WO2022209083A1 - パワー半導体装置 - Google Patents

パワー半導体装置 Download PDF

Info

Publication number
WO2022209083A1
WO2022209083A1 PCT/JP2021/048274 JP2021048274W WO2022209083A1 WO 2022209083 A1 WO2022209083 A1 WO 2022209083A1 JP 2021048274 W JP2021048274 W JP 2021048274W WO 2022209083 A1 WO2022209083 A1 WO 2022209083A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
semiconductor element
conductor plate
distance
semiconductor device
Prior art date
Application number
PCT/JP2021/048274
Other languages
English (en)
French (fr)
Inventor
ひろみ 島津
裕二朗 金子
佑輔 高木
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180092589.0A priority Critical patent/CN116783707A/zh
Priority to DE112021006266.2T priority patent/DE112021006266T5/de
Priority to US18/274,747 priority patent/US20240096727A1/en
Publication of WO2022209083A1 publication Critical patent/WO2022209083A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids

Definitions

  • an object of the present invention is to provide a power semiconductor device that achieves both miniaturization and improved reliability.
  • a power conversion device includes a power semiconductor element, a conductor plate connected to the power semiconductor element, and an insulating layer connected to the surface of the conductor plate opposite to the surface connected to the power semiconductor element. and, wherein the power semiconductor element includes a first power semiconductor element and a second power semiconductor element, and the amount of heat generated by the first power semiconductor element is equal to the first power semiconductor element. 2, the first distance, which is the distance from the end of the first power semiconductor element to the end of the conductor plate, is greater than the end of the second power semiconductor element. is greater than a second distance, which is the distance from the edge to the edge of the conductor plate.
  • FIG. 1 is an external plan view of a power module according to a first embodiment of the present invention
  • excluded the heat radiating member from FIG. 1 is a chip layout diagram of a power semiconductor module according to a first embodiment of the present invention
  • FIG. 6 is a cross-sectional view of FIG. 5 with the flow path forming body removed; A first modification of FIG. A second modification of FIG. Sectional drawing of the power semiconductor module based on the 3rd Embodiment of this invention. Sectional drawing of the power semiconductor module based on the 4th Embodiment of this invention.
  • the heat dissipation member 7 is, for example, a composite material such as Cu, Cu alloy, Cu--C or Cu--CuO, or a composite material such as Al, Al alloy, Al-SiC or Al--C.
  • FIG. 3 is a cross-sectional view of the power semiconductor module with the heat dissipation member removed from FIG.
  • the first power semiconductor element 1 and the second power semiconductor element 11 are arranged on the first conductor plate 3 and the second conductor plate 13 respectively such that the first length L1 is longer than the second length L2. ing. More specifically, of the first length L1 and the second length L2, which are approximately the same length as in the conventional configuration, only the second length L2 is reduced. are placed. The reason for this configuration is that thermal stress during driving of the power semiconductor module 30 may cause damage such as peeling or cracking of the insulating layer 5 .
  • the first power semiconductor element 1 and the second power semiconductor element 11 are separated from each other by the first conductor plate 3 and the second conductor plate so that the first length L1 is longer than the second length L2. 13, respectively.
  • the maximum value of the thermal stress of the insulating layer 5 does not increase, and the effect of the thermal stress on the insulating layer 5 is small because it is joined to the second power semiconductor element 11 having a small amount of heat generation.
  • a second length L2 can be determined by reducing the size of the plate 13 alone. By doing so, the reliability of the power module 100 can be ensured while downsizing can be achieved.
  • the power semiconductor element 1 , 11 spreads out, the effect of improving the heat dissipation can be obtained.
  • FIG. 4 is a chip layout diagram of the power semiconductor module according to the first embodiment of the present invention.
  • the aspect ratio of the first power semiconductor element 1 is smaller than the aspect ratio of the second power semiconductor element 11 . Also, the first conductor plate 3 and the second conductor plate 13 are arranged adjacent to each other in an L shape.
  • the power module 100 has a structure in which the insulating layer 5 is sealed with the sealing resin 9 together with the conductor plates 3, 13, 4, 14, so that when the power semiconductor elements 1, 11 generate heat, The difference in thermal deformation between the conductor plates 3, 13, 4, 14 and the insulating layer 5 caused by the temperature rise is reduced, and the thermal stress generated in the insulating layer 5 connected to the ends 3b, 13b of the conductor plates is also reduced. so damage is less likely to occur. Thereby, a more reliable power semiconductor device can be realized.
  • the first conductor plate 3, the second conductor plate 13, the third conductor plate 4, and the fourth conductor plate 14 are each connected to the insulating layer 5A, and the insulating layer 5A dissipates heat through the connecting material 20. It is connected to a member (channel forming body) 17 .
  • the heat dissipation member 17 has a flow path 17a through which a cooling medium for dissipating heat from the power semiconductor module 30A flows.
  • the surfaces opposite to the surfaces connected to the conductor plates 3, 13, 4, 14 are exposed and fixed with a sealing resin 9A. By doing so, it is possible to seal and fix the power semiconductor module 30A including the insulating layer 5A.
  • the power semiconductor element and the conductor plate are arranged in an L shape, but as shown in FIGS. 7 and 8, while maintaining the relationship between the first length L1 and the second length L2, , the first power semiconductor element 1 and the second power semiconductor element 11 can be arranged on the first conductor plate 3 and the second conductor plate 13, respectively.
  • the maximum length of the sides of the first power semiconductor element 1 is smaller than the maximum length of the sides of the second power semiconductor element 11 .
  • FIG. 9 is a cross-sectional view of a power semiconductor module according to a third embodiment of the invention.
  • the power semiconductor module 30B has a configuration in which the first conductor plate 3B is continuous so that both the first power semiconductor element 1 and the second power semiconductor element 11 are arranged as a set.
  • the third conductor plate 4B, on which the first power semiconductor element 1 and the second power semiconductor element 11 are connected on the side opposite to the side on which the first conductor plate 3B is connected, is also continuous. configuration. By doing so, only the first length L1 and the second length L2 need to be taken into account when arranging the first power semiconductor element 1 and the second power semiconductor element 11 on the conductor plate. It can be arranged without considering the inward ends 3c, 13c (see FIGS. 3 and 5) of the conductor plate shown in the first embodiment.
  • the first length L1 and the second length L2 are larger than the thickness T1 of the first conductor plate, the first power semiconductor element 1 and the second power semiconductor element 11 are Since the heat spreads sufficiently, heat dissipation is improved.
  • an example of a 2-in-1 power semiconductor device is shown, but it is also applicable to a 1-in-1 power semiconductor device in which a structure in which an IGBT and a diode are connected one by one on one conductor plate is packaged. It can also be applied to a 6-in-1 power semiconductor device.
  • the power semiconductor module 30 of the present embodiment may be connected to the heat dissipation member 7 at both ends of the heat dissipation member 7 .
  • FIG. 10 is a cross-sectional view of a power semiconductor module according to a fourth embodiment of the invention.
  • the power semiconductor module 30C of the present embodiment has a structure in which the heat dissipation member 17 is provided only on one side for cooling. Along with this, the insulating layer 5 is also installed only on the side where the heat dissipation member 17 is provided, so that a power conversion device that contributes to further miniaturization can be realized.
  • a power semiconductor device includes a power semiconductor element, a conductor plate connected to the power semiconductor element, an insulating layer 5 connected to the surface of the conductor plate opposite to the surface connected to the power semiconductor element, It has The power semiconductor device includes a first power semiconductor device 1 and a second power semiconductor device 11 .
  • the first distance L1 which is the distance
  • the second distance L2 which is the distance from the end of the second power semiconductor element 11 to the end 13b (13c) of the second conductor plate.
  • Conductive plates include a first conductive plate 3 connected to the first power semiconductor element 1 and a second conductive plate 13 connected to the second power semiconductor element 11 .
  • the first distances L1 and L3 are the cross-sections of the first power semiconductor element 1 passing through the first power semiconductor element 1 and perpendicular to the joint surface between the first conductor plate 3 and the first power semiconductor element 1. It is defined as the distance from the edge to the edge 3b (3c) of the first conductor plate.
  • the second distances L2 and L4 are the second power semiconductor element in a cross section perpendicular to the joint surface between the second conductor plate 13 and the second power semiconductor element 11 through the second power semiconductor element 11. 11 to the end 13b (13c) of the second conductor plate.
  • the third conductor plate 4 is connected to the surface opposite to the surface to which the first conductor plate 3 is connected.
  • a fourth conductor plate 14 is connected to the surface opposite to the surface to which the second conductor plate 13 is connected.
  • the surface opposite to the surface connected to the element 1 and the second power semiconductor element 11 is connected to the heat dissipation member 7 via the insulating layer 5 . By doing so, the power module 100 can be cooled on both sides.
  • the loss of the first power semiconductor device 1 is greater than the loss of the second power semiconductor device 11 . Because of this arrangement, it is necessary to configure the first distance L1 and the second distance L2 to achieve the effects of the present invention.
  • the first power semiconductor element 1 is an IGBT, and the second power semiconductor element 11 is a diode. Because of this arrangement, it is necessary to configure the first distance L1 and the second distance L2 to achieve the effects of the present invention.
  • the aspect ratio of the first power semiconductor element 1 is smaller than the aspect ratio of the second power semiconductor element 11 .
  • the maximum side length of the first power semiconductor element 1 is smaller than the maximum side length of the second power semiconductor element 11 .
  • the first distance L1 is greater than or equal to the third distance L3, and the second distance L2 is greater than or equal to the fourth distance L4.
  • the power semiconductor module 30 is connected to the heat dissipation member 7 at both ends of the heat dissipation member 7 .
  • the effect of the present invention becomes remarkable at the edge where damage such as peeling or cracking of the insulating layer 5 is likely to occur.
  • the ends of the conductor plate can be tapered.
  • the insulating layer to which the first conductor plate and the second conductor plate are connected is made flat to provide insulation. It is desirable that the angle from the corner of the end of the conductor plate in contact with the layer toward the end of the power semiconductor element is 45 degrees or less.
  • the present invention is not limited to the above embodiments, and various modifications and other configurations can be combined without departing from the spirit of the present invention. Moreover, the present invention is not limited to those having all the configurations described in the above embodiments, and includes those having some of the configurations omitted.

Abstract

パワー半導体装置の第1のパワー半導体素子と第2のパワー半導体素子とは、前記第1のパワー半導体素子の発熱量が前記第2のパワー半導体素子の発熱量よりも大きい場合、前記第1のパワー半導体素子の端部から前記導体板の端部までの距離である第1の距離は、前記第2のパワー半導体素子の端部から前記第2のパワー半導体素子と接続される第2の導体板の端部までの距離である第2の距離よりも大きい。

Description

パワー半導体装置
 本発明は、パワー半導体装置に関する。
 近年、環境への負荷を低減するため、ハイブリッド自動車や電気自動車の普及が急務である。こうした車両においては、搭載される部品の小型化や低コスト化が重要視されており、例えば、電力変換装置でもそうした要求に応えるための改善が日々成されている。こうした要求に応えていく結果として、装置の発熱密度は高くなっていくため、電力変換装置の電子部品の中でも発熱量が大きいパワー半導体装置は、冷却性能を向上させる必要がある。
 本願発明の背景技術として、下記の特許文献1では、パワー半導体チップの表裏両面を導電板に半田付けし、導体板を露出した状態で樹脂により封止された封止体であるパワー半導体装置が記載されている。この封止体は、第1および第2の放熱部材を有する金属製ケースに収納され、第1および第2の放熱部材のそれぞれと導体板との間は、熱伝導性の絶縁接着剤(絶縁部材)により接着されている。これにより装置の放熱性能の劣化を防止し、耐熱性を確保した信頼性の高いパワー半導体装置を提供する技術が開示されている。
特開2018-113343号公報
 パワー半導体チップのON/OFFが繰り返されるパワーサイクル時に、発生する熱応力が増加することで、高温が負荷される使用環境下になるが、発熱部と放熱部材の結合部分において、放熱部材である熱伝導性の絶縁性樹脂にも高い熱応力が発生する。これにより、絶縁性樹脂が導体板から離間する可能性があり、電力変換装置の放熱性が悪化することが課題であった。
 そこで、本発明の目的は、小型化と信頼性の向上とを両立させたパワー半導体装置を提供することにある。
 本発明の電力変換装置は、パワー半導体素子と、前記パワー半導体素子と接続される導体板と、前記導体板において前記パワー半導体素子と接続される面とは反対側の面で接続される絶縁層と、を備えたパワー半導体装置であって、前記パワー半導体素子は、第1のパワー半導体素子と、第2のパワー半導体素子と、を含み、前記第1のパワー半導体素子の発熱量が前記第2のパワー半導体素子の発熱量よりも大きい場合、前記第1のパワー半導体素子の端部から前記導体板の端部までの距離である第1の距離は、前記第2のパワー半導体素子の端部から前記導体板の端部までの距離である第2の距離よりも大きい。
 本発明によれば、小型化と信頼性の向上とを両立させたパワー半導体装置を提供できる。
本発明の第1の実施形態に係る、パワーモジュールの外観平面図。 図1のA-A´断面図。 図2から放熱部材を除いたパワー半導体モジュールの断面図。 本発明の第1の実施形態に係る、パワー半導体モジュールのチップレイアウト図。 本発明の第2の実施形態に係る、パワー半導体モジュールの断面図。 図5から流路形成体を除いた断面図。 図4の第1の変形例。 図4の第2の変形例。 本発明の第3の実施形態に係る、パワー半導体モジュールの断面図。 本発明の第4の実施形態に係る、パワー半導体モジュールの断面図。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
(第1の実施形態および全体構成)
 図1は、本発明の第1の実施形態に係る、パワーモジュールの外観平面図である。また、図2は、図1のA-A´断面図である。A-A´線はパワー半導体素子を通る断線である。
 パワーモジュール100は、パワー半導体モジュール30を放熱部材7で両面(図1の手前と奥の両面)から挟んで接続している構成を有している。パワー半導体モジュール30は外部端子31(図1のみ図示)を有しており、パワー半導体モジュール30の構成部分から外部に突出させることで、パワーモジュール100が搭載される電力変換装置が内部に搭載している他の構成部品と接続している。
 放熱部材7は、熱伝導性・導電性を有する金属部材であり、パワー半導体モジュール30と接続されている面とは反対の面で放熱フィン7aを複数有している。放熱フィン7aにより、パワー半導体モジュール30で発生する熱は放熱されている。なお、放熱フィン7aの形状をピンフィンとしたが、他の形状、例えばストレートフィンやコルゲートフィンであっても良い。
 放熱部材7は、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などである。
 放熱部材の端部7b(図2)は、電力変換装置のケース(図示せず)と接合される面である。放熱部材の端部7bとケースの接合方法としては、例えば、FSW(摩擦攪拌接合)、レーザ溶接、ろう付け等を適用することができる。このような接合を用いることで、パワーモジュール100を、水や油、有機物などの冷媒が流れている電力変換装置の流路内に挿入しても、冷媒がパワー半導体モジュール30の内部に侵入しない。
 なお、放熱部材7は一対の別体でパワー半導体モジュール30を挟み込む場合、どちらも同じ素材の部材として示しているが、放熱性を持つものであればそれぞれが別の素材の部材でもよい。また、放熱部材7は別体の部材として挟むような形で示されているが、一体化されていてもよい。
 パワー半導体モジュール30は、第1パワー半導体素子1および第2パワー半導体素子11と、第1パワー半導体素子1に接続される第1導体板3および第3導体板4と、第2パワー半導体素子11に接続される第2導体板13および第4導体板14と、を有している。パワー半導体モジュール30は、封止樹脂9によってモールドされることで、部品の接続固定の補強をしている。
 図3は、図2から放熱部材を除いたパワー半導体モジュールの断面図である。
 パワー半導体モジュール30において、第1パワー半導体素子1の一方の端部から第1導体板3の同じ一方の端部3bまでの距離を第1の長さL1、第2パワー半導体素子11の一方の端部から第2導体板13の同じ一方の端部13bまでの距離を第2の長さL2、第1パワー半導体素子1のもう一方の端部から第1導体板3の同じもう一方の端部3cまでの距離を第3の長さL3、第2パワー半導体素子11のもう一方の端部から第2導体板13の同じもう一方の端部13cまでの距離を第4の長さL4、第1パワー半導体素子1の一方の端部から第3導体板4の同じ一方の端部までの距離を第5の長さL5、第2パワー半導体素子11の一方の端部から第4導体板14の同じ一方の端部までの距離を第6の長さL6、と定義する。また、第1導体板3の厚さをT1、第2導体板13の厚さをT2、と定義する。
 第1導体板3、第2導体板13は、それぞれ第1パワー半導体素子1と接続される面とは反対側の面で、絶縁層5を介して放熱部材7(図2参照)と接続される。また、第3導体板4、第4導体板14は、それぞれ第2パワー半導体素子11と接続される面とは反対側の面で、絶縁層5を介して放熱部材7と接続される。これにより、パワー半導体モジュール30から絶縁層5を熱伝導して放熱できる構造になっている。
 なお、第1導体板3、第2導体板13、第3導体板4、第4導体板14は、例えば、銅、銅合金、あるいはアルミニウム、アルミニウム合金などにより形成されている。
 また、図3では省略しているが、実際には、第1導体板3、第2導体板13、第3導体板4、第4導体板14には、必要に応じて外部の基板(図示せず)からリード接続されているか、もしくはリードが一体に形成されている構成である。
 絶縁層5は、熱伝導率が高い絶縁部材であり、かつ、絶縁耐圧が大きい材料で形成されている。例えば、この絶縁層5の材料として、酸化アルミニウム(アルミナ)、窒化アルミニウム等の微粉末、炭素などを含有する絶縁シートまたは接着剤を用いることができる。
 また、絶縁層5は、図3の上下方向において、パワー半導体モジュール30のうちモールド樹脂9で覆われていない部分であり露出している面である、第1導体板3の下面、第2導体板13の下面、第3導体板4の上面、第4導体板14の上面、を被覆している。なお、第1導体板3の下面と第2導体板13の下面とは、封止樹脂9の下面と面一である。また、第3導体板4の上面と第4導体板14の上面とは、封止樹脂9の上面と面一である。
 第1パワー半導体素子1が接合される第1導体板3と、第2パワー半導体素子11が接合される第2導体板13は、互いに隣接して配置されている。また、第1パワー半導体素子1が接合される第3導体板4と、第2パワー半導体素子11が接合される第4導体板14は、互いに隣接して配置されている。
 第1パワー半導体素子1と第1導体板3および第3導体板4それぞれとの間、および、第2パワー半導体素子11と第2導体板13および第4導体板14それぞれとの間、には熱伝導性の接合材10が設けられている。
 図3で定義した、第1~第6の長さL1~L6について説明する。第1パワー半導体素子1は第2パワー半導体素子11よりも損失が大きいパワー半導体素子である。また、車両の駆動時の第1パワー半導体素子1の発熱量は第2パワー半導体素子11の発熱量よりも大きい。よって、第1パワー半導体素子1の平均温度は第2パワー半導体素子11よりも高くなる。この場合、例えば、第1パワー半導体素子1はIGBT、第2パワー半導体素子11はダイオードである。
 第1の長さL1と第3の長さL3とは、第1パワー半導体素子1を通り第1導体板3と第1パワー半導体素子1との接合面に垂直な断面において、第1パワー半導体素子1の端部から第1導体板3の端部3bまたは端部3cまでの距離として、それぞれ定義される。
 第2の長さL2と第4の長さL4とは、第2パワー半導体素子11を通り第1導体板3と第2パワー半導体素子11との接合面に垂直な断面において、第2パワー半導体素子11の端部から第2導体板13の端部13bまたは端部13cまでの距離として、それぞれ定義される。
 第1の長さL1が第2の長さL2よりも大きくなるように、第1パワー半導体素子1および第2パワー半導体素子11は、第1導体板3および第2導体板13にそれぞれ配置されている。より具体的には、従来の構成と比較して、同程度の長さであった第1の長さL1と第2の長さL2のうち、第2の長さL2のみを小さくするようにして配置している。このように構成する理由は、パワー半導体モジュール30の駆動時の熱応力が原因で、絶縁層5のはく離やクラックなどの損傷が発生する懸念があるためである。
 例えば、放熱部材7等の冷却媒体などで冷却された状態でパワー半導体モジュール30を駆動し、第1のパワー半導体素子1および第2のパワー半導体素子11に通電した場合、第1のパワー半導体素子1および第2のパワー半導体素子11が発熱して、パワーモジュール100内部の温度が上昇する。
 各部材は、そのときの温度上昇に応じて伸び変形が生じるが、その変形量には差がある。特に、導体板3,13,4,14と放熱部材7とは、変形量の差により絶縁層5には熱応力が発生する。絶縁層5に熱応力が発生する最大の原因は、導体板の端部3b,13bの温度であり、導体板の端部3b、13bの温度が高いほど、熱応力が大きくなる。なお、発熱体であるパワー半導体素子1およびパワー半導体素子11の温度が最も高く、つづいて順に、導体板3,13,4,14(順不同)、絶縁層5、放熱部材7という順に高温である。
 ここで、絶縁層5に対しての熱応力の影響を回避するために、第1の長さL1と、第2の長さL2を大きくさせ、発熱体である第1のパワー半導体素子1や第2のパワー半導体素子11から第1導体板の端部3bや第2導体板の端部13bまでの距離を長くして、これらの発熱体からの発熱による端部3b,13bの温度上昇を抑える方法がある。しかし、この方法を採用すると、熱応力による絶縁層5の損傷を防止することができる一方で、パワーモジュール100が大型化する懸念がある。
 したがって、第1パワー半導体素子1の発熱量は第2パワー半導体素子11の発熱量よりも大きいので、第1導体板の端部3bが第1導体板3の絶縁層5にかける熱応力は、第2導体板の端部13bが第2導体板13の絶縁層5にかける熱応力よりも高くなる。そのため、第1の長さL1と、第2の長さL2が同じ場合は、駆動時の第1導体板の端部3bの温度は、第2導体板の端部13bの温度よりも高くなる。これにより、伸び変形の変形量の差による絶縁層5の剥離やクラックなどの損傷が発生しやすくなる。
 以上の理由により、第1の長さL1が第2の長さL2よりも大きくなるように、第1パワー半導体素子1および第2パワー半導体素子11は、第1導体板3および第2導体板13にそれぞれ配置されている。これにより、絶縁層5の熱応力の最大値は増加することがなく、発熱量が小さい第2のパワー半導体素子11と接合されていることで絶縁層5に対する熱応力の影響が小さい第2導体板13のみのサイズを小さくした第2の長さL2を決めることができる。このようにすることで、パワーモジュール100の信頼性を確保しつつ小型化も実現できる。
 なお、第3の長さL3と第4の長さL4の関係は、第1の長さL1と第2の長さL2の関係と同様である。
 また、第1の長さL1を第1導体板の厚さT1よりも大きく、第2の長さL2を第2導体板の厚さT2よりも大きくする構成を合わせることで、パワー半導体素子1,11から発生する熱が広がることにより、放熱性が向上する効果を得られる。
 また、さらに、第1パワー半導体素子1の面積よりも、第2パワー半導体素子の面積を小さくすることにより、パワーモジュール100のサイズをさらに小型化できる。
 第5の長さL5は、第6の長さL6よりも大きい。これにより、第3導体板4および第4導体板14と接続される絶縁層5において、導体板4および14の端部での熱応力による損傷を防止しつつ、導体板4および14の小型化を実現できる。
 また、第1の長さL1と第5の長さL5の関係をL1≧L5、第2の長さL2と第6の長さL6の関係をL2≧L6とする。このようにすることで、絶縁層5の損傷を防止しつつ小型化が実現できる。
 図4は、本発明の第1の実施形態に係る、パワー半導体モジュールのチップレイアウト図である。
 図5に、第1のパワー半導体素子1と第2のパワー半導体素子11の平面レイアウト図を示す。図5では、第1導体板3に第1のパワー半導体素子1と第2のパワー半導体素子11がひとつずつ配置されている。同様に、第2導体板13に、第1のパワー半導体素子1と第2のパワー半導体素子11がひとつずつ配置されている。第1導体板3と第2導体板は電気的に分離された状態で隣接配置されている。A-A´断線の位置は、図1で示したA-A´断線の位置と同じである。
 第1パワー半導体素子1の縦横比(アスペクト比)は、第2パワー半導体素子11の縦横比よりも小さい。また、第1導体板3と第2の導体板13をL字型に隣接させ配置する。
 このようにすることで、パワー半導体モジュール30(図3参照)のサイズを小さくすることができる効果も得られる。これらにより、パワー半導体モジュール30の導体板端部に接続されている絶縁部材5の損傷を抑制することができるため、パワー半導体モジュール30の放熱性能が向上し、信頼性の高い電力変換装置が実現できる。
 以上の実施形態により、パワーモジュール100では絶縁層5が封止樹脂9により導体板3,13,4,14とともに封止された構造をしていることにより、パワー半導体素子1,11が発熱時に発生する温度上昇によって生じる導体板3,13,4,14と絶縁層5の熱変形差が小さくなり、導体板の端部3b,13bに接続している絶縁層5に発生する熱応力も小さくなるため、損傷が発生しにくくなる。これにより、さらに信頼性の高いパワー半導体装置が実現できる。
(第2の実施形態)
 図5は、本発明の第2の実施形態に係る、パワー半導体モジュールの断面図である。また、図6は、図5から流路形成体を除いた断面図である。
 パワー半導体モジュール30Aにおいて、第1導体板3,第2導体板13,第3導体板4,第4導体板14は、絶縁層5Aにそれぞれ接続され、絶縁層5Aは接続材20を介して放熱部材(流路形成体)17に接続されている。放熱部材17は流路17aを有しており、内部にパワー半導体モジュール30Aの放熱を行う冷却媒体が流れている。
 図6に示す通り、この実施形態では、導体板3,13,4,14と接続されている面とは反対側の面で表出するように封止樹脂9Aで封止固定されている。このようにすることで、絶縁層5Aも含めたパワー半導体モジュール30Aの封止固定が可能になる。
(第1の変形例、第2の変形例)
 図7および図8は、図4の第1の変形例および第2の変形例である。
 図4では、L字型にパワー半導体素子と導体板を配置したが、図7および図8に示すように、第1の長さL1と第2の長さL2との関係性を維持させつつ、第1パワー半導体素子1と第2パワー半導体素子11を第1導体板3および第2導体板13に配置させることもできる。なお、第1パワー半導体素子1の辺の長さの最大値は、第2パワー半導体素子11の辺の長さの最大値より小さい。
(第3の実施形態)
 図9は、本発明の第3の実施形態に係る、パワー半導体モジュールの断面図である。
 パワー半導体モジュール30Bは、第1導体板3Bが、第1のパワー半導体素子1と第2のパワー半導体素子11の両方がセットで配置されるように一続きになっている構成である。それに伴い、第1のパワー半導体素子1と第2のパワー半導体素子11とが、第1導体板3Bと接続される側とは反対側で接続される第3導体板4Bも、一続きになっている構成である。このようにすることで、第1のパワー半導体素子1と第2のパワー半導体素子11の導体板における配置で、第1の長さL1と第2の長さL2だけを考慮すればよく、第1の実施形態で示した導体板の内向きの端部3c,13c(図3,図5参照)を考慮する必要なく配置できる。
 また、この実施形態の場合、第1の長さL1と第2の長さL2が第1導体板の厚さT1よりも大きいことで、第1パワー半導体素子1および第2パワー半導体素子11の熱が十分に広がるため、放熱性が向上されている。
 なお、本実施形態では、2in1のパワー半導体装置の例を示したが、1つの導体板上に、IGBTとダイオードが一つずつ接続された構造がパッケージ化された1in1のパワー半導体装置にも適用でき、また、6in1のパワー半導体装置にも適用できる。
 なお、本実施形態のパワー半導体モジュール30は、放熱部材7との接続を放熱部材7の両端部で接続するようにしてもよい。
(第4の実施形態)
 図10は、本発明の第4の実施形態に係る、パワー半導体モジュールの断面図である。
 本実施形態のパワー半導体モジュール30Cでは、放熱部材17を片面だけ設けて冷却させる構造にした。これに伴い、絶縁層5も放熱部材17が設けられている側だけに設置されるので、さらに小型化に貢献した電力変換装置を実現できる。
 以上説明した本発明の第1および第2の実施形態によれば、以下の作用効果を奏する。
(1)パワー半導体装置は、パワー半導体素子と、パワー半導体素子と接続される導体板と、導体板においてパワー半導体素子と接続される面とは反対側の面で接続される絶縁層5と、を備えている。パワー半導体素子は、第1のパワー半導体素子1と、第2のパワー半導体素子11と、を含んでいる。第1のパワー半導体素子1の発熱量が第2のパワー半導体素子11の発熱量よりも大きい場合、第1のパワー半導体素子1の端部から第1導体板の端部3b(3c)までの距離である第1の距離L1は、第2のパワー半導体素子11の端部から第2導体板の端部13b(13c)までの距離である第2の距離L2よりも大きい。このようにしたことで、小型化と信頼性の向上とを両立させたパワー半導体装置を提供することにある。
(2)導体板は、第1のパワー半導体素子1と接続される第1の導体板3と、第2のパワー半導体素子11と接続される第2の導体板13と、を含んでいる。第1の距離L1、L3は、第1のパワー半導体素子1を通って第1の導体板3と第1のパワー半導体素子1との接合面に垂直な断面における第1のパワー半導体素子1の端部から第1の導体板の端部3b(3c)までの距離として定義される。また、第2の距離L2、L4は、第2のパワー半導体素子11を通って第2の導体板13と第2のパワー半導体素子11との接合面に垂直な断面における第2のパワー半導体素子11の端部から第2の導体板の端部13b(13c)までの距離として定義される。このようにしたことで、本発明の効果を奏する第1の距離L1および第2の距離L2についての定義ができる。
(3)第1のパワー半導体素子1および第2のパワー半導体素子11は、同一の導体板3B上に配置された場合、第1の距離L1は、第1のパワー半導体素子1を通って導体板3Bと第1のパワー半導体素子1との接合面に垂直な断面において、第1のパワー半導体素子1の端部から導体板3Bの端部までの距離として定義される。また、第2の距離L2は、第2のパワー半導体素子11を通って導体板3Bと第2のパワー半導体素子11との接合面に垂直な断面において、第2のパワー半導体素子11の端部から導体板3Bの端部までの距離として定義される。このようにしたことで、本発明の効果を奏する第1の距離L1および第2の距離L2について、別の実施形態での定義ができる。
(4)第1のパワー半導体素子1において、第1の導体板3が接続される面とは反対側の面に第3の導体板4が接続され、第2のパワー半導体素子11において、第2の導体板13が接続される面とは反対側の面に第4の導体板14が接続され、第1から第4の導体板3,13,4,14において、それぞれ第1のパワー半導体素子1および第2のパワー半導体素子11と接続される面とは反対側の面で、絶縁層5を介して放熱部材7と接続される。このようにしたことで、パワーモジュール100を両面冷却できる。
(5)第1のパワー半導体素子1の損失が、第2のパワー半導体素子11の損失よりも大きい。このように配置しているため、本発明の効果を奏する第1の距離L1および第2の距離L2の構成が必要になる。
(6)第1のパワー半導体素子1はIGBTであり、第2のパワー半導体素子11はダイオードである。このように配置しているため、本発明の効果を奏する第1の距離L1および第2の距離L2の構成が必要になる。
(7)第1のパワー半導体素子1の縦横比が、第2のパワー半導体素子11の縦横比よりも小さい。このようにしたことで、本発明の効果を奏する第1の距離L1および第2の距離L2を保ちつつ、導体板におけるパワー半導体素子の配置のレイアウトの自由度が増す。
(8)第1のパワー半導体素子1の辺の長さの最大値は、第2のパワー半導体素子11の辺の長さの最大値より小さい。このようにしたことで、本発明の効果を奏する第1の距離L1および第2の距離L2を保ちつつ、導体板におけるパワー半導体素子の配置のレイアウトの自由度が増す。
(9)第1のパワー半導体素子1の端部から第3の導体板4の端部までの距離である第3の距離L3は、第2のパワー半導体素子11の端部から第4の導体板14の端部までの距離である第4の距離L4よりも大きい。このようにしたことで、両面冷却のパワーモジュール100においてどちらの面の絶縁層5も剥離やクラックなどの損傷が発生しなくなる。
(10)第1の距離L1は第3の距離L3以上であり、第2の距離L2は第4の距離L4以上である。このようにしたことで、このようにしたことで、両面冷却のパワーモジュール100においてどちらの面の絶縁層5も剥離やクラックなどの損傷が発生しなくなる。
(11)パワー半導体モジュール30は、放熱部材7と、放熱部材7の両端部で接続されている。このようにしたことで、絶縁層5の剥離やクラックなどの損傷が出やすい端部での本発明の効果が顕著になる。
 なお、本発明は、導体板の端部をテーパ形状にすることも可能であり、テーパ形状の場合は、第1の導体板および第2の導体板が接続される絶縁層を平面として、絶縁層と接触している導体板の端部の角部からパワー半導体素子の端部に向かう角度が45度以下であることが望ましい。
 また、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々な変形や他の構成を組み合わせることができる。また本発明は、上記の実施形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。
1…第1パワー半導体素子
3、3B…第1導体板
 3b…第1導体板の端部(外向き側)
 3c…第1導体板の端部(内向き側)
4、4B…第3導体板
5、5A…絶縁層
7…放熱部材(フィンタイプ)
 7a…放熱フィン
 7b…放熱部材の端部
9、9A、9C…封止樹脂
10…接合材
11…第2パワー半導体素子
13…第2導体板
 13b…第2導体板の端部(外側)
 13c…第2導体板の端部(内側)
14…第4導体板
17…放熱部材(流路形成体)
 17a…流路
20…接続材(熱伝導体)
30、30A~30C…パワー半導体モジュール
31…外部端子
100…パワーモジュール
L1~L6…第1~第6の長さ
T1…第1導体板の厚さ
T2…第2導体板の厚さ

Claims (11)

  1.  パワー半導体素子と、
     前記パワー半導体素子と接続される導体板と、
     前記導体板において前記パワー半導体素子と接続される面とは反対側の面で接続される絶縁層と、を備えたパワー半導体装置であって、
     前記パワー半導体素子は、第1のパワー半導体素子と、第2のパワー半導体素子と、を含み、
     前記第1のパワー半導体素子の発熱量が前記第2のパワー半導体素子の発熱量よりも大きい場合、前記第1のパワー半導体素子の端部から前記導体板の端部までの距離である第1の距離は、前記第2のパワー半導体素子の端部から前記導体板の端部までの距離である第2の距離よりも大きい
     パワー半導体装置。
  2.  請求項1に記載のパワー半導体装置であって、
     前記導体板は、前記第1のパワー半導体素子と接続される第1の導体板と、前記第2のパワー半導体素子と接続される第2の導体板と、を含み、
     前記第1の距離は、前記第1のパワー半導体素子を通って前記第1の導体板と前記第1のパワー半導体素子との接合面に垂直な断面における前記第1のパワー半導体素子の前記端部から前記第1の導体板の前記端部までの距離として定義され、
     前記第2の距離は、前記第2のパワー半導体素子を通って前記第2の導体板と前記第2のパワー半導体素子との接合面に垂直な断面における前記第2のパワー半導体素子の前記端部から前記第2の導体板の前記端部までの距離として定義される
     パワー半導体装置。
  3.  請求項1に記載のパワー半導体装置であって、
     前記第1のパワー半導体素子および前記第2のパワー半導体素子は、同一の前記導体板上に配置され、
     前記第1の距離は、前記第1のパワー半導体素子を通って前記導体板と前記第1のパワー半導体素子との接合面に垂直な断面における前記第1のパワー半導体素子の前記端部から前記導体板の前記端部までの距離として定義され、
     前記第2の距離は、前記第2のパワー半導体素子を通って前記導体板と前記第2のパワー半導体素子との接合面に垂直な断面における前記第2のパワー半導体素子の前記端部から前記導体板の前記端部までの距離として定義される
     パワー半導体装置。
  4.  請求項1に記載のパワー半導体装置であって、
     前記第1のパワー半導体素子において、前記第1の導体板が接続される面とは反対側の面に第3の導体板が接続され、
     前記第2のパワー半導体素子において、前記第2の導体板が接続される面とは反対側の面に第4の導体板が接続され、
     前記第1から前記第4の導体板において、それぞれ前記第1および前記第2パワー半導体素子と接続される面とは反対側の面で、前記絶縁層を介して放熱部材と接続される
     パワー半導体装置。
  5.  請求項1に記載のパワー半導体装置であって、
     前記第1のパワー半導体素子の損失が、前記第2のパワー半導体素子の損失よりも大きい
     パワー半導体装置。
  6.  請求項1に記載のパワー半導体装置あって、
     前記第1のパワー半導体素子はIGBTであり、前記第2のパワー半導体素子はダイオードである
     パワー半導体装置。
  7.  請求項1に記載のパワー半導体装置であって、
     前記第1のパワー半導体素子の縦横比が、前記第2のパワー半導体素子の縦横比よりも小さい
     パワー半導体装置。
  8.  請求項1に記載のパワー半導体装置であって、
     前記第1のパワー半導体素子の辺の長さの最大値は、前記第2のパワー半導体素子の辺の長さの最大値より小さい
     パワー半導体装置。
  9.  請求項4に記載のパワー半導体装置であって、
     前記第1のパワー半導体素子の端部から前記第3の導体板の端部までの距離である第3の距離は、前記第2のパワー半導体素子の端部から前記第4の導体板の端部までの距離である第4の距離よりも大きい
     パワー半導体装置。
  10.  請求項9に記載のパワー半導体装置であって、
     前記第1の距離は、前記第3の距離以上であり、
     前記第2の距離は、前記第4の距離以上である
     パワー半導体装置。
  11.  請求項4に記載のパワー半導体装置であって、
     前記放熱部材とは、前記放熱部材の両端部で接続されている
     パワー半導体装置。
PCT/JP2021/048274 2021-03-29 2021-12-24 パワー半導体装置 WO2022209083A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180092589.0A CN116783707A (zh) 2021-03-29 2021-12-24 功率半导体器件
DE112021006266.2T DE112021006266T5 (de) 2021-03-29 2021-12-24 Leistungshalbleitereinrichtung
US18/274,747 US20240096727A1 (en) 2021-03-29 2021-12-24 Power Semiconductor Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-056155 2021-03-29
JP2021056155A JP2022153100A (ja) 2021-03-29 2021-03-29 パワー半導体装置

Publications (1)

Publication Number Publication Date
WO2022209083A1 true WO2022209083A1 (ja) 2022-10-06

Family

ID=83455782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048274 WO2022209083A1 (ja) 2021-03-29 2021-12-24 パワー半導体装置

Country Status (5)

Country Link
US (1) US20240096727A1 (ja)
JP (1) JP2022153100A (ja)
CN (1) CN116783707A (ja)
DE (1) DE112021006266T5 (ja)
WO (1) WO2022209083A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260936A (ja) * 2001-03-06 2002-09-13 Hitachi Ltd 内燃機関の点火回路モジュール及び点火コイル装置
JP2009059887A (ja) * 2007-08-31 2009-03-19 Denso Corp 電力変換装置
WO2015186470A1 (ja) * 2014-06-03 2015-12-10 日立オートモティブシステムズ株式会社 半導体モジュールおよび半導体モジュールの製造方法ならびに電子制御装置
WO2020105407A1 (ja) * 2018-11-21 2020-05-28 日立オートモティブシステムズ株式会社 パワー半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710163B2 (ja) 2017-01-12 2020-06-17 日立オートモティブシステムズ株式会社 パワー半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260936A (ja) * 2001-03-06 2002-09-13 Hitachi Ltd 内燃機関の点火回路モジュール及び点火コイル装置
JP2009059887A (ja) * 2007-08-31 2009-03-19 Denso Corp 電力変換装置
WO2015186470A1 (ja) * 2014-06-03 2015-12-10 日立オートモティブシステムズ株式会社 半導体モジュールおよび半導体モジュールの製造方法ならびに電子制御装置
WO2020105407A1 (ja) * 2018-11-21 2020-05-28 日立オートモティブシステムズ株式会社 パワー半導体装置

Also Published As

Publication number Publication date
CN116783707A (zh) 2023-09-19
JP2022153100A (ja) 2022-10-12
US20240096727A1 (en) 2024-03-21
DE112021006266T5 (de) 2023-09-14

Similar Documents

Publication Publication Date Title
KR101836658B1 (ko) 파워 모듈 및 그 제조 방법
JP5273101B2 (ja) 半導体モジュールおよびその製造方法
US20090194862A1 (en) Semiconductor module and method of manufacturing the same
JP5217884B2 (ja) 半導体装置
JP6286543B2 (ja) パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法
JP2013232614A (ja) 半導体装置
JP3646665B2 (ja) インバータ装置
JP2016051878A (ja) 電力用半導体装置
WO2020105407A1 (ja) パワー半導体装置
JP6286541B2 (ja) パワーモジュール装置及び電力変換装置
JP2012016095A (ja) 電力変換装置
JP2010165743A (ja) 半導体モジュールおよびその製造方法
WO2019003718A1 (ja) パワー半導体装置及びそれを用いた電力変換装置
JP4935783B2 (ja) 半導体装置および複合半導体装置
WO2021235002A1 (ja) パワーモジュール
WO2022209083A1 (ja) パワー半導体装置
US11735557B2 (en) Power module of double-faced cooling
WO2019142543A1 (ja) パワー半導体装置
JP2012015167A (ja) 半導体モジュールおよびその製造方法
JP4158648B2 (ja) 半導体冷却ユニット
JP4193633B2 (ja) 半導体冷却ユニット
WO2022075199A1 (ja) 発熱体冷却構造および電力変換装置
JP4396366B2 (ja) 半導体装置
CN117199058A (zh) 功率模块组件、电机控制器及车辆
JP2008258448A (ja) バスバーおよび半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021006266

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 18274747

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180092589.0

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21935230

Country of ref document: EP

Kind code of ref document: A1