WO2022210007A1 - 吸収冷凍サイクルおよび圧縮吸収冷凍サイクル - Google Patents

吸収冷凍サイクルおよび圧縮吸収冷凍サイクル Download PDF

Info

Publication number
WO2022210007A1
WO2022210007A1 PCT/JP2022/012509 JP2022012509W WO2022210007A1 WO 2022210007 A1 WO2022210007 A1 WO 2022210007A1 JP 2022012509 W JP2022012509 W JP 2022012509W WO 2022210007 A1 WO2022210007 A1 WO 2022210007A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
absorption refrigeration
ether
absorption
Prior art date
Application number
PCT/JP2022/012509
Other languages
English (en)
French (fr)
Inventor
若林努
服部沙織
八橋元
井上修行
井汲米造
齋藤潔
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to EP22780223.8A priority Critical patent/EP4317850A1/en
Priority to JP2023510968A priority patent/JPWO2022210007A1/ja
Priority to CN202280025755.XA priority patent/CN117098961A/zh
Publication of WO2022210007A1 publication Critical patent/WO2022210007A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/047Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for absorption-type refrigeration systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously

Definitions

  • the present invention relates to an absorption refrigeration cycle and a compression absorption refrigeration cycle.
  • Patent Documents 1 and 2 use ammonia refrigerants that have a low global warming potential but are toxic, requiring countermeasures against refrigerant leakage.
  • Patent Document 1 discloses an example in which R134a refrigerant, which is a non-toxic HFC refrigerant, is used, it has a high global warming potential and may become unusable in the future.
  • a characteristic configuration of the absorption refrigeration cycle according to the present invention is a refrigerant having a global warming potential of less than 1000 and containing at least one of an HFO refrigerant, an HFC refrigerant, and an HCFO refrigerant, and formulas (1) and (2) ), and an absorption liquid containing at least one of the compounds represented by the formula (3).
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n is an integer of 1 to 6.
  • R 1 and R 2 are each independently selected from the group consisting of a hydrogen atom, a methyl group, an ethyl group, a propyl group, and a butyl group, and n is The point is that it is an integer of 1 or more and 3 or less.
  • the circulation ratio in the absorption refrigeration cycle can be reduced, and performance can be improved.
  • a characteristic configuration of the compression absorption refrigeration cycle according to the present invention is that any one of the above absorption refrigeration cycles and the compression refrigeration cycle are combined in a manner that shares the refrigerant.
  • the air conditioning system 100 has a configuration in which an absorption refrigeration cycle and a compression refrigeration cycle are combined in a manner of sharing a refrigerant.
  • the air conditioning system 100 has a high pressure stage 110, a low pressure stage 120, and a gas-liquid separator 130 (FIG. 1).
  • the high-pressure stage section 110 is provided with a pump 111, a solution pressure reducing device 112, a solution heat exchanger 113, a regenerator 114, a condenser 115, a refrigerant expansion device 116, and an absorber 117.
  • a refrigerant expansion device 121 , an evaporator 122 , and a compressor 123 are provided in the low-pressure stage portion 120 .
  • Compressor 123 is driven by motor 124 .
  • the compressor 123 may be driven by power such as an engine.
  • the gas-liquid separation device 130 is provided at the boundary between the high-pressure stage portion 110 and the low-pressure stage portion 120, and in the high-pressure stage portion 110, downstream of the refrigerant expansion device 116 and upstream of the absorber 117. , is provided downstream of the compressor 123 and upstream of the refrigerant expansion device 121 in the low-pressure stage portion 120 .
  • the evaporator 122 cools the air inside the vehicle. That is, the refrigerant receives heat from the air inside the vehicle in the evaporator 122 and evaporates. The refrigerant is compressed in the compressor 123 to become superheated vapor, which is introduced into the gas-liquid separation device 130 .
  • the refrigerant separated from the absorption liquid (strong solution) that has absorbed the refrigerant in the regenerator 114 is condensed in the condenser 115 .
  • the condensed refrigerant is decompressed in the refrigerant expansion device 116 to become wet steam, which is introduced into the gas-liquid separation device 130 .
  • the wet steam refrigerant is mixed with the aforementioned superheated steam refrigerant compressed in the compressor 123 in the gas-liquid separation device 130, and then gas-liquid separated into saturated liquid and saturated steam.
  • the refrigerant gas component (saturated vapor) separated by the gas-liquid separation device 130 flows through the high-pressure stage portion 110 .
  • the gaseous component of the refrigerant is absorbed by the absorption liquid in the absorber 117 .
  • the absorber 117 is air-cooled, and heat generated by mixing the refrigerant and the absorbent is removed by air cooling.
  • the absorption liquid (strong solution) that has absorbed the refrigerant is pressurized by the pump 111 and reaches the solution heat exchanger 113 , preheated in the solution heat exchanger 113 , and then reaches the regenerator 114 .
  • the absorption liquid strong solution
  • part of the refrigerant vaporizes due to the difference in boiling points between the refrigerant and the absorbing liquid. Heating energy is covered by exhaust heat from the engine.
  • the absorption liquid (weak solution) from which a part of the refrigerant has been separated in the regenerator 114 is cooled in the solution heat exchanger 113 and then decompressed in the solution pressure reducing device 112 and returned to the absorber 117 .
  • the refrigerant separated from the absorbent (strong solution) in the regenerator 114 is condensed in the condenser 115 .
  • the condensed refrigerant is decompressed in the refrigerant expansion device 116 to become wet steam, which is introduced into the gas-liquid separation device 130 .
  • the energy for heating the absorption liquid (strong solution) that has absorbed the refrigerant in the regenerator 114 may be insufficient.
  • the path provided with compressor 118 is also used.
  • part of the gaseous component of the refrigerant separated in the gas-liquid separation device 130 is compressed by the compressor 118 to become superheated vapor, and the refrigerant separated from the absorption liquid (strong solution) in the regenerator 114 and the condenser 115.
  • Compressor 118 is driven by motor 119 .
  • the compressor 118 may be driven by power such as an engine.
  • power such as an engine.
  • the absorption liquid strong solution
  • all the gaseous components of the refrigerant separated in the gas-liquid separation device 130 are compressed in the compressor 118. It becomes superheated steam and is introduced into the condenser 115 .
  • the refrigerant contains at least one of an HFO refrigerant, an HFC refrigerant, and an HCFO refrigerant, and has a global warming potential (GWP) of less than 1,000.
  • GWP global warming potential
  • HFO-based refrigerant (hydrofluoroolefin-based refrigerant) represents a group of compounds having a structure in which some hydrogen atoms of unsaturated hydrocarbon compounds are substituted with fluorine atoms.
  • R1234yf (2,3,3,3-tetrafluoropropene), R1234ze(E) (trans-1,3,3,3-tetrafluoropropene), R1234ze(Z) (cis-1,3,3, 3-tetrafluoropropene), R1336mzz (E) (trans-1,1,1,4,4,4-hexafluoro-2-butane), R1336mzz (Z) (cis-1,1,1,4,4 ,4-hexafluoro-2-butane), and R1243zf (3,3,3-trifluoropropene), R1233zd (E) (trans-1-chloro-3,3,3-trifluoropropene) . All of the refrigerants exemplified above have a global warming potential of less than 10, and correspond to so-called low GWP refrigerants.
  • HFC-based refrigerant hydrofluorocarbon-based refrigerant
  • R32 difluoromethane
  • R32 corresponds to a so-called low GWP refrigerant and has a global warming potential of 675.
  • HCFO-based refrigerant represents a compound group of unsaturated hydrocarbon compounds composed of hydrogen, chlorine, fluorine, and carbon.
  • examples include R1224yd(Z) ((Z)-1-chloro-2,3,3,3-tetrafluoropropene).
  • R1224yd(Z) corresponds to a so-called low GWP refrigerant and has a global warming potential of less than 10.
  • the refrigerant can be one selected from HFO-based refrigerants, HFC-based refrigerants, and HCFO-based refrigerants, or a mixture of two or three types. That is, the refrigerants include only HFO refrigerants, only HFC refrigerants, only HCFO refrigerants, mixtures of HFO refrigerants and HFC refrigerants, mixtures of HFO refrigerants and HCFO refrigerants, and mixtures of HFC refrigerants and HCFO refrigerants. It can be a mixture, or a mixture of HFO, HFC, and HCFO refrigerants. In each case, the HFO-based refrigerant, HFC-based refrigerant, and HCFO-based refrigerant may be a single compound or a mixture of multiple compounds belonging to each class.
  • the absorbent contains at least one of the compounds represented by Formula (1), Formula (2), and Formula (3).
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group may be a linear alkyl group or a branched alkyl group.
  • R1 and R2 are each independently selected from the group consisting of hydrogen atoms, methyl groups, ethyl groups, propyl groups and butyl groups.
  • n is an integer of 1 or more and 6 or less. However, n is preferably an integer of 1 or more and 3 or less.
  • one compound selected from the group of compounds represented by formulas (1), (2), and (3) may be used alone, A mixture of two or more compounds may be used. Moreover, when two or more compounds are mixed and used, the general formula of each compound may be the same or different. For example, a mixture of two or more compounds represented by formula (1) may be used, or a mixture of a compound represented by formula (1) and a compound represented by formula (2) may be used. good.
  • Examples of the compound represented by formula (1) include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether, ethylene glycol ethyl methyl ether, ethylene glycol diethyl ether, ethylene glycol monopropyl ether, ethylene glycol mono Isopropyl ether, ethylene glycol monobutyl ether, ethylene glycol mono-2-methylpropyl ether, ethylene glycol butyl ethyl ether, ethylene glycol dibutyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether , diethylene glycol monopropyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol monobutyl ether, diethylene glycol butyl methyl ether,
  • Examples of compounds represented by formula (2) include propylene glycol, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol, and dipropylene glycol monomethyl ether.
  • dipropylene glycol dimethyl ether dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, tripropylene glycol, tripropylene glycol monomethyl ether, tripropylene glycol dimethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monopropyl ether, tripropylene Examples include, but are not limited to, glycol monobutyl ether.
  • Examples of compounds represented by formula (3) include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monoisopropyl ether acetate, and diethylene glycol.
  • Examples include, but are not limited to, monobutyl ether acetate.
  • Absorption liquids are ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol monohexyl ether, triethylene glycol butyl methyl ether, propylene glycol monopropyl ether, and diethylene glycol monoethyl. It preferably contains one or more compounds selected from the group consisting of ether acetates.
  • the absorption liquid is composed of ethylene glycol monobutyl ether, ethylene glycol monoisobutyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol butyl methyl ether, propylene glycol monopropyl ether, and diethylene glycol monoethyl ether acetate. More preferably, it contains one or more compounds selected from the group consisting of
  • the air conditioning system 100 compression absorption refrigeration cycle
  • the air conditioning system 100 compression absorption refrigeration cycle having a configuration in which the absorption refrigeration cycle and the compression refrigeration cycle are combined in a manner of sharing the refrigerant
  • the combination of refrigerant and absorption liquid described above may also be applied to an absorption refrigeration cycle that does not have a compression refrigeration cycle.
  • FIGS. 2 and 3 An example of an air conditioning system with an absorption refrigeration cycle without a compressor is shown in FIGS. 2 and 3, the same components as in the air conditioning system 100 of FIG. 1 are given the same reference numerals.
  • an evaporator 201 and a condenser 202 are provided instead of the gas-liquid separator 130 in the air conditioning system 100.
  • the evaporator 201 functions as a refrigerant subcooler.
  • the absorption refrigeration cycle consisting of regenerator 114, condenser 115, refrigerant expansion device 116, evaporator 201, pump 111 and solution pressure reducing device 112, and solution heat exchanger 113.
  • the refrigerant of the compression refrigeration cycle consisting of refrigerant expansion device 121, evaporator 122, compressor 123, condenser 202, and evaporator 201 is not limited.
  • the working pressure of the absorption refrigeration cycle is higher than that in the case where water is commonly used as the refrigerant, so the absorption refrigeration cycle can be downsized.
  • the condenser 202 is shared by the absorption refrigeration cycle and the compression refrigeration cycle.
  • the condenser 115) in is omitted.
  • the air conditioning system 200B can be made more compact than the air conditioning system 200A.
  • regenerator 114, condenser 202, refrigerant expansion device 116, evaporator 201, pump 111 and solution pressure reducer 112, and solution heat exchanger 113 form an absorption refrigeration cycle
  • refrigerant expansion device 121, evaporative Unit 122, compressor 123, condenser 202, and evaporator 201 form a compression refrigeration cycle.
  • the evaporator 201 functions as a subcooler for the refrigerant. Since the condenser 202 is shared, the same refrigerant is used for the absorption refrigeration cycle and the compression refrigeration cycle in the air conditioning system 200B, and the refrigerant according to the above embodiment is used. The absorbent used in the absorption refrigeration cycle is also the same as in the above embodiment.
  • the refrigerant contains at least one of HFO refrigerant, HFC refrigerant, and HCFO refrigerant, but the refrigerant contains at least one of HFO refrigerant and HFC refrigerant.
  • the aspect of the invention HCFO-based refrigerants are not included in the candidate refrigerants
  • the characteristic configuration of the absorption refrigeration cycle according to the present invention includes a refrigerant having a global warming potential of less than 1000 and containing at least one of an HFO-based refrigerant and an HFC-based refrigerant; and an absorption liquid containing at least one of the compounds represented by (3).
  • R 1 (OCH 2 CH 2 ) n —OR 2 (1) R 1 —(OCH 2 CH(CH 3 )) n —OR 2 (2) R 1 COO—(OCH 2 CH 2 ) n —OR 2 (3) R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n is an integer of 1 to 6.
  • Example 1 Diethylene glycol dibutyl ether Example 2, Example 4, and Example 6: Triethylene glycol butyl methyl ether Example 3 and Example 5: Diethylene glycol diethyl ether Comparative example 1: [HMIM][Tf 2 N] ( ionic liquid) Comparative Example 2: [BMIM][Tf 2 N] (ionic liquid) Comparative Example 3: [BMIM][PF 6 ] (ionic liquid)
  • [HMIM] represents “1-hexyl-3-methylimidazolium cation”
  • [BMIM] represents “1-butyl-3-methylimidazolium cation”
  • [Tf 2 N] represents a “bistrifluoromethylsulfonyl anion”.
  • Test 1 ⁇ Test method ⁇ (Test 1)
  • the absorption characteristics were actually measured when R1234yf was used as a refrigerant, and the circulation ratio in the absorption refrigeration cycle was determined.
  • the temperature conditions were 10°C for evaporation temperature, 80°C for regeneration temperature, 35°C for absorption temperature, and 35°C for condensation temperature. Table 1 shows the results.
  • Examples 1 to 3 which are examples of the present invention, lower circulation ratios were obtained than in Comparative Examples 1 and 2. From this, it was found that Examples 1 to 3 exhibited good physical properties as an absorbent used in combination with R1234yf.
  • Test 2 For each compound of Examples and Comparative Examples, the absorption characteristics were actually measured when R32 was used as the refrigerant, and the circulation ratio in the absorption refrigeration cycle was obtained. When obtaining the circulation ratio, the temperature conditions were 10°C for evaporation temperature, 80°C for regeneration temperature, 35°C for absorption temperature, and 35°C for condensation temperature. Table 2 shows the results.
  • Example 3 For the compound of Example 6, the absorption characteristics were actually measured when R1224yd(Z) was used as the refrigerant, and the circulation ratio in the absorption refrigeration cycle was determined. When obtaining the circulation ratio, the temperature conditions were 10°C for evaporation temperature, 80°C for regeneration temperature, 35°C for absorption temperature, and 35°C for condensation temperature. Table 3 shows the results.
  • Example 6 which is an example of the present invention, a circulation ratio equivalent to that of Examples 1 to 5 was obtained. From this, it was found that Example 6 exhibited good physical properties as an absorbent used in combination with R1224yd(Z).
  • the present invention can be used, for example, in absorption refrigeration cycles and compression absorption refrigeration cycles for air conditioning systems.
  • REFERENCE SIGNS LIST 100 Air Conditioning System 110 : High Pressure Stage 111 : Pump 112 : Solution Pressure Reducer 113 : Solution Heat Exchanger 114 : Regenerator 115 : Condenser 116 : Refrigerant Expansion Device 117 : Absorber 118 : Compressor 120 : Low Pressure Stage 121 : Refrigerant expansion device 122: Evaporator 123: Compressor 124: Motor 130: Gas-liquid separation device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

本発明に係る吸収サイクル(110)は、温暖化係数が1000未満であり、HFO系冷媒、HFC系冷媒、およびHCFO系冷媒の少なくとも一つを含む冷媒と、式(1)、式(2)、および式(3)で表される化合物の少なくとも一つを含む吸収液と、を用いて動作する。 R-(OCHCH-OR (1) R-(OCHCH(CH))-OR (2) RCOO-(OCHCH-OR (3) RおよびRは、それぞれ独立して、水素原子または炭素数1以上6以下のアルキル基であり、nは、1以上6以下の整数である。

Description

吸収冷凍サイクルおよび圧縮吸収冷凍サイクル
 本発明は、吸収冷凍サイクルおよび圧縮吸収冷凍サイクルに関する。
 従来、空調機における冷却システムとして、圧縮機を用いた圧縮冷凍サイクルや熱駆動による吸収冷凍サイクルが用いられている。
 さらに、システムの性能向上のため、吸収冷凍サイクルに圧縮機を設けるシステムの検討が行われている。たとえば、特開平05-332633号公報(特許文献1)や特開2003-307359号公報(特許文献2)には、冷媒としてアンモニアを用いて、蒸発器と吸収器の間に圧縮機を設けたシステムが開示されている。
特開平05-332633号公報 特開2003-307359号公報
 しかし、特許文献1および2の技術では、温暖化係数は低いものの毒性のあるアンモニア冷媒が使われており、冷媒漏洩時の対策が必要となる。また、特許文献1の技術では、毒性がないHFC冷媒であるR134a冷媒が使われている例が開示されているものの、温暖化係数が高く、将来使用できなくなるおそれがある。
 そこで、毒性がなく、温暖化係数の低い冷媒で運転可能な吸収冷凍サイクル、および圧縮機を付与した圧縮吸収冷凍サイクルの実現が求められる。
 本発明に係る吸収冷凍サイクルの特徴構成は、温暖化係数が1000未満であり、HFO系冷媒、HFC系冷媒、およびHCFO系冷媒の少なくとも一つを含む冷媒と、式(1)、式(2)、および式(3)で表される化合物の少なくとも一つを含む吸収液と、を用いて動作することを特徴とする。
  R-(OCHCH-OR        (1)
  R-(OCHCH(CH))-OR    (2)
  RCOO-(OCHCH-OR     (3)
 RおよびRは、それぞれ独立して、水素原子または炭素数1以上6以下のアルキル基であり、nは、1以上6以下の整数である。
 この構成によれば、毒性がなく、温暖化係数の比較的低い冷媒を用いた吸収冷凍サイクルが実現できる。
 以下、本発明の好適な態様について説明する。ただし、以下に記載する好適な態様例によって、本発明の範囲が限定されるわけではない。
 本発明に係る吸収冷凍サイクルのさらなる特徴構成は、RおよびRは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、およびブチル基からなる群から選択され、nは、1以上3以下の整数である点にある。
 この構成によれば、吸収冷凍サイクルでの循環比を低減でき、性能向上が可能となる。
 本発明に係る圧縮吸収冷凍サイクルの特徴構成は、上記のいずれかの吸収冷凍サイクルと、圧縮冷凍サイクルとが、前記冷媒を共用する方式で融合されている点にある。
 この構成によれば、毒性がなく、温暖化係数の比較的低い冷媒を用いた圧縮吸収冷凍サイクルが実現できる。
 本発明のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。
実施形態に係る空調システムのフロー図である。 他の実施形態に係る空調システムのフロー図である。 他の実施形態に係る空調システムのフロー図である。
 本発明に係る吸収冷凍サイクルおよび圧縮吸収冷凍サイクルの実施形態について、図面を参照して説明する。以下では、本発明に係る圧縮吸収冷凍サイクルを、カーエアコン用の空調システム100(圧縮吸収冷凍サイクルの例)に適用した例について説明する。
〔空調システムの構成〕
 本実施形態に係る空調システム100は、吸収冷凍サイクルと圧縮冷凍サイクルとが、冷媒を共用する方式で融合された構成を有する。空調システム100は、高圧段部110、低圧段部120、および気液分離装置130を有する(図1)。
 高圧段部110には、ポンプ111、溶液減圧装置112、溶液熱交換器113、再生器114、凝縮器115、および冷媒膨張装置116、および吸収器117が設けられている。
 低圧段部120には、冷媒膨張装置121、蒸発器122、および圧縮機123が設けられている。なお、圧縮機123はモータ124によって駆動される。ただし、圧縮機123はエンジンなどの動力によって駆動されてもよい。
 気液分離装置130は、高圧段部110と低圧段部120との境界に設けられており、高圧段部110においては冷媒膨張装置116の下流かつ吸収器117の上流の位置に設けられており、低圧段部120においては圧縮機123の下流かつ冷媒膨張装置121の上流に設けられている。
〔空調システムの動作〕
 空調システム100が冷房動作する場合を記載する。蒸発器122において車内の空気の冷却が行われる。すなわち、蒸発器122において冷媒が車内の空気から熱を受け取り、冷媒が蒸発する。冷媒は圧縮機123において圧縮され過熱蒸気となり、気液分離装置130に導入される。
 後述するが、再生器114において冷媒を吸収した吸収液(強溶液)から分離された冷媒が、凝縮器115において凝縮される。凝縮された冷媒は、冷媒膨張装置116において減圧されて湿り蒸気となり、気液分離装置130に導入される。当該湿り蒸気の冷媒は、気液分離装置130において、圧縮機123において圧縮された前述の過熱蒸気の冷媒と混合されたのちに、飽和液と飽和蒸気に気液分離される。
 気液分離装置130において分離された冷媒の気体成分(飽和蒸気)は、高圧段部110を流通する。冷媒の気体成分は、吸収器117において吸収液に吸収される。本実施形態では吸収器117を空冷式としており、冷媒と吸収液との混合により生じる発熱は、空冷により取り除かれる。冷媒を吸収した吸収液(強溶液)は、ポンプ111によって昇圧されて溶液熱交換器113に至り、溶液熱交換器113において予熱された後に再生器114に至る。
 再生器114において、冷媒を吸収した吸収液(強溶液)が加熱される。このとき、冷媒と吸収液との沸点の違いにより、一部の冷媒が気化する。なお、加熱のエネルギーは、エンジンの排熱により賄われる。
 再生器114において一部の冷媒が分離された吸収液(弱溶液)は、溶液熱交換器113において冷却されたのちに、溶液減圧装置112において減圧されて吸収器117に戻る。
 再生器114において吸収液(強溶液)から分離された冷媒は、凝縮器115において凝縮される。前述したように、凝縮された冷媒は、冷媒膨張装置116において減圧されて湿り蒸気となり、気液分離装置130に導入される。
 ただし、車両の始動直後などのエンジンの排熱が少ない状況では、再生器114において冷媒を吸収した吸収液(強溶液)を加熱するためのエネルギーが不足する場合がある。
この場合は、吸収器117、ポンプ111、溶液熱交換器113、および再生器114が設けられた経路に加えて、圧縮機118が設けられた経路も使用される。この場合、気液分離装置130において分離された冷媒の気体成分の一部が、圧縮機118で圧縮されて過熱蒸気となり、再生器114において吸収液(強溶液)から分離された冷媒とともに凝縮器115に導入される。なお、圧縮機118は、モータ119によって駆動される。ただし、圧縮機118はエンジンなどの動力によって駆動されてもよい。再生器114において冷媒を吸収した吸収液(強溶液)を加熱するためのエネルギーがほとんどない場合は、気液分離装置130において分離された冷媒の気体成分のすべてが、圧縮機118で圧縮されて過熱蒸気となり、凝縮器115に導入される。
〔冷媒〕
 本実施形態に係る空調システム100では、冷媒は、HFO系冷媒、HFC系冷媒、およびHCFO系冷媒の少なくとも一つを含み、温暖化係数(GWP)が1000未満である。
 「HFO系冷媒」(ハイドロフルオロオレフィン系冷媒)の用語は、不飽和炭化水素化合物の一部の水素原子がフッ素原子に置換された構造を有する化合物群を表す。たとえば、R1234yf(2,3,3,3-テトラフルオロプロペン)、R1234ze(E)(トランス-1,3,3,3-テトラフルオロプロペン)、R1234ze(Z)(シス-1,3,3,3-テトラフルオロプロペン)、R1336mzz(E)(トランス-1,1,1,4,4,4-ヘキサフルオロ-2-ブタン)、R1336mzz(Z)(シス-1,1,1,4,4,4-ヘキサフルオロ-2-ブタン)、およびR1243zf(3,3,3-トリフルオロプロペン)、R1233zd(E)(トランス-1-クロロ-3,3,3-トリフルオロプロペン)が例示される。なお、上記に例示した各冷媒はいずれも温暖化係数が10未満であり、いわゆる低GWP冷媒に該当する。
 「HFC系冷媒」(ハイドロフルオロカーボン系冷媒)の用語は、飽和炭化水素化合物の一部の水素原子がフッ素原子に置換された構造を有する化合物群を表す。たとえば、R32(ジフルオロメタン)が例示される。R32は、いわゆる低GWP冷媒に該当し、温暖化係数は675である。
 「HCFO系冷媒」(ハイドロクロロフルオロオレフィン系冷媒)の用語は、水素、塩素、フッ素、および炭素で構成される不飽和炭化水素化合物の化合物群を表す。たとえば、R1224yd(Z)((Z)-1-クロロ-2、3,3,3-テトラフルオロプロペン)が例示される。R1224yd(Z)は、いわゆる低GWP冷媒に該当し、温暖化係数は10未満である。
 本実施形態に係る空調システムにおいて、冷媒は、HFO系冷媒、HFC系冷媒、およびHCFO系冷媒から選択される一種類、または、二種類もしくは三種類の混合物でありうる。すなわち冷媒は、HFO系冷媒のみ、HFC系冷媒のみ、HCFO系冷媒のみ、HFO系冷媒とHFC系冷媒との混合物、HFO系冷媒とHCFO系冷媒との混合物、HFC系冷媒とHCFO系冷媒との混合物、および、HFO系冷媒とHFC系冷媒とHCFO系冷媒との混合物、のいずれでもありうる。また、それぞれの場合において、HFO系冷媒、HFC系冷媒、およびHCFO系冷媒は、単一の化合物であってもよいし、各分類に属する複数の化合物の混合物であってもよい。
〔吸収液〕
 本実施形態に係る空調システム100では、吸収液は、式(1)、式(2)、および式(3)で表される化合物の少なくとも一つを含む。
  R-(OCHCH-OR        (1)
  R-(OCHCH(CH))-OR    (2)
  RCOO-(OCHCH-OR     (3)
 RおよびRは、それぞれ独立して、水素原子または炭素数1以上6以下のアルキル基である。ここで、アルキル基は、直鎖型アルキル基であっても分岐型アルキル基であってもよい。R1およびR2は、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、およびブチル基からなる群から選択されることが好ましい。
 nは、1以上6以下の整数である。ただし、nは、1以上3以下の整数であることが好ましい。
 本実施形態に係る空調システムにおいて、吸収液として、式(1)、式(2)、および式(3)で表される化合物群から選択される一つの化合物を単独で用いてもよいし、二つ以上の化合物を混合して用いてもよい。また、二つ以上の化合物を混合して用いる場合、各化合物の一般式は同一であってもよいし、異なっていてもよい。たとえば、式(1)で表される二種類以上の化合物の混合物を用いてもよいし、式(1)で表される化合物と式(2)で表される化合物との混合物を用いてもよい。
 式(1)で表される化合物としては、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノ2-メチルプロピルエーテル、エチレングリコールブチルエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノヘキシルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールエチルメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールブチルメチルエーテル、トリエチレングリコールジブチルエーテルなどが例示されるが、これらに限定されない。
 式(2)で表される化合物としては、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノプロピルエーテル、トリプロピレングリコールモノブチルエーテルなどが例示されるが、これらに限定されない。
 式(3)で表される化合物としては、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノイソプロピルエーテルアセテート、およびジエチレングリコールモノブチルエーテルアセテートなどが例示されるが、これらに限定されない。
 吸収液は、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールモノヘキシルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールモノプロピルエーテル、およびジエチレングリコールモノエチルエーテルアセテートからなる群から選択される一つ以上の化合物を含むことが好ましい。また、吸収液は、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールモノプロピルエーテル、およびジエチレングリコールモノエチルエーテルアセテートからなる群から選択される一つ以上の化合物を含むことがより好ましい。
〔その他の実施形態〕
 上記の実施形態では、吸収冷凍サイクルと圧縮冷凍サイクルを、冷媒を共用する方式で融合された構成を有する空調システム100(圧縮吸収冷凍サイクル)を例として説明した。しかし、上記の冷媒と吸収液との組み合わせを、圧縮冷凍サイクルを持たない吸収冷凍サイクルに適用してもよい。
 また、上記の実施形態では高圧段部110に圧縮機118が設けられている構成を例として説明したが、本発明に係る吸収冷凍サイクルは圧縮機を有さないものであってもよい。圧縮機を有さない吸収冷凍サイクルを備える空調システムの例を図2および図3に示す。なお、図2および図3では、図1の空調システム100と同じ構成要素については同じ符号を付している。
 図2に示した空調システム200Aでは、空調システム100における気液分離装置130に替えて、蒸発器201および凝縮器202を設けてある。蒸発器201は、冷媒の過冷却器として機能する。再生器114、凝縮器115、冷媒膨張装置116、蒸発器201、ポンプ111および溶液減圧装置112、ならびに溶液熱交換器113からなる吸収冷凍サイクルでは、上記の実施形態に係る冷媒と吸収液との組合せが用いられる。一方、冷媒膨張装置121、蒸発器122、圧縮機123、凝縮器202、および蒸発器201からなる圧縮冷凍サイクルの冷媒は限定されない。空調システム200Aでは、吸収冷凍サイクルの作動圧力が、一般的な水を冷媒とした場合よりも高くなるので、吸収冷凍サイクルを小型化できる。
 図3に示した空調システム200Bでは、吸収冷凍サイクルと圧縮冷凍サイクルとで凝縮器202を共用する方式にしてあり、空調システム200A(図2)と比べると、吸収冷凍サイクルの凝縮器(図2における凝縮器115)が省略されている。これによって、空調システム200Bでは、空調システム200Aに比べてさらなる小型化が可能になる。空調システム200Bでは、再生器114、凝縮器202、冷媒膨張装置116、蒸発器201、ポンプ111および溶液減圧装置112、ならびに溶液熱交換器113が吸収冷凍サイクルを形成し、冷媒膨張装置121、蒸発器122、圧縮機123、凝縮器202、および蒸発器201が圧縮冷凍サイクルを形成する。ここでも、蒸発器201は、冷媒の過冷却器として機能する。なお、凝縮器202を共用するため、空調システム200Bでは吸収冷凍サイクルと圧縮冷凍サイクルとの冷媒が同一であり、上記の実施形態に係る冷媒が用いられる。また、吸収冷凍サイクルで用いられる吸収液も、上記の実施形態の通りである。
 なお上記では、冷媒がHFO系冷媒、HFC系冷媒、およびHCFO系冷媒の少なくとも一つを含む態様の発明の実施形態について説明したが、冷媒がHFO系冷媒およびHFC系冷媒の少なくとも一つを含む態様の発明(HCFO系冷媒が冷媒の候補に含まれない。)も、本明細書において開示されていることが明らかである。すなわち当該発明に係る吸収冷凍サイクルの特徴構成は、温暖化係数が1000未満であり、HFO系冷媒およびHFC系冷媒の少なくとも一つを含む冷媒と、式(1)、式(2)、および式(3)で表される化合物の少なくとも一つを含む吸収液と、を用いて動作することを特徴とする。
  R-(OCHCH-OR        (1)
  R-(OCHCH(CH))-OR    (2)
  RCOO-(OCHCH-OR     (3)
 RおよびRは、それぞれ独立して、水素原子または炭素数1以上6以下のアルキル基であり、nは、1以上6以下の整数である。
 その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本発明の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。したがって、本発明の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本発明の範囲に含まれる。
 以下では、実施例を示して本発明をさらに説明する。ただし、以下の実施例は本発明を限定しない。
〔実施例および比較例の化合物〕
 実施例1:ジエチレングリコールジブチルエーテル
 実施例2、実施例4、および実施例6:トリエチレングリコールブチルメチルエーテル
 実施例3および実施例5:ジエチレングリコールジエチルエーテル
 比較例1:[HMIM][TfN](イオン液体)
 比較例2:[BMIM][TfN](イオン液体)
 比較例3:[BMIM][PF](イオン液体)
 なお、「[HMIM]」は「1-ヘキシル-3-メチルイミダゾリウムカチオン」を表し、「[BMIM]」は「1-ブチル-3-メチルイミダゾリウムカチオン」を表し、「[TfN]」は「ビストリフルオロメチルスルホニルアニオン」を表す。
〔試験方法〕
(試験1)
 実施例および比較例の各化合物について、冷媒としてR1234yfを用いた場合の吸収特性を実測し、吸収冷凍サイクルでの循環比を求めた。循環比を求める際には、蒸発温度10℃、再生温度80℃、吸収温度35℃、および凝縮温度35℃の各温度条件とした。結果を表1に示す。
 表1:実施例および比較例の循環比および冷媒濃度
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の実施例である実施例1~3において、比較例1および2に比べて低い循環比が得られた。このことから、実施例1~3はR1234yfと組み合わせて使用する吸収液として良好な物性を示すことがわかった。
(試験2)
 実施例および比較例の各化合物について、冷媒としてR32を用いた場合の吸収特性を実測し、吸収冷凍サイクルでの循環比を求めた。循環比を求める際には、蒸発温度10℃、再生温度80℃、吸収温度35℃、および凝縮温度35℃の各温度条件とした。結果を表2に示す。
 表2:実施例および比較例の循環比および冷媒濃度
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の実施例である実施例4および実施例5において、比較例3に比べて低い循環比が得られた。このことから、実施例4および実施例5はR32と組み合わせて使用する吸収液として良好な物性を示すことがわかった。
(試験3)
 実施例6の化合物について、冷媒としてR1224yd(Z)を用いた場合の吸収特性を実測し、吸収冷凍サイクルでの循環比を求めた。循環比を求める際には、蒸発温度10℃、再生温度80℃、吸収温度35℃、および凝縮温度35℃の各温度条件とした。結果を表3に示す。
 表3:実施例6の循環比および冷媒濃度
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明の実施例である実施例6において、実施例1~5と同等の循環比が得られた。このことから、実施例6はR1224yd(Z)と組み合わせて使用する吸収液として良好な物性を示すことがわかった。
 本発明は、たとえば空調システム用の吸収冷凍サイクルおよび圧縮吸収冷凍サイクルに利用できる。
 100 :空調システム
 110 :高圧段部
 111 :ポンプ
 112 :溶液減圧装置
 113 :溶液熱交換器
 114 :再生器
 115 :凝縮器
 116 :冷媒膨張装置
 117 :吸収器
 118 :圧縮機
 120 :低圧段部
 121 :冷媒膨張装置
 122 :蒸発器
 123 :圧縮機
 124 :モータ
 130 :気液分離装置

Claims (3)

  1.  温暖化係数が1000未満であり、HFO系冷媒、HFC系冷媒、およびHCFO系冷媒の少なくとも一つを含む冷媒と、
     式(1)、式(2)、および式(3)で表される化合物の少なくとも一つを含む吸収液と、を用いて動作する吸収冷凍サイクル。
      R-(OCHCH-OR        (1)
      R-(OCHCH(CH))-OR    (2)
      RCOO-(OCHCH-OR     (3)
     RおよびRは、それぞれ独立して、水素原子または炭素数1以上6以下のアルキル基であり、
     nは、1以上6以下の整数である。
  2.  RおよびRは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、およびブチル基からなる群から選択され、
     nは、1以上3以下の整数である請求項1に記載の吸収冷凍サイクル。
  3.  請求項1または2に記載の吸収冷凍サイクルと、圧縮冷凍サイクルとが、前記冷媒を共用する方式で融合されている圧縮吸収冷凍サイクル。
PCT/JP2022/012509 2021-03-31 2022-03-18 吸収冷凍サイクルおよび圧縮吸収冷凍サイクル WO2022210007A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22780223.8A EP4317850A1 (en) 2021-03-31 2022-03-18 Absorption refrigeration cycle and compression-absorption refrigeration cycle
JP2023510968A JPWO2022210007A1 (ja) 2021-03-31 2022-03-18
CN202280025755.XA CN117098961A (zh) 2021-03-31 2022-03-18 吸收冷冻循环和压缩吸收冷冻循环

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060735 2021-03-31
JP2021060735 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210007A1 true WO2022210007A1 (ja) 2022-10-06

Family

ID=83456045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012509 WO2022210007A1 (ja) 2021-03-31 2022-03-18 吸収冷凍サイクルおよび圧縮吸収冷凍サイクル

Country Status (4)

Country Link
EP (1) EP4317850A1 (ja)
JP (1) JPWO2022210007A1 (ja)
CN (1) CN117098961A (ja)
WO (1) WO2022210007A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760071U (ja) * 1980-09-19 1982-04-09
JPS57101271A (en) * 1980-12-15 1982-06-23 Hitachi Ltd Cooler for solution circulating pump motor
JPS5861171A (ja) * 1981-10-07 1983-04-12 Matsushita Electric Ind Co Ltd 吸収冷媒組成物
JPH05332633A (ja) 1992-05-29 1993-12-14 Tsukishima Kikai Co Ltd 複合冷凍装置
JP2003307359A (ja) 2002-04-15 2003-10-31 Osaka Gas Co Ltd アンモニア吸収式冷凍機
JP2009047354A (ja) * 2007-08-20 2009-03-05 Osaka Gas Co Ltd 複合ヒートポンプシステム
JP2013249326A (ja) * 2012-05-30 2013-12-12 Central Glass Co Ltd フルオロアルケンを含有する熱伝達媒体
JP2014159926A (ja) * 2013-02-20 2014-09-04 Panasonic Corp 熱機関駆動式蒸気圧縮式ヒートポンプシステム
JP2018507381A (ja) * 2015-01-09 2018-03-15 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Lgwp冷媒を用いる吸収式冷却サイクル

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760071U (ja) * 1980-09-19 1982-04-09
JPS57101271A (en) * 1980-12-15 1982-06-23 Hitachi Ltd Cooler for solution circulating pump motor
JPS5861171A (ja) * 1981-10-07 1983-04-12 Matsushita Electric Ind Co Ltd 吸収冷媒組成物
JPH05332633A (ja) 1992-05-29 1993-12-14 Tsukishima Kikai Co Ltd 複合冷凍装置
JP2003307359A (ja) 2002-04-15 2003-10-31 Osaka Gas Co Ltd アンモニア吸収式冷凍機
JP2009047354A (ja) * 2007-08-20 2009-03-05 Osaka Gas Co Ltd 複合ヒートポンプシステム
JP2013249326A (ja) * 2012-05-30 2013-12-12 Central Glass Co Ltd フルオロアルケンを含有する熱伝達媒体
JP2014159926A (ja) * 2013-02-20 2014-09-04 Panasonic Corp 熱機関駆動式蒸気圧縮式ヒートポンプシステム
JP2018507381A (ja) * 2015-01-09 2018-03-15 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Lgwp冷媒を用いる吸収式冷却サイクル

Also Published As

Publication number Publication date
EP4317850A1 (en) 2024-02-07
JPWO2022210007A1 (ja) 2022-10-06
CN117098961A (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
US10858564B2 (en) Heat-transfer fluids and use thereof in countercurrent heat exchangers
JP6194154B2 (ja) 車両の暖房および/または空調方法
US9683154B2 (en) Heat-transfer fluids and use thereof in countercurrent heat exchangers
EP3739018B1 (en) Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
JP2020040663A (ja) 車両の加熱および/または空調方法
US10215455B2 (en) Heat transmission method and high-temperature heat pump device
KR20160113320A (ko) Lgwp 냉매를 사용한 흡수식 냉각 사이클
JP2012509220A (ja) 車両の暖房および/または空調方法
JP2012509380A (ja) 2,3,3,3−テトラフルオロプロペンを含む組成物、車両の加熱および/または空調方法
WO2015022958A1 (ja) 熱伝達方法及び高温ヒートポンプ装置
WO2016114217A1 (ja) 熱サイクル用作動媒体
US20130104573A1 (en) Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally z-1,1,1,4,4,4-hexafluoro-2-butene in chillers
JP2015214632A (ja) 混合冷媒
US11359122B2 (en) Method for heating and/or air-conditioning in a vehicle
WO2022210007A1 (ja) 吸収冷凍サイクルおよび圧縮吸収冷凍サイクル
JP7117537B2 (ja) 冷凍サイクル用作動媒体の不均化反応の抑制方法および冷凍サイクル用作動媒体の製造方法
JPH07502775A (ja) 冷媒として有用な組成物
Verma et al. A review of alternative to R134a (CH3CH2F) refrigerant
US20090049856A1 (en) Working fluid of a blend of 1,1,1,3,3-pentafluoropane, 1,1,1,2,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane and method and apparatus for using
EP0620837A1 (en) Compositions useful as refrigerants
KR20140091139A (ko) R1234ze를 작동 유체로 사용하며 성능계수 증대를 위해 흡입관 열교환기를 적용한 증기 압축식 냉동/공조 장치
Satsangi et al. R134a refrigerant in vapour compression cycle: a review paper
WO2023026630A1 (ja) 熱媒体
CA2416385C (en) Refrigerant composition
GB2565563A (en) Heat transfer fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510968

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280025755.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022780223

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022780223

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE