WO2022211122A1 - Laminated structure, dry film, cured product, and electronic component - Google Patents

Laminated structure, dry film, cured product, and electronic component Download PDF

Info

Publication number
WO2022211122A1
WO2022211122A1 PCT/JP2022/016969 JP2022016969W WO2022211122A1 WO 2022211122 A1 WO2022211122 A1 WO 2022211122A1 JP 2022016969 W JP2022016969 W JP 2022016969W WO 2022211122 A1 WO2022211122 A1 WO 2022211122A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin layer
resin composition
carboxyl group
layer
Prior art date
Application number
PCT/JP2022/016969
Other languages
French (fr)
Japanese (ja)
Inventor
ハヌル チャ
大地 岡本
英和 宮部
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to KR1020237035327A priority Critical patent/KR20230165788A/en
Priority to CN202280025322.4A priority patent/CN117120930A/en
Priority to JP2023511760A priority patent/JPWO2022211122A1/ja
Publication of WO2022211122A1 publication Critical patent/WO2022211122A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to laminated structures, dry films, cured products suitable for use in semiconductor packages and the like, and electronic components using these.
  • B-HAST Biased HAST
  • crack resistance in thermal cycles is one of the long-term reliability tests. I have an exam.
  • a photocurable / thermosetting resin composition excellent in B-HAST resistance a compound (a) having two or more phenolic hydroxyl groups in one molecule and an alkylene oxide (b) or a cyclocarbonate compound (c)
  • a resin composition containing Patent Document 1
  • Cited Document 1 contains a carboxyl group-containing photosensitive resin having a rigid skeleton, it is excellent in B-HAST resistance. was not always sufficient.
  • an object of the present invention is to provide a laminate structure, a dry film, a cured product, and an electronic component that are excellent in crack resistance, have good patterning properties, and can be removed without residue in the development process.
  • the laminate structure of the present invention is a laminate having two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated.
  • the resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
  • the resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
  • the mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of the resin layer (B) has a gelation time at 150° C.
  • the mixture of the carboxyl group-containing resin and the thermosetting resin contained in the resin composition (a) of the resin layer (A) has a gelation time at 150° C. of 300 seconds or more and 1200 seconds or less, and It is characterized by being longer than the gelation time in the mixture of the resin layer (B).
  • the thickness of the resin layer (B) is 2 ⁇ m or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is 10 to 80 ⁇ m. is preferred, and 20 to 60 ⁇ m is more preferred.
  • the dry film of the present invention is in contact with the laminated structure of the present invention and at least one surface of the surface of the resin layer (B) and the surface of the resin layer (A) of the laminated structure. and a film provided.
  • the cured product of the present invention is characterized by being obtained by curing the laminated structure of the present invention or the laminated structure of the dry film of the present invention.
  • the electronic component of the present invention is characterized by having the cured product of the present invention.
  • a laminated structure, a dry film, a cured product thereof, and an electronic component using the cured product which have excellent crack resistance, good patterning properties, and can be removed without residue in a development process. can provide.
  • the laminate structure of the present invention is a laminate having two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated.
  • the resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
  • the resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
  • the mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of the resin layer (B) has a gelation time at 150° C.
  • the mixture of the carboxyl group-containing resin and the thermosetting resin contained in the resin composition (a) of the resin layer (A) has a gelation time at 150° C. of 300 seconds or more and 1200 seconds or less, and It is characterized by being longer than the gelling time in the mixture of the resin composition (b) of the resin layer (B).
  • the layer in contact with the substrate is the resin layer (A), and the surface of the resin layer (A) opposite to the surface in contact with the substrate is in contact with the substrate.
  • This layer is the resin layer (B). That is, the laminated structure has a structure in which the resin layer (A) and the resin layer (B) are laminated in this order on the substrate.
  • the base material include a printed wiring board, a flexible printed wiring board, and the like on which a circuit is formed in advance using copper or the like.
  • the resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, and a thermosetting resin. It consists of a resin composition containing The resin composition (b) of the resin layer (B) containing these components has photosensitivity due to the reaction of the photopolymerization initiator with the alkali-soluble resin by light irradiation, and the photobase of the polymerization initiator by heating. It is a photosensitive thermosetting resin composition that can be thermally cured with its function as a generator serving as a catalyst.
  • the resin composition (a) of the resin layer (A) is composed of a resin composition containing a carboxyl group-containing resin and a thermosetting resin and substantially free of a photopolymerization initiator.
  • substantially free of photopolymerization initiator means that the amount of photopolymerization initiator is less than 0.5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin contained in the resin composition (a). Since the resin composition (a) of the resin layer (A) containing these components does not contain a photopolymerization initiator, it does not have photosensitivity in a single layer, but it is laminated in contact with the resin layer (B).
  • active species such as radicals generated from the photopolymerization initiator contained in the resin composition (b) of the resin layer (B) diffuse into the resin layer (A) to form the resin layer (A) is also photosensitive. Moreover, it can be thermoset by heating. Therefore, in the laminated structure, a predetermined pattern can be collectively formed on the resin layer (B) and the resin layer (A) by development.
  • post-exposure baking POST EXPOSURE BAKE, hereinafter referred to as PEB
  • the photopolymerization initiator itself has a property of absorbing light, so the photopolymerization initiator increases as it goes deeper. As a result, the polymerization initiating ability of the core is lowered, and the photoreactivity of the deep portion is lowered, which tends to cause undercutting, making it difficult to form a highly precise pattern.
  • the resin composition (a) of the resin layer (A) does not contain a photopolymerization initiator, and active species diffuse from the resin layer (B) to improve the undercut problem. As a result, it is possible to form a pattern with excellent deep-part curability without undercut.
  • the carboxylic acid in the unexposed area reacts with the epoxy during the heating process after exposure. As a result, it may become a residue in the developing process.
  • the gelation time under predetermined conditions in the mixture of the alkali-soluble resin and the thermosetting resin contained in the resin layer (B) and the resin composition (a) contained in the resin layer (A) Residue can be eliminated by adjusting the gelation time under predetermined conditions in the mixture of the carboxyl group-containing resin and the thermosetting resin.
  • the method for measuring the gelling time is based on the gelling time measuring method described below.
  • a resin layer (A) consists of a resin composition (a). It is desirable that the resin composition (a) of the resin layer (A) not only functions as an adhesive layer with the base material, but also has properties capable of coping with formation of various circuit patterns. Therefore, the resin composition (a) of the resin layer (A) is prepared by heating a resin having a carboxyl group, especially a carboxyl group-containing resin and a thermosetting resin with a base generated from a base generator as a catalyst after exposure. It is preferably a photosensitive thermosetting resin composition that can be developed by addition reaction and removal of unexposed portions with an alkaline solution.
  • carboxyl group-containing resins having a carboxyl group in the molecule can be used as the carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A).
  • a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in the molecule is preferable from the viewpoint of photocurability and development resistance.
  • the ethylenically unsaturated double bonds are preferably derived from acrylic acid or methacrylic acid or derivatives thereof.
  • Carboxyl group-containing resins may be used alone or in combination of two or more. Specific examples of the carboxyl group-containing resin include the following compounds (both oligomers and polymers).
  • Carboxyl group-containing resins obtained by copolymerizing unsaturated carboxylic acids such as (meth)acrylic acid and unsaturated group-containing compounds such as styrene, ⁇ -methylstyrene, lower alkyl (meth)acrylates, and isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; Carboxyl group-containing urethane resins obtained by polyaddition reaction of diol compounds such as polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • diol compounds such as polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates, polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, and bisphenol A-based A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with the terminal of a urethane resin obtained by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
  • Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing urethane resin produced by a polyaddition reaction of a meth)acrylate or its partial acid anhydride modified product, a carboxyl group-containing dialcohol compound and a diol compound.
  • a carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane compound with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
  • reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide and reacting an unsaturated group-containing monocarboxylic acid to obtain a reaction product
  • alkylene oxide such as ethylene oxide or propylene oxide
  • unsaturated group-containing monocarboxylic acid to obtain a reaction product
  • a carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a substance.
  • (11) Obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with a monocarboxylic acid containing an unsaturated group.
  • a carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
  • an epoxy resin having a plurality of epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol;
  • a carboxyl group-containing resin having at least one of an amide structure and an imide structure A maleimide or maleimide derivative such as N-phenylmaleimide or N-benzylmaleimide, an unsaturated carboxylic acid such as (meth)acrylic acid, and an unsaturated group-containing compound having a hydroxyl group such as hydroxyalkyl (meth)acrylate , styrene, ⁇ -methylstyrene, ⁇ -chlorostyrene, a carboxyl group-containing copolymer resin having an unsaturated group-containing compound having an aromatic ring such as vinyltoluene as a monomer, glycidyl (meth) acrylate, ⁇ -methyl
  • Carboxyl group-containing resins are not limited to those listed above, and one type may be used alone, or a plurality of types may be mixed and used.
  • the acid value of the carboxyl group-containing resin is preferably 20-200 mgKOH/g.
  • the weight average molecular weight of the carboxyl group-containing resin differs depending on the resin skeleton, the weight average molecular weight Mw is preferably 1,000 to 100,000.
  • the blending amount of the carboxyl group-containing resin is 10 to 70% by mass based on the total solid content of the resin composition. By making it 10% by mass or more, the strength of the coating film can be improved. Moreover, by making it 70% by mass or less, the viscosity becomes appropriate and the workability improves.
  • thermosetting resin contained in the resin composition (a) of the resin layer (A) is a resin having a functional group capable of thermal curing reaction.
  • Thermosetting resins are not particularly limited, and include epoxy resins, oxetane compounds, compounds having two or more thioether groups in the molecule, namely amino resins such as episulfide resins, melamine resins, benzoguanamine resins, melamine derivatives, and benzoguanamine derivatives. , blocked isocyanate compounds, cyclocarbonate compounds, bismaleimides, carbodiimides and the like can be used, and these may be used in combination.
  • the epoxy resin is a resin having an epoxy group, and any conventionally known one can be used, including a bifunctional epoxy resin having two epoxy groups in the molecule and a polyfunctional epoxy resin having many epoxy groups in the molecule. etc. In addition, a hydrogenated bifunctional epoxy resin may be used.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, and cresol novolak type epoxy resin.
  • Epoxy resins bisphenol A novolak type epoxy resins, biphenyl type epoxy resins, naphthol type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, alicyclic epoxy resins, aliphatic chain Epoxy resins, phosphorus-containing epoxy resins, anthracene-type epoxy resins, norbornene-type epoxy resins, adamantane-type epoxy resins, fluorene-type epoxy resins, aminophenol-type epoxy resins, aminocresol-type epoxy resins, alkylphenol-type epoxy resins, and the like are used. These epoxy resins can be used singly or in combination of two or more.
  • the epoxy resin may be solid epoxy resin, semi-solid epoxy resin, or liquid epoxy resin.
  • solid epoxy resin refers to an epoxy resin that is solid at 40°C
  • semi-solid epoxy resin refers to an epoxy resin that is solid at 20°C and liquid at 40°C
  • a liquid epoxy resin means an epoxy resin that is liquid at 20°C.
  • EPICLON HP-4700 naphthalene type epoxy resin
  • EXA4700 tetrafunctional naphthalene type epoxy resin
  • NC-7000 polyfunctional solid epoxy resin containing naphthalene skeleton
  • EPPN-502H trisphenol epoxy resin
  • Epoxidized products of condensation products of phenols and aromatic aldehydes having phenolic hydroxyl groups (trisphenol-type epoxy resins); Dicyclopentadiene aralkyl type epoxy resin such as EPICLON HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by DIC; Biphenyl such as Nippon Kayaku NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) Aralkyl-type epoxy resins; biphenyl/phenol novolac-type epoxy resins such as NC-3000L manufactured by Nippon Kayaku; EPICLON N660, EPICLON N690 manufactured by DIC; novolac-type epoxy resins such as EOCN-104S manufactured by Nippon Kayaku; biphenyl type epoxy resins such as YX-4000 manufactured by Nittetsu Chemical &Materials; phosphorus-containing epoxy resins such as TX0712 manufactured by Nippon Steel Chemical &
  • Semi-solid epoxy resins include EPICLON 860, EPICLON 900-IM, EPICLON EXA-4816, EPICLON EXA-4822 manufactured by DIC, Epotato YD-134 manufactured by Nippon Steel Chemical & Materials, jER834 and jER872 manufactured by Sumitomo Chemical Co., Ltd.
  • Bisphenol A type epoxy resin such as ELA-134; naphthalene type epoxy resin such as EPICLON HP-4032 manufactured by DIC; phenol novolac type epoxy resin such as EPICLON N-740 manufactured by DIC;
  • Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin. , and alicyclic epoxy resins.
  • the oxetane compounds include bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, 1,4-bis[(3-methyl -3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3-oxetanyl )
  • polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl)methyl methacrylate, (3-ethyl-3-oxetanyl)methyl methacrylate and their oligomers or copolymers, oxetane alcohols and novolac resins, Poly(p-hydroxystyrene), cardo-type bisphenols,
  • the episulfide resin examples include bisphenol A type episulfide resin.
  • an episulfide resin or the like obtained by replacing the oxygen atom of the epoxy group of the epoxy resin with a sulfur atom by using a similar synthesis method can also be used.
  • thermosetting resins it is preferable to use epoxy resin. Further, at least one of solid epoxy resins and semi-solid epoxy resins is preferable, since a cured product having a high glass transition temperature (Tg) and excellent crack resistance can be obtained.
  • epoxy resin aromatic epoxy resins are preferable from the viewpoint of desirable physical properties of the cured product, and among them, naphthalene-type epoxy resins and biphenyl-type epoxy resins are more preferable.
  • the aromatic epoxy resin means an epoxy resin having an aromatic ring skeleton in its molecule.
  • thermosetting resin can be used individually by 1 type or in combination of 2 or more types.
  • the blending ratio of the thermosetting resin is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, more preferably 20 to 40% by mass, based on the total amount of the composition in terms of solid content. is more preferred. As will be described later, it is preferable to appropriately adjust the equivalent ratio with the carboxyl group-containing resin.
  • a resin having a carboxyl group and a thermosetting resin are subjected to an addition reaction by heating after exposure using a base generated from a base generator as a catalyst to form an un It is a photosensitive thermosetting resin composition that can be developed by removing the exposed portion with an alkaline solution.
  • a (meth)acrylate monomer may be blended in the resin composition of the resin layer (A). For example, about 10 to 100 parts by mass of the (meth)acrylate monomer can be blended with 100 parts by mass of the carboxyl group-containing resin.
  • a resin layer (B) consists of a resin composition (b).
  • the resin layer (B) mainly functions as a protective layer for the substrate.
  • the resin composition (b) of the resin layer (B) is capable of radical polymerization by light due to the photopolymerization initiator, and the alkali-soluble resin and the thermosetting resin are separated by using the base generated from the base generator as a catalyst. It is a photosensitive thermosetting resin composition that undergoes an addition reaction by heating after exposure and that can be developed by removing the unexposed portion with an alkaline solution.
  • Examples of the alkali-soluble resin contained in the resin composition (b) of the resin layer (B) include a compound having a phenolic hydroxyl group, a compound having a carboxyl group, and a compound having a phenolic hydroxyl group and a carboxyl group. are used.
  • carboxyl group-containing resins or carboxyl group-containing photosensitive resins which contain a compound having a carboxyl group and are conventionally used as solder resist compositions, can be mentioned.
  • the carboxyl group-containing resin or the carboxyl group-containing photosensitive resin and the compound having an ethylenically unsaturated bond known and commonly used compounds are used.
  • the alkali-soluble resin an alkali-soluble resin having an imide ring, which is superior in properties such as bending resistance and heat resistance, can be preferably used.
  • the thermosetting resin a known and commonly used one similar to that for the resin layer (A) can be used.
  • the alkali-soluble resin having an imide ring has one or more alkali-soluble groups selected from phenolic hydroxyl groups and carboxyl groups, and an imide ring.
  • a well-known and commonly used technique can be used for introducing an imide ring into this alkali-soluble resin. Examples thereof include resins obtained by reacting a carboxylic anhydride component with an amine component and/or an isocyanate component. The imidization may be carried out by thermal imidization or by chemical imidization, or these may be used in combination.
  • examples of the carboxylic acid anhydride component include tetracarboxylic acid anhydrides and tricarboxylic acid anhydrides, but are not limited to these acid anhydrides. Any compound having a physical group and a carboxyl group can be used, including derivatives thereof. Also, these carboxylic acid anhydride components may be used alone or in combination.
  • diamines such as aliphatic diamines and aromatic diamines, polyvalent amines such as aliphatic polyetheramines, diamines having a carboxylic acid, diamines having a phenolic hydroxyl group, and the like can be used. is not limited to Also, these amine components may be used alone or in combination.
  • diisocyanates such as aromatic diisocyanates and their isomers and polymers, aliphatic diisocyanates, alicyclic diisocyanates and their isomers, and other general-purpose diisocyanates can be used. It is not limited. Also, these isocyanate components may be used alone or in combination.
  • the alkali-soluble resin having an imide ring as explained above may have an amide bond.
  • This may be a polyamide-imide obtained by reacting an imidized product having a carboxyl group with an isocyanate and a carboxylic acid anhydride, or may be obtained by other reactions. It may also have other bonds consisting of addition and condensation.
  • a known and commonly used organic solvent can be used.
  • an organic solvent there is no problem as long as it does not react with the carboxylic acid anhydrides, amines, and isocyanates that are raw materials and dissolves these raw materials, and its structure is not particularly limited.
  • aprotic solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, and ⁇ -butyrolactone are preferred because of their high solubility of raw materials.
  • the alkali-soluble resin having at least one alkali-soluble group and an imide ring among phenolic hydroxyl groups and carboxyl groups as described above has an acid value of 20 to 200 mgKOH/g in order to be compatible with the photolithography process. and more preferably 60 to 150 mgKOH/g.
  • the acid value is 20 mgKOH/g or more, the solubility in alkali increases, the developability becomes good, and the degree of crosslinking with the thermosetting resin after light irradiation increases, so that sufficient development contrast can be obtained. Obtainable.
  • the acid value is 200 mgKOH/g or less, so-called heat fogging can be suppressed particularly in the PEB process after light irradiation, which will be described later, and the process margin is increased.
  • the molecular weight of this alkali-soluble resin is preferably a mass average molecular weight of 1,000 to 100,000 in consideration of developability and cured coating film properties.
  • photopolymerization initiator used in the resin composition (b) of the resin layer (B)
  • known and commonly used photopolymerization initiators can be used, such as benzoin compounds, acylphosphine oxide compounds, acetophenone compounds, ⁇ -aminoacetophenone compounds, oxime ester compounds, thioxanthone compounds, and the like.
  • a photopolymerization initiator that also functions as a photobase generator is suitable.
  • a photopolymerization initiator and a photobase generator may be used together.
  • the amount of the photopolymerization initiator compounded is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the alkali-soluble resin.
  • the amount is 0.5 parts by mass or more, the surface curability is improved, and when the amount is 30 parts by mass or less, halation is less likely to occur and good resolution is obtained. More preferably, it is 1.0 to 20 parts by mass.
  • the photobase generator which also functions as a photopolymerization initiator, undergoes a polymerization reaction of the heat-reactive compound described below by changing its molecular structure or by cleaving the molecule upon irradiation with light such as ultraviolet light or visible light.
  • photobase generators also functioning as photopolymerization initiators include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic and compounds having substituents such as group amino groups, nitrobenzylcarbamate groups, alkoxybenzylcarbamate groups, and the like.
  • oxime ester compounds and ⁇ -aminoacetophenone compounds are preferred, and oxime ester compounds are more preferred.
  • ⁇ -aminoacetophenone compounds those having two or more nitrogen atoms are particularly preferred.
  • Any ⁇ -aminoacetophenone compound may be used as long as it has a benzoin ether bond in the molecule and undergoes intramolecular cleavage when exposed to light to generate a basic substance (amine) that acts as a curing catalyst.
  • any compound can be used as the oxime ester compound as long as it is a compound that generates a basic substance upon irradiation with light.
  • the amount of the photobase generator compounded in the resin composition is preferably 1.0 to 40 parts by mass, more preferably 1.0 to 20 parts by mass, per 100 parts by mass of the alkali-soluble resin.
  • the amount is 1.0 parts by mass or more, a good contrast of the development resistance between the light-irradiated area and the non-irradiated area can be obtained.
  • it is 40 parts by mass or less, the properties of the cured product are improved.
  • thermosetting resin contained in the resin composition (b) of the resin layer (B) is, like the thermosetting resin of the resin layer (A) described above, an epoxy resin, an oxetane compound, and two or more in the molecule.
  • compounds having a thioether group that is, episulfide resins, melamine resins, benzoguanamine resins, melamine derivatives, amino resins such as benzoguanamine derivatives, blocked isocyanate compounds, cyclocarbonate compounds, bismaleimides, carbodiimides, etc., can be used in combination.
  • thermosetting resin contained in the resin composition (b) of the resin layer (B) may be the same thermosetting resin as the thermosetting resin contained in the resin composition (a) of the resin layer (A). , may be different thermosetting resins. Moreover, a thermosetting resin can be used individually by 1 type or in combination of 2 or more types.
  • the blending ratio of the thermosetting resin is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, more preferably 20 to 40% by mass, based on the total amount of the composition in terms of solid content. is more preferred. As will be described later, it is preferable to appropriately adjust the equivalent ratio with the carboxyl group-containing resin.
  • the resin composition used in the resin layer (A) and the resin layer (B) as described above may optionally contain the following components.
  • coloring agent A coloring agent can be added for the purpose of adjusting sensitivity.
  • known and commonly used colorants such as red, blue, green, yellow, white, and black can be blended, and any of pigments, dyes, and pigments can be used.
  • antioxidants for the purpose of adjusting the sensitivity and improving the properties of the effect paint, known and commonly used additives such as antioxidants, ultraviolet absorbers, finely divided silica, hydrotalcite and silane coupling agents can be added.
  • the mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of the resin layer (B) has a gelation time at 150 ° C. of 120 seconds or more and 600 seconds or less, more preferably 180 seconds or more and 300 seconds or less, and the mixture of the carboxyl group-containing resin and the thermosetting resin contained in the resin layer (A) has a gelling time of 300 seconds at 150°C. It is characterized by being 1200 seconds or less, more preferably 360 seconds or more and 600 seconds or less, and longer than the gelling time of the mixture of the resin layer (B).
  • the lower limit of the result of measuring the thermal reactivity between the carboxyl group-containing resin and the thermosetting resin in the resin composition (a) of the resin layer (A) by gelation time is relatively long at 300 seconds or more, and the resin layer (B
  • the lower limit of the result of measuring the thermal reactivity in the mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of ) by gelation time is 120 seconds or more, and the resin composition of the resin layer (A)
  • the reaction in the unexposed areas does not proceed and the product can have a long life. As a result, finer resolution can be obtained, and a cured product without residue can be obtained after development.
  • the method for measuring the gelling time is based on the gelling time measuring method described below.
  • the resin layer (A) and the resin layer (B) are each made of a photocurable resin composition. Since the photocurable resin composition requires a heating step after exposure with a photobase generator, the gelation time of each composition is 60 to 1 in order to suppress the influence of the thermal reaction even in the unexposed area. , 200 seconds.
  • the resin layer (B) in terms of developability and resistance to development after exposure and PEB, and properties of the cured coating film, has an alkali-soluble resin contained in the resin composition (b) of the resin layer (B) and the heat
  • the gelling time of the mixture with the curable resin is preferably 120 to 600 seconds, more preferably 180 seconds or more and 300 seconds or less.
  • the resin layer (A) is made of a mixture of a carboxyl group-containing resin and each thermosetting resin contained in the resin composition (a) of the resin layer (A) in terms of developability, development residue and cured coating film properties.
  • the gelation time is preferably 300 to 1,200 seconds, more preferably 360 seconds or more and 600 seconds or less. Further, it is preferable that the gelation time of the resin composition of the resin layer (A) is longer than the gelation time of the resin composition of the resin layer (B), and the difference therebetween is 120 seconds or more.
  • the gelation time of the present invention is an index for combining resin components by adjusting parameters such as the acid value of each component, the molecular weight, the number of functional groups of the thermosetting resin, and the blending amount of the thermosetting resin, as shown below. It is as
  • the carboxyl group-containing resin and the alkali-soluble resin contained in the resin compositions of the resin layer (A) and the resin layer (B) of the present invention, respectively, have an acid value of 20 to 200 mgKOH/g in order to be compatible with the photolithography process. more preferably 30 to 100 mgKOH/g for the resin layer (A), and more preferably 30 to 150 mgKOH/g for the resin layer (B).
  • the acid value is 20 mgKOH/g or more, the solubility in alkali is increased, the developability is improved, and the degree of crosslinking with the thermosetting component after light irradiation is increased, so that sufficient development contrast is obtained. Obtainable.
  • the gelling time can be controlled by adjusting the acid value of the carboxyl group-containing resin of the resin composition of the resin layer (A) and the resin layer (B).
  • the acid value is relatively low in the above range of 20 to 200 mgKOH/g, that is, the acid value is 20.
  • Using a carboxyl group-containing resin of less than ⁇ 100 mgKOH/g can make the gelation time longer, and using a carboxyl group-containing resin with a relatively high acid value, that is, an acid value of 100 to 200 mgKOH/g Gelation time can be made shorter.
  • the weight-average molecular weights of the carboxyl group-containing resin and the alkali-soluble resin contained in the resin compositions of the resin layer (A) and the resin layer (B), respectively, are A weight average molecular weight of 1,000 to 100,000 is preferred. Within this range, if the gelation time is controlled by the molecular weight of the resin, a relatively low molecular weight, that is, a carboxyl group-containing resin having a weight average molecular weight of 1,000 to 5,000, or an alkali-soluble resin will gel.
  • the gelling time can be lengthened, and the gelation time can be shortened by using a carboxyl group-containing resin or alkali-soluble resin having a relatively high molecular weight, ie, a weight average molecular weight of more than 5,000 to 10,000.
  • the weight average molecular weight of the alkali-soluble resin of the resin layer (B) is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, in order to adjust the gelation time.
  • the weight average molecular weight of the carboxyl group-containing resin of the resin layer (A) is preferably 1,000 to 10,000, more preferably 2,000 to 5,000.
  • thermosetting resin contained in the resin composition of the resin layer (A) and the resin layer (B) has a functional group capable of undergoing an addition reaction with a carboxyl group or a phenolic hydroxyl group by heat.
  • thermosetting resin for example, compounds having a cyclic (thio)ether group are preferable, and examples thereof include epoxy resins.
  • the epoxy resin is a resin having an epoxy group, and any known epoxy resin can be used.
  • the resin layer (B) is preferably a polyfunctional epoxy resin having 3 or more epoxy groups in the molecule, and the resin layer (A) preferably has epoxy groups in the molecule.
  • a bifunctional epoxy resin having two or less is preferable.
  • thermosetting resin contained in the resin composition of the resin layer (A) and the resin layer (B) has a functional group capable of undergoing an addition reaction with a carboxyl group or a phenolic hydroxyl group by heat.
  • amount of the thermosetting resin the equivalent ratio of the carboxyl group-containing resin and the alkali-soluble resin contained in the resin composition of the resin layer (A) and the resin layer (B) (carboxyl group: thermal reactivity such as epoxy group group) is preferably 1.0:0.1 to 1.0:10.0.
  • the equivalent ratio of the resin layer (B) is preferably 1.0:1.0 to 1.0:10.0, and the equivalent ratio of the resin layer (A) is 1.0:0.1 to 1.0:5.0 is preferred. More preferably, the resin layer (B) has a ratio of 1.0:1.2 to 1.0:5.0, and the resin layer (A) has a ratio of 1.0:0.5 to 1.0:2.5. preferable.
  • the thickness of the resin layer (B) is 2 ⁇ m or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is 10 to 80 ⁇ m. Preferred, more preferably 10-60.
  • the laminated structure may be formed by forming the resin composition of the resin layer (A) and the resin composition of the resin layer (B) into a dry film on a substrate such as a wiring board, or by sequentially forming liquid ones. It may be formed by coating. When used as a liquid, it may be one-liquid or two-liquid or more, but from the viewpoint of storage stability, it is preferably two-liquid or more.
  • the dry film of the present invention has a resin layer obtained by coating and drying the resin composition for the resin layer (A) and the resin composition for the resin layer (B) on the first film.
  • the resin composition of the resin layer (A) and the resin composition of the resin layer (B) are diluted with the above organic solvent to adjust the viscosity to an appropriate value, and then a comma coater, A blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater, spray coater, or the like is used to coat the first film to a uniform thickness.
  • the applied composition is usually dried at a temperature of 40 to 130° C. for 1 to 30 minutes to form a resin layer.
  • the thickness of the coating is not particularly limited, but is generally selected appropriately within the range of 5 to 150 ⁇ m, preferably 15 to 60 ⁇ m, in terms of thickness after drying.
  • a plastic film is used as the first film, and for example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used.
  • the thickness of the first film is not particularly limited, but is generally selected appropriately within the range of 10 to 150 ⁇ m. More preferably, it is in the range of 15 to 130 ⁇ m.
  • a peelable second film on the surface of the membrane.
  • a peelable second film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, or the like can be used.
  • any film may be used as long as it has an adhesive strength smaller than that between the resin layer and the first film when the second film is peeled off.
  • the resin composition of the resin layer (B) and the resin composition of the resin layer (A) are coated on the second film and dried to form a laminated individual structure.
  • a first film may be laminated on the surface. That is, the film to which the resin composition of the resin layer (A) and the resin composition of the resin layer (B) are applied when producing the dry film in the present invention may be either the first film or the second film. may be used.
  • the resin composition of the resin layer (A) and the resin composition of the resin layer (B) are, for example, adjusted to a viscosity suitable for the coating method using the above organic solvent, and then coated on the substrate by a dip coating method, a flow After applying by a method such as coating method, roll coating method, bar coating method, screen printing method, curtain coating method, etc., the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C. , a tack-free resin layer can be formed.
  • a laminator or the like is used so that the layer of the composition of the present invention comes into contact with the substrate.
  • a resin layer can be formed by peeling off the first film after pasting on the base material.
  • the substrate examples include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, and copper-clad laminates of all grades (FR-4, etc.) Plates, metal substrates, polyimide films, PET films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
  • PEN polyethylene naphthalate
  • Volatilization drying performed after applying the resin composition to the substrate or the first film of the dry film can be performed using a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, etc.
  • a method in which the hot air in the dryer is brought into countercurrent contact with the hot air in the dryer, and a method in which the support is blown from a nozzle) can be used.
  • the dry film is formed on a substrate for electronic parts, such as a printed wiring board, by peeling off the first film, and is cured by exposure and alkali development. After alkali development, post-curing is performed as necessary. Without using a dry film, the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) are formed by coating on a substrate, followed by exposure and alkali development to obtain a cured product. be. After alkali development, post-curing is performed as necessary.
  • the photobase generator contained in the resin layer (B) is activated in a negative pattern by irradiation with active energy rays, and the exposed portion is cured.
  • a photopolymerization initiator or photobase generator functioning as a photobase generator is activated in a negative pattern to generate a base.
  • the exposure machine used in this process includes a direct drawing machine, an exposure machine equipped with a metal halide lamp, a light irradiation machine equipped with a (ultra) high pressure mercury lamp, a light irradiation machine equipped with a mercury short arc lamp, or a (ultra)
  • a direct drawing apparatus using an ultraviolet lamp such as a high-pressure mercury lamp can be used.
  • a mask for patternwise exposure is a negative mask.
  • active energy rays used for exposure laser light or scattered light having a maximum wavelength in the range of 350 to 450 nm is preferably used. By setting the maximum wavelength within this range, the photobase generator can be efficiently activated.
  • the amount of exposure differs depending on the film thickness, etc., it is usually 100 to 1500 mJ/cm 2 .
  • the resin composition (a) of the laminated resin layer (A) and the resin composition (b) of the resin layer (B) are exposed (light irradiation) to form an exposed portion (light irradiated portion). hardens.
  • the light-irradiated portion is cured by activating the photobase generator contained in the resin layer by light irradiation in a negative pattern.
  • the base generated in the light irradiation step can sufficiently cure deep portions of the resin layer.
  • the heating temperature is, for example, 80-140.degree.
  • the heating time is, for example, 2 to 140 minutes.
  • Curing of the resin composition in the present invention is, for example, a ring-opening reaction of an epoxy resin due to a thermal reaction, so distortion and curing shrinkage can be suppressed compared to the case where curing proceeds by a photoradical reaction.
  • the exposed portion is cured by heating the resin layer after exposure (light irradiation).
  • the photobase generator is destabilized by the base generated in the light-irradiated portion, and the base chemically proliferates, so that the deep part of the resin layer can be fully cured.
  • the heating temperature is, for example, 80-140.degree.
  • the heating time is, for example, 2 to 140 minutes.
  • Curing of the resin composition in the present invention is, for example, a ring-opening reaction of an epoxy resin due to a thermal reaction, so distortion and curing shrinkage can be suppressed compared to the case where curing proceeds by a photoradical reaction.
  • the non-irradiated portion is removed by alkali development to form a negative patterned insulating film.
  • the developing method can be a dipping method, a shower method, a spray method, a brush method, or the like.
  • Aqueous alkaline solutions such as amines can be used.
  • the resin layer is completely heat-cured to obtain a highly reliable coating film.
  • the heating temperature is, for example, 140.degree. C. to 180.degree.
  • the heating time is, for example, 20 to 120 minutes.
  • light irradiation may be performed before or after post-curing.
  • the laminate structure of the present invention is preferably used for forming a cured film on a printed wiring board, more preferably for forming a permanent film, and more preferably for a semiconductor package or the like. , solder resists, interlayer dielectric layers, and coverlays. Further, according to the curable resin composition of the present invention, it is possible to obtain a cured product having excellent crack resistance. It can be suitably used for forming a permanent coating film such as a solder resist used for.
  • A-1 polyamide-imide resin solution containing carboxyl groups was obtained (hereinafter abbreviated as A-1).
  • the solid content was 40.1%
  • the solid content acid value was 83.1 mgKOH/g
  • Mw was 4,500.
  • An ethylene oxide adduct of novolak resin A was obtained. 175 parts of the ethylene oxide adduct of novolak resin A thus obtained, 50 parts of acrylic acid, 3.0 parts of p-toluenesulfonic acid, 0.1 part of hydroquinone monomethyl ether and 130 parts of toluene were stirred and heated to 115°C. The reaction solution obtained by raising the temperature and reacting for 4 hours was washed with water using a 5% NaCl aqueous solution, and diethylene glycol monoethyl ether acetate was added to obtain an acrylate resin solution having a solid content of 68%.
  • each example and each comparative example shown in Table 1 were blended in the amounts shown in the table, premixed with a stirrer, and then kneaded with a three-roll mill to form a resin layer (A) and a resin layer.
  • a resin composition (B) was prepared. Unless otherwise specified, the values in the table are parts by mass of the solid content.
  • ⁇ Formation of resin layer (A)> A base material having a copper thickness of 18 ⁇ m formed on the entire surface was prepared, and pretreatment was performed using CZ8108B from MEC. After that, each resin composition of Examples and Comparative Examples was applied to the pretreated substrate by a method such as screen printing so that the film thickness after drying would be the thickness (unit: ⁇ m) shown in Table 1. coated on the substrate. Thereafter, the resin layer (A) was formed by drying at 90° C./30 minutes in a hot air circulating drying oven.
  • each resin composition of Examples and Comparative Examples is applied by a method such as screen printing, and the film thickness after drying is shown in Table 1 (unit: ⁇ m). was applied so as to be Then, it was dried in a hot air circulation drying oven at 90° C./30 minutes to form a resin layer (B).
  • each resin composition of Examples and Comparative Examples was diluted with an organic solvent to adjust the viscosity to an appropriate value, and the first film was coated in the same manner as described above.
  • Each resin composition of Examples was applied and dried to form a resin layer (B), and a resin layer (A) was applied and dried thereon to form a dry film having a resin layer.
  • the first film PET film, thickness 25 ⁇ m was peeled off after laminating so that the resin layer (A) side was in contact with the base material using a laminator or the like.
  • Gelation time was measured using a hot plate type gelation tester (GT-D; manufactured by Eucalyptus Giken Co., Ltd.) in accordance with the hot plate method specified in JIS-C2161:2010.
  • the gelation time is measured from a mixture of the carboxyl group-containing resin of the resin layer (A) and each thermosetting resin, and a mixture of the alkali-soluble resin and the thermosetting resin of the resin layer (B). , each using a 1.00 mL syringe, to obtain 0.20 mL and place on the hot plate of the gelation tester set at 150° C., maintaining the stir needle at a 90 degree angle to the hot plate surface.
  • the sample was circularly stirred with a needle tip at a speed of 90 ⁇ 10 times/min.
  • the end point was when the sample became gelatinous such that the stirring needle could not be rotated or the sample stopped sticking to the tip of the needle, and the time from placing the sample to the end point was measured. This operation was repeated three times, and the average time was taken as the gelation time.
  • the gelling time of each mixture was as shown in Table 1.
  • the materials in Table 1 are as follows. *1) Alkali-soluble resin 1 (A-1), Mw 4,500, whose synthesis method was explained earlier *2) Alkali-soluble resin 2 (A-2), Mw 10,000, whose synthesis method was explained earlier *3) Bifunctional epoxy resin (jER834, bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation), Mw470 *4) Polyfunctional epoxy resin (TEPIC-HP manufactured by Nissan Chemical Industries, Ltd.), Mw297 *5) IRGACURE OXE-02 (ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), manufactured by BASF Japan) *6) Acid-modified epoxy acrylate resin having a biphenyl novolak skeleton, (manufactured by Nippon Kayaku Co., Ltd., product number KAYARADZCR-1601H) solid content 65%, solid content acid value 98 mgKOH/g, Mw 4,500 *7) Carbox
  • the laminated structure of each example has excellent crack resistance and excellent resolution compared to the laminated structure of each comparative example. There was no development residue.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

Provide a laminated structure which has excellent crack resistance, has good patterning properties, and can be removed without residue in a development step. The laminated structure has a dual-layered resin layer obtained by laminating a resin layer (A) formed from a resin composition (a) and a resin layer (B) formed from a resin composition (b). The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photo-base generator that also functions as a photopolymerization initiator or a photopolymerization initiator and a photo-base generator, and a thermosetting resin. The resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin, and does not substantially contain a photopolymerization initiator. The 150°C gelling time of a mixture of the thermosetting resin and the alkali-soluble resin contained in the resin composition (b) of the resin layer (B) is 120-600 seconds. The 150°C gelling time of a mixture of the thermosetting resin and the carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A) is 300-1200 seconds, and is longer than the gelling time of the mixture of the resin layer (B).

