学装置仅产生气导声的情况。
在一些实施例中,通过在换能装置和壳体之间设置振膜,使得声学装置能够同时输出骨导声和气导声,能够实现骨导声和气导声在特定频段的互补,有助于提升声学装置的音质。在一些实施例中,由于第一腔与第二腔被振膜及换能装置等结构件分隔开,使得第一腔中空气压强的变化规律与第二腔中空气压强的变化规律相反,从而第二腔中空气压强的变化可能被第一腔阻滞。在一些实施例中,通过设置与第一腔连通的至少一个泄压孔使得第一腔与外界环境连通,这可以降低第一腔对第二腔中空气压强的变化的阻滞,从而改善声学装置的音质(例如,声学表现力)。进一步,通过设置与第二腔连通的至少一个调声孔,能够破坏第二腔的高压区,进而减小第二腔内驻波的波长,使得经出声孔输出至声学装置外部的气导声的峰值谐振频率向高频偏移,以改善声学装置的声学表现力。另外,在一些实施例中,通过至少部分泄压孔与至少部分调声孔相邻设置,使得经相邻设置泄压孔和调声孔输出至声学装置外部的漏音干涉相抵消,以能够减少声学装置向外界环境中的漏音。
图1是根据本申请的一些实施例所示的示例性声学装置的结构示意图。如图1所示,声学装置1可以包括机芯模组10。机芯模组10可以将电信号转化成机械振动,以使用户通过声学装置1听到声音。在一些实施例中,声学装置1包括的机芯模组10的数量可以为一个或多个(例如两个)。仅作为示例,当声学装置1包括两个机芯模组10时,该两个机芯模组10可以在用户佩戴声学装置1时分别设置在用户的左耳和右耳附近。该两个机芯模组10可以通过有线或者无线的方式进行通信。当该两个机芯模组10通过无线的方式进行通信时,该两个机芯模组10之间可以具有或者不具有物理连接结构。例如,每个机芯模组10都可以配有单独的耳挂结构,每个的耳挂结构可以独立地将其对应的机芯模组10固定在用户的左耳或右耳附近,或者两个耳挂结构之间可以进一步通过连接杆固定连接在一起。
在一些实施例中,壳体11可以是内部中空的封闭式或半封闭式结构,且声学装置1的其他部件(例如,换能装置12、振膜13)位于壳体11内或上。例如,壳体11 可以形成容置腔,声学装置1的其他部件可以设置在容置腔内并与壳体11物理连接。仅作为示例,物理连接可以包括注塑连接、焊接、铆接、螺栓、粘接、卡接等或其任意组合。在一些实施例中,壳体11的形状可以为长方体、圆柱体、圆台等规则或不规则形状的立体结构。在一些实施例中,壳体11或其一部分可以具有与人体耳朵适配的形状(例如圆环形、半圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形等),以便壳体11可以挂在用户的耳朵或其附近。在一些实施例中,壳体11可以具有一定的厚度以保证足够的强度,从而更好的保护设置在壳体11形成的容置腔内的声学装置1的部件(例如,换能装置12、振膜13)。当用户佩戴声学装置1时,壳体11或其一部分可以位于用户耳朵或靠近用户耳朵的位置。例如,壳体11可以位于用户的耳道或耳廓的周侧(例如,前侧、后侧),或者位于用户的耳屏前侧。
在一些实施例中,当声学装置1为气导声学装置时,壳体11可以与用户的皮肤接触或不接触。在一些实施例中,当声学装置1为气导骨导结合的声学装置时,壳体11的至少一侧可以与用户的皮肤接触。例如,壳体11可以包括第一壳体(也可以称为前壳体)和与第一壳体物理连接(例如,卡接)的第二壳体(也可以称为后壳体)。第一壳体与第二壳体可以共同围成容置腔。当用户使用声学装置1时,第一壳体可以与用户的皮肤接触,即当壳体11与用户的皮肤接触时,第一壳体相较于第二壳体更靠近用户。第一壳体与用户的皮肤接触的区域可以称为皮肤接触区域。关于壳体11的更多介绍可以参考本说明书其它地方,例如,图3、图4及其相应描述。
换能装置12可以设置在壳体11形成的容置腔内并与壳体11物理连接。换能装置12可以包括线圈和磁路组件。在一些实施例中,换能装置12可以在通电状态下将电信号(例如,线圈中的电流)转化成机械振动(例如,线圈和磁路组件的相对运动)。对于气导声学装置,换能装置12中的线圈可以直接固定在振膜13上。换能装置12的振动可以直接带动振膜13的振动以产生气导声。对于气导骨导结合的声学装置,壳体11的皮肤接触区域在换能装置12的作用下产生较为明显的振动(例如,换能装置12中的线圈或磁路组件通过具有一定刚度的结构直接连接到壳体11的皮肤接触区域)。皮肤接触区域产生的机械振动可以通过用户的骨骼和/或组织传输至用户的听神经,进而使得用户听到骨导声。关于换能装置12的更多介绍可以参考本说明书其它地方,例如,图3、图5及其相应描述。
振膜13可以将壳体11形成的容置腔分隔为第一腔(也可以称为前腔)和第二腔(也可以称为后腔)。在一些实施例中,第一腔可以靠近壳体11的皮肤接触区域, 第二腔可以远离壳体11的皮肤接触区域,即当用户佩戴声学装置1时,第一腔相较于第二腔可以更靠近用户。在一些实施例中,壳体11可以设有与第一腔和/或第二腔连通的出声孔,在换能装置12的带动下振膜13能够产生经出声孔向人耳传输的气导声。从而第一腔和/或第二腔中产生的声音能够通过出声孔传出,并通过空气传输至用户的鼓膜,进而使得用户听到气导声。在一些实施例中,当声学装置1为气导声学装置时,振膜13可以分别与壳体11的两个相对的侧壁物理连接,振膜13可以直接被换能装置12中的线圈带动以产生振动。在一些实施例中,当声学装置1为气导骨导结合声学装置时,振膜13可以连接在换能装置12与壳体11之间(例如,振膜13可以贴合或包裹在磁路组件的一侧,磁路组件的振动带动振膜13的振动),且换能装置12与壳体11相对运动带动振膜13产生经出声孔向人耳传输的气导声。关于振膜13的更多介绍可以参考本说明书其它地方,例如,图3及其相应描述。
在一些实施例中,声学装置1可以包括固定结构(未示出)。固定结构可以被配置为将声学装置1固定在用户耳朵或靠近用户耳朵的位置,声学装置1可以堵塞或不堵塞用户耳朵。在一些实施例中,固定结构可以与声学装置1的壳体11物理连接(例如,卡接、螺纹连接等)。在一些实施例中,声学装置1的壳体11可以为固定结构的一部分。在一些实施例中,固定结构可以包括耳挂、后挂、弹性带、眼镜腿等,使得声学装置1可以更好地固定在用户耳朵或靠近用户耳朵的位置,防止用户在使用时发生掉落。例如,固定结构可以为耳挂,耳挂可以被配置为围绕耳部区域佩戴。在一些实施例中,耳挂可以是连续的钩状物,并可以被弹性地拉伸以佩戴在用户的耳部,同时耳挂还可以对用户的耳廓施加压力,使得声学装置1牢固地固定在用户的耳部或头部的特定位置上。在一些实施例中,耳挂可以是不连续的带状物。例如,耳挂可以包括刚性部分和柔性部分。刚性部分可以由刚性材料(例如,塑料或金属)制成,刚性部分可以与声学装置1的壳体11通过物理连接(例如,卡接、螺纹连接等)的方式进行固定。柔性部分可以由弹性材料(例如,布料、复合材料或/和氯丁橡胶)制成。又例如,固定结构可以为颈带,被配置为围绕颈/肩区域佩戴。再例如,固定结构可以为眼镜腿,其作为眼镜的一部分,被架设在用户耳部。
应当注意的是,上述有关声学装置1的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对声学装置1进行各种修正和改变。在一些实施例中,声学装置1还可以包括其他部件,例如,主控电路板、电池等。这些修正和改变仍在本申请的范围之内。
图2是根据本申请的一些实施例所示的示例性声学装置的结构示意图。如图2所示,声学装置100可以包括两个机芯模组10和连接在两个机芯模组10之间的固定结构。固定结构可以包括两个耳挂组件20和后挂组件30。在一些实施例中,当佩戴声学装置100时,耳挂组件20可以挂在用户的耳部。仅作为示例,耳挂组件20也可以设置呈弯曲状,以挂设在用户的耳部。耳挂组件20可以分别连接于后挂组件30和机芯模组10并设置在后挂组件30和机芯模组10之间。仅作为示例,耳挂组件20背离后挂组件30的一端与机芯模组10连接。后挂组件30的两端分别连接一个耳挂组件20。仅作为示例,后挂组件30可以设置呈弯曲状,当佩戴声学装置100时,后挂组件30可以绕在使用者的头部或脖子的后侧,使得声学装置100被稳定佩戴。应当注意的是,上述有关声学装置100(例如,耳挂组件20、后挂组件30)的佩戴方式的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。在一些实施例中,声学装置100还可以有其他的佩戴方式,例如,耳挂组件20覆盖或者包住用户的耳朵,后挂组件30跨过用户的头顶,或者后挂组件30可以被去掉,每个耳挂组件20可以独立地将其对应的机芯模组10悬挂在用户的耳朵附近。
当佩戴声学装置100时,两个机芯模组10可以分别位于用户的头部的左侧和右侧。例如,当声学装置100为气导声学装置时,两个机芯模组10壳体上的出声孔可以分别位于用户的左右耳道或耳道附近,以使用户可以听到声学装置100输出的气导声。又例如,当声学装置100为气导骨导结合的声学装置时,两个机芯模组10可以在耳挂组件20和后挂组件30的配合作用下压持在用户的头部,以使声学装置100产生的骨导声通过用户的骨骼和/或组织传递到用户的听神经,从而用户能够听到骨导声。仅作为示例,如图2所示,两个机芯模组10均可以产生气导声和/或骨导声,从而使声学装置100实现立体声效。在其他一些对立体声效要求不高的应用场景下,例如,听力患者助听、主持人直播提词等,声学装置100也可以为单侧声学装置,即仅设置一个机芯模组10。
在一些实施例中,如图2所示,声学装置100还可以包括主控电路板40和电池50。主控电路板40可以用于控制声学装置100的其他组件(例如,机芯模组10)以实现声学装置100的功能。例如,主控电路板40可以通过导线与机芯模组10电连接,以控制机芯模组10将电信号转化成机械振动。电池50可以用于给声学装置100的其他组件(例如,机芯模组10、主控电路板40)提供电能。例如,电池50可以通过导线与机芯模组10电连接以为机芯模组10提供电能。在一些实施例中,主控电路 板40和电池50可以设置在同一耳挂组件20内,也可以分别设置在两个耳挂组件20内。
在一些实施例中,声学装置100还可以包括辅助器件(未示出)以拓展声学装置100的功能。仅作为示例,辅助器件可以包括按钮(也可以称为功能按钮)、麦克风(也可以称为拾音器)、通信元件(例如蓝牙、近场通信(near-field communication,NFC))等。按钮可以响应于用户的按压以实现声学装置100的一些功能(例如,播放/暂停、开机/关机),从而扩展声学装置100与用户的交互能力。麦克风可以被配置为拾取用户讲话的声音。声学装置100可以基于麦克风拾取的用户讲话的声音实现一些功能,例如,与其他用户语音通话,录制语音消息,或者基于麦克风拾取的用户讲话的声音控制声学装置100。主控电路板40可以通过导线与辅助器件连接以控制辅助器件。电池50可以通过导线与辅助器件连接以为辅助器件供电。在一些实施例中,辅助器件可以设置在机芯模组10的壳体11形成的容置腔内。在一些实施例中,辅助器件可以与机芯模组10集成为一体或者作为机芯模组10的一部分。
应当注意的是,上述有关声学装置100的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本申请的指导下可以对声学装置100进行各种修正和改变。例如,主控电路板40和/或电池50可以设置在后挂组件30中。又例如,辅助器件可以设置在耳挂组件20或后挂组件30中。这些修正和改变仍在本申请的范围之内。
图3是根据本申请的一些实施例所示的示例性机芯模组的截面结构示意图。图4是根据本申请的一些实施例所示的壳体11的截面结构示意图。图5是根据本申请的一些实施例所示的换能装置12的截面结构示意图。
