WO2022209743A1 - カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法 - Google Patents

カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法 Download PDF

Info

Publication number
WO2022209743A1
WO2022209743A1 PCT/JP2022/010837 JP2022010837W WO2022209743A1 WO 2022209743 A1 WO2022209743 A1 WO 2022209743A1 JP 2022010837 W JP2022010837 W JP 2022010837W WO 2022209743 A1 WO2022209743 A1 WO 2022209743A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
nanotube structure
carbon nanotubes
carbon
bonding
Prior art date
Application number
PCT/JP2022/010837
Other languages
English (en)
French (fr)
Inventor
友章 杉山
秀和 西野
敏康 木薮
克美 金子
Original Assignee
三菱重工業株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 国立大学法人信州大学 filed Critical 三菱重工業株式会社
Priority to US18/284,008 priority Critical patent/US20240166518A1/en
Publication of WO2022209743A1 publication Critical patent/WO2022209743A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/26Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Definitions

  • the present disclosure relates to carbon nanotube structures and methods of making carbon nanotube structures. This application claims priority based on Japanese Patent Application No. 2021-62122 filed in Japan on March 31, 2021, the content of which is incorporated herein.
  • Carbon nanotubes are lightweight and have excellent properties such as conductivity, current capacity, elasticity and mechanical strength, so they are attracting attention as a material to replace metals used in power lines and signal lines. Carbon nanotubes are used as materials for structures such as wires, and are added to resins for the purpose of improving strength.
  • Patent Document 1 discloses a carbon nanotube aggregate having a plurality of carbon nanotubes and a crosslinked structure between the plurality of carbon nanotubes by organic molecules.
  • Patent Document 1 has the problem that it is difficult to manufacture a three-dimensional structure because the carbon nanotubes are joined between the sidewalls.
  • the present disclosure has been made in order to solve the above problems, and aims to provide a carbon nanotube structure and a method for manufacturing the carbon nanotube structure that can easily manufacture a three-dimensional structure. aim.
  • a carbon nanotube structure according to the present disclosure is a carbon nanotube structure in which a plurality of carbon nanotubes are aggregated, and a junction between ends of the carbon nanotubes between the carbon nanotubes, and a junction between the end of the carbon nanotube and the sidewall.
  • a method for manufacturing a carbon nanotube structure according to the present disclosure is a method for manufacturing a carbon nanotube structure in which a plurality of carbon nanotubes are aggregated, and includes an oxidation removal step of oxidizing and removing the ends and sidewalls of the carbon nanotubes between the carbon nanotubes. and a joining step of joining the ends and the ends of the carbon nanotubes and the ends and the sidewalls to obtain a carbon nanotube structure.
  • a carbon nanotube structure and a method for manufacturing the carbon nanotube structure are provided that can easily manufacture a three-dimensional structure. be able to.
  • FIG. 1 is a schematic diagram of a carbon nanotube
  • FIG. FIG. 2 is a diagram showing a junction between ends of single-walled carbon nanotubes and ends of single-walled carbon nanotubes
  • FIG. 4 is a diagram showing a junction between an end of a single-walled carbon nanotube and a side wall of the single-walled carbon nanotube
  • FIG. 2 shows nitrogen adsorption isotherms obtained by performing nitrogen gas adsorption on various carbon nanotube aggregates and carbon nanotube structures.
  • FIG. 4 is a diagram obtained by measuring pores and their pore volumes for various carbon nanotube aggregates and carbon nanotube structures. It is a figure which shows the optical absorption spectrum of the carbon nanotube structure before and behind a joining process.
  • FIG. 1 is a schematic diagram of a single-walled carbon nanotube after an oxidation removal step
  • FIG. 1 is a TEM photograph of a single-walled carbon nanotube after an oxidation removal step
  • 1 is a TEM photograph of a single-walled carbon nanotube after an oxidation removal step
  • FIG. 3 is a diagram showing the relationship between heating temperature, weight reduction rate, surface area, and pore volume in dry oxidation removal.
  • FIG. 3 is a diagram obtained by XPS measurement of carbon nanotubes after dry oxidation removal at 723K.
  • FIG. 4 is a diagram showing the relationship between reaction time with 30% hydrogen peroxide solution, weight reduction rate, and surface area in wet oxidation removal.
  • FIG. 1 is a schematic diagram of a single-walled carbon nanotube after an oxidation removal step
  • FIG. 1 is a TEM photograph of a single-walled carbon nanotube after an oxidation removal step
  • FIG. 3 is a diagram showing the relationship between heating temperature, weight
  • FIG. 4 is a diagram for explaining the preferred amount of linker molecules to be added in the joining step;
  • FIG. 4 is a diagram for explaining the preferred amount of linker molecules to be added in the joining step;
  • FIG. 2 shows electrical conductivity and tensile strength of various carbon nanotube aggregates and carbon nanotube structures. It is a figure which shows the nitrogen adsorption isotherm obtained in the Example.
  • FIG. 2 is a diagram showing the relationship between pores and pore volume obtained in Examples. It is a figure which shows the infrared absorption spectrum obtained in the Example.
  • 1 is a TEM photograph of a carbon nanotube structure obtained in an example.
  • 1 is a TEM photograph of a carbon nanotube structure obtained in an example.
  • 1 is a TEM photograph of a carbon nanotube structure obtained in an example.
  • 1 is a TEM photograph of a carbon nanotube structure obtained in an example.
  • FIG. 1 A carbon nanotube structure and a method for manufacturing the carbon nanotube structure according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 15.
  • FIG. 1 A carbon nanotube structure and a method for manufacturing the carbon nanotube structure according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 15.
  • FIG. 1 A carbon nanotube structure and a method for manufacturing the carbon nanotube structure according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 15.
  • Carbon nanotube structures according to embodiments of the present disclosure have carbon nanotube end-to-end junctions and carbon nanotube end-to-sidewall junctions.
  • the carbon nanotube 10 has a cap-shaped end 1 and a cylindrical side wall 2 .
  • the carbon nanotube 10 mainly consists of a six-membered ring in which carbon atoms are arranged in a hexagonal shape. End 1 contains a five-membered ring in which the carbon atoms are arranged in a pentagon.
  • a single-walled carbon nanotube is a single-walled carbon nanotube, and a multi-walled carbon nanotube is a multi-walled carbon nanotube in which a plurality of cylinders with different diameters are stacked in layers. Note that the carbon nanotube 10 in FIG. 1 is a single-walled carbon nanotube. In the following description, the numbers assigned to FIG. 1 are omitted.
  • the carbon nanotubes forming the carbon nanotube structure according to the embodiment of the present disclosure may be either single-walled carbon nanotubes or multi-walled carbon nanotubes.
  • FIGS. 2 and 3 are observation photographs obtained by TEM observation by the method described later.
  • FIG. 2 is a diagram showing a junction between ends of single-walled carbon nanotubes and ends of single-walled carbon nanotubes.
  • FIG. 3 is a diagram showing a junction between the end of the single-walled carbon nanotube and the side wall of the single-walled carbon nanotube.
  • a method for observing a junction in a carbon nanotube structure will be described.
  • a transmission electron microscope JEOL2100F with double spherical aberration correction manufactured by JEOL Ltd. can be used. 15 to 20 fields of view are photographed at an acceleration voltage of 80 kV and a magnification of 500,000 to 1,500,000 times. The observation photograph obtained is used to confirm the presence or absence of joints between the ends of the carbon nanotubes and joints between the ends of the carbon nanotubes and the sidewalls.
  • the carbon nanotube structure have carbon nanotube end-to-end junctions and carbon nanotube end-to-sidewall junctions.
  • the carbon nanotube structure according to the embodiment of the present disclosure may have a joint portion between the side wall portions of the carbon nanotubes.
  • the carbon nanotube structure according to the embodiment of the present disclosure has a nitrogen adsorption amount of 100 ml (STP)/g or less when the relative pressure P/P 0 is 0 to 0.3 on the nitrogen adsorption isotherm.
  • STP ml
  • the nitrogen adsorption amount never exceeds 100 ml (STP)/g within the range where the relative pressure P/P0 is 0 to 0.3.
  • a nitrogen adsorption isotherm can be obtained by a nitrogen gas adsorption method.
  • FIG. 4 is a nitrogen adsorption isotherm obtained by performing a nitrogen gas adsorption method on various carbon nanotube aggregates and carbon nanotube structures.
  • the carbon nanotube structure according to the embodiment of the present disclosure has a lower nitrogen adsorption amount than other examples, and when the relative pressure P/P 0 is 0 to 0.3, the nitrogen adsorption amount is 100 ml (STP)/g or less.
  • STP ml
  • the nitrogen adsorption amount is almost proportional to the surface area.
  • the carbon nanotube structure according to the embodiment of the present disclosure which adsorbs less nitrogen, has a smaller surface area than the other examples shown in FIG. It is believed that this is because the carbon nanotubes having pores in the ends and sidewalls are joined to each other to close the pores.
  • a method for measuring the nitrogen adsorption amount of the carbon nanotube structure will be described.
  • an apparatus for example, autosorb iQ2 (Quantachrome) manufactured by Anton-Paar is used. Pretreatment is performed at 300 to 500 K for 2 to 4 hours, the measurement temperature is 77 K, and the nitrogen adsorption amount is measured by the nitrogen gas adsorption method. The nitrogen adsorption isotherm is obtained from the measured relative pressure and nitrogen adsorption amount.
  • the carbon nanotube structure according to the embodiment of the present disclosure is a value obtained by dividing the nitrogen adsorption amount when the relative pressure P / P 0 is 0 to 0.3 in the nitrogen adsorption isotherm by the nitrogen adsorption amount before bonding is 0.1 to 0.3.
  • the reason why the nitrogen adsorption amount decreases after bonding (after the bonding step) is considered to be that the carbon nanotubes having pores at the ends and side walls are bonded to each other, which closes the pores and reduces the surface area.
  • the nitrogen adsorption amount ratio before and after bonding is obtained by obtaining the nitrogen adsorption isotherm by the above-described method before and after the bonding step and determining the nitrogen adsorption amount ratio at each relative pressure P/ P0 .
  • the volume of pores with a diameter of 2 nm may be 0.15 cm 3 /nm ⁇ g or less.
  • FIG. 5 is a diagram obtained by measuring pores and their pore volumes for various carbon nanotube aggregates and carbon nanotube structures.
  • the carbon nanotube structure according to the embodiment of the present disclosure has small pores with a diameter of 3 nm or more.
  • the volume of pores with a diameter of 2 nm is smaller than in other examples.
  • aggregates of untreated carbon nanotubes and aggregates of carbon nanotubes after removal by oxidation have a large volume of pores with a diameter of 2 nm.
  • aggregates of untreated carbon nanotubes have a large volume of pores with diameters of 3 to 8 nm.
  • the volume of pores with a diameter of 2 nm and the volume of pores with a diameter of 3 nm or more are small because carbon nanotubes having pores at the ends and sidewalls However, it is considered that the pores are closed by bonding to each other.
  • the pore volume can be obtained by obtaining a nitrogen adsorption isotherm by the nitrogen gas adsorption method described above and determining the pore distribution by the DFT method (density functional theory).
  • the carbon nanotube structure according to embodiments of the present disclosure has a difference between the first absorption peak and the first absorption peak before bonding of 20-90 nm.
  • FIG. 6 is a diagram showing light absorption spectra of the carbon nanotube structure before and after the bonding process. As shown in FIG. 6, the difference between the first absorption peak after the bonding process (at a wavelength of 840 nm in FIG. 6) and the first absorption peak before the bonding process (at a wavelength of 788 nm in FIG. 6) is 52 nm. I understand.
  • the reason why the first absorption peak shifts to the longer wavelength side through the bonding step is that the number of amide bonds between the carbon nanotubes has increased.
  • the presence or absence of an amide bond can be determined by obtaining an infrared absorption spectrum of the carbon nanotube structure.
  • Method for measuring light absorption spectrum A method for measuring the light absorption spectrum will be described.
  • an apparatus for example, V-670 manufactured by JASCO Corporation is used.
  • the light absorption spectrum is measured with a measurement range of 200 to 2500 nm, a scan speed of 200 nm/min, and a measurement interval of 0.1 nm.
  • a method for manufacturing a carbon nanotube structure includes an oxidation removal step of removing an end portion and a side wall portion of a carbon nanotube by oxidation, the end portion and the end portion of the carbon nanotube, and the end portion. and a joining step of joining the sidewalls to obtain a carbon nanotube structure.
  • the oxidation removal step is a step of removing the ends and side walls of the carbon nanotube by oxidation.
  • FIG. 7 is a schematic diagram of a single-walled carbon nanotube after an oxidation removal step. As shown in FIG. 7, the ends of the single-walled carbon nanotubes and part of the sidewalls are oxidized and removed by the oxidation removal step. 8 and 9 are TEM photographs of single-walled carbon nanotubes after the oxidation removal process. In particular, it can be seen from the arrowed portion in FIG. 8 that the ends of the single-walled carbon nanotubes are removed by oxidation.
  • Oxidative removal refers to cutting the carbon bond of the five- or six-membered ring of the carbon nanotube, and adding oxygen to the cut portion for functionalization. Oxidative removal applies to both dry and wet processes, and to both single-walled and multi-walled (two or more walls) carbon nanotubes.
  • Dry oxidation removal and wet oxidation removal can be used as methods for removing the ends and sidewalls of carbon nanotubes by oxidation.
  • carbon nanotubes are put into a reaction tube, and while dry air is introduced into the reaction tube, the reaction tube is heated with an electric furnace.
  • the degree of oxidation removal of the ends and sidewalls of the carbon nanotubes can be controlled.
  • FIG. 10 is a diagram showing the relationship between heating temperature, weight reduction rate, surface area, and pore volume in dry oxidation removal.
  • the single-walled carbon nanotube with a diameter of 2.0 nm has the maximum surface area when the heating temperature is 773 K
  • the single-walled carbon nanotube with a diameter of 1.5 nm has the maximum surface area when the heating temperature is 723 K.
  • the amount of oxidation removal of the ends and sidewalls corresponds to a structure that makes maximum use of the outer and inner surfaces of the carbon nanotube.
  • the triangle plots indicate the surface area
  • the square plots indicate the pore volume.
  • FIG. 11 is a diagram obtained by XPS (X-ray Photoelectron Spectroscopy) measurement of carbon nanotubes after dry oxidation removal at 723K. According to FIG. 11, it can be seen that functional groups are added to the carbon nanotubes by dry oxidation removal.
  • XPS X-ray Photoelectron Spectroscopy
  • wet oxidative removal is effective in oxidative removal of both the ends and sidewalls of carbon nanotubes.
  • an acidic solution such as hydrogen peroxide solution or nitric acid aqueous solution, heated and stirred or refluxed to uniformly remove oxidation at predetermined sites, and then filtered and removed. There is a method of washing.
  • the degree of oxidation removal of the ends and sidewalls of the carbon nanotubes can be controlled.
  • the reaction time is set to 4 hours or longer to sufficiently oxidize and remove the ends and sidewalls of the carbon nanotubes.
  • FIG. 12 is a diagram showing the relationship between reaction time with 30% hydrogen peroxide solution, weight reduction rate, and surface area in wet oxidation removal. According to FIG. 12, when wet oxidation removal is performed using 30% hydrogen peroxide water, the reaction time is set to 4 to 8 hours to increase the surface area, and the ends of carbon nanotubes with a diameter of 2 nm and It can be seen that the sidewall can be sufficiently removed by oxidation.
  • the carbon nanotube structure composed of the carbon nanotubes after oxidation removal has a large amount of nitrogen adsorption, the ends and sidewalls of the carbon nanotubes are removed by oxidation, leaving an untreated carbon nanotube structure. It can be seen that the surface area is larger than that of the carbon nanotube structure composed of carbon nanotubes.
  • the carbon nanotube structure composed of carbon nanotubes after oxidation removal has a large volume of pores with a diameter of 1 to 3 nm. is removed by oxidation.
  • the bonding step is a step of obtaining a carbon nanotube structure by bonding the ends of the carbon nanotubes removed by oxidation in the oxidation removal step and the ends and sidewalls of the carbon nanotubes. Bonding is performed by mixing the carbon nanotubes after the oxidation removal step or after the dispersing step described later with linker molecules. By mixing these, the oxidized and removed (functionalized) portions of the carbon nanotube are joined together by an amide bond. Note that not all of the functionalized moieties may be joined. That is, functionalized moieties may remain after the bonding step.
  • a hydrocarbon having two or more amino groups attached thereto includes, for example, NH 2 —(CH 2 )n—NH 2 .
  • n is preferably 2-18, more preferably 2-12.
  • aromatic compounds having two or more amino groups bonded thereto include 1,12-diaminododecane (DAD), 1,4-phenylenediamine (PDA), 3,3′-diaminobenzidine (DAB), 1,5-diaminonaphthalene (DAN) and 1,6-diaminopyrene (DAP).
  • the side walls of the carbon nanotubes may be bonded together in addition to the above locations.
  • the tertiary amine and conjugation reagent may be added in multiple portions and mixed.
  • the tertiary amine is added to deprotonate the carboxylic acid produced at the ends or sidewalls of the carbon nanotubes.
  • triethylamine is preferred.
  • the reason why the addition is divided into multiple times is to efficiently advance the reaction of the solid carbon nanotubes.
  • it is not particularly limited as long as it is a conjugating reagent, for example, 1H-benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), hexafluorophosphate (benzotriazol-1-yloxy) tripyrroli Dinophosphonium (PyBOP), 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) and the like can be used.
  • BOP 1H-benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate
  • PyBOP hexafluorophosphate
  • DMT-MM 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium
  • the amount of the linker molecule to be added it is preferable to set the amount of the linker molecule to be added appropriately. As shown in FIG. 13, if the amount of linker molecules added is too large, the number of binding chains becomes greater than the functional groups attached to the carbon nanotubes, which may result in insufficient bonding by amide bonds. As shown in FIG. 14, by setting the amount of the linker molecule to be added to an appropriate amount, sufficient bonding can be achieved by the amide bond.
  • FIG. 15 shows an aggregate of carbon nanotubes before bonding (after removal by oxidation), a carbon nanotube structure after bonding without setting the added amount of linker molecules to an appropriate amount, and after bonding with an added amount of linker molecules at an appropriate amount.
  • 1 is a diagram showing electrical conductivity and tensile strength in the carbon nanotube structure of FIG.
  • the carbon nanotube structure after bonding with the appropriate amount of linker molecules added has about 8 times the electrical conductivity and about 5 times the tensile strength of the carbon nanotube aggregate before bonding. It turns out to be double.
  • the carbon nanotube structure after bonding with an appropriate amount of linker molecules added has better conductivity and tensile strength than the carbon nanotube structure after bonding without adding an appropriate amount of linker molecules. is found to improve.
  • the method for producing a carbon nanotube structure may include a dispersing step of dispersing aggregates (bundles) of carbon nanotubes before the oxidation removal step or between the oxidation removal step and the bonding step. good.
  • Carbon nanotubes tend to form aggregates when the sidewalls are bound to each other by van der Waals forces. By dispersing the carbon nanotube aggregates, bonding can be performed more efficiently in the subsequent bonding process.
  • a dispersant containing metal salts of the first metal and the second metal can be used.
  • the first metal include one or more selected from the group consisting of Zn, Ni, Cu, Ag, Mg and Pd.
  • the second metal is a metal different from the first metal, for example, one or more selected from the group consisting of Al, Fe, Co, Ag, Gd, Cu, Ni, Mg, Li, K, and Ca. is mentioned.
  • Dispersants that may be used in embodiments of the present disclosure may be aqueous solvents, non-aqueous solvents, or mixtures of aqueous and non-aqueous solvents.
  • Non-aqueous solvents include chlorine-containing hydrocarbons (methylene chloride, chloroform, chlorobenzene, etc.), nitrogen-containing polar solvents (N,N-dimethylformamide, nitromethane, N-methylpyrrolidone, etc.), sulfur compounds (dimethylsulfoxide, etc.). etc. can be used.
  • the dispersant can be prepared by heating a solution containing a first metal acetate and a second metal nitrate or chloride salt.
  • the acetate of the first metal include zinc acetate (Zn(CH 3 COO) 2.2H 2 O), nickel acetate (Ni(CH 3 COO) 2.4H 2 O ) , copper acetate (Cu(CH 3COO) 2.H2O), silver acetate (Ag(CH3COO)2 ) , magnesium acetate (Mg ( CH3COO ) 2.4H2O ) and palladium acetate ( Pd ( CH3COO ) 2 )
  • the second metal nitrate or chloride salt include aluminum nitrate (Al(NO 3 ) 3.9H 2 O), iron nitrate (Fe(NO 3 ) 3.9H 2 O), cobalt nitrate (Co( NO 3 ) 2.6H 2 O), silver nitrate (AgNO 3
  • a predetermined energy (vibration force, shear force, pressure, temperature, etc.) can be applied from the outside. preferable.
  • the method for manufacturing a carbon nanotube structure may include a sintering step of sintering the carbon nanotube structure after the bonding step.
  • the sintering step the functional groups of the joining portion joined in the joining step are removed to form a carbon-carbon bond.
  • the sintering method is not particularly limited, but for example, a method of preheating the carbon nanotube structure under reduced pressure conditions and then heating it at 1200 to 2100K for 2 to 15 hours can be mentioned.
  • preheating for example, a method of heating in a temperature range of 500 to 680K for 1 to 10 hours can be considered.
  • the heating rate is preferably 5 to 10K/min.
  • an oxidation removal step of removing the end and sidewall of the carbon nanotube by oxidation, the end and the end of the carbon nanotube, and the end and the sidewall and a bonding step of obtaining a carbon nanotube structure by bonding it is possible to manufacture a carbon nanotube structure that can be suitably applied to the manufacture of a three-dimensional structure.
  • a dispersing step of dispersing the carbon nanotube aggregates is provided before the oxidation removal step or between the oxidation removal step and the bonding step. bonding can be performed more efficiently in
  • the strength of the carbon nanotube structure can be further increased by providing a sintering step of sintering the carbon nanotube structure after the bonding step.
  • the carbon nanotube structure according to the embodiment of the present disclosure includes windings for small transformers, small and high-power motors, generators for electric vehicles, ships and electric aircraft, etc., composite resins with improved heat resistance, and It can be suitably used as a heat dissipation material.
  • the carbon nanotube structure according to the first aspect is a carbon nanotube structure in which a plurality of carbon nanotubes 10 are aggregated, and is a junction between the ends 1 of the carbon nanotubes 10 between the carbon nanotubes 10, and It has a joint portion between the end portion 1 of the carbon nanotube 10 and the side wall portion 2 .
  • the carbon nanotube structure having the above-described configuration has a three-dimensional structure by having a junction between the ends 1 of the carbon nanotubes 10 and a junction between the ends 1 of the carbon nanotubes 10 and the side walls 2. It can be suitably used for manufacturing a body. In addition, since the carbon nanotubes 10 are joined by amide bonds, they are less likely to be decomposed by acid or alkali.
  • the carbon nanotube structure according to the second aspect has a nitrogen adsorption amount of 100 ml (STP)/g or less when the relative pressure P/P 0 is 0 to 0.3. This is because the carbon nanotubes 10 having pores in the end portion 1 and the side wall portion 2 are bonded to each other to close the pores.
  • the difference between the first absorption peak and the first absorption peak before bonding is 20-90 nm. This is because the carbon nanotubes 10 are joined by amide bonds.
  • the value obtained by dividing the nitrogen adsorption amount when the relative pressure P/P 0 is 0 to 0.3 by the nitrogen adsorption amount before bonding is 0.1 to 0.3. This is because the carbon nanotubes 10 having pores in the end portion 1 and the side wall portion 2 are joined together to close the pores.
  • a method for manufacturing a carbon nanotube structure according to the first aspect is a method for manufacturing a carbon nanotube structure in which a plurality of carbon nanotubes 10 are aggregated, and an end portion 1 and a side wall portion 2 of the carbon nanotube 10 are formed between the carbon nanotubes 10.
  • the method for manufacturing the carbon nanotube structure having the above configuration is a carbon nanotube structure having a junction between the ends 1 of the carbon nanotubes 10 and a junction between the ends 1 of the carbon nanotubes 10 and the side wall 2. can be manufactured. Therefore, it is possible to manufacture a carbon nanotube structure that can be suitably used for manufacturing a three-dimensional structure. In addition, since a carbon nanotube structure in which the carbon nanotubes 10 are joined by amide bonds can be manufactured, a carbon nanotube structure that is difficult to be decomposed by acid or alkali can be manufactured.
  • the method for manufacturing a carbon nanotube structure according to the second aspect comprises a dispersing step of dispersing the aggregates of the carbon nanotubes 10 before the oxidation removal step or between the oxidation removal step and the bonding step.
  • a method for manufacturing a carbon nanotube structure according to the third aspect includes a sintering step of sintering the carbon nanotube structure after the bonding step.
  • the strength of the carbon nanotube structure can be further increased by sintering the carbon nanotube structure.
  • the aggregates of single-walled carbon nanotubes were heated in dry air to 450-750 K at a heating rate of 2-10 K/min (dry oxidation removal) to oxidize and remove the ends and sidewalls of the carbon nanotubes. .
  • a magnetic stirrer was used to stir the mixture of the dichloromethane and dimethylformamide dispersion and the carbon nanotube aggregates for 30 minutes. After stirring, it was visually confirmed that the carbon nanotube aggregates were dispersed.
  • the carbon nanotubes were bonded by mixing the dispersed carbon nanotubes, linker molecules, triethylamine, and bonding reagent.
  • 1,4-phenylenediamine (PDA) and 3,3′-diaminobenzidine (DAB) were used as linker molecules.
  • 1H-benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) was used as the conjugating reagent.
  • the linker molecule, triethylamine and conjugation reagent were added in multiple portions of 0.5 M each.
  • a carbon nanotube structure was obtained by the above method.
  • the carbon nanotube structure after bonding and the carbon nanotube before bonding were measured under the following conditions to obtain infrared absorption spectra.
  • Measurement method KBr tablet method ( ⁇ 7mm) Sample concentration: 0.2 wt% CNT Measurement range: 4000 cm -1 to 500 cm -1 Resolution: 1 cm -1 Cumulative number of times: 1024 times Measurement atmosphere: Nitrogen
  • Fig. 16 shows the nitrogen adsorption isotherm.
  • the carbon nanotube structure obtained in this example has a lower nitrogen adsorption amount, ie, a smaller surface area, than the other examples. It can be seen from this that the ends and side walls of the carbon nanotubes were joined to each other, and the pores formed at these locations were closed.
  • FIG. 17 shows a diagram showing the relationship between pores and pore volume.
  • the volume of pores with a diameter of 3 nm or more is small, and the volume of pores with a diameter of 2 nm is smaller than in other examples. I understand.
  • the untreated carbon nanotubes and the carbon nanotubes before bonding have a large volume of pores with a diameter of 2 nm.
  • the untreated carbon nanotubes have a large volume of pores with a diameter of 3 to 8 nm.
  • Fig. 18 shows the infrared absorption spectrum. According to FIG. 18, it can be seen that the carbon nanotube structure after bonding has an amide bond.
  • the obtained carbon nanotube structure was sintered.
  • Sintering is performed by preheating at 500 to 680 K for 10 hours under reduced pressure conditions, then heating at a temperature of 1273 to 2073 K for 1 to 5 minutes at a temperature increase rate of 5 to 10 K/min. gone.
  • an electric furnace of ultra-high temperature vacuum atmosphere furnace NEWTONIAN Pascal-40 VP04-A45 manufactured by Nagano Co., Ltd. was used.
  • a carbon nanotube structure and a method for manufacturing the carbon nanotube structure are provided that can easily manufacture a three-dimensional structure. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

このカーボンナノチューブ構造体は、複数のカーボンナノチューブが集合したカーボンナノチューブ構造体であって、カーボンナノチューブの端部と端部との接合部、およびカーボンナノチューブの端部と側壁部との接合部を有する。

Description

カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法
 本開示は、カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法に関する。
 本願は、2021年3月31日に、日本に出願された特願2021-62122号に基づき優先権を主張し、その内容をここに援用する。
 カーボンナノチューブは、軽量であると共に、導電性、電流容量、弾性および機械的強度等の特性に優れるため、電力線および信号線に使用されている金属に代替する材料として注目されている。カーボンナノチューブは、例えば線材等の構造体の材料として使用されたり、また強度向上を目的として樹脂に添加されたりする。
 特許文献1には、複数のカーボンナノチューブと、前記複数のカーボンナノチューブ間に有機分子による架橋構造とを有するカーボンナノチューブ集合体が開示されている。
日本国特開2018-115087号公報
 しかしながら、特許文献1に記載の技術では、カーボンナノチューブが側壁間で接合されているため、3次元の構造体を製造し難いという課題がある。
 本開示は、上記課題を解決するためになされたものであって、3次元の構造体を容易に製造することができる、カーボンナノチューブ構造体およびそのカーボンナノチューブ構造体の製造方法を提供することを目的とする。
 上記課題を解決するために、本開示に係るカーボンナノチューブ構造体は、複数のカーボンナノチューブが集合したカーボンナノチューブ構造体であって、カーボンナノチューブ間でカーボンナノチューブの端部と端部との接合部、およびカーボンナノチューブの端部と側壁部との接合部を有する。
 本開示に係るカーボンナノチューブ構造体の製造方法は、複数のカーボンナノチューブが集合したカーボンナノチューブ構造体の製造方法であって、カーボンナノチューブ間でカーボンナノチューブの端部および側壁部を酸化除去する酸化除去工程と、前記カーボンナノチューブの前記端部および前記端部、並びに、前記端部および前記側壁部を接合することでカーボンナノチューブ構造体を得る接合工程と、を備える。
 本開示のカーボンナノチューブ構造体およびそのカーボンナノチューブ構造体の製造方法によれば、3次元の構造体を容易に製造することができる、カーボンナノチューブ構造体およびそのカーボンナノチューブ構造体の製造方法を提供することができる。
カーボンナノチューブの概略図である。 単層カーボンナノチューブの端部と単層カーボンナノチューブの端部との接合部を示す図である。 単層カーボンナノチューブの端部と単層カーボンナノチューブの側壁部との接合部を示す図である。 種々のカーボンナノチューブ凝集体およびカーボンナノチューブ構造体について窒素ガス吸着法を行うことにより得られた窒素吸着等温線を示す図である。 種々のカーボンナノチューブ凝集体およびカーボンナノチューブ構造体について細孔とその細孔容積とを測定して得られた図である。 接合工程前後でのカーボンナノチューブ構造体の光吸収スペクトルを示す図である。 酸化除去工程後の単層カーボンナノチューブの概略図である。 酸化除去工程後の単層カーボンナノチューブのTEM写真である。 酸化除去工程後の単層カーボンナノチューブのTEM写真である。 乾式酸化除去における、加熱温度と、重量減少率、表面積および細孔の容積との関係を示す図である。 723Kで乾式酸化除去した後のカーボンナノチューブについて、XPS測定することにより得られた図である。 湿式酸化除去における、30%過酸化水素水との反応時間と、重量減少率および表面積との関係を示す図である。 接合工程におけるリンカー分子の好ましい添加量を説明するための図である。 接合工程におけるリンカー分子の好ましい添加量を説明するための図である。 種々のカーボンナノチューブ凝集体およびカーボンナノチューブ構造体の導電性および引張強度を示す図である。 実施例にて得られた、窒素吸着等温線を示す図である。 実施例にて得られた、細孔と細孔容積との関係を示す図である。 実施例にて得られた、赤外線吸収スペクトルを示す図である。 実施例にて得られた、カーボンナノチューブ構造体のTEM写真である。 実施例にて得られた、カーボンナノチューブ構造体のTEM写真である。 実施例にて得られた、カーボンナノチューブ構造体のTEM写真である。
 以下、本開示の実施形態に係るカーボンナノチューブ構造体およびそのカーボンナノチューブ構造体の製造方法について、図1~図15を参照して説明する。
(カーボンナノチューブ構造体)
 本開示の実施形態に係るカーボンナノチューブ構造体は、カーボンナノチューブの端部と端部との接合部、およびカーボンナノチューブの端部と側壁部との接合部を有する。
(カーボンナノチューブ)
 図1に示すように、カーボンナノチューブ10は、キャップ状の端部1と、円筒状の側壁部2とを有する。カーボンナノチューブ10は、主に、炭素原子が六角形に配置された六員環からなる。端部1には、炭素原子が五角形に配置された五員環が含まれる。筒が1層のものが単層カーボンナノチューブであり、直径の異なる複数の筒が層状に重なったものが多層カーボンナノチューブである。
 なお、図1のカーボンナノチューブ10は単層カーボンナノチューブである。以下の説明では図1に付した番号を省略する。
 ここで、本開示の実施形態に係るカーボンナノチューブ構造体を構成するカーボンナノチューブは、単層カーボンナノチューブでも多層カーボンナノチューブでもよい。
(接合部)
 本開示に係るカーボンナノチューブ構造体をTEM(透過型電子顕微鏡)により観察すると、図2および図3に示すように、カーボンナノチューブの端部と端部との接合部、およびカーボンナノチューブの端部と側壁部との接合部を観察することができる。図2および図3は、後述の方法でTEM観察することによって得られた観察写真である。図2は、単層カーボンナノチューブの端部と単層カーボンナノチューブの端部との接合部を示す図である。図3は、単層カーボンナノチューブの端部と単層カーボンナノチューブの側壁部との接合部を示す図である。
(接合部の観察方法)
 カーボンナノチューブ構造体における接合部の観察方法について説明する。
 TEMとしては、例えば、日本電子社製のダブル球面収差補正付透過型電子顕微鏡JEOL2100Fを用いることができる。加速電圧を80kVとして、倍率50万~150万倍の範囲で、任意に15~20視野撮影する。得られた観察写真にて、カーボンナノチューブの端部と端部との接合部、カーボンナノチューブの端部と側壁部との接合部の有無を確認する。得られた観察写真において、少なくともそれぞれ1つ以上のカーボンナノチューブの端部と端部との接合部、およびカーボンナノチューブの端部と側壁部との接合部が観察された場合、そのカーボンナノチューブ構造体がカーボンナノチューブの端部と端部との接合部、およびカーボンナノチューブの端部と側壁部との接合部を有すると判断する。
 なお、本開示の実施形態に係るカーボンナノチューブ構造体は、カーボンナノチューブの側壁部と側壁部との接合部を有していてもよい。
(窒素吸着量)
 本開示の実施形態に係るカーボンナノチューブ構造体は、窒素吸着等温線において、相対圧力P/Pが0~0.3であるとき、窒素吸着量が100ml(STP)/g以下である。換言すると、窒素吸着等温線において、相対圧力P/Pが0~0.3である範囲で、窒素吸着量が100ml(STP)/g超となることが無い。窒素吸着等温線は、窒素ガス吸着法により得ることができる。
 図4は、種々のカーボンナノチューブ凝集体およびカーボンナノチューブ構造体について窒素ガス吸着法を行うことにより得られた窒素吸着等温線である。図4によれば、本開示の実施形態に係るカーボンナノチューブ構造体は、他の例に比べて窒素吸着量が低く、相対圧力P/Pが0~0.3であるとき、窒素吸着量が100ml(STP)/g以下であることが分かる。一方、未処理のカーボンナノチューブの凝集体および酸化除去後のカーボンナノチューブの凝集体は、相対圧力P/Pが上昇するにつれて窒素吸着量が上昇することが分かる。
 窒素吸着量は表面積にほぼ比例する。つまり、窒素吸着量が少ない本開示の実施形態に係るカーボンナノチューブ構造体は、図4に示された他の例よりも表面積が小さいことが分かる。これは、端部および側壁部に細孔を有するカーボンナノチューブが、互いに接合することで細孔が塞がれているためであると考えられる。
(窒素吸着量の測定方法)
 カーボンナノチューブ構造体の窒素吸着量の測定方法について説明する。
 装置は、例えば、Anton-Paar社製のautosorb iQ2(Quantachrome)を用いる。300~500Kで2~4時間の前処理を行い、測定温度は77Kとし、窒素ガス吸着法により窒素吸着量を測定する。なお、窒素吸着等温線は、測定した相対圧力と窒素吸着量とから得られる。
(接合前後での窒素吸着量比)
 本開示の実施形態に係るカーボンナノチューブ構造体は、窒素吸着等温線において、相対圧力P/Pが0~0.3であるときの窒素吸着量を、接合前における窒素吸着量で除した値が0.1~0.3である。接合後(接合工程後)に窒素吸着量が減少するのは、端部および側壁部に細孔を有するカーボンナノチューブが互いに接合することで細孔が塞がれ、表面積が減少したためと考えられる。
 接合前後での窒素吸着量比は、接合工程前後において上述の方法により窒素吸着等温線を得て、各相対圧力P/Pにおける窒素吸着量比を求めることで得る。
(細孔の容積)
 本開示の実施形態に係るカーボンナノチューブ構造体は、径が2nmである細孔の容積が0.15cm/nm・g以下であってもよい。
 図5は、種々のカーボンナノチューブ凝集体およびカーボンナノチューブ構造体について細孔とその細孔容積とを測定して得られた図である。図5に示すように、本開示の実施形態に係るカーボンナノチューブ構造体は、径が3nm以上の細孔の容積が小さい。また、径が2nmである細孔の容積が他の例に比べて小さい。一方、未処理のカーボンナノチューブの凝集体および酸化除去後のカーボンナノチューブの凝集体は、径が2nmである細孔の容積が大きい。また、未処理のカーボンナノチューブの凝集体は、径が3~8nmである細孔の容積が大きい。
 本開示の実施形態に係るカーボンナノチューブ構造体において、径が2nmである細孔の容積および径が3nm以上である細孔の容積が小さいのは、端部および側壁部に細孔を有するカーボンナノチューブが、互いに接合することで細孔が塞がれているためであると考えられる。
(細孔容積と細孔分布の測定法)
 細孔の容積は、上述の窒素ガス吸着法により窒素吸着等温線を得て、DFT法(密度汎関数法)により細孔分布を求めることで得られる。
(光吸収スペクトル)
 本開示の実施形態に係るカーボンナノチューブ構造体は、第1の吸収ピークと、接合前における第1の吸収ピークとの差が20~90nmである。
 図6は、接合工程前後でのカーボンナノチューブ構造体の光吸収スペクトルを示す図である。図6に示すように、接合工程後における第1の吸収ピーク(図6では波長840nm位置)と、接合工程前における第1の吸収ピーク(図6では波長788nm位置)との差が52nmであることが分かる。
 接合工程を経ることで第1の吸収ピークが長波長側へ移動するのは、カーボンナノチューブ間でのアミド結合が増えたためであると考えられる。
 なお、アミド結合の有無は、カーボンナノチューブ構造体の赤外線吸収スペクトルを得ることで判断することができる。
(光吸収スペクトルの測定方法)
 光吸収スペクトルの測定方法について説明する。
 装置は、例えば、日本分光株式会社製のV-670を用いる。測定範囲は200~2500nmとし、スキャン速度は200nm/minとし、測定間隔は0.1nmとして光吸収スペクトルを測定する。
(カーボンナノチューブ構造体の製造方法)
 本開示の実施形態に係るカーボンナノチューブ構造体の製造方法は、カーボンナノチューブの端部および側壁部を酸化除去する酸化除去工程と、前記カーボンナノチューブの前記端部および前記端部、並びに、前記端部および前記側壁部を接合することでカーボンナノチューブ構造体を得る接合工程と、を備える。
(酸化除去工程)
 酸化除去工程は、カーボンナノチューブの端部および側壁部を酸化除去する工程である。図7は、酸化除去工程後の単層カーボンナノチューブの概略図である。図7に示すように、酸化除去工程により、単層カーボンナノチューブの端部と、側壁部の一部とが酸化除去される。図8および図9は、酸化除去工程後の単層カーボンナノチューブのTEM写真である。特に、図8の矢印部を見ると、単層カーボンナノチューブの端部が酸化除去されていることが分かる。
 なお、ここでいう酸化除去とは、カーボンナノチューブの五員環または六員環の炭素結合を切断し、切断箇所に酸素を付与して官能基化することをいう。酸化除去は、乾式および湿式の両方に当てはまり、単層および多層(二層以上の層数)カーボンナノチューブのいずれにも当てはまる。
 カーボンナノチューブの端部および側壁部を酸化除去する方法として、乾式酸化除去と湿式酸化除去とを用いることができる。
(乾式酸化除去)
 カーボンナノチューブのキャップ状の端部は、側壁部に比べて、反応性が高い五員環が含まれているため、カーボンナノチューブの端部は、側壁部よりも、加熱によって酸化されやすい。そのため、乾式酸化除去の場合は、カーボンナノチューブの側壁部も酸化除去されるが、カーボンナノチューブの端部の方が優先して酸化除去される。
 乾式酸化除去の方法としては、例えば、反応管にカーボンナノチューブを入れ、この反応管内に乾燥空気を導入しつつ、電気炉で反応管を加熱する方法が挙げられる。
 乾式酸化除去の際の加熱温度、酸素濃度および加熱時間を調整することによって、カーボンナノチューブの端部および側壁部の酸化除去の度合いを制御することができる。
 図10は、乾式酸化除去における、加熱温度と、重量減少率、表面積および細孔の容積との関係を示す図である。図10によれば、直径が2.0nmの単層カーボンナノチューブは加熱温度が773Kのときに、直径が1.5nmの単層カーボンナノチューブは加熱温度が723Kのときに、表面積が最大となる、すなわち端部および側壁部の酸化除去量は、カーボンナノチューブの外側および内側表面を最大に有効利用できる構造に対応することが分かる。なお、図10において、三角形のプロットは表面積を示し、四角形のプロットは細孔の容積を示す。
 図11は、723Kで乾式酸化除去した後のカーボンナノチューブについて、XPS(X-ray Photoelectron Spectroscopy)測定することにより得られた図である。図11によれば、乾式酸化除去により、カーボンナノチューブに官能基が付与されていることが分かる。
(湿式酸化除去)
 湿式酸化除去は、カーボンナノチューブの端部および側壁部両方の酸化除去に有効である。湿式酸化除去の方法としては、酸性溶液、例えば、過酸化水素水または硝酸水溶液にカーボンナノチューブを浸漬し、加熱して撹拌あるいは還流することで所定の部位の酸化除去を均一に行い、その後濾過および洗浄する方法が挙げられる。
 酸性溶液の濃度、反応時間および温度を制御することによって、カーボンナノチューブの端部および側壁部の酸化除去の度合いを制御することができる。例えば、1~5Mの硝酸水溶液を用いて湿式酸化除去を行う場合は、反応時間を4時間以上とすることでカーボンナノチューブの端部および側壁部を十分に酸化除去することができる。
 図12は、湿式酸化除去における、30%過酸化水素水との反応時間と、重量減少率および表面積との関係を示す図である。図12によれば、30%過酸化水素水を用いて湿式酸化除去を行う場合は、反応時間を4~8時間とすることで表面積が大きくなり、直径が2nmであるカーボンナノチューブの端部および側壁部を十分に酸化除去することができることが分かる。
 また、上述した図4によれば、酸化除去後のカーボンナノチューブにより構成されるカーボンナノチューブ構造体は、窒素吸着量が多いことから、カーボンナノチューブの端部および側壁部が酸化除去されて、未処理カーボンナノチューブにより構成されたカーボンナノチューブ構造体よりも表面積が増大していることが分かる。
 更に、上述した図5によれば、酸化除去後のカーボンナノチューブにより構成されるカーボンナノチューブ構造体は、径が1~3nmである細孔の容積が大きいことから、カーボンナノチューブの端部および側壁部が酸化除去されていることが分かる。
(接合工程)
 接合工程は、酸化除去工程において酸化除去したカーボンナノチューブの端部および端部、並びに、カーボンナノチューブの端部および側壁部を接合することで、カーボンナノチューブ構造体を得る工程である。接合は、酸化除去工程後または後述の分散工程後のカーボンナノチューブと、リンカー分子とを混合することで行う。これらを混合することで、カーボンナノチューブの酸化除去された(官能基化した)部分同士が、アミド結合により接合される。なお、官能基化された部分の全てが接合されなくてもよい。すなわち、接合工程後に、官能基化された部分が残っていてもよい。
 リンカー分子としては、炭化水素または芳香族化合物に2つ以上のアミノ基が結合しているものが好ましい。炭化水素に2つ以上のアミノ基が結合しているものとしては、例えば、NH-(CH)n-NHが挙げられる。nは2~18であることが好ましく、2~12であることがより好ましい。
 芳香族化合物に2つ以上のアミノ基が結合しているものとしては、1,12-ジアミノドデカン(DAD)、1,4-フェニレンジアミン(PDA)、3,3‘-ジアミノベンジジン(DAB)、1,5-ジアミノナフタレン(DAN)、1,6-ジアミノピレン(DAP)が挙げられる。
 なお、接合工程では、上記箇所に加えて、カーボンナノチューブの側壁部と側壁部とを接合してもよい。また、カーボンナノチューブおよびリンカー分子に加えて、三級アミンおよび接合試薬を複数回に分けて添加して、混合してもよい。三級アミンは、カーボンナノチューブの端部あるいは側壁部に生成したカルボン酸の脱プロトン化を行うために添加する。三級アミンであれば、特に限定しないが、トリエチルアミンが好ましい。接合試薬を加えることで、カーボンナノチューブの端部および側壁に存在するカルボキシル基およびリンカー分子に含まれているアミノ基を脱水縮合してアミド結合を形成させ、カーボンナノチューブ間の接合を行うことができる。添加を複数回に分けるのは、固体のカーボンナノチューブの反応を効率的に進めるためである。接合試薬であれば特に限定しないが、例えば、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩(BOP)、ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム(PyBOP)、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)等を用いることができる。
 また、接合工程では、リンカー分子の添加量を適正量とすることが好ましい。図13に示すように、リンカー分子の添加量が多すぎると、カーボンナノチューブに付与された官能基よりも結合鎖が多くなり、アミド結合による接合が十分に行われない場合がある。図14に示すように、リンカー分子の添加量を適正量とすることで、アミド結合により十分に接合することができる。
 図15は、接合前(酸化除去後)のカーボンナノチューブの凝集体、リンカー分子の添加量を適正量とせずに接合した後のカーボンナノチューブ構造体およびリンカー分子の添加量を適正量として接合した後のカーボンナノチューブ構造体における、導電性および引張強度を示す図である。図15によれば、リンカー分子の添加量を適正量として接合した後のカーボンナノチューブ構造体では、接合前のカーボンナノチューブの凝集体と比べて、導電性が約8倍となり、引張強度が約5倍となることが分かる。また、リンカー分子の添加量を適正量として接合した後のカーボンナノチューブ構造体では、リンカー分子の添加量を適正量とせずに接合した後のカーボンナノチューブ構造体に比べても、導電性および引張強度が向上することが分かる。
(分散工程)
 本開示の実施形態に係るカーボンナノチューブ構造体の製造方法では、酸化除去工程の前または酸化除去工程と接合工程との間に、カーボンナノチューブの凝集体(バンドル)を分散する分散工程を備えてもよい。
 カーボンナノチューブは、側壁部同士がファンデルワールス力により互いに結合することで凝集体を形成しやすい。カーボンナノチューブの凝集体を分散することで、後の接合工程において接合をより効率的に行うことができる。
 分散工程では、カーボンナノチューブの凝集体と、分散剤とを混合する。分散剤としては、第1の金属および第2の金属の金属塩を含む分散剤を用いることができる。第1の金属としては、例えば、Zn、Ni、Cu、Ag、MgおよびPdからなる群から選択される1種以上が挙げられる。第2の金属は第1の金属とは異なる金属であり、例えば、Al、Fe、Co、Ag、Gd、Cu、Ni、Mg、Li、K、およびCaからなる群から選択される1種以上が挙げられる。本開示に係る実施形態で用いることができる分散剤は、水系溶媒でも非水系溶媒でもよく、また水系溶媒と非水系溶媒との混合物であってもよい。非水系溶媒としては、塩素含有炭化水素類(メチレンクロリド、クロロホルム、クロロベンゼン等)、窒素含有極性溶媒(N、N-ジメチルホルムアミド、ニトロメタン、N-メチルピロリドン等)、硫黄化合物類(ジメチルスルホキシド等)などを用いることができる。
 分散剤は、第1の金属の酢酸塩と、第2の金属の硝酸塩または塩化物塩とを含む溶液を加熱することで製造することができる。第1の金属の酢酸塩としては、例えば、酢酸亜鉛(Zn(CHCOO)・2HO)、酢酸ニッケル(Ni(CHCOO)・4HO)、酢酸銅(Cu(CHCOO)・HO)、酢酸銀(Ag(CHCOO))、酢酸マグネシウム(Mg(CHCOO)・4HO)および酢酸パラジウム(Pd(CHCOO))からなる群から選択される1種以上が挙げられる。第2の金属の硝酸塩または塩化物塩としては、例えば、硝酸アルミニウム(Al(NO・9HO)、硝酸鉄(Fe(NO・9HO)、硝酸コバルト(Co(NO・6HO)、硝酸銀(AgNO)、硝酸ガドリニウム(Gd(NO・6HO)、硝酸銅(Cu(NO・3HO)、硝酸ニッケル(Ni(NO・6HO)、硝酸マグネシウム(Mg(NO・6HO)、硝酸リチウム(LiNO)、硝酸カリウム(KNO)、硝酸カルシウム(Ca(NO・4HO)、塩化アルミニウム(AlCl・6HO)、塩化鉄(FeCl・6HO)、塩化コバルト(CoCl・6HO)、塩化銀(AgCl)、塩化ガドリニウム(GdCl・6HO)、塩化銅(CuCl・2HO)、塩化マグネシウム(MgCl・6HO)、塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化カルシウム(CaCl・2HO)、および塩化ニッケル(NiCl・6HO)からなる群から選択される1種以上が挙げられる。
 分散工程では、カーボンナノチューブの凝集体を分散するために、カーボンナノチューブの凝集体と分散剤とを混合した後に、外部から所定のエネルギー(振動力、せん断力、圧力、温度など)を加えることが好ましい。
(焼結工程)
 本開示の実施形態に係るカーボンナノチューブ構造体の製造方法は、接合工程の後に、カーボンナノチューブ構造体を焼結する焼結工程を備えてもよい。焼結工程では、接合工程で接合した接合部分の官能基を除去して、炭素-炭素結合させる。
 カーボンナノチューブ構造体を焼結することで、カーボンナノチューブ構造体の強度をより高めることができる。
 焼結の方法は、特に限定されないが、例えは、カーボンナノチューブ構造体を減圧条件下で予備加熱した後、1200~2100Kにて2~15時間加熱する方法が挙げられる。予備加熱としては、例えば、500~680Kの温度域で1~10時間加熱する方法が考えられる。予備加熱後、1200~2100Kに加熱する際は、昇温速度を5~10K/分とすることが好ましい。
(作用効果)
 上記構成のカーボンナノチューブ構造体では、カーボンナノチューブの端部と端部との接合部、およびカーボンナノチューブの端部と側壁部との接合部を有するため、これを用いて3次元の構造体を容易に製造することができる。
 また、上述の特許文献1のように、カーボンナノチューブ間をエステル結合により接合した場合には、カーボンナノチューブ構造体が酸またはアルカリによって分解されやすくなる。しかし、上記構成のカーボンナノチューブ構造体は、カーボンナノチューブ間をアミド結合により接合しているため、酸またはアルカリによって分解されにくい。
 上記構成のカーボンナノチューブ構造体の製造方法では、カーボンナノチューブの端部および側壁部を酸化除去する酸化除去工程と、前記カーボンナノチューブの前記端部および前記端部、並びに、前記端部および前記側壁部を接合することでカーボンナノチューブ構造体を得る接合工程と、を備えるため、3次元の構造体の製造に好適に適用することができる、カーボンナノチューブ構造体を製造することができる。
 また、上記構成のカーボンナノチューブ構造体の製造方法では、酸化除去工程の前または酸化除去工程と接合工程との間に、カーボンナノチューブの凝集体を分散する分散工程を備えることで、後の接合工程において接合をより効率的に行うことができる。
 また、上記構成のカーボンナノチューブ構造体の製造方法では、接合工程の後に、カーボンナノチューブ構造体を焼結する焼結工程を備えることで、カーボンナノチューブ構造体の強度をより高めることができる。
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、本開示の実施形態に係るカーボンナノチューブ構造体は、小型トランス用巻き線、小型・高出力モータ、電気自動車、艦艇および電動航空機等向けの発電機、耐熱性を向上した複合樹脂、並びに、放熱性材料として好適に使用することができる。
<付記>
 各実施形態に記載のカーボンナノチューブ構造体は、例えば以下のように把握される。
 第1の態様に係るカーボンナノチューブ構造体は、複数のカーボンナノチューブ10が集合したカーボンナノチューブ構造体であって、カーボンナノチューブ10間でカーボンナノチューブ10の端部1と端部1との接合部、およびカーボンナノチューブ10の端部1と側壁部2との接合部を有する。
 上記構成のカーボンナノチューブ構造体は、カーボンナノチューブ10の端部1と端部1との接合部、およびカーボンナノチューブ10の端部1と側壁部2との接合部を有することで、3次元の構造体の製造に好適に用いることができる。
 また、カーボンナノチューブ10間をアミド結合により接合しているため、酸またはアルカリによって分解されにくい。
 第2の態様に係るカーボンナノチューブ構造体は、窒素吸着等温線において、相対圧力P/Pが0~0.3であるとき、窒素吸着量が100ml(STP)/g以下である。これは、端部1および側壁部2に細孔を有するカーボンナノチューブ10が互いに接合することで、細孔が塞がれているためである。
 第3の態様に係るカーボンナノチューブ構造体は、第1の吸収ピークと、接合前における第1の吸収ピークとの差が20~90nmである。これは、カーボンナノチューブ10間がアミド結合により接合されているためである。
 第4の態様に係るカーボンナノチューブ構造体は、窒素吸着等温線において、相対圧力P/Pが0~0.3であるときの窒素吸着量を、接合前における窒素吸着量で除した値が0.1~0.3である。これは、端部1および側壁部2に細孔を有するカーボンナノチューブ10同士が接合されることで、細孔が塞がれたためである。
 各実施形態に記載のカーボンナノチューブ構造体の製造方法は、例えば以下のように把握される。
 第1の態様に係るカーボンナノチューブ構造体の製造方法は、複数のカーボンナノチューブ10が集合したカーボンナノチューブ構造体の製造方法であって、カーボンナノチューブ10間でカーボンナノチューブ10の端部1および側壁部2を酸化除去する酸化除去工程と、前記カーボンナノチューブ10の前記端部1および前記端部1、並びに、前記端部1および前記側壁部2を接合することでカーボンナノチューブ構造体を得る接合工程と、を備える。
 上記構成のカーボンナノチューブ構造体の製造方法は、カーボンナノチューブ10の端部1と端部1との接合部、およびカーボンナノチューブ10の端部1と側壁部2との接合部を有するカーボンナノチューブ構造体を製造することができる。そのため、3次元の構造体の製造に好適に用いることができるカーボンナノチューブ構造体を製造することができる。
 また、カーボンナノチューブ10間をアミド結合により接合するカーボンナノチューブ構造体を製造できるため、酸またはアルカリによって分解されにくいカーボンナノチューブ構造体を製造することができる。
 第2の態様に係るカーボンナノチューブ構造体の製造方法は、前記酸化除去工程の前または前記酸化除去工程と前記接合工程との間に、前記カーボンナノチューブ10の凝集体を分散する分散工程を備える。
 上記構成のカーボンナノチューブ構造体の製造方法は、カーボンナノチューブ10の凝集体を分散することで、後の接合工程において接合をより効率的に行うことができる。
 第3の態様に係るカーボンナノチューブ構造体の製造方法は、前記接合工程の後に、前記カーボンナノチューブ構造体を焼結する焼結工程を備える。
 上記構成のカーボンナノチューブ構造体の製造方法は、カーボンナノチューブ構造体を焼結することで、カーボンナノチューブ構造体の強度をより高めることができる。
 以下、実施例について説明するが、実施例での条件は、本開示の実施形態の実施可能性及び効果を確認するために採用した一条件例であり、本開示の実施形態は、この一条件例に限定されるものではない。
 単層カーボンナノチューブの凝集体に対し、2~10K/分の昇温速度で、450~750Kまで乾燥空気中で加熱すること(乾式酸化除去)によりカーボンナノチューブの端部および側壁部を酸化除去した。次に、マグネットスターラーを用いて、ジクロロメタンおよびジメチルホルムアミドの分散液とカーボンナノチューブの凝集体との混合液を30分間攪拌した。攪拌後、カーボンナノチューブの凝集体が分散したことを目視で確認した。
 次に、分散後のカーボンナノチューブと、リンカー分子と、トリエチルアミンと、接合試薬とを混合することで、カーボンナノチューブの接合を行った。リンカー分子として、1,4-フェニレンジアミン(PDA)および3,3‘-ジアミノベンジジン(DAB)を用いた。接合試薬として、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩(BOP)を用いた。リンカー分子、トリエチルアミンおよび接合試薬は、0.5Mずつ、複数回に分けて添加した。
 以上の方法により、カーボンナノチューブ構造体を得た。
 接合後のカーボンナノチューブ構造体と、接合前(酸化除去後且つ分散後)のカーボンナノチューブと、酸化除去前(未処理)のカーボンナノチューブの凝集体とについて、上述の方法により、窒素吸着等温線および細孔と細孔容積との関係を示す図を得た。
 また、接合後のカーボンナノチューブ構造体と、接合前(酸化除去後且つ分散後)のカーボンナノチューブとについて、以下の条件により測定を行うことで、赤外線吸収スペクトルを得た。
測定方法:KBr錠剤法(φ7mm)
試料濃度:0.2wt%CNT
測定範囲:4000cm-1~500cm-1
分解能:1cm-1
積算回数:1024回
測定雰囲気:窒素
 図16に、窒素吸着等温線を示す。図16によれば、本実施例で得られたカーボンナノチューブ構造体(接合後CNT)は、他の例に比べて窒素吸着量が低い、すなわち表面積が小さいことが分かる。これにより、カーボンナノチューブの端部および側壁部が互いに接合することで、これらの箇所に形成された細孔が塞がれたことが分かる。
 図17に、細孔と細孔容積との関係を示す図を示す。図17によれば、本実施例により得られたカーボンナノチューブ構造体は、径が3nm以上の細孔の容積が小さく、また、径が2nmである細孔の容積が他の例に比べて小さいことが分かる。一方、未処理のカーボンナノチューブ、および接合前のカーボンナノチューブは、径が2nmである細孔の容積が大きいことが分かる。また、未処理のカーボンナノチューブは、径が3~8nmである細孔の容積が大きいことが分かる。
 図18に、赤外線吸収スペクトルを示す。図18によれば、接合後のカーボンナノチューブ構造体ではアミド結合を有することが分かる。
 次に、得られたカーボンナノチューブ構造体を焼結した。焼結は、減圧条件下にて、500~680Kで10時間加熱する予備加熱を行った後、昇温速度を5~10K/分とし、1273~2073Kの温度で1~5分間加熱することで行った。焼結には、株式会社ナガノ製の超高温真空・雰囲気炉NEWTONIAN Pascal-40 VP04-A45の電気炉を用いた。
 焼結後、TEM観察により接合部を確認した。図19~21に、TEM観察により得た撮影写真を示す。図18~21によれば、カーボンナノチューブ同士が接合していることが確認できる。
 本開示のカーボンナノチューブ構造体およびそのカーボンナノチューブ構造体の製造方法によれば、3次元の構造体を容易に製造することができる、カーボンナノチューブ構造体およびそのカーボンナノチューブ構造体の製造方法を提供することができる。
1…端部
2…側壁部
10…カーボンナノチューブ

Claims (7)

  1.  複数のカーボンナノチューブが集合したカーボンナノチューブ構造体であって、
     カーボンナノチューブ間でカーボンナノチューブの端部と端部との接合部、およびカーボンナノチューブの端部と側壁部との接合部を有する、カーボンナノチューブ構造体。
  2.  窒素吸着等温線において、相対圧力P/Pが0~0.3であるとき、窒素吸着量が100ml(STP)/g以下である、請求項1に記載のカーボンナノチューブ構造体。
  3.  第1の吸収ピークと、接合前における第1の吸収ピークとの差が20~90nmである、請求項1または2に記載のカーボンナノチューブ構造体。
  4.  窒素吸着等温線において、相対圧力P/Pが0~0.3であるときの窒素吸着量を、接合前における窒素吸着量で除した値が0.1~0.3である、請求項1~3のいずれか一項に記載のカーボンナノチューブ構造体。
  5.  複数のカーボンナノチューブが集合したカーボンナノチューブ構造体の製造方法であって、カーボンナノチューブ間でカーボンナノチューブの端部および側壁部を酸化除去する酸化除去工程と、前記カーボンナノチューブの前記端部および前記端部、並びに、前記端部および前記側壁部を接合することでカーボンナノチューブ構造体を得る接合工程と、を備えるカーボンナノチューブ構造体の製造方法。
  6.  前記酸化除去工程の前または前記酸化除去工程と前記接合工程との間に、前記カーボンナノチューブの凝集体を分散する分散工程と、を備える請求項5に記載のカーボンナノチューブ構造体の製造方法。
  7.  前記接合工程の後に、前記カーボンナノチューブ構造体を焼結する焼結工程と、を備える請求項5または6に記載のカーボンナノチューブ構造体の製造方法。
PCT/JP2022/010837 2021-03-31 2022-03-11 カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法 WO2022209743A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/284,008 US20240166518A1 (en) 2021-03-31 2022-03-11 Carbon nanotube structure and method for producing carbon nanotube structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062122A JP2022157729A (ja) 2021-03-31 2021-03-31 カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法
JP2021-062122 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209743A1 true WO2022209743A1 (ja) 2022-10-06

Family

ID=83456031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010837 WO2022209743A1 (ja) 2021-03-31 2022-03-11 カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法

Country Status (3)

Country Link
US (1) US20240166518A1 (ja)
JP (1) JP2022157729A (ja)
WO (1) WO2022209743A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377503B1 (ja) 2023-06-05 2023-11-10 株式会社日本トリム カーボンナノチューブ成形体、電気化学的水分解用電極およびそれらの製造方法、電気化学的水分解装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512286A (ja) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ カーボンナノチューブの巨視的に配置された集成体
JP2006228864A (ja) * 2005-02-16 2006-08-31 Nec Corp T型構造のナノチューブおよび電界効果トランジスタ並びにそれらの製造方法
JP2008105906A (ja) * 2006-10-26 2008-05-08 Sony Corp 単層カーボンナノチューブヘテロ接合およびその製造方法ならびに半導体素子およびその製造方法
JP2008192695A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd 電極体、その製造方法及び電気二重層キャパシタ
JP2011091797A (ja) * 2009-10-23 2011-05-06 Qinghua Univ 振動板及びその製造方法、振動板を利用したスピーカー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512286A (ja) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ カーボンナノチューブの巨視的に配置された集成体
JP2006228864A (ja) * 2005-02-16 2006-08-31 Nec Corp T型構造のナノチューブおよび電界効果トランジスタ並びにそれらの製造方法
JP2008105906A (ja) * 2006-10-26 2008-05-08 Sony Corp 単層カーボンナノチューブヘテロ接合およびその製造方法ならびに半導体素子およびその製造方法
JP2008192695A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd 電極体、その製造方法及び電気二重層キャパシタ
JP2011091797A (ja) * 2009-10-23 2011-05-06 Qinghua Univ 振動板及びその製造方法、振動板を利用したスピーカー

Also Published As

Publication number Publication date
US20240166518A1 (en) 2024-05-23
JP2022157729A (ja) 2022-10-14

Similar Documents

Publication Publication Date Title
Shamaila et al. Modifications in development of graphene oxide synthetic routes
Qiu et al. Self-standing cuprous oxide nanoparticles on silica@ polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect
Ozden et al. 3D macroporous solids from chemically cross‐linked carbon nanotubes
Jha et al. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids
KR101542041B1 (ko) 전기화학 전지 전극용 전도성 그래핀 중합체 결합제
Mallakpour et al. Use of PVA/α-MnO2-stearic acid nanocomposite films prepared by sonochemical method as a potential sorbent for adsorption of Cd (II) ion from aqueous solution
WO2022209743A1 (ja) カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法
JP6885678B2 (ja) 酸化グラフェン−ナノダイヤモンド結合体の製造方法
KR101337867B1 (ko) 탄소나노물질-고분자 복합체 및 그 제조 방법
JP2014507365A (ja) 多孔質グラフェン材料、その製造方法、及び電極材料としての応用
JP2012530044A (ja) アルカリ金属曝露によってカーボンナノチューブから製造されるグラフェンナノリボン
Pham-Huu et al. Synthesis of CoFe 2 O 4 nanowire in carbon nanotubes. A new use of the confinement effect
US8455047B2 (en) Method for growing carbon nanotubes on clay platelets
US11447392B2 (en) Carbon nanotubes decorated with carbon nanospheres
Marcelino et al. Chemical functionalization of carbon nanotubes and its effects on electrical conductivity
Wang et al. Comparative investigation on combustion property and smoke toxicity of epoxy resin filled with α-and δ-MnO2 nanosheets
Chiu et al. Chemical modification of multiwalled carbon nanotube with the liquid phase method
KR20230092833A (ko) 리튬 이온 배터리용 애노드 슬러리의 제조방법
JP5725799B2 (ja) ナノカーボン水分散体及びその製造方法並びにナノカーボン含有構造体
Zhang et al. Tenon effects at drilled multi-walled carbon nanotubes to strongly enhance mechanical and luminescent properties of epoxy resin composites
US20140275286A1 (en) Rheological molecular rebar
Mahdavi et al. Preparation, characterization and performance study of modified PVDF-based membranes containing palladium nanoparticle-modified graphene hierarchical nanostructures: as a new catalytic nanocomposite membrane
KR100907044B1 (ko) 나노탄소-금속 복합분말 제조방법
KR101249403B1 (ko) 나노복합체 멤브레인 및 이의 제조방법
US9637385B2 (en) Carbon nanotubes and methods of forming same at low temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284008

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779964

Country of ref document: EP

Kind code of ref document: A1