Description

積層構造体、ドライフィルム、硬化物および電子部品Laminated structures, dry films, cured products and electronic components
 本発明は、半導体パッケージ等に用いて好適な積層構造体、ドライフィルム、硬化物およびこれらを用いた電子部品に関する。 The present invention relates to laminated structures, dry films, cured products suitable for use in semiconductor packages and the like, and electronic components using these.
 近年、エレクトロニクス機器の軽薄短小化に伴うプリント配線板の高密度化に対応して、ソルダーレジストにも作業性や高性能化が要求されている。また、最近では、電子機器の小型化、軽量化、高性能化に伴い、半導体パッケージの小型化、多ピン化が実用化され、量産化が進んでいる。このような高密度化に対応した種々の半導体パッケージが提案されている。 In recent years, in response to the increased density of printed wiring boards that accompanies the miniaturization of electronic equipment, workability and higher performance are also required for solder resists. In recent years, as electronic devices have become smaller, lighter, and have higher performance, miniaturization and multi-pin semiconductor packages have been put to practical use, and mass production is progressing. Various semiconductor packages have been proposed to cope with such high density.
 高密度化に対応した種々の半導体パッケージに用いられるソルダーレジストには、近年、使用環境における信頼性が高いこと、および、長期間の信頼性が高いことの両立が求められている。使用環境における信頼性に関する信頼性試験の一つにバイアス印加高加速ストレス試験(Biased HAST、以下、B-HASTという)があり、また、長期間の信頼性試験の一つに冷熱サイクルにおけるクラック耐性試験がある。B-HAST耐性に優れた光硬化性・熱硬化性樹脂組成物に関し、1分子中に2個以上のフェノール性水酸基を有する化合物(a)とアルキレンオキシド(b)又はシクロカーボネート化合物(c)とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸(d)を反応させ、得られる反応生成物に多塩基酸無水物(e)を反応させて得られるカルボキシル基含有感光性樹脂を含む樹脂組成物がある(特許文献1)。 In recent years, there has been a demand for solder resists used in various high-density semiconductor packages to have both high reliability in the usage environment and long-term reliability. Biased HAST (hereinafter referred to as B-HAST) is one of the reliability tests related to reliability in the usage environment, and crack resistance in thermal cycles is one of the long-term reliability tests. I have an exam. With respect to a photocurable / thermosetting resin composition excellent in B-HAST resistance, a compound (a) having two or more phenolic hydroxyl groups in one molecule and an alkylene oxide (b) or a cyclocarbonate compound (c) A carboxyl group-containing photosensitive resin obtained by reacting the reaction product obtained by reacting an unsaturated group-containing monocarboxylic acid (d) and reacting the resulting reaction product with a polybasic acid anhydride (e) There is a resin composition containing (Patent Document 1).
特許第5183073号公報Japanese Patent No. 5183073
 引用文献1に記載の樹脂組成物は、剛直な骨格を有するカルボキシル基含有感光性樹脂を含むため、B-HAST耐性に優れているが、その反面、冷熱サイクルにおけるクラック耐性が近年の要求レベルからは必ずしも十分ではなかった。 Since the resin composition described in Cited Document 1 contains a carboxyl group-containing photosensitive resin having a rigid skeleton, it is excellent in B-HAST resistance. was not always sufficient.
 上記の剛直な骨格を有するカルボキシル基含有感光性樹脂の代わりに、カルボキシル基含有ウレタン樹脂のような、より柔軟な骨格を有する樹脂と光塩基発生剤とを含む樹脂組成物にすることが試みられ、さらに、組成が異なる複数の層を積層させた積層構造体とすることにより、特性の向上を図ることができることが分かった。
 しかしながら、光塩基発生材を用いる積層構造体において、良好なパターニング性を得るためには、露光後に、露光部のカルボン酸とエポキシとの熱反応を促進させる目的で、加熱工程が必要であり、その際に未露光部のカルボン酸とエポキシの反応をなるべく抑制し、現像工程にて残渣なく除去できることが課題となっていた。
Instead of the carboxyl group-containing photosensitive resin having a rigid skeleton, attempts have been made to make a resin composition containing a resin having a more flexible skeleton, such as a carboxyl group-containing urethane resin, and a photobase generator. Furthermore, it was found that the characteristics can be improved by forming a laminated structure in which a plurality of layers having different compositions are laminated.
However, in order to obtain good patterning properties in a laminated structure using a photobase generator, a heating step is required after exposure for the purpose of promoting the thermal reaction between the carboxylic acid and the epoxy in the exposed area. At that time, the problem was how to suppress the reaction between the carboxylic acid and the epoxy in the unexposed area as much as possible and remove it without residue in the development process.
 そこで本発明の目的は、クラック耐性に優れ、良好なパターニング性を有し、現像工程で残渣なく除去することのできる積層構造体、ドライフィルム、硬化物および電子部品を提供することにある。 Accordingly, an object of the present invention is to provide a laminate structure, a dry film, a cured product, and an electronic component that are excellent in crack resistance, have good patterning properties, and can be removed without residue in the development process.
 本発明の積層構造体は、樹脂組成物(a)からなる樹脂層(A)と、樹脂組成物(b)からなる樹脂層(B)とが積層された2層の樹脂層、を有する積層構造体であって、
 前記樹脂層(B)の樹脂組成物(b)が、アルカリ可溶性樹脂と、光重合開始剤の機能を兼ね備える光塩基発生剤または光重合開始剤および光塩基発生剤と、熱硬化性樹脂と、を含み、
 前記樹脂層(A)の樹脂組成物(a)が、カルボキシル基含有樹脂と、熱硬化性樹脂とを含み、光重合開始剤を実質的に含まず、
 前記樹脂層(B)の樹脂組成物(b)に含まれるアルカリ可溶性樹脂と前記熱硬化性樹脂との混合物における、150℃でのゲル化時間が120秒以上、600秒以下であり、
 前記樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂と熱硬化性樹脂との混合物における、150℃でのゲル化時間が300秒以上、1200秒以下であり、かつ、前記樹脂層(B)の前記混合物における、前記ゲル化時間よりも長いことを特徴とするものである。
The laminate structure of the present invention is a laminate having two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated. is a struct,
The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
The resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
The mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of the resin layer (B) has a gelation time at 150° C. of 120 seconds or more and 600 seconds or less,
The mixture of the carboxyl group-containing resin and the thermosetting resin contained in the resin composition (a) of the resin layer (A) has a gelation time at 150° C. of 300 seconds or more and 1200 seconds or less, and It is characterized by being longer than the gelation time in the mixture of the resin layer (B).
 上記積層構造体は、樹脂層(B)の厚さが、2μm以上前記樹脂層(A)の半分の厚さ以下であり、前記樹脂層(A)の厚さが、10~80μmであることが好ましく、20~60μmがより好ましい。 In the laminated structure, the thickness of the resin layer (B) is 2 μm or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is 10 to 80 μm. is preferred, and 20 to 60 μm is more preferred.
 また、本発明のドライフィルムは、前記本発明の積層構造体と、前記積層構造体の前記樹脂層(B)の表面及び前記樹脂層(A)の表面のうちの少なくとも一つの表面に接して設けられたフィルムと、を備えることを特徴とするものである。 Further, the dry film of the present invention is in contact with the laminated structure of the present invention and at least one surface of the surface of the resin layer (B) and the surface of the resin layer (A) of the laminated structure. and a film provided.
 さらに、本発明の硬化物は、前記本発明の積層構造体または前記本発明のドライフィルムの積層構造体を硬化して得られることを特徴とするものである。 Furthermore, the cured product of the present invention is characterized by being obtained by curing the laminated structure of the present invention or the laminated structure of the dry film of the present invention.
 本発明の電子部品は、前記本発明の硬化物を有することを特徴とするものである。 The electronic component of the present invention is characterized by having the cured product of the present invention.
 本発明によれば、クラック耐性に優れ、良好なパターニング性を有し、現像工程で残渣なく除去することのできる積層構造体、ドライフィルム、その硬化物、およびその硬化物を用いた電子部品を提供することができる。 According to the present invention, there are provided a laminated structure, a dry film, a cured product thereof, and an electronic component using the cured product, which have excellent crack resistance, good patterning properties, and can be removed without residue in a development process. can provide.
 以下、本発明の積層構造体、ドライフィルム、硬化物および電子部品の実施の形態について詳述する。
(積層構造体)
 本発明の積層構造体は、樹脂組成物(a)からなる樹脂層(A)と、樹脂組成物(b)からなる樹脂層(B)とが積層された2層の樹脂層、を有する積層構造体であって、
 前記樹脂層(B)の樹脂組成物(b)が、アルカリ可溶性樹脂と、光重合開始剤の機能を兼ね備える光塩基発生剤または光重合開始剤および光塩基発生剤と、熱硬化性樹脂と、を含み、
 前記樹脂層(A)の樹脂組成物(a)が、カルボキシル基含有樹脂と、熱硬化性樹脂とを含み、光重合開始剤を実質的に含まず、
 前記樹脂層(B)の樹脂組成物(b)に含まれるアルカリ可溶性樹脂と前記熱硬化性樹脂との混合物における、150℃でのゲル化時間が120秒以上、600秒以下であり、
 前記樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂と熱硬化性樹脂との混合物における、150℃でのゲル化時間が300秒以上、1200秒以下であり、かつ、前記樹脂層(B)の樹脂組成物(b)の前記混合物における、前記ゲル化時間よりも長いことを特徴とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the laminated structure, dry film, cured product and electronic component of the present invention will be described in detail.
(Laminate structure)
The laminate structure of the present invention is a laminate having two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated. is a struct,
The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
The resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
The mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of the resin layer (B) has a gelation time at 150° C. of 120 seconds or more and 600 seconds or less,
The mixture of the carboxyl group-containing resin and the thermosetting resin contained in the resin composition (a) of the resin layer (A) has a gelation time at 150° C. of 300 seconds or more and 1200 seconds or less, and It is characterized by being longer than the gelling time in the mixture of the resin composition (b) of the resin layer (B).
 積層構造体は、基板上に形成されたときに、当該基板と接する層が樹脂層(A)であり、樹脂層(A)における上記基板と接する側の表面とは反対側の表面と接している層が樹脂層(B)である。つまり、積層構造体は、基板上に樹脂層(A)、樹脂層(B)の順で積層される構造を有している。前記基材は、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板等が挙げられる。 When the laminated structure is formed on a substrate, the layer in contact with the substrate is the resin layer (A), and the surface of the resin layer (A) opposite to the surface in contact with the substrate is in contact with the substrate. This layer is the resin layer (B). That is, the laminated structure has a structure in which the resin layer (A) and the resin layer (B) are laminated in this order on the substrate. Examples of the base material include a printed wiring board, a flexible printed wiring board, and the like on which a circuit is formed in advance using copper or the like.
 樹脂層(B)の樹脂組成物(b)は、アルカリ可溶性樹脂と、光重合開始剤の機能を兼ね備える光塩基発生剤または光重合開始剤および光塩基発生剤と、熱硬化性樹脂と、を含む樹脂組成物からなる。これらの成分を含む樹脂層(B)の樹脂組成物(b)は、光照射により光重合開始剤がアルカリ可溶性樹脂と反応して感光性を有し、また、加熱により重合開始剤の光塩基発生剤としての機能が触媒となって熱硬化することができる感光性熱硬化性樹脂組成物である。 The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, and a thermosetting resin. It consists of a resin composition containing The resin composition (b) of the resin layer (B) containing these components has photosensitivity due to the reaction of the photopolymerization initiator with the alkali-soluble resin by light irradiation, and the photobase of the polymerization initiator by heating. It is a photosensitive thermosetting resin composition that can be thermally cured with its function as a generator serving as a catalyst.
 樹脂層(A)の樹脂組成物(a)は、カルボキシル基含有樹脂と、熱硬化性樹脂とを含み、光重合開始剤を実質的に含まない樹脂組成物からなる。光重合開始剤を実質的に含まないとは、樹脂組成物(a)に含まれるカルボキシル基含有樹脂100質量部に対して光重合開始剤が0.5質量部未満であることをいう。
 これらの成分を含む樹脂層(A)の樹脂組成物(a)は、光重合開始剤を含まないことから、単層では感光性を有しないが、樹脂層(B)と接して積層されていることから、この樹脂層(B)の樹脂組成物(b)に含まれる光重合開始剤から発生したラジカル等の活性種が、この樹脂層(A)に拡散することで樹脂層(A)もまた感光性を有している。また、加熱により熱硬化することができる。したがって、積層構造体は、樹脂層(B)および樹脂層(A)に、所定のパターンを現像により一括形成することが可能なものである。特に、露光後のベーク(POST EXPOSURE BAKE、以下、PEBという)を行う場合は、そのときの熱拡散により、パターンの一括形成の効果は顕著であった。
The resin composition (a) of the resin layer (A) is composed of a resin composition containing a carboxyl group-containing resin and a thermosetting resin and substantially free of a photopolymerization initiator. The term "substantially free of photopolymerization initiator" means that the amount of photopolymerization initiator is less than 0.5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin contained in the resin composition (a).
Since the resin composition (a) of the resin layer (A) containing these components does not contain a photopolymerization initiator, it does not have photosensitivity in a single layer, but it is laminated in contact with the resin layer (B). Therefore, active species such as radicals generated from the photopolymerization initiator contained in the resin composition (b) of the resin layer (B) diffuse into the resin layer (A) to form the resin layer (A) is also photosensitive. Moreover, it can be thermoset by heating. Therefore, in the laminated structure, a predetermined pattern can be collectively formed on the resin layer (B) and the resin layer (A) by development. In particular, when post-exposure baking (POST EXPOSURE BAKE, hereinafter referred to as PEB) is performed, the effect of batch formation of patterns is remarkable due to thermal diffusion at that time.
 仮に、樹脂層(A)の樹脂組成物(a)に光重合開始剤が含まれる場合には、光重合開始剤自体が光を吸収する特性を有することから、深部に向かうほど光重合開始剤の重合開始能が低下し、深部の光反応性が低下してしまうことによりアンダーカットとなる傾向にあり、高精細なパターン形成が困難であった。これに対し、積層構造体は、樹脂層(A)の樹脂組成物(a)に光重合開始剤が含まず、樹脂層(B)からの活性種の拡散により、アンダーカット問題は改善できる。
 その結果、アンダーカットのない深部硬化性に優れるパターン形成が可能となる。
If a photopolymerization initiator is contained in the resin composition (a) of the resin layer (A), the photopolymerization initiator itself has a property of absorbing light, so the photopolymerization initiator increases as it goes deeper. As a result, the polymerization initiating ability of the core is lowered, and the photoreactivity of the deep portion is lowered, which tends to cause undercutting, making it difficult to form a highly precise pattern. In contrast, in the laminated structure, the resin composition (a) of the resin layer (A) does not contain a photopolymerization initiator, and active species diffuse from the resin layer (B) to improve the undercut problem.
As a result, it is possible to form a pattern with excellent deep-part curability without undercut.
 もっとも、樹脂層(A)および樹脂層(B)の積層構造体は、上記の組成をそれぞれ有していても、露光後の加熱工程の際に、未露光部のカルボン酸とエポキシとが反応して現像工程にて残渣となる場合があった。この点については、樹脂層(B)に含まれるアルカリ可溶性樹脂と前記熱硬化性樹脂との混合物における所定条件でのゲル化時間と、樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂と熱硬化性樹脂との混合物における所定条件でのゲル化時間とを調整することにより残渣をなくすことができる。
 ゲル化時間の測定方法は、後述するゲル化時間の測定方法による。
However, even if the laminated structure of the resin layer (A) and the resin layer (B) each has the above composition, the carboxylic acid in the unexposed area reacts with the epoxy during the heating process after exposure. As a result, it may become a residue in the developing process. Regarding this point, the gelation time under predetermined conditions in the mixture of the alkali-soluble resin and the thermosetting resin contained in the resin layer (B) and the resin composition (a) contained in the resin layer (A) Residue can be eliminated by adjusting the gelation time under predetermined conditions in the mixture of the carboxyl group-containing resin and the thermosetting resin.
The method for measuring the gelling time is based on the gelling time measuring method described below.
[樹脂層(A)]
(樹脂層(A)の樹脂組成物(a))
 樹脂層(A)は、樹脂組成物(a)からなる。樹脂層(A)の樹脂組成物(a)は、基材との接着層として機能するだけでなく、種々の回路パターン形成に対応し得る特性をも併せ持つのが望ましい。そのため、樹脂層(A)の樹脂組成物(a)は、塩基発生剤から生じる塩基を触媒として、カルボキシル基を有する樹脂、なかでもカルボキシル基含有樹脂と熱硬化性樹脂とを露光後の加熱によって付加反応させ、未露光部分をアルカリ溶液によって除去することによって現像が可能となる感光性熱硬化性樹脂組成物であることが好ましい。
[Resin layer (A)]
(Resin composition (a) of resin layer (A))
A resin layer (A) consists of a resin composition (a). It is desirable that the resin composition (a) of the resin layer (A) not only functions as an adhesive layer with the base material, but also has properties capable of coping with formation of various circuit patterns. Therefore, the resin composition (a) of the resin layer (A) is prepared by heating a resin having a carboxyl group, especially a carboxyl group-containing resin and a thermosetting resin with a base generated from a base generator as a catalyst after exposure. It is preferably a photosensitive thermosetting resin composition that can be developed by addition reaction and removal of unexposed portions with an alkaline solution.
 樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂は、分子中にカルボキシル基を有している従来公知の各種カルボキシル基含有樹脂を使用できる。特に、分子中にエチレン性不飽和二重結合を有するカルボキシル基含有感光性樹脂が、光硬化性や耐現像性の面から好ましい。エチレン性不飽和二重結合は、アクリル酸もしくはメタクリル酸又はそれらの誘導体由来であることが好ましい。エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを用いる場合、組成物を光硬化性とするためには、後述する分子中に複数のエチレン性不飽和基を有する化合物、即ち光反応性モノマーを併用する必要がある。カルボキシル基含有樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 カルボキシル基含有樹脂の具体例としては、以下のような化合物(オリゴマー及びポリマーのいずれでもよい)を挙げることができる。
Various conventionally known carboxyl group-containing resins having a carboxyl group in the molecule can be used as the carboxyl group-containing resin contained in the resin composition (a) of the resin layer (A). In particular, a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in the molecule is preferable from the viewpoint of photocurability and development resistance. The ethylenically unsaturated double bonds are preferably derived from acrylic acid or methacrylic acid or derivatives thereof. When only a carboxyl group-containing resin having no ethylenically unsaturated double bonds is used, in order to make the composition photocurable, a compound having a plurality of ethylenically unsaturated groups in the molecule, i.e., photo It is necessary to use a reactive monomer together. Carboxyl group-containing resins may be used alone or in combination of two or more.
Specific examples of the carboxyl group-containing resin include the following compounds (both oligomers and polymers).
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。 (1) Carboxyl group-containing resins obtained by copolymerizing unsaturated carboxylic acids such as (meth)acrylic acid and unsaturated group-containing compounds such as styrene, α-methylstyrene, lower alkyl (meth)acrylates, and isobutylene.
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (2) Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; Carboxyl group-containing urethane resins obtained by polyaddition reaction of diol compounds such as polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
 (3)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネート化合物と、ポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキシド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるウレタン樹脂の末端に酸無水物を反応させてなる末端カルボキシル基含有ウレタン樹脂。 (3) Diisocyanate compounds such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates, polycarbonate-based polyols, polyether-based polyols, polyester-based polyols, polyolefin-based polyols, acrylic polyols, and bisphenol A-based A terminal carboxyl group-containing urethane resin obtained by reacting an acid anhydride with the terminal of a urethane resin obtained by a polyaddition reaction of a diol compound such as an alkylene oxide adduct diol, a compound having a phenolic hydroxyl group and an alcoholic hydroxyl group.
 (4)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂の(メタ)アクリレートもしくはその部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。 (4) Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing urethane resin produced by a polyaddition reaction of a meth)acrylate or its partial acid anhydride modified product, a carboxyl group-containing dialcohol compound and a diol compound.
 (5)上記(2)または(4)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子中に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (5) During the synthesis of the resin of (2) or (4) above, a compound having one hydroxyl group and one or more (meth)acryloyl groups in the molecule such as hydroxyalkyl (meth)acrylate is added, and the terminal ( Meta) acrylated urethane resin containing carboxyl groups.
 (6)上記(2)または(4)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物等、分子中に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有ウレタン樹脂。 (6) During the synthesis of the resin of (2) or (4), one isocyanate group and one or more (meth)acryloyl groups in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate A carboxyl group-containing urethane resin that is terminally (meth)acrylated by adding a compound having
 (7)多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (7) A carboxyl group obtained by reacting a polyfunctional epoxy resin with (meth)acrylic acid and adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, or hexahydrophthalic anhydride to the hydroxyl group present in the side chain. Contained resin.
 (8)2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有樹脂。 (8) A carboxyl group-containing resin obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin obtained by further epoxidizing the hydroxyl groups of a bifunctional epoxy resin with epichlorohydrin, and adding a dibasic acid anhydride to the resulting hydroxyl groups. .
 (9)多官能オキセタン化合物にジカルボン酸を反応させ、生じた1級の水酸基に2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。 (9) A carboxyl group-containing polyester resin obtained by reacting a polyfunctional oxetane compound with a dicarboxylic acid and adding a dibasic acid anhydride to the resulting primary hydroxyl group.
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキシド、プロピレンオキシド等のアルキレンオキシドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (10) A reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide and reacting an unsaturated group-containing monocarboxylic acid to obtain a reaction product A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride with a substance.
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (11) Obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with a monocarboxylic acid containing an unsaturated group. A carboxyl group-containing resin obtained by reacting a reaction product with a polybasic acid anhydride.
 (12)1分子中に複数のエポキシ基を有するエポキシ樹脂に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有樹脂。 (12) an epoxy resin having a plurality of epoxy groups in one molecule, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol; Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and A carboxyl group-containing resin obtained by reacting a polybasic acid anhydride such as adipic acid.
 (13)アミド構造およびイミド構造の少なくともいずれかを有するカルボキシル基含有樹脂。
 (14)N-フェニルマレイミド、N-ベンジルマレイミド等のマレイミドまたはマレイミド誘導体と、(メタ)アクリル酸等の不飽和カルボン酸と、ヒドロキシアルキル(メタ)アクリレート等の水酸基を有する不飽和基含有化合物と、スチレン、α-メチルスチレン、α-クロロスチレン、ビニルトルエン等の芳香環を有する不飽和基含有化合物とを単量体とするカルボキシル基含有共重合樹脂に、グリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート、エポキシシクロヘキシルメチル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなる、共重合構造を有するカルボキシル基含有感光性樹脂。
(13) A carboxyl group-containing resin having at least one of an amide structure and an imide structure.
(14) A maleimide or maleimide derivative such as N-phenylmaleimide or N-benzylmaleimide, an unsaturated carboxylic acid such as (meth)acrylic acid, and an unsaturated group-containing compound having a hydroxyl group such as hydroxyalkyl (meth)acrylate , styrene, α-methylstyrene, α-chlorostyrene, a carboxyl group-containing copolymer resin having an unsaturated group-containing compound having an aromatic ring such as vinyltoluene as a monomer, glycidyl (meth) acrylate, α-methyl A carboxyl group-containing photosensitive material having a copolymer structure obtained by adding a compound having one epoxy group and one or more (meth)acryloyl groups in the molecule, such as glycidyl (meth)acrylate and epoxycyclohexylmethyl (meth)acrylate. synthetic resin.
 (15)上記(1)~(13)等に記載のカルボキシル基含有樹脂にさらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレート等の分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有樹脂。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語で、他の類似の表現についても同様である。
(15) In addition to the carboxyl group-containing resins described in (1) to (13) above, one epoxy group and one or more ( A carboxyl group-containing resin obtained by adding a compound having a meth)acryloyl group.
In this specification, (meth)acrylate is a generic term for acrylate, methacrylate and mixtures thereof, and the same applies to other similar expressions.
 カルボキシル基含有樹脂は、前記列挙したものに限らず使用することができ、1種類を単独で用いてもよく、複数種を混合して用いてもよい。
 カルボキシル基含有樹脂の酸価は、20~200mgKOH/gであることが好ましい。
Carboxyl group-containing resins are not limited to those listed above, and one type may be used alone, or a plurality of types may be mixed and used.
The acid value of the carboxyl group-containing resin is preferably 20-200 mgKOH/g.
 また、カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、質量平均分子量Mwが1,000~100,000が好ましい。 In addition, although the weight average molecular weight of the carboxyl group-containing resin differs depending on the resin skeleton, the weight average molecular weight Mw is preferably 1,000 to 100,000.
 カルボキシル基含有樹脂の配合量は、樹脂組成物の固形分全量中に、10~70質量%である。10質量%以上とすることにより塗膜強度を向上させることができる。また70質量%以下とすることで粘性が適当となり加工性が向上する。 The blending amount of the carboxyl group-containing resin is 10 to 70% by mass based on the total solid content of the resin composition. By making it 10% by mass or more, the strength of the coating film can be improved. Moreover, by making it 70% by mass or less, the viscosity becomes appropriate and the workability improves.
[熱硬化性樹脂]
 樹脂層(A)の樹脂組成物(a)に含まれる熱硬化性樹脂は、熱による硬化反応が可能な官能基を有する樹脂である。熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、オキセタン化合物、分子内に2個以上のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、ブロックイソシアネート化合物、シクロカーボネート化合物、ビスマレイミド、カルボジイミド等を用いることができ、これらは併用してもよい。
[Thermosetting resin]
The thermosetting resin contained in the resin composition (a) of the resin layer (A) is a resin having a functional group capable of thermal curing reaction. Thermosetting resins are not particularly limited, and include epoxy resins, oxetane compounds, compounds having two or more thioether groups in the molecule, namely amino resins such as episulfide resins, melamine resins, benzoguanamine resins, melamine derivatives, and benzoguanamine derivatives. , blocked isocyanate compounds, cyclocarbonate compounds, bismaleimides, carbodiimides and the like can be used, and these may be used in combination.
 上記エポキシ樹脂は、エポキシ基を有する樹脂であり、従来公知のものをいずれも使用でき、分子中にエポキシ基を2個有する2官能性エポキシ樹脂、分子中にエポキシ基を多数有する多官能エポキシ樹脂等が挙げられる。なお、水素添加された2官能エポキシ樹脂であってもよい。 The epoxy resin is a resin having an epoxy group, and any conventionally known one can be used, including a bifunctional epoxy resin having two epoxy groups in the molecule and a polyfunctional epoxy resin having many epoxy groups in the molecule. etc. In addition, a hydrogenated bifunctional epoxy resin may be used.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、リン含有エポキシ樹脂、アントラセン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂、アルキルフェノール型エポキシ樹脂等が用いられる。これらエポキシ樹脂は、1種を単独または2種類以上を組合せて用いることができる。 Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolak type epoxy resin, and cresol novolak type epoxy resin. Epoxy resins, bisphenol A novolak type epoxy resins, biphenyl type epoxy resins, naphthol type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, alicyclic epoxy resins, aliphatic chain Epoxy resins, phosphorus-containing epoxy resins, anthracene-type epoxy resins, norbornene-type epoxy resins, adamantane-type epoxy resins, fluorene-type epoxy resins, aminophenol-type epoxy resins, aminocresol-type epoxy resins, alkylphenol-type epoxy resins, and the like are used. These epoxy resins can be used singly or in combination of two or more.
 エポキシ樹脂は、固形エポキシ樹脂、半固形エポキシ樹脂および液状エポキシ樹脂のいずれであってもよい。ここで、本明細書において、固形エポキシ樹脂とは40℃で固体状であるエポキシ樹脂をいい、半固形エポキシ樹脂とは20℃で固体状であって40℃で液状であるエポキシ樹脂をいい、液状エポキシ樹脂とは20℃で液状のエポキシ樹脂をいう。 The epoxy resin may be solid epoxy resin, semi-solid epoxy resin, or liquid epoxy resin. Here, in this specification, solid epoxy resin refers to an epoxy resin that is solid at 40°C, and semi-solid epoxy resin refers to an epoxy resin that is solid at 20°C and liquid at 40°C. A liquid epoxy resin means an epoxy resin that is liquid at 20°C.
 固形エポキシ樹脂としては、DIC社製EPICLON HP-4700(ナフタレン型エポキシ樹脂)、DIC社製EXA4700(4官能ナフタレン型エポキシ樹脂)、日本化薬社製NC-7000(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬社製EPPN-502H(トリスフェノールエポキシ樹脂)等のフェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC社製EPICLON HP-7200H(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬社製NC-3000H(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;日本化薬社製NC-3000L等のビフェニル/フェノールノボラック型エポキシ樹脂;DIC社製EPICLON N660、EPICLON N690、日本化薬社製EOCN-104S等のノボラック型エポキシ樹脂;三菱ケミカル社製YX-4000等のビフェニル型エポキシ樹脂;日鉄ケミカル&マテリアル社製TX0712等のリン含有エポキシ樹脂;日産化学社製TEPIC等のトリス(2,3-エポキシプロピル)イソシアヌレート等が挙げられる。 As solid epoxy resins, EPICLON HP-4700 (naphthalene type epoxy resin) manufactured by DIC, EXA4700 (tetrafunctional naphthalene type epoxy resin) manufactured by DIC, NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd. ) and other naphthalene-type epoxy resins; EPPN-502H (trisphenol epoxy resin) manufactured by Nippon Kayaku Co., Ltd. Epoxidized products of condensation products of phenols and aromatic aldehydes having phenolic hydroxyl groups (trisphenol-type epoxy resins); Dicyclopentadiene aralkyl type epoxy resin such as EPICLON HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin) manufactured by DIC; Biphenyl such as Nippon Kayaku NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) Aralkyl-type epoxy resins; biphenyl/phenol novolac-type epoxy resins such as NC-3000L manufactured by Nippon Kayaku; EPICLON N660, EPICLON N690 manufactured by DIC; novolac-type epoxy resins such as EOCN-104S manufactured by Nippon Kayaku; biphenyl type epoxy resins such as YX-4000 manufactured by Nittetsu Chemical &Materials; phosphorus-containing epoxy resins such as TX0712 manufactured by Nippon Steel Chemical &Materials;
 半固形エポキシ樹脂としては、DIC社製EPICLON 860、EPICLON 900-IM、EPICLON EXA-4816、EPICLON EXA-4822、日鉄ケミカル&マテリアル社製エポトートYD-134、社製jER834、jER872、住友化学社製ELA-134等のビスフェノールA型エポキシ樹脂;DIC社製EPICLON HP-4032等のナフタレン型エポキシ樹脂;DIC社製EPICLON N-740等のフェノールノボラック型エポキシ樹脂等が挙げられる。 Semi-solid epoxy resins include EPICLON 860, EPICLON 900-IM, EPICLON EXA-4816, EPICLON EXA-4822 manufactured by DIC, Epotato YD-134 manufactured by Nippon Steel Chemical & Materials, jER834 and jER872 manufactured by Sumitomo Chemical Co., Ltd. Bisphenol A type epoxy resin such as ELA-134; naphthalene type epoxy resin such as EPICLON HP-4032 manufactured by DIC; phenol novolac type epoxy resin such as EPICLON N-740 manufactured by DIC;
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。 Liquid epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, aminophenol type epoxy resin. , and alicyclic epoxy resins.
 次に、オキセタン化合物としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、または、シルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。 Next, the oxetane compounds include bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, 1,4-bis[(3-methyl -3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3-oxetanyl ) In addition to polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl)methyl methacrylate, (3-ethyl-3-oxetanyl)methyl methacrylate and their oligomers or copolymers, oxetane alcohols and novolac resins, Poly(p-hydroxystyrene), cardo-type bisphenols, calixarenes, calixresorcinarenes, or etherified products with resins having a hydroxyl group such as silsesquioxane. Other examples include copolymers of unsaturated monomers having an oxetane ring and alkyl (meth)acrylates.
 上記エピスルフィド樹脂としては、例えばビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂等も用いることができる。 Examples of the episulfide resin include bisphenol A type episulfide resin. In addition, an episulfide resin or the like obtained by replacing the oxygen atom of the epoxy group of the epoxy resin with a sulfur atom by using a similar synthesis method can also be used.
 熱硬化性樹脂のなかでも、エポキシ樹脂を用いることが好ましい。さらに、ガラス転移温度(Tg)が高く、クラック耐性に優れる硬化物が得られることから、固形エポキシ樹脂および半固形エポキシ樹脂の少なくともいずれか一種であることが好ましい。エポキシ樹脂としては、硬化物の好ましい物性等の観点から芳香族系エポキシ樹脂が好ましく、中でも、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましい。なお、本明細書において、芳香族系エポキシ樹脂とは、その分子内に芳香環骨格を有するエポキシ樹脂を意味する。 Among thermosetting resins, it is preferable to use epoxy resin. Further, at least one of solid epoxy resins and semi-solid epoxy resins is preferable, since a cured product having a high glass transition temperature (Tg) and excellent crack resistance can be obtained. As the epoxy resin, aromatic epoxy resins are preferable from the viewpoint of desirable physical properties of the cured product, and among them, naphthalene-type epoxy resins and biphenyl-type epoxy resins are more preferable. In this specification, the aromatic epoxy resin means an epoxy resin having an aromatic ring skeleton in its molecule.
 熱硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。熱硬化性樹脂の配合割合は、固形分換算で、組成物全量基準で、10~50質量%であることが好ましく、15~45質量%であることがより好ましく、20~40質量%であることがさらに好ましい。
 なお、後述するようにカルボキシル基含有樹脂との当量比を適切に調整することが好ましい。
A thermosetting resin can be used individually by 1 type or in combination of 2 or more types. The blending ratio of the thermosetting resin is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, more preferably 20 to 40% by mass, based on the total amount of the composition in terms of solid content. is more preferred.
As will be described later, it is preferable to appropriately adjust the equivalent ratio with the carboxyl group-containing resin.
[光重合性モノマー]
 樹脂層(A)の樹脂組成物(a)は、前述したように塩基発生剤から生じる塩基を触媒として、カルボキシル基を有する樹脂と熱硬化性樹脂とを露光後の加熱によって付加反応させ、未露光部分をアルカリ溶液によって除去することによって現像が可能となる感光性熱硬化性樹脂組成物である。これにより、従来の光ラジカル重合開始剤から発生するラジカルによる重合反応を利用した感光性樹脂組成物においては必要であった(メタ)アクリレートモノマーを配合する必要がなくなる。もっとも、主に樹脂層の感度をコントロールするために、樹脂層(A)の樹脂組成物中に(メタ)アクリレートモノマーを配合してもよい。例えば、(メタ)アクリレートモノマーは、カルボキシル基含有樹脂100質量部に対して、10~100質量部程度配合することが可能である。
[Photopolymerizable Monomer]
In the resin composition (a) of the resin layer (A), as described above, a resin having a carboxyl group and a thermosetting resin are subjected to an addition reaction by heating after exposure using a base generated from a base generator as a catalyst to form an un It is a photosensitive thermosetting resin composition that can be developed by removing the exposed portion with an alkaline solution. This eliminates the need to add a (meth)acrylate monomer, which is necessary in a photosensitive resin composition utilizing a polymerization reaction by radicals generated from a conventional photoradical polymerization initiator. However, mainly for controlling the sensitivity of the resin layer, a (meth)acrylate monomer may be blended in the resin composition of the resin layer (A). For example, about 10 to 100 parts by mass of the (meth)acrylate monomer can be blended with 100 parts by mass of the carboxyl group-containing resin.
[樹脂層(B)]
(樹脂層(B)の樹脂組成物(b))
 樹脂層(B)は、樹脂組成物(b)からなる。樹脂層(B)は、主として基材の保護層として機能するものである。樹脂層(B)の樹脂組成物(b)は、光重合開始剤により、光によるラジカル重合が可能であるとともに、塩基発生剤から生じる塩基を触媒として、アルカリ可溶性樹脂と熱硬化性樹脂とを露光後の加熱によって付加反応させ、未露光部分をアルカリ溶液によって除去することによって現像が可能となる感光性熱硬化性樹脂組成物である。
[Resin layer (B)]
(Resin composition (b) of resin layer (B))
A resin layer (B) consists of a resin composition (b). The resin layer (B) mainly functions as a protective layer for the substrate. The resin composition (b) of the resin layer (B) is capable of radical polymerization by light due to the photopolymerization initiator, and the alkali-soluble resin and the thermosetting resin are separated by using the base generated from the base generator as a catalyst. It is a photosensitive thermosetting resin composition that undergoes an addition reaction by heating after exposure and that can be developed by removing the unexposed portion with an alkaline solution.
 樹脂層(B)の樹脂組成物(b)に含まれるアルカリ可溶性樹脂は、例えば、フェノール性水酸基を有する化合物、カルボキシル基を有する化合物、フェノール性水酸基およびカルボキシル基を有する化合物が挙げられ、公知慣用のものが用いられる。特にカルボキシル基を有する化合物を含む、従来からソルダーレジスト組成物として用いられている、カルボキシル基含有樹脂またはカルボキシル基含有感光性樹脂が挙げられる。ここで、カルボキシル基含有樹脂またはカルボキシル基含有感光性樹脂、および、エチレン性不飽和結合を有する化合物としては、公知慣用の化合物が用いられる。
 なかでもアルカリ溶解性樹脂としては、耐屈曲性、耐熱性などの特性により優れるイミド環を有するアルカリ溶解性樹脂を好適に用いることができる。また、熱硬化性樹脂としては、上記樹脂層(A)と同様の公知慣用のものを用いることができる。
Examples of the alkali-soluble resin contained in the resin composition (b) of the resin layer (B) include a compound having a phenolic hydroxyl group, a compound having a carboxyl group, and a compound having a phenolic hydroxyl group and a carboxyl group. are used. In particular, carboxyl group-containing resins or carboxyl group-containing photosensitive resins, which contain a compound having a carboxyl group and are conventionally used as solder resist compositions, can be mentioned. Here, as the carboxyl group-containing resin or the carboxyl group-containing photosensitive resin and the compound having an ethylenically unsaturated bond, known and commonly used compounds are used.
Among them, as the alkali-soluble resin, an alkali-soluble resin having an imide ring, which is superior in properties such as bending resistance and heat resistance, can be preferably used. Further, as the thermosetting resin, a known and commonly used one similar to that for the resin layer (A) can be used.
(イミド環を有するアルカリ溶解性樹脂)
 本発明において、イミド環を有するアルカリ溶解性樹脂は、フェノール性水酸基、カルボキシル基のうち1種以上のアルカリ溶解性基と、イミド環とを有するものである。このアルカリ溶解性樹脂へのイミド環の導入には公知慣用の手法を用いることができる。例えば、カルボン酸無水物成分とアミン成分および/またはイソシアネート成分とを反応させて得られる樹脂が挙げられる。イミド化は、熱イミド化で行っても、化学イミド化で行ってもよく、またこれらを併用して実施することができる。
(Alkali-soluble resin having imide ring)
In the present invention, the alkali-soluble resin having an imide ring has one or more alkali-soluble groups selected from phenolic hydroxyl groups and carboxyl groups, and an imide ring. A well-known and commonly used technique can be used for introducing an imide ring into this alkali-soluble resin. Examples thereof include resins obtained by reacting a carboxylic anhydride component with an amine component and/or an isocyanate component. The imidization may be carried out by thermal imidization or by chemical imidization, or these may be used in combination.
 ここで、カルボン酸無水物成分としては、テトラカルボン酸無水物やトリカルボン酸無水物などが挙げられるが、これらの酸無水物に限定されるものではなく、アミノ基やイソシアネート基と反応する酸無水物基およびカルボキシル基を有する化合物であれば、その誘導体を含め用いることができる。また、これらのカルボン酸無水物成分は、単独でまたは組み合わせて使用してもよい。 Here, examples of the carboxylic acid anhydride component include tetracarboxylic acid anhydrides and tricarboxylic acid anhydrides, but are not limited to these acid anhydrides. Any compound having a physical group and a carboxyl group can be used, including derivatives thereof. Also, these carboxylic acid anhydride components may be used alone or in combination.
 アミン成分としては、脂肪族ジアミンや芳香族ジアミンなどのジアミン、脂肪族ポリエーテルアミンなどの多価アミン、カルボン酸を有するジアミン、フェノール性水酸基を有するジアミンなどを用いることができるが、これらのアミンに限定されるものではない。また、これらのアミン成分は、単独でまたは組み合わせて使用してもよい。 As the amine component, diamines such as aliphatic diamines and aromatic diamines, polyvalent amines such as aliphatic polyetheramines, diamines having a carboxylic acid, diamines having a phenolic hydroxyl group, and the like can be used. is not limited to Also, these amine components may be used alone or in combination.
 イソシアネート成分としては、芳香族ジイソシアネートおよびその異性体や多量体、脂肪族ジイソシアネート類、脂環式ジイソシアネート類およびその異性体などのジイソシアネートやその他汎用のジイソシアネート類を用いることができるが、これらのイソシアネートに限定されるものではない。また、これらのイソシアネート成分は、単独でまたは組み合わせて使用してもよい。 As the isocyanate component, diisocyanates such as aromatic diisocyanates and their isomers and polymers, aliphatic diisocyanates, alicyclic diisocyanates and their isomers, and other general-purpose diisocyanates can be used. It is not limited. Also, these isocyanate components may be used alone or in combination.
 以上説明したようなイミド環を有するアルカリ溶解性樹脂は、アミド結合を有していてもよい。これはカルボキシル基を有するイミド化物とイソシアネートとカルボン酸無水物とを反応させて得られるポリアミドイミドであってもよく、それ以外の反応によるものでもよい。さらにその他の付加および縮合からなる結合を有していてもよい。 The alkali-soluble resin having an imide ring as explained above may have an amide bond. This may be a polyamide-imide obtained by reacting an imidized product having a carboxyl group with an isocyanate and a carboxylic acid anhydride, or may be obtained by other reactions. It may also have other bonds consisting of addition and condensation.
 このようなアルカリ溶解性基とイミド環とを有するアルカリ溶解性樹脂の合成においては、公知慣用の有機溶剤を用いることができる。かかる有機溶媒としては、原料であるカルボン酸無水物類、アミン類、イソシアネート類と反応せず、かつこれら原料が溶解する溶媒であれば問題はなく、特にその構造は限定されない。特に、原料の溶解性が高いことから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン等の非プロトン性溶媒が好ましい。 In synthesizing such an alkali-soluble resin having an alkali-soluble group and an imide ring, a known and commonly used organic solvent can be used. As such an organic solvent, there is no problem as long as it does not react with the carboxylic acid anhydrides, amines, and isocyanates that are raw materials and dissolves these raw materials, and its structure is not particularly limited. In particular, aprotic solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, and γ-butyrolactone are preferred because of their high solubility of raw materials.
 以上説明したようなフェノール性水酸基、カルボキシル基のうち1種以上のアルカリ溶解性基とイミド環を有するアルカリ溶解性樹脂は、フォトリソグラフィー工程に対応するために、その酸価が20~200mgKOH/gであることが好ましく、より好適には60~150mgKOH/gであることが好ましい。この酸価が20mgKOH/g以上の場合、アルカリに対する溶解性が増加し、現像性が良好となり、さらには、光照射後の熱硬化性樹脂との架橋度が高くなるため、十分な現像コントラストを得ることができる。また、この酸価が200mgKOH/g以下の場合には、特に、後述する光照射後のPEB工程でのいわゆる熱かぶりを抑制でき、プロセスマージンが大きくなる。 The alkali-soluble resin having at least one alkali-soluble group and an imide ring among phenolic hydroxyl groups and carboxyl groups as described above has an acid value of 20 to 200 mgKOH/g in order to be compatible with the photolithography process. and more preferably 60 to 150 mgKOH/g. When the acid value is 20 mgKOH/g or more, the solubility in alkali increases, the developability becomes good, and the degree of crosslinking with the thermosetting resin after light irradiation increases, so that sufficient development contrast can be obtained. Obtainable. Moreover, when the acid value is 200 mgKOH/g or less, so-called heat fogging can be suppressed particularly in the PEB process after light irradiation, which will be described later, and the process margin is increased.
 また、このアルカリ溶解性樹脂の分子量は、現像性と硬化塗膜特性を考慮すると、質量平均分子量1,000~100,000が好ましい。 In addition, the molecular weight of this alkali-soluble resin is preferably a mass average molecular weight of 1,000 to 100,000 in consideration of developability and cured coating film properties.
(光重合開始剤)
 樹脂層(B)の樹脂組成物(b)において用いる光重合開始剤としては、公知慣用のものを用いることができ、例えば、ベンゾイン化合物、アシルホスフィンオキサイド系化合物、アセトフェノン系化合物、α-アミノアセトフェノン化合物、オキシムエステル化合物、チオキサントン系化合物等が挙げられる。
 特に、後述する光照射後のPEB工程に用いる場合には、光塩基発生剤としての機能も有する光重合開始剤が好適である。なお、このPEB工程では、光重合開始剤と光塩基発生剤とを併用してもよい。
 光重合開始剤の配合量は、アルカリ可溶性樹脂100質量部に対して0.5~30質量部であることが好ましい。0.5質量部以上の場合、表面硬化性が良好となり、30質量部以下の場合、ハレーションが生じにくく良好な解像性が得られる。さらに好ましくは1.0~20質量部である。
(Photoinitiator)
As the photopolymerization initiator used in the resin composition (b) of the resin layer (B), known and commonly used photopolymerization initiators can be used, such as benzoin compounds, acylphosphine oxide compounds, acetophenone compounds, α-aminoacetophenone compounds, oxime ester compounds, thioxanthone compounds, and the like.
In particular, when used in the PEB step after light irradiation, which will be described later, a photopolymerization initiator that also functions as a photobase generator is suitable. In this PEB step, a photopolymerization initiator and a photobase generator may be used together.
The amount of the photopolymerization initiator compounded is preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of the alkali-soluble resin. When the amount is 0.5 parts by mass or more, the surface curability is improved, and when the amount is 30 parts by mass or less, halation is less likely to occur and good resolution is obtained. More preferably, it is 1.0 to 20 parts by mass.
(光塩基発生剤)
 光重合開始剤としての機能も有する光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、後述する熱反応性化合物の重合反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。
(Photobase generator)
The photobase generator, which also functions as a photopolymerization initiator, undergoes a polymerization reaction of the heat-reactive compound described below by changing its molecular structure or by cleaving the molecule upon irradiation with light such as ultraviolet light or visible light. A compound that produces one or more basic substances that can function as a catalyst. Examples of basic substances include secondary amines and tertiary amines.
 このような光重合開始剤としての機能も有する光塩基発生剤としては、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ基,N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメート基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。中でも、オキシムエステル化合物、α-アミノアセトフェノン化合物が好ましく、オキシムエステル化合物がより好ましい。α-アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。 Examples of such photobase generators also functioning as photopolymerization initiators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic and compounds having substituents such as group amino groups, nitrobenzylcarbamate groups, alkoxybenzylcarbamate groups, and the like. Among them, oxime ester compounds and α-aminoacetophenone compounds are preferred, and oxime ester compounds are more preferred. As α-aminoacetophenone compounds, those having two or more nitrogen atoms are particularly preferred.
 α-アミノアセトフェノン化合物は、分子中にベンゾインエーテル結合を有し、光照射を受けると分子内で開裂が起こり、硬化触媒作用を奏する塩基性物質(アミン)が生成するものであればよい。 Any α-aminoacetophenone compound may be used as long as it has a benzoin ether bond in the molecule and undergoes intramolecular cleavage when exposed to light to generate a basic substance (amine) that acts as a curing catalyst.
 オキシムエステル化合物としては、光照射により塩基性物質を生成する化合物であればいずれをも使用することができる。 Any compound can be used as the oxime ester compound as long as it is a compound that generates a basic substance upon irradiation with light.
 このような光塩基発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。樹脂組成物中の光塩基発生剤の配合量は、好ましくはアルカリ溶解性樹脂100質量部に対して1.0~40質量部であり、さらに好ましくは、1.0~20質量部である。1.0質量部以上の場合、光照射部/未照射部の耐現像性のコントラストを良好に得ることができる。また、40質量部以下の場合、硬化物特性が向上する。 Such photobase generators may be used singly or in combination of two or more. The amount of the photobase generator compounded in the resin composition is preferably 1.0 to 40 parts by mass, more preferably 1.0 to 20 parts by mass, per 100 parts by mass of the alkali-soluble resin. When the amount is 1.0 parts by mass or more, a good contrast of the development resistance between the light-irradiated area and the non-irradiated area can be obtained. Moreover, when it is 40 parts by mass or less, the properties of the cured product are improved.
(熱硬化性樹脂)
 樹脂層(B)の樹脂組成物(b)に含まれる熱硬化性樹脂は、先に述べた樹脂層(A)の熱硬化性樹脂と同様にエポキシ樹脂、オキセタン化合物、分子内に2個以上のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、ブロックイソシアネート化合物、シクロカーボネート化合物、ビスマレイミド、カルボジイミド等を用いることができ、これらは併用してもよい。
(Thermosetting resin)
The thermosetting resin contained in the resin composition (b) of the resin layer (B) is, like the thermosetting resin of the resin layer (A) described above, an epoxy resin, an oxetane compound, and two or more in the molecule. compounds having a thioether group, that is, episulfide resins, melamine resins, benzoguanamine resins, melamine derivatives, amino resins such as benzoguanamine derivatives, blocked isocyanate compounds, cyclocarbonate compounds, bismaleimides, carbodiimides, etc., can be used in combination. may
 樹脂層(B)の樹脂組成物(b)に含まれる熱硬化性樹脂は、樹脂層(A)の樹脂組成物(a)に含まれる熱硬化性樹脂と同一の熱硬化性樹脂でもよいし、異なる熱硬化性樹脂でもよい。また、熱硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。 The thermosetting resin contained in the resin composition (b) of the resin layer (B) may be the same thermosetting resin as the thermosetting resin contained in the resin composition (a) of the resin layer (A). , may be different thermosetting resins. Moreover, a thermosetting resin can be used individually by 1 type or in combination of 2 or more types.
 熱硬化性樹脂の配合割合は、固形分換算で、組成物全量基準で、10~50質量%であることが好ましく、15~45質量%であることがより好ましく、20~40質量%であることがさらに好ましい。
 なお、後述するようにカルボキシル基含有樹脂との当量比を適切に調整することが好ましい。
The blending ratio of the thermosetting resin is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, more preferably 20 to 40% by mass, based on the total amount of the composition in terms of solid content. is more preferred.
As will be described later, it is preferable to appropriately adjust the equivalent ratio with the carboxyl group-containing resin.
 以上説明したような樹脂層(A)および樹脂層(B)において用いる樹脂組成物には、必要に応じて以下の成分を配合することができる。 The resin composition used in the resin layer (A) and the resin layer (B) as described above may optionally contain the following components.
(着色剤)
 感度を調節する目的で、着色剤を配合することができる。着色剤としては、赤、青、緑、黄、白、黒などの公知慣用の着色剤を配合することができ、顔料、染料、色素のいずれでもよい。
(coloring agent)
A coloring agent can be added for the purpose of adjusting sensitivity. As the colorant, known and commonly used colorants such as red, blue, green, yellow, white, and black can be blended, and any of pigments, dyes, and pigments can be used.
(その他成分)
 感度の調整や効果塗料特性を向上させる目的で酸化防止剤、紫外線吸収剤、微粉シリカ、ハイドロタルサイト、シランカップリング剤などのような公知慣用の添加剤類を配合することができる。
(Other ingredients)
For the purpose of adjusting the sensitivity and improving the properties of the effect paint, known and commonly used additives such as antioxidants, ultraviolet absorbers, finely divided silica, hydrotalcite and silane coupling agents can be added.
[積層構造体]
 本発明の積層構造体は、樹脂層(B)の樹脂組成物(b)に含まれるアルカリ可溶性樹脂と前記熱硬化性樹脂との混合物における、150℃でのゲル化時間が120秒以上、600秒以下であり、より好ましくは180秒以上、300秒以下であり、樹脂層(A)に含まれるカルボキシル基含有樹脂と熱硬化性樹脂との混合物における、150℃でのゲル化時間が300秒以上、1200秒以下であり、より好ましくは360秒以上、600秒以下であり、かつ、前記樹脂層(B)の前記混合物における、前記ゲル化時間よりも長いことを特徴とするものである。
 樹脂層(A)の樹脂組成物(a)におけるカルボキシル基含有樹脂と熱硬化性樹脂との熱反応性をゲル化時間によって測定した結果の下限が300秒以上と比較的長く、樹脂層(B)の樹脂組成物(b)に含まれるアルカリ可溶性樹脂と前記熱硬化性樹脂との混合物における熱反応性をゲル化時間によって測定した結果の下限が120秒以上と樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂と熱硬化性樹脂との混合物における熱反応性をゲル化時間によって測定した結果の下限より比較的短い組合せの積層構造体とすることで、露光後のベーク工程において未露光部の反応が進まずライフを持つことができ、その結果、より微細な解像性を得ることが可能であり、現像後は残渣のない硬化物とすることができる。
 ゲル化時間の測定方法は、後述するゲル化時間の測定方法による。
[Laminated structure]
In the laminated structure of the present invention, the mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of the resin layer (B) has a gelation time at 150 ° C. of 120 seconds or more and 600 seconds or less, more preferably 180 seconds or more and 300 seconds or less, and the mixture of the carboxyl group-containing resin and the thermosetting resin contained in the resin layer (A) has a gelling time of 300 seconds at 150°C. It is characterized by being 1200 seconds or less, more preferably 360 seconds or more and 600 seconds or less, and longer than the gelling time of the mixture of the resin layer (B).
The lower limit of the result of measuring the thermal reactivity between the carboxyl group-containing resin and the thermosetting resin in the resin composition (a) of the resin layer (A) by gelation time is relatively long at 300 seconds or more, and the resin layer (B The lower limit of the result of measuring the thermal reactivity in the mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of ) by gelation time is 120 seconds or more, and the resin composition of the resin layer (A) By making a laminated structure of a combination relatively shorter than the lower limit of the result of measuring the thermal reactivity in the mixture of the carboxyl group-containing resin and the thermosetting resin contained in the product (a) by the gelation time, In the baking process, the reaction in the unexposed areas does not proceed and the product can have a long life. As a result, finer resolution can be obtained, and a cured product without residue can be obtained after development.
The method for measuring the gelling time is based on the gelling time measuring method described below.
 本発明の積層構造体は、樹脂層(A)および樹脂層(B)がそれぞれ光硬化性樹脂組成物からなる。光硬化性樹脂組成物は、光塩基発生剤による露光後、加熱工程が必須のため、未露光部においても熱反応の影響を抑制するために、それぞれの組成物のゲル化時間が60~1,200秒が好ましい。特に、樹脂層(B)は、露光・PEB後の現像性と耐現像性および硬化塗膜特性の面で、樹脂層(B)の樹脂組成物(b)に含まれるアルカリ可溶性樹脂と前記熱硬化性樹脂との混合物のゲル化時間が120~600秒であることが好ましく、より好ましくは180秒以上、300秒以下である。
 樹脂層(A)は、現像性と現像残渣および硬化塗膜特性の面で、樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂と各熱硬化性樹脂との混合物のゲル化時間が300~1,200秒であることが好ましく、より好ましくは360秒以上、600秒以下である。
 また、樹脂層(A)の樹脂組成物の上記ゲル化時間が、樹脂層(B)の樹脂組成物の上記ゲル化時間より長く、さらにその差異が120秒以上であることが好ましい。
 本発明のゲル化時間というのは下に示すような各成分の酸価、分子量、熱硬化性樹脂の官能基数、熱硬化性樹脂の配合量といったパラメータを調整し、樹脂成分を組み合わせるための指標としてある。
In the laminated structure of the present invention, the resin layer (A) and the resin layer (B) are each made of a photocurable resin composition. Since the photocurable resin composition requires a heating step after exposure with a photobase generator, the gelation time of each composition is 60 to 1 in order to suppress the influence of the thermal reaction even in the unexposed area. , 200 seconds. In particular, the resin layer (B), in terms of developability and resistance to development after exposure and PEB, and properties of the cured coating film, has an alkali-soluble resin contained in the resin composition (b) of the resin layer (B) and the heat The gelling time of the mixture with the curable resin is preferably 120 to 600 seconds, more preferably 180 seconds or more and 300 seconds or less.
The resin layer (A) is made of a mixture of a carboxyl group-containing resin and each thermosetting resin contained in the resin composition (a) of the resin layer (A) in terms of developability, development residue and cured coating film properties. The gelation time is preferably 300 to 1,200 seconds, more preferably 360 seconds or more and 600 seconds or less.
Further, it is preferable that the gelation time of the resin composition of the resin layer (A) is longer than the gelation time of the resin composition of the resin layer (B), and the difference therebetween is 120 seconds or more.
The gelation time of the present invention is an index for combining resin components by adjusting parameters such as the acid value of each component, the molecular weight, the number of functional groups of the thermosetting resin, and the blending amount of the thermosetting resin, as shown below. It is as
(酸価)
 本発明の樹脂層(A)および樹脂層(B)の樹脂組成物にそれぞれ含まれるカルボキシル基含有樹脂、アルカリ可溶性樹脂は、フォトリソグラフィー工程に対応するために、その酸価が20~200mgKOH/gであることが好ましく、樹脂層(A)には30~100mgKOH/gがより好ましく、樹脂層(B)には30~150mgKOH/gがより好ましい。この酸価が20mgKOH/g以上であると、アルカリに対する溶解性が増加し、現像性が良好となり、さらには、光照射後の熱硬化成分との架橋度が高くなるため、十分な現像コントラストが得ることができる。一方、この酸価が200mgKOH/g以下であると、正確なパターン描画が容易となり、特に、後述する光照射後のPEB(POST EXPOSURE BAKE)工程でのいわゆる熱かぶりを抑制でき、プロセスマージンが大きくなる。さらに、本発明では、樹脂層(A)と樹脂層(B)の樹脂組成物のカルボキシル基含有樹脂の酸価を調整することによりゲル化時間をコントロールすることができる。
 特に樹脂層(A)のカルボキシル基含有樹脂の酸価でゲル化時間をコントロールする場合、その酸価が上記20~200mgKOH/gの範囲で、比較的酸価の低い、即ち、酸価が20~100未満mgKOH/gのカルボキシル基含有樹脂を用いればゲル化時間をより長くすることができ、比較的酸価の高い、即ち、酸価が100~200mgKOH/gのカルボキシル基含有樹脂を用いればゲル化時間をより短くすることができる。
(acid number)
The carboxyl group-containing resin and the alkali-soluble resin contained in the resin compositions of the resin layer (A) and the resin layer (B) of the present invention, respectively, have an acid value of 20 to 200 mgKOH/g in order to be compatible with the photolithography process. more preferably 30 to 100 mgKOH/g for the resin layer (A), and more preferably 30 to 150 mgKOH/g for the resin layer (B). When the acid value is 20 mgKOH/g or more, the solubility in alkali is increased, the developability is improved, and the degree of crosslinking with the thermosetting component after light irradiation is increased, so that sufficient development contrast is obtained. Obtainable. On the other hand, when the acid value is 200 mgKOH/g or less, accurate pattern drawing is facilitated, and in particular, so-called heat fogging in the PEB (POST EXPOSURE BAKE) step after light irradiation, which will be described later, can be suppressed, resulting in a large process margin. Become. Furthermore, in the present invention, the gelling time can be controlled by adjusting the acid value of the carboxyl group-containing resin of the resin composition of the resin layer (A) and the resin layer (B).
In particular, when the gelling time is controlled by the acid value of the carboxyl group-containing resin of the resin layer (A), the acid value is relatively low in the above range of 20 to 200 mgKOH/g, that is, the acid value is 20. Using a carboxyl group-containing resin of less than ~100 mgKOH/g can make the gelation time longer, and using a carboxyl group-containing resin with a relatively high acid value, that is, an acid value of 100 to 200 mgKOH/g Gelation time can be made shorter.
(カルボキシル基含有樹脂、アルカリ可溶性樹脂の重量平均分子量(Mw))
 樹脂層(A)および樹脂層(B)の樹脂組成物にそれぞれ含まれるカルボキシル基含有樹脂、アルカリ可溶性樹脂の重量平均分子量は、現像性、硬化塗膜特性やゲル化時間の調整するために、重量平均分子量1,000~100,000が好ましい。この範囲内であれば、樹脂の分子量でゲル化時間をコントロールする場合、比較的低分子量、即ち、重量平均分子量1,000~5,000のカルボキシル基含有樹脂、アルカリ可溶性樹脂を用いればゲル化時間をより長くすることができ、比較的高分子量、即ち、重量平均分子量5,000超~10,000のカルボキシル基含有樹脂、アルカリ可溶性樹脂を用いればゲル化時間をより短くすることができる。
 本発明では、ゲル化時間を調整するために、樹脂層(B)のアルカリ可溶性樹脂の重量平均分子量は5,000~100,000が好ましく、より好ましくは10,000~50,000である。また、樹脂層(A)のカルボキシル基含有樹脂の重量平均分子量は1,000~10,000が好ましく、より好ましくは2,000~5,000である。
(Carboxyl group-containing resin, weight average molecular weight (Mw) of alkali-soluble resin)
The weight-average molecular weights of the carboxyl group-containing resin and the alkali-soluble resin contained in the resin compositions of the resin layer (A) and the resin layer (B), respectively, are A weight average molecular weight of 1,000 to 100,000 is preferred. Within this range, if the gelation time is controlled by the molecular weight of the resin, a relatively low molecular weight, that is, a carboxyl group-containing resin having a weight average molecular weight of 1,000 to 5,000, or an alkali-soluble resin will gel. The gelling time can be lengthened, and the gelation time can be shortened by using a carboxyl group-containing resin or alkali-soluble resin having a relatively high molecular weight, ie, a weight average molecular weight of more than 5,000 to 10,000.
In the present invention, the weight average molecular weight of the alkali-soluble resin of the resin layer (B) is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, in order to adjust the gelation time. The weight average molecular weight of the carboxyl group-containing resin of the resin layer (A) is preferably 1,000 to 10,000, more preferably 2,000 to 5,000.
(熱硬化性樹脂の官能基数)
 樹脂層(A)および樹脂層(B)の樹脂組成物に含まれる熱硬化性樹脂は、熱によって、カルボキシル基もしくはフェノール水酸基と付加反応が可能な官能基を有するものである。熱硬化性樹脂としては、例えば、環状(チオ)エーテル基を有する化合物が好ましく、エポキシ樹脂などが挙げられる。上記エポキシ樹脂は、エポキシ基を有する樹脂であり、公知のものをいずれも使用できる。熱硬化性樹脂でゲル化時間をコントロールする場合は、官能基数の2個以下の成分を用いればゲル化時間をより長くすることができ、官能基数の3個以上の成分を用いればゲル化時間をより短くすることができる。
 本発明でゲル化時間を調整するために、樹脂層(B)には分子中にエポキシ基を3固以上有する多官能エポキシ樹脂などが好ましく、樹脂層(A)には分子中にエポキシ基を2個以下有する2官能性エポキシ樹脂などが好ましい。
(Number of functional groups of thermosetting resin)
The thermosetting resin contained in the resin composition of the resin layer (A) and the resin layer (B) has a functional group capable of undergoing an addition reaction with a carboxyl group or a phenolic hydroxyl group by heat. As the thermosetting resin, for example, compounds having a cyclic (thio)ether group are preferable, and examples thereof include epoxy resins. The epoxy resin is a resin having an epoxy group, and any known epoxy resin can be used. When controlling the gelation time with a thermosetting resin, the gelation time can be lengthened by using a component with a functional group number of 2 or less, and the gelation time can be lengthened by using a component with a functional group number of 3 or more. can be made shorter.
In order to adjust the gelling time in the present invention, the resin layer (B) is preferably a polyfunctional epoxy resin having 3 or more epoxy groups in the molecule, and the resin layer (A) preferably has epoxy groups in the molecule. A bifunctional epoxy resin having two or less is preferable.
(熱硬化性樹脂の配合量)
 樹脂層(A)および樹脂層(B)の樹脂組成物に含まれる熱硬化性樹脂は、熱によって、カルボキシル基もしくはフェノール水酸基と付加反応が可能な官能基を有するものである。
 熱硬化性樹脂の配合量として、樹脂層(A)および樹脂層(B)の樹脂組成物に含まれるカルボキシル基含有樹脂、アルカリ可溶性樹脂との当量比(カルボキシル基:エポキシ基などの熱反応性基)が1.0:0.1~1.0:10.0であることが好ましい。熱硬化性樹脂でゲル化時間をコントロールする場合は、カルボキシル基含有樹脂との当量比が増加するほどゲル化時間をより短くすることができる。
 本発明でゲル化時間を調整するために、樹脂層(B)は上記当量比が1.0:1.0~1.0:10.0が好ましく、樹脂層(A)は上記当量比が1.0:0.1~1.0:5.0が好ましい。より好ましくは、樹脂層(B)は1.0:1.2~1.0:5.0が好ましく、樹脂層(A)は1.0:0.5~1.0:2.5が好ましい。
(Amount of thermosetting resin compounded)
The thermosetting resin contained in the resin composition of the resin layer (A) and the resin layer (B) has a functional group capable of undergoing an addition reaction with a carboxyl group or a phenolic hydroxyl group by heat.
As the amount of the thermosetting resin, the equivalent ratio of the carboxyl group-containing resin and the alkali-soluble resin contained in the resin composition of the resin layer (A) and the resin layer (B) (carboxyl group: thermal reactivity such as epoxy group group) is preferably 1.0:0.1 to 1.0:10.0. When controlling the gelation time with a thermosetting resin, the gelation time can be shortened as the equivalent ratio to the carboxyl group-containing resin increases.
In order to adjust the gelation time in the present invention, the equivalent ratio of the resin layer (B) is preferably 1.0:1.0 to 1.0:10.0, and the equivalent ratio of the resin layer (A) is 1.0:0.1 to 1.0:5.0 is preferred. More preferably, the resin layer (B) has a ratio of 1.0:1.2 to 1.0:5.0, and the resin layer (A) has a ratio of 1.0:0.5 to 1.0:2.5. preferable.
 積層構造体は、樹脂層(B)の厚さが、2μm以上前記樹脂層(A)の半分の厚さ以下であり、前記樹脂層(A)の厚さが、10~80μmであることが好ましく、10~60より好ましい。 In the laminated structure, the thickness of the resin layer (B) is 2 μm or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is 10 to 80 μm. Preferred, more preferably 10-60.
 積層構造体は、樹脂層(A)の樹脂組成物および樹脂層(B)の樹脂組成物を、配線板などの基板上に、ドライフィルム化して形成させてもよいし、液状のものを順次塗布形成させてもよい。液状として用いる場合は、1液性でも2液性以上でもよいが、保存安定性の観点から2液性以上であることが好ましい。 The laminated structure may be formed by forming the resin composition of the resin layer (A) and the resin composition of the resin layer (B) into a dry film on a substrate such as a wiring board, or by sequentially forming liquid ones. It may be formed by coating. When used as a liquid, it may be one-liquid or two-liquid or more, but from the viewpoint of storage stability, it is preferably two-liquid or more.
[ドライフィルム]
 次に、本発明のドライフィルムは、第1のフィルム上に、樹脂層(A)の樹脂組成物および樹脂層(B)の樹脂組成物を塗布、乾燥させることにより得られる樹脂層を有する。ドライフィルムを形成する際には、まず、樹脂層(A)の樹脂組成物および樹脂層(B)の樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整した上で、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等により、第1のフィルム上に均一な厚さに塗布する。その後、塗布された組成物を、通常、40~130℃の温度で1~30分間乾燥することで、樹脂層を形成することができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、5~150μm、好ましくは15~60μmの範囲で適宜選択される。
[Dry film]
Next, the dry film of the present invention has a resin layer obtained by coating and drying the resin composition for the resin layer (A) and the resin composition for the resin layer (B) on the first film. When forming a dry film, first, the resin composition of the resin layer (A) and the resin composition of the resin layer (B) are diluted with the above organic solvent to adjust the viscosity to an appropriate value, and then a comma coater, A blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater, spray coater, or the like is used to coat the first film to a uniform thickness. After that, the applied composition is usually dried at a temperature of 40 to 130° C. for 1 to 30 minutes to form a resin layer. The thickness of the coating is not particularly limited, but is generally selected appropriately within the range of 5 to 150 μm, preferably 15 to 60 μm, in terms of thickness after drying.
 第1のフィルムとしては、プラスチックフィルムが用いられ、例えば、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等を用いることができる。第1のフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。より好ましくは15~130μmの範囲である。 A plastic film is used as the first film, and for example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used. The thickness of the first film is not particularly limited, but is generally selected appropriately within the range of 10 to 150 μm. More preferably, it is in the range of 15 to 130 μm.
 第1のフィルム上に樹脂層(A)の樹脂組成物および樹脂層(B)の樹脂組成物からなる樹脂層を形成した後、膜の表面に塵が付着することを防ぐ等の目的で、さらに、膜の表面に、剥離可能な第2のフィルムを積層することが好ましい。剥離可能な第2のフィルムとしては、例えば、ポリエチレンフィルムやポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができる。第2のフィルムとしては、第2のフィルムを剥離するときに、樹脂層と第1のフィルムとの接着力よりも小さいものであればよい。 After forming a resin layer composed of the resin composition of the resin layer (A) and the resin composition of the resin layer (B) on the first film, for the purpose of preventing dust from adhering to the surface of the film, Furthermore, it is preferable to laminate a peelable second film on the surface of the membrane. As the peelable second film, for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, surface-treated paper, or the like can be used. As the second film, any film may be used as long as it has an adhesive strength smaller than that between the resin layer and the first film when the second film is peeled off.
 なお、本発明においては、上記第2のフィルム上に樹脂層(B)の樹脂組成物および樹脂層(A)の樹脂組成物を塗布、乾燥させることにより積層個構造体を形成して、その表面に第1のフィルムを積層するものであってもよい。すなわち、本発明においてドライフィルムを製造する際に樹脂層(A)の樹脂組成物および樹脂層(B)の樹脂組成物を塗布するフィルムとしては、第1のフィルムおよび第2のフィルムのいずれを用いてもよい。 In the present invention, the resin composition of the resin layer (B) and the resin composition of the resin layer (A) are coated on the second film and dried to form a laminated individual structure. A first film may be laminated on the surface. That is, the film to which the resin composition of the resin layer (A) and the resin composition of the resin layer (B) are applied when producing the dry film in the present invention may be either the first film or the second film. may be used.
 樹脂層(A)の樹脂組成物および樹脂層(B)の樹脂組成物を、例えば、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成することができる。また、上記組成物を第1のフィルムまたは第2のフィルム上に塗布し、乾燥させてフィルムとして巻き取ったドライフィルムの場合、ラミネーター等により本発明の組成物の層が基材と接触するように基材上に貼り合わせた後、第1のフィルムを剥がすことにより、樹脂層を形成できる。 The resin composition of the resin layer (A) and the resin composition of the resin layer (B) are, for example, adjusted to a viscosity suitable for the coating method using the above organic solvent, and then coated on the substrate by a dip coating method, a flow After applying by a method such as coating method, roll coating method, bar coating method, screen printing method, curtain coating method, etc., the organic solvent contained in the composition is volatilized and dried (temporary drying) at a temperature of 60 to 100 ° C. , a tack-free resin layer can be formed. In the case of a dry film obtained by coating the above composition on the first film or the second film, drying the composition, and winding it as a film, a laminator or the like is used so that the layer of the composition of the present invention comes into contact with the substrate. A resin layer can be formed by peeling off the first film after pasting on the base material.
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキシド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、PETフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。 Examples of the substrate include printed wiring boards and flexible printed wiring boards on which circuits are formed in advance using copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/non-woven cloth epoxy, glass cloth/paper epoxy. , Synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, and other materials such as copper-clad laminates for high-frequency circuits, and copper-clad laminates of all grades (FR-4, etc.) Plates, metal substrates, polyimide films, PET films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates and the like can also be used.
 樹脂組成物を基材またはドライフィルムの第1のフィルム塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。 Volatilization drying performed after applying the resin composition to the substrate or the first film of the dry film can be performed using a hot air circulation drying oven, an IR oven, a hot plate, a convection oven, etc. A method in which the hot air in the dryer is brought into countercurrent contact with the hot air in the dryer, and a method in which the support is blown from a nozzle) can be used.
[硬化物]
 ドライフィルムは、第1のフィルムが剥離されて電子部品用の基板、例えばプリント配線板上に形成され、露光およびアルカリ現像により硬化物とされる。アルカリ現像後、必要に応じてポストキュアが行われる。ドライフィルムを用いずに、基板上に樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)を塗布形成したのち、露光およびアルカリ現像により硬化物とされる。アルカリ現像後、必要に応じてポストキュアが行われる。
[Cured product]
The dry film is formed on a substrate for electronic parts, such as a printed wiring board, by peeling off the first film, and is cured by exposure and alkali development. After alkali development, post-curing is performed as necessary. Without using a dry film, the resin composition (a) of the resin layer (A) and the resin composition (b) of the resin layer (B) are formed by coating on a substrate, followed by exposure and alkali development to obtain a cured product. be. After alkali development, post-curing is performed as necessary.
(露光(光照射)工程)
 この工程では、活性エネルギー線の照射により、樹脂層(B)に含まれる光塩基発生剤をネガ型のパターン状に活性化させて、露光部を硬化する。後述するPEB工程を用いる組成物の場合には、光塩基発生剤としての機能を有する光重合開始剤または光塩基発生剤をネガ型のパターン状に活性化させて塩基を発生させる。
 この工程で用いられる露光機としては、直接描画装置、メタルハライドランプを搭載した露光機、(超)高圧水銀ランプを搭載した光照射機、水銀ショートアークランプを搭載した光照射機、または(超)高圧水銀ランプ等の紫外線ランプを使用した直接描画装置を用いることができる。パターン状の露光用のマスクは、ネガ型のマスクである。
 露光に用いる活性エネルギー線としては、最大波長が350~450nmの範囲にあるレーザー光または散乱光を用いることが好ましい。最大波長をこの範囲とすることにより、効率よく光塩基発生剤を活性化させることができる。また、その露光量は膜厚等によって異なるが、通常は、100~1500mJ/cmとすることができる。
 積層された樹脂層(A)の樹脂組成物(a)および樹脂層(B)の樹脂組成物(b)に対し、露光(光照射)を行うことにより、露光部(光照射された部分)が硬化する。この工程は、ネガ型のパターン状に光照射にて樹脂層に含まれる光塩基発生剤を活性化して光照射部を硬化する。この工程は、光照射工程で発生した塩基により、樹脂層の深部まで充分に硬化できる。加熱温度は、例えば、80~140℃である。加熱時間は、例えば、2~140分である。本発明における樹脂組成物の硬化は、例えば、熱反応によるエポキシ樹脂の開環反応であるため、光ラジカル反応で硬化が進行する場合と比べてひずみや硬化収縮を抑えることができる。
(Exposure (light irradiation) process)
In this step, the photobase generator contained in the resin layer (B) is activated in a negative pattern by irradiation with active energy rays, and the exposed portion is cured. In the case of the composition using the PEB process, which will be described later, a photopolymerization initiator or photobase generator functioning as a photobase generator is activated in a negative pattern to generate a base.
The exposure machine used in this process includes a direct drawing machine, an exposure machine equipped with a metal halide lamp, a light irradiation machine equipped with a (ultra) high pressure mercury lamp, a light irradiation machine equipped with a mercury short arc lamp, or a (ultra) A direct drawing apparatus using an ultraviolet lamp such as a high-pressure mercury lamp can be used. A mask for patternwise exposure is a negative mask.
As active energy rays used for exposure, laser light or scattered light having a maximum wavelength in the range of 350 to 450 nm is preferably used. By setting the maximum wavelength within this range, the photobase generator can be efficiently activated. Although the amount of exposure differs depending on the film thickness, etc., it is usually 100 to 1500 mJ/cm 2 .
The resin composition (a) of the laminated resin layer (A) and the resin composition (b) of the resin layer (B) are exposed (light irradiation) to form an exposed portion (light irradiated portion). hardens. In this step, the light-irradiated portion is cured by activating the photobase generator contained in the resin layer by light irradiation in a negative pattern. In this step, the base generated in the light irradiation step can sufficiently cure deep portions of the resin layer. The heating temperature is, for example, 80-140.degree. The heating time is, for example, 2 to 140 minutes. Curing of the resin composition in the present invention is, for example, a ring-opening reaction of an epoxy resin due to a thermal reaction, so distortion and curing shrinkage can be suppressed compared to the case where curing proceeds by a photoradical reaction.
(PEB工程)
 この工程では、露光(光照射)後、樹脂層を加熱することにより、露光部を硬化する。この工程は、光照射部で発生した塩基により、光塩基発生剤が不安定化し、塩基が化学的に増殖することにより、樹脂層の深部まで充分に硬化できる。加熱温度は、例えば、80~140℃である。加熱時間は、例えば、2~140分である。本発明における樹脂組成物の硬化は、例えば、熱反応によるエポキシ樹脂の開環反応であるため、光ラジカル反応で硬化が進行する場合と比べてひずみや硬化収縮を抑えることができる。
(PEB process)
In this step, the exposed portion is cured by heating the resin layer after exposure (light irradiation). In this step, the photobase generator is destabilized by the base generated in the light-irradiated portion, and the base chemically proliferates, so that the deep part of the resin layer can be fully cured. The heating temperature is, for example, 80-140.degree. The heating time is, for example, 2 to 140 minutes. Curing of the resin composition in the present invention is, for example, a ring-opening reaction of an epoxy resin due to a thermal reaction, so distortion and curing shrinkage can be suppressed compared to the case where curing proceeds by a photoradical reaction.
(現像工程)
 現像工程は、アルカリ現像により、未照射部を除去して、ネガ型のパターン状の絶縁膜を形成する。現像方法は、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類などのアルカリ水溶液が使用できる。
(Development process)
In the developing step, the non-irradiated portion is removed by alkali development to form a negative patterned insulating film. The developing method can be a dipping method, a shower method, a spray method, a brush method, or the like. Aqueous alkaline solutions such as amines can be used.
(ポストキュア工程)
 この工程は、現像工程の後に、樹脂層を完全に熱硬化させて信頼性の高い塗膜を得るものである。加熱温度は、例えば140℃~180℃である。加熱時間は、例えば、20~120分である。さらに、ポストキュアの前または後に、光照射してもよい。
(Post-cure process)
In this step, after the developing step, the resin layer is completely heat-cured to obtain a highly reliable coating film. The heating temperature is, for example, 140.degree. C. to 180.degree. The heating time is, for example, 20 to 120 minutes. Furthermore, light irradiation may be performed before or after post-curing.
[電子部品]
 本発明の積層構造体は、半導体パッケージ用等として、プリント配線板上に硬化皮膜を形成するために好適に使用され、より好適には、永久被膜を形成するために使用され、さらに好適には、ソルダーレジスト、層間絶縁層、カバーレイを形成するために使用される。また、本発明の硬化性樹脂組成物によれば、クラック耐性に優れた硬化物を得ることができることから、クラック発生による不良の影響が大きいファインピッチの配線パターンを備えるプリント配線板、例えばパッケージ基板に用いられるソルダーレジスト等の永久塗膜の形成に好適に用いることができる。
[Electronic parts]
The laminate structure of the present invention is preferably used for forming a cured film on a printed wiring board, more preferably for forming a permanent film, and more preferably for a semiconductor package or the like. , solder resists, interlayer dielectric layers, and coverlays. Further, according to the curable resin composition of the present invention, it is possible to obtain a cured product having excellent crack resistance. It can be suitably used for forming a permanent coating film such as a solder resist used for.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は、これらの実施例によって制限されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited by these examples.
(アルカリ可溶性樹脂1の合成)
 窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコに2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下、「BAPP」という)6.98g、3,5-ジアミノ安息酸3.80g、ジェファーミンXTJ-542(ハンツマン社製、分子量1025.64)8.21g、およびγ‐ブチロラクトン86.49gを室温で仕込み溶解した。
(Synthesis of alkali-soluble resin 1)
6.98 g of 2,2-bis[4-(4-aminophenoxy)phenyl]propane (hereinafter referred to as "BAPP"), 3, 3.80 g of 5-diaminobenzoic acid, 8.21 g of Jeffamine XTJ-542 (manufactured by Huntsman, molecular weight: 1025.64), and 86.49 g of γ-butyrolactone were charged and dissolved at room temperature.
 次いで、シクロへキサン-1,2,4-トリカルボン酸-1,2-無水物17.84gおよび無水トリメリット酸2.88gを仕込み、室温で30分間保持した。さらにトルエン30gを仕込み、160℃まで昇温して、トルエンと共に生成する水を除去した後、3時間保持し、室温まで冷却することでイミド化物溶液を得た。 Next, 17.84 g of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and 2.88 g of trimellitic anhydride were charged and kept at room temperature for 30 minutes. Further, 30 g of toluene was charged, the temperature was raised to 160° C., and after removing the water generated together with the toluene, the mixture was held for 3 hours and cooled to room temperature to obtain an imidized compound solution.
 得られたイミド化物溶液に、無水トリメリット酸9.61gおよびトリメチルヘキサメチレンジイソシアネート17.45gを仕込み、160℃の温度で32時間保持した。こうして、カルボキシル基を含有するポリアミドイミド樹脂溶液を得た(以下、A-1と略称する)。固形分は40.1%、固形分酸価は83.1mgKOH/g、Mw4,500であった。 9.61 g of trimellitic anhydride and 17.45 g of trimethylhexamethylene diisocyanate were added to the obtained imidized product solution and kept at a temperature of 160° C. for 32 hours. Thus, a polyamide-imide resin solution containing carboxyl groups was obtained (hereinafter abbreviated as A-1). The solid content was 40.1%, the solid content acid value was 83.1 mgKOH/g, and Mw was 4,500.
(アルカリ可溶性樹脂2の合成)
 撹拌機、窒素導入管、分留環および冷却環を取り付けたセパラブル3つ口フラスコに、3,5-ジアミノ安息香酸を12.5g、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンを8.2g、NMPを30g、γ-ブチロラクトンを30g、4,4’-オキシジフタル酸無水物を27.9g、トリメリット酸無水物を3.8g加え、窒素雰囲気下、室温、100rpmで4時間撹拌した。次いで、トルエンを20g加え、シリコン浴温度180℃、150rpmでトルエンおよび水を留去しながら4時間撹拌して、イミド環含有アルカリ溶解性樹脂溶液を得た(以下、A-2と略称する)。その後、固形分が30質量%となるようにγ-ブチロラクトンを添加した。得られた樹脂溶液は、固形分酸価86mgKOH/g、Mw10,000であった。
(Synthesis of alkali-soluble resin 2)
12.5 g of 3,5-diaminobenzoic acid and 2,2′-bis[4-(4-aminophenoxy) were placed in a separable three-necked flask equipped with a stirrer, a nitrogen inlet tube, a fractionating ring and a cooling ring. 8.2 g of phenyl]propane, 30 g of NMP, 30 g of γ-butyrolactone, 27.9 g of 4,4′-oxydiphthalic anhydride, and 3.8 g of trimellitic anhydride were added, and the mixture was stirred at room temperature and 100 rpm under a nitrogen atmosphere. and stirred for 4 hours. Next, 20 g of toluene was added, and the mixture was stirred for 4 hours at a silicon bath temperature of 180° C. and 150 rpm while toluene and water were distilled off to obtain an imide ring-containing alkali-soluble resin solution (hereinafter abbreviated as A-2). . After that, γ-butyrolactone was added so that the solid content was 30% by mass. The resulting resin solution had a solid content acid value of 86 mgKOH/g and an Mw of 10,000.
(カルボキシル基含有樹脂の合成)
 ビスフェノールA 456部、水228部、ホルマリン649部を仕込み、水酸化ナトリウム水溶液228部を添加した後10時間反応させリン酸水溶液でpH4まで中和し、水層を分離した。その後、メチルイソブチルケトンを添加し均一に溶解した後、得られたポリメチロール化合物をメタノール550部に溶解し、ポリメチロール化合物得た。得られたポリメチロール化合物のメタノール溶液500部、2,6-キシレノール440部を仕込み、その後シュウ酸8部を加え、ノボラック樹脂A 550部を得た。更に、オートクレーブに、このノボラック樹脂Aを130部、50%水酸化ナトリウム水溶液2.6部、トルエン/メチルイソブチルケトン(質量比=2/1)100部を仕込み、加熱昇温し、エチレンオキシド45部を徐々に導入し反応させた。この反応溶液に3.3部の36%塩酸水溶液を添加混合し、水酸化ナトリウムで中和した生成物から水酸基価が175g/eq.であるノボラック樹脂Aのエチレンオキシド付加物を得た。
 このように得られたノボラック樹脂Aのエチレンオキシド付加物175部、アクリル酸50部、p-トルエンスルホン酸3.0部、ハイドロキノンモノメチルエーテル0.1部、トルエン130部を攪拌して、115℃に昇温し、4時間反応させ得られた反応溶液を5%NaCl水溶液を用いて水洗し、ジエチレングリコールモノエチルエーテルアセテートを加えて、固形分68%のアクリレート樹脂溶液を得た。
 次に、得られたアクリレート樹脂溶液312部、ハイドロキノンモノメチルエーテル0.1部、トリフェニルホスフィン0.3部を仕込み、この混合物を110℃に加熱し、テトラヒドロ無水フタル酸45部を加え、4時間反応させ、冷却後、固形分70%、固形分酸価65mgKOH/g、Mw10,000、のカルボキシル基含有樹脂溶液を得た(以下、B-1と略称する)。
(Synthesis of carboxyl group-containing resin)
456 parts of bisphenol A, 228 parts of water and 649 parts of formalin were charged, 228 parts of an aqueous sodium hydroxide solution was added, reacted for 10 hours, neutralized to pH 4 with an aqueous phosphoric acid solution, and the aqueous layer was separated. Thereafter, methyl isobutyl ketone was added and dissolved uniformly, and the obtained polymethylol compound was dissolved in 550 parts of methanol to obtain a polymethylol compound. 500 parts of the methanol solution of the obtained polymethylol compound and 440 parts of 2,6-xylenol were charged, and then 8 parts of oxalic acid was added to obtain 550 parts of novolak resin A. Further, 130 parts of this novolac resin A, 2.6 parts of a 50% aqueous sodium hydroxide solution, and 100 parts of toluene/methyl isobutyl ketone (mass ratio = 2/1) were charged in an autoclave and heated to 45 parts of ethylene oxide. was gradually introduced and allowed to react. 3.3 parts of a 36% hydrochloric acid aqueous solution was added to this reaction solution and mixed, and the product neutralized with sodium hydroxide had a hydroxyl value of 175 g/eq. An ethylene oxide adduct of novolak resin A was obtained.
175 parts of the ethylene oxide adduct of novolak resin A thus obtained, 50 parts of acrylic acid, 3.0 parts of p-toluenesulfonic acid, 0.1 part of hydroquinone monomethyl ether and 130 parts of toluene were stirred and heated to 115°C. The reaction solution obtained by raising the temperature and reacting for 4 hours was washed with water using a 5% NaCl aqueous solution, and diethylene glycol monoethyl ether acetate was added to obtain an acrylate resin solution having a solid content of 68%.
Next, 312 parts of the obtained acrylate resin solution, 0.1 part of hydroquinone monomethyl ether, and 0.3 parts of triphenylphosphine are charged, the mixture is heated to 110° C., 45 parts of tetrahydrophthalic anhydride is added, and the mixture is stirred for 4 hours. After reacting and cooling, a carboxyl group-containing resin solution having a solid content of 70%, a solid content acid value of 65 mgKOH/g, and an Mw of 10,000 was obtained (hereinafter abbreviated as B-1).
 表1に示す各実施例及び各比較例の材料を、同表中に示す量でそれぞれ配合し、攪拌機にて予備混合した後、3本ロールミルにて混練し、樹脂層(A)および樹脂層(B)の、樹脂組成物を調製した。なお、表中の値は、特に断りがない限り、固形分の質量部である。 The materials of each example and each comparative example shown in Table 1 were blended in the amounts shown in the table, premixed with a stirrer, and then kneaded with a three-roll mill to form a resin layer (A) and a resin layer. A resin composition (B) was prepared. Unless otherwise specified, the values in the table are parts by mass of the solid content.
<樹脂層(A)の形成>
 銅厚18μmで全面形成されている基材を用意し、メック社CZ8108Bを使用して、前処理を行った。その後、前記前処理を行った基板に、実施例および比較例の各樹脂組成物をスクリーン印刷等の方法により、それぞれ乾燥後の膜厚が表1中の厚み(単位:μm)になるように基板上に塗布した。その後、熱風循環式乾燥炉にて90℃/30分乾燥することにより樹脂層(A)を形成した。
<Formation of resin layer (A)>
A base material having a copper thickness of 18 μm formed on the entire surface was prepared, and pretreatment was performed using CZ8108B from MEC. After that, each resin composition of Examples and Comparative Examples was applied to the pretreated substrate by a method such as screen printing so that the film thickness after drying would be the thickness (unit: μm) shown in Table 1. coated on the substrate. Thereafter, the resin layer (A) was formed by drying at 90° C./30 minutes in a hot air circulating drying oven.
<樹脂層(B)の形成>
 上述の様に形成された樹脂層(A)上に、実施例および比較例の各樹脂組成物をスクリーン印刷等の方法により、それぞれ乾燥後の膜厚が表1中の厚み(単位:μm)になるように塗布した。その後、熱風循環式乾燥炉にて90℃/30分にて乾燥し、樹脂層(B)を形成した。
<Formation of resin layer (B)>
On the resin layer (A) formed as described above, each resin composition of Examples and Comparative Examples is applied by a method such as screen printing, and the film thickness after drying is shown in Table 1 (unit: μm). was applied so as to be Then, it was dried in a hot air circulation drying oven at 90° C./30 minutes to form a resin layer (B).
 このようにして、前記銅厚18μmで全面形成されている基材上に、実施例および比較例の各樹脂組成物からなる積層構造体を作製した。
 また、ドライフィルムのラミネート法の場合、まずは、実施例および比較例の各樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、第1のフィルムに上記と同様に、実施例および比較例の各樹脂組成物を塗布、乾燥して、樹脂層(B)を形成し、その上に樹脂層(A)を塗布、乾燥して形成して、樹脂層を有するドライフィルムを作製した。次に、ラミネーター等により樹脂層(A)側が基材と接触するように貼り合わせた後、第1のフィルム(PETフィルム、膜厚25μm)を剥離した。
In this manner, laminated structures composed of the respective resin compositions of Examples and Comparative Examples were produced on the base material on which the copper thickness of 18 μm was formed over the entire surface.
In the case of the dry film lamination method, first, each resin composition of Examples and Comparative Examples was diluted with an organic solvent to adjust the viscosity to an appropriate value, and the first film was coated in the same manner as described above. Each resin composition of Examples was applied and dried to form a resin layer (B), and a resin layer (A) was applied and dried thereon to form a dry film having a resin layer. Next, the first film (PET film, thickness 25 μm) was peeled off after laminating so that the resin layer (A) side was in contact with the base material using a laminator or the like.
<ゲル化時間の測定方法>
 JIS-C2161:2010に規定された熱板法に準拠して、ホットプレート型ゲル化試験機(GT-D;株式会社ユーカリ技研製)を用いてゲル化時間の測定を行った。
 ゲル化時間の測定は、樹脂層(A)のカルボキシル基含有樹脂と各熱硬化性樹脂とを配合した混合物、および樹脂層(B)のアルカリ可溶性樹脂と熱硬化性樹脂とを配合した混合物から、それぞれ1.00mLシリンジを用いて、0.20mL取得し、150℃に設定したゲル化試験機のホットプレート上に載置し、かき混ぜ針をホットプレート面に対して90度の角度に維持しながら、針先で90±10回/分の速度で円状に試料をかき混ぜた。このとき、かき混ぜ針が回転できなくなったり、あるいは針先に試料が粘着しなくなる等、試料がゲル状になったときを終点とし、試料を載置してから終点までの時間を測定した。この操作を3回繰り返し、それらの平均時間をゲル化時間とした。それぞれの混合物のゲル化時間は、表1に示されるとおりであった。
<Method for measuring gelation time>
Gelation time was measured using a hot plate type gelation tester (GT-D; manufactured by Eucalyptus Giken Co., Ltd.) in accordance with the hot plate method specified in JIS-C2161:2010.
The gelation time is measured from a mixture of the carboxyl group-containing resin of the resin layer (A) and each thermosetting resin, and a mixture of the alkali-soluble resin and the thermosetting resin of the resin layer (B). , each using a 1.00 mL syringe, to obtain 0.20 mL and place on the hot plate of the gelation tester set at 150° C., maintaining the stir needle at a 90 degree angle to the hot plate surface. While stirring, the sample was circularly stirred with a needle tip at a speed of 90±10 times/min. At this time, the end point was when the sample became gelatinous such that the stirring needle could not be rotated or the sample stopped sticking to the tip of the needle, and the time from placing the sample to the end point was measured. This operation was repeated three times, and the average time was taken as the gelation time. The gelling time of each mixture was as shown in Table 1.
<TCTクラック耐性(冷熱衝撃耐性)>
 クラック耐性を評価するために本試験を行った。各実施例および各比較例の樹脂組成物を化学処理(メック社製、メックエッチボンドCZ―8101、1.0μmエッチング)した後、防錆処理(メック社製、メックエッチボンドCL―8300)したBT材(三菱ガス化学社製)に全面形成し、露光装置(株式会社オーク製作所製のダイレクト露光装置(DiIMPACT Mms60))にて200mJ/cmで200μmサイズの□抜きパターンで露光工程を行い、90℃30分の条件でPEB工程を行い、現像(30℃、0.2MPa、1質量%NaCO水溶液で60秒間)工程を行い、さらにポストキュア工程を150℃60分の条件により評価基板を作製した。得られた評価基板を冷熱衝撃試験機(エタック株式会社製)で-65℃(30min.)+175℃(30min.)を1サイクルとして1000サイクル経過後、光学顕微鏡観察で開口部(角200μm)のクラックの発生有無を確認し、以下の基準にて評価した。
○:クラック発生率が20%未満
△:クラック発生率が20%以上40%未満
×:クラック発生率が40%以上
<TCT crack resistance (thermal shock resistance)>
This test was conducted to evaluate crack resistance. The resin composition of each example and each comparative example was chemically treated (manufactured by MEC Co., Ltd., MEC Etch Bond CZ-8101, 1.0 μm etching), and then subjected to rust prevention treatment (manufactured by MEC Co., Ltd., MEC Etch Bond CL-8300). The entire surface is formed on a BT material (manufactured by Mitsubishi Gas Chemical Co., Ltd.), and an exposure process is performed with an exposure device (direct exposure device (DiIMPACT Mms60) manufactured by OAK Mfg. Co., Ltd.) at 200 mJ / cm 2 with a 200 μm size open pattern, A PEB process was performed under the conditions of 90°C for 30 minutes, a development process (30°C, 0.2 MPa, 1 mass% Na 2 CO 3 aqueous solution for 60 seconds) was performed, and a post-curing process was evaluated under the conditions of 150°C for 60 minutes. A substrate was produced. After 1000 cycles of −65° C. (30 min.) + 175° C. (30 min.) using a thermal shock tester (manufactured by Etac Co., Ltd.), the obtained evaluation substrate was observed with an optical microscope to determine the opening (200 μm square). The presence or absence of crack generation was confirmed and evaluated according to the following criteria.
○: Crack incidence rate is less than 20% △: Crack incidence rate is 20% or more and less than 40% ×: Crack incidence rate is 40% or more
<フォトパターニング性>
 パターニング性を評価するために本試験を行った。各実施例および各比較例の樹脂組成物を化学処理(メック社製、メックエッチボンドCZ―8101、1.0μmエッチング)した後、防錆処理(メック社製、メックエッチボンドCL―8300)した銅張基板上に全面形成し、露光装置(株式会社オーク製作所製のダイレクト露光装置(DiIMPACT Mms60))にて200mJ/cmでSROパターンが直径40μmから200μmまでのサイズのパターンの露光工程を行い、90℃30分の条件でPEB工程を行ってから、現像(30℃、0.2MPa、1質量%NaCO水溶液で60秒間)工程を行い、Φ40μmからΦ200μmまで10μm刻みのSROパターンを形成した。さらに、ポストキュア工程を150℃60分の条件により塗膜を硬化し、得られた評価基板を100倍に調整した光学顕微鏡を用いて観察し、開口が完全に形成できている最小サイズを評価した。
◎:SROサイズΦ50μm以下
〇:SROサイズΦ50超Φ60μm以下
△:SROサイズΦ60超Φ80μm以下
×:SROサイズΦ80超Φ100μm以下 
<Photopatternability>
A final test was conducted to evaluate the patterning properties. The resin composition of each example and each comparative example was chemically treated (manufactured by MEC Co., Ltd., MEC Etch Bond CZ-8101, 1.0 μm etching), and then subjected to rust prevention treatment (manufactured by MEC Co., Ltd., MEC Etch Bond CL-8300). The entire surface is formed on a copper-clad substrate, and an SRO pattern with a diameter of 40 μm to 200 μm is exposed at 200 mJ/cm 2 with an exposure device (a direct exposure device (DiIMPACT Mms60) manufactured by ORC Manufacturing Co., Ltd.). , 90° C. for 30 minutes, followed by a development step (30° C., 0.2 MPa, 1% by mass Na 2 CO 3 aqueous solution for 60 seconds) to form an SRO pattern from Φ40 μm to Φ200 μm in increments of 10 μm. formed. In addition, the coating film was cured under the conditions of 150° C. for 60 minutes in a post-cure process, and the obtained evaluation substrate was observed using an optical microscope adjusted to 100 times, and the minimum size at which the opening was completely formed was evaluated. did.
◎: SRO size Φ50 μm or less ○: SRO size Φ50 to Φ60 μm △: SRO size Φ60 to Φ80 μm ×: SRO size Φ80 to Φ100 μm
<現像残渣>
 各実施例、各比較例の積層構造体を、化学処理(メック社製、メックエッチボンドCZ―8101、1.0μmエッチング)した後、防錆処理(メック社製、メックエッチボンドCL―8300)した銅張基板上に形成し、露光装置(株式会社オーク製作所製のダイレクト露光装置(DiIMPACT Mms60))にて200mJ/cmのパターン露光を行い、90℃30分の条件でPEB工程を行ってから、現像(30℃、0.2MPa、1質量%NaCO水溶液で60秒間)工程を行い、未露光部の残渣を目視で評価した。
〇:残渣なし
×:残渣あり
<Development residue>
The laminated structure of each example and each comparative example was chemically treated (manufactured by MEC Co., Ltd., MEC Etch Bond CZ-8101, 1.0 μm etching), and then rust-proofed (manufactured by MEC Co., Ltd., MEC Etch Bond CL-8300). formed on a copper-clad substrate, subjected to pattern exposure at 200 mJ/cm 2 with an exposure device (a direct exposure device (DiIMPACT Mms60) manufactured by Oak Manufacturing Co., Ltd.), and subjected to a PEB process at 90° C. for 30 minutes. Then, development (30° C., 0.2 MPa, 1 mass % Na 2 CO 3 aqueous solution for 60 seconds) was carried out, and residues in unexposed areas were visually evaluated.
〇: No residue ×: With residue
 これらの評価結果を、表1中に併せて示す。 These evaluation results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の材料は次のとおりである。
*1)先に合成法を説明したアルカリ可溶性樹脂1(A-1)、Mw4,500
*2)先に合成法を説明したアルカリ可溶性樹脂2(A-2)、Mw10,000
*3)2官能エポキシ樹脂(jER834、ビスフェノールA型エポキシ樹脂、三菱ケミカル社製)、Mw470
*4)多官能エポキシ樹脂(日産化学社製 TEPIC-HP)、Mw297
*5)IRGACURE OXE-02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、BASFジャパン社製)
*6)ビフェニルノボラック骨格を有する酸変性エポキシアクリレート樹脂、(日本化薬社製、品番KAYARADZCR-1601H)固形分65%、固形分酸価98mgKOH/g、Mw4,500
*7)先に合成法を説明したカルボキシル基含有樹脂(B-1)固形分70%、固形分酸価65mgKOH/g、Mw10,000
*8)酸変性エポキシアクリレート樹脂、KAYARAD ZFR-1401H (日本化薬社製、ビスフェノールF型エポキシアクリレート樹脂)、固形分63%、固形分酸価98mgKOH/g、Mw15,000
*9)2官能エポキシ樹脂、NC-3000L(ビフェニルアラルキル型エポキシ樹脂、日本化薬社製)、Mw700
*10)多官能エポキシ樹脂(DIC社製 EPICLON HP-4700)、Mw648
*11)2官能 トリシクロデカノールメタクリレート DCP(NKエステル、新中村化学社製)
*12)IRGACURE OXE-02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、BASFジャパン社製)
The materials in Table 1 are as follows.
*1) Alkali-soluble resin 1 (A-1), Mw 4,500, whose synthesis method was explained earlier
*2) Alkali-soluble resin 2 (A-2), Mw 10,000, whose synthesis method was explained earlier
*3) Bifunctional epoxy resin (jER834, bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation), Mw470
*4) Polyfunctional epoxy resin (TEPIC-HP manufactured by Nissan Chemical Industries, Ltd.), Mw297
*5) IRGACURE OXE-02 (ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), manufactured by BASF Japan)
*6) Acid-modified epoxy acrylate resin having a biphenyl novolak skeleton, (manufactured by Nippon Kayaku Co., Ltd., product number KAYARADZCR-1601H) solid content 65%, solid content acid value 98 mgKOH/g, Mw 4,500
*7) Carboxyl group-containing resin (B-1) solid content 70%, solid content acid value 65 mg KOH / g, Mw 10,000, whose synthesis method was explained above
*8) Acid-modified epoxy acrylate resin, KAYARAD ZFR-1401H (manufactured by Nippon Kayaku Co., Ltd., bisphenol F type epoxy acrylate resin), solid content 63%, solid content acid value 98 mgKOH / g, Mw 15,000
*9) Bifunctional epoxy resin, NC-3000L (biphenylaralkyl type epoxy resin, manufactured by Nippon Kayaku Co., Ltd.), Mw700
*10) Polyfunctional epoxy resin (EPICLON HP-4700 manufactured by DIC), Mw648
*11) Bifunctional tricyclodecanol methacrylate DCP (NK ester, manufactured by Shin-Nakamura Chemical Co., Ltd.)
*12) IRGACURE OXE-02 (ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), manufactured by BASF Japan)
 表1中に示す評価結果から明らかなように、各実施例の積層構造体は、各比較例の積層構造体と比較して、耐クラック性に優れ、優れた解像度を有しているとともに、現像残渣がなかった。 As is clear from the evaluation results shown in Table 1, the laminated structure of each example has excellent crack resistance and excellent resolution compared to the laminated structure of each comparative example. There was no development residue.

Claims (5)

  1.  樹脂組成物(a)からなる樹脂層(A)と、に樹脂組成物(b)からなる樹脂層(B)とが積層された2層の樹脂層、を有する積層構造体であって、
     前記樹脂層(B)の樹脂組成物(b)が、アルカリ可溶性樹脂と、光重合開始剤の機能を兼ね備える光塩基発生剤または光重合開始剤および光塩基発生剤と、熱硬化性樹脂と、を含み、
     前記樹脂層(A)の樹脂組成物(a)が、カルボキシル基含有樹脂と、熱硬化性樹脂とを含み、光重合開始剤を実質的に含まず、
     前記樹脂層(B)の樹脂組成物(b)に含まれるアルカリ可溶性樹脂と前記熱硬化性樹脂との混合物における、150℃でのゲル化時間が120秒以上、600秒以下であり、
     前記樹脂層(A)の樹脂組成物(a)に含まれるカルボキシル基含有樹脂と熱硬化性樹脂との混合物における、150℃でのゲル化時間が300秒以上、1200秒以下であり、かつ、前記樹脂層(B)の樹脂組成物(b)に含まれる前記混合物における、前記ゲル化時間よりも長いことを特徴とする積層構造体。
    A laminated structure having two resin layers in which a resin layer (A) made of the resin composition (a) and a resin layer (B) made of the resin composition (b) are laminated,
    The resin composition (b) of the resin layer (B) comprises an alkali-soluble resin, a photobase generator or a photopolymerization initiator and a photobase generator having the function of a photopolymerization initiator, a thermosetting resin, including
    The resin composition (a) of the resin layer (A) contains a carboxyl group-containing resin and a thermosetting resin and does not substantially contain a photopolymerization initiator,
    The mixture of the alkali-soluble resin and the thermosetting resin contained in the resin composition (b) of the resin layer (B) has a gelation time at 150° C. of 120 seconds or more and 600 seconds or less,
    The mixture of the carboxyl group-containing resin and the thermosetting resin contained in the resin composition (a) of the resin layer (A) has a gelation time at 150° C. of 300 seconds or more and 1200 seconds or less, and A laminate structure, wherein the gelling time of the mixture contained in the resin composition (b) of the resin layer (B) is longer than the gelling time.
  2.  前記樹脂層(B)の厚さが、2μm以上前記樹脂層(A)の半分の厚さ以下であり、前記樹脂層(A)の厚さが、10~80μmである請求項1記載の積層構造体。 The laminate according to claim 1, wherein the thickness of the resin layer (B) is 2 µm or more and not more than half the thickness of the resin layer (A), and the thickness of the resin layer (A) is 10 to 80 µm. Structure.
  3.  請求項1または2記載の積層構造体と、前記積層構造体の前記樹脂層(B)の表面及び前記樹脂層(A)の表面のうちの少なくとも一つの表面に接して設けられたフィルムと、を備えることを特徴とするドライフィルム。 A laminated structure according to claim 1 or 2, a film provided in contact with at least one surface of the surface of the resin layer (B) and the surface of the resin layer (A) of the laminated structure, A dry film comprising:
  4.  請求項1または2記載の積層構造体、あるいは、請求項3記載のドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。 A cured product obtained by curing the resin layer of the laminated structure according to claim 1 or 2 or the dry film according to claim 3.
  5.  請求項4記載の硬化物を有することを特徴とする電子部品。 An electronic component comprising the cured product according to claim 4.
PCT/JP2022/016969 2021-03-31 2022-03-31 Laminated structure, dry film, cured product, and electronic component WO2022211122A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237035327A KR20230165788A (en) 2021-03-31 2022-03-31 Laminated structures, dry films, cured products and electronic components
CN202280025322.4A CN117120930A (en) 2021-03-31 2022-03-31 Laminated structure, dry film, cured product, and electronic component
JP2023511760A JPWO2022211122A1 (en) 2021-03-31 2022-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-062176 2021-03-31
JP2021062176 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211122A1 true WO2022211122A1 (en) 2022-10-06

Family

ID=83459138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016969 WO2022211122A1 (en) 2021-03-31 2022-03-31 Laminated structure, dry film, cured product, and electronic component

Country Status (4)

Country Link
JP (1) JPWO2022211122A1 (en)
KR (1) KR20230165788A (en)
CN (1) CN117120930A (en)
WO (1) WO2022211122A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060237A1 (en) * 2014-10-16 2016-04-21 太陽インキ製造株式会社 Laminate structure, dry film, and flexible printed wiring board
WO2019012986A1 (en) * 2017-07-10 2019-01-17 太陽インキ製造株式会社 Multilayer structure, dry film and flexible printed wiring board
WO2020090565A1 (en) * 2018-10-30 2020-05-07 互応化学工業株式会社 Insulation film forming resin composition, insulation film forming resin composition production method, dry film, printed circuit board, and printed circuit board production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183073B2 (en) 2006-07-10 2013-04-17 太陽ホールディングス株式会社 Photocurable / thermosetting resin composition and cured product thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060237A1 (en) * 2014-10-16 2016-04-21 太陽インキ製造株式会社 Laminate structure, dry film, and flexible printed wiring board
WO2019012986A1 (en) * 2017-07-10 2019-01-17 太陽インキ製造株式会社 Multilayer structure, dry film and flexible printed wiring board
WO2020090565A1 (en) * 2018-10-30 2020-05-07 互応化学工業株式会社 Insulation film forming resin composition, insulation film forming resin composition production method, dry film, printed circuit board, and printed circuit board production method

Also Published As

Publication number Publication date
KR20230165788A (en) 2023-12-05
JPWO2022211122A1 (en) 2022-10-06
CN117120930A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6578295B2 (en) Laminated structure, dry film and flexible printed wiring board
TWI726037B (en) Curable resin composition, dry film, cured product, and printed circuit board
TWI654250B (en) Photosensitive thermosetting resin composition and flexible printed wiring board
CN105683837B (en) Photosensitive thermosetting resin composition and flexible printed circuit board
KR20160029111A (en) Photosensitive thermosetting resin composition and flexible printed circuit board
JP5854600B2 (en) Photocurable resin composition
TW201835684A (en) Negative photocurable resin composition, dry film, cured product and printed wiring board
JP6549848B2 (en) Laminated structure
JPH09325494A (en) Alkali development unsaturated resin component and highly sensitive negative type pattern formation material using the same
CN113166410A (en) Photosensitive thermosetting resin composition, dry film and printed wiring board
WO2020203790A1 (en) Photoresist composition and cured product of same
JP2019196444A (en) Curable resin composition, dry film, cured product and electronic component
TW202117470A (en) Reusing method of circuit board substrate
WO2022211122A1 (en) Laminated structure, dry film, cured product, and electronic component
TWI811313B (en) Curable resin composition, dry film, cured product, and electronic parts
WO2022211121A1 (en) Laminated structure, dry film, cured product, and electronic component
TWI838054B (en) Method for manufacturing hardened resin on substrate
TWI696041B (en) Photosensitive film laminate and hardened product formed using the same
KR20230151977A (en) Laminated structures and flexible printed wiring boards
JP2023083103A (en) Photosensitive resin composition, cured product, printed wiring board, and method for manufacturing printed wiring board
JP2020166211A (en) Curable resin composition, dry film, cured product, printed wiring board, and electronic component
TW202348102A (en) Production method for resin cured product on substrate
KR20230107571A (en) Curable resin composition and dry film
TW202034072A (en) Curable resin composition, dry film, cured article, and electronic component
JP2018106198A (en) Photosensitive thermosetting resin composition and flexible printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511760

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237035327

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781329

Country of ref document: EP

Kind code of ref document: A1