如图3所示,机芯模组10可以包括壳体11。如图3和图4所示,壳体11可以包括第一壳体116和与第一壳体116物理连接(例如,卡接)的第二壳体115。第一壳体116与第二壳体115可以共同围成容置腔。在一些实施例中,如图4所示,第一壳体116可以包括底板1161和侧板1162。底板1161和侧板1162可以一体连接。侧板1162背离底板1161的一端可以与第二壳体115连接。在一些实施例中,底板1161所在区域可以用作壳体11的皮肤接触区域1160。如图4所示,第二壳体115可以包括底板1151和侧板1152。底板1151和侧板1152可以一体连接。侧板1152背离底板1151的一端可以与第一壳体116连接。在一些实施例中,如图4所示,壳体11的内侧面还可以设有环形承台1153。仅作为示例,环形承台1153可以设置在侧板1152 背离底板1151的一端。以底板1151作为参考基准,环形承台1153可以略低于侧板1152背离底板1151的端面。
在一些实施例中,如图3所示,机芯模组10可以包括换能装置12。换能装置12可以设置在第一壳体116与第二壳体115围成的容置腔内。换能装置12可以与第一壳体116连接,使得换能装置12可以带动壳体11的皮肤接触区域1160产生机械振动。具体地,换能装置12可以在通电状态下将电信号转化成机械振动,使得壳体11的皮肤接触区域1160在换能装置12的作用下产生机械振动。进一步,当用户佩戴声学装置(例如,声学装置1、声学装置100)时,壳体11的皮肤接触区域1160产生的机械振动通过用户的骨骼和/或组织传递到用户的听神经,使得用户能够听到骨导声。
在一些实施例中,如图3所示,机芯模组10可以包括连接在换能装置12与壳体11之间的振膜13。振膜13可以与第二壳体115或第一壳体116连接,也可以连接在第二壳体115或第一壳体116之间的拼接处。仅作为示例,振膜13可以固定在环形承台1153上。振膜13可以将壳体11的内部空间(即上述容置腔)分隔为靠近第一壳体116的第一腔111,以及靠近第二壳体115的第二腔112。当用户佩戴声学装置时,相较于第二腔112,第一腔111可以更靠近用户。
在一些实施例中,如图3所示,壳体11可以设有与第二腔112连通的出声孔113。出声孔113可以设于壳体11的第二壳体115。仅作为示例,出声孔113可以设置于侧板1152。如图3和图4所示,在换能装置12的振动方向上,出声孔113可以位于环形承台1153与底板1151之间。在一些实施例中,出声孔113的横截面积从壳体11的内部到外部可以逐渐变小。在换能装置12与壳体11相对运动的过程中,振膜13可以产生经出声孔113向外传输的气导声。进一步,气导声可以通过空气传输至用户的鼓膜,使得用户能够听到气导声。在一些实施例中,围成第二腔112的壁面可以尽可能的光滑、圆润,这可以改善声学装置的气导声的声学表现力。
在一些实施例中,如图3所示,当换能装置12使得皮肤接触区域1160朝向靠近用户的脸部的方向(即沿着图3中的振动方向向上)运动时,可以视作骨导声增强。同时,换能装置12及与换能装置12相连的振膜13因反作用力朝向背离用户的脸部的方向(即沿着图3中的振动方向向下)运动,使得第二腔112中的空气受到挤压,空气压强增加,从而形成高压区。结果,通过出声孔113传出的声音增强,可以视作气导声增强。同理,当骨导声减弱时,第二腔112中的空气压强减小,从而形成低压区,气导声也减弱。因此,机芯模组10产生的骨导声和气导声的相位相同。
通过上述设置,机芯模组10产生的气导声和骨导声源于同一振源(即换能装置12),且相位相同,使得用户通过声学装置听到的声音更强,声学装置也更省电,从而延长声学装置的续航能力。除此之外,通过设计机芯模组10的结构,还可以使机芯模组10产生的气导声和骨导声在频率响应上相互配合。例如,通过气导声补偿骨导声的低频段。又例如,通过气导声强化骨导声的中频段和/或中高频段。因此,声学装置在特定频段的声学表现力可以被提高。需要说明的是,在本申请中,低频段对应的频率范围可以为20-150Hz,中频段对应的频率范围可以为150-5kHz,高频段对应的频率范围可以为5k-20kHz,中低频段对应的频率范围可以为150-500Hz,中高频段对应的频率范围可以为500-5kHz。
需要说明的是,由于壳体11具有一定的厚度,使得壳体11上开设的通孔(出声孔113、泄压孔114、调声孔117等)具有一定的深度,从而这些通孔具有靠近容置腔的入口端和远离容置腔的出口端。在一些实施例中,出声孔113的出口端的面积可以大于或者等于8mm 2,以保证用户听到足够强度的气导声。在一些实施例中,出声孔113的入口端的面积可以大于或者等于出声孔113的出口端的面积。
在一些实施例中,如图5所示,换能装置12可以包括线圈支架121、磁路系统122、线圈123和弹簧片124。线圈支架121和弹簧片124可以设置在第一腔111内。弹簧片124的中心区域可以与磁路系统122连接,弹簧片124的两端可以通过线圈支架121与壳体11连接,以将磁路系统122悬挂在壳体11内。线圈123可以与线圈支架121连接,并伸入磁路系统122的间隙。如图3所示,振膜13整体位于换能装置12的下侧并包裹在换能装置12底壁和侧壁的部分区域。振膜13环绕换能装置12的中心轴(即经过换能装置中心并与振动方向平行的轴)中心对称。振膜13上靠近中心轴的部分与换能装置12的底壁贴合,振膜13上远离中心轴的边缘部分可以与壳体11连接。在一些实施例中,振膜13上远离中心轴的边缘部分可以与线圈支架121连接,如此设置,线圈支架121可以将振膜13的边缘部分压持在环形承台1153上。
在一些实施例中,如图5所示,磁路系统122可以包括导磁罩1221和磁体1222。导磁罩1221和磁体1222可以配合形成磁场。导磁罩1221可以包括底板1223和侧板1224。底板1223和侧板1224可以一体连接。磁体1222可以设置在侧板1224内并固定在底板1223。磁体1222背离底板1223的一侧可以通过连接件1225与弹簧片124的中间区域连接。仅作为示例,振膜13的一端可以与导磁罩1221(例如,侧板1224)连接。
在一些实施例中,如图5所示,振膜13可以包括振膜主体131和补强环136。仅作为示例,振膜主体131的材质可以包括聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High Impact Polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚乙烯(Polyethylene,PE)、酚醛树脂(Phenol Formaldehyde,PF)、尿素-甲醛树脂(Urea-Formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine-Formaldehyde,MF)、聚芳酯(Polyarylate,PAR)、聚醚酰亚胺(Polyetherimide,PEI)、聚酰亚胺(Polyimide,PI)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate two formic acid glycol ester,PEN)、聚醚醚酮(Polyetheretherketone,PEEK)、硅胶等,或其任意组合。在一些实施例中,振膜主体131在具有一定的结构强度以确保其基本结构、抗疲劳性等性能的提前下,振膜主体131越柔软,越容易发生弹性变形,对换能装置12的影响越小。在一些实施例中,振膜主体131的厚度可以小于或者等于0.2mm。优选地,振膜主体131的厚度可以小于或者等于0.1mm。在一些实施例中,补强环136的硬度可以大于振膜主体131的硬度,以增加振膜13的边缘的结构强度,进而增加振膜13与壳体11之间的连接强度。
在一些实施例中,由于第一腔111与第二腔112被振膜13及换能装置12等结构件分隔开,使得第一腔111中空气压强的变化规律与第二腔112中空气压强的变化规律相反,从而第二腔112中空气压强的变化可能被第一腔111阻滞。为此,壳体11可以设有与第一腔111连通的至少一个泄压孔114。至少一个泄压孔114可以设置于第一壳体116。仅作为示例,如图4所示,至少一个泄压孔114可以设于侧板1162。至少一个泄压孔114的设置使得第一腔111能够与外界环境连通,即空气可以自由地进出第一腔111。如此,第二腔112中空气压强的变化可以不被第一腔111阻滞,从而有效地改善机芯模组10产生的气导声的声学表现力。在一些实施例中,为了避免或减小至少一个泄压孔114与出声孔113输出的声音因相位相反而出现消音现象,至少一个泄压孔114与出声孔113可以彼此错开(即不相邻),例如,至少一个泄压孔114可以尽可能地远离出声孔113设置,至少一个泄压孔114和出声孔113可以分别位于壳体11的相对或相反的侧边。在一些实施例中,如图3所示,至少部分泄压孔114的出口端可以盖设有第一声阻网1140。第一声阻网1140可以改善声学装置的声学表现 力及防水防尘性能。关于第一声阻网1140的更多介绍可以参考本申请其它地方,例如,图8及其相应描述。在一些实施例中,如图3和图5所示,线圈支架121可以设有与至少一个泄压孔114连通的避让孔1214,以避免线圈支架121阻隔至少一个泄压孔114与第一腔111之间的连通性。
在一些实施例中,如图3所示,机芯模组10还可以包括与壳体11连接的导声部件14。导声部件14可以设置有导声通道141。导声通道141可以与出声孔113连通,并用于引导经出声孔113向外传输的气导声。导声部件14可以用于改变经出声孔113向外传输的气导声的传播途径和/或方向,进而改变气导声的指向性。导声部件14还可以用于缩短出声孔113与用户耳朵之间的距离,增加气导声的强度。另外,导声部件14可以使得声学装置上气导声的实际输出位置远离壳体11的底板1151所在的区域,以减小底板1151处可能存在的漏音对出声孔113输出的气导声的反相相消,从而提高用户佩戴声学装置时听到的气导声的效果。在一些实施例中,在换能装置12的振动方向上,导声通道141的出口端与壳体11的底板1151之间的距离可以大于或者等于3mm。在一些实施例中,如图3所示,导声通道141的出口端可以盖设有第三声阻网140。关于第三声阻网140的更多介绍可以参考本申请其它地方,例如,图8及其相应描述。关于导声部件14的更多介绍可以参考本申请其它地方,例如,图7及其相应描述。
应当注意的是,上述有关机芯模组10及其部件(例如,壳体11、换能装置12、振膜13、至少一个泄压孔114、导声部件14等)的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本申请的指导下可以对机芯模组10及其部件进行各种修正和改变。这些修正和改变仍在本申请的范围之内。
在一些实施例中,机芯模组10发出的骨导声具有至少一个谐振峰。该谐振峰的峰值谐振频率可以满足关系式(1):
|f1-f2|/f1≤50%,          (1),
其中,f1为振膜13与换能装置12和壳体11连接时骨导声的谐振峰的峰值谐振频率,f2为振膜13与换能装置12和壳体11中任意一者断开连接时骨导声的谐振峰的峰值谐振频率。|f1-f2|/f1可以用于衡量振膜13对换能装置12带动壳体11的皮肤接触区域1160运动的影响的大小。仅作为示例,|f1-f2|/f1越小,该影响越小。如此,在尽量不影响换能装置12带动壳体11的皮肤接触区域1160运动的谐振的基础上,通过引入振膜13使得机芯模组10可以同步输出具有相同相位的骨导声和气导声,进而改善机芯 模组10的声学表现力,并使声学装置更省电。在一些实施例中,振膜13的结构特征(例如,结构强度和弹性)可以影响f1所对应的谐振频率与f2所对应的峰值谐振频率之间的差值(即|f1-f2|)。具体地,振膜13的结构强度和/或弹性越大,|f1-f2|越大,振膜13对换能装置12带动壳体11的皮肤接触区域1160运动的影响越大。在一些实施例中,通过调整振膜13的结构强度和/或弹性,使得振膜13不影响换能装置12带动壳体11的皮肤接触区域1160运动,同时振膜13具有一定的结构强度和弹性,从而减小在使用过程中的疲劳变形,延长振膜13的使用寿命。在一些实施例中,为了使振膜13不影响换能装置12带动壳体11的皮肤接触区域1160运动,可以调整振膜13的结构强度和/或弹性,使得f1所对应的谐振频率与f2所对应的峰值谐振频率之间的差值小于或者等于50Hz。在一些实施例中,为了使振膜13具有一定的结构强度和弹性,可以调整振膜13的结构强度和/或弹性,使得f1所对应的谐振频率与f2所对应的峰值谐振频率之间的差值大于或等于5Hz。
图6是根据本申请的一些实施例所示的机芯模组10的壳体11的皮肤接触区域1160的频率响应曲线的示意图。如图6所示,当振膜13与换能装置12和壳体11连接时,壳体11的皮肤接触区域1160具有第一频率响应曲线(例如,图6中k1+k2所示)。当振膜13与换能装置12和壳体11中任意一者断开连接时,壳体11的皮肤接触区域1160具有第二频率响应曲线(例如图6中k1所示)。图6中,横轴可以表示频率,单位为Hz,纵轴可以表示声音强度,单位为dB。在一些实施例中,如图6所示,在低频段或者中低频段(即≤500Hz),第一频率响应曲线所对应的峰值谐振强度与第二频率响应曲线所对应的峰值谐振强度之间的差值可以小于或者等于5db。
图7是根据本申请的一些实施例所示的导声部件的截面结构示意图。在一些实施例中,经出声孔113向外传输的气导声的频率响应曲线可以具有一谐振峰。为了保证音质,经出声孔113向外传输的气导声的频率响应曲线应该在较宽的频段上都比较平坦,即需要频率响应曲线的谐振峰尽量处在更高频的位置。为了使得声学装置具有较好的语音输出效果,该谐振峰的峰值谐振频率可以大于或者等于1kHz。优选地,该谐振峰的峰值谐振频率可以大于或者等于2kHz。更优选地,该谐振峰的峰值谐振频率可以大于或者等于3.5kHz。更优选地,峰值谐振频率还可以进一步大于或者等于4.5kHz。
导声通道141通过出声孔113与第二腔112连通,可以构成一个典型的亥姆霍兹共振腔体。亥姆霍兹共振腔体的谐振频率f与第二腔112的体积V、导声通道141的横截面积S、等效半径R和长度L之间可以满足关系式(2):
f∝[S/(VL+1.7VR)] 1/2           (2)。
因此,在第二腔112的体积一定的情况下,增加导声通道141的横截面积和/或减小导声通道141的长度均有利于增加谐振频率,进而使得经出声孔113向外传输的气导声的频率响应曲线的谐振峰尽可能地往高频移动。在一些实施例中,导声通道141的长度可以小于或者等于7mm。优选地,导声通道141的长度可以介于2mm至5mm之间。在一些实施例中,导声通道141的横截面积可以大于或者等于4.8mm 2。优选地,导声通道141的横截面积可以大于或者等于8mm 2。在一些实施例中,导声通道141的横截面积可以沿气导声的传输方向(即远离出声孔113的方向)逐渐增大,如此导声通道141可以呈喇叭状。在一些实施例中,导声通道141可以朝向第一壳体116延伸,以导引出声孔113向外传输的气导声。在一些实施例中,导声通道141的入口端的横截面积可以大于或者等于10mm 2。在一些实施例中,导声通道141的出口端的横截面积可以大于或者等于15mm 2。需要说明的是,导声通道141横截面积可以指过导声通道141上的一点对导声通道141进行截取时所能够截取到的最小面积。例如,导声通道141的出口端的横截面积可以指过导声通道141的出口端上的一点对导声通道141进行截取时所能够截取到的最小面积。在一些实施例中,导声通道141的体积与第二腔112的体积的比值可以介于0.05至0.9之间。在一些实施例中,第二腔112的体积可以小于或者等于400mm 3。优选地,第二腔112的体积可以介于200mm 3至400mm 3之间。
图7中(a)至(e)示出了导声部件14的导声通道141的各种结构。如图7中(a)至(c)所示,导声通道141可以为弯折结构。弯折结构可以指从导声通道141的入口端和出口端中任一端观察不到另一端或者仅可以观察到另一端的一部分。对于弯折结构的导声通道,可以将弯折结构的导声通道划分成两个或者两个以上直通结构的子导声通道,并将直通结构的子导声通道的长度之和作为弯折结构的导声通道的长度。例如,如图7中(a)至(c)所示,确定导声通道的弯折处所在面的几何中心(例如点7C1、7C2),再将弯折处所在面的几何中心连接起来形成线段7A-7C1和7C1-7B(或者7A-7C1、7C1-7C2和7C2-7B),这些线段的长度之和可以作为导声通道141的长度。如图7中(d)和(e)所示,导声通道141可以具有直通结构。直通结构可以指从导声通道141的入口端和出口端中任一端可以观察到另一端。对于直通结构的导声通道,为了计算导声通道141的长度,可以先确定导声通道141的入口端的几何中心(例如点7A)以及导声通道141的出口端的几何中心(例如点7B),再将入口端的几 何中心和出口端的几何中心连接起来形成线段7A-7B,该线段的长度可以作为导声通道141的长度。
如图7中(a)至(e)所示,导声通道141的出口端可以指向相同或不同的方向。例如,如图7中(a)和(c)所示,导声通道141的出口端可以指向背离第二腔112的方向。又例如,如图7中(b)、(d)和(e)所示,导声通道141的出口端可以指向背离机芯模组10的方向。如图7中(a)至(e)所示,导声通道141的出口端的形状可以相同或不同。例如,如图7中(a)和(b)所示,导声通道141的出口端的形状可以为平面(例如,水平面、垂直面)。又例如,如图7中(c)到(e)所示,导声通道141的出口端的形状可以为斜面,使得导声通道141的出口端的面积不受导声通道141的横截面积限制,增大导声通道141的横截面积,进而有利于气导声的输出。如图7中(a)至(e)所示,导声通道141的壁面可以为平面或曲面。例如,如图7中(a)至(d)所示,导声通道141的壁面为平面,这便于导声通道141的制作过程中的脱模。又例如,如图7中(e)所示,导声通道141的壁面为曲面,这有利于实现导声通道141与大气的声阻抗的匹配,进而有利于气导声的输出。
应当注意的是,上述有关导声通道141的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本申请的指导下可以对导声通道141进行各种修正和改变。这些修正和改变仍在本申请的范围之内。
根据图3的描述,导声通道141的出口端可以盖设有第三声阻网140。第三声阻网140可以用于调节经出声孔113向外传输的气导声的声阻,以便于削弱该气导声在中高频段或者高频段的谐振峰的峰值谐振频率,使得该气导声的频率响应曲线更加平滑,用户的听声效果更好。第三声阻网140还可以在一定程度上使得第二腔112与外部隔开,增加机芯模组10的防水防尘性能。在一些实施例中,第三声阻网140的声阻可以小于或者等于260MKSrayls。在一些实施例中,第三声阻网140的孔隙率可以大于或者等于13%。在一些实施例中,第三声阻网140的孔隙尺寸可以大于或者等于18μm。
图8是根据本申请的一些实施例所示的声阻网示意图。如图8所示,声阻网(例如,第一声阻网1140、第三声阻网140)可以由丝状物编织而成。仅作为示例,丝状物可以包括金属丝、纱线等。丝状物的直径、疏密程度等会影响声阻网的声阻。如图8所示,声阻网可以由纵向间隔排列和横向间隔排列的多根丝状物形成。多根丝状物中每四根彼此相交的丝状物可以围设形成一孔隙。在一些实施例中,如图8所示,丝状物的 中心线所围成的区域的面积可以表示为S1,丝状物的边缘所围成的区域(即孔隙)的面积可以表示为S2,孔隙率可以表示为S2/S1。在一些实施例中,孔隙尺寸可以表示为任意相邻两根丝状物之间的间距。
在本说明书中,通孔(例如,泄压孔114、导声通道141)或者开口的有效面积可以指为通孔或者开口的面积(或者称为实际面积)与盖设在通孔或者开口上的声阻网的孔隙率的乘积。例如,当导声通道141的出口端盖设有第三声阻网140时,导声通道141的出口端的有效面积可以为导声通道141的出口端的面积与第三声阻网140的孔隙率的乘积。当导声通道141的出口端未盖设有第三声阻网140时,导声通道141的出口端的有效面积可以为导声通道141的出口端的面积。又例如,当泄压孔114的出口端盖设有第一声阻网1140时,泄压孔114的出口端的有效面积可以为泄压孔114的出口端的面积与第一声阻网1140的孔隙率的乘积。当泄压孔114的出口端未盖设有第一声阻网1140时,泄压孔114的出口端的有效面积可以为泄压孔114的出口端的面积。
希望被用户听到的是经出声孔113及导声通道141向外传输的气导声,而不是经泄压孔114向外传输的气导声(即泄压孔114处的漏音)。因此,导声通道141的出口端的有效面积可以大于至少一个泄压孔114中每一个的出口端的有效面积。
泄压孔114的大小会影响第一腔111排气的顺畅程度和振膜13振动的难易程度,进而影响经出声孔113向外传输的气导声的声学表现力。在一些实施例中,调节泄压孔114的参数,例如,泄压孔114的出口端的实际面积、泄压孔114的出口端上盖设的第一声阻网1140的声阻、第一声阻网1140的孔隙率等,可以调节泄压孔114的出口端的有效面积,进而使得经出声孔113向外传输的气导声的频率响应曲线变化。例如,根据表1,调节泄压孔114的出口端的实际面积和/或泄压孔114的出口端上盖设的第一声阻网1140的声阻,使得经出声孔113向外传输的气导声的频率响应曲线变化(如图9所示)。需要说明的是,表1中,声阻为0可以视作未盖设有第一声阻网1140。
表1
频率响应曲线 实际面积/mm 2 声阻/MKSrayls 孔隙率
9-1 31.57 0 100%
9-2 2.76 0 100%
9-3 2.76 1000 3%
图9是根据本申请的一些实施例所示的经出声孔113向外传输的气导声的频率响应曲线的示意图。如图9所示,相比于9-2,在9-1中,随着泄压孔114的出口端的实际面积的增加,第一腔111的排气愈发顺畅,出声孔113向外传输的气导声的低频段或者中低频段的峰值谐振强度明显增加。如图9所示,相比于9-2,在9-3中,随着泄压孔114的出口端设置第一声阻网1140,第一腔111的排气一定程度上受到影响,经出声孔113向外传输的气导声的中低频下降,频率响应曲线相对平坦。
调节泄压孔114的出口端的实际面积和/或泄压孔114的出口端上盖设的第一声阻网1140的声阻,可以使得泄压孔114的出口端的有效面积大体保持一致。例如,表2中所示,对比10-1、10-2和10-3,泄压孔114的出口端的实际面积越大,但与之对应的声阻网的声阻也越大,最终10-1、10-2和10-3对应的泄压孔114的有效面积大体一致,结果使得即使泄压孔114具有不同实际面积和/或第一声阻网1140的声阻不同,经出声孔113向外传输的气导声的频率响应曲线大体一致(如图10所示)。需要说明的是,表2中,声阻为0可以视作未盖设有第一声阻网1140,孔隙率为14%的第一声阻网1140可以由单层网形成,孔隙率为7%的第一声阻网1140可以由双层网堆叠形成。
表2
Figure PCTCN2021095504-appb-000001
图10是根据本申请的一些实施例所示的经出声孔113向外传输的气导声的频率响应曲线的示意图。10-1、10-2和10-3对应的泄压孔114的有效面积大体一致,使得第一腔111的排气通畅程度大体相同,进而使得经出声孔113向外传输的气导声的频率响应曲线大体一致。图11是根据本申请的一些实施例所示的经泄压孔114向外传输的气导声(即泄压孔114处的漏音)的频率响应曲线的示意图。如图11所示,虽然经出声孔113向外传输的气导声的频率响应曲线大体一致,但是经泄压孔114向外传输的气导声(即泄压孔114处的漏音)的频率响应曲线却是不一样的,即泄压孔114处的漏音不一样。如图11所示,对比11-1、11-2和11-3,随着泄压孔114的出口端的实际面积的增加和第一声阻网1140的声阻的增加,经泄压孔114向外传输的气导声(即泄压孔114处的漏音)的频率响应曲线整体下移,即泄压孔114处的漏音随之减 弱。因此,在保证经出声孔113向外传输的气导声(即导声部件14处气导声)的频率响应曲线大体不变的情况下,可以尽量增加泄压孔114的大小和/或泄压孔114上第一声阻网1140的声阻,使得泄压孔114处的漏音尽可能的小。但是,由于壳体11的大小有限,使得泄压孔114不可能太大。因此,可以设置至少一个泄压孔114,例如,两个、三个或更多。
在一些实施例中,为了使用户听到经出声孔113向外传输的气导声,而不是经泄压孔114向外传输的气导声(即泄压孔114处的漏音),导声通道141的出口端的有效面积和/或实际面积可以满足特定的条件。例如,导声通道141的出口端的有效面积大于至少一个泄压孔114中每一个的出口端的有效面积。又例如,导声通道141的出口端的实际面积可以大于至少一个泄压孔114中每一个的出口端的实际面积。再例如,导声通道141的出口端的有效面积可以大于或者等于至少一个泄压孔114的出口端的有效面积之和。在一些实施例中,至少一个泄压孔114的出口端的有效面积之和与导声通道141的出口端的有效面积之间的比值可以大于或者等于0.15。仅作为示例,至少一个泄压孔114的出口端的有效面积之和可以大于或者等于2.5mm 2。如此设置可以确保第一腔111排气的顺畅,改善经出声孔113向外传输的气导声的声学表现力,并降低泄压孔114处的漏音。
在一些实施例中,导声通道141的出口端的实际面积可以大于或者等于4.8mm 2。优选地,导声通道141的出口端的实际面积可以大于或者等于8mm 2。优选地,导声通道141的出口端的实际面积可以大于或者等于25.3mm 2。在一些实施例中,至少一个泄压孔114的出口端的实际面积之和可以大于或者等于2.6mm 2。优选地,至少一个泄压孔114的出口端的实际面积之和可以大于或者等于10mm 2。在一些实施例中,至少一个泄压孔114可以包括三个泄压孔,例如第一泄压孔、第二泄压孔、第三泄压孔。仅作为示例,第一泄压孔、第二泄压孔、第三泄压孔出口端的实际面积可以分别为11.4mm 2、8.4mm 2、5.8mm 2
在一些实施例中,盖设在至少部分泄压孔114的出口端的第一声阻网1140的孔隙率可以小于或者等于盖设在导声通道141的出口端的第三声阻网140的孔隙率。在一些实施例中,第一声阻网1140的孔隙率可以大于或者等于7%。在一些实施例中,第三声阻网140的孔隙率可以大于或者等于13%。
应当注意的是,上述有关泄压孔114、导声通道141、声阻网(例如,第一声阻网1140、第三声阻网140)的描述仅仅是为了示例和说明,而不限定本说明书的适用 范围。对于本领域技术人员来说,在本申请的指导下可以对上述泄压孔114、导声通道141、声阻网进行各种修正和改变。这些修正和改变仍在本申请的范围之内。
根据图7的相关描述,导声通道141通过出声孔113与第二腔112连通,可以构成一个典型的亥姆霍兹共振腔体。我们可以研究该亥姆霍兹共振腔体谐振时第二腔112中声压的分布情况。图12A-12B是根据本申请的一些实施例所示的第二腔112的声压分布示意图。如图12A所示,第二腔112内可以形成远离出声孔113的高压区和靠近出声孔113的低压区。当亥姆霍兹共振腔体谐振时,可以认为第二腔112内出现驻波。驻波的波长可以与第二腔112的尺寸相关。例如,第二腔112越深,即低压区与高压区之间的距离越长,驻波的波长也越长,这导致亥姆霍兹共振腔体的谐振频率越低。在一些实施例中,可以通过破坏高压区,使得原本在高压区的声音无法反射,进而无法形成驻波。仅作为示例,在高压区设置与第二腔112连通的通孔(例如,调声孔)可以破坏高压区。如图12B所示,高压区被破坏后,当亥姆霍兹共振腔体谐振时,第二腔112内的高压区会朝着靠近低压区的方向内移,使得驻波的波长变短,进而使得亥姆霍兹共振腔体的谐振频率得以提高。
在一些实施例中,如图3所示,壳体11可以设有与第二腔112连通的调声孔117。在一些实施例中,调声孔117可以设于壳体11上且位于第二腔112内的高压区附近,使得调声孔117能够最有效地破坏高压区。在一些实施例中,调声孔117也可以设于壳体11的其他区域,例如,第二腔112内的高压区与低压区之间的区域附近。仅作为示例,调声孔117可以设于第二壳体115并与出声孔113以及导声部件14相对设置在换能装置12的两侧。
在一些实施例中,经出声孔113向外传输的气导声的频率响应曲线具有一谐振峰。结合表3,在未盖设声阻网的情况下,调节调声孔117的出口端的实际面积,可以控制调声孔对高压区的破坏程度,进而调节经出声孔113向外传输的气导声的谐振峰的峰值谐振频率。需要说明的是,表3中,调声孔117的出口端的实际面积为0可以视作调声孔117处于关闭状态。
表3
频率响应曲线 实际面积/mm 2
13-1 0
13-2 1.7
13-3 2.8
13-4 28.44
图13是根据本申请的一些实施例所示的经出声孔113向外传输的气导声的频率响应曲线的示意图。
如图13所示,对比13-1至13-4,调声孔117的出口端的实际面积越大,对高压区的破坏效果越明显,经出声孔113向外传输的气导声的谐振峰的峰值谐振频率越高。在一些实施例中,对比13-1和13-2,相较于调声孔117处于关闭状态,调声孔117处于打开状态时的谐振峰的峰值谐振频率向高频偏移,且偏移量可以大于或者等于500Hz。在一些实施例中,对比13-1和13-3,前述偏移量可以大于或者等于1kHz。在一些实施例中,对比13-1和13-4,前述偏移量可以大于或者等于2kHz。在一些实施例中,如图13所示,调声孔117处于打开状态时的谐振峰的峰值谐振频率可以大于或者等于2kHz,使得声学装置具有较好的音乐输出效果。优选地,调声孔117处于打开状态时的谐振峰的峰值谐振频率可以大于或者等于3.5kHz。优选地,调声孔117处于打开状态时的谐振峰的峰值谐振频率可以大于或者等于4.5kHz。
在一些实施例中,由于第二腔112设有调声孔117,使得一部分声音从调声孔117处泄露出去,在调声孔117处形成漏音,这导致经出声孔113向外传输的气导声的频率响应曲线整体下移。为此,至少部分调声孔117的出口端可以盖设有第二声阻网1170(如图3所示)。第二声阻网1170可以改善声学装置的声学表现力及防水防尘性能,在一定程度上减少调声孔117处的漏音,使得气导声能够更多地经出声孔113向外传输。在一些实施例中,调节调声孔117的参数,例如,调声孔117的出口端的实际面积、调声孔117的出口端上盖设的第二声阻网1170的声阻、第二声阻网1170的孔隙率等,可以调节调声孔117的出口端的有效面积,进而使得经出声孔113向外传输的气导声的频率响应曲线变化。例如,根据表4,调节调声孔117的出口端上盖设的第二声阻网1170的声阻,使得经出声孔113向外传输的气导声的频率响应曲线变化(如图14所示)。需要说明的是,表4中,声阻为0可以视作未盖设有第二声阻网1170。
表4
频率响应曲线 声阻/MKSrayls
14-1 无调声孔
14-2 0
14-3 145
图14是根据本申请的一些实施例所示的经出声孔113向外传输的气导声的频率响应曲线的示意图。如图14所示,对比14-1和14-2,设置调声孔117后,经出声孔113向外传输的气导声中低频段的峰值谐振强度明显降低,即调声孔117处形成漏音,经出声孔113向外传输的气导声的音量减小。对比14-2和14-3,调声孔117的出口端上盖设第二声阻网1170后,经出声孔113向外传输的气导声中低频段的峰值谐振强度明显增大,即减少了调声孔117处的漏音,经出声孔113向外传输的气导声的音量增加。对比14-1、14-2和14-3,调声孔117的出口端上盖设第二声阻网1170后,经出声孔113向外传输的气导声高频段的峰值谐振强度有一定程度的减小,使得该气导声的频率响应曲线在高频段更为平坦,从而高频的音质更均衡。
需要说明的是,由于壳体11的大小有限,使得调声孔117不可能太大。因此,可以设置至少一个调声孔117,例如,两个、三个或更多。
在一些实施例中,为了使用户听到经出声孔113向外传输的气导声,而不是经调声孔117向外传输的气导声(即,调声孔117处的漏音),导声通道141的出口端的有效面积和/或实际面积可以满足特定的条件。例如,导声通道141的出口端的有效面积可以大于至少一个调声孔117中每一个的出口端的有效面积。又例如,导声通道141的出口端的实际面积可以大于至少一个调声孔117中每一个的出口端的实际面积。再例如,导声通道141的出口端的有效面积可以大于至少一个调声孔117的出口端的有效面积之和。在一些实施例中,至少一个调声孔117的出口端的有效面积之和与导声通道141的出口端的有效面积之间的比值可以大于或者等于0.08。仅作为示例,至少一个调声孔117的出口端的有效面积之和可以大于或者等于1.5mm 2。如此设置可以使得经出声孔113向外传输的气导声的谐振峰的峰值谐振频率尽可能向高频偏移,并降低调声孔117处的漏音。
在一些实施例中,至少一个调声孔117的出口端的实际面积之和可以大于或者等于5.6mm 2。在一些实施例中,至少一个调声孔117可以包括两个调声孔,例如第一调声孔1171和第二调声孔1172。仅作为示例,第一调声孔1171和第二调声孔1172的出口端的实际面积可以分别为7.6mm 2和5.6mm 2
在一些实施例中,盖设在至少部分调声孔117的出口端的第二声阻网1170的孔隙率可以小于或者等于盖设在导声通道141的出口端的第三声阻网140。在一些实施例中,第三声阻网140的孔隙率可以大于或者等于13%。在一些实施例中,第二声阻网1170的孔隙率可以小于或者等于16%。
在一些实施例中,如果将出声孔113所在区域视作第二腔112内的低压区,第二腔112内距离出声孔113所在区域最远的区域视作第二腔112内的高压区,至少一个调声孔117可以设置在第二腔112内的高压区以破坏该高压区并使该高压区向低压区移动。因此,至少一个调声孔117可以尽可能地远离出声孔113设置。
在一些实施例中,由于至少一个泄压孔114与第一腔111连通,至少一个调声孔117与第二腔112连通,分别经至少一个泄压孔114和至少一个调声孔117向外传输的气导声(即至少一个泄压孔114和至少一个调声孔117处的漏音)具有相反的相位。因此,分别经至少一个泄压孔114和至少一个调声孔117向外传输的气导声可以干涉相抵消,从而减小至少一个泄压孔114和至少一个调声孔117处的漏音。在一些实施例中,至少部分泄压孔114与至少部分调声孔117可以相邻设置。在一些实施例中,为了进一步加强泄压孔114和调声孔117的漏音的干涉相抵消,相邻设置的泄压孔114和调声孔117之间的距离可以尽可能的小。例如,相邻设置的泄压孔114和调声孔117的出口端的的距离可以小于或者等于2mm。
另外,分别经相邻设置的泄压孔114和调声孔117向外传输的气导声(即相邻设置的泄压孔114和调声孔117处的漏音)的谐振峰的峰值谐振频率和/或峰值谐振强度也应该尽可能的匹配(例如,相同、相差不大)。图15是根据本申请的一些实施例所示的经相邻设置的泄压孔114和调声孔117向外传输的气导声的频率响应曲线(例如,15-1、15-2和15-3)的示意图。表5示出了根据图15获得的经相邻设置的泄压孔114和调声孔117向外传输的气导声的谐振峰的峰值谐振频率。如表15所示,经泄压孔114向外传输的气导声具有第一谐振峰f1,经调声孔117向外传输的气导声具有第二谐振峰f2。在一些实施例中,第一谐振峰f1的峰值谐振频率与第二谐振峰f2的峰值谐振频率可以分别大于或者等于2kHz,且|f1-f2|/f1≤60%。优选地,第一谐振峰f1的峰值谐振频率与第二谐振峰f2的峰值谐振频率可以分别大于或者等于3.5k,且|f1-f2|≤2kHz,使得分别经泄压孔114和调声孔117向外传输的气导声尽可能在高频段干涉相抵消。对比频率响应曲线15-1、15-2和15-3,第一谐振峰f1的峰值谐振频率与第二谐振峰f2的峰值谐振频率之间的差值逐渐减小,即频率响应曲线逐渐趋于平坦,这表明降漏音的频宽逐渐加宽,表现为声学装置的漏音逐渐减小,即分别经泄压孔114和调声孔117向外传输的气导声的干涉相抵消的效果也越好。
表5
Figure PCTCN2021095504-appb-000002
在一些实施例中,由于第一腔111内设置有线圈支架121、弹簧片124等结构件,使得第一腔111内驻波的波长相对较长,因此经与第一腔111连通的泄压孔114向外传输的气导声的第一谐振峰f1的峰值谐振频率相对较小。调声孔117的设置破坏了第二腔112内的高压区,使得第二腔112内驻波的波长相对较短,因此经与第二腔112连通的调声孔117向外传输的气导声的第二谐振峰f2的峰值谐振频率相对较大。如此,第一谐振峰f1的峰值谐振频率一般小于第二谐振峰f2的峰值谐振频率。为了使得分别经泄压孔114和调声孔117向外传输的气导声能够更好地干涉相抵消,可以使第一谐振峰f1的峰值谐振频率尽可能地向高频偏移,以尽可能地靠近第二谐振峰f2的峰值谐振频率。因此,相邻设置的泄压孔114和调声孔117中泄压孔114的出口端的有效面积可以大于调声孔117的出口端的有效面积和/或相邻设置的泄压孔114和调声孔117中泄压孔114的出口端的实际面积可以大于调声孔117的出口端的实际面积。仅作为示例,相邻设置的泄压孔114和调声孔117中泄压孔114的出口端的有效面积与调声孔117的出口端的有效面积之间的比值可以小于或者等于2。在一些实施例中,相邻设置的泄压孔114和调声孔117的出口端可以分别盖设有第一声阻网1140和第二声阻网1170。在一些实施例中,第一声阻网1140的孔隙率可以大于第二声阻网1170的孔隙率。
图16是根据本申请的一些实施例所示的壳体的截面结构示意图。由于壳体11的大小有限,使得泄压孔114不可能太大,因此为了满足第一腔111的排气需求,可以设置两个或以上泄压孔。如图16中(a)所示,至少一个泄压孔114可以包括第一泄压孔1141和第二泄压孔1142。在一些实施例中,第一泄压孔1141相较于第二泄压孔1142可以远离出声孔113设置,第一泄压孔1141的出口端的面积可以大于第二泄压孔1142的出口端的面积。如此设置,使得排气量相对大(出口端具有相对大有效面积的)的第一泄压孔1141尽可能地远离出声孔113,减小所有泄压孔114处漏音对出声孔113处气导声的影响。在一些实施例中,如图16中(a)所示,至少一泄压孔114进一步可以包括第三泄压孔1143。在一些实施例中,第一泄压孔1141相较于第三泄 压孔1143可以远离出声孔113设置,第二泄压孔1142的出口端的面积也可以大于第三泄压孔1143的出口端的面积。在一些实施例中,出声孔113和第一泄压孔1141可以位于换能装置12的相对两侧。第二泄压孔1142和第三泄压孔1143可以相对设置,并位于出声孔113和第一泄压孔1141之间。
根据本申请其他部分的描述,当泄压孔114的出口端盖设有第一声阻网1140时,泄压孔114的出口端的有效面积可以为泄压孔114的出口端的面积与第一声阻网1140的孔隙率的乘积。在一些实施例中,至少部分泄压孔114的出口端可以盖设有第一声阻网1140,以调节泄压孔114的出口端的有效面积。在一些实施例中,第一泄压孔1141的出口端的有效面积可以大于第二泄压孔1142的出口端的有效面积。在一些实施例中,第二泄压孔1142的出口端的有效面积可以大于第三泄压孔1143的出口端的有效面积。
由于壳体11的大小有限,使得调声孔117不可能太大,因此为了满足尽可能破坏第二腔112的高压区的需求,可以设置两个或以上调声孔。如图16中(b)所示,至少一个调声孔117可以包括第一调声孔1171和第二调声孔1172。在一些实施例中,第一调声孔1171相较于第二调声孔1172可以远离出声孔113设置,第一调声孔1171的出口端的实际面积可以大于第二调声孔1172的出口端的实际面积。如此设置,使得对第二腔112的高压区破坏程度相对大的第一调声孔1171尽可能地远离出声孔113,使得出声孔113处气导声的谐振频率尽可能的高。在一些实施例中,第一调声孔1171的出口端的面积可以大于或者等于3.8mm 2。在一些实施例中,第二调声孔1172的出口端的实际面积可以大于或者等于2.8mm 2。在一些实施例中,出声孔113和第一调声孔1171可以位于换能装置12的相对两侧。第二调声孔1172可以位于出声孔113和第一调声孔1171之间。
当调声孔117的出口端盖设有第二声阻网1170时,调声孔117的出口端的有效面积可以为调声孔117的出口端的面积与第二声阻网1170的孔隙率的乘积。在一些实施例中,至少部分调声孔117的出口端可以设有第二声阻网1170,以调节调声孔117的出口端的有效面积。在一些实施例中,第一调声孔1171的出口端的有效面积可以大于第二调声孔1172的出口端的有效面积。
在一些实施例中,如图16中(c)所示,第一泄压孔1141与第一调声孔1171可以相邻设置,使得分别经第一泄压孔1141和第一调声孔1171向外传输的气导声能够干涉相抵消。在一些实施例中,如图16中(d)所示,第二泄压孔1142与第二调声 孔1172也可以相邻设置,使得分别经第二泄压孔1142和第二调声孔1172向外传输的气导声也能够干涉相抵消。在一些实施例中,相邻设置的第一泄压孔1141的出口端的有效面积可以大于第一调声孔1171的出口端的有效面积,使得经第一泄压孔1141向外传输的气导声的峰值谐振频率尽可能地向高频偏移,以尽可能地靠近经第一调声孔1171向外传输的气导声的峰值谐振频率,进而使得分别经第一泄压孔1141和第一调声孔1171向外传输的气导声能够更好地干涉相抵消。类似地,第二泄压孔1142的出口端的有效面积可以大于第二调声孔1172的出口端的有效面积。
在一些实施例中,如图16中(a)到(c)所示,壳体11可以包括彼此间隔的第一侧壁16A和第二侧壁16B以及连接第一侧壁16A和第二侧壁16B且彼此间隔的第三侧壁16C和第四侧壁16D。简而言之,壳体11可以简化为一矩形框。这里壳体11的形状仅仅是为了示例和说明,并不起限制作用。仅作为示例,壳体11可以为其他形状,例如,第三侧壁16C和第四侧壁16D可以呈弧形设置,使得壳体11呈跑道型。在一些实施例中,当用户佩戴声学装置时,第一侧壁16A相较于第二侧壁16B更靠近用户的耳朵。在一些实施例中,第三侧壁16C相较于第四侧壁16D更靠近耳挂组件20。出声孔113可以设于第一侧壁16A,以便于用户听到经出声孔113向外传输的气导声。第一泄压孔1141和第一调声孔1171可以设于第二侧壁16B,使第一泄压孔1141和第一调声孔1171远离出声孔113。第二泄压孔1142和第二调声孔1172可以设于第三侧壁17C和第四侧壁17D中一个,第三泄压孔1143可以设于第三侧壁17C与第四侧壁17D中另一个。
应当注意的是,上述有关泄压孔114、调声孔117等部件及其设置方式的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本申请的指导下可以对这些部件及其设置方式进行各种修正和改变。例如,至少一泄压孔114可以不包括第三泄压孔1143。又例如,部分泄压孔114和/或部分调声孔117的出口端可以不盖设声阻网。这些修正和改变仍在本申请的范围之内。
图17是根据本申请的一些实施例所示的机芯模组的分解结构示意图。如图17所示,机芯模组10的壳体11上设有与第一腔111连通的泄压孔114和与第二腔112连通的调声孔117,泄压孔114和调声孔117可以相邻设置。在一些实施例中,如图3和图17所示,机芯模组10可以包括防护罩15。防护罩15可以罩设在相邻设置的泄压孔114和调声孔117的外围。在一些实施例中,防护罩15可以由细丝编织而成的网状结构。仅作为示例,细丝可以为金属丝或具有一定强度的塑料丝。细丝可以具有一定 直径。例如,金属丝的直径可以小于或等于0.1mm。网状结构可以具有一定的目数。例如,防护罩15的目数可以为90-100。如此设置使得防护罩15具有一定的结构强度和良好的透气率,除此之外,还可以减少或避免外物侵入机芯模组10内部的同时又不影响声学装置的声学表现力。另外,防护罩15同时覆盖相邻设置的泄压孔114和调声孔117,这可以减少制作声学装置的物料,并改善声学装置的外观品质。
在一些实施例中,如图17所示,壳体11的外表面可以设置有容置区118。容置区118可以与相邻设置的泄压孔114和调声孔117的出口端连通。在一些实施例中,防护罩15可以通过物理连接(例如,卡接、胶接、焊接等)固定在容置区118内。例如,防护罩15可以设置呈板状与容置区118的底部胶接。在一些实施例中,防护罩15的外表面可以与壳体11的外表面平齐或者圆弧过渡,以改善声学装置的外观品质。
在一些实施例中,如图17所示,容置区118内可以形成有凸台1181。凸台1181可以与容置区118的侧壁间隔设置形成环绕凸台1181的容置槽1182。仅作为示例,容置槽1182的槽宽可以小于或者等于0.3mm。在一些实施例中,泄压孔114和调声孔117的出口端可以位于凸台1181的顶部,即容置槽1182可以环绕泄压孔114和调声孔117。
在一些实施例中,如图17所示,防护罩15可以包括主盖板151和环形侧板152。环形侧板152可以与主盖板151的边缘弯折连接,并向主盖板151的侧向延伸。仅作为示例,环形侧板152相对于主盖板151的侧向的延伸高度可以介于0.5mm至1.0mm之间。在一些实施例中,当防护罩15固定在容置区118内时,延伸出来的环形侧板152可以插入并固定在容置槽1182内,这可以增加防护罩15与壳体11之间的连接强度。在一些实施例中,环形侧板152可以在容置槽1182与壳体11物理连接(例如,胶接)。例如,容置槽1182内可以设置有胶体,环形侧板152可以通过容置槽1182内的胶体与壳体11连接。在一些实施例中,主盖板151可以与凸台1181的顶部物理连接(例如,焊接)。另外,凸台1181的顶部可以略低于壳体11的外表面,例如,两者之间的高度差可以约等于主盖板151的厚度,使得防护罩15固定在容置区118内时,主盖板151的外表面与壳体11的外表平齐,从而改善声学装置的外观品质。
在一些实施例中,泄压孔114的出口端可以盖设第一声阻网1140和/或调声孔117的出口端可以盖设第二声阻网1170,以调整泄压孔114和调声孔117的出口端的有效面积,并改善声学装置的声学表现力。在一些实施例中,当泄压孔114的出口端盖设第一声阻网1140和/或调声孔117的出口端盖设第二声阻网1170时,机芯模组10 可以包括第一环状胶片1183。第一环状胶片1183可以环绕泄压孔114和/或调声孔117设置,并露出泄压孔114和/或调声孔117的出口端。第一声阻网1140和/或第二声阻网1170可以通过第一环状胶片1183固定在凸台1181的顶部。进一步,防护罩15可以位于第一声阻网1140和/或第二声阻网1170背离凸台1181的一侧并固定在容置区118内。例如,机芯模组10可以包括第二环状胶片1184。第二环状胶片1184可以环绕泄压孔114和调声孔117设置。防护罩15的主盖板151可以通过第二环状胶片1184固定在第一声阻网1140和/或第二声阻网1170背离凸台1181的一侧。在一些实施例中,第一环状胶片1183或第二环状胶片1184的环宽可以介于0.4mm至0.5mm之间。第一环状胶片1183或第二环状胶片1184的厚度可以小于或者等于0.1mm。
在一些实施例中,第一声阻网1140和/或第二声阻网1170可以预先被固定在防护罩15上,以与防护罩15形成一结构组件,然后将该结构组件固定在容置区118内。例如,可通过第二环状胶片1184将第一声阻网1140和/或第二声阻网1170固定在防护罩15的主盖板151的环形侧板152所在的一侧,并被环形侧板152环绕。
在一些实施例中,当泄压孔114和调声孔117的出口端分别盖设第一声阻网1140和第二声阻网1170时,第一声阻网1140和第二声阻网1170可以彼此至少部分错开,以便于分别盖设相邻设置的泄压孔114和调声孔117的出口端,和适应相邻设置的泄压孔114和调声孔117之间的间隔距离。
在一些实施例中,导声部件14背离壳体11的一端也可以设置防护罩。该防护罩的设置方式可以与盖设相邻设置的泄压孔114和调声孔117的出口端的防护罩15的设置方式相同或相似,这里不再赘述。在一些实施例中,导声部件14的出口端可以盖设第三声阻网140。第三声阻网140的设置方式可以与上述第一声阻网1140和/或第二声阻网1170的设置方式相同或相似,这里不再赘述。
应当注意的是,上述有关防护罩15、容置区118以及声阻网(例如,第一声阻网1140、第二声阻网1170)等部件及其设置方式的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本申请的指导下可以对这些部件及其设置方式进行各种修正和改变。例如,机芯模组10可以不包括第一环状胶片1183和/或第二环状胶片1184,第一声阻网1140和/或第二声阻网1170可以通过其他连接方式(例如,焊接)固定在凸台1181和防护罩15的主盖板151上。又例如,泄压孔114和调声孔117的出口端可以不盖设声阻网,防护罩15的主盖板151可以直 接固定在凸台1181上。这些修正和改变仍在本申请的范围之内。
根据图2的描述,声学装置(例如,声学装置100)包括两个机芯模组10,两个机芯模组10可以在声学装置处于佩戴状态时分别位于用户的头部的左侧和右侧。在一些实施例中,两个机芯模组10可以包括第一机芯模组和第二机芯模组。第一机芯模组和第二机芯模组可以具有相同或不同的结构。图18是根据本申请的一些实施例所示的机芯模组的截面结构示意图。图19是根据本申请的一些实施例所示的机芯模组的截面结构示意图。在一些实施例中,当第一机芯模组和第二机芯模组具有相同的结构时,第一机芯模组和第二机芯模组的结构可以如图18或19所示。在一些实施例中,当第一机芯模组和第二机芯模组具有不同的结构时,第一机芯模组和第二机芯模组的结构可以分别如图18和19所示。在一些实施例中,如图18和19所示,除了设置换能装置12等与发声有关的结构件之外,机芯模组10(例如,第一机芯模组、第二机芯模组)还可以设置有辅助器件(例如,按钮、麦克风、通信元件等)以丰富、拓展声学装置的功能。关于辅助器件的更多介绍可以参考本申请其它地方,例如,图2及其相应描述。在一些实施例中,当第一机芯模组和第二机芯模组具有不同的结构时,第一机芯模组和第二机芯模组中的一个可以设置有辅助器件,另一个可以不设置辅助器件。在一些实施例中,第一机芯模组和第二机芯模组可以都设置有辅助器件,且第一机芯模组设置的辅助器件可以和第二机芯模组相同或不同。例如,第一机芯模组设置的辅助器件可以为按钮,第二机芯模组设置的辅助器件可以为麦克风。又例如,第一机芯模组设置的辅助器件可以为按钮和麦克风,第二机芯模组设置的辅助器件可以为麦克风。
仅作为示例,如图18所示,机芯模组10可以包括设置在壳体11上的按钮16。按钮16可以从第二壳体115外露,以便于用户对按钮16进行按压操作。在一些实施例中,触发按钮16的按压方向可以与换能装置12的振动方向一致。
仅作为示例,如图19所示,机芯模组10可以包括第一麦克风171。第一麦克风171可以采集机芯模组10外部的声音。在一些实施例中,第一麦克风171可以设置在壳体11的容置腔内。在一些实施例中,第一麦克风171的振动方向与换能装置12的振动方向之间的夹角可以介于65度至115度之间,这可以减小或避免第一麦克风171随着换能装置12的振动而发生机械共振,进而改善机芯模组10的拾音效果。优选地,第一麦克风171的振动方向与换能装置12的振动方向之间的夹角可以为90度(即彼此垂直)。
在一些实施例中,如图19所示,机芯模组10还可以包括第二麦克风172。第 二麦克风172也可以采集机芯模组10外部的声音。在一些实施例中,第二麦克风172也可以设置在壳体11的容置腔内。在一些实施例中,第二麦克风172的振动方向与第一麦克风171的振动方向之间的夹角可以介于65度至115度之间,使得第二麦克风172和第一麦克风171可以从两个不同的方向接收同一声源发出的声音,进而提高声学装置的降噪能力、提高声学装置的语音通话效果。优选地,第二麦克风172的振动方向与第一麦克风171的振动方向之间的夹角可以为90度(即彼此垂直)。在一些实施例中,第一麦克风171和第二麦克风172可以焊接在同一柔性电路板上,这可以简化机芯模组10的走线结构。
在一些实施例中,声学装置还可以包括处理电路(未示出)。处理电路可以通过第二麦克风172所采集的声音信号对第一麦克风171所采集的声音信号进行降噪处理。例如,处理电路可以将第一麦克风171作为主麦克风,用于采集用户的语音,将第二麦克风172作为辅麦克风,用于采集用户所在环境的环境噪音。第一麦克风171采集的用户的语音可以包含用户所在环境的环境噪音。进一步,处理电路可以从第一麦克风171采集的用户的语音中去除与第二麦克风172采集的用户所在环境的环境噪音相关的信号,从而实现降噪第一麦克风171采集的用户的语音。在一些实施例中,处理电路可以集成在主控电路板40上。
在一些实施例中,如图18和19所示,机芯模组10还可以包括隔板18。隔板18可以设置在第二腔112内,以将辅助器件与第二腔112隔开,使得第二腔112所在空间免受辅助器件的影响。换能装置12可以位于隔板18朝向第一腔111的一侧。仅作为示例,隔板18可以将第二腔112分隔成靠近第一腔111的第一子腔1121和远离第一腔111设置的第二子腔1122。在一些实施例中,部分辅助器件(例如,按钮16、第二麦克风172)可以设置在第二子腔1122内。例如,如图18和19所示,按钮16和/或第二麦克风172可以分别固定在机芯模组10的底板1151和隔板18之间。隔板18可以用于承受用户对按钮16施加的按压力。在一些实施例中,第一麦克风171可以设置在第一子腔1121内。例如,如图19所示,第一麦克风171可以固定在机芯模组10的侧板1152的凹槽内,这可以避免换能装置12在振动的过程中与第一麦克风171发生碰撞,进而增加机芯模组10的稳定性。在一些实施例中,当不包括辅助器件时,机芯模组10可以不包括隔板。例如,当声学装置包括分别位于用户的头部的左侧和右侧的第一机芯模组和第二机芯模组时,第一机芯模组和第二机芯模组中的一个可以包括辅助器件和隔板18,另一个可以不包括辅助器件和隔板18。
在一些实施例中,隔板18可以用于调节第一子腔1121的大小。例如,当声学装置包括分别位于用户的头部的左侧和右侧的第一机芯模组和第二机芯模组,且第一机芯模组和第二机芯模组的出声孔113分别与其第一子腔1121连通,通过调节第一子腔1121的大小,使得第一机芯模组和第二机芯模组的第一子腔1121的体积相同,从而使得第一机芯模组和第二机芯模组分别输出的气导声的频率响应曲线趋于一致,改善声学装置的声学表现力。因为隔板18的上述调节作用,第一机芯模组和第二机芯模组中的辅助器件的体积不会影响第一子腔1121的大小,因此设置在第一机芯模组和第二机芯模组中的辅助器件的体积可以不同。例如,第一机芯模组和第二机芯模组分别设置有按钮16(如图18所示)和第二麦克风172(如图19所示)时,按钮16和第二麦克风172的体积可以不同。在一些实施例中,当第一机芯模组和第二机芯模组中的一个包括辅助器件,另一个不包括辅助器件时,不包括辅助器件的机芯模组也可以包括隔板,以调节第一子腔1121的大小,使得第一机芯模组和第二机芯模组的第一子腔1121的体积相同。在另一些实施例中,当第一机芯模组和第二机芯模组中的一个包括辅助器件,另一个不包括辅助器件时,不包括辅助器件的机芯模组可以不包括隔板,在这种情况下,可以通过其他方法(例如设置填充物)调节不包括辅助器件的机芯模组的第二腔112的大小,使得不包括辅助器件的机芯模组的第二腔112的大小与包括辅助器件的机芯模组的第一子腔1121的体积相同。需要说明的是,受制于加工精度、组装精度等不可抗力的因素,上述相同的体积,可以允许两者(例如,第一机芯模组和第二机芯模组的第一子腔1121,不包括辅助器件的机芯模组的第二腔112与包括辅助器件的机芯模组的第一子腔1121)的体积之间存在一定的差值,例如小于或者等于10%。
在一些实施例中,第二子腔1122内可以填充有胶体。胶体在第二子腔1122的填充率可以大于或者等于90%,使得第二子腔1122尽可能为实心,这可以减少或避免空心的第二子腔1122与第一子腔1121发生声学共振,进而改善声学装置的声学表现力。仅作为示例,填充的胶体可以为光固化胶。光固化胶可以在光照作用下固化。在一些实施例中,机芯模组中的其他部件可以通过胶体(例如,光固化胶)固定。例如,可以使用热熔柱将隔板18与第二壳体115预固定,然后,在预固定后的隔板18与第二壳体115之间填充光固化胶。又例如,侧板1152的凹槽容纳第二麦克风172之后可以填充光固化胶进行固定。在一些实施例中,隔板18可以由透光材料制成。
在一些实施例中,结合图18(或者图19)、图3和图5,换能装置12的导磁罩1221背离第一腔111的外端面与隔板18间隔设置,这可以避免两者在换能装置12 振动过程中相撞。另外,导磁罩1221的外端面的中心区域与隔板18的距离可以大于导磁罩1221的外端面的边缘区域与隔板18的距离,即相比于边缘区域,第一子腔1121的中间区域的空间更大,这便于第一子腔1121内空气的流动。仅作为示例,导磁罩1221的底板1223面向隔板18的一面的中心区域可以朝向背离隔板18的方向凹陷为弧面和/或隔板18面向导磁罩1221的一面的中心区域可以朝向背离导磁罩1221的方向凹陷为弧面。
应当注意的是,上述有关辅助器件、处理电路以及隔板等部件及其设置方式的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本申请的指导下可以对这些部件及其设置方式进行各种修正和改变。例如,机芯模组10(例如,第一机芯模组、第二机芯模组)还可以不设置辅助器件。这些修正和改变仍在本申请的范围之内。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本申请中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算 机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和 描述的实施例。

Claims (24)

  1. 一种声学装置,包括:
    壳体,被配置为形成容置腔;
    换能装置,设置在所述容置腔内并与所述壳体连接,使得所述壳体在所述换能装置的作用下产生骨导声;以及
    振膜,连接在所述换能装置与所述壳体之间,将所述容置腔分隔为第一腔和第二腔;
    其中,所述壳体设有:
    与所述第一腔连通的至少一个泄压孔,
    与所述第二腔连通的至少一个调声孔,至少部分所述泄压孔与至少部分所述调声孔相邻设置,以及
    与所述第二腔连通的出声孔,在所述换能装置与所述壳体相对运动的过程中所述振膜产生经所述出声孔向外传输的气导声。
  2. 根据权利要求1所述的声学装置,其中
    所述至少一个泄压孔包括第一泄压孔和第二泄压孔,
    所述第一泄压孔相较于所述第二泄压孔远离所述出声孔设置,以及
    所述第一泄压孔的出口端的面积大于所述第二泄压孔的出口端的面积。
  3. 根据权利要求2所述的声学装置,其中
    所述至少一个调声孔包括第一调声孔和第二调声孔,
    所述第一调声孔相较于所述第二调声孔远离所述出声孔设置,
    所述第一调声孔的出口端的面积大于所述第二调声孔的出口端的面积,
    所述第一泄压孔与所述第一调声孔相邻设置,以及
    所述第二泄压孔与所述第二调声孔相邻设置。
  4. 根据权利要求2所述的声学装置,其中
    所述至少一个泄压孔进一步包括第三泄压孔,
    所述第一泄压孔相较于所述第三泄压孔远离所述出声孔设置,以及
    所述第二泄压孔的出口端的面积大于所述第三泄压孔的出口端的面积。
  5. 根据权利要求2所述的声学装置,其中所述出声孔和所述第一泄压孔位于所述换能装置的相对两侧。
  6. 根据权利要求1所述的声学装置,其中相邻设置的泄压孔和调声孔之间的距离小于或者等于2mm。
  7. 根据权利要求1所述的声学装置,其中相邻设置的泄压孔和调声孔中泄压孔的出口端的面积大于调声孔的出口端的面积。
  8. 根据权利要求1所述的声学装置,其中相邻设置的泄压孔和调声孔的出口端分别盖设有第一声阻网和第二声阻网,所述第一声阻网的孔隙率大于所述第二声阻网的孔隙率。
  9. 根据权利要求8所述的声学装置,其中
    所述声学装置进一步包括防护罩,
    所述防护罩罩盖设在所述相邻设置的泄压孔和调声孔的外围,以及
    分别盖设于所述相邻设置的泄压孔和调声孔的出口端的第一声阻网和第二声阻网设置在所述防护罩靠近所述壳体的一侧。
  10. 根据权利要求9所述的声学装置,其中
    所述壳体的外表面设置有容置区,
    所述容置区内形成有凸台,
    所述相邻设置的调声孔和泄压孔的出口端位于所述凸台的顶部,以及
    所述凸台与所述容置区的侧壁间隔设置形成环绕所述凸台的容置槽。
  11. 根据权利要求10所述的声学装置,其中所述防护罩包括覆盖所述相邻设置的泄压孔和调声孔的主盖板,所述第一声阻网和所述第二声阻网固定在所述主盖板朝向所述泄压孔和所述调声孔的一侧。
  12. 根据权利要求11所述的声学装置,其中
    所述防护罩包括环形侧板,
    所述环形侧板与所述主盖板的边缘弯折连接,以及
    所述环形侧板插入所述容置槽,并通过所述容置槽内的胶体与所述壳体固定连接。
  13. 根据权利要求12所述的声学装置,其中
    所述声学装置进一步包括第一环状胶片,
    所述第一环状胶片环绕所述相邻设置的泄压孔和调声孔设置,以及
    所述第一声阻网和所述第二声阻网通过所述第一环状胶片固定在所述凸台的顶部。
  14. 根据权利要求12所述的声学装置,其中
    所述声学装置进一步包括第二环状胶片,
    所述第二环状胶片环绕所述相邻设置的泄压孔和调声孔设置,以及
    所述第一声阻网和所述第二声阻网通过所述第二环状胶片固定在所述主盖板上。
  15. 根据权利要求1所述的声学装置,其中所述声学装置包括隔板和辅助器件,其中:
    所述隔板设置在所述第二腔内并将所述第二腔分隔成靠近所述第一腔的第一子腔和远离所述第一腔的第二子腔,
    所述出声孔与所述第一子腔连通,
    所述辅助器件包括按钮和麦克风中的至少一个,以及
    部分辅助器件设置在所述第二子腔内。
  16. 根据权利要求15所述的声学装置,其中所述第二子腔内填充有胶体。
  17. 根据权利要求1所述的声学装置,其中
    所述声学装置进一步包括第一麦克风,
    所述第一麦克风设置在所述容置腔内,并能够采集所述声学装置外部的声音,以及
    所述第一麦克风的振动方向与所述换能装置的振动方向之间的夹角为65-115度。
  18. 根据权利要求17所述的声学装置,其中所述第一麦克风的振动方向与所述换能装置的振动方向彼此垂直。
  19. 根据权利要求18所述的声学装置,其中所述声学装置进一步包括第二麦克风,所述第二麦克风的振动方向与所述第一麦克风的振动方向之间的夹角为65-115度。
  20. 根据权利要求19所述的声学装置,其中所述第二麦克风的振动方向与所述第一麦克风的振动方向彼此垂直。
  21. 根据权利要求19所述的声学装置,其中所述声学装置进一步包括处理电路,所述处理电路通过所述第二麦克风所采集的声音信号对所述第一麦克风所采集的声音信号进行降噪处理。
  22. 根据权利要求1所述的声学装置,其中所述骨导声的频响曲线具有至少一个谐振峰,所述至少一个谐振峰的峰值谐振频率满足关系式:
    |f1-f2|/f1≤50%,
    其中,f1为所述振膜与所述换能装置和所述壳体连接时所述谐振峰的峰值谐振频率,f2为所述振膜与所述换能装置和所述壳体中任意一者断开连接时所述谐振峰的峰值谐振频率。
  23. 根据权利要求1所述的声学装置,其中
    所述声学装置进一步包括与所述壳体连接的导声部件,
    所述导声部件设置有导声通道,
    所述导声通道与所述出声孔连通并用于引导所述气导声,以及
    所述导声通道的出口端的面积大于所述至少一个泄压孔中每一个的出口端的面积。
  24. 根据权利要求23所述的声学装置,其中所述导声通道的出口端盖设有第三声阻网,所述第三声阻网的孔隙率大于盖设于至少部分泄压孔的出口端的第一声阻网的孔隙率。
PCT/CN2021/095504 2021-04-09 2021-05-24 声学装置 WO2022213457A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2023534195A JP2023552427A (ja) 2021-04-09 2021-05-24 音響装置
KR1020237019017A KR20230104247A (ko) 2021-04-09 2021-05-24 음향장치
EP21935678.9A EP4213494A4 (en) 2021-04-09 2021-05-24 ACOUSTIC DEVICE
CN202180066638.3A CN116325783A (zh) 2021-04-09 2021-05-24 声学装置
TW111112855A TWI832198B (zh) 2021-04-09 2022-04-01 聲學裝置
US18/301,281 US20230254634A1 (en) 2021-04-09 2023-04-17 Acoustic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110383452.2A CN115209287A (zh) 2021-04-09 2021-04-09 一种耳机
CN202110383452.2 2021-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/301,281 Continuation US20230254634A1 (en) 2021-04-09 2023-04-17 Acoustic devices

Publications (1)

Publication Number Publication Date
WO2022213457A1 true WO2022213457A1 (zh) 2022-10-13

Family

ID=83545032

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2021/095304 WO2022213456A1 (zh) 2021-04-09 2021-05-21 声学输出装置
PCT/CN2021/095504 WO2022213457A1 (zh) 2021-04-09 2021-05-24 声学装置
PCT/CN2021/095546 WO2022213458A1 (zh) 2021-04-09 2021-05-24 一种声学输出装置
PCT/CN2021/095996 WO2022213459A1 (zh) 2021-04-09 2021-05-26 声学输出装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095304 WO2022213456A1 (zh) 2021-04-09 2021-05-21 声学输出装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/095546 WO2022213458A1 (zh) 2021-04-09 2021-05-24 一种声学输出装置
PCT/CN2021/095996 WO2022213459A1 (zh) 2021-04-09 2021-05-26 声学输出装置

Country Status (8)

Country Link
US (4) US20230254634A1 (zh)
EP (4) EP4224884A4 (zh)
JP (4) JP2024502052A (zh)
KR (4) KR20230110593A (zh)
CN (5) CN115209287A (zh)
BR (3) BR112023009839A2 (zh)
MX (1) MX2023007459A (zh)
WO (4) WO2022213456A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796724B (zh) * 2021-07-09 2023-03-21 宏碁股份有限公司 揚聲器模組
USD1006782S1 (en) * 2021-12-31 2023-12-05 Klatre innovation Co., Ltd. Bone conduction earphone
USD1012887S1 (en) * 2022-03-29 2024-01-30 Suzhou Thor Electronic Technology Co., Ltd. Bone conduction headphone
CN116506776B (zh) * 2023-06-26 2023-10-31 苏州墨觉智能电子有限公司 一种骨气复合发声装置及可穿戴设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015290A (ko) * 2003-08-05 2005-02-21 류강수 기도 및 골도 스피커
US20170164088A1 (en) * 2014-06-26 2017-06-08 Temco Japan Co., Ltd. Bone conduction speaker
CN110650407A (zh) * 2019-10-25 2020-01-03 广州市翡声声学科技有限公司 一种多级调音耳机及视听设备
CN112087700A (zh) * 2020-08-12 2020-12-15 深圳市韶音科技有限公司 扬声器组件、发声装置以及纱网组件
CN112437379A (zh) * 2020-11-13 2021-03-02 北京安声浩朗科技有限公司 入耳式耳机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931837A (zh) * 2010-08-06 2010-12-29 深圳市雷富溢电子科技有限公司 一种骨传导和空气传导振子及其耳机
CN103079151A (zh) * 2012-12-25 2013-05-01 苏州恒听电子有限公司 一种新型骨导式受话器
CN106303861B (zh) * 2014-01-06 2018-06-12 深圳市韶音科技有限公司 一种能够抑制漏音的骨传导扬声器
WO2016103983A1 (ja) * 2014-12-24 2016-06-30 株式会社テムコジャパン 骨伝導ヘッドホン
CN106937221B (zh) * 2015-08-13 2019-07-19 深圳市韶音科技有限公司 骨传导扬声器
CN204993827U (zh) * 2015-09-09 2016-01-20 歌尔声学股份有限公司 一种扬声器模组
DK3160163T3 (da) * 2015-10-21 2020-08-31 Oticon Medical As Måleanordning til en knogleledningshøreanordning
CN205793186U (zh) * 2016-05-31 2016-12-07 维沃移动通信有限公司 一种耳机
TW201820891A (zh) * 2016-10-26 2018-06-01 日商特摩柯日本股份有限公司 骨傳導喇叭
CN109196875A (zh) * 2017-04-21 2019-01-11 株式会社坦姆科日本 骨传导扬声器单元
CN108882125A (zh) * 2018-08-02 2018-11-23 瑞声科技(新加坡)有限公司 扬声器箱
CN108882126B (zh) * 2018-08-02 2020-07-14 瑞声科技(新加坡)有限公司 扬声器箱
CN208638564U (zh) * 2018-08-02 2019-03-22 瑞声科技(新加坡)有限公司 扬声器箱
KR102167455B1 (ko) * 2019-03-12 2020-10-20 주식회사 이엠텍 골전도 스피커
WO2021000106A1 (zh) * 2019-06-29 2021-01-07 瑞声声学科技(深圳)有限公司 扬声器箱
CN111182426A (zh) * 2020-01-19 2020-05-19 深圳市创想听力技术有限公司 一种骨传导扬声器及复合型扬声器
CN111954142A (zh) * 2020-08-29 2020-11-17 深圳市韶音科技有限公司 一种听力辅助装置
CN112383865B (zh) * 2020-12-11 2022-06-14 苏州索迩电子技术有限公司 一种骨传导发声装置的使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015290A (ko) * 2003-08-05 2005-02-21 류강수 기도 및 골도 스피커
US20170164088A1 (en) * 2014-06-26 2017-06-08 Temco Japan Co., Ltd. Bone conduction speaker
CN110650407A (zh) * 2019-10-25 2020-01-03 广州市翡声声学科技有限公司 一种多级调音耳机及视听设备
CN112087700A (zh) * 2020-08-12 2020-12-15 深圳市韶音科技有限公司 扬声器组件、发声装置以及纱网组件
CN112437379A (zh) * 2020-11-13 2021-03-02 北京安声浩朗科技有限公司 入耳式耳机

Also Published As

Publication number Publication date
EP4224884A1 (en) 2023-08-09
JP2024505641A (ja) 2024-02-07
CN116325787A (zh) 2023-06-23
EP4213494A1 (en) 2023-07-19
EP4213494A4 (en) 2024-05-01
EP4228282A1 (en) 2023-08-16
JP2023552427A (ja) 2023-12-15
JP2024502052A (ja) 2024-01-17
WO2022213459A1 (zh) 2022-10-13
CN116325783A (zh) 2023-06-23
US20230276166A1 (en) 2023-08-31
US20230276178A1 (en) 2023-08-31
WO2022213458A1 (zh) 2022-10-13
US20230254634A1 (en) 2023-08-10
BR112023009839A2 (pt) 2023-11-07
CN116325801A (zh) 2023-06-23
CN116530097A (zh) 2023-08-01
BR112023010142A2 (pt) 2024-02-06
US20230319460A1 (en) 2023-10-05
EP4228283A4 (en) 2024-03-27
WO2022213456A1 (zh) 2022-10-13
CN115209287A (zh) 2022-10-18
EP4228282A4 (en) 2024-05-01
EP4228283A1 (en) 2023-08-16
KR20230104247A (ko) 2023-07-07
EP4224884A4 (en) 2024-05-01
JP2024502888A (ja) 2024-01-23
KR20230118640A (ko) 2023-08-11
MX2023007459A (es) 2023-07-04
TW202316869A (zh) 2023-04-16
BR112023009993A2 (pt) 2023-10-17
TW202241143A (zh) 2022-10-16
KR20230110593A (ko) 2023-07-24
KR20230117405A (ko) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2022213457A1 (zh) 声学装置
TW202306395A (zh) 聲學輸出裝置
CN214708013U (zh) 一种耳机
CN214708014U (zh) 一种耳机
CN214707999U (zh) 一种耳机
CN214707994U (zh) 一种耳机
CN214708008U (zh) 一种耳机
TWI832198B (zh) 聲學裝置
CN115209268A (zh) 一种耳机
CN115209280A (zh) 一种耳机
CN214708010U (zh) 一种耳机
CN214708002U (zh) 一种耳机
CN214708015U (zh) 一种耳机
CN214960049U (zh) 一种耳机
CN214960048U (zh) 一种耳机
CN214708003U (zh) 一种耳机
CN214708009U (zh) 一种耳机
CN214707997U (zh) 一种耳机
CN214708000U (zh) 一种耳机
CN214708017U (zh) 一种耳机
CN214708016U (zh) 一种耳机
CN214708001U (zh) 一种耳机
CN214707998U (zh) 一种耳机
CN214708012U (zh) 一种耳机
CN214708019U (zh) 一种耳机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021935678

Country of ref document: EP

Effective date: 20230413

ENP Entry into the national phase

Ref document number: 20237019017

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023534195

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE