WO2022208875A1 - 車両 - Google Patents

車両 Download PDF

Info

Publication number
WO2022208875A1
WO2022208875A1 PCT/JP2021/014361 JP2021014361W WO2022208875A1 WO 2022208875 A1 WO2022208875 A1 WO 2022208875A1 JP 2021014361 W JP2021014361 W JP 2021014361W WO 2022208875 A1 WO2022208875 A1 WO 2022208875A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
degrees
angle
suspension
vehicle according
Prior art date
Application number
PCT/JP2021/014361
Other languages
English (en)
French (fr)
Inventor
健太 長沢
公之 河村
正典 吉原
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2021/014361 priority Critical patent/WO2022208875A1/ja
Priority to JP2023510141A priority patent/JP7571283B2/ja
Priority to EP21935036.0A priority patent/EP4316966A4/en
Publication of WO2022208875A1 publication Critical patent/WO2022208875A1/ja
Priority to US18/374,701 priority patent/US20240024176A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1078Parts, details or accessories with shock absorbers or other suspension arrangements between wheels and frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/023Tricycles specially adapted for disabled riders, e.g. personal mobility type vehicles with three wheels
    • B62K5/025Tricycles specially adapted for disabled riders, e.g. personal mobility type vehicles with three wheels power-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1051Arrangements for steering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/10Parts, details or accessories
    • A61G5/1097Camber- or toe-adjusting means for the drive wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/20Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/08Cycles with handlebars, equipped with three or more main road wheels with steering devices acting on two or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/10Independent suspensions
    • B60G2200/14Independent suspensions with lateral arms
    • B60G2200/144Independent suspensions with lateral arms with two lateral arms forming a parallelogram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/44Indexing codes relating to the wheels in the suspensions steerable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/40Indexing codes relating to the wheels in the suspensions
    • B60G2200/46Indexing codes relating to the wheels in the suspensions camber angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K2005/001Suspension details for cycles with three or more main road wheels

Definitions

  • the present invention relates to vehicles.
  • a handle-type electric wheelchair is known as one of the vehicles on which people ride (for example, Patent Document 1).
  • a handle-type electric wheelchair may also be referred to as an electric cart.
  • handle-type electric wheelchairs are used for traveling on relatively flat paved roads. For example, a user can travel between his/her home and a store for shopping by riding a handle-type electric wheelchair.
  • a vehicle has at least three wheels including steered wheels, at least one drive source for driving at least two of the wheels, and an upper arm and a lower arm for supporting the steered wheels. and a suspension, wherein when the vehicle is stationary on a horizontal road surface, the hanging angle of the lower arm is larger than the hanging angle of the upper arm, and the hanging angle of the lower arm and the upper arm are equal to each other. The difference from the hanging angle of is 5 degrees or more.
  • the angle between the longitudinal direction of the upper arm and the lower arm and the center line of the tire when the suspension is stroked by making the hanging angle of the lower arm larger than the hanging angle of the upper arm and setting the difference between the hanging angles to 5 degrees or more. can be reduced.
  • the clearance between the suspension and the steered wheels is increased, and it is possible to increase both the wheel stroke and the turning angle of the steered wheels.
  • the difference between the hanging angle of the lower arm and the hanging angle of the upper arm may be 5 degrees or more and 9 degrees or less.
  • the amount of change in the camber angle of the steered wheels with respect to the wheel stroke of the suspension may be 5 degrees or more.
  • the amount of change in the camber angle of the steered wheels with respect to the wheel stroke of the suspension may be 5 degrees or more and 10 degrees or less.
  • the camber angle of the steered wheels may be negative camber when the suspension performs a bound stroke, and the camber angle of the steered wheels may be positive camber when the suspension performs a rebound stroke.
  • the hanging angle of the upper arm may be 15 degrees or more and the hanging angle of the lower arm may be 20 degrees or more when the vehicle is stationary on a horizontal road surface.
  • the roll rigidity can be increased due to the large hanging angles of the upper arm and the lower arm of 15 degrees or more and 20 degrees or more, respectively.
  • the hanging angle of the upper arm is 15 degrees or more and 20 degrees or less
  • the hanging angle of the lower arm is 20 degrees or more and 25 degrees or less. There may be.
  • the roll rigidity can be increased due to the large hanging angles of the upper and lower arms.
  • the swing angle of each of the upper arm and the lower arm may be 30 degrees or more.
  • the swing angle of the upper and lower arms is as large as 30 degrees or more, making it possible to improve drivability on unpaved roads and bumps.
  • the swing angle of each of the upper arm and the lower arm may be 30 degrees or more and 60 degrees or less.
  • the wheel stroke of the suspension may be 60 mm or more.
  • the wheel stroke of the suspension may be 60 mm or more and 150 mm or less.
  • the wheel stroke of the suspension may be 0.5 times or more the longitudinal length of each of the upper arm and the lower arm.
  • the wheel stroke is more than 0.5 times longer than the longitudinal length of each of the upper and lower arms, making it possible to improve drivability on unpaved roads and bumps.
  • the wheel stroke of the suspension may be 0.5 times or more and 0.80 times or less of the longitudinal length of each of the upper arm and the lower arm.
  • the steered wheels include an inner wheel and an outer wheel, the maximum steering angle of the inner wheel may be 50 degrees or more, and the maximum steering angle of the outer wheel may be 35 degrees or more.
  • the large turning angle of the steering wheel makes it possible to reduce the minimum turning radius of the vehicle, making it possible to make small turns.
  • the maximum steering angle of the inner ring may be 50 degrees or more and 80 degrees or less, and the maximum steering angle of the outer ring may be 35 degrees or more and 80 degrees or less.
  • the large turning angle of the steering wheel makes it possible to reduce the minimum turning radius of the vehicle, making it possible to make small turns.
  • the minimum turning radius of the vehicle may be 2.5 times or less of the tread width of the steered wheels.
  • the minimum turning radius of the vehicle may be 1400 mm or less.
  • the vehicle's minimum turning radius is small, making it possible to make small turns.
  • the outer diameter of the steering wheel may be 0.26 times or more the total length of the vehicle.
  • the outer diameter of the steered wheels is 0.26 times or more the overall length of the vehicle, making it possible to improve drivability on unpaved roads and bumps, as well as improve ride comfort.
  • the outer diameter of the steering wheel may be 0.26 to 0.4 times the overall length of the vehicle.
  • the outer diameter of the steering wheel is large relative to the overall length of the vehicle, making it possible to improve driving performance on unpaved roads and bumps, as well as improve ride comfort.
  • the outer diameter of the steering wheel may be 0.43 times or more the wheelbase of the vehicle.
  • the outer diameter of the steered wheels is at least 0.43 times larger than the wheelbase of the vehicle, making it possible to improve driving performance on unpaved roads and bumps, as well as improve ride comfort.
  • the outer diameter of the steering wheel may be 0.43 to 0.67 times the wheelbase of the vehicle.
  • the outer diameter of the steered wheels is large relative to the vehicle's wheelbase, making it possible to improve driving performance on unpaved roads and bumps, as well as improve ride comfort.
  • the vehicle is a steering wheel-type electric wheelchair, and may further include a steering wheel that is steered by an occupant and a seat on which the occupant sits.
  • a handle-type electric wheelchair with a large wheel stroke and a large turning angle of the steering wheel can be realized.
  • the angle between the longitudinal direction of the upper arm and the lower arm and the center line of the tire when the suspension is stroked by making the hanging angle of the lower arm larger than the hanging angle of the upper arm and setting the difference between the hanging angles to 5 degrees or more. can be reduced.
  • the clearance between the suspension and the steered wheels is increased, and it is possible to increase both the wheel stroke and the turning angle of the steered wheels.
  • FIG. 1 is a perspective view showing a vehicle 1 according to an embodiment; FIG. It is a left side view showing vehicle 1 concerning an embodiment. It is a front view showing vehicle 1 concerning an embodiment. 1 is a plan view showing an outline of a steering mechanism included in a vehicle 1 according to an embodiment; FIG. 1 is a plan view showing an outline of a steering mechanism included in a vehicle 1 according to an embodiment; FIG. It is a front view showing the rear suspension 50 according to the embodiment. 1 is a block diagram showing an electrical configuration of vehicle 1 according to an embodiment; FIG. It is a front view showing the front suspension 40 according to the embodiment. It is a front view showing the front suspension 40 according to the embodiment. FIG. 4 is a front view showing a front suspension 40a of a comparative example; FIG. 4 is a front view showing a front suspension 40a of a comparative example; It is a front view showing the front suspension 40 according to the embodiment. It is a figure which shows the steering angle of 4L of steering wheels and 4R which concerns on embodiment.
  • front, rear, up, down, left, and right mean front, rear, up, down, left, and right, respectively, when viewed from an occupant seated in a vehicle seat.
  • the left-right direction of the vehicle is sometimes referred to as the vehicle width direction.
  • the following embodiments are examples, and the present invention is not limited to the following embodiments.
  • FIG. 1 is a perspective view showing a vehicle 1 according to an embodiment.
  • FIG. 2 is a left side view of the vehicle 1.
  • FIG. 3 is a front view showing the vehicle 1.
  • FIG. 1 In order to explain the structure of the vehicle 1 in an easy-to-understand manner, illustration of part of the body cover is omitted in FIGS. 2 and 3 .
  • the vehicle 1 is, for example, a handle-type electric wheelchair, but the present invention is not limited thereto. An example in which the vehicle 1 is a handle-type electric wheelchair will be described below.
  • the vehicle 1 includes a body frame 2 (Fig. 2).
  • the vehicle body frame 2 includes an underframe 2u, a rear frame 2r, a seat frame 2s and a front frame 2f (Fig. 3).
  • the underframe 2 u extends in the longitudinal direction of the vehicle 1 .
  • a rear frame 2r extends upward from the rear portion of the underframe 2u, and a seat frame 2s extends rearward from an upper portion of the rear frame 2r.
  • a front frame 2f extends upward from the front portion of the underframe 2u.
  • a head tube 22 (Fig. 2) is provided on the upper part of the front frame 2f (Fig. 3).
  • the head tube 22 rotatably supports a steering column 26 passing therethrough.
  • a steering column 26 has an upper end portion provided with a handle 6 for steering by an occupant.
  • the steering wheel 6 is provided with an accelerator operator 7 (FIG. 1) and a pair of left and right rearview mirrors 9 .
  • the body cover 28 is provided so as to partially cover the body frame 2 .
  • a front guard 29 is provided on the body cover 28 . Since the front guard 29 is arranged in front of the occupant, the occupant can feel a sense of security during traveling.
  • the front suspension 40 has an upper arm 41L, a lower arm 42L, and a shock absorber 45L.
  • One end of the upper arm 41L is rotatably supported by the front frame 2f via a pivot 46L.
  • the other end of the upper arm 41L rotatably supports the knuckle arm 44L via a pivot 47L.
  • One end of the lower arm 42L is rotatably supported by the front frame 2f via a pivot 48L.
  • the other end of the lower arm 42L rotatably supports the knuckle arm 44L via a pivot 49L.
  • the knuckle arm 44L rotatably supports the front wheel 4L.
  • the front suspension 40 has an upper arm 41R, a lower arm 42R, and a shock absorber 45R.
  • One end of the upper arm 41R is rotatably supported by the front frame 2f via a pivot 46R.
  • the other end of the upper arm 41R rotatably supports the knuckle arm 44R via a pivot 47R.
  • One end of the lower arm 42R is rotatably supported by the front frame 2f via a pivot 48R.
  • the other end of the lower arm 42R rotatably supports the knuckle arm 44R via a pivot 49R.
  • the knuckle arm 44R rotatably supports the front wheel 4R.
  • Front suspension 40 rotatably supports front wheels 4L and 4R via knuckle arms 44L and 44R.
  • the front wheels 4L and 4R are steering wheels.
  • the front suspension 40 is sometimes called a double wishbone suspension.
  • the arm shape of the double wishbone suspension is not limited to an A shape (V shape).
  • double wishbone type is a general term for suspension systems in which wheels are supported by a pair of upper and lower arms.
  • a suspension tower 27 is provided on the front frame 2f. An upper portion of each of the shock absorbers 45L and 45R is rotatably supported by the suspension tower 27. As shown in FIG. A lower portion of the shock absorber 45L rotatably supports the upper arm 41L. A lower portion of the shock absorber 45R rotatably supports the upper arm 41R.
  • the front frame 2f extends vertically at a position near the center in the vehicle width direction.
  • the frame portion to which the suspension is attached is required to have high strength because the shock received by the suspension from the road surface is transmitted.
  • the suspension towers 27 are provided near the left and right ends of the vehicle body, it is necessary to ensure high strength in the frame portion extending in the left and right direction from the center in the vehicle width direction, which increases the weight of the vehicle body.
  • shock absorbers 45L and 45R are attached to the upper arms 41L and 41R.
  • FIG. 4A and 4B are plan views showing the outline of the steering mechanism provided in the vehicle 1.
  • FIG. A pitman arm 49 is attached to the lower end of the steering column 26 .
  • One end of the tie rod 43L and one end of the tie rod 43R are rotatably connected to the pitman arm 49, respectively.
  • the other end of tie rod 43L is rotatably connected to knuckle arm 44L.
  • the other end of the tie rod 43R is rotatably connected to the knuckle arm 44R.
  • Fig. 4A shows the steering mechanism during straight running.
  • the occupant rotates the steering wheel 6 (Fig. 1).
  • the steering force generated by the occupant turning steering wheel 6 is transmitted to pitman arm 49 via steering column 26 .
  • Pitman arm 49 rotates about steering column 26, and steering force is transmitted to front wheels 4L and 4R via tie rods 43L and 43R and knuckle arms 44L and 44R.
