WO2022209639A1 - 制御器及び気化供給装置 - Google Patents

制御器及び気化供給装置 Download PDF

Info

Publication number
WO2022209639A1
WO2022209639A1 PCT/JP2022/010096 JP2022010096W WO2022209639A1 WO 2022209639 A1 WO2022209639 A1 WO 2022209639A1 JP 2022010096 W JP2022010096 W JP 2022010096W WO 2022209639 A1 WO2022209639 A1 WO 2022209639A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve seat
controller
diaphragm
nickel
controller according
Prior art date
Application number
PCT/JP2022/010096
Other languages
English (en)
French (fr)
Inventor
敦志 日高
一輝 田中
貴紀 中谷
和之 森崎
真史 北野
薫 平田
正明 永瀬
功二 西野
信一 池田
Original Assignee
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン filed Critical 株式会社フジキン
Priority to US18/552,826 priority Critical patent/US20240167577A1/en
Priority to KR1020237031330A priority patent/KR20230145432A/ko
Priority to JP2023510759A priority patent/JP7461686B2/ja
Publication of WO2022209639A1 publication Critical patent/WO2022209639A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seats
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means

Definitions

  • the present invention relates to a controller for controlling a fluid, and a vaporization supply device that controls and supplies the flow of gas vaporized by a vaporizer with the controller.
  • Controllers that control fluids and vaporization supply devices are known in semiconductor manufacturing equipment, chemical plants, and the like.
  • the controller includes a body having a flow path, a valve seat interposed in the flow path, a diaphragm that contacts and leaves the valve seat, and an actuator that causes the diaphragm to contact and leave the valve seat.
  • the vaporization supply device includes a vaporizer that heats and vaporizes a liquid raw material, and the controller that controls the vaporized gas.
  • the diaphragm is made of an ultra-thin metal plate. This type of diaphragm is provided with a synthetic resin coating on the side that contacts the valve seat in order to improve sealing performance with the valve seat and to prevent corrosion due to contact with certain types of gas.
  • a fluorine resin for example, is used as the synthetic resin film.
  • the material of the body is generally stainless steel, which has excellent corrosion resistance.
  • part of the synthetic tree coating sometimes disappeared.
  • the disappearance of the synthetic resin film occurred in a portion of the portion that contacts the valve seat.
  • the inventors of the present invention have found that the fluid (raw material gas) to be controlled by the control valve may contain oxygen and water vapor that should not originally be contained in the raw material gas.
  • the decomposition initiation temperature of the synthetic resin coating is lowered when oxygen or water vapor, which should not be contained, is contained, and the decomposition initiation temperature of the synthetic resin coating is increased by changing the material of the valve seat. I found what I can do.
  • a process chamber is connected to the downstream side of the vaporization supply device via a gas supply line, and TEOS (Tetraethyl orthosilicate ) is supplied to the vaporization supply device.
  • An oxygen supply line that supplies oxygen gas may be connected to the gas supply line, and the supplied oxygen gas may flow back upstream through the gas supply line and reach the controller of the vaporization supply device. had a nature.
  • water will enter the raw material liquid supply line.
  • the source gas controlled by the controller contains oxygen and water vapor that should not be contained in the first place.
  • a controller includes a body having an inflow path and an outflow path, a valve seat provided between the inflow path and the outflow path, and the valve
  • the valve seat comprises a diaphragm capable of contacting and separating from a seat, and an actuator for causing the diaphragm to contact and separate from the valve seat, wherein the valve seat is made of nickel, and the diaphragm contacts the valve seat.
  • a synthetic resin coating is provided on the surface of the
  • the material of the valve seat includes nickel and nickel alloy.
  • valve seat is part of the body.
  • the valve body further comprises a valve seat body incorporated in the body, the valve seat being a part of the valve seat body, and the material of the body being stainless steel.
  • a retainer that retains the valve seat body to the body is further provided, and the material of the retainer and the body is stainless steel.
  • the valve seat is nickel-plated on a base material other than nickel.
  • the synthetic resin coating is a fluororesin coating.
  • the material of the valve seat is a material having a decomposition initiation temperature of the synthetic resin coating higher than that of stainless steel.
  • the diaphragm is driven while the fluid containing oxygen atoms is in contact with the synthetic resin film.
  • the fluid containing oxygen atoms contains oxygen and water vapor.
  • a vaporization supply apparatus includes a vaporizer that heats and vaporizes a raw material, and the controller of the present invention that controls the flow of the gas vaporized by the vaporizer. .
  • the decomposition start temperature of the synthetic resin coating can be made higher than the conventional stainless steel valve seat. Therefore, a controller that handles high-temperature fluid, such as a vaporization supply device, can control a higher-temperature fluid.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a vaporization supply device according to the present invention
  • FIG. 1 is a partially enlarged partial cross-sectional view showing an embodiment of a controller according to the present invention
  • FIG. FIG. 3 is a partially enlarged view of FIG. 2
  • It is a graph which shows the thermal decomposition behavior of PFA (perfluoroalkoxyalkane).
  • 1 is a graph showing thermal decomposition behavior of PFA in fluids containing oxygen and water vapor. It is a graph which shows the thermal decomposition behavior of fluorine - type gas (NF3).
  • FIG. 4 is a partially enlarged partial cross-sectional view showing another embodiment of a controller according to the present invention
  • FIG. 4 is a partially enlarged partial cross-sectional view showing another embodiment of a controller according to the present invention
  • FIG. 4 is a partially enlarged partial cross-sectional view showing another embodiment of a controller according to the present invention
  • FIGS. 1 to 9 An embodiment of the present invention will be described below with reference to FIGS. 1 to 9.
  • the same or similar components are denoted by the same reference numerals throughout all drawings and embodiments.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of a vaporization supply device
  • FIG. 2 is a partially enlarged view showing one embodiment of a controller
  • FIG. 3 is a partially enlarged view of FIG.
  • the vaporization supply device 1 includes a vaporizer 2 and a controller 3 connected to the vaporizer 2 .
  • the vaporizer 2 vaporizes the supplied liquid raw material L by heating it.
  • the vaporizer 2 can heat the liquid raw material L to a temperature required for vaporization according to its type.
  • the vaporized raw material gas G is controlled by the controller 3 and supplied to the process chamber 4 or the like connected downstream of the vaporizer 2 .
  • reference numeral 5 indicates a vacuum pump.
  • the controller 3 includes a body 8 having an inflow path 6 and an outflow path 7, a valve seat 9 provided between the inflow path 6 and the outflow path 7, a diaphragm 10 that can be put into and out of contact with the valve seat 9, and an actuator 11 for bringing the diaphragm 10 into contact with and leaving the valve seat 9 .
  • the actuator 11 includes a stem 12 that is supported to reciprocate in the axial direction, and a drive source 13 that operates the stem 12 .
  • the drive source 13 is an air drive source with a built-in air cylinder. can be the source.
  • the stem 12 has a presser foot 14 that abuts the diaphragm 10 .
  • a coil spring 15 urges the stem 12 downward in the figure.
  • the diaphragm 10 is formed in a circular dish shape from an ultra-thin metal plate.
  • the material of the base material of the diaphragm 10 is a metal (including an alloy) such as spron.
  • the diaphragm 10 has, for example, a diameter of 5-50 mm and a thickness of 20-400 ⁇ m.
  • the valve seat 9 shown in FIG. 3 is part of the valve seat body 16 incorporated in the body 8. Specifically, the top of the valve seat body 16 is the valve seat 9 that contacts the diaphragm 10 .
  • the valve seat body 16 has an annular shape.
  • the valve seat body 16 is housed in a first housing portion 17 of the body 8 and held by a holding body 18 .
  • the valve seat body 16 and the retaining body 18 are provided with stepped portions 19, 20 that engage with each other.
  • the holding body 18 is housed in the second housing portion 21 of the body 8 .
  • the retainer 18 comprises a central hole 22 and a plurality of peripheral holes 23 .
  • the valve seat body 16 is engaged with the inner peripheral surface of the central hole 22 .
  • a plurality of peripheral holes 23 communicate with the inflow path 6 .
  • the peripheral portion of the diaphragm 10 is sandwiched between the holder 18 and the ring gasket 24.
  • Ring gasket 24 is pressed against body 8 by bonnet 25 .
  • the bonnet 25 is fixed to the body 8 with a nut 26 screwed onto the body 8 .
  • the holder 18 also functions as a gasket.
  • the diaphragm 10 has a synthetic resin coating 27 on the side that contacts the valve seat 9 .
  • the synthetic resin film 27 is preferably made of fluororesin, which is excellent in heat resistance, chemical resistance, abrasion resistance, non-adhesiveness, insulation, weather resistance, and the like.
  • the fluorine resin is, for example, PFA (perfluoroalkoxyalkane), PTFE resin (polytetrafluoroethylene), or FEP resin (polytetrafluoroethylene/propylene hexafluoride copolymer).
  • the thickness of the synthetic resin coating 27 is, for example, about 20-50 ⁇ m, preferably 30-35 ⁇ m.
  • an adhesive layer with the base metal of the diaphragm 10 can be provided under the fluororesin coating.
  • the adhesive layer can be provided by, for example, a layer of PAI (polyamideimide) having a thickness of 5 to 10 ⁇ m by aging heat treatment.
  • FIG. 4 is a graph showing the test results of evaluating the dependence of the thermal decomposition behavior of PFA on the material of the surface in contact with PFA.
  • the horizontal axis of the graph is temperature, and the vertical axis is absorbance.
  • a PFA test piece was brought into contact with four types of materials in an inert gas (argon gas) atmosphere, and the gas components (C 2 F 4 , C 2 F 3 - ORf) was measured by a Fourier transform infrared spectrophotometer.
  • the decomposition initiation temperature of PFA is higher when it is brought into contact with Ni or NiF 2 than when it is brought into contact with stainless steel (SUS316L) and Al 2 O 3 .
  • the results of conducting the above evaluation test in an air atmosphere containing 20% oxygen concentration and 1% water vapor are shown in the graph of FIG.
  • the thermal decomposition starting temperature of PFA is lower than in the graph of FIG. It is considered that this is because the thermal decomposition of PFA is accelerated by the oxidative decomposition reaction promoting action of oxygen and water vapor on the PFA resin.
  • the graph of FIG. 5 also shows that the decomposition initiation temperature of PFA is higher in Ni than in stainless steel even in an atmosphere containing oxygen and water vapor.
  • FIG. 6 is a graph showing contact surface dependence of thermal decomposition behavior of fluorine-based gas (NF 3 ).
  • the horizontal axis of the graph is the temperature and the vertical axis is the NF3 gas concentration.
  • the materials of the surface contacted with fluorine gas are Ni, Hastelloy, and stainless steel (SUS316L).
  • the composition (% by mass) of Hastelloy (HASTELLOY-C22) is Fe: 4.0, Cr: 21.2, Ni: 54.7, Mo: 13.5, Co: 2.5 or less, W: 4.5 is.
  • the composition (% by mass) of the stainless steel (SUS316L-EP) is Cr: 17.2, Ni: 15.1, Mo: 2.8, and the balance is Fe. From the graph of FIG. 6, it can be seen that the higher the Ni content, the higher the decomposition start temperature of the fluorine-based gas (NF 3 ). This is probably because Ni has lower reactivity with fluorine atoms than other metals.
  • the valve seat 9 in contact with the synthetic resin coating 27, a material having a decomposition start temperature of the synthetic resin coating 27 higher than that of stainless steel is used, and a nickel-based material is used. be done.
  • the valve seat 9 is preferably made of a material having a higher decomposition initiation temperature than stainless steel even when in contact with a fluid containing at least one of oxygen and water vapor.
  • nickel-based material includes nickel and nickel alloys. Nickel alloys include nickel-based alloys such as Hastelloy, Invar, SPRON510, and Inconel.
  • the material of the valve seat body 16 is nickel-based material. Nickel and nickel alloys are considerably more expensive than stainless steel, so the material of the holder 18 and body 8 is preferably stainless steel.
  • FIG. 7 is a partial cross-sectional view showing a controller including another embodiment of the valve seat body.
  • the valve seat body 16 is fitted into an annular concave portion of the holding body 18 and held by the holding body 18 by caulking or the like.
  • the material of the valve seat body 16 is a nickel-based material, and the material of the retainer 18 and the body 8 is preferably stainless steel.
  • FIG. 8 is a partial cross-sectional view showing a controller including still another embodiment of the valve seat body.
  • the valve seat body 16 of FIG. 8 is not separate from the holding body 18 as shown in FIG. 7, but is constructed such that the holding body 18 and the valve seat body 16 of FIG. 7 are integrated.
  • the valve seat body 16 of FIG. 8 thus comprises a central hole 22 and a peripheral hole 23 .
  • the peripheral portion of the valve seat body 16 abuts on the second accommodating portion 21 and the diaphragm 10 and is fixed to the body 8 .
  • the peripheral portion of the central hole 22 of the valve seat body 16 is placed on the first accommodating portion 17 .
  • the material of the valve seat body 16 is a nickel-based material, and preferably the material of the body 8 is stainless steel.
  • valve seat body 16 may be made of stainless steel as a base material, and the base material may be plated with nickel.
  • the matrix can also be copper, iron, or other metals other than nickel.
  • the valve seat 9 is part of the body 8. Therefore, the material of the body 8 is a nickel-based material.
  • the body 8 can be made of a base material of stainless steel and nickel-plated on the base material.
  • the matrix can also be copper, iron, or other metals other than nickel.
  • the decomposition start temperature of the synthetic resin film 27 is higher than that of a valve seat made of stainless steel, even when controlling a fluid containing oxygen and moisture at high temperatures. Therefore, a controller that handles high-temperature fluid, such as a vaporization supply device, can control a higher-temperature fluid.
  • a vaporization supply device in a semiconductor manufacturing line vaporizes a liquid raw material such as TEOS (Tetraethyl orthosilicate) and supplies the vaporized raw material gas to the process chamber 4 .
  • TEOS Tetraethyl orthosilicate
  • the gas passing through the controller may contain oxygen or moisture.
  • an oxygen supply line may be connected in the middle of the gas supply line that connects the vaporizer and the process chamber. In such cases, oxygen may flow back through the gas supply line and reach the vaporizer.
  • moisture may enter the source liquid supply line that supplies the liquid source to the vaporization supply device.
  • the decomposition initiation temperature of the synthetic resin coating of the diaphragm decreases due to the oxidative decomposition reaction promoting action of oxygen and water vapor on the PFA resin. Even in such a situation, as described above, the present invention has a higher decomposition initiation temperature of the synthetic resin film than the conventional stainless steel valve seat. Therefore, it becomes possible to supply a higher temperature fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lift Valve (AREA)
  • Fluid-Driven Valves (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Spray Control Apparatus (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

【課題】ダイヤフラムの合成樹脂被膜の耐消失性を向上し得る流体を制御する制御器、及び前記制御器を備える気化供給装置を提供する。 【解決手段】制御器(3)は、流入路(6)及び流出路(7)を備えるボディ(8)と、流入路(6)と流出路(7)との間に設けられた弁座(9)と、弁座(9)に当離座可能なダイヤフラム(10)と、ダイヤフラム(10)を弁座(9)に当離座させるアクチュエータ(11)と、を備え、弁座(9)の材質は、ニッケルをベースとし、ダイヤフラム(10)は、弁座(9)に当接する側の面に合成樹脂被膜(27)を備える。

Description

制御器及び気化供給装置
 本発明は、流体を制御する制御器、及び、気化器で気化させたガスの流れを前記制御器により制御して供給する気化供給装置に関する。
 半導体製造装置や化学プラント等において、流体を制御する制御器、及び気化供給装置が知られている。(特許文献1、2等)。前記制御器は、流路を備えるボディと、前記流路に介在された弁座と、前記弁座に当離座するダイヤフラムと、前記ダイヤフラムを前記弁座に当離座させるアクチュエータと、を備える。前記気化供給装置は、液体原料を加熱して気化させる気化器と、気化したガスを制御するための前記制御器とを備える。
 前記ダイヤフラムは、極薄金属板で形成される。この種のダイヤフラムは、弁座とのシール性の向上を図るため、及び、ある種のガスとの接触による腐食を防止するため、弁座に当接する側の面に合成樹脂被膜を備える。前記合成樹脂被膜として、例えばフッ素樹脂が用いられる。また、ボディの材質は、耐食性に優れるステンレス鋼が一般的である。
国際公開第2011/067891号パンフレット 国際公開第2016/174832号パンフレット
 しかしながら、前記気化供給装置に組み込まれている一部の制御器において、前記合成樹被膜の一部を消失することがあった。前記合成樹脂被膜の消失は、弁座と接触する部分の一部に生じていた。
 本発明者等は、鋭意研究の結果、前記制御弁が制御すべき流体(原料ガス)に本来含まれていないはずの酸素や水蒸気が存在している可能性があること、原料ガスに本来含まれていないはずの酸素や水蒸気が含まれている場合に前記合成樹脂被膜の分解開始温度が低下すること、及び、弁座の材質を変えることで前記合成樹脂被膜の分解開始温度を高めることができること、を見出した。
 例えば、気化供給装置が組み込まれる半導体製造ラインでは、気化供給装置の下流側にガス供給ラインを介してプロセスチャンバが接続され、気化供給装置の上流側から原料液供給ラインを介してTEOS(Tetraethyl orthosilicate)等の液体原料が気化供給装置に供給される。前記ガス供給ラインには、酸素ガスを供給する酸素供給ラインが接続される場合があり、供給された酸素ガスが前記ガス供給ラインを通じて上流側に逆流し、気化供給装置の制御器まで到達する可能性があった。また、前記原料液供給ラインに水分が混入する可能性があった。このような場合に、制御器で制御される原料ガスに本来含まれていないはずの酸素や水蒸気が含まれている可能性があった。
 上記課題を解決するため、本発明の一態様によれば、制御器は、流入路及び流出路を備えるボディと、前記流入路と前記流出路との間に設けられた弁座と、前記弁座に当離座可能なダイヤフラムと、前記ダイヤフラムを前記弁座に当離座させるアクチュエータと、を備え、前記弁座の材質は、ニッケルをベースとし、前記ダイヤフラムは、前記弁座に当接する側の面に合成樹脂被膜を備える。
 本発明の他の一態様によれば、前記弁座の材質は、ニッケル及びニッケル合金を含む。
 本発明の他の一態様によれば、前記弁座は前記ボディの一部である。
 本発明の他の一態様によれば、前記ボディに組み込まれる弁座体を更に備え、前記弁座は前記弁座体の一部であり、前記ボディの材質はステンレス鋼である。
 本発明の他の一態様によれば、前記弁座体を前記ボディに保持する保持体を更に備え、前記保持体及び前記ボディの材質はステンレス鋼である。
 本発明の他の一態様によれば、前記弁座は、ニッケル以外の母材にニッケルメッキされている。
 本発明の他の一態様によれば、前記合成樹脂被膜は、フッ素樹脂被膜である。
 本発明の他の一態様によれば、前記弁座の材質は、ステンレス鋼よりも前記合成樹脂被膜の分解開始温度が高い材質である。
 本発明の他の一態様によれば、酸素原子を含む流体が前記合成樹脂被膜に接する状態で前記ダイヤフラムが駆動される。
 本発明の他の一態様によれば、前記酸素原子を含む流体は、酸素及び水蒸気を含む。
 また、本発明の一態様によれば、気化供給装置は、原料を加熱して気化させる気化器と、前記気化器によって気化された気体の流れを制御する本発明の前記制御器と、を備える。
 本発明によれば、弁座の材質を、ニッケルをベースとしたことにより、従来のステンレス鋼の弁座よりも合成樹脂被膜の分解開始温度を高くすることができる。そのため、気化供給装置のように高温流体を扱う制御器において、より高温の流体を制御することができる。
本発明に係る気化供給装置の一実施形態を示す概略構成図である。 本発明に係る制御器の一実施形態を示す一部拡大部分断面図である。 図2の部分拡大図である。 PFA(パーフルオロアルコキシアルカン)の熱分解挙動を示すグラフである。 酸素及び水蒸気を含む流体中でのPFAの熱分解挙動を示すグラフである。 フッ素系ガス(NF)の熱分解挙動を示すグラフである。 本発明に係る制御器の他の実施形態を示す一部拡大部分断面図である。 本発明に係る制御器の他の実施形態を示す一部拡大部分断面図である。 本発明に係る制御器の他の実施形態を示す一部拡大部分断面図である。
 本発明の実施形態について、以下に図1~図9を参照しつつ説明する。なお、全図及び全実施形態を通じて同一又は類似の構成要素については同符号を付している。
 図1は気化供給装置の一実施形態を示す概略構成図、図2は制御器の一実施形態を示す部分拡大図、図3は図2の部分拡大図である。
 気化供給装置1は、気化器2と、気化器2に接続された制御器3とを備えている。気化器2は、供給された液体原料Lを加熱することにより気化させる。気化器2は、液体原料Lを、その種類に応じて気化に必要な温度に加熱することができる。気化された原料ガスGは、制御器3で制御されて、気化器2の下流側に接続されるプロセスチャンバ4等に供給される。図中、符号5は真空ポンプを示している。
 制御器3は、流入路6及び流出路7を備えるボディ8と、流入路6と流出路7との間に設けられた弁座9と、弁座9に当離座可能なダイヤフラム10と、ダイヤフラム10を弁座9に当離座させるアクチュエータ11と、を備えている。
 アクチュエータ11は、軸方向に往復動可能に支持されステム12と、ステム12を作動させる駆動源13とを備える。駆動源13は、図示例では、エアシリンダを内蔵するエア駆動源であるが、オイルシリンダを備える油圧駆動源、電磁石を備える電磁式駆動源、圧電素子を備える圧電式駆動源等の公知の駆動源とすることができる。ステム12は、ダイヤフラム10に当接する押え14を備えている。コイルバネ15は、ステム12を図の下方へ付勢する。
 ダイヤフラム10は、極薄金属板により円形の皿状に形成されている。ダイヤフラム10の母材の材質は、スプロン等の金属(合金を含む。)である。ダイヤフラム10は、例えば、直径5~50mm、厚さ20~400μmである。
 図3に示された弁座9は、ボディ8に組み込まれた弁座体16の一部である。具体的には、弁座体16の頂部が、ダイヤフラム10と当座する弁座9である。弁座体16は、円環形状を有している。弁座体16は、ボディ8の第1収容部17に収容され、保持体18によって保持されている。弁座体16と保持体18とは、互いに係合し合う段部19、20を備えている。
 保持体18は、ボディ8の第2収容部21に収容されている。保持体18は、中央孔22と、複数の周囲孔23とを備える。中央孔22の内周面に弁座体16が係合する。複数の周囲孔23は、流入路6と連通する。
 ダイヤフラム10の周縁部は、保持体18とリングガスケット24との間に挟まれている。リングガスケット24は、ボンネット25によってボディ8に押圧されている。ボンネット25は、ボディ8に螺締されたナット26によって、ボディ8に固定されている。保持体18は、ガスケットとしての機能も有する。
 ダイヤフラム10は、弁座9に当接する側の面に、合成樹脂被膜27を備える。合成樹脂被膜27は、耐熱性、耐薬品性、耐摩耗性、非粘着性、絶縁性、耐候性などに優れるフッ素樹脂が好ましい。フッ素樹脂は、例えば、PFA(パーフルオロアルコキシアルカン)、PTFE樹脂(ポリテトラフルオロエチレン)、或いは、FEP樹脂(四フッ化エチレン・六フッ化プロピレン共重合体)である。
 合成樹脂被膜27の厚さは、例えば、20~50μm程度、好ましくは、30~35μmである。合成樹脂被膜27は、例えば、フッ素樹脂被膜の下層に、ダイヤフラム10の母材金属との接着層を設けることができる。前記接着層は、例えば、厚さ5~10μmのPAI(ポリアミドイミド)の層をエージング熱処理により設けることができる。
 図4は、PFAの熱分解挙動に関し、PFAが接触する表面の材質に対する依存性を評価した試験結果を示すグラフである。グラフの横軸が温度、縦軸が吸光度である。評価試験では、PFAのテストピースを、不活性ガス(アルゴンガス)の雰囲気中で4種類の材質と接触させ、PFAの熱分解によって生じたガスの成分(C,C-O-Rf)をフーリエ変換赤外分光光度計によって測定した。図4のグラフから分かるように、PFAの分解開始温度は、ステンレス鋼(SUS316L)及びAlと接触させた場合より、Ni又はNiFと接触させた場合の方が高い。
 次に、上記の評価試験を、酸素濃度20%及び水蒸気1%を含む空気雰囲気中で行った結果を図5のグラフに示す。図5のグラフは、図4のグラフに比べて、PFAの熱分解開始温度が下がっている。これは、酸素及び水蒸気のPFA樹脂に対する酸化分解反応促進作用により、PFAの熱分解が促進されているためと考えられる。また、図5のグラフは、酸素及び水蒸気を含む雰囲気中であっても、PFAの分解開始温度が、ステンレス鋼よりNiの方が高いことを示している。
 図6は、フッ素系ガス(NF)の熱分解挙動の接触表面依存性を示すグラフである。グラフの横軸は温度、縦軸はNFガス濃度である。図6のグラフにおいて、フッ素ガスを接触させた表面の材質は、Ni,ハステロイ、及び、ステンレス鋼(SUS316L)である。ハステロイ(HASTELLOY-C22)の組成(質量%)は、Fe:4.0、Cr:21.2、Ni:54.7、Mo:13.5、Co:2.5以下、W:4.5である。ステンレス鋼(SUS316L-EP)の組成(質量%)は、Cr:17.2、Ni:15.1、Mo:2.8、残部がFeである。図6のグラフから、Ni含有量が多いほど、フッ素系ガス(NF)の分解開始温度が高いことが分る。これは、Niが他の金属に比べて、フッ素原子との反応性が低いためと考えられる。
 上記より、本発明に於いては、合成樹脂被膜27と接触する弁座9の材質として、ステンレス鋼より合成樹脂被膜27の分解開始温度が高い材質が用いられ、ニッケルをベースとする材質が用いられる。特に、弁座9の材質は、酸素及び水蒸気の少なくとも何れかを含む流体と接触する状態においても、ステンレス鋼より合成樹脂被膜27の分解開始温度が高い材質が好ましい。本明細書において「ニッケルをベースとする材質」は、ニッケル及びニッケル合金を含む。ニッケル合金としては、ハステロイ、インバー、SPRON510、インコネル等のニッケル基合金を含む。
 図3に示す実施形態では、弁座体16の材質が、ニッケルをベースとする材質である。ニッケルやニッケル合金は、ステンレス鋼よりかなり高価であるため、好ましくは、保持体18及びボディ8の材質は、ステンレス鋼である。
 図7は、弁座体の他の実施形態を含む制御器を示す部分断面図である。弁座体16は、保持体18の環状凹部に嵌入されて、加締め等により、保持体18に保持されている。この例においても、弁座体16の材質がニッケルをベースとする材質であり、好ましくは、保持体18及びボディ8の材質がステンレス鋼である。
 図8は、弁座体の更に他の実施形態を含む制御器を示す部分断面図である。図8の弁座体16は、図7に示したような保持体18と別体ではなく、図7の保持体18と弁座体16とが一体となったような構成である。従って、図8の弁座体16は、中央孔22及び周囲孔23を備える。また、弁座体16の周縁部が、第2収容部21及びダイヤフラム10に当接し、ボディ8に固定される。また、弁座体16の中央孔22の周縁部が第1収容部17に載置される。この例では、弁座体16の材質はニッケルをベースとする材質であり、好ましくは、ボディ8の材質はステンレス鋼である。
 図3、図7、及び図8に示す構成において、弁座体16は、母材をステンレスとし、その母材にニッケルメッキを施すこともできる。前記母材は、銅、鉄、或いは他のニッケル以外の金属とすることもできる。
 図9に示す実施形態は、弁座9がボディ8の一部である。従って、ボディ8の材質がニッケルをベースとする材質である。図9に示す構成においても、ボディ8は、母材をステンレスとし、その母材にニッケルメッキを施したものとすることができる。前記母材は、銅、鉄、或いは他のニッケル以外の金属とすることもできる。
 上記構成を備える制御器3は、高温下で酸素や水分を含む流体を制御する場合であっても、ステンレス製の弁座に比べて合成樹脂被膜27の分解開始温度が高い。そのため、気化供給装置のように高温流体を扱う制御器において、より高温の流体を制御することができる。
 特に半導体製造ラインの気化供給装置は、TEOS(Tetraethyl orthosilicate)等の液体原料を気化させて、気化した原料ガスをプロセスチャンバ4に供給する。本来は酸素や水蒸気を含まない原料ガスを気化供給装置からプロセスチャンバに供給する場合であっても、制御器を通るガスに酸素や水分が含まれる恐れがある。例えば、気化供給装置とプロセスチャンバとを接続するガス供給ラインの途中に、酸素供給ラインが接続される場合がある。そのような場合に、酸素が前記ガス供給ラインを逆流して気化供給装置に達する恐れがある。また、気化供給装置に液体原料を供給する原料液供給ラインに水分が混入する恐れもある。酸素や水蒸気のPFA樹脂に対する酸化分解反応促進作用によりダイヤフラムの合成樹脂被膜の分解開始温度が低下する。そのような状況であっても、本発明は、上記で説明したように、従来のステンレス製の弁座より、前記合成樹脂被膜の分解開始温度が高い。そのため、より高温の流体を供給することが可能となる。
 本発明は上記実施形態に限定解釈されず、本発明の趣旨を逸脱しない範囲において、種々の変更が可能である。
1 気化供給装置
2 気化器
3 制御器
6 流入路
7 流出路
8 ボディ
9 弁座
10 ダイヤフラム
11 アクチュエータ
16 弁座体
18 保持体
27 合成樹脂被膜

Claims (11)

  1.  流入路及び流出路を備えるボディと、
     前記流入路と前記流出路との間に設けられた弁座と、
     前記弁座に当離座可能なダイヤフラムと、
     前記ダイヤフラムを前記弁座に当離座させるアクチュエータと、を備え、
     前記弁座の材質は、ニッケルをベースとし、
     前記ダイヤフラムは、前記弁座に当接する側の面に合成樹脂被膜を備える、
    制御器。
  2.  前記弁座の材質は、ニッケル及びニッケル合金を含む、請求項1に記載の制御器。
  3.  前記弁座は前記ボディの一部である、請求項1に記載の制御器。
  4.  前記ボディに組み込まれる弁座体を更に備え、前記弁座は前記弁座体の一部であり、前記ボディの材質はステンレス鋼である、請求項1に記載の制御器。
  5.  前記弁座体を前記ボディに保持する保持体を更に備え、前記保持体及び前記ボディの材質はステンレス鋼である、請求項4に記載の制御器。
  6.  前記弁座は、ニッケル以外の母材にニッケルメッキされている、請求項1に記載の制御器。
  7.  前記合成樹脂被膜は、フッ素樹脂被膜である、請求項1に記載の制御器。
  8.  前記弁座の材質は、ステンレス鋼よりも前記合成樹脂被膜の分解開始温度が高い材質である、請求項1に記載の制御器。
  9.  酸素原子を含む流体が前記合成樹脂被膜に接する状態で前記ダイヤフラムが駆動される、請求項1に記載の制御器。
  10.  前記酸素原子を含む流体は、酸素及び水蒸気を含む、請求項9に記載の制御器。
  11.  原料を加熱して気化させる気化器と、
     前記気化器によって気化された気体の流れを制御する、請求項1~10の何れかに記載の制御器と、
    を備える気化供給装置。
PCT/JP2022/010096 2021-04-01 2022-03-08 制御器及び気化供給装置 WO2022209639A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/552,826 US20240167577A1 (en) 2021-04-01 2022-03-08 Controller and vaporization supply device
KR1020237031330A KR20230145432A (ko) 2021-04-01 2022-03-08 제어기 및 기화 공급 장치
JP2023510759A JP7461686B2 (ja) 2021-04-01 2022-03-08 制御器及び気化供給装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063133 2021-04-01
JP2021-063133 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022209639A1 true WO2022209639A1 (ja) 2022-10-06

Family

ID=83458858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010096 WO2022209639A1 (ja) 2021-04-01 2022-03-08 制御器及び気化供給装置

Country Status (5)

Country Link
US (1) US20240167577A1 (ja)
JP (1) JP7461686B2 (ja)
KR (1) KR20230145432A (ja)
TW (1) TWI817396B (ja)
WO (1) WO2022209639A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263576A (ja) * 2003-02-18 2004-09-24 Tadahiro Omi 真空排気系用のダイヤフラム弁
JP2018025293A (ja) * 2016-08-10 2018-02-15 Ckd株式会社 流体制御弁
JP2020045917A (ja) * 2018-09-14 2020-03-26 Ckd株式会社 流体制御弁

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4085012B2 (ja) * 2003-02-13 2008-04-30 忠弘 大見 真空排気系用バルブ
JP5669384B2 (ja) 2009-12-01 2015-02-12 株式会社フジキン 圧電駆動式バルブ及び圧電駆動式流量制御装置
JP6578125B2 (ja) 2015-04-30 2019-09-18 株式会社フジキン 気化供給装置
US11236834B2 (en) * 2019-03-08 2022-02-01 Applied Materials, Inc. Diaphragm valves and methods of operating same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263576A (ja) * 2003-02-18 2004-09-24 Tadahiro Omi 真空排気系用のダイヤフラム弁
JP2018025293A (ja) * 2016-08-10 2018-02-15 Ckd株式会社 流体制御弁
JP2020045917A (ja) * 2018-09-14 2020-03-26 Ckd株式会社 流体制御弁

Also Published As

Publication number Publication date
TWI817396B (zh) 2023-10-01
TW202241582A (zh) 2022-11-01
KR20230145432A (ko) 2023-10-17
JPWO2022209639A1 (ja) 2022-10-06
JP7461686B2 (ja) 2024-04-04
US20240167577A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
CN100376829C (zh) 真空排气系统用的隔膜阀
JP4418571B2 (ja) 高温対応ガス制御バルブ
US8083205B2 (en) Fail safe pneumatically actuated valve with fast time response and adjustable conductance
JP5837869B2 (ja) 原料気化供給装置
US20100012026A1 (en) Evaporation supply apparatus for raw material and automatic pressure regulating device used therewith
CN109899555B (zh) 流体控制阀和流体控制阀的组装方法
JP2004038571A (ja) 流体制御弁
US20110073200A1 (en) Gas regulator with valve assemblies
WO2022209639A1 (ja) 制御器及び気化供給装置
US9304517B2 (en) Flow control device
JP7138192B2 (ja) シリンダ弁並びにシリンダ及びシリンダ弁内の汚染物質の形成を抑制する方法
US11976748B2 (en) Diaphragm valve
TW201932641A (zh) 至低壓製程中之受控蒸氣輸送
JP2007528962A (ja) 原子層沈着のためのダイヤフラムバルブ
TWI835023B (zh) 壓力感測器
JP3393702B2 (ja) 液体材料気化流量制御器
JP2005140260A (ja) 真空比例開閉弁
JPH1020942A (ja) 圧力調整器
WO2013086541A1 (en) Auto shutoff device
JP2005265032A (ja) シート部構造
JP2015503709A (ja) 自動遮断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510759

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237031330

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031330

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18552826

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779863

Country of ref document: EP

Kind code of ref document: A1