WO2022210121A1 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2022210121A1
WO2022210121A1 PCT/JP2022/013253 JP2022013253W WO2022210121A1 WO 2022210121 A1 WO2022210121 A1 WO 2022210121A1 JP 2022013253 W JP2022013253 W JP 2022013253W WO 2022210121 A1 WO2022210121 A1 WO 2022210121A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
flow path
combustion chamber
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2022/013253
Other languages
English (en)
French (fr)
Inventor
洋平 中村
雅也 浅田
伸輔 安井
正樹 乾
大輔 中村
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2023511033A priority Critical patent/JP7411142B2/ja
Publication of WO2022210121A1 publication Critical patent/WO2022210121A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B5/00Engines characterised by positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine having a partition in an intake passage that continues to a combustion chamber.
  • Patent Document 1 Various structures have been proposed to generate a tumble flow in the combustion chamber in order to improve combustion efficiency by increasing the efficiency of flame propagation after ignition (see Patent Document 1, for example).
  • a tumble valve is provided downstream of the throttle valve, and a partition plate portion, which is a partition portion, is provided downstream of the tumble valve from the inlet pipe to the intake port,
  • the partition plate partitions the intake passage into a lower secondary passage and an upper main passage.
  • the lower secondary passage serves as a tumble passage, and the tumble valve substantially opens and closes the upper main passage.
  • the tumble valve is a valve that can also be called an intake distribution valve or an intake control valve, and may not be provided in an internal combustion engine provided with the partition section (see, for example, Patent Document 3).
  • one aspect of the present invention is an intake passage facing the combustion chamber and having an intake valve port that is opened and closed by the intake valve; an exhaust passage facing the combustion chamber and having an exhaust valve port that is opened and closed by an exhaust valve; A partition portion provided in the intake passage so as to divide the intake passage into a plurality of intake passage portions including a first intake passage, wherein the first intake passage generates a tumble flow in the combustion chamber.
  • a partition which can be a tumble channel for When defining a virtual plane passing through the central portion of the intake valve port and the central portion of the exhaust valve port and extending parallel to the cylinder axis, the intake air from the first intake flow path to the combustion chamber is defined by one of the virtual planes.
  • a deflection section configured to bias to the side; and ignition means provided in the combustion chamber, the ignition means being positioned on the one side of the imaginary plane.
  • the intake air from the first intake passage can be biased toward one side of the imaginary plane and flow into the combustion chamber, thereby forming a tumble flow. collides with the wall surface defining the combustion chamber, a force is generated in the intake air to rotate in the circumferential direction of the cylinder, and the intake air from the first intake passage is directed from one side to the other side of the above-mentioned imaginary plane. will also flow.
  • the flame generated by ignition by the igniter located on one side of the imaginary plane tends to propagate to the other side of the imaginary plane. Therefore, according to the above configuration, it is possible to further improve the efficiency of flame propagation in the combustion chamber in an internal combustion engine in which the intake passage is provided with the partition.
  • the deflection section has a wall surface provided to deflect the intake air from the first intake flow path toward the one side of the virtual plane.
  • the intake air from the first intake flow path can be more favorably biased toward one side of the above-described imaginary plane and flow into the combustion chamber.
  • At least a downstream end portion of the first intake flow path is biased toward the one side with respect to the intake valve port by the deflecting portion.
  • the intake air from the first intake flow path can be more preferably biased toward one side of the above-described imaginary plane.
  • the partition section is provided with the first intake flow path and the first intake flow path of the first intake flow path. It extends in the intake air flow direction so as to be divided into the second intake air flow path on the direction side.
  • the flow channel cross-sectional area of the second intake flow channel is larger than the flow channel cross-sectional area of the first intake flow channel, and the fuel injection valve is provided on the second intake flow channel side.
  • the fuel injection valve is provided on the second intake flow channel side.
  • a combustion chamber ceiling surface defining a portion of the combustion chamber is formed into a concave curved surface.
  • an intake control valve is further provided downstream of the partition.
  • this configuration for example, it is possible to further increase the flow velocity of the intake air from the first intake flow path.
  • the ignition means comprises a central electrode and a lateral electrode, the lateral electrode having a proximal end and a curved portion extending from the proximal end to cover the central electrode.
  • the base ends of the side electrodes are arranged offset from the central electrode in the width direction crossing the cylinder axis.
  • FIG. 1 is a cross-sectional view of an internal combustion engine and its surroundings according to a first embodiment of the present invention.
  • FIG. 2 is a right side view of the cylinder head of the internal combustion engine of FIG. 1 and its vicinity.
  • 3 is a cross-sectional view of the internal combustion engine of FIG. 1 along line III-III of FIG. 2; 4 is a bottom view of the cylinder head of the internal combustion engine of FIG. 1.
  • FIG. 5 is a plan view of a three-dimensional model of the downstream side of the intake passage of the internal combustion engine of FIG. 1.
  • FIG. 6 is a front view of the three-dimensional model of FIG. 5.
  • FIG. 7 is a bottom view of the three-dimensional model of FIG. 5.
  • FIG. 8 is a right side view of the three-dimensional model of FIG. 5.
  • FIG. 9 is a perspective view of the three-dimensional model shown in FIG. 5 as viewed from the rear, and is a diagram schematically showing sprayed fuel injected from a fuel injection valve.
  • FIG. 10 is a perspective view of the three-dimensional model shown in FIG. 5, schematically showing sprayed fuel injected from the fuel injection valve in the same manner as shown in FIG. 11A is a cross-sectional view of the three-dimensional model of FIG. 5 having atomized fuel injected from the fuel injection valve as shown in FIG. 9, and is a cross-sectional view at a position along SA-SA line of FIG. .
  • 11B is a cross-sectional view of the three-dimensional model of FIG. 5 having atomized fuel injected from the fuel injection valve as shown in FIG.
  • FIG. 12A is a perspective view of the part of the solid model shown in FIG. 11A.
  • FIG. 12B is a perspective view of the portion of the solid model shown in FIG. 11B.
  • FIG. 12C is a perspective view of the portion of the solid model shown in FIG. 11C;
  • FIG. 13 is a schematic diagram of the combustion chamber and its surroundings of the internal combustion engine of FIG. 1 as seen from the cylinder axis direction.
  • FIG. 14 is a schematic diagram of a combustion chamber and its surroundings in a modified example of the internal combustion engine of FIG. 1 as seen from the cylinder axial direction.
  • FIG. 15 is a schematic diagram of a combustion chamber and its surroundings in another modification of the internal combustion engine of FIG. 1, viewed from the cylinder axis direction.
  • FIG. 16 is a schematic diagram of an intake system of an internal combustion engine according to a second embodiment of the invention.
  • FIG. 1 is a right sectional view of an internal combustion engine 10 according to the first embodiment.
  • the orientation of the front, rear, left, and right conforms to a normal standard in which the straight traveling direction of a motorcycle (not shown) on which the internal combustion engine according to the embodiment is mounted is forward. Let forward be indicated, RR be rearward, LH be left, and RH be right.
  • the internal combustion engine 10 is a SOHC type 2-valve, single-cylinder, 4-stroke internal combustion engine, and is suspended in an upright posture with the crankshaft 12 oriented in the width direction of the vehicle body and the cylinders tilted slightly forward.
  • a crankcase 14 that rotatably supports a crankshaft 12 of the internal combustion engine 10 has a transmission gear mechanism 20 between a main shaft 16 arranged behind the crankshaft 12 and a counter shaft 18 that is an output shaft. ing.
  • a cylinder block 22 with one cylinder liner 22L cast and a cylinder head 24 are superimposed on the cylinder block 22 via a gasket, and are integrally fastened with stud bolts to form a cylinder.
  • a cylinder head cover 26 covers the top of the head 24 .
  • a cylinder block 22, a cylinder head 24, and a cylinder head cover 26, which are superimposed on the crankcase 14, extend upward from the crankcase 14 in a slightly forward-inclined posture.
  • the internal combustion engine 10 is not limited to the single-cylinder internal combustion engine configured as described above, and may be an internal combustion engine configured in various types.
  • crankcase 14 is split left and right, and the lower ends of the cylinder liners 22L are fitted into openings formed in the mating surfaces of the left and right crankcases.
  • the cylinder block 22 is slightly inclined forward and protrudes upward from the crankcase 14 .
  • a piston 28 is fitted in a cylinder bore 22b inside the cylinder liner 22L so as to be reciprocally slidable.
  • a connecting rod 30 connects between the piston pin 28p of the piston 28 and the crankpin 12p of the crankshaft 12 to form a crank mechanism.
  • a combustion chamber 32 is formed in the The combustion chamber 32 is generally defined by the cylinder bore 22b of the cylinder block 22, the top surface 28t of the piston 28, and the ceiling surface 24t of the cylinder head 24.
  • an intake valve port 34 and an exhaust valve port 36 are opened at positions opposite to each other with respect to the cylinder axis C, which is the center axis of the cylinder bore 22b, on the ceiling surface 24t.
  • An intake port 38 and an exhaust port 40 extend from the valve port 34 and the exhaust valve port 36 while curving in directions away from each other.
  • the cylinder head 24 is defined with a single intake port 38 and a single exhaust port 40 .
  • An intake valve 44 and an exhaust valve 46 which are respectively slidably supported by valve guides 42i and 42e integrally fitted to the cylinder head 24, are driven by a valve mechanism 48 provided on the cylinder head 24,
  • the intake valve opening 34 of the intake port 38 and the exhaust valve opening 36 of the exhaust port 40 are opened and closed in synchronization with the rotation of the crankshaft 12 . That is, the cylindrical intake valve guide 42i is fitted integrally with the curved outer wall portion 38a of the intake port 38 in the cylinder head 24.
  • An intake valve 44 slidably supported by an intake valve guide 42i opens and closes the intake valve 34 facing the combustion chamber 32 of the intake port 38 .
  • an exhaust valve 46 slidably supported by an exhaust valve guide 42e integrally fitted to the curved outer wall portion 40a of the exhaust port 40 in the cylinder head 24 is an exhaust valve opening facing the combustion chamber 32 of the exhaust port 40. Open and close 36.
  • the valve mechanism 48 is a valve mechanism for an SOHC internal combustion engine in which a single camshaft 48a is rotatably supported on the cylinder head 24 in the left-right direction.
  • Rocker arm shafts 47i and 47e are supported diagonally above the cam shaft 48a in the front and rear direction, the rear rocker arm shaft 47i pivotally supports the intake rocker arm 48i at its central portion, and the front rocker arm shaft 47e swings the exhaust rocker arm 48e.
  • the central part is freely pivoted.
  • One end of the intake rocker arm 48i contacts the intake cam lobe of the camshaft 48a, and the other end contacts the upper end of the valve stem 44s of the spring-biased intake valve 44 via an adjusting screw.
  • One end of the exhaust rocker arm 48e contacts the exhaust cam lobe of the camshaft 48a, and the other end contacts the upper end of the valve stem 46s of the spring-biased exhaust valve 46 via an adjusting screw.
  • the intake rocker arm 48i and the exhaust rocker arm 48e are swung by the rotation of the cam shaft 48a, thereby driving the intake valve 44 and the exhaust valve 46 to open and close.
  • the camshaft 48a protrudes leftward from the bearing, and a cam chain sprocket 50 is pivotally supported at the left end thereof.
  • the camshaft 48a rotates in the same direction in synchronization with the crankshaft 12 at half the number of rotations thereof.
  • cam chain chambers 22c and 24c which are rectangular holes through which the cam chain 52 is inserted, are formed.
  • the right side wall of the cylinder head 24 is fitted with a spark plug 54, which is an ignition means, fitted toward the combustion chamber 32.
  • a cylinder internal pressure sensor (not shown) may be fitted toward the combustion chamber 32 in the vicinity of the ignition plug 54 .
  • FIG. 4 is a bottom view of the cylinder head 24 superimposed on the cylinder block 22, and the cylinder axis C in the internal combustion engine 10 is represented by a dot.
  • the ceiling surface 24t of the combustion chamber 32 is recessed corresponding to the cylinder bore 22b on the mating surface 24f of the cylinder head 24 facing the mating surface of the cylinder block 22.
  • the combustion chamber 32 does not have the shape of a so-called pent-roof combustion chamber, and the ceiling surface 24t is formed into a concave curved surface and is generally hemispherical.
  • a cam chain chamber 24c communicating with the cam chain chamber 22c is formed on the left side of the combustion chamber 32 in the mating surface 24f.
  • the circular opening edge 24e of the ceiling surface 24t of the combustion chamber 32 on the mating surface 24f of the cylinder head 24 matches the circular hole of the cylindrical cylinder bore 22b.
  • a large-diameter intake valve port 34 opens behind the cylinder axis C on the ceiling surface 24t, and an exhaust valve port 36 with a slightly smaller diameter than the intake valve port 34 opens on the front side of the cylinder axis C on the ceiling surface 24t.
  • a plug hole 56 for projecting the electrode of the spark plug 54 into the combustion chamber 32 is formed on the right side of the cylinder axis C of the ceiling surface 24t. That is, the spark plug 54 is not positioned at the center of the ceiling surface 24t, but is provided offset from the center.
  • the spark plug 54 is positioned on one side of the imaginary plane IS when defining the imaginary plane IS extending from the intake valve port 34 side to the exhaust valve port 36 side and extending parallel to the cylinder axis C.
  • the ignition plug 54 is arranged on one side opposite to the cam chain chamber 24c with respect to the imaginary plane IS. 4, the virtual plane IS is defined so as to pass through the central portion 34a of the intake valve port 34 and the central portion 36a of the exhaust valve port 36.
  • the imaginary plane IS is defined so as to pass through the center portion 34a of the intake valve port 34 and the center portion 36a of the exhaust valve port 36 and extend parallel to the cylinder axis C.
  • the center portion 34a of the intake valve port 34 is preferably the center of the intake valve port 34
  • the center portion 36a of the exhaust valve port 36 is also preferably the center of the exhaust valve port 36.
  • both the intake valve opening 34 and the exhaust valve opening 36 are substantially circular, and their respective centers are center portions 34a and 36a.
  • Each of the intake valve opening 34 and the exhaust valve opening 36 may be circular or elliptical, for example.
  • the spark plug 54 includes a center electrode 54e and side electrodes (or ground electrodes) 54f.
  • the side electrode 54f has a base end portion 54g on the side of the plug main body portion 54b of the spark plug 54 and a curved portion 54h that curves and extends from the base end portion 54g so as to cover the tip portion of the central electrode 54e.
  • a base end portion 54g of the side electrode 54f extends substantially parallel to the axis of the plug main body portion 54b of the spark plug 54. As shown in FIG.
  • the upstream end of the intake port 38 opens toward the upper side of the cylinder head 24 and is connected to the inlet pipe 58 via an insulator 63 to form a continuous intake passage 60.
  • the throttle body 62 is connected.
  • the throttle body 62 has an intake passage 62a having a substantially circular cross section forming a part of the intake passage 60 communicating with the combustion chamber 32 of the internal combustion engine 10, and the upstream side of the intake passage 62a is connected to an air cleaner device (not shown).
  • the throttle body 62 is rotatably supported in the throttle body 62 by a throttle valve shaft 62b that intersects the central axis of the intake passage 62a perpendicularly to the flow direction of intake air in the intake passage 62a. It has a throttle valve 62c that can variably control the flow passage area of the air intake passage 62a to open and close the intake passage 62a.
  • the throttle valve 62c is of the butterfly type, and has a throttle valve shaft 62b and a disc-shaped valve body 62d that is fixed to the throttle valve shaft 62b and rotates integrally with the throttle valve shaft 62b.
  • the throttle valve 62c is rotatable clockwise in FIG. 1 in the valve opening direction by the driver's operation or the like. It is urged counterclockwise in the valve closing direction so as to be in the fully closed position in contact with the wall surface.
  • a downstream end of the exhaust port 40 opens downward from the cylinder head 24 and is connected to an exhaust pipe (not shown) to form a continuous exhaust passage 64 .
  • An exhaust purification device and a silencer may be provided downstream of the exhaust passage 64 .
  • the intake structure S for imparting a tumble swirl or tumble flow of the fuel/air mixture in the combustion chamber 32 in order to obtain more favorable combustion of the fuel, that is, the mixture in the combustion chamber 32, that is, longitudinal rotation. is configured.
  • the intake structure S includes a partition portion 70 provided in the intake passage 60 so as to divide the intake passage 60 into a plurality of sections.
  • the intake passage 60 is divided into a plurality of intake passage portions 72, 74 by the partition portion 70.
  • the intake passage 60 is divided into the plurality of intake passage portions 72, 74 in the direction of the cylinder axis C.
  • the intake passage on the downstream side of the throttle valve 62c is divided along the intake air flow direction by the partition portion 70 continuing from the inlet pipe 58 to the intake port 38, and the passing intake air generates a tumble flow in the combustion chamber 32. It is partitioned into a tumble flow path 72 that is an intake flow path section configured to do so, and a main flow path 74 that is an intake flow path section excluding the tumble flow path 72 .
  • the intake channel portion 72 that can be a tumble channel for generating a tumble flow in the combustion chamber 32 is called a tumble channel, which corresponds to the first intake channel, and the main channel 74 corresponds to the second intake channel. do.
  • the tumble flow path 72 may be referred to as a sub-passage.
  • the partition portion 70 extending in the direction of the intake air flow in a plate shape divides the downstream side of the intake passage 60 substantially in the vertical direction, that is, divides the downstream side of the intake passage 60 into substantially the cylinder axis C. Bisected in direction, here it is provided to extend substantially parallel to an axis extending in the direction of flow.
  • the channel cross-sectional area of the tumble channel 72 is smaller than the channel cross-sectional area of the main channel 74, that is, the channel cross-sectional area of the main channel 74 is larger than the channel cross-sectional area of the tumble channel 72.
  • the partition part 70 may be provided so that the cross-sectional area of the tumble flow channel 72 is larger than the cross-sectional area of the main flow channel 74, or they may be substantially the same.
  • the lower portion of the intake passage 60 partitioned by the partition portion 70 serves as the tumble passage 72, and the upper portion thereof serves as the main passage 74, but in this specification they are not limited to their vertical arrangement.
  • the terms “top” and “bottom” for the intake passage 60 and the like refer to the direction from the crankshaft 12 to the cylinder head 24 or the cylinder head cover 26 in the direction of the cylinder axis C.
  • the direction opposite to this "upward” direction that is, the direction from the cylinder head 24 side to the crankshaft 12 side is called the “downward” or “downward” direction
  • the absolute “upward” or “downward” direction in space does not mean
  • the “up” or “up” direction corresponds to the first direction
  • the "down” or “down” direction corresponds to the second direction.
  • An intake control valve may be further provided on the upstream side of the partition portion 70 and the downstream side of the throttle valve 62c. This intake control valve may be provided to variably control the flow area of the main flow path 74, for example.
  • the intake control valve may also be referred to as a tumble valve, tumble control valve or TCV.
  • the throttle valve 62c is electronically controlled as described below, it is not limited to being electronically controlled. For example, it may be a valve that is mechanically controlled by a throttle cable. The same is true when other valves such as valves are provided.
  • the internal combustion engine 10 is provided with fuel injection valves 76 and 78 .
  • One fuel injection valve (hereinafter referred to as the first fuel injection valve) 76 is provided upstream of the upstream end 70u of the partition 70, and is located upstream of the upstream end 70u of the intake passage 60. It is arranged to inject fuel into the part.
  • the other fuel injection valve (hereinafter referred to as the second fuel injection valve) 78 is provided to inject fuel into the intake port 38 .
  • the second fuel injection valve 78 is provided on the main flow path 74 side.
  • the second fuel injection valve 78 is provided so as to face the main flow path 74, and is provided in the inlet pipe 58 here.
  • the second fuel injection valve 78 is provided to inject fuel from the main flow path 74 side and supply the fuel to the combustion chamber 32 via the intake port 38 .
  • the second fuel injection valve 78 is attached to the upper wall of the member defining the intake passage 60.
  • the present disclosure does not limit the number of fuel injection valves to two, and may be one, for example. Only 78 can be provided.
  • An ECU (electronic control unit) 80 that controls the internal combustion engine 10 has a configuration as a so-called computer. That is, the ECU 80 includes a processor (eg CPU) and memory (eg ROM and RAM). The ECU 80 has an intake control section 82 , a fuel injection control section 84 and an ignition control section 85 . The ECU 80 analyzes the operating state of the internal combustion engine 10 based on outputs from various sensors such as an engine rotation speed sensor and an engine load sensor, and controls the operation of the throttle valve 62c by means of the intake control section 82. Further, the ECU 80 controls each operation of the fuel injection valves 76 and 78 by the fuel injection control section 84 based on the analyzed operating state of the internal combustion engine 10 . Further, the ECU 80 controls the operation of the spark plug 54 by the ignition control section 85 based on the analyzed operating state of the internal combustion engine 10 . The ECU 80 stores programs and various data for these controls.
  • a processor eg CPU
  • memory eg ROM and
  • the three-dimensional model M includes the intake port 38 from the downstream end of the inlet pipe 58 and terminates at the intake valve port 34 on the downstream side. Since the three-dimensional model M is a model of the downstream end of the intake passage 60, the outer surface 79 of the three-dimensional model M includes the inner surface 58s of the inlet pipe 58, which is a member that defines the downstream side of the intake passage 60, and the insulator. It has portions corresponding to the inner surface 63s of 63 and the inner wall surface 24s of the cylinder head 24, partly corresponding to the surface 70s of the partition portion 70, and partly corresponding to the surface 90s of the offset portion 90 described later.
  • the tumble flow path 72 and the main flow path 74 overlap vertically in the cylinder axis C direction.
  • the tumble channel 72 has a width narrower in the horizontal direction than the main channel 74 at its downstream end, and is biased to the right.
  • a portion 72d of the tumble flow path 72 defined by the inner wall surface 24s of the cylinder head 24 is biased to the right with respect to the intake valve port .
  • the partition portion 70 has an offset portion 90 provided on the downstream side of the partition portion 70.
  • the offset portion 90 is narrower than the upstream end portion (upstream end) 70u of the partition portion 70 in the lateral direction (LH-RH direction) intersecting with the cylinder axis C, that is, the width direction.
  • the offset portion 90 extends from one side to the other side of the valve axis of the intake valve 44 when the intake passage 60 faces the intake valve 44 in the direction in which the intake air flows from the upstream side to the downstream side, ie, the intake air flow direction. It is the narrow portion of the partition 70 in the width direction that can be defined as the direction. As shown in FIG.
  • the width W1 in the width direction of the upstream end portion located on the upstream end portion 70u side of the partition portion 70 in the portion defined by the cylinder head 24 is greater than the width W1 in the width direction.
  • the width W2 in the width direction of the downstream end portion 72d is clearly narrow. Since the partition portion 70 is formed so as to partition the tumble flow path 72 in the intake passage 60, the offset portion 90 with respect to the width W2 is relatively narrow.
  • the deviation portion 90 is biased in one direction in the left-right direction, that is, in the width direction.
  • the downstream end portion 72d of the tumble flow path 72 is partitioned so as to deviate to the right RH side (see FIG. 7). Therefore, the offset portion 90 on the downstream side of the partition portion 70, which at least partially partitions the offset downstream end portion 72d of the tumble flow path 72, is offset to the right RH side here. Therefore, in FIG. 1, the cylinder axis C extends parallel to the plane of the paper, and the width direction extends substantially perpendicular to the plane of the paper. Therefore, it is indicated by a two-dot dashed line instead of a solid line. In this way, on the downstream side in the intake air flow direction, the tumble flow passage 72 is designed to be biased in the width direction, and along with this, the deviated portions 90 are partitioned to be biased to the same side in the width direction.
  • the mounting portion 78s of the second fuel injection valve 78 is positioned on the left LH side of the intake passage 60, as is clear from FIG.
  • the second fuel injection valve 78 is provided at a position biased in the direction opposite to the direction in which the biased portion 90 is biased. Therefore, the second fuel injection valve 78 can inject fuel in a direction different from the direction in which the biased portion 90 is biased, and more preferably in a direction opposite to the direction in which the biased portion 90 is biased.
  • the second fuel injection valve 78 is provided on the upper side, that is, on the main flow path 74 side, and injects fuel from the main flow path 74 side.
  • FIG. 9 which is a perspective view of the three-dimensional model M
  • the sprayed fuel F injected from the second fuel injection valve 78 provided at a position biased toward the left LH side is schematically shown.
  • FIG. 10 shows a perspective view of a three-dimensional model M, which schematically shows the sprayed fuel F injected from the fuel injection valve 78 in the same manner as shown in FIG.
  • the fuel F injected from the second fuel injection valve 78 is not blocked by the partition 70, and at least part of it, here in particular at least the majority, more preferably all of it, It can be seen that the air first flows through the main flow path 74 , then flows to the confluence of the main flow path 74 and the tumble flow path 72 , and directly reaches the intake valve port 34 and is introduced into the combustion chamber 32 .
  • the arrangement of the second fuel injection valve 78 and the shape of the partition portion 70 including the offset portion 90 are designed to enable such fuel injection.
  • divider body 92 of divider 70 partially terminates downstream thereof to allow confluence of main flow channel 74 and tumble flow channel 72, and also offsets along surface 90s of offset 90.
  • the partition body portion 92 of the partition portion 70 and the offset portion 90 following it downstream are arranged such that the fuel F injected from the second fuel injector 78 reaches the intake valve port 34, preferably without touching the portion 90. is designed (see for example FIG. 10).
  • FIG. 11A to 12C are cross-sectional views of the three-dimensional model M including the injected fuel F in FIG.
  • FIG. 11A is a cross-sectional view of the three-dimensional model M at a position along the SA-SA line in FIG. 5
  • FIG. 11B is a cross-sectional view of the three-dimensional model M at a position along the SB-SB line in FIG. 11C is a cross-sectional view of the three-dimensional model M at a position along line SC--SC in FIG.
  • 12A is a perspective view of the solid model M portion of FIG. 11A
  • FIG. 12B is a perspective view of the solid model M portion of FIG. 11B
  • FIG. 12C is a perspective view of the solid model M portion of FIG. 11C. .
  • the tumble channel 72 and the main channel 74 are completely separated.
  • the partition portion 70 extends to the inner surface 58s of the inlet pipe 58 at both ends in the width direction between the tumble flow channel 72 and the main flow channel 74.
  • a partition main body portion 92 extending to the upstream side of the . 11A and 12A, the surface 70s of the partition 70 and the surface 92s of the partition main body 92 thereof are denoted by reference numerals.
  • the tumble channel 72 and the main channel 74 are partially connected.
  • the surface 70s of the partition 70 extends in the width direction and also in the vertical direction, and is biased to the right. 5
  • the partition portion 70 transitions from the partition body portion 92 to the offset portion 90, and the offset portion 90 completely separates the tumble flow channel 72 and the main flow channel 74.
  • the intake port 38 extends leftward from a portion on the right side of the inner wall surface 24s of the cylinder head 24 to the extent that it is not separated by two.
  • the tumble flow path 72 and the main flow path 74 are partitioned so that the main flow path 74 and the tumble flow path 72 communicate with each other in the region where the deviated portion 90 extends in the intake air flow direction.
  • the offset portion 90 connected to the partition body portion 92 is located downstream of the partition body portion 92 so as to extend a portion of the partition body portion 92 downstream of the partition portion 70 in the flow direction. It is formed extending to the side.
  • the surfaces 70s of the partition 70 and the surfaces 90s of the offset portion 90 thereof are denoted by reference numerals, and the same applies to FIGS. 11C and 12C. .
  • the amount of leftward protrusion of the deviating portion 90 from the inner wall surface of the cylinder head 24 is reduced.
  • the offset portion 90 is formed so as to become narrower toward the downstream side in the flow direction of the intake air (see, for example, the surface 90s of the offset portion 90 in FIG. 10).
  • the degree of communication between the main flow channel 74 and the tumble flow channel 72 is increased compared to the cut positions shown in FIGS. 11B and 12B. That is, the amount of connection between the tumble flow path 72 and the main flow path 74 at the cut positions in FIGS.
  • 11C and 12C is greater than the amount at which they connect at the cut positions in FIGS. 11B and 12B. More specifically, the tumble flow path 72 and the main flow path 74 are arranged such that the main flow path 72 extends downward to the side or side of the offset 90 in the region where the offset 90 extends in the intake air flow direction. It is partitioned. This downward expansion of the main flow path 74 is performed in a direction opposite to the direction in which the offset 90 is biased, here on the left LH side of the offset 90 . The downward expansion of the main flow path 74 and the resulting fusion of the main flow path 74 and the tumble flow path 72 are more pronounced toward the downstream side of the deviation portion 90 .
  • a wall surface 24W biasing the tumble flow path 72 in the width direction appears.
  • the wall surface 24w is a part of the inner wall surface 24s of the cylinder head 24, is positioned directly below the second direction side of the main flow path 74, and extends in the direction of the cylinder axis C as shown in FIG. It has a length and extends in the intake flow direction. Therefore, when the inner wall surface 24s is extended in the direction of the cylinder axis, the elongated inner wall surface 24s crosses the main flow path 74. As shown in FIG.
  • This wall surface 24w extends to the left LH side of the downstream end portion 72d of the tumble flow path 72 in FIG.
  • the wall surface 24w serves as a deflection section DP configured to deflect the intake air from the tumble flow path 72 to one side of the virtual plane IS, that is, to the right RH side.
  • the second fuel injection valve 78 which is provided to inject the fuel F from the main flow path 74 side toward the combustion chamber 32, has a biased portion 90. is provided to inject fuel in the direction opposite to the Therefore, the partition 70, particularly its offset 90, can be extended further downstream in the intake air flow direction. Further, the tumble flow path 72 is partitioned so that the deviation portion 90 is biased downstream in the biased direction. Therefore, the deviated portion 90 of the partition portion 70 that is extended further downstream in the direction of flow of the intake air can give stronger directivity to the intake air from the tumble flow path 72 .
  • the partition portion 70 completely separates the main flow path 74 and the tumble flow path 72 with the partition body portion 92 on the upstream side, and has the offset portion 90 on the downstream side to It is designed to characterize the flow from the tumble channel 72 further downstream while realizing connection with the tumble channel 72 .
  • the second fuel injection valve 78 is biased in the direction opposite to the direction in which the biased portion 90 is biased, here it is disposed on the opposite side in the width direction, and injects fuel in a direction different from that of the biased portion 90. , and fuel can be introduced substantially directly into the combustion chamber 32 via the intake valve port 34 . In other words, it is possible to ensure a good supply of fuel to the combustion chamber.
  • the offset portion 90 which is the downstream portion of the partition portion 70, can be extended further downstream. Therefore, the flow from the tumble channel 72 can be given a stronger directivity. Since this directivity is directed between the intake valve port 34 and the head portion of the intake valve 44 when the valve is open so as to form a stronger tumble flow in the combustion chamber 32, the intake air from the tumble flow path 72 A tumble flow can be preferably formed in the combustion chamber 32 .
  • the tumble flow path 72 communicates with the main flow path 74 downstream of the downstream edge portion of the partition portion 70, that is, the downstream edge portion 90d of the deviation portion 90, and forms a single intake passage leading to the combustion chamber 32.
  • the tumble channel 72 and the main channel 74 are defined. This allows the intake air from the tumble passage 72 to be introduced into the combustion chamber 34 along with the intake air from the main passage 74, and the intake air from the single intake passage, the single intake port 38, to deliver fuel to the combustion chamber 32. and the formation of tumble flow can occur.
  • this configuration can suppress an increase in the number of parts, and is excellent in terms of cost.
  • the wall surface 24w allows the intake air from the tumble flow path 72 to be biased to one side of the imaginary plane IS, that is, to the right RH side, and flow into the combustion chamber 32.
  • the intake air from this tumble passage 72 has a strong directivity so as to form a strong tumble flow as described above, flows into the combustion chamber 32, and extends to the exhaust side of the wall surfaces defining the combustion chamber 32. It collides with the part of the ceiling surface 24t and the part of the cylinder bore 22b. Due to this collision, the wall surface can generate a lateral force component in the longitudinal direction of the tumble flow. Therefore, in addition to the vertical force component of the tumble flow, the intake air from the tumble flow path 72 can also have the horizontal force component of the swirl flow, that is, the circumferential direction of the cylinder.
  • the spark plug 54 provided in the combustion chamber 32 is positioned on one side of the imaginary plane IS, that is, on the side to which the intake air from the tumble flow path 72 is biased. Therefore, it is possible to suitably ignite the fuel contained in the intake air from the tumble flow path 72, that is, the air-fuel mixture.
  • FIG. 13 shows a schematic diagram of the combustion chamber 32 of the internal combustion engine 10 and its surroundings viewed from above in the cylinder axis C direction. 13 shows the contour of the cylinder bore 22b or the circular opening edge 24e of the ceiling surface 24t of the combustion chamber 32, the relative arrangement of the intake valve port 34, the exhaust valve port 36 and the spark plug 54.
  • FIG. The aforementioned imaginary plane IS defined to pass through the center portion 34a of the intake valve port 34 and the center portion 36a of the exhaust valve port 36 passes through the cylinder axis C and the valve stem of the intake valve 44 in FIG. Overlaps the 44s axis (valve axis).
  • the intake air from the tumble flow path 72 enters the combustion chamber 32 biased to the right RH side in the width direction orthogonal to the imaginary plane IS, as indicated by arrow T in FIG.
  • the arrow T of the intake air from the tumble flow path 72 is shown substantially parallel to the imaginary plane IS.
  • the arrow T mainly passes through the right side, which is one side of the imaginary plane IS, and advances toward the wall surface 32W on the exhaust valve port 36 side of the combustion chamber 32, and can collide with it.
  • the wall surface 32W against which the flow of the arrow T collides is mainly the wall on the right RH side of the imaginary plane IS, and as shown in FIG.
  • the impact force F of the flow of the arrow T on the wall surface 32W can be divided into an orthogonal component Fa orthogonal to the wall surface 32W and a tangential component Fb along the wall surface 32W.
  • the orthogonal component Fa is a component that produces a vertical eddy current in the direction of the cylinder axis C, that is, a tumble flow.
  • the tangential component Fb is a component that produces a swirl flow that rotates along the circumferential direction of the cylinder from the right side, which is one side of the virtual plane IS, toward the left side, which is the other side. That is, the flow of arrow T forms a flow in combustion chamber 32 so as to generate a tumble flow and a swirl flow.
  • the flow from the tumble flow path 72 has a different center of vortex than when the tumble flow is simply formed in the combustion chamber 32, so that the tumble flow can be generated in the combustion chamber 32 and the virtual plane A swirl-like flow from the right RH side, which is one side of the IS, to the left LH side can also be generated.
  • the wall surface 32W with which the intake air from the tumble flow path 72 collides is, for example, the ceiling surface 24t portion or the cylinder bore 22b portion extending toward the exhaust side among the wall surfaces defining and forming the combustion chamber 32 as described above.
  • the ceiling surface 24t is formed into a concave curved surface. Therefore, the ceiling surface 24t can suitably generate the force of the tangential component Fb by the intake air from the tumble flow path 72.
  • the ceiling surface 24t is formed in a substantially hemispherical shape and is a smooth concave curved surface, so that such a force is generated in the intake air from the tumble flow passage 72, and a swirl-like flow is more preferably generated. can contribute to the development of
  • the spark plug 54 is positioned on the side of the imaginary plane IS where the intake air from the tumble flow path 72 is biased. Therefore, since the intake air from the tumble flow path 72 contains fuel and substantially forms an air-fuel mixture, the air-fuel mixture introduced into the combustion chamber 32 is preferably ignited by the ignition plug 54 . Then, since the flow from the right RH side, which is one side of the virtual plane IS, to the left LH side is formed as described above, flame propagation in the combustion chamber 32 can be favorably caused.
  • the base end portion 54g of the side electrode 54f of the spark plug 54 is displaced from the central electrode 54e in the width direction intersecting the cylinder axis C.
  • the base end portion 54g of the spark plug 54 is arranged radially outside of the center electrode 54e away from the cylinder axis C and shifted to the right RH side. Therefore, the intake air from the tumble flow path 72 can preferably flow between the electrodes 54e and 54f of the spark plug 54, which enhances the ignitability of the air-fuel mixture by the spark plug 54 and more preferably causes flame propagation. can be done.
  • the positional relationship between the side electrode 54f and the center electrode 54e of the spark plug 54 is not limited to arranging the side electrode 54f radially outward away from the cylinder axis C of the center electrode 54e.
  • the side electrodes 54f may be positioned diagonally outside the central electrode 54e.
  • the positional relationship between the side electrode 54f and the center electrode 54e of the ignition plug 54 may be set arbitrarily within a range in which the fuel taken from the tumble flow path 72 can be suitably ignited.
  • the wall surface 24w may be designed in consideration of the degree of force of the tangential component that is generated, such as the bias of the tumble flow path 72, the inclination of the tumble flow path 72 with respect to the combustion chamber 32, and the like.
  • FIG. 14 is a schematic diagram corresponding to FIG. 13 showing the intake valve port 34 biased to the right RH side and provided with respect to the combustion chamber 32
  • FIG. 15 is a schematic view corresponding to FIG.
  • FIG. 14 is a schematic diagram corresponding to FIG. 13 showing a place provided for the combustion chamber 32.
  • the exhaust valve port 36 is biased to the left LH side in response to the intake valve port 34 being biased to the right RH side, and the tumble passage 72 is formed in the intake passage 60 as in the internal combustion engine 10. skewed to the right.
  • the virtual plane IS is defined so as to pass through the central portion 34a of the intake valve port 34 and the central portion 36a of the exhaust valve port 36, the intake air from the tumble flow path 72 flows to the right side, which is one side of the virtual plane IS, A spark plug 54 is positioned on the same side.
  • the exhaust valve port 36 is biased to the right RH side corresponding to the bias of the intake valve port 34 to the left LH side, and the tumble passage 72 is formed in the intake passage 60 as in the internal combustion engine 10. skewed to the right.
  • the virtual plane IS is defined so as to pass through the central portion 34a of the intake valve port 34 and the central portion 36a of the exhaust valve port 36, the intake air from the tumble flow path 72 flows to the right side, which is one side of the virtual plane IS, A spark plug 54 is positioned on the same side.
  • the flows indicated by the arrows T4 and T5 also collide with the wall surface 32w on the exhaust side, the force of which generates an orthogonal component and a tangential component, and the force of the tangential component causes a flow like a swirl flow.
  • the orthogonal component Fa4 of force F4 is greater than the orthogonal component Fa5 of force F5 (Fa4>Fa5).
  • the tangential component Fb4 of the force F4 is smaller than the tangential component Fb5 of the force F5 (Fb4 ⁇ Fb5).
  • the intake air from the tumble flow path 72 can generate a vortex flow having both elements of tumble flow and swirl flow in the combustion chamber.
  • the ignition plug 54 as described above, it is possible to suitably ignite the fuel, that is, the air-fuel mixture, in the intake air from the tumble flow path, thereby suitably causing flame propagation. Therefore, according to the internal combustion engine 10, it is possible to improve the combustion efficiency.
  • FIG. 16 shows a schematic diagram of a portion of the intake passage 60 of the internal combustion engine downstream of the throttle valve 62c.
  • a tumble control valve 112 which is an intake control valve, is further provided at an upstream end 170u of a partition 170 having substantially the same configuration as the partition 70, and having a rotating shaft 112a.
  • the tumble control valve 112 has a valve body 112b that rotates around a rotary shaft 112a, and is controlled to open and close by an intake control section 82 of the ECU 80. As shown in FIG. In FIG. 16, the tumble control valve 112 substantially fully closes the main flow path 74 and fully opens the tumble flow path 72 . As shown in FIG.
  • the intake control unit 80 of the ECU 80 controls the tumble control valve 112 in a predetermined operating state such as a light load operating state.
  • a predetermined operating state such as a light load operating state.
  • the tumble control valve 112 is controlled such that the valve body 112b extends substantially parallel to the intake air flow direction in the intake passage 60, as indicated by the dashed line in FIG.
  • the offset portion 190 of the partition portion 170 may have exactly the same configuration as the above-described offset portion 90 of the partition portion 70.
  • the length in the flow direction is formed to be short.
  • a flap valve 114 is provided in a passage on the downstream side of the offset portion 190 on the downstream side of the partition portion 170 .
  • the flap valve 114 has a rotating shaft 114a provided on the upper wall section defining the intake passage 60, and a valve body 114b rotating around the rotating shaft 114a.
  • the flap valve 114 is an example of an intake control valve, that is, a tumble control valve, and can have other configurations.
  • the operation of the flap valve 114 is also controlled by the intake control section 82 of the ECU 80.
  • the flap valve 114 is controlled such that the valve element 114b extends along the wall of the intake passage as indicated by the dashed line in FIG. substantially stored.
  • a predetermined operating state such as a light load operating state
  • the flap valve 114 is controlled such that the tip of the valve body 114b extends to affect the intake air 72T from the tumble flow path 72 as well.
  • the cross-sectional area of the passage through which the intake air from the tumble flow path 72 flows is reduced compared to the case of the internal combustion engine 10 of the first embodiment, and the flow of the intake air 72T from the tumble flow path 72 is made faster. can be done.
  • the impact force F of the intake air from the tumble flow path 72 on the combustion chamber 32 can be increased, so that not only the tumble flow component, that is, the orthogonal component, but also the swirl flow component, that is, the tangential component can be increased. Therefore, flame propagation can be caused in the combustion chamber 32 more favorably.
  • tumble control valve 112 may be applied to the internal combustion engine 10.
  • flap valve 114 may be applied to the internal combustion engine 10.
  • the internal combustion engine 10 was a two-valve internal combustion engine having only one intake valve and one exhaust valve per cylinder.
  • the internal combustion engine to which the present invention is applied has three or more valves per cylinder. , for example a four-valve internal combustion engine.
  • two intake valves are provided for one cylinder, that is, one combustion chamber
  • opening only one of the valves for example, by opening only the valve on the right side
  • the flow from the tumble flow path is blocked. It may be introduced into the combustion chamber biased to the right.
  • the wall surface of the wall portion separating the two intake ports corresponding to the two intake valves becomes the deflection portion.
  • a spark plug may be provided on the right side of the imaginary plane IS.
  • the intake air from the tumble flow path is biased to flow into the combustion chamber on the right side of the imaginary plane.
  • the intake passage, deflection section, and the like may be configured so that the intake air from the tumble flow path is biased toward the left side of the imaginary plane.
  • the intake passage is formed so that only part of the tumble flow passage 72 is biased in the left-right direction.
  • the present invention allows not only part of the tumble channel 72 but also the entire tumble channel 72 to be partitioned in such a laterally biased manner.
  • the flap valve 114 may be designed and provided not only to narrow the intake passage, but also to bias the intake air from the tumble passage to one side in the width direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

本開示は、吸気通路に仕切部が設けられる内燃機関において、燃焼室での火炎伝播の効率を更に高めることを可能にする構成を提供することに向けられている。一実施形態に係る内燃機関10は、吸気弁44によって開閉される吸気弁口34を有する吸気通路60と、排気弁46によって開閉される排気弁口36を有する排気通路64と、第1吸気通路72を含む複数の吸気通路部に吸気通路60を分けるように設けられる仕切部70であって、前記第1吸気流路72はタンブル流路となり得る、仕切部70と、前記吸気弁口34の中心部34a及び前記排気弁口36の中心部36aを通過するとともにシリンダ軸線Cに平行に延びる仮想面ISを定めるとき、前記第1吸気流路72からの吸気を前記仮想面ISの一方側に偏らせるように構成されている偏向部DPと、前記燃焼室32に設けられ前記仮想面ISの前記一方側に位置付けられている点火手段54とを備える。

Description

内燃機関
 本発明は、燃焼室に連なる吸気通路に仕切部を備える内燃機関に関する。
 点火後の火炎伝播の効率を高めることで燃焼効率を向上させるべく燃焼室内にタンブル流を発生させる構造が種々提案されている(例えば特許文献1参照)。
 例えば、特許文献2の内燃機関の吸気構造では、スロットル弁の下流側にタンブル弁を設け、そのタンブル弁の下流側にインレットパイプから吸気ポートへと続けて仕切部である仕切板部を設け、この仕切板部により吸気通路を上下の下側副通路と上側主通路とに仕切ることが行われる。下側副通路がタンブル流路となり、タンブル弁は上側主通路を実質的に開閉するものである。なお、上記タンブル弁は、吸気振分け弁又は吸気制御弁とも称され得るバルブであり、上記仕切部が設けられた内燃機関において、設けられない場合もある(例えば特許文献3参照)。
日本国特許第6228091号公報 日本国特許第6714764号公報 日本国特許第6439070号公報
 近年、省エネルギーなどの観点から、内燃機関における燃焼効率の向上に対する要求が更に強まっている。本発明の目的は、吸気通路に仕切部が設けられる内燃機関において、燃焼室での火炎伝播の効率を更に高めることを可能にする構成を提供することにある。
 上記目的を達成するために、本発明の一態様は、
 燃焼室に臨むとともに吸気弁によって開閉される吸気弁口を有する吸気通路と、
 前記燃焼室に臨むとともに排気弁によって開閉される排気弁口を有する排気通路と、
 第1吸気流路を含む複数の吸気流路部に前記吸気通路を分けるように該吸気通路に設けられる仕切部であって、前記第1吸気流路は前記燃焼室でのタンブル流を発生させるためのタンブル流路となり得る、仕切部と、
 前記吸気弁口の中心部及び前記排気弁口の中心部を通過するとともにシリンダ軸線に平行に延びる仮想面を定めるとき、前記第1吸気流路から前記燃焼室への吸気を前記仮想面の一方側に偏らせるように構成されている偏向部と、
 前記燃焼室に設けられる点火手段であって、前記仮想面の前記一方側に位置付けられている、点火手段と
を備えたことを特徴とする内燃機関
を提供する。
 上記構成によれば、第1吸気流路からの吸気は前述の仮想面の一方側に偏らせて燃焼室に流入することができ、よってタンブル流を形成し得る第1吸気流路からの吸気が燃焼室を区画形成する壁面に衝突することで、その吸気にシリンダ円周方向に回転する力が生じ、第1吸気流路からの吸気は前述の仮想面の一方側から他方側に向けても流れるようになる。これにより、前述の仮想面の一方側に位置付けられた点火手段による点火により生じた火炎はその仮想面の他方側に伝播しやすくなる。よって、上記構成によれば、吸気通路に仕切部が設けられる内燃機関において、燃焼室での火炎伝播の効率を更に高めることが可能になる。
 好ましくは、前記偏向部は、前記第1吸気流路からの吸気を前記仮想面の前記一方側に偏らせるように設けられた壁面を有している。この構成により、第1吸気流路からの吸気を、より好適に前述の仮想面の一方側に偏らせて燃焼室に流入させることができる。
 好ましくは、前記偏向部により、前記第1吸気流路の少なくとも下流側端部分は、前記吸気弁口に対して前記一方側に偏らせられている。この構成により、第1吸気流路からの吸気を、より好適に前述の仮想面の一方側に偏らせることができる。
 好ましくは、前記シリンダ軸線の方向においてクランク軸側からシリンダヘッド側の方向を第1方向と定義するとき、前記仕切部は、前記第1吸気流路と、該第1吸気流路の前記第1方向側の第2吸気流路とに分けるように吸気流れ方向に延在する。この構成により、前記第1吸気流路からの吸気で燃焼室においてタンブル流をより好適に生じさせることが可能になる。
 好ましくは、前記第2吸気流路の流路断面積は前記第1吸気流路の流路断面積よりも大きく、燃料噴射弁は、前記第2吸気流路側に設けられている。例えば径が大きく、それにより相対的に広い吸気流路である第2吸気流路側に燃料噴射弁が設けられることで、燃料噴射時に吸気通路を区画形成する壁面に燃料が付着することを防ぐことができる。
 好ましくは、前記燃焼室の一部を区画形成する燃焼室天井面は凹状の曲面に形成されている。この構成により、燃焼室天井面を曲面にすることでそれを平面からなるペントルーフ型にする場合よりも、第1吸気流路からの吸気が燃焼室天井面に衝突した際にその吸気にシリンダ円周方向に回転する力が生じ易くなる。
 好ましくは、前記仕切部の下流側に吸気制御弁が更に設けられている。この構成により、例えば、第1吸気流路からの吸気の流速を更に高めることが可能になる。
 好ましくは、前記点火手段は、中央電極と側方電極とを備えて構成され、前記側方電極は基端部と該基端部から前記中央電極を覆うように湾曲する湾曲部とを有し、前記側方電極の前記基端部は、前記シリンダ軸線に交差する幅方向において前記中央電極からずれて配置されている。この構成により、第1吸気流路からの吸気の燃料に好適に点火し、生じた火炎を好適に伝播させることが可能になる。
 本発明の上記態様によれば、上記構成を備えるので、吸気通路に仕切部が設けられる内燃機関において、燃焼室での火炎伝播の効率を更に高めることが可能になる。
図1は、本発明の第1実施形態に係る内燃機関及びその周囲の断面図である。 図2は、図1の内燃機関のシリンダヘッド及びその近辺の右側面図である。 図3は、図2のIII-III線に沿った、図1の内燃機関の断面図である。 図4は、図1の内燃機関のシリンダヘッドの下面図である。 図5は、図1の内燃機関の吸気通路の下流側の立体モデルの平面図である。 図6は、図5の立体モデルの正面図である。 図7は、図5の立体モデルの底面図である。 図8は、図5の立体モデルの右側面図である。 図9は、図5に示す立体モデルの背面視の透視図であり、燃料噴射弁から噴射された噴霧燃料を模式的に示す図である。 図10は、図9に示すのと同様に燃料噴射弁から噴射された噴霧燃料を模式的に示す、図5に示す立体モデルの透視図である。 図11Aは、図9に示すのと同様に燃料噴射弁から噴射した噴霧燃料を有する図5の立体モデルの断面図であり、図5のSA-SA線に沿った位置での断面図である。 図11Bは、図9に示すのと同様に燃料噴射弁から噴射した噴霧燃料を有する図5の立体モデルの断面図であり、図5のSB-SB線に沿った位置での断面図である。 図11Cは、図9に示すのと同様に燃料噴射弁から噴射した噴霧燃料を有する図5の立体モデルの断面図であり、図5のSC-SC線に沿った位置での断面図である。 図12Aは、図11Aに示す立体モデルの部分の斜視図である。 図12Bは、図11Bに示す立体モデルの部分の斜視図である。 図12Cは、図11Cに示す立体モデルの部分の斜視図である 図13は、図1の内燃機関の燃焼室及びその周囲をシリンダ軸線方向からみた模式図である。 図14は、図1の内燃機関の変形例における、燃焼室及びその周囲をシリンダ軸線方向からみた模式図である。 図15は、図1の内燃機関の別の変形例における、燃焼室及びその周囲をシリンダ軸線方向からみた模式図である。 図16は、本発明の第2実施形態に係る内燃機関の吸気系の模式図である。
 以下、本発明に係る実施形態を添付図に基づいて説明する。同一の部品(又は構成)には同一の符号を付してあり、それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。
 図1は、第1実施形態に係る内燃機関10の右断面図である。なお、本明細書の説明において、前後左右の向きは、実施形態に係る内燃機関が搭載される自動二輪車(不図示)の直進方向を前方とする通常の基準に従うものとし、図面において、FRは前方を、RRは後方を、LHは左方を、RHは右方を示すものとする。
 内燃機関10は、SOHC型2バルブの単気筒4ストローク内燃機関であり、車体に対してクランク軸12を車体幅方向に指向させ、気筒を若干前傾させて起立した姿勢で懸架される。内燃機関10のクランク軸12を回転自在に軸支するクランクケース14は、クランク軸12の後方に配設されるメイン軸16及び出力軸であるカウンタ軸18の間に変速歯車機構20が構成されている。
 クランクケース14の上には、1本のシリンダライナ22Lが鋳込まれたシリンダブロック22と、シリンダブロック22の上にガスケットを介してシリンダヘッド24が重ねられ、スタッドボルトにより一体に締結され、シリンダヘッド24の上方をシリンダヘッドカバー26が覆っている。クランクケース14の上に重ねられるシリンダブロック22、シリンダヘッド24、シリンダヘッドカバー26は、クランクケース14から若干前傾した姿勢で上方に延出している。なお、内燃機関10は、上記構成の単気筒内燃機関であることに限定されず、種々の形式を有して構成された内燃機関とされてもよい。
 クランクケース14は左右割りで、左右クランクケースの合せ面に形成された開口にシリンダライナ22Lの下端部が嵌入されている。シリンダブロック22は若干前傾して、クランクケース14から上方に突出している。シリンダライナ22Lの内部のシリンダボア22bにピストン28が往復摺動自在に嵌合されている。ピストン28のピストンピン28pとクランク軸12のクランクピン12pとの間をコンロッド30が連接してクランク機構を構成している。
 シリンダブロック22のシリンダボア22b内を摺動するピストン28の頂面28tと同頂面28tが対向するシリンダヘッド24の燃焼室天井面(以下、単に「天井面」と称し得る。)24tとの間に燃焼室32が構成される。燃焼室32は、シリンダブロック22のシリンダボア22bと、ピストン28の頂面28tと、シリンダヘッド24の天井面24tとにより概ね区画形成される。シリンダヘッド24には、天井面24tにシリンダボア22bの中心軸線であるシリンダ軸線Cに関して互いに反対位置に1つずつ吸気弁口34と排気弁口36が燃焼室32に臨んで開口されるとともに、吸気弁口34と排気弁口36から各々吸気ポート38と排気ポート40が互いに離れる方向に湾曲しながら延出して形成されている。このように、シリンダヘッド24には、単一の吸気ポート38及び単一の排気ポート40が区画形成されている。
 シリンダヘッド24に一体に嵌着された弁ガイド42i、42eにそれぞれ摺動可能に支持される吸気弁44及び排気弁46は、シリンダヘッド24の上に設けられる動弁機構48により駆動されて、吸気ポート38の吸気弁口34及び排気ポート40の排気弁口36をクランク軸12の回転に同期して開閉する。つまり、シリンダヘッド24における吸気ポート38の湾曲外壁部38aに一体に円筒状の吸気弁ガイド42iが嵌着されている。吸気弁ガイド42iに摺動可能に支持された吸気弁44が、吸気ポート38の燃焼室32に臨む吸気弁34を開閉する。また、シリンダヘッド24における排気ポート40の湾曲外壁部40aに一体に嵌着された排気弁ガイド42eに摺動可能に支持された排気弁46が、排気ポート40の燃焼室32に臨む排気弁口36を開閉する。
 図1及び図3を参照して、動弁機構48は、シリンダヘッド24の上に1本のカム軸48aが左右方向に指向して軸支されたSOHC型内燃機関の動弁機構であり、カム軸48aの斜め前後上方にロッカアームシャフト47i、47eが支持され、後方のロッカアームシャフト47iに吸気ロッカアーム48iが揺動自在に中央部を軸支され、前方のロッカアームシャフト47eに排気ロッカアーム48eが揺動自在に中央部を軸支されている。
 吸気ロッカアーム48iの一端は、カム軸48aの吸気カムロブに接し、他端がスプリングで付勢された吸気弁44のバルブステム44sの上端に調整ねじを介して接する。排気ロッカアーム48eの一端は、カム軸48aの排気カムロブに接し、他端がスプリングで付勢された排気弁46のバルブステム46sの上端に調整ねじを介して接する。カム軸48aの回転により吸気ロッカアーム48iと排気ロッカアーム48eが揺動することで吸気弁44と排気弁46は開閉駆動される。
 カム軸48aは軸受から左方に突出して、その左端部にカムチェーンスプロケット50が軸支され、カムチェーンスプロケット50に巻き掛けられたカムチェーン52がクランク軸12に向かい、クランク軸12に嵌着されたカムチェーンスプロケット(図示せず)に巻き掛けられ、カム軸48aがクランク軸12と同期して、その1/2の回転数で同一方向に回転する。
 シリンダブロック22のシリンダボア22bの左側及び燃焼室32の左側に、カムチェーン52を挿通する矩形孔であるカムチェーン室22c、24cが形成されている。図3に示されるように、シリンダヘッド24の右側壁には、点火手段である点火プラグ54が燃焼室32に向かって嵌入して装着される。なお、点火プラグ54の付近に筒内圧センサ(不図示)が燃焼室32に向かって嵌入して装着されるとよい。
 図4は、シリンダブロック22に重ね合わされるシリンダヘッド24の下面図であり、内燃機関10におけるシリンダ軸線Cが点であらわされている。図4を参照して、シリンダヘッド24におけるシリンダブロック22の合わせ面に対面する合わせ面24fに、シリンダボア22bに対応して燃焼室32の天井面24tが凹んで形成されている。燃焼室32は所謂ペントルーフ型燃焼室の形状を有さず、天井面24tは、凹状の曲面に形成され、概ね半球状に形成されている。また、合わせ面24fには、カムチェーン室22cに対応して連通するカムチェーン室24cが燃焼室32の左側に穿設されている。
 シリンダヘッド24の合わせ面24fにおける燃焼室32の天井面24tの円形開口縁24eが円筒状のシリンダボア22bの円孔に一致する。天井面24tのシリンダ軸線Cより後側に大径の吸気弁口34が開口し、天井面24tのシリンダ軸線Cより前側に、吸気弁口34より幾らか小径の排気弁口36が開口している。
 また、天井面24tのシリンダ軸線Cより右側には、点火プラグ54の電極を燃焼室32に突出させるプラグ孔56が穿設されている。すなわち、点火プラグ54は、天井面24tの中心部に位置づけられるのではなく、その中心からずれて設けられている。点火プラグ54は、吸気弁口34側から排気弁口36側に延びるとともにシリンダ軸線Cに平行に延びる仮想面ISを定めるとき、仮想面ISの一方側に位置付けられている。特にここでは、点火プラグ54は、仮想面ISに関してカムチェーン室24cと反対側の一方側に配置される。なお、図4において、仮想面ISは、吸気弁口34の中心部34aと排気弁口36の中心部36aとを通るように定められている。つまり、ここでは、仮想面ISは、吸気弁口34の中心部34a及び排気弁口36の中心部36aを通過するとともにシリンダ軸線Cに平行に延びるように定められている。吸気弁口34の中心部34aは、吸気弁口34の中心であるとよく、排気弁口36の中心部36aも排気弁口36の中心であるとよい。ここでは、吸気弁口34も排気弁口36も略円形であり、それらの各中心が中心部34a、36aとなる。吸気弁口34及び排気弁口36のそれぞれは、例えば正円形であっても、楕円形であってもよい。
 図3に示すように、点火プラグ54は、中心電極54eと、側方電極(又は接地電極)54fとを備える。側方電極54fは、点火プラグ54のプラグ本体部54b側の基端部54gと基端部54gから中央電極54eの先端部を覆うように湾曲して延びる湾曲部54hとを有する。なお、側方電極54fの基端部54gは、点火プラグ54のプラグ本体部54bの軸線に概ね平行に延びる。
 吸気ポート38の上流端は、シリンダヘッド24の上方に向けて開口し、インシュレ-タ63を介してインレットパイプ58と接続して、連続した吸気通路60が構成され、インレットパイプ58の上流側に、スロットルボディ62が接続される。スロットルボディ62は、内燃機関10の燃焼室32に連なる吸気通路60の一部を構成する断面略円形の吸気路62aを有し、その上流側は、図示しないエアクリーナ装置に接続している。
 スロットルボディ62は、その吸気路62aの吸気の流れ方向と垂直、すなわち吸気路62aの中心軸線と直角に交差するスロットル弁軸62bによってスロットルボディ62内に回転自在に軸支されて、吸気路62aの流路面積を可変制御し、吸気路62aを開閉し得るスロットル弁62cを備えている。スロットル弁62cはバタフライ式のもので、スロットル弁軸62bと、スロットル弁軸62bに固定される共に一体的に回転する円盤状の弁体62dとを有している。
 スロットル弁62cは運転者の操作等により、図1において時計回りに開弁方向に回動可能となっているとともに、図示しない復帰ばねにより、弁体62dはそれの縁部が吸気路62aの内壁面に当接する全閉位置に位置するように、閉弁方向に反時計回りに付勢されている。
 排気ポート40の下流端は、シリンダヘッド24の下方に向けて開口し、排気管(不図示)に連結され、連続した排気通路64が構成される。排気通路64の下流側には、排気浄化装置及び消音装置が設けられ得る。
 以上の内燃機関10において、燃焼室32でのより好ましい燃料つまり混合気の燃焼を得るために燃焼室32において燃料・空気混合気のタンブル渦流つまりタンブル流、すなわち縦回転を与えるための吸気構造Sが構成されている。吸気構造Sは、吸気通路60を複数に分けるように、吸気通路60に設けられた仕切部70を備える。仕切部70により、複数の吸気流路部72、74に吸気通路60は分けられ、ここではシリンダ軸線Cの方向において複数の吸気流路部72、74に吸気通路60は分けられる。すなわち、スロットル弁62cよりも下流側の吸気通路は、インレットパイプ58から吸気ポート38へと続く仕切部70によって、吸気流れ方向に沿って分割され、通った吸気が燃焼室32でタンブル流を発生するように構成された吸気流路部であるタンブル流路72と、タンブル流路72を除く吸気流路部である主流路74とに仕切られている。燃焼室32でのタンブル流を発生させるためのタンブル流路となり得る吸気流路部72をタンブル流路と称し、それは第1吸気流路に相当し、主流路74が第2吸気流路に相当する。なお、タンブル流路72は副通路と称されてもよい。
 なお、吸気流れ方向に板状に延在する仕切部70は、吸気通路60の下流側を実質的に上下方向において二分するように、つまり吸気通路60の下流側を実質的にシリンダ軸線Cの方向において二分するように、ここでは流れ方向に延びる軸線に略平行に実質的に延びるように設けられている。本実施形態では、タンブル流路72の流路断面積は主流路74の流路断面積よりも小さい、つまり、主流路74の流路断面積はタンブル流路72の流路断面積よりも大きい。しかし、タンブル流路72の流路断面積が主流路74の流路断面積よりも大きくなるように仕切部70は設けられてもよく、それらを略同じにすることも可能である。
 図1に示すように、吸気通路60の仕切部70によって仕切られた下側部分がタンブル流路72、上側部分が主流路74となるが、本明細書においてはそれらはその上下配置に限定されない。なお、本明細書において、吸気通路60などについての「上」、「下」とは、シリンダ軸線C方向においてクランク軸12側からシリンダヘッド24ないしシリンダヘッドカバー26側の方向を「上」又は「上」方向、この「上」方向とは逆向きの方向つまりシリンダヘッド24側からクランク軸12側の方向を「下」又は「下」方向といい、空間上の絶対的な「上」、「下」の意味ではない。この「上」又は「上」方向は第1方向に相当し、「下」又は「下」方向は第2方向に相当する。
 なお、仕切部70の上流側かつスロットル弁62cの下流側に吸気制御弁が更に設けられてもよい。この吸気制御弁は、例えば主流路74の流路面積を可変制御するように設けられ得る。当該吸気制御弁は、タンブル弁、タンブル制御弁又はTCVなどとも称され得る。なお、スロットル弁62cは、以下に説明するように電子制御されるが、電子制御されることに限定されず、例えばスロットルケーブルで機械的にコントロールされる弁であってもよく、これは吸気制御弁などの他の弁を設ける場合も同様である。
 内燃機関10では、燃料噴射弁76、78が設けられている。一方の燃料噴射弁(以下、第1燃料噴射弁)76は、仕切部70の上流側端部70uよりも上流側に設けられて、該上流側端部70uよりも上流側の吸気通路60の部分に燃料を噴射するように設けられている。他方の燃料噴射弁(以下、第2燃料噴射弁)78は、吸気ポート38に燃料を噴射するように設けられている。第2燃料噴射弁78は、主流路74側に設けられている。第2燃料噴射弁78は、主流路74に臨むように設けられ、ここではインレットパイプ58に設けられている。このように、第2燃料噴射弁78は、主流路74側から燃料を噴射し、吸気ポート38を介して燃焼室32に燃料を供給するように設けられている。なお、図1から明らかなように、第2燃料噴射弁78は、吸気通路60を区画形成する部材の上側の壁部に取り付けられている。なお、本開示は、燃料噴射弁の数を2つに限定するものではなく、例えば1つであってもよく、燃料噴射弁76、78のいずれか一方のみを、例えば、第2燃料噴射弁78のみを設けることができる。
 内燃機関10を制御するECU(電子制御ユニット)80は、所謂コンピュータとしての構成を備える。つまり、ECU80は、プロセッサ(例えばCPU)、メモリ(例えばROM及びRAM)を備える。ECU80は、吸気制御部82、燃料噴射制御部84及び点火制御部85を備えている。ECU80は、エンジン回転速度センサ、エンジン負荷センサなどの各種センサからの出力に基づいて内燃機関10の運転状態を解析して、吸気制御部82により、スロットル弁62cの作動を制御する。また、ECU80は、解析した内燃機関10の運転状態に基づいて、燃料噴射制御部84により、燃料噴射弁76、78の各作動を制御する。また、ECU80は、解析した内燃機関10の運転状態に基づいて、点火制御部85により、点火プラグ54の作動を制御する。なお、ECU80には、これらの制御のためのプログラム及び各種データが記憶されている。
 ここで、図5から図8に、吸気通路60の下流側の立体モデルMを示す。立体モデルMは、インレットパイプ58の下流側端部から吸気ポート38を含み、その下流側においては吸気弁口34で終端する。なお、立体モデルMは吸気通路60の下流側端部のモデルであるので、立体モデルMの外表面79は、吸気通路60の下流側を区画形成する部材であるインレットパイプ58の内面58s、インシュレータ63の内面63s及びシリンダヘッド24の内壁面24sに対応する部分を有し、一部は仕切部70の表面70sに対応し、部分的に後述する偏位部90の表面90sに対応する。そこで、理解を容易にするように、インレットパイプ58の内面58s、インシュレータ63の内面63s、シリンダヘッド24の内壁面24s、仕切部70の表面70s、偏位部90の表面90sに対応する立体モデルMの個所に、それらの符号を付す。また、第2燃料噴射弁78が取り付けられてその噴射口が吸気通路60に臨む部分(以下、取付部)に符号「78s」を付す。更に、シリンダ軸線Cの方向において前述の「上」側に符号「U」を用い、「下」側に符号「D」を用いる。
 既に述べたように、また図6から明らかなように、タンブル流路72と主流路74とはシリンダ軸線C方向において上下に重なる。また、図7から明らかなように、タンブル流路72は、ここではその下流側端部は、主流路74よりも左右方向の幅が狭く、ここでは右側に偏っている。特にタンブル流路72のうちシリンダヘッド24の内壁面24sにより区画形成された部分72dは、吸気弁口34に対して右側に偏っている。
 図1及び図5から図8より理解できるように、仕切部70は、仕切部70の下流側に設けられた偏位部90を備える。偏位部90は、シリンダ軸線Cに交差する左右方向(LH-RH方向)つまり幅方向の幅が仕切部70の上流側端部(上流端)70uよりも狭い。偏位部90は、吸気通路60を吸気が上流側から下流側に流れる方向つまり吸気流れ方向において吸気弁44に対して向かったときに吸気弁44のバルブ軸線の一方側からもう一方側に延びる方向として定められ得る幅方向において、仕切部70の幅狭の部分である。図7に示すように、タンブル流路72において、シリンダヘッド24により区画形成された部分のうちの仕切部70の上流側端部70u側に位置する上流端側部分の幅方向の幅W1よりも、下流端側部分72dの幅方向の幅W2は明らかに狭い。仕切部70は吸気通路60にタンブル流路72を区画形成するように設けられて形成されているので、この幅W2の部分に関する偏位部90は相対的に幅狭である。
 更に、偏位部90は、左右方向つまり幅方向において一方向に偏っている。ここでは、上述のように、タンブル流路72の下流端側部分72dは右RH側に偏るように区画形成されている(図7参照)。したがって、このタンブル流路72の偏っている下流端側部分72dを少なくとも部分的に区画形成する仕切部70の下流側の偏位部90は、ここでは右RH側に偏っている。したがって、ここでは、図1において、シリンダ軸線Cは紙面に平行に延び、幅方向は同紙面に略直交するように延びる方向であるので、仕切部70の下流側に延びる偏位部90はあらわれず、よって実線ではなく二点破線で示している。このように、吸気流れ方向の下流側では、タンブル流路72は幅方向に偏るように設計され、これに伴い偏位部90は幅方向で同じ側に偏るように区画形成されている。
 そして、第2燃料噴射弁78の取付部78sは、図8から明らかなように、吸気通路60の左LH側に位置付けられている。このように、第2燃料噴射弁78は、偏位部90が偏った方向とは反対側の方向に偏った位置に設けられている。よって、第2燃料噴射弁78は、偏位部90が偏った方向とは異なる方向に、より好ましくは反対側の方向に燃料を噴射することができる。なお、第2燃料噴射弁78は、上側につまり主流路74側に設けられていて、主流路74側から燃料を噴射する。
 ここで、立体モデルMの透視図である図9において、左LH側に偏った位置に設けた第2燃料噴射弁78から噴射された噴霧燃料Fを模式的に表す。また、図9に示すのと同様に燃料噴射弁78から噴射された噴霧燃料Fを模式的に示す、立体モデルMの透視図を図10に示す。図9及び図10より、第2燃料噴射弁78から噴射された燃料Fは仕切部70に阻まれることなく、その少なくとも一部が、ここでは特にその少なくとも過半が、より好ましくはその全てが、まず主流路74を流れ、次に主流路74とタンブル流路72との合流部に流れ、そして直接的に吸気弁口34に到達し、燃焼室32に導入されることが理解できる。このような燃料噴射を可能にするように、第2燃料噴射弁78の配置、及び、偏位部90を含む仕切部70の形状等は設計されている。特に、仕切部70の仕切本体部92はその下流側で部分的に終端して主流路74とタンブル流路72との合流を可能にし、また、偏位部90の表面90sに沿って偏位部90に好ましくは触れることなく、第2燃料噴射弁78から噴射された燃料Fが吸気弁口34に達するように、仕切部70の仕切本体部92及びそれの下流側に続く偏位部90は設計されている(例えば図10参照)。
 ここで、図9の噴射燃料Fを含む立体モデルMにおける断面図を図11Aから図12Cに示す。ただし、図11Aは図5のSA-SA線に沿った位置での立体モデルMの断面図であり、図11Bは図5のSB-SB線に沿った位置での立体モデルMの断面図であり、図11Cは図5のSC-SC線に沿った位置での立体モデルMの断面図である。図12Aは図11Aの立体モデルMの部分の斜視図であり、図12Bは図11Bの立体モデルMの部分の斜視図であり、図12Cは図11Cの立体モデルMの部分の斜視図である。
 図11A及び図12Bの切断箇所では、タンブル流路72と主流路74とが完全に分かれている。この図5のSA-SA線の位置では、仕切部70は、タンブル流路72と主流路74との間において幅方向の両端でインレットパイプ58の内面58sにまで延びていて、偏位部90の上流側につながる仕切本体部92が延在する。なお、図11A及び図12Aでは、仕切部70の表面70s及びそのうちの仕切本体部92の表面92sに対応する個所にそれらの符号を付している。
 図11B及び図12Bの切断箇所では、タンブル流路72と主流路74とは部分的につながっている。また、図11B及び図12Bの切断面では、仕切部70の表面70sが幅方向に延びるとともに上下方向にも延びていて、右側に偏っている。これより、図5のSB-SB線の位置では、仕切部70は仕切本体部92から偏位部90に移行していて、その偏位部90がタンブル流路72と主流路74とを完全に隔てない程度に、吸気ポート38にシリンダヘッド24の内壁面24sの右側の箇所から左方向に延在していることがわかる。つまり、吸気流れ方向において偏位部90が延在する領域において主流路74とタンブル流路72とが連通するように、タンブル流路72及び主流路74は区画形成されている。換言すると、仕切部70の仕切本体部92よりも下流側において該仕切本体部92の一部を流れ方向に延長するように、仕切本体部92につながる偏位部90は仕切本体部92の下流側に延出して形成されている。なお、図11B及び図12Bでは、仕切部70の表面70s及びそのうちの偏位部90の表面90sに対応する個所にそれらの符号を付していて、これは図11C及び図12Cでも同様である。
 図11C及び図12Cの切断箇所では、図11B及び図12Bの切断箇所と比べて、偏位部90のシリンダヘッド24の内壁面からの左方向の突き出し量が減少している。このように、偏位部90は、吸気流れ方向の下流側ほど狭くなるように、形成されている(例えば図10の偏位部90の表面90s参照)。これにより、図11B及び図12Bの切断箇所よりも、図11C及び図12Cの切断箇所で、主流路74とタンブル流路72との連通の程度が増している。つまり、図11C及び図12Cの切断位置でのタンブル流路72と主流路74とのつながる量は、図11B及び図12Bの切断位置でのそれらのつながる量よりも大きくなっている。より具体的には、吸気流れ方向において偏位部90が延在する領域において主流路72が偏位部90の脇つまり側方にまで下方に延びるように、タンブル流路72及び主流路74は区画形成されている。この主流路74の下方への拡張は、偏位部90が偏った方向とは反対側の方向で実施され、ここでは偏位部90の左LH側で行われている。なお、この主流路74の下方への拡張及びそれによる主流路74とタンブル流路72との融合は、偏位部90の下流側ほど顕著である。
 図11B及びC並びに図12B及びCに示すように、仕切部70が仕切本体部92から偏位部90に移行するにつれて、タンブル流路72を幅方向において偏らせる壁面24Wがあらわれる。壁面24wはここではシリンダヘッド24の内壁面24sの一部であり、主流路74の第2方向側の真下に位置し、例えば図11Bに示すようにシリンダ軸線Cの方向に延びて上下方向の長さを有するとともに、吸気流れ方向に延びている。したがって、この内壁面24sをシリンダ軸線の方向に伸ばすとき、この伸長した内壁面24sは主流路74を横断する。この壁面24wは図7におけるタンブル流路72の下流端側部分72dの左LH側に延びてそれを区画形成し、タンブル流路72を右RH側に偏らせる。つまり、この壁面24wは、タンブル流路72からの吸気を前述の仮想面ISの一方側つまり右RH側に偏らせるように構成されている偏向部DPとなる。
 更に、図11Aから図12Cに示すように、主流路74側から燃焼室32に向けて燃料Fを噴射するように設けられている第2燃料噴射弁78は、偏位部90が偏った方向とは反対側の方向に燃料を噴射するように設けられている。したがって、仕切部70を、特にその偏位部90を吸気流れ方向でより下流側にまで延ばすことができる。そして、タンブル流路72は偏位部90が偏った方向に下流側で偏るように区画形成されている。したがって、吸気流れ方向でより下流側にまで延長された仕切部70の偏位部90で、タンブル流路72からの吸気により強い指向性を与えることができる。
 このように、仕切部70は、その上流側の仕切本体部92で主流路74とタンブル流路72とを完全に仕切り、その下流側において、偏位部90を有して、主流路74とタンブル流路72とのつながりを実現しつつもタンブル流路72からの流れをより下流側まで特徴づけるように設計されている。また、第2燃料噴射弁78は偏位部90が偏った方向とは逆側に偏って配置され、ここでは幅方向において反対側に配置され、偏位部90とは異なる方向に燃料を噴射でき、吸気弁口34を介して概ね直接的に燃焼室32に燃料を導入することができる。つまり、燃焼室への燃料の供給を良好に確保することができる。したがって、仕切部70の下流側部分である偏位部90をより下流側にまで延ばすことができる。よって、タンブル流路72からの流れにより強い指向性を与えることができる。この指向性は燃焼室32でより強いタンブル流を形成するように吸気弁口34と開弁時の吸気弁44の傘部との間に向けられているので、タンブル流路72からの吸気で燃焼室32により好適にタンブル流を形成することができる。
 なお、タンブル流路72が仕切部70の下流側縁部つまり偏位部90の下流側縁部90dよりも下流側で主流路74と連通し、燃焼室32に連なる単一の吸気通路となるように、タンブル流路72及び主流路74は区画形成されている。これにより、タンブル流路72からの吸気は主流路74からの吸気とともに燃焼室34に導入され得、単一の吸気通路である単一の吸気ポート38からの吸気で、燃焼室32への燃料の供給とタンブル流の形成とを生じさせることが可能になる。なお、この構成は、部品点数の増加を抑制でき、コスト面でも優れる。
 上記内燃機関10では、前述のように、壁面24wにより、タンブル流路72からの吸気を仮想面ISの一方側つまり右RH側に偏らせ、燃焼室32に流入させることができる。このタンブル流路72からの吸気は上記のごとく強いタンブル流を形成するように強い指向性を有して、燃焼室32に流入し、燃焼室32を区画形成する壁面のうち排気側に延びる例えば天井面24tの部分やシリンダボア22bの部分に衝突する。この衝突により、その壁面によりタンブル流の縦方向の流れに横方向の力成分を生じさせることができる。よって、タンブル流路72からの吸気にタンブル流の縦方向の力成分に加えて、スワール流の横方向つまりシリンダ円周方向の力成分をも持たせることができる。
 加えて、燃焼室32に設けられる点火プラグ54は、その仮想面ISのその一方側に、つまり、タンブル流路72からの吸気が偏って導かれる側に位置付けられている。したがって、タンブル流路72からの吸気に含まれる燃料に、つまり混合気に、好適に点火することが可能になる。
 図13に、内燃機関10の燃焼室32及びその周囲をシリンダ軸線C方向上側からみた模式図を示す。図13では、シリンダボア22b又は燃焼室32の天井面24tの円形開口縁24eの輪郭、吸気弁口34、排気弁口36及び点火プラグ54の相対的な配置を示す。吸気弁口34の中心部34aを通るとともに排気弁口36の中心部36aを通るように定められる前述の仮想面ISは、図13において、シリンダ軸線Cを通り、かつ、吸気弁44のバルブステム44sの軸線(バルブ軸線)に重なる。
 タンブル流路72からの吸気は、図13において矢印Tで示すように、仮想面ISに直交する幅方向において右RH側に偏って燃焼室32に入る。図7においてタンブル流路72の下流端側部分72dは略一定の幅を有するので、タンブル流路72からの吸気の矢印Tは仮想面ISに略平行に示されている。この矢印Tは、燃焼室32において、仮想面ISの一方側である右側を主に通り、燃焼室32の排気弁口36側の壁面32Wに向かって進み、衝突することができる。このとき、矢印Tの流れがぶつかる壁面32Wは、主に仮想面ISよりも右RH側の壁であり、図13に示すように排気側ほど仮想面ISに近づくように左側に向けて凹湾曲している。したがって、矢印Tの流れの壁面32Wへの衝突力Fは、壁面32Wに直交する直交成分Faと、壁面32Wに沿った接線成分Fbとに分けることができる。直交成分Faはシリンダ軸線C方向の縦の渦流つまりタンブル流を生じさせる成分である。接線成分Fbは仮想面ISの一方側である右側からその他方側である左側に向けてシリンダ円周方向に沿って回転する流れつまりスワール流を生じさせる成分となる。つまり、矢印Tの流れは、タンブル流を生じさせるとともにスワール流を生じさせるように、燃焼室32での流れを形成する。これにより、タンブル流路72からの流れは、燃焼室32で単にタンブル流を形成するときとは異なる渦中心を有することになり、燃焼室32でタンブル流を生じさせることができるとともに、仮想面ISの一方側である右RH側から左LH側へのスワール流のような流れをも生じさせることができる。
 タンブル流路72からの吸気が衝突する壁面32Wは、前述のように燃焼室32を区画形成する壁面のうち排気側に延びる例えば天井面24tの部分やシリンダボア22bの部分である。前述のように、天井面24tは凹状の曲面に形成されている。したがって、天井面24tはタンブル流路72からの吸気により好適に接線成分Fbの力を生じさせることができる。特にここでは天井面24tは略半球状に形成されていて、滑らかな凹曲面であるので、そのような力をタンブル流路72からの吸気に生じさせ、スワール流のような流れをより好適に生じさせることに寄与し得る。
 また、内燃機関10では、点火プラグ54は、その仮想面ISの、タンブル流路72からの吸気が偏って導かれる側に位置付けられている。したがって、タンブル流路72からの吸気は、燃料を含み、混合気を実質的に形成するので、燃焼室32に導入された混合気は点火プラグ54により好適に点火される。そして、仮想面ISの一方側である右RH側から左LH側への流れが上述のように形成されるので、燃焼室32での火炎伝播を好適に生じさせることができる。
 図3及び図4に示されるように、点火プラグ54の側方電極54fの基端部54gは、シリンダ軸線Cに交差する幅方向において中央電極54eからずれて配置されている。特にここでは、点火プラグ54の基端部54gは、中央電極54eの、シリンダ軸線Cから離れる径方向外側に、右RH側にずれて配置されている。したがって、点火プラグ54の両電極54e、54f間をタンブル流路72からの吸気は好適に流れることができ、点火プラグ54による混合気への点火性を高め、火炎伝播をより好適に生じさせることができる。なお、点火プラグ54の側方電極54fと中心電極54eとの位置関係は、側方電極54fが中央電極54eのシリンダ軸線Cから離れる径方向外側に配置されることに限定されない。例えば側方電極54fは中央電極54eの斜め外側に位置付けられてもよい。点火プラグ54の側方電極54fと中心電極54eとの位置関係はタンブル流路72からの吸気の燃料に好適に点火できる範囲で任意に設定されるとよい。
 なお、タンブル流路72からの吸気がより右側に偏るように方向づけられて燃焼室32に流入した場合の、その流れを図13において矢印T1で示す。このとき、矢印Tの流れに比べて、矢印T1の流れは壁面32Wにより角度をつけて衝突するので(θ1<θ2)、矢印T1の流れの衝突力F1が矢印Tの流れの衝突力Fと同じ大きさを有する場合(F1=F)、矢印T1の流れの衝突力F1は、相対的に小さな直交成分Fa1(Fa1<Fa)と、相対的に大きな接線成分Fb1(Fb1>Fb)とを生じさせることができる。よって、よりスワール流の成分が大きくなり、仮想面ISの一方側から他方側への火炎伝播はより生じ易くなる。この生じさせる接線成分の力の程度を考慮してタンブル流路72の偏り、タンブル流路72の燃焼室32に対する傾きなど、例えば壁面24wは設計されるとよい。
 なお、内燃機関10の変形例を図14及び図15に基づいて説明する。図14は吸気弁口34を右RH側に偏らせて燃焼室32に対して設けたところを示す図13に相当する模式図であり、図15は吸気弁口34を左LH側に偏らせて燃焼室32に対して設けたところを示す図13に相当する模式図である。
 図14の場合、吸気弁口34を右RH側に偏らせたことに対応して、排気弁口36は左LH側に偏り、タンブル流路72は上記内燃機関10と同様に吸気通路60において右側に偏っている。吸気弁口34の中心部34aを通るとともに排気弁口36の中心部36aを通るように仮想面ISを定めるとき、仮想面ISの一方側である右側にタンブル流路72からの吸気は流れ、同じ側に点火プラグ54は位置付けられている。このような場合にも、矢印T2、T3の流れは、排気側の壁面32wに衝突し、その力は直交成分と接線成分とを生じ、接線成分の力によりスワール流のような流れを生じさせることができる。なお、矢印T2、T3の流れの力の関係は、図13に基づいて説明したのと同様である。つまり、矢印T2の流れの力F2が矢印T3の流れの力F3と同じ大きさのとき(F2=F3)、力F2の直交成分Fa2は力F3の直交成分Fa3よりも大きく(Fa2>Fa3)、力F2の接線成分Fb2は力F3の接線成分Fb3よりも小さい(Fb2<Fb3)。
 図15の場合、吸気弁口34を左LH側に偏らせたことに対応して、排気弁口36は右RH側に偏り、タンブル流路72は上記内燃機関10と同様に吸気通路60において右側に偏っている。吸気弁口34の中心部34aを通るとともに排気弁口36の中心部36aを通るように仮想面ISを定めるとき、仮想面ISの一方側である右側にタンブル流路72からの吸気は流れ、同じ側に点火プラグ54は位置付けられている。このような場合にも、図示する矢印T4、T5の流れは、排気側の壁面32wに衝突し、その力は直交成分と接線成分とを生じ、接線成分の力によりスワール流のような流れを生じさせることができる。なお、矢印T4の流れの力F4が矢印T5の流れの力F5と同じ大きさのとき(F4=F5)、力F4の直交成分Fa4は力F5の直交成分Fa5よりも大きく(Fa4>Fa5)、力F4の接線成分Fb4は力F5の接線成分Fb5よりも小さい(Fb4<Fb5)。
 以上述べたようにタンブル流路72の偏りなどに基づき、タンブル流路72からの吸気でタンブル流及びスワール流の両要素を有する渦流を燃焼室で生じさせることができる。そして、点火プラグ54を上述のように設けることで、タンブル流路からの吸気の燃料つまり混合気に好適に点火することができ、よって火炎伝播を好適に生じさせることができる。したがって、内燃機関10によれば、燃焼効率を高めることが可能になる。
 次に、本発明の第2実施形態に係る内燃機関を図16に基づいて説明する。なお、以下では、上記第1実施形態の内燃機関10との相違点のみ説明し、出来る限り重複説明を省略する。
 図16に、内燃機関の吸気通路60のスロットル弁62cよりも下流側の部分の模式図を示す。第2実施形態では、仕切部70と概ね同じ構成を有する仕切部170の上流側端部170uに回転軸112aを有する、吸気制御弁であるタンブル制御弁112が更に設けられている。タンブル制御弁112は回転軸112a周りに回動する弁体112bを有し、ECU80の吸気制御部82により開閉制御される。図16では、タンブル制御弁112は、主流路74を実質的に全閉していて、タンブル流路72を全開に開いている。図16に示すようにECU80の吸気制御部80によりタンブル制御弁112が制御されるのは、軽負荷運転状態などの所定の運転状態のときである。なお、タンブル制御弁112は、その他の運転状態では、例えば図16に破線で示すように吸気通路60の吸気流れ方向に略平行に弁体112bが延びるように制御される。
 また、第2実施形態の内燃機関では、仕切部170の偏位部190が、仕切部70の上記偏位部90と全く同じ構成を有してもよいが、ここではその偏位部90よりも流れ方向の長さが短く形成されている。そして、その仕切部170の下流側の偏位部190よりも下流側の通路にフラップ弁114が設けられている。ここでは、フラップ弁114は、吸気通路60を区画形成する上側の壁部に設けられた回転軸114aと、この回転軸114a周りに回転する弁体114bとを有する。なお、フラップ弁114は吸気制御弁つまりタンブル制御弁の一例であり、他の構成を有することができる。フラップ弁114の作動も、ECU80の吸気制御部82により制御される。フラップ弁114は、例えば上記所定の運転状態以外の運転状態では吸気通路を全開にするように図16に破線で示すように吸気通路の壁部に沿って弁体114bが延びるように制御され、実質的に格納状態にされる。しかし、軽負荷運転状態などの所定の運転状態のとき、タンブル流路72からの吸気72Tにまで影響するように弁体114bの先端部が延びるようにフラップ弁114は制御される。これにより、タンブル流路72からの吸気が流れる通路の断面積が、第1実施形態の内燃機関10の場合に比べて、減少し、タンブル流路72からの吸気72Tの流れをより早くすることができる。したがって、タンブル流路72からの吸気の燃焼室32での衝突力Fを高めることができ、よってタンブル流の成分つまり直交成分のみならず、スワール流の成分つまり接線成分も大きくすることができる。よって、より好適に火炎伝播を燃焼室32で生じさせることができる。
 なお、上記タンブル制御弁112のみが上記内燃機関10に適用されてもよい。また、上記フラップ弁114のみが上記内燃機関10に適用されてもよい。
 以上、本発明に係る実施形態及びその変形例について説明したが、本発明はそれらに限定されない。本願の請求の範囲によって定義される本発明の精神及び範囲から逸脱しない限り、種々の置換、変更が可能である。
 なお、上記内燃機関10は、1気筒当たりたった1つの吸気弁及びたった1つの排気弁を備える2バルブの内燃機関であった、しかし、本発明が適用される内燃機関は1気筒当たり3バルブ以上を有してもよく、例えば4バルブの内燃機関であってもよい。1つの気筒つまり1つの燃焼室に対して2つの吸気弁が設けられている場合、いずれか一方のバルブのみを開くことで、例えば、右側のバルブのみを開くことでタンブル流路からの流れを右側に偏らせて燃焼室に導入してもよい。この場合、2つの吸気弁に対応する2つの吸気ポートを隔てる壁部の壁面が偏向部になる。なお、この場合、前述の内燃機関10と同様に、上記仮想面ISの右側に点火プラグが設けられるとよい。
 また、上記実施形態では、燃焼室において仮想面の右側にタンブル流路からの吸気を偏らせて流入させるように構成された。しかし、仮想面の左側にタンブル流路からの吸気を偏らせて流入させるように吸気通路、偏向部などは構成されてもよい。
 なお、上記内燃機関10では、吸気通路は、そのうちのタンブル流路72の一部のみが左右方向に偏るように区画形成された。しかし、本発明は、タンブル流路72の一部のみならず全体がそのように左右方向に偏って区画形成されることを許容する。つまり、タンブル流路72の上流側端部からその下流側端部までをこのように偏って区画形成することも可能である。また、偏位部90を設けずに仕切部を構成することも可能である。なお、上記フラップ弁114は吸気通路を狭めるように機能するのみならず、タンブル流路からの吸気を幅方向で一方側に偏らせるように機能するように設計され、設けられてもよい。
10…内燃機関、12…クランク軸
22…シリンダブロック、24…シリンダヘッド
24w…壁部、32…燃焼室
34…吸気弁口、36…排気弁口
38…吸気ポート、40…排気ポート
44…吸気弁、46…排気弁
54…点火プラグ、60…吸気通路
62…スロットルボディ、70…仕切部
72…タンブル流路(第1吸気流路)
74…主流路(第2吸気流路)
76…第1燃料噴射弁、78…第2燃料噴射弁
90…偏位部、92…仕切本体部
DP…偏向部、M…立体モデル、S…吸気構造

Claims (8)

  1.  燃焼室(32)に臨むとともに吸気弁(44)によって開閉される吸気弁口(34)を有する吸気通路(60)と、
     前記燃焼室(32)に臨むとともに排気弁(46)によって開閉される排気弁口(36)を有する排気通路(64)と、
     第1吸気流路(72)を含む複数の吸気流路部に前記吸気通路(60)を分けるように該吸気通路(60)に設けられる仕切部(70)であって、前記第1吸気流路(72)は前記燃焼室(32)でのタンブル流を発生させるためのタンブル流路となり得る、仕切部(70)と、
     前記吸気弁口(34)の中心部(34a)及び前記排気弁口(36)の中心部(36a)を通過するとともにシリンダ軸線(C)に平行に延びる仮想面(IS)を定めるとき、前記第1吸気流路(72)から前記燃焼室(32)への吸気を前記仮想面(IS)の一方側に偏らせるように構成されている偏向部(DP)と、
     前記燃焼室(32)に設けられる点火手段であって、前記仮想面(IS)の前記一方側に位置付けられている、点火手段(54)と
    を備えたことを特徴とする内燃機関(10)。
  2.  前記偏向部(DP)は、前記第1吸気流路(72)からの吸気を前記仮想面(IS)の前記一方側に偏らせるように設けられた壁面(24w)を有している
    ことを特徴する請求項1に記載の内燃機関(10)。
  3.  前記偏向部(DP)により、前記第1吸気流路(72)の少なくとも下流側端部分(72d)は、前記吸気弁口(34)に対して前記一方側に偏らせられている
    ことを特徴する請求項1又は2に記載の内燃機関(10)。
  4.  前記シリンダ軸線(C)の方向においてクランク軸(12)側からシリンダヘッド(24)側の方向を第1方向と定義するとき、
     前記仕切部(70)は、前記第1吸気流路(72)と、該第1吸気流路(72)の前記第1方向側の第2吸気流路(74)とに分けるように吸気流れ方向に延在する
    ことを特徴する請求項1から3のいずれか一項に記載の内燃機関(10)。
  5.  前記第2吸気流路(74)の流路断面積は前記第1吸気流路(72)の流路断面積よりも大きく、燃料噴射弁(78)は、前記第2吸気流路(74)側に設けられている
    ことを特徴する請求項4に記載の内燃機関(10)。
  6.  前記燃焼室(32)の一部を区画形成する燃焼室天井面(24t)は凹状の曲面に形成されている
    ことを特徴する請求項1から5のいずれか一項に記載の内燃機関(10)。
  7.  前記仕切部(70)の下流側に吸気制御弁(114)が更に設けられている
    ことを特徴する請求項1から6のいずれか一項に記載の内燃機関。
  8.  前記点火手段(54)は、中央電極(54e)と側方電極(54f)とを備えて構成され、前記側方電極(54f)は基端部(54g)と該基端部(54g)から前記中央電極(54e)を覆うように湾曲する湾曲部(54h)とを有し、
     前記側方電極(54f)の前記基端部(54g)は、前記シリンダ軸線(C)に交差する幅方向において前記中央電極(54e)からずれて配置されている、
    ことを特徴とする請求項1から7のいずれか一項に記載の内燃機関(10)。
PCT/JP2022/013253 2021-03-30 2022-03-22 内燃機関 WO2022210121A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511033A JP7411142B2 (ja) 2021-03-30 2022-03-22 内燃機関

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-058646 2021-03-30
JP2021058646 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022210121A1 true WO2022210121A1 (ja) 2022-10-06

Family

ID=83455263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013253 WO2022210121A1 (ja) 2021-03-30 2022-03-22 内燃機関

Country Status (2)

Country Link
JP (1) JP7411142B2 (ja)
WO (1) WO2022210121A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231729A (ja) * 1997-02-17 1998-09-02 Nissan Motor Co Ltd 内燃機関の吸気装置
JPH11210478A (ja) * 1998-01-30 1999-08-03 Yamaha Motor Co Ltd エンジンの吸気装置
JP2000329016A (ja) * 1999-05-17 2000-11-28 Yamaha Motor Co Ltd エンジンの吸気通路構造
JP2018131921A (ja) * 2017-02-13 2018-08-23 ヤマハ発動機株式会社 水冷sohcエンジン
JP2020051364A (ja) * 2018-09-27 2020-04-02 株式会社Subaru 内燃機関の吸気装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231729A (ja) * 1997-02-17 1998-09-02 Nissan Motor Co Ltd 内燃機関の吸気装置
JPH11210478A (ja) * 1998-01-30 1999-08-03 Yamaha Motor Co Ltd エンジンの吸気装置
JP2000329016A (ja) * 1999-05-17 2000-11-28 Yamaha Motor Co Ltd エンジンの吸気通路構造
JP2018131921A (ja) * 2017-02-13 2018-08-23 ヤマハ発動機株式会社 水冷sohcエンジン
JP2020051364A (ja) * 2018-09-27 2020-04-02 株式会社Subaru 内燃機関の吸気装置

Also Published As

Publication number Publication date
JP7411142B2 (ja) 2024-01-10
JPWO2022210121A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP4728195B2 (ja) エンジンの吸気制御装置
JPH07229424A (ja) エンジンの吸気制御装置
US7047934B1 (en) Fuel injection type internal combustion engine and vehicle provided with the same
JP4309351B2 (ja) エンジン
WO2022210121A1 (ja) 内燃機関
US7137380B1 (en) Internal combustion engine with ignition plug and vehicle provided with the same
WO2022176862A1 (ja) 内燃機関の吸気構造
WO2023053346A1 (ja) 内燃機関の吸気装置
US10690086B2 (en) Direct fuel injection, two-valve per cylinder pushrod valvetrain combustion system for an internal combustion engine
WO2022210120A1 (ja) 内燃機関の吸気構造
JP3319643B2 (ja) エンジンの吸気制御装置
WO2023188249A1 (ja) 内燃機関の吸気構造
WO2023188310A1 (ja) 内燃機関の吸気構造
WO2022176860A1 (ja) 内燃機関の吸気構造
JP2024140904A (ja) 内燃機関
WO2024070901A1 (ja) 内燃機関の吸気構造
JP3030413B2 (ja) 筒内噴射型内燃機関
JP3244908B2 (ja) エンジンの吸気制御装置
JP3711699B2 (ja) 直噴火花点火式内燃機関
JP3323315B2 (ja) エンジンの吸気制御装置
JP3334064B2 (ja) エンジンの吸気制御装置
JPH0658105B2 (ja) エンジンの吸気装置
JPH06299811A (ja) エンジンの吸気装置
JP3558658B2 (ja) エンジンの吸気制御装置
JP3240494B2 (ja) エンジンの吸気制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780336

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2023511033

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347063683

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780336

Country of ref document: EP

Kind code of ref document: A1