WO2022211121A1 - Laminated structure, dry film, cured product, and electronic component - Google Patents

Laminated structure, dry film, cured product, and electronic component Download PDF

Info

Publication number
WO2022211121A1
WO2022211121A1 PCT/JP2022/016968 JP2022016968W WO2022211121A1 WO 2022211121 A1 WO2022211121 A1 WO 2022211121A1 JP 2022016968 W JP2022016968 W JP 2022016968W WO 2022211121 A1 WO2022211121 A1 WO 2022211121A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin layer
resin composition
laminated structure
carboxyl group
Prior art date
Application number
PCT/JP2022/016968
Other languages
French (fr)
Japanese (ja)
Inventor
ハヌル チャ
大地 岡本
英和 宮部
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN202280025323.9A priority Critical patent/CN117120929A/en
Priority to JP2023511759A priority patent/JPWO2022211121A1/ja
Priority to KR1020237035328A priority patent/KR20230165789A/en
Publication of WO2022211121A1 publication Critical patent/WO2022211121A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to laminated structures, dry films, cured products suitable for use in semiconductor packages and the like, and electronic components using these.
  • B-HAST Biased HAST
  • crack resistance in thermal cycles is one of the long-term reliability tests. I have an exam.
  • a photocurable / thermosetting resin composition excellent in B-HAST resistance a compound (a) having two or more phenolic hydroxyl groups in one molecule and an alkylene oxide (b) or a cyclocarbonate compound (c)
  • a resin composition containing Patent Document 1
  • Cited Document 1 contains a carboxyl group-containing photosensitive resin having a rigid skeleton, it is excellent in B-HAST resistance. was not always sufficient.
  • an object of the present invention is to provide a laminated structure, a dry film, a cured product, and an electronic component that are not only capable of achieving high levels of the contradictory properties of B-HAST resistance and crack resistance, but also have excellent photopatternability. That's what it is.
  • the present inventors have made intensive studies to solve the above problems, and by forming a laminate of two layers with different compositions, it is possible to achieve both B-HAST resistance and crack resistance, which are contradictory properties, at a high level. It was confirmed. However, in a laminated structure in which a layer suitable for B-HAST resistance and a layer suitable for crack resistance are simply laminated, since it is difficult to control the sensitivity of each layer, it is difficult to obtain good photopatternability. It has been found. In recent years, in the use of semiconductor packages, excellent photopatternability that enables the opening diameter of solder resist openings (SRO) to be 50 ⁇ m or less is being sought.
  • SRO solder resist openings
  • the present invention was completed as a result of continuing research and development.
  • the laminated structure of the present invention comprises two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated.
  • a laminated structure having The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
  • the resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
  • a PEB POST EXPOSURE BAKE
  • the definitions of glossiness sensitivity and residual sensitivity are as follows. After exposing the two resin layers from the resin layer (B) side through a step tablet and performing the PEB process, the coating thickness of the two resin layers before development of the formed pattern was 100. %, the gloss sensitivity is defined as the largest value of the number of steps at which 95% or more of the coating thickness remains after the PEB process after the exposure and the coating thickness before the development. is defined as 100%, the maximum value of the number of steps at which the coating thickness becomes 5% or less after the development was defined as the residual sensitivity.
  • the coating thickness of the formed pattern conforms to JIS K 5600-1-7: 2014, and is obtained as the measured value obtained as the thickness of the entire coating thickness and the thickness of the substrate. It was measured as a difference from the measured value.
  • the measurement method is a mechanical measurement method, using a thickness gauge (DIGIMICRO MF-501, manufactured by Nikon Corporation), exposing the two resin layers from the resin layer (B) side through a step tablet, After performing the PEB process at 90 ° C.
  • the coating film thickness of the formed pattern before development, and the coating film of the remaining coating film formed after the PEB process after the exposure and after the development The thickness is measured, and when the coating film before development is taken as 100%, the largest value of the number of steps at which 95% or more of the coating film remains after the development is taken as the gloss sensitivity, and the coating film before development is defined as the gloss sensitivity. When the thickness is taken as 100%, the maximum value of the number of steps at which the coating thickness becomes 5% or less after the development is defined as the residual sensitivity.
  • the thickness of the resin layer (B) is 2 ⁇ m or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is 10 to 10 ⁇ m. It is preferably 80 ⁇ m, more preferably 20-60 ⁇ m.
  • the dry film of the present invention is in contact with the laminated structure of the present invention and at least one surface of the surface of the resin layer (B) and the surface of the resin layer (A) of the laminated structure. and a film provided.
  • the cured product of the present invention is characterized by being obtained by curing the laminated structure of the present invention or the laminated structure of the dry film of the present invention.
  • the electronic component of the present invention is characterized by having the cured product of the present invention.
  • the laminate structure of the present invention is a laminate having two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated.
  • the resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
  • the resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator, After exposing the two resin layers from the resin layer (B) side through a step tablet and performing the PEB process, the coating thickness of the formed pattern and the PEB process were performed after the exposure.
  • the difference between the glossiness sensitivity and the remaining sensitivity obtained by measuring the coating thickness of the pattern formed by development is 20 steps or less, more preferably 14 steps or less.
  • the laminated structure When the laminated structure is formed on a substrate, the layer in contact with the substrate is the resin layer (A), and the surface of the resin layer (A) opposite to the surface in contact with the substrate is the resin layer (B). That is, the laminated structure has a structure in which the resin layer (A) and the resin layer (B) are laminated in this order on the substrate.
  • the base material include a printed wiring board, a flexible printed wiring board, and the like on which a circuit is formed in advance using copper or the like.
  • the resin layer (B) is a resin composition (b) containing an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, and a thermosetting resin.
  • the resin composition (b) of the resin layer (B) containing these components has photosensitivity due to the reaction of the photopolymerization initiator with the alkali-soluble resin by light irradiation, and the photobase of the polymerization initiator by heating. It is a photosensitive thermosetting resin composition that can be thermally cured with its function as a generator serving as a catalyst.
  • the resin layer (A) is composed of a resin composition (a) containing a carboxyl group-containing resin and a thermosetting resin and substantially free of a photopolymerization initiator.
  • substantially free of photopolymerization initiator means that the amount of photopolymerization initiator is less than 0.5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin contained in the resin composition (a). Since the resin composition (a) of the resin layer (A) containing these components does not contain a photopolymerization initiator, it does not have photosensitivity in a single layer, but it is laminated in contact with the resin layer (B).
  • the resin layer (A) Since active species such as radicals generated from the photopolymerization initiator contained in the resin layer (B) diffuse into the resin layer (A), the resin layer (A) also has photosensitivity. ing. Moreover, it can be thermoset by heating. Therefore, in the laminated structure, a predetermined pattern can be collectively formed on the resin layer (B) and the resin layer (A) by development. In particular, when the PEB process is performed after the exposure, the effect of batch formation of patterns is remarkable due to thermal diffusion at that time.
  • a resin layer (A) consists of a resin composition (a). It is desirable that the resin composition (a) of the resin layer (A) not only functions as an adhesive layer with the base material, but also has properties capable of coping with formation of various circuit patterns. Therefore, the resin composition (a) of the resin layer (A) is added with a resin having a carboxyl group, especially a carboxyl group-containing resin, and a thermosetting component using a base generated from a base generator as a catalyst by heating after exposure. It is preferably a photosensitive thermosetting resin composition that can be developed by reacting and removing the unexposed portions with an alkaline solution.
  • carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A) include the following compounds.
  • Carboxyl group-containing resins obtained by copolymerizing unsaturated carboxylic acids such as (meth)acrylic acid and unsaturated group-containing compounds such as styrene, ⁇ -methylstyrene, lower alkyl (meth)acrylates, and isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; Carboxyl group-containing urethane resins obtained by polyaddition reaction of diol compounds such as polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • diol compounds such as polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates, polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, and bisphenol A-based A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with the terminal of a urethane resin obtained by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing urethane resin produced by a polyaddition reaction of a meth)acrylate or its partial acid anhydride modified product, a carboxyl group-containing dialcohol compound and a diol compound.
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane compound with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
  • reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide and reacting an unsaturated group-containing monocarboxylic acid to obtain a reaction product
  • alkylene oxide such as ethylene oxide or propylene oxide
  • unsaturated group-containing monocarboxylic acid to obtain a reaction product
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a substance.
  • (11) Obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with a monocarboxylic acid containing an unsaturated group.
  • a carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
  • an epoxy resin having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol;
  • a carboxyl group-containing resin having at least one of an amide structure and an imide structure A maleimide or maleimide derivative such as N-phenylmaleimide or N-benzylmaleimide, an unsaturated carboxylic acid such as (meth)acrylic acid, and an unsaturated group-containing compound having a hydroxyl group such as hydroxyalkyl (meth)acrylate , styrene, ⁇ -methylstyrene, ⁇ -chlorostyrene, a carboxyl group-containing copolymer resin having an unsaturated group-containing compound having an aromatic ring such as vinyltoluene as a monomer, glycidyl (meth) acrylate, ⁇ -methyl
  • the carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A) can be used without being limited to those listed above. may be used.
  • the above carboxyl group-containing resins (10) which is an ethylene oxide (EO)/propylene oxide (PO) modified resin starting from a phenolic resin and (11) which is an ethylene carbonate/propylene carbonate modified resin starting from a phenolic resin have photosensitive groups. and the developing unit having a carboxyl group are independent of each other, so that even after the photosensitive groups are crosslinked by exposure, a good contrast between the exposed and unexposed areas can be obtained without affecting the developability of the developing unit having a carboxyl group. This is preferable because it facilitates sensitivity adjustment.
  • the carboxyl group-containing resins (10) and (11) may be used in combination with the carboxyl group-containing urethane resins (2) to (6).
  • the amount of the carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A) is 10 to 70% by mass based on the total solid content of the resin composition (a). By making it 10% by mass or more, the strength of the coating film can be improved. Moreover, by making it 70% by mass or less, the viscosity becomes appropriate and the workability improves.
  • the resins (10) and (11) are preferably 30 to 100% by mass, more preferably 70 to 100% by mass, in the carboxyl group-containing resin of the resin layer (A). 100% by mass. Within this range, it is possible to narrow the difference between glossiness sensitivity and residual sensitivity to 20 steps or less at a constant exposure amount.
  • the resin composition (a) of the resin layer (A) does not substantially contain a photopolymerization initiator, from the viewpoint of adjusting the gloss sensitivity and residual sensitivity of the resin laminate structure.
  • substantially free of photopolymerization initiator means that the amount of photopolymerization initiator is less than 0.5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin contained in the resin composition (a). This is because the resin composition (b) of the resin layer (B) functions as a photopolymerization initiator in order to collectively form a pattern in the laminated structure of the resin layer (B) and the resin layer (A) by development. It is sufficient to cure the resin laminate because it contains the photobase generator having the If the resin composition (a) of the resin layer (A) contains a photopolymerization initiator, the residual sensitivity tends to increase, adversely affecting fine patterning.
  • thermosetting resin contained in the resin composition (a) of the resin layer (A) is a resin having a functional group capable of thermal curing reaction.
  • Thermosetting resins are not particularly limited, and include epoxy resins, oxetane compounds, compounds having two or more thioether groups in the molecule, namely amino resins such as episulfide resins, melamine resins, benzoguanamine resins, melamine derivatives, and benzoguanamine derivatives. , blocked isocyanate compounds, cyclocarbonate compounds, bismaleimides, carbodiimides and the like can be used, and these may be used in combination.
  • the epoxy resin is a resin having an epoxy group, and any conventionally known one can be used, including a bifunctional epoxy resin having two epoxy groups in the molecule and a polyfunctional epoxy resin having many epoxy groups in the molecule. etc. In addition, a hydrogenated bifunctional epoxy resin may be used.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, and cresol novolak type epoxy resin.
  • Epoxy resins bisphenol A novolak type epoxy resins, biphenyl type epoxy resins, naphthol type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, alicyclic epoxy resins, aliphatic chain Epoxy resins, phosphorus-containing epoxy resins, anthracene-type epoxy resins, norbornene-type epoxy resins, adamantane-type epoxy resins, fluorene-type epoxy resins, aminophenol-type epoxy resins, aminocresol-type epoxy resins, alkylphenol-type epoxy resins, and the like are used. These epoxy resins can be used singly or in combination of two or more.
  • the epoxy resin may be solid epoxy resin, semi-solid epoxy resin, or liquid epoxy resin.
  • solid epoxy resin refers to an epoxy resin that is solid at 40°C
  • semi-solid epoxy resin refers to an epoxy resin that is solid at 20°C and liquid at 40°C
  • a liquid epoxy resin means an epoxy resin that is liquid at 20°C.
  • EPICLON HP-4700 naphthalene type epoxy resin
  • EXA4700 tetrafunctional naphthalene type epoxy resin
  • NC-7000 polyfunctional solid epoxy resin containing naphthalene skeleton
  • EPPN-502H trisphenol epoxy resin
  • Epoxidized products of condensation products of phenols and aromatic aldehydes having phenolic hydroxyl groups (trisphenol-type epoxy resins); Dicyclopentadiene aralkyl type epoxy resin such as EPICLON HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by DIC; Biphenyl such as Nippon Kayaku NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) Aralkyl-type epoxy resins; biphenyl/phenol novolac-type epoxy resins such as Nippon Kayaku NC-3000L; DIC EPICLON N660, EPICLON N690, Nippon Kayaku EOCN-104S and other novolac-type epoxy resins; biphenyl type epoxy resins such as YX-4000 manufactured by Nittetsu Chemical &Materials; phosphorus-containing epoxy resins such as TX0712 manufactured by Nippon Steel Chemical &Materials;
  • Semi-solid epoxy resins include EPICLON 860, EPICLON 900-IM, EPICLON EXA-4816, EPICLON EXA-4822 manufactured by DIC, Epotato YD-134 manufactured by Nippon Steel Chemical & Materials, jER834 and jER872 manufactured by Mitsubishi Chemical, and Sumitomo Chemical.
  • bisphenol A type epoxy resins such as ELA-134 manufactured by DIC Corporation; naphthalene type epoxy resins such as EPICLON HP-4032 manufactured by DIC Corporation; and phenol novolac type epoxy resins such as EPICLON N-740 manufactured by DIC Corporation.
  • Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin. , and alicyclic epoxy resins.
  • the oxetane compounds include bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, 1,4-bis[(3-methyl -3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3-oxetanyl )
  • polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl)methyl methacrylate, (3-ethyl-3-oxetanyl)methyl methacrylate and their oligomers or copolymers, oxetane alcohols and novolak resins, Examples include poly(p-hydroxystyrene), cardo-type bisphenol
  • the episulfide resin examples include bisphenol A type episulfide resin.
  • an episulfide resin or the like obtained by replacing the oxygen atom of the epoxy group of the epoxy resin with a sulfur atom by using a similar synthesis method can also be used.
  • thermosetting resins it is preferable to use epoxy resin. Further, at least one of solid epoxy resins and semi-solid epoxy resins is preferable, since a cured product having a high glass transition temperature (Tg) and excellent crack resistance can be obtained.
  • epoxy resin aromatic epoxy resins are preferable from the viewpoint of desirable physical properties of the cured product, and among them, naphthalene-type epoxy resins and biphenyl-type epoxy resins are more preferable.
  • the aromatic epoxy resin means an epoxy resin having an aromatic ring skeleton in its molecule.
  • the molecular weight of the thermosetting resin contained in the resin composition (a) of the resin layer (A) is preferably a weight average molecular weight of 100 to 2,000 in order to adjust the developability and properties of the cured coating film.
  • a component with a low molecular weight that is, a weight-average molecular weight (Mw) of 100 to 1,000
  • Mw weight-average molecular weight
  • the residual sensitivity step number can be increased.
  • an epoxy resin having a weight-average molecular weight of 1,000 or less is used to prevent the step number of remaining sensitivity from becoming too large.
  • thermosetting resin can be used singly or in combination of two or more.
  • the mixing ratio of the thermosetting resin is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, based on the total amount of the resin composition (a) in terms of solid content, and 19 to It is more preferably 40% by mass.
  • the resin having a carboxyl group and the thermosetting component are subjected to an addition reaction by heating after exposure using the base generated from the base generator as a catalyst. It is a photosensitive thermosetting resin composition that can be developed by removing a portion with an alkaline solution. This eliminates the need to add a (meth)acrylate monomer, which is necessary in a photosensitive resin composition utilizing a polymerization reaction by radicals generated from a conventional photoradical polymerization initiator.
  • a (meth)acrylate monomer may be blended into the resin composition of the resin layer (A) mainly to adjust the sensitivity of the resin layer (A). For example, about 10 to 100 parts by mass of the (meth)acrylate monomer can be blended with 100 parts by mass of the carboxyl group-containing resin of the resin layer (A).
  • a resin layer (B) consists of a resin composition (b).
  • the resin layer (B) mainly functions as a protective layer for the substrate.
  • the resin composition (b) of the resin layer (B) is capable of radical polymerization by light due to the photopolymerization initiator, and the alkali-soluble resin and the thermosetting component are exposed to light using the base generated from the base generator as a catalyst. It is a photosensitive thermosetting resin composition that can be developed by causing an addition reaction by subsequent heating and removing unexposed portions with an alkaline solution.
  • Examples of the alkali-soluble resin contained in the resin composition (b) of the resin layer (B) include a compound having a phenolic hydroxyl group, a compound having a carboxyl group, and a compound having a phenolic hydroxyl group and a carboxyl group. are used.
  • carboxyl group-containing resins or carboxyl group-containing photosensitive resins which contain a compound having a carboxyl group and are conventionally used as solder resist compositions, can be mentioned.
  • the carboxyl group-containing resin or the carboxyl group-containing photosensitive resin and the compound having an ethylenically unsaturated bond known and commonly used compounds are used.
  • an alkali-soluble resin having an imide ring which is superior in properties such as bending resistance and heat resistance, can be preferably used.
  • the molecular weight of the carboxyl group-containing resin contained in the resin composition (b) of the resin layer (B) is preferably a weight average molecular weight of 1,000 to 10,000 in order to adjust fine patterning properties and surface curability. Within this range, when the gloss sensitivity is controlled by the molecular weight of the carboxyl group-containing resin component, the use of a carboxyl group-containing resin having a low molecular weight, that is, 1,000 to 5,000 reduces the step number of gloss sensitivity.
  • the number of steps of gloss sensitivity can be increased.
  • the alkali-soluble resin having an imide ring which will be described later, has a carboxyl group
  • the gloss sensitivity can be similarly adjusted within the weight-average molecular weight range described above.
  • the alkali-soluble resin having an imide ring has one or more alkali-soluble groups selected from phenolic hydroxyl groups and carboxyl groups, and an imide ring.
  • a well-known and commonly used technique can be used for introducing an imide ring into this alkali-soluble resin. Examples thereof include resins obtained by reacting a carboxylic anhydride component with an amine component and/or an isocyanate component. The imidization may be carried out by thermal imidization or by chemical imidization, or these may be used in combination.
  • examples of the carboxylic acid anhydride component include tetracarboxylic acid anhydrides and tricarboxylic acid anhydrides, but are not limited to these acid anhydrides. Any compound having a physical group and a carboxyl group can be used, including derivatives thereof. Also, these carboxylic acid anhydride components may be used alone or in combination.
  • diamines such as aliphatic diamines and aromatic diamines, polyvalent amines such as aliphatic polyetheramines, diamines having a carboxylic acid, diamines having a phenolic hydroxyl group, and the like can be used. is not limited to Also, these amine components may be used alone or in combination.
  • diisocyanates such as aromatic diisocyanates and their isomers and polymers, aliphatic diisocyanates, alicyclic diisocyanates and their isomers, and other general-purpose diisocyanates can be used. It is not limited. Also, these isocyanate components may be used alone or in combination.
  • the alkali-soluble resin having an imide ring as explained above may have an amide bond.
  • This may be a polyamide-imide obtained by reacting an imidized product having a carboxyl group with an isocyanate and a carboxylic acid anhydride, or may be obtained by other reactions. It may also have other bonds consisting of addition and condensation.
  • a known and commonly used organic solvent can be used.
  • an organic solvent there is no problem as long as it does not react with the carboxylic acid anhydrides, amines, and isocyanates that are raw materials and dissolves these raw materials, and its structure is not particularly limited.
  • aprotic solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, and ⁇ -butyrolactone are preferred because of their high solubility of raw materials.
  • Alkali-soluble resins having at least one alkali-soluble group and an imide ring selected from phenolic hydroxyl groups and carboxyl groups as described above correspond to photolithography processes, and in order to adjust gloss sensitivity and residual sensitivity, Its acid value is preferably 20-200 mgKOH/g, more preferably 60-150 mgKOH/g.
  • the acid value is 20 mgKOH/g or more, the solubility in alkali increases, the developability becomes good, and the degree of crosslinking with the thermosetting component after light irradiation increases, so that sufficient development contrast is obtained. be able to.
  • the acid value is 200 mgKOH/g or less, so-called heat fogging can be suppressed particularly in the PEB process after light irradiation, which will be described later, and the process margin is increased.
  • the molecular weight of this alkali-soluble resin is preferably a mass average molecular weight of 1,000 to 100,000, more preferably 2,000 to 50,000, in order to adjust the developability and properties of the cured coating film.
  • this molecular weight is 1,000 or more, sufficient development resistance and cured physical properties can be obtained after exposure and PEB. Further, when the molecular weight is 100,000 or less, the alkali solubility is increased and the developability is improved.
  • photopolymerization initiator used in the resin composition (b) of the resin layer (B)
  • known and commonly used photopolymerization initiators can be used, such as benzoin compounds, acylphosphine oxide compounds, acetophenone compounds, ⁇ -aminoacetophenone compounds, oxime ester compounds, thioxanthone compounds, and the like.
  • the resin composition (b) of the resin layer (B) can be radically polymerized by light by containing a photopolymerization initiator.
  • a photopolymerization initiator that also functions as a photobase generator is suitable.
  • a photopolymerization initiator and a photobase generator may be used together.
  • the amount of the photopolymerization initiator compounded is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the alkali-soluble resin. When the amount is 0.5 parts by mass or more, the surface curability is improved, and when the amount is 30 parts by mass or less, halation is less likely to occur and good resolution is obtained. More preferably, it is 1.0 to 20 parts by mass.
  • the photobase generator which also functions as a photopolymerization initiator, undergoes a polymerization reaction of the heat-reactive compound described below by changing its molecular structure or by cleaving the molecule upon irradiation with light such as ultraviolet light or visible light.
  • photobase generators also functioning as photopolymerization initiators include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic and compounds having substituents such as group amino groups, nitrobenzylcarbamate groups, alkoxybenzylcarbamate groups, and the like.
  • oxime ester compounds and ⁇ -aminoacetophenone compounds are preferred, and oxime ester compounds are more preferred.
  • ⁇ -aminoacetophenone compounds those having two or more nitrogen atoms are particularly preferred.
  • Any ⁇ -aminoacetophenone compound may be used as long as it has a benzoin ether bond in the molecule and undergoes intramolecular cleavage when exposed to light to generate a basic substance (amine) that acts as a curing catalyst.
  • any compound can be used as the oxime ester compound as long as it is a compound that generates a basic substance upon irradiation with light.
  • the amount of the photobase generator compounded in the resin composition is preferably 1.0 to 40 parts by mass, more preferably 1.0 to 20 parts by mass, per 100 parts by mass of the alkali-soluble resin.
  • the amount is 1.0 parts by mass or more, a good contrast of the development resistance between the light-irradiated area and the non-irradiated area can be obtained.
  • it is 40 parts by mass or less, the properties of the cured product are improved.
  • thermosetting resin The thermosetting resin (b) of the resin layer (B) is an epoxy resin, an oxetane compound, or a compound having two or more thioether groups in the molecule, similar to the thermosetting resin of the resin layer (A) described above. ie, episulfide resins, melamine resins, benzoguanamine resins, melamine derivatives, amino resins such as benzoguanamine derivatives, blocked isocyanate compounds, cyclocarbonate compounds, bismaleimides, carbodiimides, etc., may be used in combination.
  • thermosetting resin (b) of the resin layer (B) may be the same thermosetting resin as the thermosetting resin of the resin layer (A), or may be a different thermosetting resin. Moreover, a thermosetting resin can be used individually by 1 type or in combination of 2 or more types.
  • the blending ratio of the thermosetting resin is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, more preferably 20 to 40% by mass, based on the total amount of the composition in terms of solid content. is more preferred.
  • the resin composition used in the resin layer (A) and the resin layer (B) as described above may optionally contain the following components.
  • coloring agent A coloring agent can be added for the purpose of adjusting sensitivity.
  • known and commonly used colorants such as red, blue, green, yellow, white, and black can be blended, and any of pigments, dyes, and pigments can be used.
  • antioxidants for the purpose of adjusting the sensitivity and improving the properties of the effect paint, known and commonly used additives such as antioxidants, ultraviolet absorbers, finely divided silica, hydrotalcite and silane coupling agents can be added.
  • the thickness of the resin layer (B) is 2 ⁇ m or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is preferably 10 to 80 ⁇ m, preferably 20 to 60 ⁇ m is more preferred.
  • the laminated structure may be formed by forming the resin composition of the resin layer (A) and the resin composition of the resin layer (B) into a dry film on a base material such as a wiring board, or by forming a liquid one.
  • the layers may be coated and formed sequentially.
  • When used as a liquid it may be one-liquid or two-liquid or more, but from the viewpoint of storage stability, it is preferably two-liquid or more.
  • the dry film of the present invention is obtained by coating the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) on the first film, followed by drying. It has a resin layer that is When forming the dry film, first, the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) were diluted with the above organic solvent to adjust the viscosity to an appropriate value. Then, it is coated on a carrier film to a uniform thickness by a comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater, spray coater, or the like.
  • the applied composition is usually dried at a temperature of 40 to 130° C. for 1 to 30 minutes to form a resin layer.
  • the thickness of the coating is not particularly limited, but is generally selected appropriately within the range of 5 to 150 ⁇ m, preferably 15 to 60 ⁇ m, in terms of thickness after drying.
  • a plastic film is used as the first film, and for example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used.
  • the thickness of the first film is not particularly limited, but is generally selected appropriately within the range of 10 to 150 ⁇ m. More preferably, it is in the range of 15 to 130 ⁇ m.
  • the adhesion of dust to the surface of the film was confirmed.
  • a peelable cover film on the surface of the membrane.
  • the peelable second film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, or the like can be used.
  • any film may be used as long as it has an adhesive strength smaller than that between the resin layer and the first film when the cover film is peeled off.
  • the resin composition (b) of the resin layer (B) and the resin composition (a) of the resin layer (A) are coated on the second film and dried to obtain a laminated individual structure. may be formed and the first film may be laminated on the surface thereof. That is, in the production of the dry film in the present invention, the first film and the second Either of the two films may be used.
  • the resin composition of the resin layer (A) and the resin composition of the resin layer (B) are, for example, adjusted to a viscosity suitable for the coating method using the above organic solvent, and then coated on the substrate by a dip coating method, a flow After applying by a method such as coating method, roll coating method, bar coating method, screen printing method, curtain coating method, etc., the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C. , a tack-free resin layer can be formed.
  • the layer of the composition of the present invention is placed on the substrate by a laminator or the like so as to be in contact with the substrate.
  • a resin layer can be formed by peeling off the carrier film after laminating.
  • the substrate examples include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, and copper-clad laminates of all grades (FR-4, etc.) Plates, metal substrates, polyimide films, PET films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
  • PEN polyethylene naphthalate
  • Volatilization drying performed after applying the resin composition to the substrate or the first film of the dry film can be performed by a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, etc. and a method in which the hot air in the dryer is brought into contact with the counter current, and a method in which the support is blown from a nozzle). Further, the heating performed in the PEB process and the post-curing process, which will be described later, can be performed using the hot air circulating drying furnace or the like.
  • a dry film is formed on a base material for electronic parts, such as a printed wiring board, by peeling off the first film, and is cured by exposure and alkali development. After alkali development, post-curing is performed as necessary. Without using a dry film, the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) are coated and formed on the substrate, and then the cured product is obtained by exposure and alkali development. be done. After alkali development, post-curing is performed as necessary.
  • the photobase generator contained in the resin composition (b) of the resin layer (B) is activated in a negative pattern by irradiation with active energy rays to cure the exposed portion.
  • a photopolymerization initiator or photobase generator functioning as a photobase generator is activated in a negative pattern to generate a base.
  • the exposure machine used in this process includes a direct drawing machine, an exposure machine equipped with a metal halide lamp, a light irradiation machine equipped with a (ultra) high pressure mercury lamp, a light irradiation machine equipped with a mercury short arc lamp, or a (ultra)
  • a direct drawing apparatus using an ultraviolet lamp such as a high-pressure mercury lamp can be used.
  • a mask for patternwise exposure is a negative mask.
  • active energy rays used for exposure laser light or scattered light having a maximum wavelength in the range of 350 to 450 nm is preferably used. By setting the maximum wavelength within this range, the photobase generator can be efficiently activated.
  • the amount of exposure differs depending on the film thickness, etc., it is usually 100 to 1500 mJ/cm 2 .
  • the resin composition (a) of the laminated resin layer (A) and the resin composition (b) of the resin layer (B) are exposed (light irradiation) to form an exposed portion (light irradiated portion). hardens.
  • the light-irradiated portion is cured by activating the photobase generator contained in the resin layer by light irradiation in a negative pattern.
  • the photobase generator is destabilized by the base generated in the light irradiation portion, and the base chemically proliferates, so that the deep portion of the resin layer can be fully cured.
  • an exposure device used for light irradiation any device that irradiates ultraviolet rays in the range of 350 to 450 nm may be used.
  • the exposed portion is cured by heating the resin layer after exposure (light irradiation).
  • the base generated in the light irradiation step can sufficiently cure deep portions of the resin layer.
  • the heating temperature is, for example, 80-140.degree.
  • the heating time is, for example, 2 to 140 minutes.
  • Curing of the resin composition in the present invention is, for example, a ring-opening reaction of an epoxy resin due to a thermal reaction, so distortion and curing shrinkage can be suppressed compared to the case where curing proceeds by a photoradical reaction.
  • the non-irradiated portion is removed by alkali development to form a negative patterned insulating film.
  • the developing method can be a dipping method, a shower method, a spray method, a brush method, or the like.
  • Aqueous alkaline solutions such as amines can be used.
  • the resin layer is completely heat-cured to obtain a highly reliable coating film.
  • the heating temperature is, for example, 140.degree. C. to 180.degree.
  • the heating time is, for example, 20 to 120 minutes.
  • light irradiation may be performed before or after post-curing.
  • the laminate structure of the present invention is preferably used for forming a cured film on a printed wiring board, more preferably for forming a permanent film, and more preferably for a semiconductor package or the like. , solder resists, interlayer dielectric layers, and coverlays. Further, according to the curable resin composition of the present invention, it is possible to obtain a cured product having excellent crack resistance. It can be suitably used for forming a permanent coating film such as a solder resist used for.
  • photosensitive resin solution (A-1) having both an ethylenically unsaturated bond and a carboxyl group has a nonvolatile content of 65%, a solid acid value of 100 mgKOH/g, and a weight average molecular weight (Mw) of about was 3,500.
  • a propylene oxide reaction solution of a novolak-type cresol resin was obtained. This was obtained by adding an average of 1.08 mol of alkylene oxide per equivalent of phenolic hydroxyl group.
  • 293.0 g of the alkylene oxide reaction solution of the novolak type cresol resin obtained, 43.2 g of acrylic acid, 11.53 g of methanesulfonic acid, 0.18 g of methylhydroquinone and 252.9 g of toluene were mixed with a stirrer, a thermometer and air.
  • the mixture was charged into a reactor equipped with a blowing tube, air was blown in at a rate of 10 ml/min, and the mixture was reacted at 110° C. for 12 hours while stirring. 12.6 g of water was distilled out as an azeotrope with toluene, which was produced by the reaction. After cooling to room temperature, the resulting reaction solution was neutralized with 35.35 g of a 15% aqueous sodium hydroxide solution and then washed with water. After that, the toluene was removed by an evaporator while replacing it with 118.1 g of diethylene glycol monoethyl ether acetate to obtain a novolac type acrylate resin solution.
  • ⁇ Formation of resin layer (A)> A base material having a copper thickness of 18 ⁇ m formed on the entire surface was prepared, and pretreatment was performed using CZ8108B from MEC. After that, the resin compositions of Examples and Comparative Examples were applied to the pretreated substrate by a method such as screen printing so that the film thickness after drying was the thickness (unit: ⁇ m) shown in Tables 1 and 2. It was coated on the substrate so that Thereafter, the resin layer (A) was formed by drying at 90° C. for 30 minutes in a hot air circulating drying oven.
  • each resin composition of Examples and Comparative Examples is dried by a method such as screen printing, and the film thickness after drying is the thickness in Tables 1 and 2 (unit: : ⁇ m). Then, it was dried in a hot air circulation drying oven at 90° C./30 minutes to form a resin layer (B).
  • each resin composition of Examples and Comparative Examples was diluted with an organic solvent to adjust the viscosity to an appropriate level.
  • Each resin composition was applied and dried to form a resin layer (B), and a resin layer (A) was formed thereon to prepare a dry film.
  • the carrier film was peeled off after laminating so that the resin layer (A) side was in contact with the base material using a laminator or the like.
  • each laminated structure (two resin layers) on the obtained substrate was exposed from the resin layer (B) side through a step tablet, and after performing the PEB process, before developing the formed pattern
  • the coating thickness of the two resin layers is 100%
  • the largest value of the number of steps at which the coating thickness of 95% or more remains after the exposure, the PEB process, and the development Residual sensitivity was defined as the maximum value of the number of steps at which the coating thickness after development was 5% or less when the coating thickness before development was 100%.
  • the coating film thickness of the pattern formed before and after development is JIS K 5600-1-7: 2014, it was measured as the difference between the measured value obtained as the thickness of the entire coating film and the measured value obtained as the thickness of the substrate.
  • the measurement method is a mechanical measurement method using a thickness measuring device (DIGIMICRO MF-501, manufactured by Nikon Corporation) to measure each laminated structure formed on the base material from the resin layer (B) side with a step tablet. After performing the PEB process at 90 ° C.
  • the coating thickness of the formed pattern before development, and the remaining formed after the exposure, after performing the PEB process, and after development The coating thickness of each coating film is measured, and when the coating thickness before development is taken as 100%, the largest value of the number of steps at which 95% or more of the coating thickness remains after the development is taken as the gloss sensitivity, Residual sensitivity was defined as the largest number of steps at which the coating thickness was 5% or less after development when the coating thickness before development was 100%.
  • ⁇ TCT crack resistance (thermal shock resistance)>
  • the resin composition of each example and each comparative example was formed on an evaluation substrate made of a BT material, and a final test was conducted to evaluate the crack resistance.
  • the exposure process was performed under the conditions of the evaluation method for ⁇ sensitivity> described above, and the PEB process was performed at 90°C for 30 minutes. ⁇ A blanking pattern was formed.
  • the coating film is cured under the conditions of 150 ° C. for 60 minutes in a post-cure process, and the resulting evaluation substrate is subjected to -65 ° C. (30 min.) + 175 ° C. (30 min.) with a thermal shock tester (manufactured by Kusumoto Kasei Co., Ltd.).
  • crack incidence rate is less than 10%
  • crack incidence rate is 10% or more and less than 20%
  • crack incidence rate is 20% or more and less than 40%
  • crack incidence rate is 40% or more
  • ⁇ Photopatternability> The resin composition of each example and each comparative example was formed on a copper-clad substrate, and in order to evaluate the photopatternability, an exposure step was performed under the conditions of the evaluation method for ⁇ sensitivity> described above, and PEB was performed at 90° C. for 30 minutes. After performing the process, a development process (30° C., 0.2 MPa, 1 mass % Na2CO3 aqueous solution) was performed to form an SRO pattern from ⁇ 40 ⁇ m to ⁇ 200 ⁇ m in increments of 10 ⁇ m. In addition, the coating film was cured under the conditions of 150° C.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)

Abstract

Provided is a laminated structure which is not only capable of achieving both contradictory characteristics such as B-HAST resistance and crack resistance at a high level, but also has excellent photopatterning properties. A laminated structure having a dual-layered resin layer obtained by laminating a resin layer (A) formed from a resin composition (a) and a resin layer (B) formed from a resin composition (b), the laminated structure characterized in that: the resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photo-base generator that also functions as a photopolymerization initiator or a photopolymerization initiator and a photo-base generator, and a thermosetting resin; the resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin, and does not substantially contain a photopolymerization initiator; and the difference between the gloss sensitivity and the residual sensitivity is at most 20 steps as obtained by measuring the coating film thickness of a formed pattern obtained by using a step tablet and exposing the dual-layered resin from the resin layer (B)-side and a performing a PEB step, and the coating film thickness of a formed pattern obtained by performing the PEB step after said exposure and then performing a developing step.

Description

積層構造体、ドライフィルム、硬化物および電子部品Laminated structures, dry films, cured products and electronic components
 本発明は、半導体パッケージ等に用いて好適な積層構造体、ドライフィルム、硬化物およびこれらを用いた電子部品に関する。 The present invention relates to laminated structures, dry films, cured products suitable for use in semiconductor packages and the like, and electronic components using these.
 近年、エレクトロニクス機器の軽薄短小化に伴うプリント配線板の高密度化に対応して、ソルダーレジストにも作業性や高性能化が要求されている。また、最近では、電子機器の小型化、軽量化、高性能化に伴い、半導体パッケージの小型化、多ピン化が実用化され、量産化が進んでいる。このような高密度化に対応した種々の半導体パッケージが提案されている。 In recent years, in response to the increased density of printed wiring boards that accompanies the miniaturization of electronic equipment, workability and higher performance are also required for solder resists. In recent years, as electronic devices have become smaller, lighter, and have higher performance, miniaturization and multi-pin semiconductor packages have been put to practical use, and mass production is progressing. Various semiconductor packages have been proposed to cope with such high density.
 高密度化に対応した種々の半導体パッケージに用いられるソルダーレジストには、近年、使用環境における信頼性が高いこと、および、長期間の信頼性が高いことの両立が求められている。使用環境における信頼性に関する信頼性試験の一つにバイアス印加高加速ストレス試験(Biased HAST、以下、B-HASTという)があり、また、長期間の信頼性試験の一つに冷熱サイクルにおけるクラック耐性試験がある。B-HAST耐性に優れた光硬化性・熱硬化性樹脂組成物に関し、1分子中に2個以上のフェノール性水酸基を有する化合物(a)とアルキレンオキシド(b)又はシクロカーボネート化合物(c)とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸(d)を反応させ、得られる反応生成物に多塩基酸無水物(e)を反応させて得られるカルボキシル基含有感光性樹脂を含む樹脂組成物がある(特許文献1)。 In recent years, there has been a demand for solder resists used in various high-density semiconductor packages to have both high reliability in the usage environment and long-term reliability. Biased HAST (hereinafter referred to as B-HAST) is one of the reliability tests related to reliability in the usage environment, and crack resistance in thermal cycles is one of the long-term reliability tests. I have an exam. Regarding a photocurable / thermosetting resin composition excellent in B-HAST resistance, a compound (a) having two or more phenolic hydroxyl groups in one molecule and an alkylene oxide (b) or a cyclocarbonate compound (c) A carboxyl group-containing photosensitive resin obtained by reacting the reaction product obtained by reacting an unsaturated group-containing monocarboxylic acid (d) and reacting the resulting reaction product with a polybasic acid anhydride (e) There is a resin composition containing (Patent Document 1).
特許第5183073号公報Japanese Patent No. 5183073
 引用文献1に記載の樹脂組成物は、剛直な骨格を有するカルボキシル基含有感光性樹脂を含むため、B-HAST耐性に優れているが、その反面、冷熱サイクルにおけるクラック耐性が近年の要求レベルからは必ずしも十分ではなかった。 Since the resin composition described in Cited Document 1 contains a carboxyl group-containing photosensitive resin having a rigid skeleton, it is excellent in B-HAST resistance. was not always sufficient.
 上記の剛直な骨格を有するカルボキシル基含有感光性樹脂の代わりに、カルボキシル基含有ウレタン樹脂のような、より柔軟な骨格を有する樹脂を含む樹脂組成物にしたところ、クラック耐性は向上したが、B-HAST耐性が低下する傾向にあった。 When a resin composition containing a resin having a more flexible skeleton, such as a carboxyl group-containing urethane resin, was used instead of the above-mentioned carboxyl group-containing photosensitive resin having a rigid skeleton, the crack resistance was improved, but B -HAST resistance tended to decrease.
 そこで本発明の目的は、B-HAST耐性およびクラック耐性という相反する特性を高いレベルで両立できるばかりでなく、優れたフォトパターニング性も備える積層構造体、ドライフィルム、硬化物および電子部品を提供することにある。 Accordingly, an object of the present invention is to provide a laminated structure, a dry film, a cured product, and an electronic component that are not only capable of achieving high levels of the contradictory properties of B-HAST resistance and crack resistance, but also have excellent photopatternability. That's what it is.
 本発明者らは、上記課題を解決するために鋭意研究を重ね、組成が異なる二つの層の積層体とすることにより、B-HAST耐性およびクラック耐性という、相反する特性を高いレベルで両立できることを確認した。もっとも、B-HAST耐性に適した層およびクラック耐性に適した層を単に積層させただけの積層構造体では、各層の感度をコントロールすることが難しいため、良好なフォトパターニング性を得ることが難しいことが判明した。近年は半導体パッケージの用途において、ソルダーレジスト開口部(SRO)の開口径が50μm以下を可能にする、優れたフォトパターニング性が求められているところである。 The present inventors have made intensive studies to solve the above problems, and by forming a laminate of two layers with different compositions, it is possible to achieve both B-HAST resistance and crack resistance, which are contradictory properties, at a high level. It was confirmed. However, in a laminated structure in which a layer suitable for B-HAST resistance and a layer suitable for crack resistance are simply laminated, since it is difficult to control the sensitivity of each layer, it is difficult to obtain good photopatternability. It has been found. In recent years, in the use of semiconductor packages, excellent photopatternability that enables the opening diameter of solder resist openings (SRO) to be 50 μm or less is being sought.
 そこでB-HAST耐性およびクラック耐性ばかりでなく、優れたフォトパターニング性を備える積層構造体を得るために、更に研究開発を続けた結果、本発明を完成するに至った。 Therefore, in order to obtain a laminated structure having not only B-HAST resistance and crack resistance but also excellent photo-patterning properties, the present invention was completed as a result of continuing research and development.
 すなわち、本発明の積層構造体は、樹脂組成物(a)からなる樹脂層(A)と、樹脂組成物(b)からなる樹脂層(B)とが積層された2層の樹脂層、を有する積層構造体であって、
 前記樹脂層(B)の樹脂組成物(b)が、アルカリ可溶性樹脂と、光重合開始剤の機能を兼ね備える光塩基発生剤または光重合開始剤および光塩基発生剤と、熱硬化性樹脂と、を含み、
 前記樹脂層(A)の樹脂組成物(a)が、カルボキシル基含有樹脂と、熱硬化性樹脂とを含み、光重合開始剤を実質的に含まず、
 前記2層の樹脂層をステップタブレットを介して前記樹脂層(B)側から露光後、PEB(POST EXPOSURE BAKE)工程を行った後に、形成されたパターンの塗膜厚と、前記露光後、前記PEB工程を行った後に、現像して形成されたパターンの塗膜厚を各々測定して求めた光沢感度と残存感度との差が20段以下であることを特徴とするものである。尚、PEB工程の詳細は後述する。
 ここで、光沢感度及び残存感度の定義は以下のとおり。
 前記2層の樹脂層をステップタブレットを介して前記樹脂層(B)側から露光し、PEB工程を行った後に、形成されたパターンの現像前の前記2層の樹脂層の塗膜厚を100%とした時、前記露光後、前記PEB工程を行った後、現像後に95%以上の塗膜厚が残っているステップ段数の最も大きい値を光沢感度と定義し、前記現像前の塗膜厚を100%とした時、前記現像後に塗膜厚が5%以下となるステップ段数の最も大きい値を残存感度と定義した。
 本発明においては、形成されたパターンの塗膜厚は、JIS K 5600-1-7:2014に準拠し、塗膜厚全体の厚さとして得られた測定値と素地の厚さとして得られた測定値との差として測定した。測定方法は、機械式測定方法により、厚さ測定器(DIGIMICRO MF-501、ニコン社製)にて、前記2層の樹脂層をステップタブレットを介して前記樹脂層(B)側から露光し、90℃、30分のPEB工程を行った後に、この形成されたパターンの現像前の塗膜厚と、前記露光後、前記PEB工程を行った後、現像後に形成された残存塗膜の塗膜厚を各々測定し、前記現像前の塗膜を100%とした時、前記現像後に95%以上の塗膜厚が残っているステップ段数の最も大きい値を光沢感度とし、前記現像前の塗膜厚を100%とした時、前記現像後に塗膜厚が5%以下となるステップ段数の最も大きい値を残存感度とした。
That is, the laminated structure of the present invention comprises two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated. A laminated structure having
The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
The resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
After exposing the two resin layers from the resin layer (B) side through a step tablet and performing a PEB (POST EXPOSURE BAKE) process, the coating thickness of the pattern formed, and after the exposure, the After the PEB process, the difference between the glossiness sensitivity and the remaining sensitivity obtained by measuring the coating thickness of each pattern formed by development is 20 steps or less. Details of the PEB process will be described later.
Here, the definitions of glossiness sensitivity and residual sensitivity are as follows.
After exposing the two resin layers from the resin layer (B) side through a step tablet and performing the PEB process, the coating thickness of the two resin layers before development of the formed pattern was 100. %, the gloss sensitivity is defined as the largest value of the number of steps at which 95% or more of the coating thickness remains after the PEB process after the exposure and the coating thickness before the development. is defined as 100%, the maximum value of the number of steps at which the coating thickness becomes 5% or less after the development was defined as the residual sensitivity.
In the present invention, the coating thickness of the formed pattern conforms to JIS K 5600-1-7: 2014, and is obtained as the measured value obtained as the thickness of the entire coating thickness and the thickness of the substrate. It was measured as a difference from the measured value. The measurement method is a mechanical measurement method, using a thickness gauge (DIGIMICRO MF-501, manufactured by Nikon Corporation), exposing the two resin layers from the resin layer (B) side through a step tablet, After performing the PEB process at 90 ° C. for 30 minutes, the coating film thickness of the formed pattern before development, and the coating film of the remaining coating film formed after the PEB process after the exposure and after the development The thickness is measured, and when the coating film before development is taken as 100%, the largest value of the number of steps at which 95% or more of the coating film remains after the development is taken as the gloss sensitivity, and the coating film before development is defined as the gloss sensitivity. When the thickness is taken as 100%, the maximum value of the number of steps at which the coating thickness becomes 5% or less after the development is defined as the residual sensitivity.
 本発明の積層構造体においては、前記樹脂層(B)の厚さが、2μm以上前記樹脂層(A)の半分の厚さ以下であり、前記樹脂層(A)の厚さが、10~80μmであることが好ましく、20~60μmがより好ましい。 In the laminated structure of the present invention, the thickness of the resin layer (B) is 2 μm or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is 10 to 10 μm. It is preferably 80 μm, more preferably 20-60 μm.
 また、本発明のドライフィルムは、前記本発明の積層構造体と、前記積層構造体の前記樹脂層(B)の表面及び前記樹脂層(A)の表面のうちの少なくとも一つの表面に接して設けられたフィルムと、を備えることを特徴とするものである。 Further, the dry film of the present invention is in contact with the laminated structure of the present invention and at least one surface of the surface of the resin layer (B) and the surface of the resin layer (A) of the laminated structure. and a film provided.
 さらに、本発明の硬化物は、前記本発明の積層構造体または前記本発明のドライフィルムの積層構造体を硬化して得られることを特徴とするものである。 Furthermore, the cured product of the present invention is characterized by being obtained by curing the laminated structure of the present invention or the laminated structure of the dry film of the present invention.
 本発明の電子部品は、前記本発明の硬化物を有することを特徴とするものである。 The electronic component of the present invention is characterized by having the cured product of the present invention.
 本発明によれば、B-HAST耐性およびクラック耐性ばかりでなく、優れたフォトパターニング性を備える積層構造体、ドライフィルム、その硬化物、およびその硬化物を用いた電子部品を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a laminated structure, a dry film, a cured product thereof, and an electronic component using the cured product having not only B-HAST resistance and crack resistance but also excellent photopatternability. .
 以下、本発明の積層構造体、ドライフィルム、硬化物および電子部品の実施の形態について詳述する。
(積層構造体)
 本発明の積層構造体は、樹脂組成物(a)からなる樹脂層(A)と、樹脂組成物(b)からなる樹脂層(B)とが積層された2層の樹脂層、を有する積層構造体であって、
 前記樹脂層(B)の樹脂組成物(b)が、アルカリ可溶性樹脂と、光重合開始剤の機能を兼ね備える光塩基発生剤または光重合開始剤および光塩基発生剤と、熱硬化性樹脂と、を含み、
 前記樹脂層(A)の樹脂組成物(a)が、カルボキシル基含有樹脂と、熱硬化性樹脂とを含み、光重合開始剤を実質的に含まず、
 前記2層の樹脂層をステップタブレットを介して前記樹脂層(B)側から露光後、PEB工程を行った後に、形成されたパターンの塗膜厚と、前記露光後、前記PEB工程を行った後に、現像して形成されたパターンの塗膜厚を各々測定して求めた光沢感度と残存感度との差が20段以下であり、より好ましくは14段以下である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the laminated structure, dry film, cured product and electronic component of the present invention will be described in detail.
(Laminate structure)
The laminate structure of the present invention is a laminate having two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated. is a struct,
The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
The resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
After exposing the two resin layers from the resin layer (B) side through a step tablet and performing the PEB process, the coating thickness of the formed pattern and the PEB process were performed after the exposure. The difference between the glossiness sensitivity and the remaining sensitivity obtained by measuring the coating thickness of the pattern formed by development is 20 steps or less, more preferably 14 steps or less.
 積層構造体は、基材上に形成されたときに、当該基材と接する層が樹脂層(A)であり、樹脂層(A)における上記基材と接する側の表面とは反対側の表面と接している層が樹脂層(B)である。つまり、積層構造体は、基材上に樹脂層(A)、樹脂層(B)の順で積層される構造を有している。前記基材は、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板等が挙げられる。 When the laminated structure is formed on a substrate, the layer in contact with the substrate is the resin layer (A), and the surface of the resin layer (A) opposite to the surface in contact with the substrate is the resin layer (B). That is, the laminated structure has a structure in which the resin layer (A) and the resin layer (B) are laminated in this order on the substrate. Examples of the base material include a printed wiring board, a flexible printed wiring board, and the like on which a circuit is formed in advance using copper or the like.
 樹脂層(B)は、アルカリ可溶性樹脂と、光重合開始剤の機能を兼ね備える光塩基発生剤または光重合開始剤および光塩基発生剤と、熱硬化性樹脂と、を含む樹脂組成物(b)からなる。これらの成分を含む樹脂層(B)の樹脂組成物(b)は、光照射により光重合開始剤がアルカリ可溶性樹脂と反応して感光性を有し、また、加熱により重合開始剤の光塩基発生剤としての機能が触媒となって熱硬化することができる感光性熱硬化性樹脂組成物である。 The resin layer (B) is a resin composition (b) containing an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, and a thermosetting resin. consists of The resin composition (b) of the resin layer (B) containing these components has photosensitivity due to the reaction of the photopolymerization initiator with the alkali-soluble resin by light irradiation, and the photobase of the polymerization initiator by heating. It is a photosensitive thermosetting resin composition that can be thermally cured with its function as a generator serving as a catalyst.
 樹脂層(A)は、カルボキシル基含有樹脂と、熱硬化性樹脂とを含み、光重合開始剤を実質的に含まない樹脂組成物(a)からなる。光重合開始剤を実質的に含まないとは、樹脂組成物(a)に含まれるカルボキシル基含有樹脂100質量部に対して光重合開始剤が0.5質量部未満であることをいう。
 これらの成分を含む樹脂層(A)の樹脂組成物(a)は、光重合開始剤を含まないことから、単層では感光性を有しないが、樹脂層(B)と接して積層されていることから、この樹脂層(B)に含まれる光重合開始剤から発生したラジカル等の活性種が、この樹脂層(A)に拡散することで樹脂層(A)もまた感光性を有している。また、加熱により熱硬化することができる。したがって、積層構造体は、樹脂層(B)および樹脂層(A)に、所定のパターンを現像により一括形成することが可能なものである。特に、露光後にPEB工程を行う場合は、そのときの熱拡散により、パターンの一括形成の効果は顕著であった。
The resin layer (A) is composed of a resin composition (a) containing a carboxyl group-containing resin and a thermosetting resin and substantially free of a photopolymerization initiator. The term "substantially free of photopolymerization initiator" means that the amount of photopolymerization initiator is less than 0.5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin contained in the resin composition (a).
Since the resin composition (a) of the resin layer (A) containing these components does not contain a photopolymerization initiator, it does not have photosensitivity in a single layer, but it is laminated in contact with the resin layer (B). Since active species such as radicals generated from the photopolymerization initiator contained in the resin layer (B) diffuse into the resin layer (A), the resin layer (A) also has photosensitivity. ing. Moreover, it can be thermoset by heating. Therefore, in the laminated structure, a predetermined pattern can be collectively formed on the resin layer (B) and the resin layer (A) by development. In particular, when the PEB process is performed after the exposure, the effect of batch formation of patterns is remarkable due to thermal diffusion at that time.
[樹脂層(A)]
(樹脂層(A)の樹脂組成物(a))
 樹脂層(A)は、樹脂組成物(a)からなる。樹脂層(A)の樹脂組成物(a)は、基材との接着層として機能するだけでなく、種々の回路パターン形成に対応し得る特性をも併せ持つのが望ましい。そのため、樹脂層(A)の樹脂組成物(a)は、塩基発生剤から生じる塩基を触媒として、カルボキシル基を有する樹脂、なかでもカルボキシル基含有樹脂と熱硬化成分とを露光後の加熱によって付加反応させ、未露光部分をアルカリ溶液によって除去することによって現像が可能となる感光性熱硬化性樹脂組成物であることが好ましい。
[Resin layer (A)]
(Resin composition (a) of resin layer (A))
A resin layer (A) consists of a resin composition (a). It is desirable that the resin composition (a) of the resin layer (A) not only functions as an adhesive layer with the base material, but also has properties capable of coping with formation of various circuit patterns. Therefore, the resin composition (a) of the resin layer (A) is added with a resin having a carboxyl group, especially a carboxyl group-containing resin, and a thermosetting component using a base generated from a base generator as a catalyst by heating after exposure. It is preferably a photosensitive thermosetting resin composition that can be developed by reacting and removing the unexposed portions with an alkaline solution.
 樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂の具体例としては、以下のような化合物が挙げられる。 Specific examples of the carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A) include the following compounds.
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。 (1) Carboxyl group-containing resins obtained by copolymerizing unsaturated carboxylic acids such as (meth)acrylic acid and unsaturated group-containing compounds such as styrene, α-methylstyrene, lower alkyl (meth)acrylates, and isobutylene.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; Carboxyl group-containing urethane resins obtained by polyaddition reaction of diol compounds such as polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。 (3) Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates, polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, and bisphenol A-based A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with the terminal of a urethane resin obtained by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (4) Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing urethane resin produced by a polyaddition reaction of a meth)acrylate or its partial acid anhydride modified product, a carboxyl group-containing dialcohol compound and a diol compound.
 (5)上記(2)または(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (5) During the synthesis of the resin of (2) or (4) above, a compound having one hydroxyl group and one or more (meth)acryloyl groups in the molecule such as hydroxyalkyl (meth)acrylate is added, and the terminal ( Meta) acrylated urethane resin containing carboxyl groups.
 (6)上記(2)または(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物等、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (6) During the synthesis of the resin of (2) or (4), one isocyanate group and one or more (meth)acryloyl groups in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate A carboxyl group-containing urethane resin that is terminally (meth)acrylated by adding a compound having
 (7)多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (7) A carboxyl group obtained by reacting a polyfunctional epoxy resin with (meth)acrylic acid and adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride to the hydroxyl group present in the side chain. Contained resin.
 (8)2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (8) A carboxyl group-containing resin obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl groups of a bifunctional epoxy resin with epichlorohydrin, and adding a dibasic acid anhydride to the resulting hydroxyl groups. .
 (9)多官能オキセタン化合物にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (9) A carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane compound with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシド等のアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (10) A reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide and reacting an unsaturated group-containing monocarboxylic acid to obtain a reaction product A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a substance.
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (11) Obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with a monocarboxylic acid containing an unsaturated group. A carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
 (12)1分子中に複数のエポキシ基を有するエポキシ樹脂に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (12) an epoxy resin having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol; Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
 (13)アミド構造およびイミド構造の少なくともいずれかを有するカルボキシル基含有樹脂。
 (14)N-フェニルマレイミド、N-ベンジルマレイミド等のマレイミドまたはマレイミド誘導体と、(メタ)アクリル酸等の不飽和カルボン酸と、ヒドロキシアルキル(メタ)アクリレート等の水酸基を有する不飽和基含有化合物と、スチレン、α-メチルスチレン、α-クロロスチレン、ビニルトルエン等の芳香環を有する不飽和基含有化合物とを単量体とするカルボキシル基含有共重合樹脂に、グリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート、エポキシシクロヘキシルメチル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなる、共重合構造を有するカルボキシル基含有感光性樹脂。
(13) A carboxyl group-containing resin having at least one of an amide structure and an imide structure.
(14) A maleimide or maleimide derivative such as N-phenylmaleimide or N-benzylmaleimide, an unsaturated carboxylic acid such as (meth)acrylic acid, and an unsaturated group-containing compound having a hydroxyl group such as hydroxyalkyl (meth)acrylate , styrene, α-methylstyrene, α-chlorostyrene, a carboxyl group-containing copolymer resin having an unsaturated group-containing compound having an aromatic ring such as vinyltoluene as a monomer, glycidyl (meth) acrylate, α-methyl A carboxyl group-containing photosensitive material having a copolymer structure obtained by adding a compound having one epoxy group and one or more (meth)acryloyl groups in the molecule, such as glycidyl (meth)acrylate and epoxycyclohexylmethyl (meth)acrylate. synthetic resin.
 (15)上記(1)~(13)等に記載のカルボキシル基含有樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有樹脂。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語で、他の類似の表現についても同様である。
(15) In addition to the carboxyl group-containing resins described in (1) to (13) above, one epoxy group and one or more ( A carboxyl group-containing resin obtained by adding a compound having a meth)acryloyl group.
In this specification, (meth)acrylate is a generic term for acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
 樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂は、前記列挙したものに限らず使用することができ、1種類を単独で用いてもよく、複数種を混合して用いてもよい。上記カルボキシル基含有樹脂中でも、フェノール樹脂出発のエチレンオキサイド(EO)・プロピレンオキサイド(PO)変性樹脂である(10)およびフェノール樹脂出発のエチレンカーボネート・プロピレンカーボネート変性樹脂である(11)が、感光基を有するユニットとカルボキシル基を有する現像ユニットが独立となるため、露光により感光基が架橋した後もカルボキシル基を有する現像ユニットの現像性に影響なく露光部と未露光部のコントラストが良好に得られ感度の調整が容易となるため好ましい。また、上記(10)(11)のカルボキシル基含有樹脂は、上記(2)乃至(6)のカルボキシル基含有ウレタン樹脂と併用しても良い。 The carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A) can be used without being limited to those listed above. may be used. Among the above carboxyl group-containing resins, (10) which is an ethylene oxide (EO)/propylene oxide (PO) modified resin starting from a phenolic resin and (11) which is an ethylene carbonate/propylene carbonate modified resin starting from a phenolic resin have photosensitive groups. and the developing unit having a carboxyl group are independent of each other, so that even after the photosensitive groups are crosslinked by exposure, a good contrast between the exposed and unexposed areas can be obtained without affecting the developability of the developing unit having a carboxyl group. This is preferable because it facilitates sensitivity adjustment. The carboxyl group-containing resins (10) and (11) may be used in combination with the carboxyl group-containing urethane resins (2) to (6).
 樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂の配合量は、樹脂組成物(a)の固形分全量中に、10~70質量%である。10質量%以上とすることにより塗膜強度を向上させることができる。また70質量%以下とすることで粘性が適当となり加工性が向上する。特に、本発明では、残存感度を調整するために、樹脂層(A)のカルボキシル基含有樹脂中、上記(10)および(11)の樹脂を30~100質量%が好ましく、より好ましくは70~100質量%である。この範囲内であれば、一定の露光量で光沢感度と残存感度の差を20段以下と狭めることが可能である。 The amount of the carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A) is 10 to 70% by mass based on the total solid content of the resin composition (a). By making it 10% by mass or more, the strength of the coating film can be improved. Moreover, by making it 70% by mass or less, the viscosity becomes appropriate and the workability improves. In particular, in the present invention, in order to adjust the residual sensitivity, the resins (10) and (11) are preferably 30 to 100% by mass, more preferably 70 to 100% by mass, in the carboxyl group-containing resin of the resin layer (A). 100% by mass. Within this range, it is possible to narrow the difference between glossiness sensitivity and residual sensitivity to 20 steps or less at a constant exposure amount.
 本発明において、樹脂積層構造体の光沢感度と残存感度を調整する観点から、樹脂層(A)の樹脂組成物(a)には光重合開始剤を実質的に含まないことが好ましい。光重合開始剤を実質的に含まないとは、樹脂組成物(a)に含まれるカルボキシル基含有樹脂100質量部に対して光重合開始剤が0.5質量部未満であることをいう。
 これは、樹脂層(B)と樹脂層(A)の積層構造体において現像によりパターンを一括形成するために、樹脂層(B)の樹脂組成物(b)に光重合開始剤としての機能を有する光塩基発生剤を含むことから、樹脂積層体を硬化するのに十分である。仮に、樹脂層(A)の樹脂組成物(a)に光重合開始剤が含まれると、残存感度が上昇する傾向があり、微細パターニングに悪影響を及ぼす。
In the present invention, it is preferable that the resin composition (a) of the resin layer (A) does not substantially contain a photopolymerization initiator, from the viewpoint of adjusting the gloss sensitivity and residual sensitivity of the resin laminate structure. The term "substantially free of photopolymerization initiator" means that the amount of photopolymerization initiator is less than 0.5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin contained in the resin composition (a).
This is because the resin composition (b) of the resin layer (B) functions as a photopolymerization initiator in order to collectively form a pattern in the laminated structure of the resin layer (B) and the resin layer (A) by development. It is sufficient to cure the resin laminate because it contains the photobase generator having the If the resin composition (a) of the resin layer (A) contains a photopolymerization initiator, the residual sensitivity tends to increase, adversely affecting fine patterning.
[熱硬化性樹脂]
 樹脂層(A)の樹脂組成物(a)に含まれる熱硬化性樹脂は、熱による硬化反応が可能な官能基を有する樹脂である。熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、オキセタン化合物、分子内に2個以上のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、ブロックイソシアネート化合物、シクロカーボネート化合物、ビスマレイミド、カルボジイミド等を用いることができ、これらは併用してもよい。
[Thermosetting resin]
The thermosetting resin contained in the resin composition (a) of the resin layer (A) is a resin having a functional group capable of thermal curing reaction. Thermosetting resins are not particularly limited, and include epoxy resins, oxetane compounds, compounds having two or more thioether groups in the molecule, namely amino resins such as episulfide resins, melamine resins, benzoguanamine resins, melamine derivatives, and benzoguanamine derivatives. , blocked isocyanate compounds, cyclocarbonate compounds, bismaleimides, carbodiimides and the like can be used, and these may be used in combination.
 上記エポキシ樹脂は、エポキシ基を有する樹脂であり、従来公知のものをいずれも使用でき、分子中にエポキシ基を2個有する2官能性エポキシ樹脂、分子中にエポキシ基を多数有する多官能エポキシ樹脂等が挙げられる。なお、水素添加された2官能エポキシ樹脂であってもよい。 The epoxy resin is a resin having an epoxy group, and any conventionally known one can be used, including a bifunctional epoxy resin having two epoxy groups in the molecule and a polyfunctional epoxy resin having many epoxy groups in the molecule. etc. In addition, a hydrogenated bifunctional epoxy resin may be used.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、リン含有エポキシ樹脂、アントラセン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂、アルキルフェノール型エポキシ樹脂等が用いられる。これらエポキシ樹脂は、1種を単独または2種類以上を組合せて用いることができる。 Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, and cresol novolak type epoxy resin. Epoxy resins, bisphenol A novolak type epoxy resins, biphenyl type epoxy resins, naphthol type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, alicyclic epoxy resins, aliphatic chain Epoxy resins, phosphorus-containing epoxy resins, anthracene-type epoxy resins, norbornene-type epoxy resins, adamantane-type epoxy resins, fluorene-type epoxy resins, aminophenol-type epoxy resins, aminocresol-type epoxy resins, alkylphenol-type epoxy resins, and the like are used. These epoxy resins can be used singly or in combination of two or more.
 エポキシ樹脂は、固形エポキシ樹脂、半固形エポキシ樹脂および液状エポキシ樹脂のいずれであってもよい。ここで、本明細書において、固形エポキシ樹脂とは40℃で固体状であるエポキシ樹脂をいい、半固形エポキシ樹脂とは20℃で固体状であって40℃で液状であるエポキシ樹脂をいい、液状エポキシ樹脂とは20℃で液状のエポキシ樹脂をいう。 The epoxy resin may be solid epoxy resin, semi-solid epoxy resin, or liquid epoxy resin. Here, in this specification, solid epoxy resin refers to an epoxy resin that is solid at 40°C, and semi-solid epoxy resin refers to an epoxy resin that is solid at 20°C and liquid at 40°C. A liquid epoxy resin means an epoxy resin that is liquid at 20°C.
 固形エポキシ樹脂としては、DIC社製EPICLON HP-4700(ナフタレン型エポキシ樹脂)、DIC社製EXA4700(4官能ナフタレン型エポキシ樹脂)、日本化薬社製NC-7000(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬社製EPPN-502H(トリスフェノールエポキシ樹脂)等のフェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC社製EPICLON HP-7200H(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬社製NC-3000H(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;日本化薬社製NC-3000L等のビフェニル/フェノールノボラック型エポキシ樹脂;DIC社製EPICLON N660、EPICLON N690、日本化薬社製EOCN-104S等のノボラック型エポキシ樹脂;三菱ケミカル社製YX-4000等のビフェニル型エポキシ樹脂;日鉄ケミカル&マテリアル社製TX0712等のリン含有エポキシ樹脂;日産化学社製TEPIC等のトリス(2,3-エポキシプロピル)イソシアヌレート等が挙げられる。 As solid epoxy resins, EPICLON HP-4700 (naphthalene type epoxy resin) manufactured by DIC, EXA4700 (tetrafunctional naphthalene type epoxy resin) manufactured by DIC, NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd. ) and other naphthalene-type epoxy resins; EPPN-502H (trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd. Epoxidized products of condensation products of phenols and aromatic aldehydes having phenolic hydroxyl groups (trisphenol-type epoxy resins); Dicyclopentadiene aralkyl type epoxy resin such as EPICLON HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by DIC; Biphenyl such as Nippon Kayaku NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) Aralkyl-type epoxy resins; biphenyl/phenol novolac-type epoxy resins such as Nippon Kayaku NC-3000L; DIC EPICLON N660, EPICLON N690, Nippon Kayaku EOCN-104S and other novolac-type epoxy resins; biphenyl type epoxy resins such as YX-4000 manufactured by Nittetsu Chemical &Materials; phosphorus-containing epoxy resins such as TX0712 manufactured by Nippon Steel Chemical &Materials;
 半固形エポキシ樹脂としては、DIC社製EPICLON 860、EPICLON 900-IM、EPICLON EXA-4816、EPICLON EXA-4822、日鉄ケミカル&マテリアル社製エポトートYD-134、三菱ケミカル社製jER834、jER872、住友化学社製ELA-134等のビスフェノールA型エポキシ樹脂;DIC社製EPICLON HP-4032等のナフタレン型エポキシ樹脂;DIC社製EPICLON N-740等のフェノールノボラック型エポキシ樹脂等が挙げられる。 Semi-solid epoxy resins include EPICLON 860, EPICLON 900-IM, EPICLON EXA-4816, EPICLON EXA-4822 manufactured by DIC, Epotato YD-134 manufactured by Nippon Steel Chemical & Materials, jER834 and jER872 manufactured by Mitsubishi Chemical, and Sumitomo Chemical. bisphenol A type epoxy resins such as ELA-134 manufactured by DIC Corporation; naphthalene type epoxy resins such as EPICLON HP-4032 manufactured by DIC Corporation; and phenol novolac type epoxy resins such as EPICLON N-740 manufactured by DIC Corporation.
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。 Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin. , and alicyclic epoxy resins.
 次に、オキセタン化合物としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、または、シルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。 Next, the oxetane compounds include bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, 1,4-bis[(3-methyl -3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3-oxetanyl ) In addition to polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl)methyl methacrylate, (3-ethyl-3-oxetanyl)methyl methacrylate and their oligomers or copolymers, oxetane alcohols and novolak resins, Examples include poly(p-hydroxystyrene), cardo-type bisphenols, calixarenes, calixresorcinarenes, and ethers with resins having hydroxyl groups such as silsesquioxane. Other examples include copolymers of unsaturated monomers having an oxetane ring and alkyl (meth)acrylates.
 上記エピスルフィド樹脂としては、例えばビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂等も用いることができる。 Examples of the episulfide resin include bisphenol A type episulfide resin. In addition, an episulfide resin or the like obtained by replacing the oxygen atom of the epoxy group of the epoxy resin with a sulfur atom by using a similar synthesis method can also be used.
 熱硬化性樹脂のなかでも、エポキシ樹脂を用いることが好ましい。さらに、ガラス転移温度(Tg)が高く、クラック耐性に優れる硬化物が得られることから、固形エポキシ樹脂および半固形エポキシ樹脂の少なくともいずれか一種であることが好ましい。エポキシ樹脂としては、硬化物の好ましい物性等の観点から芳香族系エポキシ樹脂が好ましく、中でも、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましい。なお、本明細書において、芳香族系エポキシ樹脂とは、その分子内に芳香環骨格を有するエポキシ樹脂を意味する。 Among thermosetting resins, it is preferable to use epoxy resin. Further, at least one of solid epoxy resins and semi-solid epoxy resins is preferable, since a cured product having a high glass transition temperature (Tg) and excellent crack resistance can be obtained. As the epoxy resin, aromatic epoxy resins are preferable from the viewpoint of desirable physical properties of the cured product, and among them, naphthalene-type epoxy resins and biphenyl-type epoxy resins are more preferable. In this specification, the aromatic epoxy resin means an epoxy resin having an aromatic ring skeleton in its molecule.
 樹脂層(A)の樹脂組成物(a)に含まれる熱硬化性樹脂の分子量は、現像性、硬化塗膜特性の調整するために、重量平均分子量100~2,000が好ましい。この範囲内であれば、熱硬化性樹脂の分子量で残存感度を調整する場合、低分子量、即ち、重量平均分子量(Mw)が100~1,000の成分を用いれば残存感度のステップ段数を小さくすることができ、高分子量、即ち、重量平均分子量が1,000超~2,000の成分を用いれば残存感度のステップ段数を大きくすることができる。本発明の実施例では、残存感度のステップ段数が大きくなりすぎないよう重量平均分子量が1,000以下のエポキシ樹脂を用いて調整している。 The molecular weight of the thermosetting resin contained in the resin composition (a) of the resin layer (A) is preferably a weight average molecular weight of 100 to 2,000 in order to adjust the developability and properties of the cured coating film. Within this range, when the residual sensitivity is adjusted by the molecular weight of the thermosetting resin, if a component with a low molecular weight, that is, a weight-average molecular weight (Mw) of 100 to 1,000 is used, the step number of residual sensitivity can be reduced. If a component with a high molecular weight, that is, a weight-average molecular weight of more than 1,000 to 2,000 is used, the residual sensitivity step number can be increased. In the examples of the present invention, an epoxy resin having a weight-average molecular weight of 1,000 or less is used to prevent the step number of remaining sensitivity from becoming too large.
 熱硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。熱硬化性樹脂の配合割合は、固形分換算で、樹脂組成物(a)の全量基準で、10~50質量%であることが好ましく、15~45質量%であることがより好ましく、19~40質量%であることがさらに好ましい。 The thermosetting resin can be used singly or in combination of two or more. The mixing ratio of the thermosetting resin is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, based on the total amount of the resin composition (a) in terms of solid content, and 19 to It is more preferably 40% by mass.
[光重合性モノマー]
 樹脂層(A)の樹脂組成物(a)は、前述したように塩基発生剤から生じる塩基を触媒として、カルボキシル基を有する樹脂と熱硬化成分とを露光後の加熱によって付加反応させ、未露光部分をアルカリ溶液によって除去することによって現像が可能となる感光性熱硬化性樹脂組成物である。これにより、従来の光ラジカル重合開始剤から発生するラジカルによる重合反応を利用した感光性樹脂組成物においては必要であった(メタ)アクリレートモノマーを配合する必要がなくなる。もっとも、主に樹脂層(A)の感度を調整するために、樹脂層(A)の樹脂組成物中に(メタ)アクリレートモノマーを配合してもよい。例えば、(メタ)アクリレートモノマーは、樹脂層(A)のカルボキシル基含有樹脂100質量部に対して、10~100質量部程度配合することが可能である。
[Photopolymerizable Monomer]
In the resin composition (a) of the resin layer (A), as described above, the resin having a carboxyl group and the thermosetting component are subjected to an addition reaction by heating after exposure using the base generated from the base generator as a catalyst. It is a photosensitive thermosetting resin composition that can be developed by removing a portion with an alkaline solution. This eliminates the need to add a (meth)acrylate monomer, which is necessary in a photosensitive resin composition utilizing a polymerization reaction by radicals generated from a conventional photoradical polymerization initiator. However, a (meth)acrylate monomer may be blended into the resin composition of the resin layer (A) mainly to adjust the sensitivity of the resin layer (A). For example, about 10 to 100 parts by mass of the (meth)acrylate monomer can be blended with 100 parts by mass of the carboxyl group-containing resin of the resin layer (A).
[樹脂層(B)]
(樹脂層(B)を構成する樹脂組成物(b))
 樹脂層(B)は、樹脂組成物(b)からなる。樹脂層(B)は、主として基材の保護層として機能するものである。樹脂層(B)の樹脂組成物(b)は、光重合開始剤により、光によるラジカル重合が可能であるとともに、塩基発生剤から生じる塩基を触媒として、アルカリ可溶性樹脂と熱硬化成分とを露光後の加熱によって付加反応させ、未露光部分をアルカリ溶液によって除去することによって現像が可能となる感光性熱硬化性樹脂組成物である。
[Resin layer (B)]
(Resin composition (b) constituting resin layer (B))
A resin layer (B) consists of a resin composition (b). The resin layer (B) mainly functions as a protective layer for the substrate. The resin composition (b) of the resin layer (B) is capable of radical polymerization by light due to the photopolymerization initiator, and the alkali-soluble resin and the thermosetting component are exposed to light using the base generated from the base generator as a catalyst. It is a photosensitive thermosetting resin composition that can be developed by causing an addition reaction by subsequent heating and removing unexposed portions with an alkaline solution.
 樹脂層(B)の樹脂組成物(b)に含まれるアルカリ可溶性樹脂は、例えば、フェノール性水酸基を有する化合物、カルボキシル基を有する化合物、フェノール性水酸基およびカルボキシル基を有する化合物が挙げられ、公知慣用のものが用いられる。特にカルボキシル基を有する化合物を含む、従来からソルダーレジスト組成物として用いられている、カルボキシル基含有樹脂またはカルボキシル基含有感光性樹脂が挙げられる。ここで、カルボキシル基含有樹脂またはカルボキシル基含有感光性樹脂、および、エチレン性不飽和結合を有する化合物としては、公知慣用の化合物が用いられる。
 なかでもアルカリ溶解性樹脂としては、耐屈曲性、耐熱性などの特性により優れるイミド環を有するアルカリ溶解性樹脂を好適に用いることができる。
 樹脂層(B)の樹脂組成物(b)に含まれるカルボキシル基含有樹脂の分子量は、微細パターニング性や表面硬化性を調整するために、重量平均分子量1,000~10,000が好ましい。この範囲内であれば、カルボキシル基含有樹脂成分の分子量で光沢感度をコントロールする場合、低分子量、即ち、1,000~5,000のカルボキシル基含有樹脂を用いれば光沢感度のステップ段数を小さくすることができ、高分子量、即ち、5,000超~10,000のカルボキシル基含有樹脂を用いれば光沢感度のステップ段数を大きくすることができる。後述するイミド環を有するアルカリ溶解性樹脂が、カルボキシル基を有する場合、上述した重量平均分子量の範囲で同様に光沢感度を調整することができる。
Examples of the alkali-soluble resin contained in the resin composition (b) of the resin layer (B) include a compound having a phenolic hydroxyl group, a compound having a carboxyl group, and a compound having a phenolic hydroxyl group and a carboxyl group. are used. In particular, carboxyl group-containing resins or carboxyl group-containing photosensitive resins, which contain a compound having a carboxyl group and are conventionally used as solder resist compositions, can be mentioned. Here, as the carboxyl group-containing resin or the carboxyl group-containing photosensitive resin and the compound having an ethylenically unsaturated bond, known and commonly used compounds are used.
Among them, as the alkali-soluble resin, an alkali-soluble resin having an imide ring, which is superior in properties such as bending resistance and heat resistance, can be preferably used.
The molecular weight of the carboxyl group-containing resin contained in the resin composition (b) of the resin layer (B) is preferably a weight average molecular weight of 1,000 to 10,000 in order to adjust fine patterning properties and surface curability. Within this range, when the gloss sensitivity is controlled by the molecular weight of the carboxyl group-containing resin component, the use of a carboxyl group-containing resin having a low molecular weight, that is, 1,000 to 5,000 reduces the step number of gloss sensitivity. If a resin containing a carboxyl group having a high molecular weight, that is, having a molecular weight of more than 5,000 to 10,000 is used, the number of steps of gloss sensitivity can be increased. When the alkali-soluble resin having an imide ring, which will be described later, has a carboxyl group, the gloss sensitivity can be similarly adjusted within the weight-average molecular weight range described above.
(イミド環を有するアルカリ溶解性樹脂)
 本発明において、イミド環を有するアルカリ溶解性樹脂は、フェノール性水酸基、カルボキシル基のうち1種以上のアルカリ溶解性基と、イミド環とを有するものである。このアルカリ溶解性樹脂へのイミド環の導入には公知慣用の手法を用いることができる。例えば、カルボン酸無水物成分とアミン成分および/またはイソシアネート成分とを反応させて得られる樹脂が挙げられる。イミド化は、熱イミド化で行っても、化学イミド化で行ってもよく、またこれらを併用して実施することができる。
(Alkali-soluble resin having imide ring)
In the present invention, the alkali-soluble resin having an imide ring has one or more alkali-soluble groups selected from phenolic hydroxyl groups and carboxyl groups, and an imide ring. A well-known and commonly used technique can be used for introducing an imide ring into this alkali-soluble resin. Examples thereof include resins obtained by reacting a carboxylic anhydride component with an amine component and/or an isocyanate component. The imidization may be carried out by thermal imidization or by chemical imidization, or these may be used in combination.
 ここで、カルボン酸無水物成分としては、テトラカルボン酸無水物やトリカルボン酸無水物などが挙げられるが、これらの酸無水物に限定されるものではなく、アミノ基やイソシアネート基と反応する酸無水物基およびカルボキシル基を有する化合物であれば、その誘導体を含め用いることができる。また、これらのカルボン酸無水物成分は、単独でまたは組み合わせて使用してもよい。 Here, examples of the carboxylic acid anhydride component include tetracarboxylic acid anhydrides and tricarboxylic acid anhydrides, but are not limited to these acid anhydrides. Any compound having a physical group and a carboxyl group can be used, including derivatives thereof. Also, these carboxylic acid anhydride components may be used alone or in combination.
 アミン成分としては、脂肪族ジアミンや芳香族ジアミンなどのジアミン、脂肪族ポリエーテルアミンなどの多価アミン、カルボン酸を有するジアミン、フェノール性水酸基を有するジアミンなどを用いることができるが、これらのアミンに限定されるものではない。また、これらのアミン成分は、単独でまたは組み合わせて使用してもよい。 As the amine component, diamines such as aliphatic diamines and aromatic diamines, polyvalent amines such as aliphatic polyetheramines, diamines having a carboxylic acid, diamines having a phenolic hydroxyl group, and the like can be used. is not limited to Also, these amine components may be used alone or in combination.
 イソシアネート成分としては、芳香族ジイソシアネートおよびその異性体や多量体、脂肪族ジイソシアネート類、脂環式ジイソシアネート類およびその異性体などのジイソシアネートやその他汎用のジイソシアネート類を用いることができるが、これらのイソシアネートに限定されるものではない。また、これらのイソシアネート成分は、単独でまたは組み合わせて使用してもよい。 As the isocyanate component, diisocyanates such as aromatic diisocyanates and their isomers and polymers, aliphatic diisocyanates, alicyclic diisocyanates and their isomers, and other general-purpose diisocyanates can be used. It is not limited. Also, these isocyanate components may be used alone or in combination.
 以上説明したようなイミド環を有するアルカリ溶解性樹脂は、アミド結合を有していてもよい。これはカルボキシル基を有するイミド化物とイソシアネートとカルボン酸無水物とを反応させて得られるポリアミドイミドであってもよく、それ以外の反応によるものでもよい。さらにその他の付加および縮合からなる結合を有していてもよい。 The alkali-soluble resin having an imide ring as explained above may have an amide bond. This may be a polyamide-imide obtained by reacting an imidized product having a carboxyl group with an isocyanate and a carboxylic acid anhydride, or may be obtained by other reactions. It may also have other bonds consisting of addition and condensation.
 このようなアルカリ溶解性基とイミド環とを有するアルカリ溶解性樹脂の合成においては、公知慣用の有機溶剤を用いることができる。かかる有機溶媒としては、原料であるカルボン酸無水物類、アミン類、イソシアネート類と反応せず、かつこれら原料が溶解する溶媒であれば問題はなく、特にその構造は限定されない。特に、原料の溶解性が高いことから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン等の非プロトン性溶媒が好ましい。 In synthesizing such an alkali-soluble resin having an alkali-soluble group and an imide ring, a known and commonly used organic solvent can be used. As such an organic solvent, there is no problem as long as it does not react with the carboxylic acid anhydrides, amines, and isocyanates that are raw materials and dissolves these raw materials, and its structure is not particularly limited. In particular, aprotic solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, and γ-butyrolactone are preferred because of their high solubility of raw materials.
 以上説明したようなフェノール性水酸基、カルボキシル基のうち1種以上のアルカリ溶解性基とイミド環を有するアルカリ溶解性樹脂は、フォトリソグラフィー工程に対応し、光沢感度と残存感度を調整するために、その酸価が20~200mgKOH/gであることが好ましく、より好適には60~150mgKOH/gであることが好ましい。この酸価が20mgKOH/g以上の場合、アルカリに対する溶解性が増加し、現像性が良好となり、さらには、光照射後の熱硬化成分との架橋度が高くなるため、十分な現像コントラストを得ることができる。また、この酸価が200mgKOH/g以下の場合には、特に、後述する光照射後のPEB工程でのいわゆる熱かぶりを抑制でき、プロセスマージンが大きくなる。 Alkali-soluble resins having at least one alkali-soluble group and an imide ring selected from phenolic hydroxyl groups and carboxyl groups as described above correspond to photolithography processes, and in order to adjust gloss sensitivity and residual sensitivity, Its acid value is preferably 20-200 mgKOH/g, more preferably 60-150 mgKOH/g. When the acid value is 20 mgKOH/g or more, the solubility in alkali increases, the developability becomes good, and the degree of crosslinking with the thermosetting component after light irradiation increases, so that sufficient development contrast is obtained. be able to. Moreover, when the acid value is 200 mgKOH/g or less, so-called heat fogging can be suppressed particularly in the PEB process after light irradiation, which will be described later, and the process margin is increased.
 また、このアルカリ溶解性樹脂の分子量は、現像性と硬化塗膜特性を調整するためにと、質量平均分子量1,000~100,000が好ましく、さらに2,000~50,000がより好ましい。この分子量が1,000以上の場合、露光・PEB後に十分な耐現像性と硬化物性を得ることができる。また、分子量が100,000以下の場合、アルカリ溶解性が増加し、現像性が向上する。 In addition, the molecular weight of this alkali-soluble resin is preferably a mass average molecular weight of 1,000 to 100,000, more preferably 2,000 to 50,000, in order to adjust the developability and properties of the cured coating film. When this molecular weight is 1,000 or more, sufficient development resistance and cured physical properties can be obtained after exposure and PEB. Further, when the molecular weight is 100,000 or less, the alkali solubility is increased and the developability is improved.
(光重合開始剤)
 樹脂層(B)の樹脂組成物(b)において用いる光重合開始剤としては、公知慣用のものを用いることができ、例えば、ベンゾイン化合物、アシルホスフィンオキサイド系化合物、アセトフェノン系化合物、α-アミノアセトフェノン化合物、オキシムエステル化合物、チオキサントン系化合物等が挙げられる。樹脂層(B)の樹脂組成物(b)は、光重合開始剤を含むことにより、光によるラジカル重合が可能となる。
 特に、後述する光照射後のPEB工程に用いる場合には、光塩基発生剤としての機能も有する光重合開始剤が好適である。なお、このPEB工程では、光重合開始剤と光塩基発生剤とを併用してもよい。
 光重合開始剤の配合量は、アルカリ可溶性樹脂100質量部に対して0.5~30質量部であることが好ましい。0.5質量部以上の場合、表面硬化性が良好となり、30質量部以下の場合、ハレーションが生じにくく良好な解像性が得られる。さらに好ましくは1.0~20質量部である。
(Photoinitiator)
As the photopolymerization initiator used in the resin composition (b) of the resin layer (B), known and commonly used photopolymerization initiators can be used, such as benzoin compounds, acylphosphine oxide compounds, acetophenone compounds, α-aminoacetophenone compounds, oxime ester compounds, thioxanthone compounds, and the like. The resin composition (b) of the resin layer (B) can be radically polymerized by light by containing a photopolymerization initiator.
In particular, when used in the PEB step after light irradiation, which will be described later, a photopolymerization initiator that also functions as a photobase generator is suitable. In this PEB step, a photopolymerization initiator and a photobase generator may be used together.
The amount of the photopolymerization initiator compounded is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the alkali-soluble resin. When the amount is 0.5 parts by mass or more, the surface curability is improved, and when the amount is 30 parts by mass or less, halation is less likely to occur and good resolution is obtained. More preferably, it is 1.0 to 20 parts by mass.
(光塩基発生剤)
 光重合開始剤としての機能も有する光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、後述する熱反応性化合物の重合反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。
(Photobase generator)
The photobase generator, which also functions as a photopolymerization initiator, undergoes a polymerization reaction of the heat-reactive compound described below by changing its molecular structure or by cleaving the molecule upon irradiation with light such as ultraviolet light or visible light. A compound that produces one or more basic substances that can function as a catalyst. Examples of basic substances include secondary amines and tertiary amines.
 このような光重合開始剤としての機能も有する光塩基発生剤としては、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ基,N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメート基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。中でも、オキシムエステル化合物、α-アミノアセトフェノン化合物が好ましく、オキシムエステル化合物がより好ましい。α-アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。 Examples of such photobase generators also functioning as photopolymerization initiators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic and compounds having substituents such as group amino groups, nitrobenzylcarbamate groups, alkoxybenzylcarbamate groups, and the like. Among them, oxime ester compounds and α-aminoacetophenone compounds are preferred, and oxime ester compounds are more preferred. As α-aminoacetophenone compounds, those having two or more nitrogen atoms are particularly preferred.
 α-アミノアセトフェノン化合物は、分子中にベンゾインエーテル結合を有し、光照射を受けると分子内で開裂が起こり、硬化触媒作用を奏する塩基性物質(アミン)が生成するものであればよい。 Any α-aminoacetophenone compound may be used as long as it has a benzoin ether bond in the molecule and undergoes intramolecular cleavage when exposed to light to generate a basic substance (amine) that acts as a curing catalyst.
 オキシムエステル化合物としては、光照射により塩基性物質を生成する化合物であればいずれをも使用することができる。 Any compound can be used as the oxime ester compound as long as it is a compound that generates a basic substance upon irradiation with light.
 このような光塩基発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。樹脂組成物中の光塩基発生剤の配合量は、好ましくはアルカリ溶解性樹脂100質量部に対して1.0~40質量部であり、さらに好ましくは、1.0~20質量部である。1.0質量部以上の場合、光照射部/未照射部の耐現像性のコントラストを良好に得ることができる。また、40質量部以下の場合、硬化物特性が向上する。 Such photobase generators may be used singly or in combination of two or more. The amount of the photobase generator compounded in the resin composition is preferably 1.0 to 40 parts by mass, more preferably 1.0 to 20 parts by mass, per 100 parts by mass of the alkali-soluble resin. When the amount is 1.0 parts by mass or more, a good contrast of the development resistance between the light-irradiated area and the non-irradiated area can be obtained. Moreover, when it is 40 parts by mass or less, the properties of the cured product are improved.
(熱硬化性樹脂)
 樹脂層(B)の熱硬化性樹脂(b)は、先に述べた樹脂層(A)の熱硬化性樹脂と同様にエポキシ樹脂、オキセタン化合物、分子内に2個以上のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、ブロックイソシアネート化合物、シクロカーボネート化合物、ビスマレイミド、カルボジイミド等を用いることができ、これらは併用してもよい。
(Thermosetting resin)
The thermosetting resin (b) of the resin layer (B) is an epoxy resin, an oxetane compound, or a compound having two or more thioether groups in the molecule, similar to the thermosetting resin of the resin layer (A) described above. ie, episulfide resins, melamine resins, benzoguanamine resins, melamine derivatives, amino resins such as benzoguanamine derivatives, blocked isocyanate compounds, cyclocarbonate compounds, bismaleimides, carbodiimides, etc., may be used in combination.
 樹脂層(B)の熱硬化性樹脂(b)は、樹脂層(A)の熱硬化性樹脂と同一の熱硬化性樹脂でもよいし、異なる熱硬化性樹脂でもよい。また、熱硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。 The thermosetting resin (b) of the resin layer (B) may be the same thermosetting resin as the thermosetting resin of the resin layer (A), or may be a different thermosetting resin. Moreover, a thermosetting resin can be used individually by 1 type or in combination of 2 or more types.
 熱硬化性樹脂の配合割合は、固形分換算で、組成物全量基準で、10~50質量%であることが好ましく、15~45質量%であることがより好ましく、20~40質量%であることがさらに好ましい。 The blending ratio of the thermosetting resin is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, more preferably 20 to 40% by mass, based on the total amount of the composition in terms of solid content. is more preferred.
 以上説明したような樹脂層(A)および樹脂層(B)において用いる樹脂組成物には、必要に応じて以下の成分を配合することができる。 The resin composition used in the resin layer (A) and the resin layer (B) as described above may optionally contain the following components.
(着色剤)
 感度を調節する目的で、着色剤を配合することができる。着色剤としては、赤、青、緑、黄、白、黒などの公知慣用の着色剤を配合することができ、顔料、染料、色素のいずれでもよい。
(coloring agent)
A coloring agent can be added for the purpose of adjusting sensitivity. As the colorant, known and commonly used colorants such as red, blue, green, yellow, white, and black can be blended, and any of pigments, dyes, and pigments can be used.
(その他成分)
 感度の調整や効果塗料特性を向上させる目的で酸化防止剤、紫外線吸収剤、微粉シリカ、ハイドロタルサイト、シランカップリング剤などのような公知慣用の添加剤類を配合することができる。
(Other ingredients)
For the purpose of adjusting the sensitivity and improving the properties of the effect paint, known and commonly used additives such as antioxidants, ultraviolet absorbers, finely divided silica, hydrotalcite and silane coupling agents can be added.
[積層構造体]
 前記樹脂層(B)の厚さが、2μm以上前記樹脂層(A)の半分の厚さ以下であり、前記樹脂層(A)の厚さが、10~80μmであることが好ましく、20~60μmであることがより好ましい。
[Laminated structure]
The thickness of the resin layer (B) is 2 μm or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is preferably 10 to 80 μm, preferably 20 to 60 μm is more preferred.
 積層構造体は、樹脂層(A)の樹脂組成物および樹脂層(B)の樹脂組成物を、配線板などの基材上に、ドライフィルム化して形成させてもよいし、液状のものを順次塗布形成させてもよい。液状として用いる場合は、1液性でも2液性以上でもよいが、保存安定性の観点から2液性以上であることが好ましい。 The laminated structure may be formed by forming the resin composition of the resin layer (A) and the resin composition of the resin layer (B) into a dry film on a base material such as a wiring board, or by forming a liquid one. The layers may be coated and formed sequentially. When used as a liquid, it may be one-liquid or two-liquid or more, but from the viewpoint of storage stability, it is preferably two-liquid or more.
[ドライフィルム]
 次に、本発明のドライフィルムは、第1のフィルム上に、樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)を塗布、乾燥させることにより得られる樹脂層を有する。ドライフィルムを形成する際には、まず、樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)を上記有機溶剤で希釈して適切な粘度に調整した上で、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等により、キャリアフィルム上に均一な厚さに塗布する。その後、塗布された組成物を、通常、40~130℃の温度で1~30分間乾燥することで、樹脂層を形成することができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、5~150μm、好ましくは15~60μmの範囲で適宜選択される。
[Dry film]
Next, the dry film of the present invention is obtained by coating the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) on the first film, followed by drying. It has a resin layer that is When forming the dry film, first, the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) were diluted with the above organic solvent to adjust the viscosity to an appropriate value. Then, it is coated on a carrier film to a uniform thickness by a comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater, spray coater, or the like. After that, the applied composition is usually dried at a temperature of 40 to 130° C. for 1 to 30 minutes to form a resin layer. The thickness of the coating is not particularly limited, but is generally selected appropriately within the range of 5 to 150 μm, preferably 15 to 60 μm, in terms of thickness after drying.
 第1のフィルムとしては、プラスチックフィルムが用いられ、例えば、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等を用いることができる。第1のフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。より好ましくは15~130μmの範囲である。 A plastic film is used as the first film, and for example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used. The thickness of the first film is not particularly limited, but is generally selected appropriately within the range of 10 to 150 μm. More preferably, it is in the range of 15 to 130 μm.
 第1のフィルム上に樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)からなる樹脂層を形成した後、膜の表面に塵が付着することを防ぐ等の目的で、さらに、膜の表面に、剥離可能なカバーフィルムを積層することが好ましい。剥離可能な第2のフィルムとしては、例えば、ポリエチレンフィルムやポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができる。第2のフィルムとしては、カバーフィルムを剥離するときに、樹脂層と第1のフィルムとの接着力よりも小さいものであればよい。 After forming a resin layer composed of the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) on the first film, the adhesion of dust to the surface of the film was confirmed. For the purpose of prevention, etc., it is preferable to further laminate a peelable cover film on the surface of the membrane. As the peelable second film, for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, or the like can be used. As the second film, any film may be used as long as it has an adhesive strength smaller than that between the resin layer and the first film when the cover film is peeled off.
 なお、本発明においては、上記第2のフィルム上に樹脂層(B)の樹脂組成物(b)および樹脂層(A)の樹脂組成物(a)を塗布、乾燥させることにより積層個構造体を形成して、その表面に第1のフィルムを積層するものであってもよい。すなわち、本発明においてドライフィルムを製造する際に樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)を塗布するフィルムとしては、第1のフィルムおよび第2のフィルムのいずれを用いてもよい。 In the present invention, the resin composition (b) of the resin layer (B) and the resin composition (a) of the resin layer (A) are coated on the second film and dried to obtain a laminated individual structure. may be formed and the first film may be laminated on the surface thereof. That is, in the production of the dry film in the present invention, the first film and the second Either of the two films may be used.
 樹脂層(A)の樹脂組成物および樹脂層(B)の樹脂組成物を、例えば、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成することができる。また、上記組成物をキャリアフィルムまたはカバーフィルム上に塗布し、乾燥させてフィルムとして巻き取ったドライフィルムの場合、ラミネーター等により本発明の組成物の層が基材と接触するように基材上に貼り合わせた後、キャリアフィルムを剥がすことにより、樹脂層を形成できる。 The resin composition of the resin layer (A) and the resin composition of the resin layer (B) are, for example, adjusted to a viscosity suitable for the coating method using the above organic solvent, and then coated on the substrate by a dip coating method, a flow After applying by a method such as coating method, roll coating method, bar coating method, screen printing method, curtain coating method, etc., the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C. , a tack-free resin layer can be formed. In the case of a dry film obtained by coating the above composition on a carrier film or a cover film, drying it, and winding it as a film, the layer of the composition of the present invention is placed on the substrate by a laminator or the like so as to be in contact with the substrate. A resin layer can be formed by peeling off the carrier film after laminating.
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキシド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、PETフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。 Examples of the substrate include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, and copper-clad laminates of all grades (FR-4, etc.) Plates, metal substrates, polyimide films, PET films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
 樹脂組成物を基材またはドライフィルムの第1のフィルムに塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。また、後述するPEB工程、ポストキュア工程で行う加熱は、上記熱風循環式乾燥炉等を用いて行うことができる。 Volatilization drying performed after applying the resin composition to the substrate or the first film of the dry film can be performed by a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, etc. and a method in which the hot air in the dryer is brought into contact with the counter current, and a method in which the support is blown from a nozzle). Further, the heating performed in the PEB process and the post-curing process, which will be described later, can be performed using the hot air circulating drying furnace or the like.
[硬化物]
 ドライフィルムは、第1のフィルムが剥離されて電子部品用の基材、例えばプリント配線板上に形成され、露光およびアルカリ現像により硬化物とされる。アルカリ現像後、必要に応じてポストキュアが行われる。ドライフィルムを用いずに、基材上に樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)を塗布形成したのち、露光およびアルカリ現像により硬化物とされる。アルカリ現像後、必要に応じてポストキュアが行われる。
[Cured product]
A dry film is formed on a base material for electronic parts, such as a printed wiring board, by peeling off the first film, and is cured by exposure and alkali development. After alkali development, post-curing is performed as necessary. Without using a dry film, the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) are coated and formed on the substrate, and then the cured product is obtained by exposure and alkali development. be done. After alkali development, post-curing is performed as necessary.
(露光(光照射)工程)
 この工程では、活性エネルギー線の照射により、樹脂層(B)の樹脂組成物(b)に含まれる光塩基発生剤をネガ型のパターン状に活性化させて、露光部を硬化する。後述するPEB工程を用いる組成物の場合には、光塩基発生剤としての機能を有する光重合開始剤または光塩基発生剤をネガ型のパターン状に活性化させて塩基を発生させる。
 この工程で用いられる露光機としては、直接描画装置、メタルハライドランプを搭載した露光機、(超)高圧水銀ランプを搭載した光照射機、水銀ショートアークランプを搭載した光照射機、または(超)高圧水銀ランプ等の紫外線ランプを使用した直接描画装置を用いることができる。パターン状の露光用のマスクは、ネガ型のマスクである。
 露光に用いる活性エネルギー線としては、最大波長が350~450nmの範囲にあるレーザー光または散乱光を用いることが好ましい。最大波長をこの範囲とすることにより、効率よく光塩基発生剤を活性化させることができる。また、その露光量は膜厚等によって異なるが、通常は、100~1500mJ/cmとすることができる。
 積層された樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)に対し、露光(光照射)を行うことにより、露光部(光照射された部分)が硬化する。この工程は、ネガ型のパターン状に光照射にて樹脂層に含まれる光塩基発生剤を活性化して光照射部を硬化する。この工程は、光照射部で発生した塩基により、光塩基発生剤が不安定化し、塩基が化学的に増殖することにより、樹脂層の深部までじゅうぶん硬化できる。光照射に用いられる露光機としては350~450nmの範囲で紫外線を照射する装置であればよい。
(Exposure (light irradiation) process)
In this step, the photobase generator contained in the resin composition (b) of the resin layer (B) is activated in a negative pattern by irradiation with active energy rays to cure the exposed portion. In the case of the composition using the PEB process, which will be described later, a photopolymerization initiator or photobase generator functioning as a photobase generator is activated in a negative pattern to generate a base.
The exposure machine used in this process includes a direct drawing machine, an exposure machine equipped with a metal halide lamp, a light irradiation machine equipped with a (ultra) high pressure mercury lamp, a light irradiation machine equipped with a mercury short arc lamp, or a (ultra) A direct drawing apparatus using an ultraviolet lamp such as a high-pressure mercury lamp can be used. A mask for patternwise exposure is a negative mask.
As active energy rays used for exposure, laser light or scattered light having a maximum wavelength in the range of 350 to 450 nm is preferably used. By setting the maximum wavelength within this range, the photobase generator can be efficiently activated. Although the amount of exposure differs depending on the film thickness, etc., it is usually 100 to 1500 mJ/cm 2 .
The resin composition (a) of the laminated resin layer (A) and the resin composition (b) of the resin layer (B) are exposed (light irradiation) to form an exposed portion (light irradiated portion). hardens. In this step, the light-irradiated portion is cured by activating the photobase generator contained in the resin layer by light irradiation in a negative pattern. In this step, the photobase generator is destabilized by the base generated in the light irradiation portion, and the base chemically proliferates, so that the deep portion of the resin layer can be fully cured. As an exposure device used for light irradiation, any device that irradiates ultraviolet rays in the range of 350 to 450 nm may be used.
(PEB(POST EXPOSURE BAKE)工程)
 この工程では、露光(光照射)後、樹脂層を加熱することにより、露光部を硬化する。この工程は、光照射工程で発生した塩基により、樹脂層の深部まで充分に硬化できる。加熱温度は、例えば、80~140℃である。加熱時間は、例えば、2~140分である。本発明における樹脂組成物の硬化は、例えば、熱反応によるエポキシ樹脂の開環反応であるため、光ラジカル反応で硬化が進行する場合と比べてひずみや硬化収縮を抑えることができる。
(PEB (POST EXPOSURE BAKE) step)
In this step, the exposed portion is cured by heating the resin layer after exposure (light irradiation). In this step, the base generated in the light irradiation step can sufficiently cure deep portions of the resin layer. The heating temperature is, for example, 80-140.degree. The heating time is, for example, 2 to 140 minutes. Curing of the resin composition in the present invention is, for example, a ring-opening reaction of an epoxy resin due to a thermal reaction, so distortion and curing shrinkage can be suppressed compared to the case where curing proceeds by a photoradical reaction.
(現像工程)
 現像工程は、アルカリ現像により、未照射部を除去して、ネガ型のパターン状の絶縁膜を形成する。現像方法は、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類などのアルカリ水溶液が使用できる。
(Development process)
In the developing step, the non-irradiated portion is removed by alkali development to form a negative patterned insulating film. The developing method can be a dipping method, a shower method, a spray method, a brush method, or the like. Aqueous alkaline solutions such as amines can be used.
(ポストキュア工程)
 この工程は、現像工程の後に、樹脂層を完全に熱硬化させて信頼性の高い塗膜を得るものである。加熱温度は、例えば140℃~180℃である。加熱時間は、例えば、20~120分である。さらに、ポストキュアの前または後に、光照射してもよい。
(Post-cure process)
In this step, after the developing step, the resin layer is completely heat-cured to obtain a highly reliable coating film. The heating temperature is, for example, 140.degree. C. to 180.degree. The heating time is, for example, 20 to 120 minutes. Furthermore, light irradiation may be performed before or after post-curing.
[電子部品]
 本発明の積層構造体は、半導体パッケージ用等として、プリント配線板上に硬化皮膜を形成するために好適に使用され、より好適には、永久被膜を形成するために使用され、さらに好適には、ソルダーレジスト、層間絶縁層、カバーレイを形成するために使用される。また、本発明の硬化性樹脂組成物によれば、クラック耐性に優れた硬化物を得ることができることから、クラック発生による不良の影響が大きいファインピッチの配線パターンを備えるプリント配線板、例えばパッケージ基板に用いられるソルダーレジスト等の永久塗膜の形成に好適に用いることができる。
[Electronic parts]
The laminate structure of the present invention is preferably used for forming a cured film on a printed wiring board, more preferably for forming a permanent film, and more preferably for a semiconductor package or the like. , solder resists, interlayer dielectric layers, and coverlays. Further, according to the curable resin composition of the present invention, it is possible to obtain a cured product having excellent crack resistance. It can be suitably used for forming a permanent coating film such as a solder resist used for.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は、これらの実施例によって制限されるものではない。
[合成例1]
 クレゾールノボラック型エポキシ樹脂(DIC株式会社製、EPICLON N-695、エポキシ当量:220)220部を撹拌機および還流冷却器の付いた四つ口フラスコに入れ、カルビトールアセテート214部を加え、加熱溶解した。次に、重合禁止剤としてハイドロキノン0.1部と、反応触媒としてジメチルベンジルアミン2.0部を加えた。この混合物を95~105℃に加熱し、アクリル酸72部を徐々に滴下し、16時間反応させた。この反応生成物を80~90℃まで冷却し、テトラヒドロフタル酸無水物106部を加え、8時間反応させ、冷却後、取り出した。
 このようにして得られたエチレン性不飽和結合およびカルボキシル基を併せ持つ感光性樹脂溶液(A-1)は、不揮発分65%、固形物の酸価100mgKOH/g、重量平均分子量(Mw)は約3,500であった。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[Synthesis Example 1]
220 parts of a cresol novolac type epoxy resin (manufactured by DIC Corporation, EPICLON N-695, epoxy equivalent: 220) was placed in a four-necked flask equipped with a stirrer and a reflux condenser, 214 parts of carbitol acetate was added, and dissolved by heating. did. Next, 0.1 part of hydroquinone as a polymerization inhibitor and 2.0 parts of dimethylbenzylamine as a reaction catalyst were added. This mixture was heated to 95 to 105° C., 72 parts of acrylic acid was gradually added dropwise, and the mixture was reacted for 16 hours. This reaction product was cooled to 80 to 90° C., 106 parts of tetrahydrophthalic anhydride was added, reacted for 8 hours, cooled, and taken out.
The thus obtained photosensitive resin solution (A-1) having both an ethylenically unsaturated bond and a carboxyl group has a nonvolatile content of 65%, a solid acid value of 100 mgKOH/g, and a weight average molecular weight (Mw) of about was 3,500.
[合成例2]
 窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコに2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下、「BAPP」という)6.98g、3,5-ジアミノ安息酸3.80g、ジェファーミンXTJ-542(ハンツマン社製、分子量1025.64)8.21g、およびγ-ブチロラクトン86.49gを室温で仕込み溶解した。
 次いで、シクロへキサン-1,2,4-トリカルボン酸-1,2-無水物17.84gおよび無水トリメリット酸2.88gを仕込み、室温で30分間保持した。さらにトルエン30gを仕込み、160℃まで昇温して、トルエンと共に生成する水を除去した後、3時間保持し、室温まで冷却することでイミド化物溶液を得た。
 得られたイミド化物溶液に、無水トリメリット酸9.61gおよびトリメチルヘキサメチレンジイソシアネート17.45gを仕込み、160℃の温度で32時間保持した。こうして、カルボキシル基を含有するポリアミドイミド樹脂溶液(A-2)を得た。固形分は40.1%、固形分酸価は83.1mgKOH/g、重量平均分子量(Mw)は4,500であった。
[Synthesis Example 2]
6.98 g of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (hereinafter referred to as "BAPP"), 3, 3.80 g of 5-diaminobenzoic acid, 8.21 g of Jeffamine XTJ-542 (manufactured by Huntsman, molecular weight: 1025.64), and 86.49 g of γ-butyrolactone were charged and dissolved at room temperature.
Next, 17.84 g of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and 2.88 g of trimellitic anhydride were charged and kept at room temperature for 30 minutes. Further, 30 g of toluene was charged, the temperature was raised to 160° C., and after removing the water generated together with the toluene, the mixture was held for 3 hours and cooled to room temperature to obtain an imidized compound solution.
9.61 g of trimellitic anhydride and 17.45 g of trimethylhexamethylene diisocyanate were added to the imidized product solution obtained, and the mixture was maintained at a temperature of 160° C. for 32 hours. Thus, a polyamideimide resin solution (A-2) containing carboxyl groups was obtained. The solid content was 40.1%, the solid content acid value was 83.1 mgKOH/g, and the weight average molecular weight (Mw) was 4,500.
[合成例3]
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ノボラック型クレゾール樹脂(アイカ工業株式会社製、商品名「ショウノール CRG-951」、OH当量:119.4)119.4g、水酸化カリウム1.19gおよびトルエン119.4gを仕込み、撹拌しつつ系内を窒素置換し、加熱昇温した。次に、プロピレンオキシド63.8gを徐々に滴下し、125~132℃、0~4.8kg/cmで16時間反応させた。その後、室温まで冷却し、この反応溶液に89%リン酸1.56gを添加混合して水酸化カリウムを中和し、不揮発分62.1%、水酸基価が182.2g/eq.であるノボラック型クレゾール樹脂のプロピレンオキシド反応溶液を得た。これは、フェノール性水酸基1当量当りアルキレンオキシドが平均1.08モル付加しているものであった。次いで、得られたノボラック型クレゾール樹脂のアルキレンオキシド反応溶液293.0g、アクリル酸43.2g、メタンスルホン酸11.53g、メチルハイドロキノン0.18gおよびトルエン252.9gを、撹拌機、温度計および空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、110℃で12時間反応させた。反応により生成した水は、トルエンとの共沸混合物として、12.6gの水が留出した。その後、室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35gで中和し、次いで水洗した。その後、エバポレーターにてトルエンをジエチレングリコールモノエチルエーテルアセテート118.1gで置換しつつ留去し、ノボラック型アクリレート樹脂溶液を得た。次に、得られたノボラック型アクリレート樹脂溶液332.5gおよびトリフェニルホスフィン1.22gを、撹拌器、温度計および空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8gを徐々に加え、95~101℃で6時間反応させた。このようにして、固形分酸価88mgKOH/g、固形分71%、重量平均分子量(Mw)2,000のカルボキシル基含有感光性樹脂溶液(A-3)を得た。
[Synthesis Example 3]
An autoclave equipped with a thermometer, a nitrogen introduction device and an alkylene oxide introduction device, and a stirring device was charged with a novolak cresol resin (manufactured by Aica Kogyo Co., Ltd., trade name "Shonol CRG-951", OH equivalent: 119.4). 4 g of potassium hydroxide, 1.19 g of potassium hydroxide, and 119.4 g of toluene were charged, and the inside of the system was replaced with nitrogen while stirring, and the temperature was raised. Next, 63.8 g of propylene oxide was gradually added dropwise and reacted at 125-132° C. and 0-4.8 kg/cm 2 for 16 hours. After cooling to room temperature, 1.56 g of 89% phosphoric acid was added to and mixed with the reaction solution to neutralize potassium hydroxide. A propylene oxide reaction solution of a novolak-type cresol resin was obtained. This was obtained by adding an average of 1.08 mol of alkylene oxide per equivalent of phenolic hydroxyl group. Next, 293.0 g of the alkylene oxide reaction solution of the novolak type cresol resin obtained, 43.2 g of acrylic acid, 11.53 g of methanesulfonic acid, 0.18 g of methylhydroquinone and 252.9 g of toluene were mixed with a stirrer, a thermometer and air. The mixture was charged into a reactor equipped with a blowing tube, air was blown in at a rate of 10 ml/min, and the mixture was reacted at 110° C. for 12 hours while stirring. 12.6 g of water was distilled out as an azeotrope with toluene, which was produced by the reaction. After cooling to room temperature, the resulting reaction solution was neutralized with 35.35 g of a 15% aqueous sodium hydroxide solution and then washed with water. After that, the toluene was removed by an evaporator while replacing it with 118.1 g of diethylene glycol monoethyl ether acetate to obtain a novolac type acrylate resin solution. Next, 332.5 g of the obtained novolak-type acrylate resin solution and 1.22 g of triphenylphosphine were charged into a reactor equipped with a stirrer, a thermometer and an air blowing pipe, and air was blown at a rate of 10 ml/min. While stirring, 60.8 g of tetrahydrophthalic anhydride was gradually added and reacted at 95-101° C. for 6 hours. Thus, a carboxyl group-containing photosensitive resin solution (A-3) having a solid content acid value of 88 mgKOH/g, a solid content of 71%, and a weight average molecular weight (Mw) of 2,000 was obtained.
 表1および表2に示す各実施例及び各比較例の材料を、これらの表中に示す量でそれぞれ配合し、攪拌機にて予備混合した後、3本ロールミルにて混練し、樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)を調製した。なお、表中の値は、特に断りがない限り、固形分の質量部である。 The materials of each example and each comparative example shown in Tables 1 and 2 were each blended in the amounts shown in these tables, premixed with a stirrer, and then kneaded with a three-roll mill to form a resin layer (A ) and the resin composition (b) of the resin layer (B) were prepared. Unless otherwise specified, the values in the table are parts by mass of the solid content.
<樹脂層(A)の形成>
 銅厚18μmで全面形成されている基材を用意し、メック社CZ8108Bを使用して、前処理を行った。その後、前記前処理を行った基板に、実施例および比較例の各樹脂組成物をスクリーン印刷等の方法により、それぞれ乾燥後の膜厚が表1および表2中の厚み(単位:μm)になるように基板上に塗布した。その後、熱風循環式乾燥炉にて90℃、30分乾燥することにより樹脂層(A)を形成した。
<Formation of resin layer (A)>
A base material having a copper thickness of 18 μm formed on the entire surface was prepared, and pretreatment was performed using CZ8108B from MEC. After that, the resin compositions of Examples and Comparative Examples were applied to the pretreated substrate by a method such as screen printing so that the film thickness after drying was the thickness (unit: μm) shown in Tables 1 and 2. It was coated on the substrate so that Thereafter, the resin layer (A) was formed by drying at 90° C. for 30 minutes in a hot air circulating drying oven.
<樹脂層(B)の形成>
 上述の様に形成された樹脂層(A)上に、実施例および比較例の各樹脂組成物をスクリーン印刷等の方法により、それぞれ乾燥後の膜厚が表1および表2中の厚み(単位:μm)になるように塗布した。その後、熱風循環式乾燥炉にて90℃/30分にて乾燥し、樹脂層(B)を形成した。
<Formation of resin layer (B)>
On the resin layer (A) formed as described above, each resin composition of Examples and Comparative Examples is dried by a method such as screen printing, and the film thickness after drying is the thickness in Tables 1 and 2 (unit: : μm). Then, it was dried in a hot air circulation drying oven at 90° C./30 minutes to form a resin layer (B).
 このようにして、前記銅厚18μmで全面形成されている基材上に、実施例および比較例の各樹脂組成物からなる積層構造体を作製した。
 また、ドライフィルムのラミネート法の場合、まずは、実施例および比較例の各樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、キャリアフィルムに上記と同様に、実施例および比較例の各樹脂組成物を塗布、乾燥して、樹脂層(B)を形成し、その上に樹脂層(A)を形成して、ドライフィルムを作製した。次に、ラミネーター等により樹脂層(A)側が基材と接触するように貼り合わせた後、キャリアフィルムを剥離した。
In this manner, laminated structures composed of the respective resin compositions of Examples and Comparative Examples were produced on the base material on which the copper thickness of 18 μm was formed over the entire surface.
In the case of the dry film lamination method, first, each resin composition of Examples and Comparative Examples was diluted with an organic solvent to adjust the viscosity to an appropriate level. Each resin composition was applied and dried to form a resin layer (B), and a resin layer (A) was formed thereon to prepare a dry film. Next, the carrier film was peeled off after laminating so that the resin layer (A) side was in contact with the base material using a laminator or the like.
<感度>
 得られた前記基材上の各積層構造体を、41段のステップタブレット(STOUFFER製T-4105)を介してメタルハライドランプ搭載の露光装置(HMW-680-GW20)を用いて露光し、90℃、30分のPEB工程を行った後、各組成物に合わせた現像条件(表1および表2参照)にて1.0%の炭酸ナトリウム水溶液にて30℃、0.2MPaで現像した後、41段のステップタブレットにて形成されたパターンから光沢感度及び残存感度を評価した。露光量は、光沢感度が10段になるように調整した。
 光沢感度及び残存感度は、上述した定義に従って以下のとおり測定した。
 得られた前記基材上の各積層構造体(2層の樹脂層)をステップタブレットを介して前記樹脂層(B)側から露光し、PEB工程を行った後に、形成されたパターンの現像前の前記2層の樹脂層の塗膜厚を100%とした時、前記露光後、前記PEB工程を行った後、現像後に95%以上の塗膜厚が残っているステップ段数の最も大きい値を光沢感度とし、前記現像前の塗膜厚を100%とした時、前記現像後に塗膜厚が5%以下となるステップ段数の最も大きい値を残存感度とした。
 ここで、前記基材上に形成された各積層構造体を露光し、PEB工程を行った後に、形成されたパターンの現像前と現像後の塗膜厚は、JIS K 5600-1-7:2014に準拠し、塗膜厚全体の厚さとして得られた測定値と素地の厚さとして得られた測定値との差として測定した。
 測定方法は、機械式測定方法により、厚さ測定器(DIGIMICRO MF-501、ニコン社製)にて、前記基材上に形成された各積層構造体を樹脂層(B)側からステップタブレットを介して露光し、90℃、30分のPEB工程を行った後に、この形成されたパターンの現像前の塗膜厚と、前記露光後、前記PEB工程を行った後、現像後に形成された残存塗膜の塗膜厚を各々測定し、前記現像前の塗膜厚を100%とした時、前記現像後に95%以上の塗膜厚が残っているステップ段数の最も大きい値を光沢感度とし、前記現像前の塗膜厚を100%とした時、前記現像後に塗膜厚が5%以下となるステップ段数の最も大きい値を残存感度とした。
<Sensitivity>
Each laminated structure obtained on the base material was exposed using an exposure apparatus (HMW-680-GW20) equipped with a metal halide lamp through a 41-stage step tablet (T-4105 manufactured by STOUFFER) at 90°C. , After performing a PEB process for 30 minutes, after developing with a 1.0% sodium carbonate aqueous solution at 30 ° C. and 0.2 MPa under developing conditions (see Tables 1 and 2) that match each composition, Gloss sensitivity and residual sensitivity were evaluated from a pattern formed by a 41-stage step tablet. The amount of exposure was adjusted so that the gloss sensitivity was 10 levels.
Gloss sensitivity and residual sensitivity were measured as follows according to the definitions given above.
Each laminated structure (two resin layers) on the obtained substrate was exposed from the resin layer (B) side through a step tablet, and after performing the PEB process, before developing the formed pattern When the coating thickness of the two resin layers is 100%, the largest value of the number of steps at which the coating thickness of 95% or more remains after the exposure, the PEB process, and the development Residual sensitivity was defined as the maximum value of the number of steps at which the coating thickness after development was 5% or less when the coating thickness before development was 100%.
Here, after exposing each laminated structure formed on the base material and performing the PEB process, the coating film thickness of the pattern formed before and after development is JIS K 5600-1-7: 2014, it was measured as the difference between the measured value obtained as the thickness of the entire coating film and the measured value obtained as the thickness of the substrate.
The measurement method is a mechanical measurement method using a thickness measuring device (DIGIMICRO MF-501, manufactured by Nikon Corporation) to measure each laminated structure formed on the base material from the resin layer (B) side with a step tablet. After performing the PEB process at 90 ° C. for 30 minutes, the coating thickness of the formed pattern before development, and the remaining formed after the exposure, after performing the PEB process, and after development The coating thickness of each coating film is measured, and when the coating thickness before development is taken as 100%, the largest value of the number of steps at which 95% or more of the coating thickness remains after the development is taken as the gloss sensitivity, Residual sensitivity was defined as the largest number of steps at which the coating thickness was 5% or less after development when the coating thickness before development was 100%.
<B-HAST耐性>
 L/S=12/13μmのくし型の評価基板に、上記樹脂組成物を形成し、上述の条件で露光工程を行い、90℃、30分間PEB工程を行ってから、現像(30℃、0.2MPa、1質量%Na2CO3水溶液)工程を行い、レジストパターンを得た。さらにポストキュア工程を150℃60分の条件により塗膜を硬化した。得られた評価基板に5.0Vのバイアス電圧を印加し、130℃、85%の雰囲気下の恒温恒湿曹に入れ、1000hの処理における試験片の寿命を以下の基準で評価した。
〇:700h以上
△:200h超700h未満
×:200h以下
<B-HAST resistance>
The above resin composition was formed on a comb-shaped evaluation substrate with L/S = 12/13 µm, and the exposure process was performed under the conditions described above. .2 MPa, 1 mass % Na2CO3 aqueous solution) step was performed to obtain a resist pattern. Further, the coating film was cured under the conditions of a post-curing step of 150° C. for 60 minutes. A bias voltage of 5.0 V was applied to the evaluation substrate thus obtained, and the substrate was placed in a constant temperature and humidity bath under an atmosphere of 130° C. and 85%.
○: 700 hours or more △: More than 200 hours and less than 700 hours ×: 200 hours or less
<TCTクラック耐性(冷熱衝撃耐性)>
 各実施例および各比較例の樹脂組成物をBT材の評価基板上に形成し、耐クラック性を評価するために本試験を行った。前述の<感度>の評価方法の条件で露光工程を行い、90℃、30分間PEB工程を行ってから、現像(30℃、0.2MPa、1質量%Na2CO3水溶液)工程を行い、200μmサイズの□抜きパターンを形成した。さらにポストキュア工程を150℃60分の条件により塗膜を硬化し、得られた評価基板を冷熱衝撃試験機(楠本化成株式会社製)で-65℃(30min.)+175℃(30min.)を1サイクルとして1000サイクル経過後、光学顕微鏡観察で開口部(角200μm)のクラックの発生有無を確認し、以下の基準にて評価した。
◎:クラック発生率が10%未満
〇:クラック発生率が10%以上20%未満
△:クラック発生率が20%以上40%未満
×:クラック発生率が40%以上
<TCT crack resistance (thermal shock resistance)>
The resin composition of each example and each comparative example was formed on an evaluation substrate made of a BT material, and a final test was conducted to evaluate the crack resistance. The exposure process was performed under the conditions of the evaluation method for <sensitivity> described above, and the PEB process was performed at 90°C for 30 minutes. □ A blanking pattern was formed. Furthermore, the coating film is cured under the conditions of 150 ° C. for 60 minutes in a post-cure process, and the resulting evaluation substrate is subjected to -65 ° C. (30 min.) + 175 ° C. (30 min.) with a thermal shock tester (manufactured by Kusumoto Kasei Co., Ltd.). After 1000 cycles as one cycle, the presence or absence of cracks in the opening (200 μm square) was observed by optical microscope observation, and evaluation was made according to the following criteria.
◎: crack incidence rate is less than 10% ○: crack incidence rate is 10% or more and less than 20% △: crack incidence rate is 20% or more and less than 40% ×: crack incidence rate is 40% or more
<フォトパターニング性>
 各実施例および各比較例の樹脂組成物を銅張基板上に形成し、フォトパターニング性を評価するため、前述の<感度>の評価方法の条件で露光工程を行い、90℃、30分間PEB工程を行ってから、現像(30℃、0.2MPa、1質量%Na2CO3水溶液)工程を行い、Φ40μmからΦ200μmまで10μm刻みのSROパターンを形成した。さらに、ポストキュア工程を150℃60分の条件により塗膜を硬化し、得られた評価基板を100倍に調整した光学顕微鏡を用いて観察し、開口が完全に形成できている最小サイズを評価した。
◎:SROサイズΦ50μm以下
〇:SROサイズΦ50超Φ60μm以下
△:SROサイズΦ60超Φ80μm以下
×:SROサイズΦ80超Φ100μm以下
 その評価結果を、表1および表2中に併せて示す。
<Photopatternability>
The resin composition of each example and each comparative example was formed on a copper-clad substrate, and in order to evaluate the photopatternability, an exposure step was performed under the conditions of the evaluation method for <sensitivity> described above, and PEB was performed at 90° C. for 30 minutes. After performing the process, a development process (30° C., 0.2 MPa, 1 mass % Na2CO3 aqueous solution) was performed to form an SRO pattern from Φ40 μm to Φ200 μm in increments of 10 μm. In addition, the coating film was cured under the conditions of 150° C. for 60 minutes in a post-cure process, and the obtained evaluation substrate was observed using an optical microscope adjusted to 100 times, and the minimum size at which the opening was completely formed was evaluated. did.
⊚: SRO size Φ50 µm or less ◯: SRO size Φ50 to Φ60 µm △: SRO size Φ60 to Φ80 µm ×: SRO size Φ80 to Φ100 µm Tables 1 and 2 also show the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2の材料は次のとおりである。
*1)エチレン性不飽和結合およびカルボキシル基を併せ持つ感光性樹脂溶液(A-1)、Mw3,500
*2)カルボキシル基を含有するポリアミドイミド樹脂溶液(A-2)、Mw4,500
*3)jER834(ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)、Mw470
*4)IRGACURE OXE-02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、BASFジャパン社製)
*5)カルボキシル基含有感光性樹脂溶液(A-3)(ハロゲンフリー・酸付加・アクリレート樹脂製、ハロゲン不純物濃度が5質量ppm以下)、Mw2,000
*6)KAYARAD UXE-3000(カルボキシル基含有ビスフェノールA型ウレタンエポキシアクリレート、日本化薬社製)、Mw10,000
*7)DPCA-60(ジペンタエリスリトールのラクトン変性ヘキサアクリレート、日本化薬社製)
*8)NC-3000L(ビフェニルアラルキル型エポキシ樹脂、日本化薬社製)、Mw700
*9)IRGACURE OXE-02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、BASFジャパン社製)
The materials in Tables 1 and 2 are as follows.
*1) Photosensitive resin solution (A-1) having both ethylenically unsaturated bonds and carboxyl groups, Mw 3,500
*2) Polyamideimide resin solution containing carboxyl group (A-2), Mw 4,500
*3) jER834 (bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation), Mw470
*4) IRGACURE OXE-02 (ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), manufactured by BASF Japan)
*5) Carboxyl group-containing photosensitive resin solution (A-3) (halogen-free, acid addition, made of acrylate resin, halogen impurity concentration of 5 mass ppm or less), Mw 2,000
*6) KAYARAD UXE-3000 (carboxyl group-containing bisphenol A type urethane epoxy acrylate, manufactured by Nippon Kayaku Co., Ltd.), Mw 10,000
* 7) DPCA-60 (lactone-modified hexaacrylate of dipentaerythritol, manufactured by Nippon Kayaku Co., Ltd.)
*8) NC-3000L (biphenyl aralkyl type epoxy resin, manufactured by Nippon Kayaku Co., Ltd.), Mw700
*9) IRGACURE OXE-02 (ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), manufactured by BASF Japan)
 表1および表2中に示す評価結果から明らかなように、各実施例の積層構造体は、各比較例の積層構造体と比較して、B-HAST耐性、耐クラック性に優れるとともに、優れた解像度を有していた。 As is clear from the evaluation results shown in Tables 1 and 2, the laminated structures of each example are superior in B-HAST resistance and crack resistance as compared with the laminated structures of each comparative example. had a high resolution.

Claims (5)

  1.  樹脂組成物(a)からなる樹脂層(A)と、樹脂組成物(b)からなる樹脂層(B)とが積層された2層の樹脂層、を有する積層構造体であって、
     前記樹脂層(B)の樹脂組成物(b)が、アルカリ可溶性樹脂と、光重合開始剤の機能を兼ね備える光塩基発生剤または光重合開始剤および光塩基発生剤と、熱硬化性樹脂と、を含み、
     前記樹脂層(A)の樹脂組成物(a)が、カルボキシル基含有樹脂と、熱硬化性樹脂とを含み、光重合開始剤を実質的に含まず、
     前記2層の樹脂層をステップタブレットを介して前記樹脂層(B)側から露光後、PEB工程を行った後に、形成されたパターンの塗膜厚と、前記露光後、前記PEB工程を行った後に、現像して形成されたパターンの塗膜厚を各々測定して求めた光沢感度と残存感度との差が20段以下であることを特徴とする積層構造体。
    A laminated structure having two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated,
    The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
    The resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
    After exposing the two resin layers from the resin layer (B) side through a step tablet and performing the PEB process, the coating thickness of the formed pattern and the PEB process were performed after the exposure. A laminate structure characterized in that the difference between the gloss sensitivity and the remaining sensitivity obtained by measuring the coating thickness of each pattern formed by development is 20 steps or less.
  2.  前記樹脂層(B)の厚さが、2μm以上前記樹脂層(A)の半分の厚さ以下であり、前記樹脂層(A)の厚さが、10~80μmである請求項1記載の積層構造体。 The laminate according to claim 1, wherein the thickness of the resin layer (B) is 2 µm or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is 10 to 80 µm. Structure.
  3.  請求項1または2記載の積層構造体と、前記積層構造体の前記樹脂層(B)の表面及び前記樹脂層(A)の表面のうちの少なくとも一つの表面に接して設けられたフィルムと、を備えることを特徴とするドライフィルム。 A laminated structure according to claim 1 or 2, a film provided in contact with at least one surface of the surface of the resin layer (B) and the surface of the resin layer (A) of the laminated structure, A dry film comprising:
  4.  請求項1または2記載の積層構造体、あるいは請求項3記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the resin layer of the laminated structure according to claim 1 or 2 or the dry film according to claim 3.
  5.  請求項4記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 4.
PCT/JP2022/016968 2021-03-31 2022-03-31 Laminated structure, dry film, cured product, and electronic component WO2022211121A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280025323.9A CN117120929A (en) 2021-03-31 2022-03-31 Laminated structure, dry film, cured product, and electronic component
JP2023511759A JPWO2022211121A1 (en) 2021-03-31 2022-03-31
KR1020237035328A KR20230165789A (en) 2021-03-31 2022-03-31 Laminated structures, dry films, cured products and electronic components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-062175 2021-03-31
JP2021062175 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211121A1 true WO2022211121A1 (en) 2022-10-06

Family

ID=83459155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016968 WO2022211121A1 (en) 2021-03-31 2022-03-31 Laminated structure, dry film, cured product, and electronic component

Country Status (4)

Country Link
JP (1) JPWO2022211121A1 (en)
KR (1) KR20230165789A (en)
CN (1) CN117120929A (en)
WO (1) WO2022211121A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099885A1 (en) * 2011-12-27 2013-07-04 太陽インキ製造株式会社 Dry film, layered structure, printed wiring board, and process for producing layered structure
WO2016060237A1 (en) * 2014-10-16 2016-04-21 太陽インキ製造株式会社 Laminate structure, dry film, and flexible printed wiring board
WO2019012986A1 (en) * 2017-07-10 2019-01-17 太陽インキ製造株式会社 Multilayer structure, dry film and flexible printed wiring board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183073B2 (en) 2006-07-10 2013-04-17 太陽ホールディングス株式会社 Photocurable / thermosetting resin composition and cured product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099885A1 (en) * 2011-12-27 2013-07-04 太陽インキ製造株式会社 Dry film, layered structure, printed wiring board, and process for producing layered structure
WO2016060237A1 (en) * 2014-10-16 2016-04-21 太陽インキ製造株式会社 Laminate structure, dry film, and flexible printed wiring board
WO2019012986A1 (en) * 2017-07-10 2019-01-17 太陽インキ製造株式会社 Multilayer structure, dry film and flexible printed wiring board

Also Published As

Publication number Publication date
KR20230165789A (en) 2023-12-05
CN117120929A (en) 2023-11-24
JPWO2022211121A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
KR101604557B1 (en) Photocurablethermosetting resin composition
JP5771221B2 (en) Photocurable resin composition, dry film and cured product thereof, and printed wiring board using them
JP6578295B2 (en) Laminated structure, dry film and flexible printed wiring board
TWI778003B (en) Negative photocurable resin composition, dry film, cured product, and printed wiring board
KR102273038B1 (en) Photosensitive heat-curable resin composition and flexible printed wiring board
JP5854600B2 (en) Photocurable resin composition
JP5238777B2 (en) Photosensitive resin, curable resin composition containing the same, dry film thereof, and printed wiring board using them
WO2015064163A1 (en) Photosensitive thermosetting resin composition and flexible printed circuit board
JP6549848B2 (en) Laminated structure
CN113166410A (en) Photosensitive thermosetting resin composition, dry film and printed wiring board
TW202117470A (en) Reusing method of circuit board substrate
TWI811313B (en) Curable resin composition, dry film, cured product, and electronic parts
WO2022211121A1 (en) Laminated structure, dry film, cured product, and electronic component
JP7170420B2 (en) Photosensitive film laminate and cured product thereof
CN114341734A (en) Curable resin composition, dry film and cured product thereof, and electronic component comprising cured product
JP2017179184A (en) Curable resin composition, dry film and cured product thereof
WO2022211122A1 (en) Laminated structure, dry film, cured product, and electronic component
TWI696041B (en) Photosensitive film laminate and hardened product formed using the same
JP2020166211A (en) Curable resin composition, dry film, cured product, printed wiring board, and electronic component
CN113196171A (en) Curable resin composition, dry film, cured product, and electronic component
JP2023083103A (en) Photosensitive resin composition, cured product, printed wiring board, and method for manufacturing printed wiring board
KR20230151977A (en) Laminated structures and flexible printed wiring boards
TW201921105A (en) Photosensitive film laminate and cured product of same
WO2018123826A1 (en) Negative photocurable resin composition, dry film, cured product and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511759

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237035328

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781328

Country of ref document: EP

Kind code of ref document: A1