  • the transmitted steering force changes the steering angles of the front wheels 4L and 4R, and the vehicle 1 can travel while turning left or right.
  • the seat frame 2s is provided with a seat 3 on which an occupant sits.
  • the seat 3 includes a seat base 31 provided on the seat frame 2 s and a cushion 32 provided on the seat base 31 .
  • the seat base 31 is also called a plate material or a bottom plate.
  • the seat base 31 constitutes the bottom portion of the seat 3 and has a role of securing the strength of the seat 3 as a whole. Therefore, the seat base 31 is made of a material with relatively high rigidity.
  • a metal material or a synthetic resin material such as polypropylene can be used, but the material is not limited to these.
  • the cushion 32 is superimposed on the surface of the seat base 31.
  • the cushion 32 may be formed from a material that retains adequate elasticity over time to maintain good ride comfort.
  • foamed polyurethane urethane foam
  • the material is not limited to this.
  • Armrests 38 are provided on both sides of the seat 3 for the occupant to put their arms on.
  • the armrest 38 also serves as a side guard.
  • a rear portion of the seat 3 is provided with a backrest 39 on which the occupant rests.
  • the underframe 2u is provided with a footboard 8 (Fig. 1) on which the passenger puts his/her feet.
  • the footboard 8 is anti-slip processed.
  • the upper surface of the footboard 8 has a generally flat shape so that the passenger can easily get on and off.
  • FIG. 5 is a front view showing the rear suspension 50.
  • the rear suspension 50 is sometimes called a trailing arm suspension.
  • the rear suspension 50 has rear arms 51L and 51R and shock absorbers 55L and 55R.
  • the rear arms 51L and 51R are swing arms.
  • a front portion of the rear arm 51L is rotatably supported by a left rear portion of the underframe 2u via a pivot 56L.
  • a front portion of the rear arm 51R is rotatably supported by a right rear portion of the underframe 2u via a pivot 56R.
  • the upper portion of the shock absorber 55L and the upper portion of the shock absorber 55R are each rotatably supported by the rear frame 2r (Fig. 2).
  • a lower portion of the shock absorber 55L rotatably supports the rear arm 51L.
  • a lower portion of the shock absorber 55R rotatably supports the rear arm 51R.
  • An electric motor 60L is provided at the rear portion of the rear arm 51L.
  • the electric motor 60L is an in-wheel motor, and the electric motor 60L is provided with the rear wheels 5L.
  • the rear suspension 50 rotatably supports the rear wheel 5L via the electric motor 60L.
  • An electric motor 60R is provided at the rear portion of the rear arm 51R.
  • the electric motor 60R is an in-wheel motor, and the electric motor 60R is provided with the rear wheels 5R.
  • the rear suspension 50 rotatably supports the rear wheel 5R via the electric motor 60R.
  • the rear wheels 5L and 5R are drive wheels.
  • the vehicle 1 of this embodiment employs large-sized wheels 4L, 4R, 5L, and 5R.
  • the outer diameters of the front and rear wheels are, for example, 14 inches or more, but are not limited to this.
  • two electric motors 60L and 60R are used to drive the rear wheels 5L and 5R independently of each other.
  • a vehicle with a differential gear has a problem that when one driving wheel spins, it is difficult for the driving force to be transmitted to the other driving wheel.
  • the present embodiment even if one of the rear wheels 5L and 5R spins, the other can exert a gripping force, so that the vehicle can stably continue running.
  • the electric motors that drive the rear wheels 5L and 5R are not limited to in-wheel motors.
  • the driving force may be transmitted from one electric motor to the rear wheels 5L and 5R.
  • the vehicle 1 may be four-wheel drive.
  • an in-wheel motor is also provided for each of the front wheels 4L and 4R.
  • the driving force may be transmitted from one electric motor to the front wheels 4L and 4R. Further, the driving force may be transmitted from one electric motor to each of the front wheels 4L and 4R and the rear wheels 5L and 5R.
  • the vehicle 1 of this embodiment includes an independent front suspension 40 and an independent rear suspension 50 . Also, two electric motors 60L and 60R are used to drive the rear wheels 5L and 5R independently of each other. As a result, it is possible to improve the ability to follow the unevenness of the road surface and stably transmit the driving force to the road surface. Also, the turning performance of the vehicle can be enhanced. According to this embodiment, it is possible to improve the running performance of the vehicle on unpaved roads and bumps.
  • rear suspension 50 is not limited to an independent suspension type suspension, and may be an axle suspension type suspension.
  • an in-wheel motor is used as the electric motor.
  • the electric motor is used as the electric motor.
  • the rear suspension 50 is not restricted by the drive shaft.
  • rear arms 51L and 51R extend in the front-rear direction, and pivots 56L and 56R are located forward of rotation shafts 57 of rear wheels 5L and 5R. With such a configuration, the wheel stroke of the rear suspension 50 can be increased.
  • the wheel stroke of the rear suspension 50 is 60 mm or more, but it is not limited to this. With a large wheel stroke of 60 mm or more, it is possible to improve drivability on unpaved roads and bumps.
  • the upper limit of the wheel stroke of the rear suspension 50 may vary depending on the size of the vehicle 1, and is, for example, 150 mm, but is not limited to this.
  • the vehicle 1 since no drive shaft is required and the rear arms 52L and 51R are not positioned near the center of the rear of the vehicle, a space can be secured near the center of the rear of the vehicle. Since there is a space near the center of the rear part of the vehicle, even if there is a large difference in the vertical position of the left and right rear wheels 5L and 5R due to the operation of the independent rear suspension 50, the vehicle body can be placed on the ground. can be made difficult to come into contact with.
  • the vehicle 1 may be provided with a drive shaft when driving force is transmitted from one electric motor to the rear wheels 5L and 5R without using the in-wheel motor.
  • FIG. 6 is a block diagram showing the electrical configuration of vehicle 1.
  • Vehicle 1 includes a control device 70 .
  • Control device 70 controls the operation of vehicle 1 .
  • the control device 70 is, for example, an MCU (Motor Control Unit).
  • the control device 70 has a semiconductor integrated circuit such as a microcontroller, signal processor, etc. capable of performing digital signal processing.
  • the control device 70 includes a processor 71, memory 72, drive circuits 73L and 73R.
  • Processor 71 controls the operation of electric motors 60L and 60R and the operation of each part of vehicle 1 .
  • Memory 72 stores a computer program that defines procedures for controlling the operations of electric motors 60L and 60R and each part of vehicle 1 .
  • the processor 71 reads computer programs from the memory 72 and performs various controls. Power is supplied to the control device 70 from the battery 10 .
  • the control device 70 and the battery 10 are provided at arbitrary positions of the vehicle 1, for example, below the seat 3, but are not limited thereto.
  • the battery 10 may be provided detachably with respect to the vehicle 1 .
  • the battery 10 may be detachably provided behind the seat 3 .
  • the accelerator operator 7 outputs a signal to the processor 71 according to the accelerator operation amount of the passenger.
  • the steering angle sensor 75 is provided, for example, on the head tube 22 or the steering column 26 and outputs a signal corresponding to the rotation angle of the steering column 26 to the processor 71 .
  • the electric motor 60L is provided with a rotation sensor 61L.
  • Rotation sensor 61L detects the rotation angle of electric motor 60L and outputs a signal corresponding to the rotation angle to processor 71 and drive circuit 73L.
  • Processor 71 and drive circuit 73L compute the rotation speed of electric motor 60L from the output signal of rotation sensor 61L.
  • the electric motor 60R is provided with a rotation sensor 61R.
  • Rotation sensor 61R detects the rotation angle of electric motor 60R and outputs a signal corresponding to the rotation angle to processor 71 and drive circuit 73R.
  • Processor 71 and drive circuit 73R compute the rotation speed of electric motor 60R from the output signal of rotation sensor 61R.
  • the sizes of the rear wheels 5L and 5R are stored in advance in the memory 72, and the running speed of the vehicle 1 can be calculated from the rotational speeds of the electric motors 60L and 60R.
  • the processor 71 calculates a command value for generating an appropriate driving force from the output signal of the accelerator operator 7, the output signal of the steering angle sensor 75, the traveling speed of the vehicle, information stored in the memory 72, and the like. and transmitted to the driving circuits 73L and 73R. Processor 71 can transmit different command values to drive circuits 73L and 73R according to the running state of the vehicle.
  • the drive circuits 73L and 73R are, for example, inverters.
  • the drive circuit 73L supplies the electric motor 60L with a drive current according to the command value from the processor 71.
  • the drive circuit 73R supplies the electric motor 60L with a drive current corresponding to the command value from the processor 71.
  • the rotation of the electric motors 60L and 60R to which the drive current is supplied causes the rear wheels 5L and 5R to rotate. When the electric motors 60L and 60R are provided with reduction gears, the rotation is transmitted to the rear wheels 5L and 5R via those reduction gears.
  • the vehicle 1 of this embodiment includes wheels 4L, 4R, 5L and 5R having large outer diameters. As a result, it is possible to improve the running performance on unpaved roads and bumps.
  • the total length (length in the front-rear direction) of the vehicle 1 may be limited.
  • the Japanese Industrial Standard "JIS T 9208:2016" for handle-type electric wheelchairs limits the overall length of the vehicle to 1200 mm or less. When the overall length of the vehicle 1 is limited in this way, increasing the outer diameter of the wheels shortens the wheelbase.
  • the outer diameter Dw of each of the wheels 4L, 4R, 5L and 5R in this embodiment is relatively large, for example 0.26 times or more the overall length Lo of the vehicle 1. Further, the outer diameter Dw of the wheels is relatively large, for example, 0.43 times or more the wheelbase WB of the vehicle 1 . Thus, if the size of the wheel is relatively large, it is difficult to increase the steering angle of the wheel.
  • the upper limit of the outer diameter Dw of the wheel is, for example, 0.4 times the overall length Lo of the vehicle 1, but is not limited to this.
  • the outer diameter Dw of the wheel is, for example, 0.67 times the wheel base WB at maximum, but is not limited to this.
  • a wheel with a large outer diameter and width is used as the steered wheel
  • the steered wheel and the suspension that supports the steered wheel tend to interfere with each other, making it difficult to increase the turning angle of the steered wheel.
  • a vehicle such as a steering wheel type electric wheelchair is required to be able to turn in a small radius, and it is required to increase the steering angle of the steering wheel.
  • the wheel tends to interfere with the suspension even when the wheel strokes in the vertical direction, making it difficult to increase the wheel stroke.
  • FIG. 3 shows the vehicle 1 in a predetermined state with a weight of 75 kg placed on the seat 3 (FIG. 1) and standing still on the horizontal road surface 15 .
  • the weight is one of the weights specified in the Japanese Industrial Standard "JIS T 9208:2016" for handle-type electric wheelchairs. By placing such a weight on the seat 3, a state in which a person is in the vehicle 1 can be simulated.
  • the upper arm 41L and the lower arm 42L of the front suspension 40 are inclined so that their heights gradually decrease leftward from the center in the vehicle width direction (horizontal direction). That is, the upper arm 41L and the lower arm 42L have hanging angles ⁇ 41L and ⁇ 42L.
  • the hanging angle is the angle between the vehicle width direction and the arm longitudinal direction when the front suspension 40 is viewed from the front.
  • the vehicle width direction can be parallel to the horizontal direction.
  • the longitudinal direction of the arm is, for example, the direction from the center of the pivot on the front frame 2f side to the center of the pivot on the knuckle arm side.
  • the droop angle is sometimes referred to as the anhedral angle.
  • the upper arm 41R and the lower arm 42R of the front suspension 40 are inclined so that the height thereof gradually decreases toward the right from the center in the vehicle width direction. That is, the upper arm 41R and the lower arm 42R have hanging angles ⁇ 41R and ⁇ 42R.
  • the hanging angles ⁇ 41L and ⁇ 41R of the upper arms 41L and 41R are, for example, 15 degrees or more.
  • the hanging angles ⁇ 42L and ⁇ 42R of the lower arms 42L and 42R are, for example, 20 degrees or more.
  • the roll rigidity of the vehicle 1 can be increased by increasing the drooping angle of each arm.
  • the upper limit of the hanging angles ⁇ 41L and ⁇ 41R of the upper arms 41L and 41R is, for example, 20 degrees, but is not limited thereto.
  • the upper limit of the hanging angles ⁇ 42L and ⁇ 42R of the lower arms 42L and 42R is, for example, 25 degrees, but is not limited thereto.
  • each arm of the front suspension 40 has a sagging angle even in a state in which no weight is placed on the seat 3 (corresponding to a state in which no occupant is on the vehicle).
  • the hanging angle ⁇ 42L of the lower arm 42L is larger than the hanging angle ⁇ 41L of the upper arm 41L .
  • the difference between the hanging angle ⁇ 42L of the lower arm 42L and the hanging angle ⁇ 41L of the upper arm 41L is, for example, 5 degrees or more.
  • the hanging angle ⁇ 42R of the lower arm 42R is larger than the hanging angle ⁇ 41R of the upper arm 41R .
  • the difference between the hanging angle ⁇ 42R of the lower arm 42R and the hanging angle ⁇ 41R of the upper arm 41R is, for example, 5 degrees or more.
  • the upper limit of the difference between the hanging angle of the lower arm and the hanging angle of the upper arm is, for example, 9 degrees, but is not limited to this.
  • the upper limit of the droop angle difference may be 8 degrees.
  • FIG. 7 and 8 are front views showing the front suspension 40.
  • FIG. The features of the upper arm 41L, lower arm 42L, knuckle arm 44L and front wheel 4L will be mainly described below, but the features of the upper arm 41R, lower arm 42R, knuckle arm 44R and front wheel 4R are the same. Further, since the steered wheels in this embodiment are the front wheels, the front wheels may be referred to as the steered wheels.
  • FIG. 7 shows the front suspension 40 when the steered wheels 4L move upward, that is, when the front suspension 40 contracts.
  • FIG. 8 shows the front suspension 40 when the steered wheels 4L move downward, that is, when the front suspension 40 extends.
  • the inventors of the present application made the hanging angle ⁇ 42L (FIG. 3) of the lower arm 42L larger than the hanging angle ⁇ 41L of the upper arm 41L, so that the change in the camber angle ⁇ c of the steering wheel 4L when the front suspension 40 stroked. I found that I could increase the amount. For example, the amount of change in the camber angle ⁇ c with respect to the wheel stroke can be 5 degrees or more.
  • the camber angle ⁇ c By greatly changing the camber angle ⁇ c according to the stroke of the front suspension 40, the amount of change in the angle ⁇ u formed by the longitudinal direction LD1 of the upper arm 41L and the tire center line CtL when the front suspension 40 strokes is reduced. can be done. Further, it is possible to reduce the amount of change in the angle ⁇ l formed between the longitudinal direction LD2 of the lower arm 42L and the tire center line CtL when the front suspension 40 strokes.
  • a small amount of change in the angle formed by the longitudinal direction of the arm and the tire centerline means that there is little change in the positional relationship between the arm and the steering wheel.
  • the clearance between the front suspension 40 and the steered wheels 4L can be increased.
  • the large clearance allows the turning angle of the steered wheels 4L to be increased and the wheel stroke to be increased.
  • FIG. 9 and 10 are front views showing a front suspension 40a as a comparative example in which the hanging angle ⁇ 42L (FIG. 3) of the lower arm 42L and the hanging angle ⁇ 41L of the upper arm 41L are equal.
  • the longitudinal direction LD1 of the upper arm 41L and the longitudinal direction LD2 of the lower arm 42L are parallel.
  • FIG. 9 shows the front suspension 40a when the steered wheels 4L are moved upward.
  • FIG. 10 shows the front suspension 40a when the steered wheels 4L move downward.
  • the camber angle of the front suspension 40a does not substantially change when it is stroked. Therefore, the amount of change in the angle ⁇ u between the longitudinal direction LD1 of the upper arm 41L and the tire centerline CtL when stroked increases. Similarly, the amount of change in the angle ⁇ l between the longitudinal direction LD2 of the lower arm 42L and the tire centerline CtL when stroked increases.
  • a large amount of change in the angle formed by the longitudinal direction of the arm and the tire centerline means a large change in the positional relationship between the arm and the steering wheel. It is difficult to secure the clearance due to the large change in the positional relationship between the arm and the steering wheel.
  • the camber angle ⁇ c of the steered wheels 4L when the front suspension 40 undergoes a bounce stroke, the camber angle ⁇ c of the steered wheels 4L can become a negative camber. Also, when the front suspension 40 performs a rebound stroke, the camber angle ⁇ c of the steered wheels 4L can become a positive camber. By changing the camber angle ⁇ c between the negative camber and the positive camber according to the stroke of the front suspension 40, it is possible to reduce the amount of change in the angle formed by the longitudinal direction of the arm and the tire centerline.
  • the upper limit of the amount of change in the camber angle ⁇ c with respect to the wheel stroke is, for example, 10 degrees, but is not limited to this.
  • FIG. 11 is a front view showing the front suspension 40 of this embodiment.
  • the front suspension 40 in a bound stroke state is indicated by a solid line
  • the front suspension 40 in a rebound stroke state is indicated by a dotted line.
  • the swing angle of the arm and the wheel stroke can be increased by increasing the clearance between the front suspension 40 and the steered wheels 4L.
  • Each of the swing angle ⁇ s1 of the upper arm 41L and the swing angle ⁇ s2 of the lower arm 42L is, for example, 30 degrees or more. With a swing angle as large as 30 degrees or more, it is possible to improve running performance on unpaved roads and bumps.
  • the wheel stroke WS is, for example, 60 mm or more. Since the wheel stroke WS is as large as 60 mm or more, it is possible to improve running performance on unpaved roads and bumps.
  • the wheel stroke WS is 0.5 times or more the longitudinal length D 41 (FIG. 7) of the upper arm 41L and 0.5 times or more the longitudinal length D 42 of the lower arm 42L.
  • the length of the arm in the longitudinal direction is, for example, the length between the center of the pivot on the front frame 2f side and the center of the pivot on the knuckle arm side. Since the wheel stroke WS is large with respect to the length of the arm, it is possible to improve the running performance on unpaved roads and bumps.
  • the upper limit of the swing angles ⁇ s1 and ⁇ s2 is, for example, 60 degrees, but is not limited to this.
  • the upper limit of the wheel stroke WS is, for example, 150 mm, but is not limited thereto.
  • the wheel stroke WS is, for example, a maximum of 0.80 times the length of the arm in the longitudinal direction, but is not limited thereto.
  • FIG. 12 is a diagram showing the steering angles of the steered wheels 4L and 4R. Symbols CtL and CtR in FIG. 12 represent tire center lines of the steered wheels 4L and 4R. FIG. 12 shows the steering angle when the vehicle 1 turns to the right. In this embodiment, the steering angle of the steered wheels 4L and 4R can be increased by increasing the clearance between the front suspension 40 and the steered wheels 4L.
  • the steered wheels 4R become the inner wheels and the steered wheels 4L become the outer wheels.
  • the maximum value of the steering angle of the inner ring is, for example, 50 degrees or more
  • the maximum value of the steering angle of the outer ring is, for example, 35 degrees or more.
  • the cutting angle of the inner ring is larger than that of the outer ring.
  • Such a steering angle relationship between the inner ring and the outer ring can be realized by adopting, for example, Ackermann type steering. Alternatively, for example, it may be realized by a steering system that controls the steering angle of the inner ring and the steering angle of the outer ring independently of each other.
  • the turning angles of the steered wheels 4L and 4R are large, so that the minimum turning radius of the vehicle 1 can be reduced, and the vehicle can turn sharply.
  • the maximum value of the cutting angle of the inner ring is, for example, 80 degrees or less, but is not limited thereto.
  • the maximum cutting angle of the outer ring is, for example, 80 degrees or less, but is not limited thereto.
  • the number of wheels of the vehicle 1 is not limited to four.
  • the number of wheels should be three or more.
  • the drive source for driving the wheels is not limited to the electric motor, and may be an internal combustion engine. Further, driving force may be transmitted from one driving source to a plurality of wheels.
  • a vehicle 1 according to an embodiment of the present invention includes at least three wheels including steered wheels 4L and 4R, at least one drive source 60L and 60R for driving at least two of the wheels, and steered wheels 4L and 4R.
  • a vehicle 1 equipped with a front suspension 40 having upper arms 41L, 41R and lower arms 42L, 42R for supporting, and the hanging angle of the lower arms 42L, 42R in a state where the vehicle 1 is stationary on a horizontal road surface 15. is larger than the hanging angle of the upper arms 41L, 41R, and the difference between the hanging angle of the lower arms 42L, 42R and the hanging angle of the upper arms 41L, 41R is 5 degrees or more.
  • the upper arms 41L and 41R and the lower arm 42L when the front suspension 40 strokes. , 42R and the tire centerline As a result, the clearance between the front suspension 40 and the steered wheels 4L, 4R is increased, and it is possible to increase both the wheel stroke WS and the steering angle of the steered wheels 4L, 4R.
  • the difference between the hanging angles of the lower arms 42L, 42R and the hanging angles of the upper arms 41L, 41R may be 5 degrees or more and 9 degrees or less.
  • the camber angles of the steered wheels 4L and 4R become negative camber
  • the camber angles of the steered wheels 4L and 4R become positive camber. good too.
  • the hanging angles of the upper arms 41L and 41R are 15 degrees or more, and the hanging angles of the lower arms 42L and 42R are 20 degrees or more.
  • the roll rigidity can be increased by the large hanging angles of 15 degrees or more and 20 degrees or more of the upper arms 41L, 41R and the lower arms 42L, 42R, respectively.
  • the hanging angles of the upper arms 41L and 41R are 15 degrees or more and 20 degrees or less, and the hanging angles of the lower arms 42L and 42R are 20 degrees. It may be above 25 degrees or below.
  • the roll rigidity can be increased due to the large hanging angles of the upper arms 41L, 41R and the lower arms 42L, 42R.
  • the swing angle of each of the upper arms 41L, 41R and the lower arms 42L, 42R may be 30 degrees or more.
  • the swing angles of the upper arms 41L, 41R and the lower arms 42L, 42R are as large as 30 degrees or more, so that the running performance on unpaved roads and bumps can be improved.
  • the swing angles of the upper arms 41L, 41R and the lower arms 42L, 42R may be 30 degrees or more and 60 degrees or less.
  • the minimum turning radius of the vehicle 1 can be reduced due to the large turning angles of the steered wheels 4L and 4R, and the vehicle can turn in a small radius.
  • the maximum cutting angle of the inner ring may be 50 degrees or more and 80 degrees or less, and the maximum cutting angle of the outer ring may be 35 degrees or more and 80 degrees or less.
  • the minimum turning radius of the vehicle 1 can be reduced due to the large turning angles of the steered wheels 4L and 4R, and the vehicle can turn in a small radius.
  • the outer diameter Dw of the steered wheels 4L and 4R may be 0.26 times or more the overall length Lo of the vehicle 1.
  • the outer diameter Dw of the steered wheels 4L and 4R is 0.26 times or more as large as the total length Lo of the vehicle 1, it is possible to improve the running performance on unpaved roads and bumps, as well as the ride comfort. .
  • the outer diameter Dw of the steered wheels 4L and 4R may be 0.26 to 0.4 times the overall length Lo of the vehicle 1.
  • the outer diameter Dw of the steered wheels 4L, 4R may be 0.43 times or more the wheelbase of the vehicle 1.
  • the outer diameter Dw of the steered wheels 4L and 4R is 0.43 times or more as large as the wheelbase of the vehicle 1, it is possible to improve the running performance on unpaved roads and bumps, and to improve the ride comfort. .
  • the outer diameter Dw of the steered wheels 4L and 4R may be 0.43 times or more and 0.67 times or less the wheelbase of the vehicle 1.
  • a handle-type electric wheelchair with a large wheel stroke WS and large turning angles of the steering wheels 4L and 4R can be realized.
  • the present invention is particularly useful in the field of vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vehicle Body Suspensions (AREA)
  • Automatic Cycles, And Cycles In General (AREA)

Abstract

実施形態に係る車両1は、操舵輪4L、4Rを含む少なくとも三輪の車輪と、車輪のうちの少なくとも二輪を駆動する少なくとも一つの駆動源60L、60Rと、操舵輪4L、4Rを支持するアッパーアーム41L、41Rおよびロアアーム42L、42Rを有するフロントサスペンション40とを備える。車両1が水平な路面15で静止している状態において、ロアアーム42L、42Rの垂れ角はアッパーアーム41L、41Rの垂れ角よりも大きく、ロアアーム42L、42Rの垂れ角とアッパーアーム41L、41Rの垂れ角との差は5度以上である。

Description

車両
 本発明は、車両に関する。
 人間を乗せて走行する車両の一つとして、ハンドル形電動車椅子が知られている(例えば特許文献1)。ハンドル形電動車椅子は、電動カートと称される場合もある。
 一般的に、ハンドル形電動車椅子は、比較的平坦な舗装路を走行する用途で利用されている。例えば、ユーザは、ハンドル形電動車椅子に乗ることで、自宅と店舗との間を移動して買い物を行ったりすることができる。
特開2000-247155号公報
 上記のような車両の走行性能をより向上させることが求められている。
 本発明のある実施形態に係る車両は、操舵輪を含む少なくとも三輪の車輪と、前記車輪のうちの少なくとも二輪を駆動する少なくとも一つの駆動源と、前記操舵輪を支持するアッパーアームおよびロアアームを有するサスペンションと、を備えた車両であって、前記車両が水平な路面で静止している状態において、前記ロアアームの垂れ角は前記アッパーアームの垂れ角よりも大きく、前記ロアアームの垂れ角と前記アッパーアームの垂れ角との差は5度以上である。
 ロアアームの垂れ角をアッパーアームの垂れ角よりも大きくし、垂れ角の差を5度以上とすることにより、サスペンションがストロークしたときのアッパーアームおよびロアアームそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。これによりサスペンションと操舵輪との間のクリアランスが大きくなり、ホイールストロークを大きくすることと操舵輪の切角を大きくすることとの両方を実現することができる。
 ある実施形態において、前記ロアアームの垂れ角と前記アッパーアームの垂れ角との差は、5度以上9度以下であってもよい。
 ロアアームの垂れ角とアッパーアームの垂れ角の差が大きいことにより、サスペンションがストロークしたときのアッパーアームおよびロアアームそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 ある実施形態において、前記サスペンションのホイールストロークに対する前記操舵輪のキャンバー角の変化量は、5度以上であってもよい。
 サスペンションのストロークに応じて操舵輪のキャンバー角が大きく変化することにより、アッパーアームおよびロアアームそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 ある実施形態において、前記サスペンションのホイールストロークに対する前記操舵輪のキャンバー角の変化量は、5度以上10度以下であってもよい。
 サスペンションのストロークに応じて操舵輪のキャンバー角が大きく変化することにより、アッパーアームおよびロアアームそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 ある実施形態において、前記サスペンションがバウンドストロークした場合、前記操舵輪のキャンバー角はネガティブキャンバーとなり、前記サスペンションがリバウンドストロークした場合、前記操舵輪のキャンバー角はポジティブキャンバーとなってもよい。
 サスペンションのストロークに応じて、キャンバー角がネガティブキャンバーとポジティブキャンバーとの間で変化することにより、アッパーアームおよびロアアームそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 ある実施形態において、前記車両が水平な路面で静止している状態において、前記アッパーアームの垂れ角は、15度以上であり、前記ロアアームの垂れ角は、20度以上であってもよい。
 アッパーアームおよびロアアームの垂れ角がそれぞれ15度以上および20度以上と大きいことにより、ロール剛性を高めることができる。
 ある実施形態において、前記車両が水平な路面で静止している状態において、前記アッパーアームの垂れ角は、15度以上20度以下であり、前記ロアアームの垂れ角は、20度以上25度以下であってもよい。
 アッパーアームおよびロアアームの垂れ角が大きいことにより、ロール剛性を高めることができる。
 ある実施形態において、前記アッパーアームおよび前記ロアアームそれぞれの揺動角は、30度以上であってもよい。
 アッパーアームおよびロアアームの揺動角が30度以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、前記アッパーアームおよび前記ロアアームそれぞれの揺動角は、30度以上60度以下であってもよい。
 アッパーアームおよびロアアームの揺動角が大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、前記サスペンションのホイールストロークは、60mm以上であってもよい。
 ホイールストロークが60mm以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、前記サスペンションのホイールストロークは、60mm以上150mm以下であってもよい。
 ホイールストロークが大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、前記サスペンションのホイールストロークは、前記アッパーアームおよび前記ロアアームそれぞれの長手方向の長さの0.5倍以上であってもよい。
 ホイールストロークがアッパーアームおよびロアアームそれぞれの長手方向の長さの0.5倍以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、前記サスペンションのホイールストロークは、前記アッパーアームおよび前記ロアアームそれぞれの長手方向の長さの0.5倍以上0.80倍以下であってもよい。
 ホイールストロークが大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、前記操舵輪は内輪および外輪を含み、前記内輪の切角の最大値は、50度以上であり、前記外輪の切角の最大値は、35度以上であってもよい。
 操舵輪の切角が大きいことにより車両の最小回転半径を小さくでき、小回りを利かせることができる。
 ある実施形態において、前記内輪の切角の最大値は、50度以上80度以下であり、前記外輪の切角の最大値は、35度以上80度以下であってもよい。
 操舵輪の切角が大きいことにより車両の最小回転半径を小さくでき、小回りを利かせることができる。
 ある実施形態において、前記車両の最小回転半径は、前記操舵輪のトレッド幅の2.5倍以下であってもよい。
 トレッド幅に対する最小回転半径が小さいことで、小回りを利かせることができる。
 ある実施形態において、前記車両の最小回転半径は、1400mm以下であってもよい。
 車両の最小回転半径が小さいことで、小回りを利かせることができる。
 ある実施形態において、前記操舵輪の外径は、前記車両の全長の0.26倍以上であってもよい。
 車両の全長に対して操舵輪の外径が0.26倍以上と大きいことで、未舗装路や段差に対する走破性を高めることができるとともに、乗り心地を高めることができる。
 ある実施形態において、前記操舵輪の外径は、前記車両の全長の0.26倍以上0.4倍以下であってもよい。
 車両の全長に対して操舵輪の外径が大きいことで、未舗装路や段差に対する走破性を高めることができるとともに、乗り心地を高めることができる。
 ある実施形態において、前記操舵輪の外径は、前記車両のホイールベースの0.43倍以上であってもよい。
 車両のホイールベースに対して操舵輪の外径が0.43倍以上と大きいことで、未舗装路や段差に対する走破性を高めることができるとともに、乗り心地を高めることができる。
 ある実施形態において、前記操舵輪の外径は、前記車両のホイールベースの0.43倍以上0.67倍以下であってもよい。
 車両のホイールベースに対して操舵輪の外径が大きいことで、未舗装路や段差に対する走破性を高めることができるとともに、乗り心地を高めることができる。
 ある実施形態において、前記車両はハンドル形電動車椅子であり、乗員が操舵を行うハンドルと、前記乗員が座るシートと、をさらに備えてもよい。
 ホイールストロークが大きく且つ操舵輪の切角が大きいハンドル形電動車椅子を実現することができる。
 ロアアームの垂れ角をアッパーアームの垂れ角よりも大きくし、垂れ角の差を5度以上とすることにより、サスペンションがストロークしたときのアッパーアームおよびロアアームそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。これによりサスペンションと操舵輪との間のクリアランスが大きくなり、ホイールストロークを大きくすることと操舵輪の切角を大きくすることとの両方を実現することができる。
実施形態に係る車両1を示す斜視図である。 実施形態に係る車両1を示す左側面図である。 実施形態に係る車両1を示す正面図である。 実施形態に係る車両1が備えるステアリング機構の概要を示す平面図である。 実施形態に係る車両1が備えるステアリング機構の概要を示す平面図である。 実施形態に係るリアサスペンション50を示す正面図である。 実施形態に係る車両1の電気的構成を示すブロック図である。 実施形態に係るフロントサスペンション40を示す正面図である。 実施形態に係るフロントサスペンション40を示す正面図である。 比較例のフロントサスペンション40aを示す正面図である。 比較例のフロントサスペンション40aを示す正面図である。 実施形態に係るフロントサスペンション40を示す正面図である。 実施形態に係る操舵輪4Lおよび4Rの切角を示す図である。
 以下、図面を参照しながら本発明の実施形態を説明する。同様の構成要素には同様の参照符号を付し、重複する場合にはその説明を省略する。以下の説明において、前、後、上、下、左、右は、それぞれ車両のシートに着座した乗員から見たときの前、後、上、下、左、右を意味するものとする。車両の左右方向を車幅方向と称する場合がある。なお、以下の実施形態は例示であり、本発明は以下の実施形態に限定されるものではない。
 図1は、実施形態に係る車両1を示す斜視図である。図2は、車両1を示す左側面図である。図3は、車両1を示す正面図である。車両1の構造を分かりやすく説明するために、図2および図3ではボディカバーの一部の図示を省略している。車両1は、例えばハンドル形電動車椅子であるが、本発明はそれに限定されない。以下では、車両1がハンドル形電動車椅子である場合の例を説明する。
 車両1は、車体フレーム2(図2)を備える。車体フレーム2は、アンダーフレーム2u、リアフレーム2r、シートフレーム2sおよびフロントフレーム2f(図3)を備える。アンダーフレーム2uは、車両1の前後方向に延びている。アンダーフレーム2uの後部からリアフレーム2rが上方に延びており、リアフレーム2rの上部からシートフレーム2sが後方に延びている。アンダーフレーム2uの前部からフロントフレーム2fが上方に延びている。
 フロントフレーム2f(図3)の上部には、ヘッドチューブ22(図2)が設けられている。ヘッドチューブ22は、その内部を通るステアリングコラム26を回転可能に支持している。ステアリングコラム26の上端部には、乗員が操舵を行うハンドル6が設けられている。ハンドル6にはアクセル操作子7(図1)および左右一対のバックミラー9が設けられている。
 ボディカバー28は、車体フレーム2の一部を覆うように設けられている。ボディカバー28には、フロントガード29が設けられている。乗員の前方にフロントガード29が配置されていることで、乗員は走行時に安心感を得ることができる。
 フロントフレーム2f(図3)には、独立懸架のフロントサスペンション40が設けられている。フロントサスペンション40は、アッパーアーム41L、ロアアーム42L、ショックアブソーバ45Lを有する。アッパーアーム41Lの一端は、ピボット46Lを介してフロントフレーム2fに回転可能に支持されている。アッパーアーム41Lの他端は、ピボット47Lを介してナックルアーム44Lを回転可能に支持している。ロアアーム42Lの一端は、ピボット48Lを介してフロントフレーム2fに回転可能に支持されている。ロアアーム42Lの他端は、ピボット49Lを介してナックルアーム44Lを回転可能に支持している。ナックルアーム44Lは、前輪4Lを回転可能に支持している。
 また、フロントサスペンション40は、アッパーアーム41R、ロアアーム42R、ショックアブソーバ45Rを有する。アッパーアーム41Rの一端は、ピボット46Rを介してフロントフレーム2fに回転可能に支持されている。アッパーアーム41Rの他端は、ピボット47Rを介してナックルアーム44Rを回転可能に支持している。ロアアーム42Rの一端は、ピボット48Rを介してフロントフレーム2fに回転可能に支持されている。ロアアーム42Rの他端は、ピボット49Rを介してナックルアーム44Rを回転可能に支持している。ナックルアーム44Rは、前輪4Rを回転可能に支持している。フロントサスペンション40は、ナックルアーム44Lおよび44Rを介して前輪4Lおよび4Rを回転可能に支持している。前輪4Lおよび4Rは操舵輪である。
 フロントサスペンション40は、ダブルウィッシュボーン式サスペンションと称される場合がある。本明細書において、ダブルウィッシュボーン式サスペンションのアーム形状は、A字状(V字状)に限定されない。本明細書において、「ダブルウィッシュボーン式」は、上下一対のアームで車輪を支持するサスペンション方式の総称である。
 フロントフレーム2fにはサスペンションタワー27が設けられている。ショックアブソーバ45Lおよび45Rそれぞれの上部は、サスペンションタワー27によって回転可能に支持されている。ショックアブソーバ45Lの下部は、アッパーアーム41Lを回転可能に支持している。ショックアブソーバ45Rの下部は、アッパーアーム41Rを回転可能に支持している。
 フロントフレーム2fは、車幅方向の中心近傍の位置で上下方向に延びている。サスペンションが取り付けられるフレーム部分には、サスペンションが路面から受けた衝撃が伝達されるため、高い強度が求められる。サスペンションタワー27を車体の左右端部付近に設けた場合、車幅方向の中心部から左右方向に延びるフレーム部分に高い強度を確保する必要があり、車体重量が大きくなる。車幅方向の中心近傍に位置するフロントフレーム2fにサスペンションタワー27を設けることで、上記のような高い強度の左右方向に延びるフレーム部分が不要になり、車体重量を軽くすることができる。
 ショックアブソーバ45Lおよび45Rは、アッパーアーム41Lおよび41Rに取り付けられている。
 図4Aおよび図4Bは、車両1が備えるステアリング機構の概要を示す平面図である。ステアリングコラム26の下端部にはピットマンアーム49が取り付けられている。タイロッド43Lの一端およびタイロッド43Rの一端のそれぞれは、ピットマンアーム49に回転可能に接続されている。タイロッド43Lの他端はナックルアーム44Lに回転可能に接続されている。タイロッド43Rの他端はナックルアーム44Rに回転可能に接続されている。
 図4Aは直進走行時のステアリング機構を示している。カーブを走行するとき、乗員はハンドル6(図1)を回転させる。図4Bを参照して、乗員がハンドル6を回転させて発生した操舵力は、ステアリングコラム26を介してピットマンアーム49に伝達される。ピットマンアーム49はステアリングコラム26を中心に回転し、タイロッド43Lおよび43R、ナックルアーム44Lおよび44Rを介して、前輪4Lおよび4Rに操舵力が伝達される。伝達された操舵力により前輪4Lおよび4Rの切角が変化し、車両1は、左または右に曲がりながら走行することができる。
 図1および図2を参照して、シートフレーム2sには、乗員が座るシート3が設けられている。シート3は、シートフレーム2sに設けられたシートベース31と、シートベース31に設けられたクッション32とを備える。
 シートベース31は、プレート材またはボトムプレートとも称される。シートベース31は、シート3の底部を構成し、シート3全体の強度を担保する役割を有する。そのため、シートベース31は、比較的剛性の高い材料から形成されている。シートベース31の材料として、例えば金属材料またはポリプロピレンなどの合成樹脂材料を用いることができるが、それらに限定されない。
 クッション32は、シートベース31の表面に重ねられている。クッション32は、良好な乗り心地を維持するために、適度な弾力性を長期間に亘って保つ材料から形成され得る。クッション32の材料として、例えば発泡ポリウレタン(ウレタンフォーム)を用いることができるが、それに限定されない。
 シート3の両サイドには、乗員が腕を置くアームレスト38が設けられている。アームレスト38はサイドガードの役割も果たしている。シート3の後部には、乗員がもたれかかる背もたれ39が設けられている。
 アンダーフレーム2uには、乗員が足を置くフットボード8(図1)が設けられている。フットボード8には滑り止め加工がなされている。乗員の乗り降りが容易なように、フットボード8の上面は概ね平坦な形状を有している。
 アンダーフレーム2uの後部には、独立懸架のリアサスペンション50(図2)が設けられている。図5は、リアサスペンション50を示す正面図である。リアサスペンション50は、トレーリングアーム式サスペンションと称される場合がある。
 リアサスペンション50は、リアアーム51Lおよび51Rと、ショックアブソーバ55Lおよび55Rとを有する。リアアーム51Lおよび51Rは、スイングアームである。リアアーム51Lの前部は、ピボット56Lを介してアンダーフレーム2uの左後方部に回転可能に支持されている。リアアーム51Rの前部は、ピボット56Rを介してアンダーフレーム2uの右後方部に回転可能に支持されている。
 ショックアブソーバ55Lの上部およびショックアブソーバ55Rの上部のそれぞれは、リアフレーム2r(図2)によって回転可能に支持されている。ショックアブソーバ55Lの下部は、リアアーム51Lを回転可能に支持している。ショックアブソーバ55Rの下部は、リアアーム51Rを回転可能に支持している。
 リアアーム51Lの後部には、電動モータ60Lが設けられている。電動モータ60Lはインホイールモータであり、電動モータ60Lに後輪5Lが設けられている。リアサスペンション50は、電動モータ60Lを介して後輪5Lを回転可能に支持している。リアアーム51Rの後部には、電動モータ60Rが設けられている。電動モータ60Rはインホイールモータであり、電動モータ60Rに後輪5Rが設けられている。リアサスペンション50は、電動モータ60Rを介して後輪5Rを回転可能に支持している。後輪5Lおよび5Rは駆動輪である。
 本実施形態の車両1は、サイズが大きい車輪4L、4R、5Lおよび5Rを採用している。前輪および後輪の外径は例えば14インチ以上であるが、これに限定されない。サイズが大きい前輪および後輪を採用することにより、未舗装路や段差に対する走破性を高めることができる。
 本実施形態では、二つの電動モータ60Lおよび60Rを用いて、後輪5Lおよび5Rを互いに独立して駆動する。左右の車輪の回転を独立に制御することで、車両1の旋回時の挙動の安定性を高めることができる。デファレンシャルギアを備える車両では、一方の駆動輪が空転したときに、他方の駆動輪に駆動力が伝わりにくくなるという課題がある。本実施形態では、後輪5Lおよび5Rの一方が空転したとしても、他方がグリップ力を発揮することで走行を安定して継続することができる。
 なお、後輪5Lおよび5Rを駆動する電動モータはインホイールモータに限定されない。例えば、一つの電動モータから後輪5Lおよび5Rに駆動力が伝達されてもよい。
 ここでは、電動モータ60Lおよび60Rが後輪5Lおよび5Rを駆動する二輪駆動の形態を例示したが、車両1は四輪駆動であってもよい。その場合は、前輪4Lおよび4Rのそれぞれに対してもインホイールモータが設けられる。なお、一つの電動モータから前輪4Lおよび4Rに駆動力が伝達されてもよい。また、一つの電動モータから前輪4Lおよび4Rと後輪5Lおよび5Rのそれぞれに駆動力が伝達されてもよい。
 本実施形態の車両1は、独立懸架のフロントサスペンション40および独立懸架のリアサスペンション50を備える。また、二つの電動モータ60Lおよび60Rを用いて後輪5Lおよび5Rを互いに独立して駆動する。これにより、路面の凹凸に対する追従性を向上させ、駆動力を安定して路面に伝達することができる。また、車両の旋回性能を高めることができる。本実施形態によれば、未舗装路や段差に対する車両の走破性を高めることができる。
 なお、リアサスペンション50は独立懸架式のサスペンションに限定されず、車軸懸架のサスペンションであってもよい。
 本実施形態では電動モータとしてインホイールモータを採用している。これにより、車両のボディ部分に電動モータおよび動力伝達機構を配置するスペースを確保する必要がなくなり、省スペース化を実現することができる。また、車両1の左右方向に延びるドライブシャフトが不要であるため、リアサスペンション50はドライブシャフトによる制約を受けない。リアサスペンション50では、リアアーム51Lおよび51Rは前後方向に延びており、ピボット56Lおよび56Rが後輪5Lおよび5Rの回転軸57よりも前方に位置している。このような構成により、リアサスペンション50のホイールストロークを大きくできる。
 例えば、リアサスペンション50のホイールストロークは60mm以上であるが、これに限定されない。ホイールストロークが60mm以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。リアサスペンション50のホイールストロークの上限は車両1のサイズにより異なり得、例えば150mmであるが、これに限定されない。
 また、ドライブシャフトが不要であり且つ車両後方の中心部付近にリアアーム52Lおよび51Rが位置しないことから、車両後方の中心部付近に空間を確保することができる。車両後方の中心部付近に空間があることにより、独立懸架のリアサスペンション50の動作に応じて左右の後輪5Lおよび5Rの上下方向における位置に大きな差が発生した場合でも、車両本体部分を地面に接触しにくくすることができる。なお、インホイールモータを使用せず、一つの電動モータから後輪5Lおよび5Rに駆動力を伝達する場合は、車両1はドライブシャフトを備えていてもよい。
 次に、電動モータ60Lおよび60Rの制御を説明する。図6は、車両1の電気的構成を示すブロック図である。車両1は、制御装置70を備える。制御装置70は、車両1の動作を制御する。制御装置70は、例えばMCU(Motor Control Unit)である。典型的には、制御装置70はデジタル信号処理を行うことが可能なマイクロコントローラ、信号処理プロセッサ等の半導体集積回路を有する。
 制御装置70は、プロセッサ71、メモリ72、駆動回路73Lおよび73Rを備える。プロセッサ71は、電動モータ60Lおよび60Rの動作を制御するとともに、車両1の各部の動作を制御する。メモリ72は、電動モータ60Lおよび60Rおよび車両1の各部の動作を制御するための手順を規定したコンピュータプログラムを格納している。プロセッサ71は、メモリ72からコンピュータプログラムを読み出して各種制御を行う。制御装置70には、バッテリ10から電力が供給される。制御装置70およびバッテリ10は、車両1の任意の位置に設けられ、例えばシート3の下方に設けられるが、それに限定されない。バッテリ10は、車両1に対して着脱可能に設けられ得る。例えばバッテリ10は、シート3の後方に着脱可能に設けられてもよい。バッテリ10をシート3周辺の車両端部に配置することで、乗員はバッテリ10の着脱を容易に行うことができる。
 アクセル操作子7は、乗員のアクセル操作量に応じた信号をプロセッサ71に出力する。舵角センサ75は、例えばヘッドチューブ22またはステアリングコラム26に設けられ、ステアリングコラム26の回転角に応じた信号をプロセッサ71に出力する。
 電動モータ60Lには、回転センサ61Lが設けられている。回転センサ61Lは、電動モータ60Lの回転角を検出し、回転角に応じた信号をプロセッサ71および駆動回路73Lへ出力する。プロセッサ71および駆動回路73Lは、回転センサ61Lの出力信号から電動モータ60Lの回転速度を演算する。
 電動モータ60Rには、回転センサ61Rが設けられている。回転センサ61Rは、電動モータ60Rの回転角を検出し、回転角に応じた信号をプロセッサ71および駆動回路73Rへ出力する。プロセッサ71および駆動回路73Rは、回転センサ61Rの出力信号から電動モータ60Rの回転速度を演算する。後輪5Lおよび5Rのサイズは予めメモリ72に記憶されており、電動モータ60Lおよび60Rの回転速度から車両1の走行速度を演算することができる。
 プロセッサ71は、アクセル操作子7の出力信号、舵角センサ75の出力信号、車両の走行速度、およびメモリ72に格納されている情報などから、適切な駆動力を発生させるための指令値を演算し、駆動回路73Lおよび73Rへ送信する。プロセッサ71は、車両の走行状態に応じて、駆動回路73Lおよび73Rに互いに異なる指令値を送信し得る。
 駆動回路73Lおよび73Rは、例えばインバータである。駆動回路73Lは、プロセッサ71からの指令値に応じた駆動電流を電動モータ60Lに供給する。駆動回路73Rは、プロセッサ71からの指令値に応じた駆動電流を電動モータ60Lに供給する。駆動電流が供給された電動モータ60Lおよび60Rが回転することで、後輪5Lおよび5Rは回転する。電動モータ60Lおよび60Rが減速機を備える場合は、それらの減速機を介して後輪5Lおよび5Rに回転が伝達される。
 上述したように、本実施形態の車両1は、外径が大きい車輪4L、4R、5Lおよび5Rを備えている。これにより、未舗装路および段差に対する走破性を高めることができる。一方で、車両1の全長(前後方向の長さ)には制限が設けられている場合がある。例えば、ハンドル形電動車椅子に関する日本産業規格“JIS T 9208:2016”では、車両の全長は1200mm以下と制限されている。このように車両1の全長に制限がある場合に、車輪の外径を大きくすると、ホイールベースは短くなる。
 図2を参照して、本実施形態の車輪4L、4R、5Lおよび5Rそれぞれの外径Dwは、例えば車両1の全長Loの0.26倍以上と相対的に大きい。また、車輪の外径Dwは、例えば車両1のホイールベースWBの0.43倍以上と相対的に大きい。このように、車輪のサイズが相対的に大きいと、車輪の切角を大きくすることが困難である。車輪の外径Dwの上限は、例えば車両1の全長Loの0.4倍であるが、これに限定されない。車輪の外径Dwは、例えばホイールベースWBに対して最大で0.67倍であるが、これに限定されない。
 また、操舵輪として外径および幅が大きい車輪を用いた場合、操舵輪を支持するサスペンションと操舵輪とが干渉しやすくなり、操舵輪の切角を大きくすることが困難となる。しかし、ハンドル形電動車椅子等の車両では小回りが利くがことが求められ、操舵輪の切角を大きくすることが求められる。また、外径が大きく幅も大きい車輪を用いた場合、車輪が上下方向にストロークしたときにもサスペンションと干渉しやすくなり、ホイールストロークを大きくすることが難しいという課題がある。
 以下、切角およびホイールストロークを大きくすることができる本実施形態のフロントサスペンション40の詳細を説明する。
 図3を参照して、アッパーアーム41Lおよび41Rと、ロアアーム42Lおよび42Rの角度を説明する。
 図3は、シート3(図1)に質量75kgのおもりを乗せて水平な路面15で静止している所定状態の車両1を示している。おもりは、ハンドル形電動車椅子に関する日本産業規格“JIS T 9208:2016”に規定されているおもりのうちの一つである。このようなおもりをシート3に乗せることで、車両1に人間が乗った状態を疑似的に実現することができる。
 図3に示すように、フロントサスペンション40のアッパーアーム41Lおよびロアアーム42Lは、車幅方向(左右方向)の中心部から左方向に向かって、徐々に高さが低くなるように傾いている。すなわち、アッパーアーム41Lおよびロアアーム42Lには垂れ角θ41Lおよびθ42Lがついている。垂れ角は、フロントサスペンション40の正面視において車幅方向とアームの長手方向とがなす角度である。車両1が水平な路面15で静止している場合、車幅方向は水平方向と平行であり得る。アームの長手方向は、例えばフロントフレーム2f側のピボットの中心からナックルアーム側のピボットの中心に向かう方向である。垂れ角は下反角と称される場合がある。
 フロントサスペンション40のアッパーアーム41Rおよびロアアーム42Rは、車幅方向の中心部から右方向に向かって、徐々に高さが低くなるように傾いている。すなわち、アッパーアーム41Rおよびロアアーム42Rには垂れ角θ41Rおよびθ42Rがついている。
 アッパーアーム41Lおよび41Rの垂れ角θ41Lおよびθ41Rは、例えば15度以上である。ロアアーム42Lおよび42Rの垂れ角θ42Lおよびθ42Rは、例えば20度以上である。アームそれぞれの垂れ角が大きいことにより、車両1のロール剛性を高めることができる。アッパーアーム41Lおよび41Rの垂れ角θ41Lおよびθ41Rの上限は、例えば20度であるが、それに限定されない。ロアアーム42Lおよび42Rの垂れ角θ42Lおよびθ42Rの上限は、例えば25度であるが、それに限定されない。シート3に上記のおもりを乗せていない状態(乗員が乗車していない状態に相当)においても、フロントサスペンション40の各アームには垂れ角がついていることは言うまでもない。
 本実施形態では、ロアアーム42Lの垂れ角θ42Lは、アッパーアーム41Lの垂れ角θ41Lよりも大きい。ロアアーム42Lの垂れ角θ42Lとアッパーアーム41Lの垂れ角θ41Lとの差は、例えば5度以上である。また、ロアアーム42Rの垂れ角θ42Rは、アッパーアーム41Rの垂れ角θ41Rよりも大きい。ロアアーム42Rの垂れ角θ42Rとアッパーアーム41Rの垂れ角θ41Rとの差は、例えば5度以上である。ロアアームの垂れ角とアッパーアームの垂れ角との差を5度以上とすることにより、後述するような所望のキャンバー角の変化量を得ることができる。ロアアームの垂れ角とアッパーアームの垂れ角との差の上限は、例えば9度であるが、それに限定されない。例えば、垂れ角の差の上限は8度であってもよい。
 図7および図8は、フロントサスペンション40を示す正面図である。以下では、主に、アッパーアーム41L、ロアアーム42L、ナックルアーム44Lおよび前輪4Lの特徴について説明するが、アッパーアーム41R、ロアアーム42R、ナックルアーム44Rおよび前輪4Rの特徴もそれと同じである。また、本実施形態における操舵輪は前輪であるため、前輪を操舵輪と称する場合がある。
 図7は、操舵輪4Lが上方向に移動したとき、すなわちフロントサスペンション40が縮んだときのフロントサスペンション40を示している。図8は、操舵輪4Lが下方向に移動したとき、すなわちフロントサスペンション40が伸びたときのフロントサスペンション40を示している。
 本願発明者らは、ロアアーム42Lの垂れ角θ42L(図3)をアッパーアーム41Lの垂れ角θ41Lよりも大きくすることにより、フロントサスペンション40がストロークしたとの操舵輪4Lのキャンバー角θcの変化量を大きくできることを見出した。例えば、ホイールストロークに対するキャンバー角θcの変化量を5度以上とすることができる。
 フロントサスペンション40のストロークに応じてキャンバー角θcが大きく変化することにより、フロントサスペンション40がストロークしたときのアッパーアーム41Lの長手方向LD1とタイヤ中心線CtLとがなす角θuの変化量を小さくすることができる。また、フロントサスペンション40がストロークしたときのロアアーム42Lの長手方向LD2とタイヤ中心線CtLとがなす角θlの変化量を小さくすることができる。
 アームの長手方向とタイヤ中心線とがなす角の変化量が小さいことは、アームと操舵輪との間の位置関係の変化が少ないことを意味する。これによりフロントサスペンション40と操舵輪4Lとの間のクリアランスを大きくすることができる。クリアランスが大きいことで、操舵輪4Lの切角を大きくできるとともに、ホイールストロークを大きくすることができる。
 図9および図10は、比較例として、ロアアーム42Lの垂れ角θ42L(図3)とアッパーアーム41Lの垂れ角θ41Lとが等しいフロントサスペンション40aを示す正面図である。フロントサスペンション40aでは、アッパーアーム41Lの長手方向LD1とロアアーム42Lの長手方向LD2とは平行である。図9は、操舵輪4Lが上方向に移動したときのフロントサスペンション40aを示している。図10は、操舵輪4Lが下方向に移動したときのフロントサスペンション40aを示している。
 フロントサスペンション40aでは、ストロークしたときにキャンバー角が実質的に変化しない。このため、ストロークしたときのアッパーアーム41Lの長手方向LD1とタイヤ中心線CtLとがなす角θuの変化量が大きくなっている。同様に、ストロークしたときのロアアーム42Lの長手方向LD2とタイヤ中心線CtLとがなす角θlの変化量が大きくなっている。
 アームの長手方向とタイヤ中心線とがなす角の変化量が大きいことは、アームと操舵輪との間の位置関係の変化が大きいことを意味する。アームと操舵輪との間の位置関係の変化が大きいことにより、クリアランスを確保することは困難である。
 一方、上述したように、本実施形態のフロントサスペンション40では、アームと操舵輪との間の位置関係の変化が少ない。これによりフロントサスペンション40と操舵輪4Lとの間のクリアランスを大きくすることができ、操舵輪4Lの切角を大きくできるとともに、ホイールストロークを大きくすることができる。
 また、本実施形態では、フロントサスペンション40がバウンドストロークした場合、操舵輪4Lのキャンバー角θcはネガティブキャンバーとなり得る。また、フロントサスペンション40がリバウンドストロークした場合、操舵輪4Lのキャンバー角θcはポジティブキャンバーとなり得る。フロントサスペンション40のストロークに応じて、キャンバー角θcがネガティブキャンバーとポジティブキャンバーとの間で変化することにより、アームの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 なお、ホイールストロークに対するキャンバー角θcの変化量の上限は、例えば10度であるが、それに限定されない。
 図11は、本実施形態のフロントサスペンション40を示す正面図である。図11において、バウンドストロークした状態のフロントサスペンション40を実線で示し、リバウンドストロークした状態のフロントサスペンション40を点線で示している。
 本実施形態では、フロントサスペンション40と操舵輪4Lとの間のクリアランスを大きくできることにより、アームの揺動角およびホイールストロークを大きくすることができる。
 アッパーアーム41Lの揺動角θs1およびロアアーム42Lの揺動角θs2のそれぞれは、例えば30度以上である。揺動角が30度以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。また、ホイールストロークWSは、例えば60mm以上である。ホイールストロークWSが60mm以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 また、ホイールストロークWSは、アッパーアーム41Lの長手方向の長さD41(図7)の0.5倍以上であるとともに、ロアアーム42Lの長手方向の長さD42の0.5倍以上である。アームの長手方向の長さは、例えばフロントフレーム2f側のピボットの中心とナックルアーム側のピボットの中心との間の長さである。アームの長さに対してホイールストロークWSが大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 揺動角θs1およびθs2の上限は、例えば60度であるが、それに限定されない。ホイールストロークWSの上限は、例えば150mmであるが、それに限定されない。ホイールストロークWSは、例えばアームの長手方向の長さに対して最大で0.80倍であるが、それに限定されない。
 次に、操舵輪4Lおよび4Rの切角について説明する。図12は、操舵輪4Lおよび4Rの切角を示す図である。図12中の符号CtLおよびCtRは、操舵輪4Lおよび4Rのタイヤ中心線を表している。図12では、車両1が右に旋回するときの切角を示している。本実施形態では、フロントサスペンション40と操舵輪4Lとの間のクリアランスを大きくできることにより、操舵輪4Lおよび4Rの切角を大きくすることができる。
 車両1が右に旋回するとき、操舵輪4Rは内輪となり、操舵輪4Lは外輪となる。本実施形態において、内輪の切角の最大値は例えば50度以上であり、外輪の切角の最大値は例えば35度以上である。
 この例では、外輪の切角よりも内輪の切角が大きくなっている。このような内輪と外輪との間の切角の関係は、例えばアッカーマン式ステアリングを採用することにより実現され得る。また、例えば、内輪の切角と外輪の切角とを互いに独立して制御するステアリングシステムによって実現されてもよい。
 上述のように操舵輪4Lおよび4Rの切角が大きいことにより車両1の最小回転半径を小さくでき、小回りを利かせることができる。内輪の切角の最大値は、例えば80度以下であるが、それに限定されない。外輪の切角の最大値は、例えば80度以下であるが、それに限定されない。
 上述のように、本実施形態では車両1の最小回転半径を小さくすることができる。例えば、車両1の最小回転半径は、操舵輪4Lおよび4Rのトレッド幅TWの2.5倍以下と小さくすることができる。車両1の最小回転半径は、例えば、1400mm以下である。車両1の最小回転半径が小さいことで、小回りを利かせることができる。
 上述の実施形態の説明では、車両1は四輪のハンドル形電動車椅子であったが、車両1はそれに限定されない。車両1は、ジョイスティック形電動車椅子であってもよい。車両1は、車椅子に限定されず、別の車両であってもよい。
 また、車両1の車輪の数は四輪に限定されない。車輪の数は三輪以上であればよい。また、車輪を駆動する駆動源は電動モータに限定されず、内燃機関であってもよい。また、一つの駆動源から複数の車輪に駆動力が伝達されてもよい。
 以上、本発明の例示的な実施形態を説明した。
 本発明のある実施形態に係る車両1は、操舵輪4L、4Rを含む少なくとも三輪の車輪と、車輪のうちの少なくとも二輪を駆動する少なくとも一つの駆動源60L、60Rと、操舵輪4L、4Rを支持するアッパーアーム41L、41Rおよびロアアーム42L、42Rを有するフロントサスペンション40と、を備えた車両1であって、車両1が水平な路面15で静止している状態において、ロアアーム42L、42Rの垂れ角はアッパーアーム41L、41Rの垂れ角よりも大きく、ロアアーム42L、42Rの垂れ角とアッパーアーム41L、41Rの垂れ角との差は5度以上である。
 ロアアーム42L、42Rの垂れ角をアッパーアーム41L、41Rの垂れ角よりも大きくし、垂れ角の差を5度以上とすることにより、フロントサスペンション40がストロークしたときのアッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。これによりフロントサスペンション40と操舵輪4L、4Rとの間のクリアランスが大きくなり、ホイールストロークWSを大きくすることと操舵輪4L、4Rの切角を大きくすることとの両方を実現することができる。
 ある実施形態において、ロアアーム42L、42Rの垂れ角とアッパーアーム41L、41Rの垂れ角との差は、5度以上9度以下であってもよい。
 ロアアーム42L、42Rの垂れ角とアッパーアーム41L、41Rの垂れ角の差が大きいことにより、サスペンション40がストロークしたときのアッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 ある実施形態において、フロントサスペンション40のホイールストロークWSに対する操舵輪4L、4Rのキャンバー角の変化量は、5度以上であってもよい。
 フロントサスペンション40のストロークに応じて操舵輪4L、4Rのキャンバー角が大きく変化することにより、アッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 ある実施形態において、フロントサスペンション40のホイールストロークWSに対する操舵輪4L、4Rのキャンバー角の変化量は、5度以上10度以下であってもよい。
 フロントサスペンション40のストロークに応じて操舵輪4L、4Rのキャンバー角が大きく変化することにより、アッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 ある実施形態において、フロントサスペンション40がバウンドストロークした場合、操舵輪4L、4Rのキャンバー角はネガティブキャンバーとなり、フロントサスペンション40がリバウンドストロークした場合、操舵輪4L、4Rのキャンバー角はポジティブキャンバーとなってもよい。
 フロントサスペンション40のストロークに応じて、キャンバー角がネガティブキャンバーとポジティブキャンバーとの間で変化することにより、アッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの長手方向とタイヤ中心線とがなす角度の変化量を小さくすることができる。
 ある実施形態において、車両1が水平な路面15で静止している状態において、アッパーアーム41L、41Rの垂れ角は、15度以上であり、ロアアーム42L、42Rの垂れ角は、20度以上であってもよい。
 アッパーアーム41L、41Rおよびロアアーム42L、42Rの垂れ角がそれぞれ15度以上および20度以上と大きいことにより、ロール剛性を高めることができる。
 ある実施形態において、車両1が水平な路面15で静止している状態において、アッパーアーム41L、41Rの垂れ角は、15度以上20度以下であり、ロアアーム42L、42Rの垂れ角は、20度以上25度以下であってもよい。
 アッパーアーム41L、41Rおよびロアアーム42L、42Rの垂れ角が大きいことにより、ロール剛性を高めることができる。
 ある実施形態において、アッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの揺動角は、30度以上であってもよい。
 アッパーアーム41L、41Rおよびロアアーム42L、42Rの揺動角が30度以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、アッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの揺動角は、30度以上60度以下であってもよい。
 アッパーアーム41L、41Rおよびロアアーム42L、42Rの揺動角が大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、フロントサスペンション40のホイールストロークWSは、60mm以上であってもよい。
 ホイールストロークWSが60mm以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、フロントサスペンション40のホイールストロークWSは、60mm以上150mm以下であってもよい。
 ホイールストロークWSが大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、フロントサスペンション40のホイールストロークWSは、アッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの長手方向の長さの0.5倍以上であってもよい。
 ホイールストロークWSがアッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの長手方向の長さの0.5倍以上と大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、フロントサスペンション40のホイールストロークWSは、アッパーアーム41L、41Rおよびロアアーム42L、42Rそれぞれの長手方向の長さの0.5倍以上0.80倍以下であってもよい。
 ホイールストロークWSが大きいことにより、未舗装路や段差に対する走破性を高めることができる。
 ある実施形態において、操舵輪4L、4Rは内輪および外輪を含み、内輪の切角の最大値は、50度以上であり、外輪の切角の最大値は、35度以上であってもよい。
 操舵輪4L、4Rの切角が大きいことにより車両1の最小回転半径を小さくでき、小回りを利かせることができる。
 ある実施形態において、内輪の切角の最大値は、50度以上80度以下であり、外輪の切角の最大値は、35度以上80度以下であってもよい。
 操舵輪4L、4Rの切角が大きいことにより車両1の最小回転半径を小さくでき、小回りを利かせることができる。
 ある実施形態において、車両1の最小回転半径は、操舵輪4L、4Rのトレッド幅の2.5倍以下であってもよい。
 トレッド幅に対する最小回転半径が小さいことで、小回りを利かせることができる。
 ある実施形態において、車両1の最小回転半径は、1400mm以下であってもよい。
 車両1の最小回転半径が小さいことで、小回りを利かせることができる。
 ある実施形態において、操舵輪4L、4Rの外径Dwは、車両1の全長Loの0.26倍以上であってもよい。
 車両1の全長Loに対して操舵輪4L、4Rの外径Dwが0.26倍以上と大きいことで、未舗装路や段差に対する走破性を高めることができるとともに、乗り心地を高めることができる。
 ある実施形態において、操舵輪4L、4Rの外径Dwは、車両1の全長Loの0.26倍以上0.4倍以下であってもよい。
 車両1の全長Loに対して操舵輪4L、4Rの外径Dwが大きいことで、未舗装路や段差に対する走破性を高めることができるとともに、乗り心地を高めることができる。
 ある実施形態において、操舵輪4L、4Rの外径Dwは、車両1のホイールベースの0.43倍以上であってもよい。
 車両1のホイールベースに対して操舵輪4L、4Rの外径Dwが0.43倍以上と大きいことで、未舗装路や段差に対する走破性を高めることができるとともに、乗り心地を高めることができる。
 ある実施形態において、操舵輪4L、4Rの外径Dwは、車両1のホイールベースの0.43倍以上0.67倍以下であってもよい。
 車両1のホイールベースに対して操舵輪4L、4Rの外径Dwが大きいことで、未舗装路や段差に対する走破性を高めることができるとともに、乗り心地を高めることができる。
 ある実施形態において、車両1はハンドル形電動車椅子であり、乗員が操舵を行うハンドル6と、乗員が座るシート3と、をさらに備えてもよい。
 ホイールストロークWSが大きく且つ操舵輪4L、4Rの切角が大きいハンドル形電動車椅子を実現することができる。
 本発明は、車両の分野において特に有用である。
 1:車両(ハンドル形電動車椅子)、 2:車体フレーム、 2f:フロントフレーム、 2u:アンダーフレーム、 2r:リアフレーム、 2s:シートフレーム、 3:シート、 4L、4R:前輪、 5L、5R:後輪、 6:ハンドル、 7:アクセル操作子、 8:フットボード、 9:バックミラー、 10:バッテリ、 15:路面 22:ヘッドチューブ、 26:ステアリングコラム、 27:サスペンションタワー、 28:ボディカバー、 29:フロントガード、 31:シートベース、 32:クッション、 38:アームレスト、 39:背もたれ、 40:フロントサスペンション、 41L、41R:アッパーアーム、 42L、42R:ロアアーム、 43L、43R:タイロッド、 44L、44R:ナックルアーム、 45L、45R:ショックアブソーバ、 46L、46R:ピボット、 47L、47R:ピボット、 48L、48R:ピボット、 49L、49R:ピボット、 49:ピットマンアーム、 50:リアサスペンション、 51L、51R:リアアーム、 55L、55R:ショックアブソーバ、 56L、56R:ピボット軸、 57:回転軸 60L、60R:電動モータ、 61L、61R:回転センサ、 70:制御装置、 71:プロセッサ、 72:メモリ、 73L、73R:駆動回路、 75:舵角センサ
 

Claims (22)

  1.  操舵輪を含む少なくとも三輪の車輪と、
     前記車輪のうちの少なくとも二輪を駆動する少なくとも一つの駆動源と、
     前記操舵輪を支持するアッパーアームおよびロアアームを有するサスペンションと、
     を備えた車両であって、
     前記車両が水平な路面で静止している状態において、
     前記ロアアームの垂れ角は前記アッパーアームの垂れ角よりも大きく、
     前記ロアアームの垂れ角と前記アッパーアームの垂れ角との差は5度以上である、車両。
  2.  前記ロアアームの垂れ角と前記アッパーアームの垂れ角との差は、5度以上9度以下である、請求項1に記載の車両。
  3.  前記サスペンションのホイールストロークに対する前記操舵輪のキャンバー角の変化量は、5度以上である、請求項1または2に記載の車両。
  4.  前記サスペンションのホイールストロークに対する前記操舵輪のキャンバー角の変化量は、5度以上10度以下である、請求項3に記載の車両。
  5.  前記サスペンションがバウンドストロークした場合、前記操舵輪のキャンバー角はネガティブキャンバーとなり、
     前記サスペンションがリバウンドストロークした場合、前記操舵輪のキャンバー角はポジティブキャンバーとなる、請求項1から4のいずれかに記載の車両。
  6.  前記車両が水平な路面で静止している状態において、
     前記アッパーアームの垂れ角は、15度以上であり、
     前記ロアアームの垂れ角は、20度以上である、請求項1から5のいずれかに記載の車両。
  7.  前記車両が水平な路面で静止している状態において、
     前記アッパーアームの垂れ角は、15度以上20度以下であり、
     前記ロアアームの垂れ角は、20度以上25度以下である、請求項6に記載の車両。
  8.  前記アッパーアームおよび前記ロアアームそれぞれの揺動角は、30度以上である、請求項1から7のいずれかに記載の車両。
  9.  前記アッパーアームおよび前記ロアアームそれぞれの揺動角は、30度以上60度以下である、請求項8に記載の車両。
  10.  前記サスペンションのホイールストロークは、60mm以上である、請求項1から9のいずれかに記載の車両。
  11.  前記サスペンションのホイールストロークは、60mm以上150mm以下である、請求項10に記載の車両。
  12.  前記サスペンションのホイールストロークは、前記アッパーアームおよび前記ロアアームそれぞれの長手方向の長さの0.5倍以上である、請求項1から11のいずれかに記載の車両。
  13.  前記サスペンションのホイールストロークは、前記アッパーアームおよび前記ロアアームそれぞれの長手方向の長さの0.5倍以上0.80倍以下である、請求項12に記載の車両。
  14.  前記操舵輪は内輪および外輪を含み、
     前記内輪の切角の最大値は、50度以上であり、
     前記外輪の切角の最大値は、35度以上である、請求項1から13のいずれかに記載の車両。
  15.  前記内輪の切角の最大値は、50度以上80度以下であり、
     前記外輪の切角の最大値は、35度以上80度以下である、請求項14に記載の車両。
  16.  前記車両の最小回転半径は、前記操舵輪のトレッド幅の2.5倍以下である、請求項1から15のいずれかに記載の車両。
  17.  前記車両の最小回転半径は、1400mm以下である、請求項1から16のいずれかに記載の車両。
  18.  前記操舵輪の外径は、前記車両の全長の0.26倍以上である、請求項1から17のいずれかに記載の車両。
  19.  前記操舵輪の外径は、前記車両の全長の0.26倍以上0.4倍以下である、請求項18に記載の車両。
  20.  前記操舵輪の外径は、前記車両のホイールベースの0.43倍以上である、請求項1から19のいずれかに記載の車両。
  21.  前記操舵輪の外径は、前記車両のホイールベースの0.43倍以上0.67倍以下である、請求項1から20のいずれかに記載の車両。
  22.  前記車両はハンドル形電動車椅子であり、
     乗員が操舵を行うハンドルと、
     前記乗員が座るシートと、
     をさらに備える、請求項1から21のいずれかに記載の車両。
     
PCT/JP2021/014361 2021-04-02 2021-04-02 車両 WO2022208875A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/014361 WO2022208875A1 (ja) 2021-04-02 2021-04-02 車両
JP2023510141A JP7571283B2 (ja) 2021-04-02 車両
EP21935036.0A EP4316966A4 (en) 2021-04-02 2021-04-02 VEHICLE
US18/374,701 US20240024176A1 (en) 2021-04-02 2023-09-29 Vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014361 WO2022208875A1 (ja) 2021-04-02 2021-04-02 車両

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/374,701 Continuation US20240024176A1 (en) 2021-04-02 2023-09-29 Vehicle

Publications (1)

Publication Number Publication Date
WO2022208875A1 true WO2022208875A1 (ja) 2022-10-06

Family

ID=83457351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014361 WO2022208875A1 (ja) 2021-04-02 2021-04-02 車両

Country Status (3)

Country Link
US (1) US20240024176A1 (ja)
EP (1) EP4316966A4 (ja)
WO (1) WO2022208875A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12054212B2 (en) * 2020-06-15 2024-08-06 Hj Moto Co., Ltd. Front chassis system of tilting vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229325A (ja) * 1992-02-18 1993-09-07 Mitsubishi Motors Corp 車両のサスペンション装置
JP2000247155A (ja) 1999-02-25 2000-09-12 Suzuki Motor Corp 電動車両
JP2003261039A (ja) * 2002-03-08 2003-09-16 Suzuki Motor Corp 小型電動車両
JP2006312393A (ja) * 2005-05-09 2006-11-16 Komatsu Ltd 走行車輌用サスペンション装置
JP2010064560A (ja) * 2008-09-09 2010-03-25 Socead Giken:Kk 三輪車
JP2012214097A (ja) * 2011-03-31 2012-11-08 Nissan Motor Co Ltd サスペンション構造、サスペンション特性調整方法
JP2016106869A (ja) * 2014-12-08 2016-06-20 株式会社Tess 電動アシスト機能付き足漕ぎ式車椅子
JP2020048611A (ja) * 2018-09-21 2020-04-02 ヤマハ発動機株式会社 一人乗り電動車両

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229325A (ja) * 1992-02-18 1993-09-07 Mitsubishi Motors Corp 車両のサスペンション装置
JP2000247155A (ja) 1999-02-25 2000-09-12 Suzuki Motor Corp 電動車両
JP2003261039A (ja) * 2002-03-08 2003-09-16 Suzuki Motor Corp 小型電動車両
JP2006312393A (ja) * 2005-05-09 2006-11-16 Komatsu Ltd 走行車輌用サスペンション装置
JP2010064560A (ja) * 2008-09-09 2010-03-25 Socead Giken:Kk 三輪車
JP2012214097A (ja) * 2011-03-31 2012-11-08 Nissan Motor Co Ltd サスペンション構造、サスペンション特性調整方法
JP2016106869A (ja) * 2014-12-08 2016-06-20 株式会社Tess 電動アシスト機能付き足漕ぎ式車椅子
JP2020048611A (ja) * 2018-09-21 2020-04-02 ヤマハ発動機株式会社 一人乗り電動車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4316966A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12054212B2 (en) * 2020-06-15 2024-08-06 Hj Moto Co., Ltd. Front chassis system of tilting vehicle

Also Published As

Publication number Publication date
EP4316966A4 (en) 2024-05-22
US20240024176A1 (en) 2024-01-25
EP4316966A1 (en) 2024-02-07
JPWO2022208875A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
US10994796B2 (en) Leaning vehicle
US11203389B2 (en) Leaning vehicle
JP7188951B2 (ja) 一人乗り電動車両
US8645024B2 (en) Motorized three-wheeled vehicle active suspension
EP3256367B1 (en) Motorized vehicle with pivoting cabin combining features of automobiles and motorcycles
JP2012056503A (ja) 車体をロールさせる車両
US20220324285A1 (en) Tiltable chassis for a three-wheeled vehicle
JP6935610B1 (ja) 車両
US20240024176A1 (en) Vehicle
CN109878616A (zh) 双前轮摩托车的支撑转向机构
JP2013233895A (ja) 車両
KR20110093171A (ko) 3륜 전동스쿠터
JP5458723B2 (ja) 車両
JP5369999B2 (ja) 車両
US20040035625A1 (en) Ergonomic arrangement for a three-wheeled vehicle
US11851130B2 (en) Vehicle
JP7571283B2 (ja) 車両
US20130098703A1 (en) Motorized three-wheeled vehicle rear steering mechanism
CN109987184B (zh) 滑板车
WO2022208876A1 (ja) 車両
JP2018024388A (ja) 走行装置
CN108883808B (zh) 双轮车
CN213354720U (zh) 一种具有防倾倒结构的摩托车
JP6722916B2 (ja) 車両
JP7001291B1 (ja) 前輪懸架機構および三輪車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023510141

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021935036

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021935036

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE