WO2022208733A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2022208733A1
WO2022208733A1 PCT/JP2021/013858 JP2021013858W WO2022208733A1 WO 2022208733 A1 WO2022208733 A1 WO 2022208733A1 JP 2021013858 W JP2021013858 W JP 2021013858W WO 2022208733 A1 WO2022208733 A1 WO 2022208733A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
pair
base
plate
cover
Prior art date
Application number
PCT/JP2021/013858
Other languages
English (en)
French (fr)
Inventor
昌司 中村
亮平 川端
直樹 知久
真紀 岡田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023510026A priority Critical patent/JP7462832B2/ja
Priority to PCT/JP2021/013858 priority patent/WO2022208733A1/ja
Priority to US18/263,016 priority patent/US20240085116A1/en
Publication of WO2022208733A1 publication Critical patent/WO2022208733A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0207Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions the longitudinal or transversal partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes

Definitions

  • the present disclosure relates to a heat exchanger having a plurality of flattened tubes.
  • a parallel flow heat exchanger includes, for example, a pair of headers arranged in parallel with each other at regular intervals, a plurality of heat transfer tubes arranged between the pair of headers, and a plurality of heat transfer tubes that are adjacent to each other. and fins disposed between the heat transfer tubes.
  • at least one of the pair of headers has a partition plate that axially separates the inner space of the header.
  • Each part that makes up a heat exchanger such as a parallel flow heat exchanger is integrated by brazing using a high-temperature furnace.
  • the temporary fixation of the partition plate it is possible to detect the presence or absence of the partition plate from the outside of the header so that it is possible to determine if the partition plate has been left out of the header after the parts that make up the heat exchanger are temporarily fixed. need to be
  • Patent Document 1 As a conventional technique for temporarily fixing a partition plate and a header, there is a heat exchanger (for example, see Patent Document 1) in which the partition plate is temporarily fixed to the header in a direction perpendicular to the axis of the heat transfer tubes.
  • a partition plate In the heat exchanger of Patent Document 1, a partition plate is inserted into a notch provided in a header cover, which is a semicircular component of the header, and the crimping claws of the partition plate are the other component of the header. The partition plate is locked to the header by being bent toward the base.
  • two lower headers may be arranged side by side in a direction perpendicular to the pipe axis direction of the headers.
  • the partition plate is temporarily fixed to the header in the direction perpendicular to the axis of the heat transfer tube as in the heat exchanger of Patent Document 1
  • the width of the header increases by the thickness of the crimping claws. becomes longer.
  • the present disclosure is intended to solve the above-described problems, and aims to provide a heat exchanger with a narrow header even if it has a partition plate in the header.
  • a heat exchanger includes a plurality of heat transfer tubes spaced apart from each other, and a header for distributing a refrigerant to the plurality of heat transfer tubes. and a partition plate that divides the internal space of the main body in the direction of the tube axis of the header.
  • the partition plate has a pair of insertion portions that engage with the partition plate. and a pair of side plate portions inserted into the pair of insertion portions, wherein each of the pair of side plate portions is a distal end portion of each of the pair of side plate portions in a projecting direction, and in a state of being inserted into the pair of insertion portions.
  • the wall of the tip of the plate is deformed in the direction parallel to the pipe axis direction so that the end face forms a V-shaped groove, and the through hole formed by each of the pair of insertion parts is engaged with the inner wall of each of the pair of insertion portions.
  • the heat exchanger includes a plurality of heat transfer tubes spaced apart from each other, and a header for distributing the refrigerant to the plurality of heat transfer tubes, and the header is formed in a cylindrical shape. and a partition plate that divides the internal space of the main body in the pipe axial direction of the header.
  • the main body has through holes formed on both side surfaces thereof. It has a pair of insertion portions that engage with the partition plate and are formed along each of the pair of insertion portions so that the walls constituting the main body form grooves with a V-shaped cross section.
  • the partition plate has a wall portion that forms a wall that divides the internal space in the pipe axial direction, and the partition plate protrudes from both side surfaces of the wall portion and has a pair of inserts. and a pair of side plate portions inserted into the pair of insertion portions, wherein each of the pair of side plate portions is a distal end portion of each of the pair of side plate portions in a projecting direction, and in a state of being inserted into the pair of insertion portions.
  • the header has a plate tip portion that closes the through hole, and the plate tip portion protrudes outside the main body portion from each of the pair of insertion portions when the main body portion and the partition plate are combined with each other.
  • the size of the through hole formed by the deformed portion is larger than that of the through hole formed by the inner wall of the portion facing the base portion, which is the base portion of each of the pair of side plate portions, and the inner wall of the portion facing the tip portion of the plate is formed.
  • the inner walls of each of the pair of insertion portions are deformed toward the center of the through hole so that the size of the through hole is reduced, and inside the through hole formed by each of the pair of insertion portions, The front end portion of the plate and the inner wall of each of the pair of insertion portions are engaged with each other.
  • the tip end of the plate does not protrude outside the main body from each of the pair of insertion parts when the main body and the partition plate are combined.
  • the heat exchanger is deformed such that the tip of the partition plate or the deformed portion of the main body is pushed out, and the plate tip and the pair of plate tips are formed inside the through holes respectively formed by the pair of insertion portions. is engaged with the inner wall of each of the insertion portions. Since the heat exchanger does not require the partition plate to protrude from the outer side surface of the header to fix the main body and the partition plate, the partition plate is provided outside the main body to fix the main body and the partition plate. Compared to a header that needs to protrude, the width of the header can be reduced even with the partition plate inside the header.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner provided with a heat exchanger according to Embodiment 1.
  • FIG. 1 is a perspective view of a heat exchanger according to Embodiment 1;
  • FIG. 3 is a diagram conceptually showing a cross section along the tube axis direction of a first header and a second header that constitute the heat exchanger according to Embodiment 1;
  • FIG. 5 is a diagram conceptually showing a cross section along the pipe axis direction of a first header and a second header of a modification that constitute the heat exchanger according to Embodiment 1;
  • 3 is an enlarged perspective view of a first header in part A of FIG. 2;
  • FIG. 4 is an exploded perspective view of the first header according to Embodiment 1;
  • FIG. 4 is a cross-sectional view along the tube axis direction of the first header, and is a partial cross-sectional view conceptually showing the cross section of the first header at the B portion of FIG. 3 ;
  • FIG. 8 is a cross-sectional view conceptually showing a cross section of the first header taken along line CC of FIG. 7;
  • 4 is a side view conceptually showing the relationship between the partition plate and the main body of the heat exchanger according to Embodiment 1.
  • FIG. FIG. 11 is an enlarged perspective view of part of a first header according to Embodiment 2;
  • FIG. 10 is a sectional view conceptually showing a section perpendicular to the tube axis direction of the first header, which is a section of a portion of the first header having the partition plate according to the second embodiment;
  • FIG. 8 is a side view conceptually showing the relationship between the partition plate and the main body of the heat exchanger according to Embodiment 2;
  • FIG. 11 is an enlarged perspective view of a partition plate used in a first header according to Embodiment 3;
  • FIG. 11 is an exploded perspective view of a first header according to Embodiment 4;
  • FIG. 11 is an enlarged perspective view showing a part of a first header according to Embodiment 5;
  • FIG. 11 is a cross-sectional view along the tube axis direction of a first header according to Embodiment 5, and is a partial cross-sectional view conceptually showing a cross section of a portion where a partition plate is arranged.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner 100 including a heat exchanger 30 according to Embodiment 1.
  • FIG. The solid line arrows in FIG. 1 indicate the refrigerant flow during the cooling operation, and the broken line arrows in FIG. 1 indicate the refrigerant flow during the heating operation.
  • the heat exchanger 30 is mounted on the outdoor unit 15 of the air conditioner 100 including the outdoor unit 15 and the indoor unit 20 .
  • the outdoor unit 15 includes a heat exchanger 30 , a compressor 11 , a flow path switching device 12 and a fan 13 .
  • the indoor unit 20 includes an expansion device 21 , an indoor heat exchanger 22 and an indoor fan 23 .
  • the air conditioner 100 includes a refrigerant circuit in which the compressor 11, the flow path switching device 12, the heat exchanger 30, the expansion device 21, and the indoor heat exchanger 22 are connected by refrigerant piping and the refrigerant circulates.
  • This air conditioner 100 can be operated in both cooling operation and heating operation by switching the channel switching device 12 .
  • the compressor 11 sucks in a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges a high-temperature, high-pressure refrigerant.
  • the compressor 11 is, for example, an inverter compressor or the like whose capacity, which is the output amount per unit time, is controlled by changing the operating frequency.
  • the channel switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the direction of refrigerant flow.
  • the flow switching device 12 switches to the state indicated by the solid line in FIG. 1 during cooling operation, and the discharge side of the compressor 11 and the heat exchanger 30 are connected. Further, the flow path switching device 12 switches to the state indicated by the dashed line in FIG. 1 during the heating operation, and the discharge side of the compressor 11 and the indoor heat exchanger 22 are connected.
  • the heat exchanger 30 exchanges heat between the outdoor air and the refrigerant flowing inside the heat exchanger 30 .
  • the heat exchanger 30 functions as a condenser that radiates the heat of the refrigerant to the outdoor air to condense the refrigerant during the cooling operation.
  • the heat exchanger 30 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air with the heat of vaporization at that time.
  • the fan 13 supplies outdoor air to the heat exchanger 30, and the amount of air blown to the heat exchanger 30 is adjusted by controlling the rotation speed.
  • the throttle device 21 is, for example, an electronic expansion valve that can adjust the opening of the throttle, and controls the pressure of the refrigerant flowing into the heat exchanger 30 or the indoor heat exchanger 22 by adjusting the opening.
  • the expansion device 21 is provided in the indoor unit 20 in the embodiment, it may be provided in the outdoor unit 15, and the installation location is not limited.
  • the indoor heat exchanger 22 exchanges heat between the indoor air and the refrigerant flowing inside the indoor heat exchanger 22 .
  • the indoor heat exchanger 22 functions as an evaporator that evaporates the refrigerant and cools the outdoor air with the heat of vaporization during the cooling operation.
  • the indoor heat exchanger 22 functions as a condenser that radiates the heat of the refrigerant to the outdoor air to condense the refrigerant during the heating operation.
  • the indoor fan 23 supplies indoor air to the indoor heat exchanger 22, and the amount of air blown to the indoor heat exchanger 22 is adjusted by controlling the rotation speed.
  • the liquid refrigerant flows into the expansion device 21, is decompressed and expanded, and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 22 acting as an evaporator.
  • the refrigerant that has flowed into the indoor heat exchanger 22 exchanges heat with the indoor air sent by the indoor fan 23 to evaporate and gasify. At that time, the room air is cooled to cool the room. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching device 12 and is sucked into the compressor 11 .
  • the heating operation will be explained.
  • the refrigerant sucked into the compressor 11 is compressed by the compressor 11 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 11 passes through the flow path switching device 12 and flows into the indoor heat exchanger 22 acting as a condenser.
  • the refrigerant that has flowed into the indoor heat exchanger 22 exchanges heat with indoor air sent by the indoor fan 23, condenses, and liquefies. At that time, the room air is warmed, and the room is heated.
  • the liquid refrigerant flows into the expansion device 21, is decompressed and expanded, and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the heat exchanger 30 acting as an evaporator.
  • the refrigerant that has flowed into the heat exchanger 30 exchanges heat with the outdoor air sent by the fan 13 to evaporate and gasify. Thereafter, the vaporized low-temperature, low-pressure gaseous refrigerant passes through the flow path switching device 12 and is sucked into the compressor 11 .
  • FIG. 2 is a perspective view of the heat exchanger 30 according to Embodiment 1.
  • FIG. FIG. 3 is a diagram conceptually showing a cross section along the tube axis direction of the first header 34 and the second header 35 that constitute the heat exchanger 30 according to the first embodiment.
  • the white arrows in FIG. 2 indicate the flow of air generated by the fan 13.
  • FIG. 2 and 3 indicate the flow of refrigerant flowing through the first header 34
  • the broken arrows indicate the flow of refrigerant flowing through the second header 35.
  • FIG. 2 and 3 indicate the flow of refrigerant flowing through the first header 34
  • the broken arrows indicate the flow of refrigerant flowing through the second header 35.
  • the heat exchanger 30 has a plurality of heat exchange elements arranged side by side along the air flow direction. Specifically, the heat exchanger 30 has a first heat exchange element 31 on the windward side and a second heat exchange element 32 on the leeward side. The heat exchanger 30 also has a first header 34 , a second header 35 , and a parallel header 42 that are connected to the first heat exchange element 31 and the second heat exchange element 32 .
  • the first heat exchange body 31 and the second heat exchange body 32 each have a plurality of heat transfer tubes 38 and a plurality of fins 39 .
  • the heat transfer tube 38 is, for example, a flat tube, and has a plurality of flow paths (not shown) through which a refrigerant flows.
  • the heat transfer tubes 38 extend vertically.
  • the refrigerant flows in the vertical direction inside the tube extending in the vertical direction.
  • the up-down direction is, for example, the vertical direction, but it may be a direction inclined with respect to the vertical direction.
  • the heat transfer tubes 38 may extend in directions other than the vertical direction.
  • the heat transfer tubes 38 are arranged horizontally side by side with a space therebetween so that the wind generated by the fan 13 flows. Fins 39 are arranged between adjacent heat transfer tubes 38 .
  • the fins 39 are heat transfer promoting members and are arranged between adjacent heat transfer tubes 38 among the plurality of heat transfer tubes 38 .
  • the fins 39 are connected between adjacent heat transfer tubes 38 to transfer heat to the heat transfer tubes 38 .
  • the fins 39 improve heat exchange efficiency between air and refrigerant, and corrugated fins are used, for example.
  • the fins 39 are not limited to corrugated fins, and may be other heat transfer promoting members such as plate fins.
  • the first heat exchanging body 31 and the second heat exchanging body 32 do not need to have the fins 39 because heat exchange between the air and the refrigerant takes place on the surfaces of the heat transfer tubes 38 .
  • a first header 34 is connected to the lower end of the first heat exchange body 31 .
  • the lower ends of the heat transfer tubes 38 of the first heat exchange body 31 are directly inserted into the first header 34 .
  • a plurality of heat transfer tubes 38 are connected to the first header 34 so as to extend upward in the vertical direction.
  • the first header 34 is arranged on the windward side with respect to the second header 35 in the flow direction of the air sent by the fan 13, as indicated by the white arrow in FIG.
  • the first header 34 functions as a distribution mechanism that distributes the refrigerant flowing into the first heat exchange body 31 to the plurality of heat transfer tubes 38 . Further, the first header 34 functions as a confluence mechanism for merging the refrigerant flowing out from the plurality of heat transfer tubes 38 when the refrigerant flows out from the first heat exchange body 31 .
  • the first header 34 is a long tubular member with both ends closed, and a space is formed inside.
  • the first header 34 has a main body portion 34a, an end plate 50A, an inlet pipe 61 and an outlet pipe 63, and a partition plate 50, as shown in FIGS.
  • the body portion 34a is a member formed in an elongated cylindrical shape, and has a space inside which a coolant flows.
  • the body portion 34a is formed in an elliptical shape in a cross section perpendicular to the pipe axis direction of the body portion 34a.
  • the main body portion 34a may be formed in a cylindrical shape, and the main body portion 34a may be formed in another shape such as a perfect circle or a polygonal shape in a cross section perpendicular to the pipe axis direction of the main body portion 34a. good too.
  • End plates 50A for sealing the refrigerant are arranged at both ends of the body portion 34a.
  • the first header 34 is formed in a columnar shape by combining the body portion 34a and the end plate 50A.
  • the first header 34 is installed so that the central axis of the longitudinal direction extends horizontally, but the first header 34 may be installed with the central axis of the longitudinal direction inclined with respect to the horizontal direction. .
  • the end plate 50A closes the openings at both ends of the main body 34a formed in a cylindrical shape.
  • An inlet pipe 61 is connected to an end plate 50A forming one end of the first header 34 in the longitudinal direction of the first header 34 .
  • An end plate 50A forming one end of the first header 34 is formed with an inlet opening 62 into which an inlet pipe 61 is inserted.
  • the inlet opening 62 is a through hole formed in the end plate 50A.
  • An outlet pipe 63 is connected to an end plate 50A forming the other end of the first header 34 in the longitudinal direction of the first header 34 .
  • An end plate 50A forming the other end of the first header 34 is formed with an outlet opening 64 into which the outlet pipe 63 is inserted.
  • the outlet opening 64 is a through hole formed in the end plate 50A.
  • the inlet pipe 61 is an inlet through which the refrigerant flows into the first header 34 .
  • the outlet pipe 63 is an outlet through which the refrigerant flows out from the first header 34 .
  • the inlet pipe 61 is inserted into the inlet opening 62 and passes through the end plate 50A.
  • the outlet pipe 63 is inserted into the outlet opening 64 and passes through the end plate 50A.
  • the first header 34 is connected to the refrigerant circuit of the air conditioner 100 via the inlet pipe 61 .
  • the first header 34 is connected to the refrigerant circuit of the air conditioner 100 via an outlet pipe 63 .
  • the first header 34 forms an internal space 40 separated from the external space of the first header 34 by a main body portion 34a formed in a cylindrical shape and end plates 50A closing both ends of the main body portion 34a.
  • the internal space 40 is a space that communicates with the tube inner space of the heat transfer tube 38 and with the tube inner spaces of the inlet pipe 61 and the outlet pipe 63 .
  • a partition plate 50 is provided in the internal space 40 of the first header 34 .
  • the partition plate 50 is a plate-like member.
  • the partition plate 50 constitutes a wall that divides the internal space 40 of the first header 34 into a plurality of spaces in the direction parallel to the pipe axis direction of the first header 34 .
  • the partition plate 50 divides the internal space 40 in a direction parallel to the pipe axis direction of the first header 34 to form a plurality of spaces inside the first header 34 .
  • a distribution space 41 and a confluence space 43 are formed inside the first header 34 by a partition plate 50 .
  • the distribution space 41 is a space in the first header 34 in which the refrigerant distributed to the plurality of heat transfer tubes 38 exists.
  • the confluence space 43 is a space in the first header 34 where the refrigerants flowing out from the plurality of heat transfer tubes 38 merge. Since the distribution space 41 and the merging space 43 are separated by the partition plate 50 , the refrigerant does not move between the distribution space 41 and the merging space 43 . That is, in the internal space 40 of the first header 34 , the adjacent spaces separated by the partition plate 50 do not communicate with each other, and the coolant does not move between the adjacent spaces separated by the partition plate 50 .
  • the first header 34 has at least one or more partition plates 50 .
  • FIG. 4 is a diagram conceptually showing a cross-section along the pipe axis direction of a first header 34 and a second header 35 of a modification that constitute the heat exchanger 30 according to Embodiment 1.
  • the first header 34 when it has a plurality of partition plates 50 , it may have a confluence/distribution space 45 functioning as a distribution space 41 and a confluence space 43 .
  • the confluence/distribution space 45 is a space where the refrigerant flowing out from the plurality of heat transfer tubes 38 merges, and is a space in which the merged refrigerant is distributed to the other plurality of heat transfer tubes 38 again.
  • the merging/distributing space 45 is formed between the merging space 43 and the distributing space 41 in a direction parallel to the tube axis direction of the first header 34 .
  • a second header 35 is connected to the lower end of the second heat exchange body 32 .
  • the lower ends of the heat transfer tubes 38 of the second heat exchange body 32 are directly inserted into the second header 35 .
  • a plurality of heat transfer tubes 38 are connected to the second header 35 so as to extend upward in the vertical direction.
  • the second header 35 is arranged in parallel with the first header 34 .
  • the second header 35 is arranged on the leeward side with respect to the first header 34 in the direction in which the air sent by the fan 13 flows, as indicated by the white arrow in FIG.
  • the second header 35 and the first header 34 are arranged at the same height with respect to the ground and arranged parallel to each other.
  • the second header 35 functions as a confluence mechanism for merging the refrigerant flowing from the plurality of heat transfer tubes 38 when the refrigerant flows from the first heat exchange body 31 .
  • the second header 35 also functions as a distribution mechanism that distributes the refrigerant flowing out from the second heat exchange body 32 to the first heat exchange body 31 to the heat transfer tubes 38 .
  • the second header 35 is a member formed in a long tubular shape with both ends closed, and a space is formed inside.
  • the second header 35 as shown in FIGS. 2 and 3, has a body portion 34a and an end plate 50A.
  • the body part 34a is a member formed in an elongated cylindrical shape, and has a space formed therein.
  • the body portion 34a is formed in an elliptical shape in a cross section perpendicular to the pipe axis direction of the body portion 34a.
  • the main body portion 34a may be formed in a cylindrical shape, and the main body portion 34a may be formed in another shape such as a perfect circle or a polygonal shape in a cross section perpendicular to the pipe axis direction of the main body portion 34a. good too.
  • End plates 50A for sealing the refrigerant are arranged at both ends of the body portion 34a.
  • the second header 35 is formed in a columnar shape by combining the body portion 34a and the end plate 50A.
  • the second header 35 is installed so that the central axis of the longitudinal direction extends horizontally, but the second header 35 may be installed with the central axis of the longitudinal direction inclined with respect to the horizontal direction. .
  • the end plate 50A closes the openings at both ends of the main body 34a formed in a cylindrical shape.
  • the second header 35 forms an internal space 40 separated from the external space of the second header 35 by a body portion 34a formed in a cylindrical shape and end plates 50A closing both ends of the body portion 34a. .
  • the internal space 40 of the second header 35 communicates with the internal space of the heat transfer tube 38 .
  • the internal space 40 of the second header 35 is a space where the refrigerant flowing out from the multiple heat transfer tubes 38 merges, and the merged refrigerant is distributed to the other multiple heat transfer tubes 38 again.
  • Refrigerant flows into the internal space 40 of the second header 35 from the internal space 40 of the first header 34 via a plurality of heat transfer tubes 38 .
  • the refrigerant flows from the internal space 40 of the second header 35 into the internal space 40 of the first header 34 via the plurality of heat transfer tubes 38 .
  • the partition plate 50 is not provided in the second header 35.
  • the second header 35 may have a partition plate 50 .
  • the partition plate 50 divides the inner space 40 of the second header 35 into a plurality of spaces in the direction parallel to the tube axis direction of the second header 35 . construct a wall.
  • the second header 35 may be divided by partition plates 50 so that the internal space 40 forms a plurality of rooms. The detailed structure of the first header 34 and the second header 35 will be described later.
  • the row-connecting header 42 is provided at the end of the plurality of heat transfer tubes 38 on the side opposite to the connection side of the two headers.
  • the row-to-row header 42 includes a plurality of heat transfer tubes 38 connected to one of the two headers of the first header 34 and the second header 35, and Refrigerant is circulated between the plurality of heat transfer tubes 38 connected to the other header.
  • the row-connecting header 42 is provided facing the first header 34 and the second header 35 with the heat transfer tubes 38 interposed therebetween.
  • the row-to-row header 42 is provided at the upper end portion of the first heat exchanging body 31 and the second heat exchanging body 32 .
  • the upper end of the heat transfer tube 38 is inserted.
  • a plurality of heat transfer tubes 38 connected to the first header 34 and the second header 35 are connected to row-to-row headers 42 positioned above the first header 34 and the second header 35 .
  • the parallel header 42 includes a plurality of heat transfer tubes 38 having one end communicating with the distribution space 41 of the first header 34 , and a plurality of heat transfer tubes 38 having one end communicating with the internal space 40 of the second header 35 .
  • a first flow path 42a is formed to communicate with the end.
  • the plurality of heat transfer tubes 38 communicating with the distribution space 41 of the first header 34 are included in the first heat exchange body 31, and the plurality of heat transfer tubes 38 communicating with the internal space 40 of the second header 35 are It is included in the second heat exchange body 32 .
  • the number of first flow paths 42a formed may be one or plural.
  • the parallel header 42 has a plurality of heat transfer tubes 38 whose one end communicates with the internal space 40 of the second header 35 , and a plurality of heat transfer tubes 38 whose one end communicates with the merge space 43 of the first header 34 .
  • a second flow path 42b is formed to communicate with the other end of the .
  • the plurality of heat transfer tubes 38 communicating with the confluence space 43 of the first header 34 are included in the first heat exchange body 31, and the plurality of heat transfer tubes 38 communicating with the internal space 40 of the second header 35 are It is included in the second heat exchange body 32 .
  • the number of second flow paths 42b formed may be one or plural.
  • the parallel header 42 distributes the refrigerant flowing through the first heat exchange element 31 to the second heat exchange element 32 facing in the lateral direction, and distributes the refrigerant flowing through the second heat exchange element 32 in the lateral direction. It is made to flow through the opposing first heat exchange bodies 31 .
  • the row-connecting header 42 forms a flow path so as to communicate the respective heat transfer tubes 38 arranged facing each other in the width direction.
  • the plurality of heat transfer tubes 38, fins 39, first header 34, second header 35, parallel header 42, inlet pipe 61, and outlet pipe 63 are all made of aluminum and joined by brazing.
  • the header base 9, header cover 10, and partition plate 50 are all made of aluminum and joined by brazing.
  • the plurality of heat transfer tubes 38, fins 39, first header 34, second header 35, parallel header 42, inlet pipe 61, and outlet pipe 63 are not limited to being made of aluminum, and may be made of other metals.
  • the header base 9, the header cover 10, and the partition plate 50 are not limited to being made of aluminum, and may be made of other metals.
  • the refrigerant flows from the outside of the heat exchanger 30 through the inlet pipe 61 into the distribution space 41 that is the internal space 40 of the first header 34 .
  • the refrigerant that has flowed into the distribution space 41 flows inside the heat transfer tubes 38 included in the first heat exchange body 31 that communicates with the distribution space 41 , and flows into the first flow paths 42 a of the parallel header 42 .
  • the refrigerant that has flowed into the first flow path 42 a flows into the internal space 40 of the second header 35 through the heat transfer tubes 38 of the second heat exchange body 32 communicating with the first flow path 42 a.
  • the refrigerant that has flowed into the internal space 40 of the second header 35 flows through the inside of the heat transfer tubes 38 included in the second heat exchanger 32, the other end of which communicates with the second flow path 42b. It flows into channel 42b.
  • the refrigerant that has flowed into the second flow path 42b passes through the heat transfer tubes 38 of the first heat exchange body 31 communicating with the second flow path 42b and flows into the confluence space 43 that is the internal space 40 of the first header 34 .
  • the refrigerant that has flowed into the confluence space 43 of the first header 34 flows out of the heat exchanger 30 through the outlet pipe 63 .
  • the first header 34 is provided with the partition plate 50, the inlet pipe 61 and the outlet pipe 63
  • the second header 35 is provided with the partition plate 50 and the inlet pipe.
  • a structure without 61 and outlet pipe 63 is shown.
  • the heat exchanger 30 is not limited to this structure, and the structure of the first header 34 and the structure of the second header 35 may be exchanged. That is, the heat exchanger 30 may have a structure in which the second header 35 is provided with the partition plate 50, the inlet pipe 61 and the outlet pipe 63, and the first header 34 is not provided with the partition plate 50, the inlet pipe 61 and the outlet pipe 63. .
  • first header 34 and the second header 35 has the partition plate 50. As shown in FIG. 4, both the first header 34 and the second header 35 may have a partition plate 50 .
  • the inlet pipe 61 and the outlet pipe 63 may be provided in separate headers.
  • the inlet piping 61 may be provided in the first header 34 and the outlet piping 63 may be provided in the second header 35 .
  • FIG. 5 is an enlarged perspective view of the first header 34 in section A of FIG.
  • FIG. 6 is an exploded perspective view of the first header 34 according to Embodiment 1.
  • FIG. FIG. 7 is a cross-sectional view of the first header 34 along the pipe axis direction, and is a partial cross-sectional view conceptually showing the cross section of the first header 34 at the portion B in FIG.
  • FIG. 8 is a cross-sectional view conceptually showing a cross-section of the first header 34 taken along line CC of FIG.
  • FIG. 7 shows the position of the connection port 94 of the heat transfer tube 38. As shown in FIG. In addition, in FIG.
  • the body portion 34 a of the first header 34 has a header base 9 and a header cover 10 .
  • the header base 9 and the header cover 10 are arranged so as to face each other in the direction in which the heat transfer tubes 38 extend.
  • a body portion 34a of the first header 34 is formed in a cylindrical shape by combining the header base 9 and the header cover 10 together.
  • the body portion 34a is formed in a tubular shape by combining the header base 9 and the header cover 10, and both longitudinal ends of the tubular header base 9 and the header cover 10 are end plates. It is blocked by 50A.
  • the body portion 34a is formed in a columnar shape by combining the header base 9, the header cover 10, and the end plate 50A.
  • the header base 9 is an elongated member, and has a U-shaped cross section perpendicular to the pipe axis direction of the first header 34, which is the longitudinal direction.
  • the header base 9 is formed such that the U-shaped portion is continuous in the longitudinal direction.
  • the U-shaped inner wall surface is defined as a base inner wall surface 9 a of the header base 9
  • the U-shaped outer wall surface is defined as a base outer wall surface 9 b of the header base 9 . That is, in the header base 9, the base inner wall surface 9a and the base outer wall surface 9b form surfaces opposite to each other.
  • the header base 9 is formed so as to bridge between a pair of base side portions 93 forming plate surfaces facing each other and end portions of the pair of base side portions 93 , and is connected to the plurality of heat transfer tubes 38 . It has a top surface portion 91 that As shown in FIG. 6, in the header base 9, the top surface portion 91 forms a curved portion, and the base side surface portion 93 forms a flat portion.
  • the top surface portion 91 is a portion formed in an arc shape
  • the base side surface portion 93 is a portion formed in a straight line shape. .
  • the top surface portion 91 bridges the upper end portions of the two base side surface portions 93 and is curved so as to protrude outward from the main body portion 34a.
  • the top surface portion 91 is curved so as to protrude toward the row-connecting header 42 arrangement side.
  • the header base 9 has a top surface portion 91 so that at least a portion of the header base 9 is curved so as to protrude on the side opposite to the header cover 10 .
  • the top surface portion 91 is not limited to a structure that is curved so as to protrude outward from the main body portion 34a, and the top surface portion 91 may be formed in a flat plate shape.
  • the two base side surface portions 93 are formed such that the base inner wall surfaces 9a are opposed to each other, and extend substantially parallel to the tube axis direction.
  • the top surface portion 91 and the two base side portions 93 are integrally formed.
  • base side surface portions 93 are provided at both end portions of an arc-shaped top surface portion 91 .
  • the base inner wall surfaces 9a of the two base side portions 93 face and abut on the cover outer wall surface 10b of the cover side portion 103 of the header cover 10, which will be described later.
  • Each of the two base side portions 93 is joined to each of the cover side portions 103 of the header cover 10 .
  • a connection port 94 into which the heat transfer tube 38 is inserted is formed in the top surface portion 91 of the header base 9 .
  • the connection ports 94 are through holes and are formed in plurality along the longitudinal direction of the header base 9 .
  • a plurality of connection ports 94 into which the plurality of heat transfer tubes 38 are respectively inserted are formed in the body portion 34a at intervals in the tube axis direction.
  • a distance W1 (see FIG. 6) between adjacent connection ports 94 among the plurality of connection ports 94 is four times or less the plate thickness W2 of the header base 9 .
  • the heat transfer tubes 38 are inserted into the connection ports 94 and pass through the top surface portion 91 of the header base 9 .
  • the heat transfer tubes 38 inserted into the connection ports 94 are joined to the header base 9 and held by the header base 9 .
  • the opening formed by the base distal end portions 9c of the two base side surface portions 93 is referred to as the base opening portion 9d.
  • the base front end portion 9 c is an end portion of the base side surface portion 93 located on the opposite side of the top surface portion 91 .
  • Each of the pair of base side surface portions 93 is formed in a plate shape and has a base cutout portion 92 forming a hole extending from the opposite end of the top surface portion 91 toward the top surface portion 91 side.
  • the base cutout portion 92 is formed to extend from the base tip portion 9c toward the top surface portion 91 .
  • the base cut portion 92 forms a hole penetrating the base side surface portion 93 .
  • the header base 9 has base cutouts 92 at the ends opposite to the top surface 91 on each of the two base side surfaces 93 .
  • the header base 9 has base cutouts 92 forming through holes on both side surfaces.
  • the header cover 10 is combined with the header base 9 to form an internal space 40 of the first header 34 together with the header base 9 .
  • the header cover 10 is an elongated member, and has a U-shaped cross section perpendicular to the pipe axis direction of the first header 34, which is the longitudinal direction.
  • the header cover 10 is formed in a shape in which the U-shaped portion is continuous in the longitudinal direction.
  • the U-shaped inner wall surface is defined as a cover inner wall surface 10 a of the header cover 10
  • the U-shaped outer wall surface is defined as a cover outer wall surface 10 b of the header cover 10 . That is, in the header cover 10, the cover inner wall surface 10a and the cover outer wall surface 10b form surfaces opposite to each other.
  • the header cover 10 is formed so as to bridge between a pair of cover side portions 103 forming plate surfaces facing each other and end portions of the pair of cover side portions 103. It has the bottom part 101 which opposes. In the header cover 10, the bottom portion 101 forms a curved portion, and the cover side portion 103 forms a flat portion. In the U-shaped first header 34 in a vertical cross section with respect to the pipe axis direction, the bottom surface portion 101 is an arcuate portion, and the cover side surface portion 103 is a straight portion. .
  • the bottom surface portion 101 bridges the lower end portions of the two cover side surface portions 103 and is curved so as to protrude outward from the main body portion 34a.
  • the bottom portion 101 is curved so as to protrude toward the side opposite to the side where the row-connecting headers 42 are arranged.
  • the header cover 10 has a bottom portion 101 so that at least a portion of the header cover 10 is curved so as to protrude on the side opposite to the header base 9 . It should be noted that the bottom surface portion 101 is not limited to a curved structure that protrudes outward from the main body portion 34a, and the bottom surface portion 101 may be formed in a flat plate shape.
  • the two cover side surfaces 103 are formed so that the inner wall surfaces 10a of the covers face each other, and extend substantially parallel to the pipe axis direction.
  • the bottom portion 101 and the two cover side portions 103 are integrally formed.
  • cover side portions 103 are provided at both ends of a bottom portion 101 formed in an arc shape.
  • the cover outer wall surfaces 10b of the two cover side portions 103 face and abut against the base inner wall surface 9a of the base side portion 93 of the header base 9 .
  • Each of the two cover side portions 103 is joined to each of the base side portions 93 of the header base 9 .
  • the opening formed by the cover tip portions 10c of the two cover side portions 103 is referred to as a cover opening 10d.
  • the cover front end portion 10 c is an end portion of the cover side portion 103 located on the opposite side of the bottom portion 101 .
  • Each of the pair of cover side surface portions 103 is formed in a plate shape and has a cover cutout portion 102 forming a hole extending from the opposite end of the bottom surface portion 101 toward the bottom surface portion 101 side.
  • Cover cut portion 102 is formed to extend from cover tip portion 10 c toward bottom portion 101 .
  • Cover cutout 102 forms a hole penetrating through cover side surface 103 .
  • the header cover 10 has cover cutouts 102 at the ends opposite to the bottom surface 101 in each of the two cover side surfaces 103 .
  • the header cover 10 has cover cutouts 102 forming through holes on both side surfaces.
  • the header base 9 and the header cover 10 are combined with each other so that the base opening 9d and the cover opening 10d face each other.
  • the header cover 10 is inserted into the base opening 9d of the header base 9 while the header base 9 and the header cover 10 are combined.
  • the distance L1 between the base inner wall surfaces 9a of the two opposing base side portions 93 is the distance between the cover inner wall surfaces 10a of the two opposing cover side portions 103. Larger than L2.
  • the base inner wall surface 9a of the top surface portion 91 and the cover inner wall surface 10a of the bottom surface portion 101 face each other when the header base 9 and the header cover 10 are combined. Further, in a state in which the header base 9 and the header cover 10 are combined, the base side portion 93 and the cover side portion 103 face each other and abut each other. In this state, the base inner wall surface 9a of the base side surface portion 93 and the cover outer wall surface 10b of the cover side surface portion 103 face each other and abut each other. That is, in the main body portion 34a, the base inner wall surfaces 9a of the pair of base side portions 93 and the cover outer wall surfaces 10b of the pair of cover side portions 103 are in contact with each other.
  • the insertion portion 34b is formed by overlapping a base cutout portion 92 and a cover cutout portion 102 from the inner side to the outer side of the main body portion 34a.
  • the insertion portion 34b of the body portion 34a is a through hole formed in the body portion 34a.
  • a side plate portion 52 of the partition plate 50 to be described later is inserted into the insertion portion 34 b , and the insertion portion 34 b engages with the partition plate 50 .
  • the body portion 34a has a pair of insertion portions 34b that form through holes and are engaged with the partition plate 50 in the wall portions facing each other on both side surfaces of the body portion 34a.
  • the partition plate 50 has a wall portion 51 and side plate portions 52, as shown in FIGS.
  • the wall portion 51 is a plate-like member, and is a portion of the partition plate 50 that constitutes a wall that mainly divides the internal space 40 of the main body portion 34a in the pipe axis direction.
  • the wall portion 51 is formed in the same shape as the internal space 40 when viewed in a direction parallel to the pipe axis direction of the first header 34 . That is, when viewed in a direction parallel to the pipe axis direction of the first header 34, the outer edge portion 51a of the wall portion 51 is formed in a shape along the inner wall 34c of the main body portion 34a.
  • the outer edge portion 51a of the wall portion 51 is in contact with the inner wall 34c of the main body portion 34a.
  • the inner wall 34c of the main body portion 34a with which the partition plate 50 abuts is formed by the base inner wall surface 9a of the header base 9 and the cover inner wall surface 10a of the header cover 10. contains.
  • the side plate portion 52 is a portion protruding from the wall portion 51 and a portion protruding from the outer edge portion 51 a of the wall portion 51 .
  • the partition plate 50 has a pair of side plate portions 52 projecting from both side surfaces of the wall portion 51 .
  • the pair of side plate portions 52 each protrude from the wall portion 51 in a direction perpendicular to the tube axis direction of the first header 34 .
  • the side plate portion 52 is inserted into the insertion portion 34b of the main body portion 34a of the partition plate 50 .
  • the side plate portion 52 is inserted into the insertion portion 34b of the main body portion 34a and used for temporarily fixing the partition plate 50 and the main body portion 34a.
  • Each of the pair of side plate portions 52 is a distal end portion of the pair of side plate portions 52 in the projecting direction, and when inserted into the pair of insertion portions 34b, the through holes formed by the insertion portions 34b are inserted into the through holes. It has a plate tip portion 53 that closes off.
  • the plate tip portion 53 is formed so as to extend along the shape of the hole of the insertion portion 34b when inserted into the insertion portion 34b.
  • the plate tip portion 53 forms a tip wall in the projecting direction of the side plate portion 52 and includes the tip surface of the side plate portion 52 .
  • the plate tip portion 53 forms part of the outer wall surface of the main body portion 34a when the side plate portion 52 is inserted into the insertion portion 34b.
  • the plate tip portion 53 is used to block at least a portion of the base cut portion 92 formed in the header base 9. be done.
  • the plate tip portion 53 does not protrude outside the main body portion 34a from each of the pair of insertion portions 34b when the main body portion 34a and the partition plate 50 are combined.
  • the wall of the plate tip portion 53 is deformed into a state in which the wall of the plate tip portion 53 is expanded in a direction parallel to the tube axis direction of the first header 34 so that the end face forms a V-shaped groove. . Since the plate tip portion 53 is deformed in a state of being pushed and spread in the direction parallel to the tube axis direction, the pair of insertion portions 34b is pushed inside the through hole formed by each of the pair of insertion portions 34b. is engaged with the inner wall 34b1 of the
  • the plate tip portion 53 is pressed and deformed using an instrument in the insertion portion 34b, so that the tip surface of the plate tip portion 53 is expanded, and the side plate portion 52 of the partition plate 50 and the insertion portion 34b are separated. is in close contact.
  • the inner wall 34b1 is pushed wide so that the size of the opening of the insertion portion 34b becomes larger, and the outer edge portion 53b of the deformed plate front end portion 53 and the insertion portion 34b are expanded. may be fitted with the inner wall 34b1.
  • the plate leading end portion 53 that is pushed out is in close contact with the base cut portion 92 of the header base 9 , and locks the partition plate 50 and the header base 9 .
  • the plate tip portion 53 of the partition plate 50 is pushed and spread with respect to the base portion serving as the root portion of the side plate portion 52. is formed in Since the plate tip portion 53 is formed in an expanded state inside the insertion portion 34b, the outer edge portion 53b of the plate tip portion 53 is in close contact with the inner wall 34b1 inside the insertion portion 34b, and the side plate portion 52 is It is fixed to the inner wall 34b1 of the insertion portion 34b.
  • the plate tip portion 53 is pressed and deformed by using, for example, a V-shaped die in the insertion portion 34b, so that the tip surface of the plate tip portion 53 is split left and right.
  • the plate front end portion 53 pushed and spread left and right comes into close contact with the inner wall 34b1 of the insertion portion 34b.
  • the left and right referred to here are directions parallel to the pipe axis direction of the first header 34 .
  • a groove portion 53a recessed toward the wall portion 51 is formed.
  • the groove portion 53 a is formed so as to extend in a direction perpendicular to the pipe axis direction of the first header 34 .
  • the direction in which the grooves 53 a extend is parallel to the direction in which the heat transfer tubes 38 extend in the first header 34 .
  • the partition plate 50 is temporarily fixed to the header base 9 by expanding the front end surface of the plate front end portion 53 into, for example, a V-shape, and by bringing the side plate portion 52 into close contact with the insertion portion 34b.
  • the plate tip portion 53 is deformed into a V shape when the plate tip portion 53 is deformed.
  • the plate tip end portion 53 inserted into the insertion portion 34b may be formed in a state in which only a portion of the insertion portion 34b is expanded in the direction perpendicular to the pipe axis direction of the first header 34. Better, all the parts in the insertion part 34b may be formed in a state of being pushed and spread.
  • the deformed portion of the plate tip portion 53 is the entire side surface of the partition plate 50, but if the partition plate 50 and the header base 9 of the main body portion 34a are temporarily fixed, the plate tip portion 53 may be deformed.
  • the portion 53 may be partially deformed in the longitudinal direction of the side plate portion 52 .
  • the groove portion 53a is perpendicular to the pipe axis direction of the first header 34. In the direction, it may be formed only on a portion of the plate tip 53 that is within the insertion portion 34b. Alternatively, the groove portion 53a may be formed in the entire portion of the plate tip portion 53 within the insertion portion 34b in the direction perpendicular to the pipe axis direction of the first header 34. As shown in FIG.
  • the end plate 50A may have the structure of the partition plate 50 described above.
  • the structure of the first header 34 described above is intended to temporarily fix the body portion 34a and the partition plate 50, but may be used for temporarily fixing the body portion 34a and the end plate 50A.
  • the relationship between the body portion 34a and the partition plate 50 has been described as the structure of the first header 34, when the second header 35 has the partition plate 50, the relationship between the body portion 34a and the partition plate 50 described above is as follows. It can be applied to the relationship between the main body portion 34 a of the second header 35 and the partition plate 50 .
  • the header cover 10 was placed inside the header base 9, but the header cover 10 may be placed outside the header base 9. In this case, the base outer wall surface 9b of the header base 9 and the cover inner wall surface 10a of the header cover 10 abut on the main body portion 34a. The plate leading end portion 53 that has been pushed out is brought into close contact with the cover cutout portion 102 of the header cover 10 to lock the partition plate 50 and the header cover 10 together.
  • FIG. 9 is a side view conceptually showing the relationship between the partition plate 50 and the main body portion 34a of the heat exchanger 30 according to the first embodiment. 9 shows the heat exchanger 30 in which the partition plate 50 is also used for the second header 35. As shown in FIG. White arrows in FIG. 9 indicate the flow of air generated by the fan 13 .
  • the plate tip end portion 53 does not protrude outside the main body portion 34a from each of the pair of insertion portions 34b when the main body portion 34a and the partition plate 50 are combined. Further, the plate tip portion 53 is deformed into a state in which the wall of the plate tip portion 53 is expanded in the direction parallel to the pipe axial direction so that the end face forms a V-shaped groove, and the pair of insertion Inside the through hole formed by each of the portions 34b, the inner walls 34b1 of the pair of insertion portions 34b are engaged. Therefore, the heat exchanger 30 does not need to fix the main body portion 34 a and the partition plate 50 by projecting the partition plate 50 from the outer side surface of the first header 34 .
  • the heat exchanger 30 is compared with a header that requires the partition plate 50 to protrude outside the main body portion 34a in order to fix the main body portion 34a and the partition plate 50.
  • the width of the first header 34 can be reduced even if the partition plate 50 is provided inside the header 34 .
  • the width of the first header 34 is the length of the first header 34 in the direction of air flow through the heat exchanger 30 .
  • the heat exchanger 30 can reduce the width of the second header 35 even if the partition plate 50 is provided inside the second header 35 .
  • the width of the heat exchanger 30 can be reduced, and the installation space of the heat exchanger 30 can be reduced. can do.
  • the plate tip portion 53 is deformed into a state in which the wall of the plate tip portion 53 is expanded in the direction parallel to the pipe axial direction so that the end face forms a V-shaped groove, and the pair of insertion Inside the through hole formed by each of the portions 34b, the inner walls 34b1 of the pair of insertion portions 34b are engaged. Therefore, in the heat exchanger 30, the gap between the insertion portion 34b and the side plate portion 52 can be reduced, and the airtightness of the first header 34 or the second header 35 can be ensured.
  • the plate tip portion 53 is deformed into a spread state, thereby preliminarily closing the gap between the insertion portion 34b and the side plate portion 52.
  • the airtightness of the first header 34 or the second header 35 can be ensured without needing to be formed large.
  • the heat exchanger 30 is formed by combining the header base 9 and the header cover 10 to form the body portion 34a. Therefore, the partition plate 50 can be arranged between the divided header base 9 and the header cover 10, and the operator can easily attach the partition plate 50 to the main body portion 34a.
  • the insertion portion 34b is formed by overlapping the base cutout portion 92 and the cover cutout portion 102 from the inside to the outside of the main body portion 34a. Therefore, by arranging the side plate portion 52 of the partition plate 50 in the base cut portion 92 or the cover cut portion 102, the side plate portion 52 can be inserted into the insertion portion 34b when combining the header base 9 and the header cover 10. can do. Therefore, the operator can easily attach the partition plate 50 to the main body portion 34a.
  • the base inner wall surfaces 9a of the pair of base side surfaces 93 and the cover outer wall surfaces 10b of the pair of cover side surfaces 103 are in contact. Therefore, an operator can form the main body portion 34a by combining the header base 9 and the header cover 10, and can easily manufacture the first header 34 or the second header 35.
  • the width of the header base 9 or the header cover 10 can be the same as the width of the first header 34 or the second header 35 because the heat exchanger 30 has this configuration.
  • the distance between adjacent connection ports 94 among the plurality of connection ports 94 is four times or less the plate thickness of the header base 9 . Therefore, in the heat exchanger 30, the distance between adjacent heat transfer tubes 38 can be reduced compared to a heat exchanger that does not have this configuration, and the number of heat transfer tubes 38 in the tube axis direction of the first header 34 can be reduced to can be increased and the performance of the heat exchanger 30 can be improved.
  • FIG. 10 is an enlarged perspective view of part of the first header 34 according to the second embodiment.
  • FIG. 11 is a cross-sectional view of a portion of the first header 34 having the partition plate 50 according to Embodiment 2, and conceptually showing a cross section perpendicular to the tube axis direction of the first header 34 .
  • members behind the partition plate 50 are indicated by dotted lines.
  • Components having the same functions and actions as those of the heat exchanger 30 and the like according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the second embodiment will be described with a focus on the differences from the first embodiment, and the configurations not described in the second embodiment are the same as those of the first embodiment.
  • the structure of the body portion 34a constituting the first header 34 is different from the structure of the body portion 34a of the first header 34 according to the first embodiment.
  • the combination of the header base 9 and the header cover 10 is different from that of the main body portion 34a of the first header 34 according to the first embodiment.
  • the method of combining the base 9 and the header cover 10 is different.
  • one base side surface portion 93 of the pair of base side surface portions 93 is arranged inside the cover opening 10d of the header cover 10 .
  • one of the pair of cover side portions 103 is arranged inside the base opening 9 d of the header base 9 .
  • the base side portion 93 and the cover side portion 103 face each other and abut each other.
  • the inside of one of the pair of base side surfaces 93 is in contact with the outside of one of the cover side surfaces 103, and the outside of the other of the pair of base side surfaces 93 is in contact with the other. contact with the inner side of the cover side portion 103 of the .
  • the base inner wall surface 9a of one of the pair of base side surfaces 93 and the cover side surface 103 of the pair of cover side surfaces 103 are mounted. and the outer wall surface 10b of the cover face each other and abut each other.
  • the base outer wall surface 9b of the other base side surface portion 93 of the pair of base side surface portions 93 and the other cover side surface of the pair of cover side surface portions 103 are formed.
  • the portion 103 and the inner wall surface 10a of the cover face each other and abut each other.
  • the body portion 34a abuts against the base inner wall surface 9a of one of the pair of base side surfaces 93 and the cover outer wall surface 10b of one of the pair of cover side surfaces 103. in contact with Further, the main body portion 34a abuts against the base outer wall surface 9b of the other base side surface portion 93 of the pair of base side surface portions 93 and the cover inner wall surface 10a of the other cover side surface portion 103 of the pair of cover side surface portions 103. in contact with
  • the widened plate tip portion 53 of the partition plate 50 is attached to the header base. 9 and the partition plate 50 and the header base 9 are locked.
  • the spread plate tip portion 53 of the partition plate 50 is It is in close contact with the cover notch 102 of the header cover 10 .
  • the partition plate 50 and the header cover 10 are locked by the close contact between the plate tip portion 53 and the cover cutout portion 102 of the header cover 10 .
  • the base inner wall surface 9a of one of the pair of base side portions 93 and the cover outer wall surface 10b of one of the pair of cover side portions 103 are in contact with each other.
  • the main body portion 34a abuts against the base outer wall surface 9b of the other base side surface portion 93 of the pair of base side surface portions 93 and the cover inner wall surface 10a of the other cover side surface portion 103 of the pair of cover side surface portions 103. in contact with
  • the first header 34 according to the second embodiment has this configuration, so that the widened plate tip portion 53 of the partition plate 50 comes into contact with both the header base 9 and the header cover 10 , so that the header The base 9, the header cover 10, and the partition plate 50 are locked. Therefore, in the first header 34 according to the second embodiment, the spread plate tip portion 53 of the partition plate 50 temporarily fixes the three components of the partition plate 50, the header base 9, and the header cover 10 to each other. be able to. Since the three parts of the partition plate 50, the header base 9, and the header cover 10 according to the second embodiment can be temporarily fixed to each other, the two parts of the partition plate 50 and the header base 9, or the partition plate 50 and the header cover 10, the temporary fixation can be strengthened.
  • the first header 34 according to the second embodiment is a state in which the header base 9 and the header cover 10 are combined like the first header 34 according to the first embodiment. It is not inserted into the base opening 9d. Therefore, in the first header 34 according to Embodiment 2, the bending shape of the header base 9 and the bending shape of the header cover 10 can be made common, and the header base 9 and the header cover 10 can be the same part.
  • the header base 9 and the header cover 10 can be made of the same part, so that the mold for forming the header base 9 and the header cover 10 can be shared. It is possible to suppress the mold manufacturing cost. Moreover, in the first header 34 according to the second embodiment, the header base 9 and the header cover 10 can be made of the same component, and there is no need to manufacture the header base 9 and the header cover 10 separately. The productivity of the exchanger 30 can be improved.
  • FIG. 12 is a side view conceptually showing the relationship between the partition plate 50 and the main body portion 34a of the heat exchanger 30 according to the second embodiment. 12 shows the heat exchanger 30 in which the partition plate 50 is also used for the second header 35. As shown in FIG. White arrows in FIG. 12 indicate the flow of air generated by the fan 13 . Since the partition plate 50 does not protrude from the outer side surfaces of the first header 34 and the second header 35 when the partition plate 50 and the main body portion 34a are temporarily fixed, the width of the first header 34 and the second header 35 is reduced. can be shortened. Further, as shown in FIG. 12, by arranging the outer sides of the first header 34 and the second header 35 so as to face each other, the width of the fins 39 is the same as in the first embodiment, The width of the fin 39 is never widened.
  • FIG. 13 is an enlarged perspective view of the partition plate 50 used in the first header 34 according to the third embodiment.
  • Components having the same functions and actions as the first header 34 and the like according to Embodiments 1 and 2 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the following description focuses on the differences of the third embodiment from the first and second embodiments, and the configurations not described in the third embodiment are the same as those of the first and second embodiments.
  • the first header 34 according to Embodiment 3 specifies the shape of the side plate portion 52 of the partition plate 50 .
  • a mountain-shaped portion 54 is formed on the side plate portion 52 of the partition plate 50 .
  • Each of the pair of side plate portions 52 has a mountain-shaped portion 54 formed in the shape of a triangular prism on the wall facing the inner wall 34b1 of the insertion portion 34b in the direction parallel to the pipe axis direction of the first header 34.
  • a plurality of mountain-shaped portions 54 are formed on each of the pair of side plate portions 52 , and the plurality of mountain-shaped portions 54 are formed in parallel in a direction parallel to the direction in which the heat transfer tubes 38 extend.
  • the mountain-shaped portion 54 is formed in the shape of a triangular prism.
  • the mountain-shaped portion 54 is formed on the plate surface of the side plate portion 52 of the partition plate 50 so that one vertex portion of the mountain-shaped portion 54 formed in the shape of a triangular prism protrudes.
  • the mountain-shaped portion 54 is formed so as to extend between the plate tip portion 53 and the base serving as the root portion of the side plate portion 52 .
  • the plate surface of the side plate portion 52 on which the mountain-shaped portion 54 is formed is a plate surface perpendicular to the direction parallel to the tube axis direction of the first header 34 . That is, the plate surface of the side plate portion 52 on which the mountain-shaped portion 54 is formed faces in the same direction as the wall portion 51 of the partition plate 50, and in parallel with the pipe axial direction of the first header 34. It's a side that has been.
  • the mountain-shaped portions 54 are formed on both sides of the side plate portion 52 in the direction parallel to the tube axis direction of the first header 34 .
  • the mountain-shaped portion 54 is formed at a position facing the inner wall 34b1 of the insertion portion 34b of the main body portion 34a. That is, the mountain-shaped portion 54 is formed at a position facing the base cut portion 92 of the header base 9 . Moreover, when the header cover 10 is arranged outside the header base 9 , the mountain-shaped portion 54 may be formed at a position facing the cover cutout portion 102 of the header cover 10 .
  • a plurality of mountain-shaped portions 54 are formed on the side plate portion 52 of the partition plate 50 .
  • a plurality of mountain-shaped portions 54 are formed side by side in the longitudinal direction of the side plate portion 52 .
  • the plurality of mountain-shaped portions 54 are formed side by side in a direction parallel to the direction in which the heat transfer tubes 38 extend.
  • the plurality of mountain-shaped portions 54 may be formed in part of the side plate portion 52 or may be formed in the entire side plate portion 52 in the direction in which the heat transfer tubes 38 extend.
  • the plurality of mountain-shaped portions 54 are formed in a sawtooth shape on the plate surface of the side plate portion 52 .
  • a plurality of mountain-shaped portions 54 are formed on both surfaces of the side plate portion 52 . Therefore, when the plate tip portion 53 is viewed from above, the side plate portion 52 is formed in a wave shape by the plurality of mountain-shaped portions 54 .
  • the first header 34 has a plurality of mountain-shaped portions 54 on the side plate portion 52 of the partition plate 50 .
  • a plurality of mountain-shaped portions 54 are formed on each of the pair of side plate portions 52 , and the plurality of mountain-shaped portions 54 are formed in parallel in a direction parallel to the direction in which the heat transfer tubes 38 extend. Therefore, when the first header 34 is deformed so as to spread the plate tip portion 53 of the partition plate 50 , the mountain-shaped portion 54 bites into the header base 9 as a wedge, so that the partition plate 50 and the header base 9 are separated from each other. can be firmly temporarily fixed.
  • the partition plate 50 having the side plate portion 52 formed with the mountain-shaped portion 54 is used for the first header 34, but the side plate portion 52 formed with the mountain-shaped portion 54 is used. You may use the partition plate 50 which has for the 2nd header 35.
  • the mountain-shaped portion 54 is formed on the side plate portion 52 of the partition plate 50 , but the mountain-shaped portion 54 is limited to being formed on the partition plate 50 . is not.
  • the mountain-shaped portion 54 may be formed in the base cutout portion 92 of the header base 9 without providing the mountain-shaped portion 54 in the partition plate 50 .
  • the mountain-shaped portion 54 of the base cutout portion 92 is formed at a position facing the plate surface of the side plate portion 52 in the direction parallel to the pipe axis direction of the first header 34 .
  • the first header 34 is not provided with the mountain-shaped portion 54 in the partition plate 50 , and the cover cutout portion 102 of the header cover 10 is not provided. You may form the mountain-shaped part 54 in.
  • the mountain-shaped portion 54 of the cover cutout portion 102 is formed at a position facing the plate surface of the side plate portion 52 in the direction parallel to the tube axis direction of the first header 34 .
  • the mountain-shaped portion 54 is provided in the base cutout portion 92 of the header base 9 or the cover cutout portion 102 of the header cover 10
  • the first header 34 is deformed so as to spread the plate tip portion 53 of the partition plate 50.
  • the mountain-shaped portion 54 bites into the side plate portion 52 of the partition plate 50 as a wedge. Therefore, the first header 34 can firmly temporarily fix the partition plate 50 and the header base 9 .
  • FIG. 14 is an exploded perspective view of the first header 34 according to Embodiment 4.
  • FIG. Components having the same functions and actions as the first header 34 and the like according to Embodiments 1 to 3 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the following description focuses on the differences of the fourth embodiment from the first to third embodiments, and the configurations not described in the fourth embodiment are the same as those of the first to third embodiments.
  • the first header 34 according to Embodiment 4 is obtained by applying the structure of the partition plate 50 described in Embodiments 1 to 3 to the structure of the end plate 50A.
  • the first header 34 according to Embodiment 4 has a plurality of partition plates 50, and two of the plurality of partition plates 50 form two end plates 50A closing both ends of the main body portion 34a.
  • the end plate 50A is also formed with the same structure as the partition plate 50, and the side plate portion 52 of the end plate 50A is inserted into the insertion portion 34b of the main body portion 34a. .
  • the front end surface of the plate front end portion 53 of the end plate 50A is expanded by pressing, the side plate portion 52 of the end plate 50A and the insertion portion 34b are brought into close contact, and the end plate 50A and the header base 9 are locked.
  • the front end surface of the plate front end portion 53 of the end plate 50A is expanded by pressing, the side plate portion 52 of the end plate 50A and the insertion portion 34b are brought into close contact, and the end plate 50A and the header cover 10 are locked. be done.
  • An inlet opening 62 into which an inlet pipe 61 is inserted is formed in the end plate 50A.
  • the inlet pipe 61 is inserted into the inlet opening 62 and penetrates the end plate 50A. That is, one end plate 50A of the two end plates 50A is provided with an inlet pipe 61 through which the refrigerant flowing into the first header 34 passes.
  • the inlet pipe 61 penetrates through one end plate 50A of the two end plates 50A.
  • the end plate 50A is formed with an outlet opening 64 into which the outlet pipe 63 is inserted (see FIG. 4).
  • the outlet pipe 63 is inserted into the outlet opening 64 and penetrates the end plate 50A. That is, the other end plate 50A of the two end plates 50A is provided with an outlet pipe 63 through which the coolant flowing out from the inside of the first header 34 passes.
  • the outlet pipe 63 penetrates the other end plate 50A of the two end plates 50A.
  • the end plate 50A has a plate tip portion 53 that is spread by the insertion portion 34b, and the inlet pipe 61 is inserted into the inlet opening 62 and penetrates the end plate 50A. Therefore, when deforming the plate tip portion 53, which is the side surface of the end plate 50A, a load is applied to the end plate 50A in a direction parallel to the plate surface of the end plate 50A.
  • the pipe 61 can be temporarily fixed to the end plate 50A.
  • the inlet pipe 61 can be temporarily fixed to the end plate 50A by pressing the plate tip 53 of the end plate 50A, the end plate 50A and the inlet pipe 61 are welded or the like in advance in the manufacturing process of the heat exchanger 30. A step of temporary fixing can be omitted.
  • the end plate 50A has a plate tip portion 53 that is expanded by the insertion portion 34b, and the outlet pipe 63 is inserted into the outlet opening 64 and penetrates the end plate 50A. Therefore, when deforming the plate tip portion 53, which is the side surface of the end plate 50A, a load is applied to the end plate 50A in a direction parallel to the plate surface of the end plate 50A.
  • the pipe 63 can be temporarily fixed to the end plate 50A.
  • the outlet pipe 63 can be temporarily fixed to the end plate 50A by pressing the plate tip portion 53 of the end plate 50A, the end plate 50A and the outlet pipe 63 are welded or the like in advance in the manufacturing process of the heat exchanger 30. A step of temporary fixing can be omitted.
  • FIG. 15 is an enlarged perspective view showing part of the first header 34 according to the fifth embodiment.
  • FIG. 16 is a cross-sectional view along the tube axis direction of the first header 34 according to Embodiment 5, and is a partial cross-sectional view conceptually showing the cross section of the portion where the partition plate 50 is arranged.
  • FIGS. 15 and 16 show the position of the connection port 94 of the heat transfer tube 38. As shown in FIG.
  • the first header 34 has a deformation portion 95 on the main body portion 34a in a state where the main body portion 34a and the partition plate 50 are temporarily fixed.
  • the deformable portion 95 is formed along each of the pair of insertion portions 34b, and is formed by expanding the wall forming the main body portion 34a so as to form a groove having a V-shaped cross section.
  • the deformation portions 95 are provided on both sides of the insertion portion 34b in the direction parallel to the pipe axis direction of the first header 34. As shown in FIG.
  • the deformable portions 95 are provided on both sides of the insertion portion 34b, and the side plate portions 52 of the partition plate 50 are sandwiched between the inner walls 34b1 of the insertion portion 34b from both sides in the direction parallel to the pipe axis direction of the first header 34. Therefore, it is more firmly engaged with the insertion portion 34b.
  • the deformed portion 95 may be provided only on one side of the insertion portion 34b in the direction parallel to the tube axis direction of the first header 34 .
  • the first header 34 when the body portion 34a and the partition plate 50 are combined, the plate tip portions 53 do not protrude outside the body portion 34a from the pair of insertion portions 34b.
  • the first header 34 has a through hole formed by the inner wall 34b1 of the insertion portion 34b in the portion facing the base portion, which is the root portion of the side plate portion 52, and the difference in the size of the portion facing the plate tip portion 53 is greater than the size of the through hole.
  • the through hole formed by the inner wall 34b1 of the insertion portion 34b is formed so as to be small in size.
  • the inner wall 34b1 of each of the pair of insertion portions 34b is deformed toward the center of the through hole by the deformation portion 95, and the through hole formed by each of the pair of insertion portions 34b is deformed.
  • the plate tip portion 53 and the inner walls 34b1 of the pair of insertion portions 34b are engaged. That is, in the first header 34, in the inner walls 34b1 of the pair of insertion portions 34b, the inner walls 34b1 facing each other among the inner walls 34b1 constituting the insertion portions 34b are oriented in the directions facing each other due to the existence of the deformation portions 95. deformed. Due to such a deformed state, the plate tip portion 53 and the inner walls 34b1 of the pair of insertion portions 34b are engaged with each other inside the through holes formed by the pair of insertion portions 34b.
  • the deformation portion 95 is formed in the header when the main body portion 34a and the partition plate 50 are temporarily fixed. It is formed on the base side surface portion 93 of the base 9 .
  • the cover side surface portion 103 of the header cover 10 is arranged outside the base side surface portion 93 of the header base 9, the deformation portion 95 is deformed when the body portion 34a and the partition plate 50 are temporarily fixed. , are formed on the cover side surface portion 103 of the header cover 10 .
  • the deformed portion 95 When the deformed portion 95 is formed in the base side surface portion 93 , the deformed portion 95 is formed along the base cut portion 92 and near the base cut portion 92 . When deformed portion 95 is formed in cover side portion 103 , deformed portion 95 is formed near cover cut portion 102 along cover cut portion 102 .
  • the deformation portion 95 is a portion formed by pressing and deforming the base outer wall surface 9b of the base side surface portion 93 or the cover outer wall surface 10b of the cover side surface portion 103 using an instrument.
  • the deformed portion 95 is a portion of the base side surface portion 93 that is recessed toward the base inner wall surface 9a after the base outer wall surface 9b of the base side surface portion 93 is pressed and expanded using a tool.
  • the deformed portion 95 is a portion of the cover side surface portion 103 that is recessed toward the cover inner wall surface 10a after the cover outer wall surface 10b of the cover side surface portion 103 is pressed and expanded using a tool.
  • the header base 9 deforms the inner wall of the base cutout portion 92 so as to make the opening of the base cutout portion 92 smaller.
  • Header cover 10 forms deformed portion 95 along cover cutout 102 , so that the inner wall of cover cutout 102 deforms to make the opening of cover cutout 102 smaller.
  • the deformation portion 95 is formed on the base side portion 93 or the cover side portion 103 of the first header 34 , so that the side plate portion 52 of the partition plate 50 and the base cut portion 92 are in close contact with each other.
  • the header base 9 is locked. That is, the deformation portion 95 is formed on the base side portion 93 or the cover side portion 103 of the first header 34, so that the outer edge portion 53b of the plate tip portion 53 is brought into close contact with the inner wall 34b1 inside the insertion portion 34b. , the side plate portion 52 is fixed to the inner wall 34b1 of the insertion portion 34b.
  • the deformation portion 95 is pressed and deformed using a mold having a V-shaped tip, so that the plate surface of the base side portion 93 or the cover side portion 103 is spread left and right as if the plate surface is broken.
  • the inner wall 34b1 of the insertion portion 34b which is pushed wide, is in close contact with the side plate portion 52 of the partition plate 50.
  • the left and right referred to here are directions parallel to the pipe axis direction of the first header 34 .
  • the deformed portion 95 is formed as a recessed groove on the base inner wall surface 9a side of the base side surface portion 93 because the tip thereof is pressed and deformed using a V-shaped mold.
  • the deformed portion 95 is formed as a recessed groove on the cover inner wall surface 10a side of the cover side surface portion 103 because the deformed portion 95 is deformed by pressing using a V-shaped mold.
  • the groove-shaped deformed portion 95 is formed to extend in a direction perpendicular to the pipe axis direction of the first header 34 .
  • the direction in which the groove-shaped deformed portion 95 extends is the same as the direction in which the heat transfer tubes 38 extend in the first header 34 .
  • the deformed portion 95 is formed along the base cutout portion 92 and is formed to have the same length as the cut length of the base cutout portion 92 . Note that the length of the deformed portion 95 is not limited to this length. It may be formed in a length smaller than the height.
  • the plate tip end portion 53 does not protrude outside the main body portion 34a from each of the pair of insertion portions 34b when the main body portion 34a and the partition plate 50 are combined.
  • the first header 34 has a through hole formed by the inner wall 34b1 of the insertion portion 34b in the portion facing the base portion, which is the root portion of the side plate portion 52, and the difference in the size of the portion facing the plate tip portion 53 is greater than the size of the through hole.
  • the through hole formed by the inner wall 34b1 of the insertion portion 34b is formed so as to be small in size.
  • the inner wall 34b1 of each of the pair of insertion portions 34b is deformed toward the center of the through hole by the deformation portion 95, and the through hole formed by each of the pair of insertion portions 34b is deformed.
  • the heat exchanger 30 does not need to fix the main body portion 34 a and the partition plate 50 by projecting the partition plate 50 from the outer side surface of the first header 34 .
  • the heat exchanger 30 is compared with a header that requires the partition plate 50 to protrude outside the main body portion 34a in order to fix the main body portion 34a and the partition plate 50.
  • the width of the first header 34 can be reduced even if the partition plate 50 is provided inside the header 34 .
  • the heat exchanger 30 can reduce the width of the second header 35 even if the partition plate 50 is provided inside the second header 35 .
  • the width of the heat exchanger 30 can be reduced, and the installation space of the heat exchanger 30 can be reduced. can do.
  • the inner wall 34b1 of each of the pair of insertion portions 34b is deformed toward the center of the through hole by the deformation portion 95, and the through hole formed by each of the pair of insertion portions 34b is deformed. Inside, the plate tip portion 53 and the inner walls 34b1 of the pair of insertion portions 34b are engaged. Therefore, in the heat exchanger 30, the gap between the insertion portion 34b and the side plate portion 52 can be reduced, and the airtightness of the first header 34 or the second header 35 can be ensured. In the heat exchanger 30, the gap between the insertion portion 34b and the side plate portion 52 is enlarged in advance by deforming the deformation portion 95 into an expanded state after inserting the side plate portion 52 into the insertion portion 34b. It does not need to be formed, and the airtightness of the first header 34 or the second header 35 can be ensured.
  • the first header 34 according to Embodiment 5 temporarily fixes the partition plate 50 and the header base 9 by deforming the surface of the header base 9 near the partition plate 50 of the first header 34 .
  • the first header 34 according to the fifth embodiment temporarily fixes the partition plate 50 and the header cover 10 by deforming the surface of the header cover 10 near the partition plate 50 of the first header 34 . Since the first header 34 according to the fifth embodiment does not deform the side surface of the partition plate 50, the thickness of the partition plate 50 can be reduced, and the material cost of the heat exchanger 30 can be reduced.
  • the air conditioner 100 described in Embodiment 1 includes the heat exchanger 30 of Embodiments 1 to 5. Therefore, the air conditioner 100 can obtain the same effects as the heat exchanger 30 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

熱交換器は、複数の伝熱管と、ヘッダと、を備え、ヘッダは、筒状に形成された本体部と、本体部の内部空間をヘッダの管軸方向に分割する仕切板と、を有し、本体部は、貫通孔を形成して仕切板と係合する一対の差込部を有し、仕切板は、内部空間を管軸方向に分割する壁を構成する壁部と、壁部の両側面から突出しており、一対の差込部に挿入される一対の側板部と、を有し、一対の側板部のそれぞれは、突出方向の先端部分であって、一対の差込部に挿入された状態において、貫通孔を閉塞する板先端部を有しており、板先端部は、本体部と仕切板とが組み合わされた状態において、一対の差込部のそれぞれから本体部の外側に突出しておらず、端面がV字形状の溝を形成するように板先端部の壁が管軸方向と平行な方向に押し広げられた状態に変形しており、一対の差込部のそれぞれが形成する貫通孔の内部で一対の差込部のそれぞれの内壁と係合しているものである。

Description

熱交換器
 本開示は、複数の扁平管を有する熱交換器に関するものである。
 従来、自動車用あるいは空気調和用等の熱交換器として、パラレルフロー型熱交換器が知られている。パラレルフロー型熱交換器は、例えば、互いに一定の間隔をあけて平行に配置された一対のヘッダと、この一対のヘッダ間に配置された複数の伝熱管と、複数の伝熱管のうち隣接する伝熱管の間に配置されたフィンと、を有している。また、パラレル型熱交換器は、この一対のヘッダのうち少なくとも一方のヘッダにおいて、ヘッダの内部空間を軸方向に隔てる仕切板を有するものもある。
 パラレルフロー型熱交換器等の熱交換器を構成する各部品は、高温の炉を用いて、ろう付によって一体化される。しかし、ろう付け前に振動等によって熱交換器を構成する各部品の位置がずれないように、ろう付け前に熱交換器を構成する各部品を仮固定する必要がある。特に仕切板の仮固定に関しては、熱交換器を構成する各部品の仮固定後に、ヘッダ内への仕切板の入れ忘れが判別可能なように、ヘッダの外側から仕切板の有無が分かるような構造にする必要がある。
 仕切板とヘッダとを仮固定する従来技術として、仕切板を伝熱管の軸と垂直な方向でヘッダと仮固定する熱交換器(例えば、特許文献1参照)が挙げられる。特許文献1の熱交換器は、ヘッダの構成部品であって半円状の部品あるヘッダカバーに設けられた切込みに仕切板が差し込まれ、仕切板のカシメ爪がもう一方の構成部品であるヘッダベースに向かって折り曲げられることにより仕切板がヘッダに係止される。
特開2002-267388号公報
 一対のヘッダが上下方向に配置される熱交換器は、例えば、下方に配置されるヘッダがヘッダの管軸方向と垂直な方向に2つ並んで配置される場合がある。この場合、熱交換器は、性能向上のため、ヘッダの管軸方向と垂直な方向においてフィンの幅を短くして通風抵抗を下げる必要があり、フィンの幅を短くするために、ヘッダの管軸方向と垂直な方向においてヘッダの幅を小さくする必要がある。しかし、特許文献1の熱交換器のように、仕切板を伝熱管の軸と垂直な方向でヘッダに仮固定する場合、カシメ爪の厚さ分だけヘッダの幅が広くなるため、ヘッダの幅が長くなる。
 本開示は、上記のような課題を解決するものであり、ヘッダ内に仕切板を有しても、ヘッダの幅が小さい熱交換器を提供することを目的としている。
 本開示に係る熱交換器は、互いに間隔を空けて配置された複数の伝熱管と、複数の伝熱管に冷媒を分配するヘッダと、を備え、ヘッダは、筒状に形成されており、内部に冷媒が流れる空間が形成されている本体部と、本体部の内部空間をヘッダの管軸方向に分割する仕切板と、を有し、本体部は、両側面において、貫通孔を形成して仕切板と係合する一対の差込部を有し、仕切板は、内部空間を管軸方向に分割する壁を構成する壁部と、壁部の両側面から突出しており、一対の差込部に挿入される一対の側板部と、を有し、一対の側板部のそれぞれは、一対の側板部のそれぞれの突出方向の先端部分であって、一対の差込部に挿入された状態において、貫通孔を閉塞する板先端部を有しており、板先端部は、本体部と仕切板とが組み合わされた状態において、一対の差込部のそれぞれから本体部の外側に突出しておらず、端面がV字形状の溝を形成するように板先端部の壁が管軸方向と平行な方向に押し広げられた状態に変形しており、一対の差込部のそれぞれが形成する貫通孔の内部で一対の差込部のそれぞれの内壁と係合しているものである。
 また、本開示に係る熱交換器は、互いに間隔を空けて配置された複数の伝熱管と、複数の伝熱管に冷媒を分配するヘッダと、を備え、ヘッダは、筒状に形成されており、内部に冷媒が流れる空間が形成されている本体部と、本体部の内部空間をヘッダの管軸方向に分割する仕切板と、を有し、本体部は、両側面において、貫通孔を形成して仕切板と係合する一対の差込部を有し、一対の差込部のそれぞれに沿って形成されており、本体部を構成する壁が断面V字形状の溝を形成するように押し広げられて形成された変形部と、を有し、仕切板は、内部空間を管軸方向に分割する壁を構成する壁部と、壁部の両側面から突出しており、一対の差込部に挿入される一対の側板部と、を有し、一対の側板部のそれぞれは、一対の側板部のそれぞれの突出方向の先端部分であって、一対の差込部に挿入された状態において、貫通孔を閉塞する板先端部を有しており、ヘッダは、本体部と仕切板とが組み合わされた状態において、板先端部が、一対の差込部のそれぞれから本体部の外側に突出しておらず、変形部によって、一対の側板部のそれぞれの根元部分である基部と対向する部分の内壁により形成される貫通孔の大きさよりも、板先端部と対向する部分の内壁により形成される貫通孔の大きさが小さくなるように、一対の差込部のそれぞれの内壁が貫通孔の中心側に向かって変形しており、一対の差込部のそれぞれが形成する貫通孔の内部において、板先端部と一対の差込部のそれぞれの内壁とが係合しているものである。
 本開示に係る熱交換器は、板先端部が、本体部と仕切板とが組み合わされた状態において、一対の差込部のそれぞれから本体部の外側に突出していない。また、熱交換器は、仕切板の板先端部もしくは本体部の変形部が押し広げられるように変形しており、一対の差込部のそれぞれが形成する貫通孔の内部で板先端部と一対の差込部のそれぞれの内壁とが係合しているものである。熱交換器は、ヘッダの外側の側面から仕切板を突出させて本体部と仕切板とを固定する必要がないため、本体部と仕切板とを固定するために本体部の外に仕切板を突出させる必要があるヘッダと比較して、ヘッダ内に仕切板を有していてもヘッダの幅を小さくできる。
実施の形態1に係る熱交換器を備えた空気調和装置の冷媒回路図である。 実施の形態1に係る熱交換器の斜視図である。 実施の形態1に係る熱交換器を構成する第1ヘッダ及び第2ヘッダの管軸方向に沿った断面を概念的に示した図である。 実施の形態1に係る熱交換器を構成する変形例の第1ヘッダ及び第2ヘッダの管軸方向に沿った断面を概念的に示した図である。 図2のA部における第1ヘッダの拡大斜視図である。 実施の形態1に係る第1ヘッダの分解斜視図である。 第1ヘッダの管軸方向に沿った断面図であり、図3のB部における第1ヘッダの断面を概念的に示した部分断面図である。 図7のC-C線位置の第1ヘッダの断面を概念的に示した断面図である。 実施の形態1に係る熱交換器の仕切板と本体部との関係を概念的に示した側面図である。 実施の形態2に係る第1ヘッダの一部の拡大斜視図である。 実施の形態2に係る第1ヘッダの仕切板を有する部分の断面であって、第1ヘッダの管軸方向に対する垂直断面を概念的示した断面図である。 実施の形態2に係る熱交換器の仕切板と本体部との関係を概念的に示した側面図である。 実施の形態3に係る第1ヘッダに用いられる仕切板の拡大斜視図である。 実施の形態4に係る第1ヘッダの分解斜視図である。 実施の形態5に係る第1ヘッダの一部を表した拡大斜視図である。 実施の形態5に係る第1ヘッダの管軸方向に沿った断面図であり、仕切板の配置部分の断面を概念的に示した部分断面図である。
 以下、本開示を実施するための形態について、図面を参照して説明する。ここで、図1を含めた、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、各実施の形態において、先行する実施の形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。また、以下の実施の形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施の形態同士を部分的に組み合わせることができる。
実施の形態1.
<空気調和装置100の構成>
 図1は、実施の形態1に係る熱交換器30を備えた空気調和装置100の冷媒回路図である。なお、図1中の実線矢印は冷房運転時の冷媒の流れを示しており、図1中の破線矢印は暖房運転時の冷媒の流れを示している。
 図1に示すように、実施の形態1に係る熱交換器30は、室外機15と室内機20とを備えた空気調和装置100の室外機15に搭載されている。室外機15は、熱交換器30の他、圧縮機11と、流路切替装置12と、ファン13とを備えている。室内機20は、絞り装置21と、室内熱交換器22と、室内ファン23とを備えている。
 また、空気調和装置100は、圧縮機11、流路切替装置12、熱交換器30、絞り装置21、室内熱交換器22が冷媒配管で接続され、冷媒が循環する冷媒回路を備えている。この空気調和装置100は、流路切替装置12の切り替えにより冷房運転及び暖房運転の両方が運転可能である。
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機等からなる。
 流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転と暖房運転との切り替えを行う。流路切替装置12は、冷房運転時に、図1の実線で示す状態に切り替わり、圧縮機11の吐出側と熱交換器30とが接続される。また、流路切替装置12は、暖房運転時に、図1の破線で示す状態に切り替わり、圧縮機11の吐出側と室内熱交換器22とが接続される。
 熱交換器30は、室外空気と熱交換器30の内部を流れる冷媒との間で熱交換を行う。熱交換器30は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、熱交換器30は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。
 ファン13は、熱交換器30に対して室外空気を供給するものであり、回転数が制御されることにより、熱交換器30に対する送風量が調整される。
 絞り装置21は、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって熱交換器30または室内熱交換器22に流入する冷媒の圧力を制御する。なお、実施の形態では、絞り装置21は室内機20に設けられているが、室外機15に設けられていてもよく、設置箇所は限定されない。
 室内熱交換器22は、室内空気と室内熱交換器22の内部を流れる冷媒との間で熱交換を行う。室内熱交換器22は、冷房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。また、室内熱交換器22は、暖房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。
 室内ファン23は、室内熱交換器22に対して室内空気を供給するものであり、回転数が制御されることにより、室内熱交換器22に対する送風量が調整される。
 <冷房運転>
 ここで、空気調和装置100の動作について説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機11に吸入された冷媒は、圧縮機11によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機11から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置12を通過して、凝縮器として作用する熱交換器30に流入する。熱交換器30に流入した冷媒は、ファン13によって送られる室外空気と熱交換されて凝縮し、液化する。液状態の冷媒は、絞り装置21に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室内熱交換器22に流入する。室内熱交換器22に流入した冷媒は、室内ファン23によって送られる室内空気と熱交換されて蒸発し、ガス化する。その際、室内空気が冷却されて室内における冷房が実施される。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置12を通過して、圧縮機11に吸入される。
 <暖房運転>
 次に、暖房運転について説明する。暖房運転において、圧縮機11に吸入された冷媒は、圧縮機11によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機11から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置12を通過して、凝縮器として作用する室内熱交換器22に流入する。室内熱交換器22に流入した冷媒は、室内ファン23によって送られる室内空気と熱交換されて凝縮し、液化する。その際、室内空気が温められて、室内における暖房が実施される。液状態の冷媒は、絞り装置21に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する熱交換器30に流入する。熱交換器30に流入した冷媒は、ファン13によって送られる室外空気と熱交換されて蒸発し、ガス化する。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置12を通過して、圧縮機11に吸入される。
<熱交換器30の構成>
 図2は、実施の形態1に係る熱交換器30の斜視図である。図3は、実施の形態1に係る熱交換器30を構成する第1ヘッダ34及び第2ヘッダ35の管軸方向に沿った断面を概念的に示した図である。なお、図2中の白抜き矢印は、ファン13によって発生する風の流れを示す。また、図2及び図3中の実線矢印は、第1ヘッダ34を流れる冷媒の流れを示し、また、破線矢印は、第2ヘッダ35を流れる冷媒の流れを示している。
 図2に示すように、熱交換器30は、空気の流れ方向に沿って並んで配置された複数の熱交換体を有している。具体的には、熱交換器30は、風上側の第1熱交換体31と風下側の第2熱交換体32とを有する。また、熱交換器30は、第1熱交換体31及び第2熱交換体32と接続される、第1ヘッダ34と、第2ヘッダ35と、列渡しヘッダ42とを有する。第1熱交換体31及び第2熱交換体32は、それぞれ複数の伝熱管38と複数のフィン39とを有する。
 伝熱管38は、例えば、扁平管であり、内部に冷媒が流れる流路(図示せず)が複数形成されている。本実施の形態1において、伝熱管38は、上下方向に延びている。伝熱管38は、上下方向に伸びる管の内部において、上下方向に冷媒が流れる。上下方向は、例えば、鉛直方向であるが、鉛直方向に対して傾いた方向であってもよい。伝熱管38は、上下方向以外に延びていてもよい。伝熱管38は、ファン13によって発生した風が流れるように、互いに間隔を空けて水平方向に並列して配置されている。隣接する伝熱管38の間には、フィン39が配置されている。
 フィン39は、伝熱促進部材であり、複数の伝熱管38のうち隣り合う伝熱管38の間に配置される。フィン39は、隣り合う伝熱管38の間にわたって接続され、伝熱管38に伝熱する。なお、フィン39は、空気と冷媒との熱交換効率を向上させるものであり、たとえばコルゲートフィンが用いられる。しかし、フィン39は、コルゲートフィンに限定されるものではなく、例えば、プレートフィン等の他の伝熱促進部材であってもよい。また、第1熱交換体31及び第2熱交換体32は、伝熱管38の表面で空気と冷媒との熱交換が行われるため、フィン39がなくてもよい。
 第1熱交換体31の下端部には、第1ヘッダ34が接続されている。第1ヘッダ34には、第1熱交換体31の伝熱管38の下端部が直接挿入されている。第1ヘッダ34には、鉛直方向の上側に伸びるように複数の伝熱管38が接続されている。第1ヘッダ34は、空気調和装置100において、図2の白抜き矢印で示すように、ファン13によって送られる空気の流れる方向において、第2ヘッダ35に対して風上側に配置されている。
 第1ヘッダ34は、第1熱交換体31に流入する冷媒を、複数の伝熱管38に分配する分配機構として機能する。また、第1ヘッダ34は、冷媒が、第1熱交換体31から流出する際に、複数の伝熱管38から流出する冷媒が合流する際の合流機構として機能する。
 第1ヘッダ34は、両端が閉塞された長尺の筒状に形成された部材であり、内部に空間が形成されている。第1ヘッダ34は、図2及び図3に示すように、本体部34aと、エンドプレート50Aと、入口配管61及び出口配管63と、仕切板50とを有する。
 本体部34aは、長尺の筒状に形成された部材であり、内部に冷媒が流れる空間が形成されている。本体部34aの管軸方向に対する垂直断面において、本体部34aは、長円形状に形成されている。なお、本体部34aは、筒状に形成されていればよく、本体部34aの管軸方向に対する垂直断面において、本体部34aは、例えば真円形状あるいは多角形状等、他の形状に形成されてもよい。本体部34aの両端部には冷媒を封止するエンドプレート50Aが配置されている。
 第1ヘッダ34は、本体部34aと、エンドプレート50Aとを組み合わせることによって柱状に形成されている。第1ヘッダ34は、長手方向の中心軸が水平方向に伸びるように設置されているが、第1ヘッダ34は、長手方向の中心軸が水平方向に対して傾斜した状態に設置されてもよい。
 エンドプレート50Aは、筒状に形成された本体部34aの両端の開口部を閉塞している。第1ヘッダ34の長手方向において、第1ヘッダ34の一方の端部を構成するエンドプレート50Aには、入口配管61が接続されている。第1ヘッダ34の一方の端部を構成するエンドプレート50Aには、入口配管61が挿入される入口開口部62が形成されている。入口開口部62は、エンドプレート50Aに形成された貫通孔である。
 第1ヘッダ34の長手方向において、第1ヘッダ34の他方の端部を構成するエンドプレート50Aには、出口配管63が接続されている。第1ヘッダ34の他方の端部を構成するエンドプレート50Aには、出口配管63が挿入される出口開口部64が形成されている。出口開口部64は、エンドプレート50Aに形成された貫通孔である。
 入口配管61は、第1ヘッダ34に冷媒が流入する流入口である。また、出口配管63は、第1ヘッダ34から冷媒が流出する流出口である。入口配管61は、入口開口部62に挿入されており、エンドプレート50Aを貫通する。出口配管63は、出口開口部64に挿入されており、エンドプレート50Aを貫通する。第1ヘッダ34は、空気調和装置100の冷媒回路に入口配管61を介して接続されている。また、第1ヘッダ34は、空気調和装置100の冷媒回路に出口配管63を介して接続されている。
 第1ヘッダ34は、筒状に形成された本体部34aと、本体部34aの両端部を閉塞するエンドプレート50Aとにより、第1ヘッダ34の外部の空間と隔てられた内部空間40を形成する。内部空間40は、伝熱管38の管内空間と連通し、並びに、入口配管61及び出口配管63の管内空間と連通する空間である。第1ヘッダ34の内部空間40には、仕切板50が設けられている。
 仕切板50は、板状の部材である。仕切板50は、第1ヘッダ34の管軸方向と平行な方向において、第1ヘッダ34の内部空間40を複数の空間に隔てる壁を構成する。仕切板50は、内部空間40を第1ヘッダ34の管軸方向と平行な方向に分割し、第1ヘッダ34の内部に複数の空間を形成する。例えば、図3に示すように、第1ヘッダ34の内部は、仕切板50によって分配空間41と合流空間43とが形成されている。
 分配空間41は、第1ヘッダ34内において、複数の伝熱管38に分配される冷媒が存在する空間である。合流空間43は、第1ヘッダ34内において、複数の伝熱管38から流出した冷媒が合流する空間である。分配空間41と合流空間43とは仕切板50によって隔てられているため、分配空間41と合流空間43との間で冷媒は移動しない。すなわち、第1ヘッダ34の内部空間40において、仕切板50によって隔てられた隣接する空間同士は連通せず、仕切板50によって隔てられた隣接する空間同士の間では冷媒は移動しない。第1ヘッダ34は、仕切板50を少なくとも1つ以上有する。
 図4は、実施の形態1に係る熱交換器30を構成する変形例の第1ヘッダ34及び第2ヘッダ35の管軸方向に沿った断面を概念的に示した図である。図4に示すように、第1ヘッダ34が複数の仕切板50を有する場合、分配空間41と合流空間43との機能を有する空間となる合流分配空間45を有する場合がある。
 合流分配空間45は、複数の伝熱管38から流出した冷媒が合流する空間であり、合流した冷媒が再び他の複数の伝熱管38に分配される空間である。合流分配空間45は、第1ヘッダ34の管軸方向と平行な方向において、合流空間43と、分配空間41との間に形成されている。
 第2熱交換体32の下端部には、第2ヘッダ35が接続されている。第2ヘッダ35には、第2熱交換体32の伝熱管38の下端部が直接挿入されている。第2ヘッダ35には、鉛直方向の上側に伸びるように複数の伝熱管38が接続されている。第2ヘッダ35は、第1ヘッダ34に並列して配置されている。第2ヘッダ35は、空気調和装置100において、図2の白抜き矢印で示すように、ファン13によって送られる空気の流れる方向において、第1ヘッダ34に対して風下側に配置されている。第2ヘッダ35及び第1ヘッダ34は、地面に対し同じ高さに配置され、互いに平行に配置されている。
 第2ヘッダ35は、冷媒が第1熱交換体31から流入する際に、複数の伝熱管38から流入する冷媒が合流する際の合流機構として機能する。また、第2ヘッダ35は、第2熱交換体32から第1熱交換体31に流出する冷媒を、複数の伝熱管38に分配する分配機構として機能する。
 第2ヘッダ35は、両端が閉塞された長尺の筒状に形成された部材であり、内部に空間が形成されている。第2ヘッダ35は、図2及び図3に示すように、本体部34aと、エンドプレート50Aとを有する。
 本体部34aは、長尺の筒状に形成された部材であり、内部に空間が形成されている。本体部34aの管軸方向に対する垂直断面において、本体部34aは、長円形状に形成されている。なお、本体部34aは、筒状に形成されていればよく、本体部34aの管軸方向に対する垂直断面において、本体部34aは、例えば真円形状あるいは多角形状等、他の形状に形成されてもよい。本体部34aの両端部には冷媒を封止するエンドプレート50Aが配置されている。
 第2ヘッダ35は、本体部34aと、エンドプレート50Aとを組み合わせることによって柱状に形成されている。第2ヘッダ35は、長手方向の中心軸が水平方向に伸びるように設置されているが、第2ヘッダ35は、長手方向の中心軸が水平方向に対して傾斜した状態に設置されてもよい。
 エンドプレート50Aは、筒状に形成された本体部34aの両端の開口部を閉塞している。第2ヘッダ35は、筒状に形成された本体部34aと、本体部34aの両端部を閉塞するエンドプレート50Aとにより、第2ヘッダ35の外部の空間と隔てられた内部空間40を形成する。第2ヘッダ35の内部空間40は、伝熱管38の管内空間と連通している。
 第2ヘッダ35の内部空間40は、複数の伝熱管38から流出した冷媒が合流する空間であり、合流した冷媒が再び他の複数の伝熱管38に分配される空間である。第2ヘッダ35の内部空間40には、複数の伝熱管38を介して、第1ヘッダ34の内部空間40から冷媒が流入する。また、冷媒は、第2ヘッダ35の内部空間40から、複数の伝熱管38を介して、第1ヘッダ34の内部空間40に流入する。
 なお、実施の形態1に係る熱交換器30では、第2ヘッダ35には仕切板50が設けられていないが、図4の変形例の第1ヘッダ34及び第2ヘッダ35で示すように、第2ヘッダ35は仕切板50を有してもよい。第2ヘッダ35に仕切板50が設けられている場合には、仕切板50は、第2ヘッダ35の管軸方向と平行な方向において、第2ヘッダ35の内部空間40を複数の空間に隔てる壁を構成する。例えば、第2ヘッダ35は、図4に示すように、仕切板50によって内部空間40が複数の部屋を形成するように分割されてもよい。なお、第1ヘッダ34及び第2ヘッダ35の詳細な構造は後述する。
 列渡しヘッダ42は、第1ヘッダ34と第2ヘッダ35との2つのヘッダを有する場合、2つのヘッダの接続側と反対側の複数の伝熱管38の端部に設けられている。列渡しヘッダ42は、第1ヘッダ34及び第2ヘッダ35の2つのヘッダのうち一方のヘッダと接続された複数の伝熱管38と、第1ヘッダ34及び第2ヘッダ35の2つのヘッダのうち他方のヘッダと接続された複数の伝熱管38との間で冷媒を流通させる。
 列渡しヘッダ42は、伝熱管38を介して、第1ヘッダ34及び第2ヘッダ35に対向して設けられている。列渡しヘッダ42は、第1熱交換体31及び第2熱交換体32の上端部に設けられており、列渡しヘッダ42には、第1ヘッダ34及び第2ヘッダ35に挿入された複数の伝熱管38の上端部が挿入される。第1ヘッダ34と第2ヘッダ35に接続した複数の伝熱管38は、第1ヘッダ34と第2ヘッダ35の上部に位置する列渡しヘッダ42に連結している。
 列渡しヘッダ42には、一端が第1ヘッダ34の分配空間41と連通する複数の伝熱管38の他端と、一端が第2ヘッダ35の内部空間40と連通する複数の伝熱管38の他端とを連通させる第1流路42aが形成されている。なお、第1ヘッダ34の分配空間41と連通する複数の伝熱管38は、第1熱交換体31に含まれており、第2ヘッダ35の内部空間40と連通する複数の伝熱管38は、第2熱交換体32に含まれている。第1流路42aの形成数は、1つでもよく、複数でもよい。
 また、列渡しヘッダ42には、一端が第2ヘッダ35の内部空間40と連通する複数の伝熱管38の他端と、一端が第1ヘッダ34の合流空間43と連通する複数の伝熱管38の他端と、を連通させる第2流路42bが形成されている。なお、第1ヘッダ34の合流空間43と連通する複数の伝熱管38は、第1熱交換体31に含まれており、第2ヘッダ35の内部空間40と連通する複数の伝熱管38は、第2熱交換体32に含まれている。第2流路42bの形成数は、1つでもよく、複数でもよい。
 列渡しヘッダ42は、第1熱交換体31を流れる冷媒を、短手方向に対向する第2熱交換体32に流通させ、また、第2熱交換体32に流れる冷媒を、短手方向に対向する第1熱交換体31に流通させる。列渡しヘッダ42は、短手方向に対向して配置されているそれぞれの伝熱管38を連通するように流路を形成している。
 複数の伝熱管38、フィン39、第1ヘッダ34、第2ヘッダ35、列渡しヘッダ42、入口配管61、及び、出口配管63は、いずれもアルミニウム製であり、ロウ付けによって接合されている。また、ヘッダベース9、ヘッダカバー10、及び、仕切板50は、いずれもアルミニウム製であり、ロウ付けによって接合されている。なお、複数の伝熱管38、フィン39、第1ヘッダ34、第2ヘッダ35、列渡しヘッダ42、入口配管61、及び、出口配管63は、アルミニウム製に限定されるものではなく、他の金属によって形成されてもよい。また、ヘッダベース9、ヘッダカバー10、及び、仕切板50は、アルミニウム製に限定されるものではなく、他の金属によって形成されてもよい。
<熱交換器30の動作>
 熱交換器30内を流れる冷媒は、図2及び図3に示すように、入口配管61、第1ヘッダ34、第1熱交換体31、列渡しヘッダ42、第2熱交換体32、第2ヘッダ35の順に流れる。その後、第2ヘッダ35へ流入した冷媒は、第2熱交換体32、列渡しヘッダ42、第1熱交換体31、第1ヘッダ34、出口配管63の順に流れる。
 より詳細には、冷媒は、熱交換器30の外部から入口配管61を通って、第1ヘッダ34の内部空間40である分配空間41に流入する。分配空間41に流入した冷媒は、分配空間41と連通する第1熱交換体31に含まれる伝熱管38の内部を流れ、列渡しヘッダ42の第1流路42aに流入する。第1流路42aに流入した冷媒は、第1流路42aと連通する第2熱交換体32の伝熱管38を通って、第2ヘッダ35の内部空間40に流入する。
 第2ヘッダ35の内部空間40に流入した冷媒は、他端が第2流路42bと連通する第2熱交換体32に含まれる伝熱管38の内部を流れ、列渡しヘッダ42の第2流路42bに流入する。第2流路42bに流入した冷媒は、第2流路42bと連通する第1熱交換体31の伝熱管38を通って、第1ヘッダ34の内部空間40である合流空間43に流入する。第1ヘッダ34の合流空間43に流入した冷媒は、出口配管63を通って、熱交換器30の外部へ流出する。
 なお、図2及び図3の実施の形態1に係る熱交換器30では、第1ヘッダ34に仕切板50、入口配管61及び出口配管63を設け、第2ヘッダ35に仕切板50、入口配管61及び出口配管63を設けていない構造を示した。しかし、熱交換器30は、当該構造に限定されるものではなく、第1ヘッダ34の構造と第2ヘッダ35の構造とを入れ替えてもよい。すなわち、熱交換器30は、第2ヘッダ35に仕切板50、入口配管61及び出口配管63を設け、第1ヘッダ34に仕切板50、入口配管61及び出口配管63を設けていない構造でもよい。
 また、熱交換器30は、第1ヘッダ34及び第2ヘッダ35のいずれか一方のみが仕切板50を有するものではなく、図4に示すように、第1ヘッダ34及び第2ヘッダ35の両方が仕切板50を有してもよい。また、入口配管61と出口配管63とは、それぞれ別のヘッダに設けられてもよい。例えば、入口配管61は、第1ヘッダ34に設けられ、出口配管63は、第2ヘッダ35に設けられてもよい。
<第1ヘッダ34の詳細な構成>
 図5は、図2のA部における第1ヘッダ34の拡大斜視図である。図6は、実施の形態1に係る第1ヘッダ34の分解斜視図である。図7は、第1ヘッダ34の管軸方向に沿った断面図であり、図3のB部における第1ヘッダ34の断面を概念的に示した部分断面図である。図8は、図7のC-C線位置の第1ヘッダ34の断面を概念的に示した断面図である。図5~図8を用いて、第1ヘッダ34の詳細な構成を説明する。なお、図7では、伝熱管38の接続口94の位置を記載している。また、図8では、仕切板50の後ろ側にある部材を点線で表している。なお、以下の説明では第1ヘッダ34の構造を説明するが、第2ヘッダ35の基本的な構造も同じ構造である。第2ヘッダ35が仕切板50を有していない場合には、以下の説明における仕切板50の構造がエンドプレート50Aの構造に該当してもよい。
 第1ヘッダ34の本体部34aは、ヘッダベース9と、ヘッダカバー10と、を有する。ヘッダベース9と、ヘッダカバー10とは、伝熱管38の伸びる方向において、互いに対向するように配置されている。第1ヘッダ34の本体部34aは、ヘッダベース9と、ヘッダカバー10とを組み合わせることにより筒状に形成されている。
 本体部34aは、図5に示すように、ヘッダベース9とヘッダカバー10との組み合わせにより筒状に形成され、筒状に形成されたヘッダベース9及びヘッダカバー10の長手方向の両端がエンドプレート50Aによって閉塞されている。本体部34aは、ヘッダベース9と、ヘッダカバー10と、エンドプレート50Aとを組み合わせることによって柱状に形成されている。
 ヘッダベース9には、複数の伝熱管38が接続される。ヘッダベース9は、長尺に形成された部材であり、長手方向となる第1ヘッダ34の管軸方向に対する垂直断面がU字形状に形成されている。ヘッダベース9は、U字形状に形成された部分が長手方向に連続する形状に形成されている。U字形状に形成された内側の壁面を、ヘッダベース9のベース内壁面9aとし、U字形状に形成された外側の壁面を、ヘッダベース9のベース外壁面9bとする。すなわち、ヘッダベース9において、ベース内壁面9aとベース外壁面9bとは、互いに反対側の面を形成する。
 ヘッダベース9は、互いに対向する板面を形成する一対のベース側面部93と、一対のベース側面部93の端部の間に架橋するように形成されており、複数の伝熱管38と接続される天面部91とを有する。図6に示すように、ヘッダベース9において、天面部91は、湾曲した部分を形成し、ベース側面部93は平板状に形成された部分を形成する。U字形状に形成された、第1ヘッダ34の管軸方向に対する垂直断面において、天面部91は、弧状に形成された部分であり、ベース側面部93は、直線状に形成された部分である。
 天面部91は、2つベース側面部93の上端部に架橋されており、本体部34aの外側に凸となるように湾曲している。熱交換器30において、天面部91は、列渡しヘッダ42の配置側に凸となるように湾曲している。ヘッダベース9は、天面部91を有することによって、ヘッダカバー10とは反対側に凸となるように少なくとも一部が湾曲して形成されている。なお、天面部91は、本体部34aの外側に凸となるように湾曲している構造に限定されるものではなく、天面部91は、平板状に形成されてもよい。
 2つのベース側面部93は、互いのベース内壁面9aが対向するように形成されており、また、管軸方向に略平行となるように延びている。天面部91と2つのベース側面部93とは一体に形成されている。ヘッダベース9の長手方向に対する垂直断面において、弧状に形成された天面部91の両端部にそれぞれベース側面部93が設けられている。
 2つのベース側面部93のベース内壁面9aは、後述するヘッダカバー10のカバー側面部103のカバー外壁面10bと対向して当接する。2つのベース側面部93のそれぞれは、ヘッダカバー10のカバー側面部103のそれぞれと接合される。
 ヘッダベース9の天面部91には、伝熱管38が挿入される接続口94が形成されている。接続口94は、貫通孔でありヘッダベース9の長手方向に沿って複数形成されている。本体部34aには、複数の伝熱管38のそれぞれが挿入される複数の接続口94が管軸方向に間隔をあけて形成されている。複数の接続口94のうち隣り合う接続口94同士の間の距離W1(図6参照)は、ヘッダベース9の板厚W2の4倍以下の大きさである。伝熱管38は、接続口94に挿入されてヘッダベース9の天面部91を貫通している。接続口94に挿入された伝熱管38は、ヘッダベース9と接合されて、ヘッダベース9によって保持される。
 ここで、U字形状に形成された、第1ヘッダ34の管軸方向に対する垂直断面において、2つのベース側面部93のベース先端部9cにより形成される開口部をベース開口部9dと称する。ベース先端部9cは、ベース側面部93において、天面部91に対して反対側に位置する端部である。
 一対のベース側面部93のそれぞれは、板状に形成されており、天面部91の反対側の端部から、天面部91側に向かって伸びる孔を形成するベース切込部92を有する。ベース切込部92は、ベース先端部9cから天面部91に向かって伸びるように形成されている。ベース切込部92は、ベース側面部93を貫通する孔を形成する。ヘッダベース9は、2つのベース側面部93のそれぞれにおいて、天面部91に対して反対側の端部にベース切込部92を有している。ヘッダベース9は、両側面に貫通孔を形成するベース切込部92を有している。
 ヘッダカバー10は、ヘッダベース9と組み合わされ、ヘッダベース9と共に第1ヘッダ34の内部空間40を形成する。ヘッダカバー10は、長尺に形成された部材であり、長手方向となる第1ヘッダ34の管軸方向に対する垂直断面がU字形状に形成されている。ヘッダカバー10は、U字形状に形成された部分が長手方向に連続する形状に形成されている。U字形状に形成された内側の壁面を、ヘッダカバー10のカバー内壁面10aとし、U字形状に形成された外側の壁面を、ヘッダカバー10のカバー外壁面10bとする。すなわち、ヘッダカバー10において、カバー内壁面10aとカバー外壁面10bとは、互いに反対側の面を形成する。
 ヘッダカバー10は、互いに対向する板面を形成する一対のカバー側面部103と、一対のカバー側面部103の端部の間に架橋するように形成されており、本体部34aにおいて天面部91と対向する底面部101とを有する。ヘッダカバー10において、底面部101は、湾曲した部分を形成し、カバー側面部103は、平板状に形成された部分を形成する。U字形状に形成された、第1ヘッダ34の管軸方向に対する垂直断面において、底面部101は、弧状に形成された部分であり、カバー側面部103は、直線状に形成された部分である。
 底面部101は、2つカバー側面部103の下端部に架橋されており、本体部34aの外側に凸となるように湾曲している。熱交換器30において、底面部101は、列渡しヘッダ42の配置側と反対側に凸となるように湾曲している。ヘッダカバー10は、底面部101を有することによって、ヘッダベース9とは反対側に凸となるように少なくとも一部が湾曲して形成されている。なお、底面部101は、本体部34aの外側に凸となるように湾曲している構造に限定されるものではなく、底面部101は、平板状に形成されてもよい。
 2つのカバー側面部103は、互いのカバー内壁面10aが対向するように形成されており、また、管軸方向に略平行となるように延びている。底面部101と2つのカバー側面部103とは一体に形成されている。ヘッダカバー10の長手方向に対する垂直断面において、弧状に形成された底面部101の両端部にそれぞれカバー側面部103が設けられている。
 2つのカバー側面部103のカバー外壁面10bは、ヘッダベース9のベース側面部93のベース内壁面9aと対向して当接する。2つのカバー側面部103のそれぞれは、ヘッダベース9のベース側面部93のそれぞれと接合される。
 ここで、U字形状に形成された、第1ヘッダ34の管軸方向に対する垂直断面において、2つのカバー側面部103のカバー先端部10cにより形成される開口部をカバー開口部10dと称する。カバー先端部10cは、カバー側面部103において、底面部101に対して反対側に位置する端部である。
 一対のカバー側面部103のそれぞれは、板状に形成されており、底面部101の反対側の端部から、底面部101側に向かって伸びる孔を形成するカバー切込部102を有する。カバー切込部102は、カバー先端部10cから底面部101に向かって伸びるように形成されている。カバー切込部102は、カバー側面部103を貫通する孔を形成する。ヘッダカバー10は、2つのカバー側面部103のそれぞれにおいて、底面部101に対して反対側の端部にカバー切込部102を有している。ヘッダカバー10は、両側面に貫通孔を形成するカバー切込部102を有している。
 ヘッダベース9とヘッダカバー10とは、ベース開口部9dとカバー開口部10dが向き合う方向で互いに組み合わされる。実施の形態1に係る第1ヘッダ34では、ヘッダベース9とヘッダカバー10とが組み合わされた状態で、ヘッダカバー10は、ヘッダベース9のベース開口部9d内に挿入されている。ヘッダベース9とヘッダカバー10とが組み合わされた状態で、対向する2つのベース側面部93のベース内壁面9a間の距離L1は、対向する2つのカバー側面部103のカバー内壁面10a間の距離L2よりも大きい。
 図5に示すように、ヘッダベース9とヘッダカバー10とが組み合わされた状態で、天面部91のベース内壁面9aと底面部101のカバー内壁面10aとは対向する。また、ヘッダベース9とヘッダカバー10とが組み合わされた状態で、ベース側面部93とカバー側面部103とは対向し互いに当接する。この状態で、ベース側面部93のベース内壁面9aと、カバー側面部103のカバー外壁面10bとは対向して互いに当接する。すなわち、本体部34aは、一対のベース側面部93のそれぞれのベース内壁面9aと、一対のカバー側面部103のそれぞれのカバー外壁面10bとが当接している。
 図7に示すように、ヘッダベース9とヘッダカバー10とが組み合わされた状態で、ベース切込部92とカバー切込部102とが重なっている。差込部34bは、本体部34aにおいて、本体部34aの内側から外側に向かって、ベース切込部92とカバー切込部102とが重なることによって形成されている。
 本体部34aの差込部34bは、本体部34aに形成された貫通孔である。差込部34bには、後述する仕切板50の側板部52が挿入され、差込部34bは、仕切板50と係合する。本体部34aは、本体部34aの両側面となる、互いに対向する壁部において、貫通孔を形成して仕切板50と係合する一対の差込部34bを有している。
 仕切板50は、図6及び図8に示すように、壁部51と、側板部52と、を有する。壁部51は、板状の部材であり、仕切板50において、主として本体部34aの内部空間40を管軸方向に分割する壁を構成する部分である。第1ヘッダ34の管軸方向と平行な方向に見た場合に、壁部51は、内部空間40の形状と同じ形状に形成されている。すなわち、第1ヘッダ34の管軸方向と平行な方向に見た場合に、壁部51の外縁部51aは、本体部34aの内壁34cに沿った形状に形成されている。
 第1ヘッダ34において、壁部51の外縁部51aは、本体部34aの内壁34cに当接している。実施の形態1に係る熱交換器30の第1ヘッダ34では、仕切板50が当接する本体部34aの内壁34cは、ヘッダベース9のベース内壁面9aと、ヘッダカバー10のカバー内壁面10aとを含んでいる。
 側板部52は、壁部51から突出した部分であり、壁部51の外縁部51aから突出した部分である。仕切板50は、壁部51の両側面から突出する一対の側板部52を有している。一対の側板部52はそれぞれ、壁部51から第1ヘッダ34の管軸方向に対して垂直な方向に突出している。側板部52は、仕切板50において、本体部34aの差込部34bに挿入される。側板部52は、本体部34aの差込部34bに挿入され、仕切板50と本体部34aとの仮固定に用いられる。
 一対の側板部52のそれぞれは、一対の側板部52のそれぞれの突出方向の先端部分であって、一対の差込部34bに挿入された状態において、差込部34bによって形成された貫通孔を閉塞する板先端部53を有している。板先端部53は、差込部34bに挿入された状態において、差込部34bの穴形状に沿って伸びるように形成されている。板先端部53は、側板部52における突出方向の先端の壁を形成し、側板部52の先端面を含んでいる。
 板先端部53は、側板部52が差込部34bに挿入された状態において、本体部34aの外壁面の一部を構成する。実施の形態1に係る熱交換器30では、図5及び図7に示すように、板先端部53は、ヘッダベース9に形成されたベース切込部92の少なくとも一部を閉塞するように用いられる。
 板先端部53は、本体部34aと仕切板50とが組み合わされた状態において、一対の差込部34bのそれぞれから本体部34aの外側に突出していない。また、板先端部53は、端面がV字形状の溝を形成するように板先端部53の壁が第1ヘッダ34の管軸方向と平行な方向に押し広げられた状態に変形している。板先端部53は、管軸方向と平行な方向に押し広げられた状態に変形しているため、一対の差込部34bのそれぞれが形成する貫通孔の内部で一対の差込部34bのそれぞれの内壁34b1と係合している。
 板先端部53は、差込部34b内において、器具を用いて押圧して変形させることで、板先端部53の先端面が押し広げられ、仕切板50の側板部52と差込部34bとが密着する。板先端部53の先端面が押し広げられることで、差込部34bの開口の大きさが大きくなるように内壁34b1が押し広げられ、変形した板先端部53の外縁部53bと差込部34bの内壁34b1とが嵌合してもよい。なお、押し広げられた板先端部53は、ヘッダベース9のベース切込部92と密着し、仕切板50とヘッダベース9とを係止する。
 第1ヘッダ34において、本体部34aと仕切板50とが仮固定された状態において、仕切板50の板先端部53は、側板部52の根元部分となる基部に対して、押し広げられた状態に形成されている。板先端部53は、差込部34b内において、押し広げられた状態に形成されているため、板先端部53の外縁部53bが差込部34b内の内壁34b1と密着し、側板部52が差込部34bの内壁34b1に固定される。
 板先端部53は、差込部34b内において、例えば、先端がV字形状の金型を用いて押圧して変形させることで、板先端部53の先端面が割れたように左右に押し広げられ、左右に押し広げられた板先端部53が差込部34bの内壁34b1と密着する。なお、ここでいう左右は、第1ヘッダ34の管軸方向と平行な方向である。
 板先端部53は、先端がV字形状の金型を用いて押圧して変形されているため、壁部51に向かって凹んだ溝部53aが形成されている。溝部53aは、第1ヘッダ34の管軸方向と垂直な方向に伸びるように形成されている。なお、溝部53aの伸びる方向は、第1ヘッダ34において、伝熱管38の伸びる方向と平行な方向である。
 仕切板50は、板先端部53の先端面が、例えば、V字形状に押し広げられ、側板部52が差込部34bと密着することによって、ヘッダベース9に仮固定される。伝熱管38の伸びる方向と平行な方向に見た場合、板先端部53が変形した状態では、板先端部53はV字形状に変形している。
 差込部34bに挿入された板先端部53は、第1ヘッダ34の管軸方向と垂直な方向において、差込部34b内の一部の部分だけが押し広げられた状態に形成されてもよく、差込部34b内の全ての部分が押し広げられた状態に形成されてもよい。図5では、板先端部53の変形場所については、仕切板50の側面の全ての部分としているが、仕切板50と本体部34aのヘッダベース9とが仮固定されるのであれば、板先端部53は、側板部52の長さ方向に対して部分的に変形させてもよい。
 板先端部53が、差込部34b内において、先端がV字形状の金型を用いて押圧されて変形している場合には、溝部53aは、第1ヘッダ34の管軸方向と垂直な方向において、差込部34b内にある板先端部53の一部の部分にだけ形成されてもよい。あるいは、溝部53aは、第1ヘッダ34の管軸方向と垂直な方向において、差込部34b内にある板先端部53の全ての部分に形成されてもよい。
<第1ヘッダ34の詳細な構成の応用>
 第1ヘッダ34の詳細な構成の説明において、本体部34aと仕切板50との関係について説明したが、当該関係は、本体部34aとエンドプレート50Aとの関係に適用することができる。すなわち、エンドプレート50Aは、上述した仕切板50の構造を有してもよい。上述した第1ヘッダ34の構造は、本体部34aと仕切板50との仮固定を目的としているが、本体部34aとエンドプレート50Aとの仮固定に用いてもよい。本体部34aと仕切板50の仮固定と、本体部34aとエンドプレート50Aとの仮固定との構造を共通化することによって、仕切板50とエンドプレート50Aとの部品の共通化を図ることができる。
 本体部34aと仕切板50との関係について第1ヘッダ34の構造として説明したが、第2ヘッダ35が仕切板50を有する場合には、上述した本体部34aと仕切板50との関係は、第2ヘッダ35の本体部34aと仕切板50との関係に適用することができる。
 第1ヘッダ34の詳細な構成の説明において、ヘッダベース9の内側にヘッダカバー10を配置したが、ヘッダベース9の外側にヘッダカバー10を配置してもよい。この場合、本体部34aは、ヘッダベース9のベース外壁面9bとヘッダカバー10のカバー内壁面10aとが当接する。押し広げられた板先端部53は、ヘッダカバー10のカバー切込部102と密着し、仕切板50とヘッダカバー10とを係止する。
<熱交換器30の作用効果>
 図9は、実施の形態1に係る熱交換器30の仕切板50と本体部34aとの関係を概念的に示した側面図である。なお、図9では、第2ヘッダ35にも仕切板50を用いた場合の熱交換器30を示している。図9中の白抜き矢印は、ファン13によって発生する風の流れを示す。
 本開示に係る熱交換器30は、板先端部53が、本体部34aと仕切板50とが組み合わされた状態において、一対の差込部34bのそれぞれから本体部34aの外側に突出していない。また、板先端部53は、端面がV字形状の溝を形成するように板先端部53の壁が管軸方向と平行な方向に押し広げられた状態に変形しており、一対の差込部34bのそれぞれが形成する貫通孔の内部で一対の差込部34bのそれぞれの内壁34b1と係合している。そのため、熱交換器30は、第1ヘッダ34の外側の側面から仕切板50を突出させて本体部34aと仕切板50とを固定する必要がない。
 熱交換器30は、当該構成を有することによって、本体部34aと仕切板50とを固定するために本体部34aの外側に仕切板50を突出させる必要があるヘッダと比較して、第1ヘッダ34内に仕切板50を有していても第1ヘッダ34の幅を小さくできる。この第1ヘッダ34の幅は、熱交換器30を通過する空気の流れる方向の第1ヘッダ34の長さである。また、熱交換器30は、当該構成を第2ヘッダ35に適用することによって、第2ヘッダ35内に仕切板50を有していても第2ヘッダ35の幅を小さくできる。また、熱交換器30は、第1ヘッダ34及び第2ヘッダ35の両方に上記構成を適用することによって、熱交換器30の幅を小さくすることができ、熱交換器30の設置スペースを小さくすることができる。
 また、板先端部53は、端面がV字形状の溝を形成するように板先端部53の壁が管軸方向と平行な方向に押し広げられた状態に変形しており、一対の差込部34bのそれぞれが形成する貫通孔の内部で一対の差込部34bのそれぞれの内壁34b1と係合している。そのため、熱交換器30は、差込部34bと側板部52との間の隙間を小さくでき、第1ヘッダ34もしくは第2ヘッダ35の気密性を確保できる。熱交換器30は、差込部34bに側板部52を挿入した後に、板先端部53を押し広げられた状態に変形させることで、予め差込部34bと側板部52との間の隙間を大きく形成しておく必要はなく第1ヘッダ34もしくは第2ヘッダ35の気密性を確保できる。
 また、熱交換器30は、本体部34aがヘッダベース9とヘッダカバー10とを組み合わせて形成されている。そのため、分割されたヘッダベース9とヘッダカバー10との間に仕切板50を配置することができ、作業者は、本体部34aへの仕切板50の取り付けを容易に行うことができる。
 また、差込部34bは、本体部34aにおいて、本体部34aの内側から外側に向かって、ベース切込部92とカバー切込部102とが重なることによって形成されている。そのため、ベース切込部92あるいはカバー切込部102に仕切板50の側板部52を配置することで、ヘッダベース9とヘッダカバー10とを組み合わせる際に、差込部34bに側板部52を挿入することができる。そのため、作業者は、本体部34aへの仕切板50の取り付けを容易に行うことができる。
 また、本体部34aは、一対のベース側面部93のそれぞれのベース内壁面9aと、一対のカバー側面部103のそれぞれのカバー外壁面10bとが当接する。そのため、作業者は、ヘッダベース9とヘッダカバー10とを組み合わせることで本体部34aを形成することができ、第1ヘッダ34もしくは第2ヘッダ35を容易に製造することができる。また、熱交換器30は、当該構成を有することで、ヘッダベース9もしくはヘッダカバー10の幅を第1ヘッダ34もしくは第2ヘッダ35の幅とすることができる。
 また、複数の接続口94のうち隣り合う接続口94同士の間の距離は、ヘッダベース9の板厚の4倍以下の大きさである。そのため、熱交換器30は、当該構成を有しない熱交換器と比較して、隣り合う伝熱管38の距離を小さくすることができ、第1ヘッダ34の管軸方向における伝熱管38の数を増やすことができ、熱交換器30の性能を向上させることができる。
実施の形態2.
 図10は、実施の形態2に係る第1ヘッダ34の一部の拡大斜視図である。図11は、実施の形態2に係る第1ヘッダ34の仕切板50を有する部分の断面であって、第1ヘッダ34の管軸方向に対する垂直断面を概念的示した断面図である。なお、図11では、仕切板50の後ろ側にある部材を点線で表している。実施の形態1に係る熱交換器30等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。以下、実施の形態2が実施の形態1と異なる点を中心に説明し、実施の形態2で説明しない構成は実施の形態1と同様である。
 実施の形態2に係る第1ヘッダ34は、第1ヘッダ34を構成する本体部34aの構造が実施の形態1に係る第1ヘッダ34の本体部34aの構造と異なるものである。具体的には、実施の形態2に係る第1ヘッダ34の本体部34aは、ヘッダベース9とヘッダカバー10との組み合わせ方が、実施の形態1に係る第1ヘッダ34の本体部34aのヘッダベース9とヘッダカバー10との組み合わせ方が異なる。
 実施の形態2に係る第1ヘッダ34は、一対のベース側面部93のうち一方のベース側面部93がヘッダカバー10のカバー開口部10d内に配置される。また、実施の形態2に係る第1ヘッダ34は、一対のカバー側面部103のうち一方のカバー側面部103がヘッダベース9のベース開口部9d内に配置される。
 図10及び図11に示すように、ヘッダベース9とヘッダカバー10とが組み合わされた状態で、ベース側面部93とカバー側面部103とは対向し互いに当接する。この状態で、一対のベース側面部93のうち一方のベース側面部93内側が、一方のカバー側面部103の外側と接し、一対のベース側面部93のうち他方のベース側面部93外側が、他方のカバー側面部103の内側と接する。
 ヘッダベース9とヘッダカバー10とが組み合わされた状態で、一対のベース側面部93のうち一方のベース側面部93のベース内壁面9aと、一対のカバー側面部103のうち一方のカバー側面部103のカバー外壁面10bとが対向して互いに当接する。
 また、ヘッダベース9とヘッダカバー10とが組み合わされた状態で、一対のベース側面部93のうち他方のベース側面部93のベース外壁面9bと、一対のカバー側面部103のうち他方のカバー側面部103のカバー内壁面10aとが対向して互いに当接する。
 すなわち、本体部34aは、一対のベース側面部93のうち一方のベース側面部93のベース内壁面9aと、一対のカバー側面部103のうち一方のカバー側面部103のカバー外壁面10bとが当接している。また、本体部34aは、一対のベース側面部93のうち他方のベース側面部93のベース外壁面9bと、一対のカバー側面部103のうち他方のカバー側面部103のカバー内壁面10aとが当接している。
 ベース側面部93のベース内壁面9aとカバー側面部103のカバー外壁面10bとが当接して形成される差込部34b内では、仕切板50の押し広げられた板先端部53は、ヘッダベース9のベース切込部92と密着し、仕切板50とヘッダベース9とを係止する。
 また、ベース側面部93のベース外壁面9bとカバー側面部103のカバー内壁面10aとが当接して形成される差込部34b内では、仕切板50の押し広げられた板先端部53が、ヘッダカバー10のカバー切込部102と密着する。そして、第1ヘッダ34は、板先端部53とヘッダカバー10のカバー切込部102とが密着することによって、仕切板50とヘッダカバー10とが係止される。
<熱交換器30の作用効果>
 本体部34aは、一対のベース側面部93のうち一方のベース側面部93のベース内壁面9aと、一対のカバー側面部103のうち一方のカバー側面部103のカバー外壁面10bとが当接している。また、本体部34aは、一対のベース側面部93のうち他方のベース側面部93のベース外壁面9bと、一対のカバー側面部103のうち他方のカバー側面部103のカバー内壁面10aとが当接している。
 実施の形態2に係る第1ヘッダ34は、当該構成を有することで、仕切板50の押し広げられた板先端部53がヘッダベース9とヘッダカバー10との両方の部材に当接して、ヘッダベース9及びヘッダカバー10と仕切板50とを係止する。そのため、実施の形態2に係る第1ヘッダ34は、仕切板50の押し広げられた板先端部53は、仕切板50と、ヘッダベース9と、ヘッダカバー10との3部品を互いに仮固定することができる。実施の形態2に係る仕切板50と、ヘッダベース9と、ヘッダカバー10との3部品を互いに仮固定することができるため、仕切板50とヘッダベース9との2部品、または、仕切板50とヘッダカバー10との2部品の仮固定の場合よりも、仮固定を強化できる。
 実施の形態2に係る第1ヘッダ34は、実施の形態1に係る第1ヘッダ34のように、ヘッダベース9とヘッダカバー10とが組み合わされた状態で、ヘッダカバー10は、ヘッダベース9のベース開口部9d内に挿入されていない。そのため、実施の形態2に係る第1ヘッダ34は、ヘッダベース9の曲げ形状とヘッダカバー10の曲げ形状とを共通化でき、ヘッダベース9とヘッダカバー10とを同じ部品にすることができる。
 実施の形態2に係る第1ヘッダ34は、ヘッダベース9とヘッダカバー10とを同じ部品にすることができるため、ヘッダベース9とヘッダカバー10とを形成するための金型を共通化することができ、金型製造費を抑制することができる。また、実施の形態2に係る第1ヘッダ34は、ヘッダベース9とヘッダカバー10とを同じ部品にすることができ、ヘッダベース9とヘッダカバー10とを別々に製造する必要がないため、熱交換器30の生産性を向上させることができる。
 図12は、実施の形態2に係る熱交換器30の仕切板50と本体部34aとの関係を概念的に示した側面図である。なお、図12では、第2ヘッダ35にも仕切板50を用いた場合の熱交換器30を示している。図12中の白抜き矢印は、ファン13によって発生する風の流れを示す。仕切板50と本体部34aとが仮固定された状態で、第1ヘッダ34と第2ヘッダ35の外側側面から仕切板50が突出していないため、第1ヘッダ34と第2ヘッダ35の幅を短くできる。また、図12に示すように、第1ヘッダ34と第2ヘッダ35との外側同士を向かい合う形で配置することにより、実施の形態1と比較してフィン39を設置する幅が変わらないため、フィン39の幅が広くなることはない。
実施の形態3.
 図13は、実施の形態3に係る第1ヘッダ34に用いられる仕切板50の拡大斜視図である。なお、実施の形態1及び実施の形態2に係る第1ヘッダ34等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。以下、実施の形態3が実施の形態1及び実施の形態2と異なる点を中心に説明し、実施の形態3で説明しない構成は実施の形態1及び実施の形態2と同様である。
 実施の形態3に係る第1ヘッダ34は、仕切板50の側板部52の形状を特定するものである。実施の形態3に係る第1ヘッダ34は、仕切板50の側板部52に山形状部54が形成されている。
 一対の側板部52のそれぞれは、第1ヘッダ34の管軸方向と平行な方向において差込部34bの内壁34b1と対向する壁に、三角柱状に形成された山形状部54を有する。山形状部54は、一対の側板部52のそれぞれに複数形成されており、複数の山形状部54は、伝熱管38の伸びる方向と平行な方向に並列して形成されている。
 より詳細には、山形状部54は、三角柱状に形成されている。山形状部54は、三角柱状に形成された山形状部54の1つの頂点部分が突出するように、仕切板50の側板部52の板面に形成されている。山形状部54は、板先端部53と、側板部52の根元部分となる基部との間に伸びるように形成されている。
 山形状部54が形成されている側板部52の板面は、第1ヘッダ34の管軸方向と平行な方向に対して垂直な板面である。すなわち、山形状部54が形成されている側板部52の板面は、仕切板50の壁部51と同じ方向を向いた面であり、第1ヘッダ34の管軸方向と平行な方向に向いた面である。山形状部54は、第1ヘッダ34の管軸方向と平行な方向に対して、側板部52の両面に形成されている。
 山形状部54は、本体部34aの差込部34bの内壁34b1と対向する位置に形成されている。すなわち、山形状部54は、ヘッダベース9のベース切込部92と対向する位置に形成されている。また、ヘッダカバー10がヘッダベース9の外側に配置される場合には、山形状部54は、ヘッダカバー10のカバー切込部102と対向する位置に形成されてもよい。
 仕切板50の側板部52には、複数の山形状部54が形成されている。複数の山形状部54は、側板部52の長手方向に並んで形成されている。複数の山形状部54は、伝熱管38の伸びる方向と平行な方向に並んで形成されている。複数の山形状部54は、伝熱管38の伸びる方向において、側板部52の一部に形成されてもよく、側板部52の全部に形成されてもよい。複数の山形状部54は、側板部52の板面において、鋸歯状に形成されている。複数の山形状部54は、側板部52の両面に形成されている。そのため、板先端部53を平面視した場合に、側板部52は、複数の山形状部54によって波状に形成されている。
<熱交換器30の作用効果>
 実施の形態3に係る第1ヘッダ34は、仕切板50の側板部52に複数の山形状部54を有している。山形状部54は、一対の側板部52のそれぞれに複数形成されており、複数の山形状部54は、伝熱管38の伸びる方向と平行な方向に並列して形成されている。そのため、第1ヘッダ34は、仕切板50の板先端部53を押し広げるように変形させた際に、山形状部54がヘッダベース9に、楔として食い込むことにより、仕切板50とヘッダベース9とを強固に仮固定できる。なお、上記の説明では、第1ヘッダ34に、山形状部54が形成された側板部52を有する仕切板50を用いた場合について説明したが、山形状部54が形成された側板部52を有する仕切板50を第2ヘッダ35に用いてもよい。
 上記の説明では、山形状部54は、仕切板50の側板部52に形成されている態様について説明しているが、山形状部54は、仕切板50に形成される態様に限定されるものではない。例えば、第1ヘッダ34は、仕切板50には山形状部54を設けずに、ヘッダベース9のベース切込部92に山形状部54を形成してもよい。ベース切込部92の山形状部54は、第1ヘッダ34の管軸方向と平行な方向において、側板部52の板面と対向する位置に形成されている。
 また、例えば、ヘッダカバー10がヘッダベース9の外側に配置される場合には、第1ヘッダ34は、仕切板50には山形状部54を設けずに、ヘッダカバー10のカバー切込部102に山形状部54を形成してもよい。カバー切込部102の山形状部54は、第1ヘッダ34の管軸方向と平行な方向において、側板部52の板面と対向する位置に形成されている。第1ヘッダ34は、ヘッダベース9のベース切込部92又はヘッダカバー10のカバー切込部102に山形状部54を設けても、仕切板50の板先端部53を押し広げるように変形させた際に、山形状部54が仕切板50の側板部52に楔として食い込む。そのため、第1ヘッダ34は、仕切板50とヘッダベース9とを強固に仮固定できる。
実施の形態4.
 図14は、実施の形態4に係る第1ヘッダ34の分解斜視図である。なお、実施の形態1~実施の形態3に係る第1ヘッダ34等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。以下、実施の形態4が実施の形態1~実施の形態3と異なる点を中心に説明し、実施の形態4で説明しない構成は実施の形態1~実施の形態3と同様である。
 実施の形態4に係る第1ヘッダ34は、実施の形態1~実施の形態3で説明した仕切板50の構造をエンドプレート50Aの構造に適用したものである。実施の形態4に係る第1ヘッダ34は、仕切板50を複数有し、複数の仕切板50のうちの2つは、本体部34aの両端部を閉塞する2つのエンドプレート50Aを形成する。実施の形態4に係る第1ヘッダ34は、エンドプレート50Aも仕切板50の構造と同じ構造で形成されており、エンドプレート50Aの側板部52が本体部34aの差込部34bに挿入される。
 そして、エンドプレート50Aの板先端部53の先端面が押圧により押し広げられ、エンドプレート50Aの側板部52と差込部34bとが密着し、エンドプレート50Aとヘッダベース9とが係止される。あるいは、そして、エンドプレート50Aの板先端部53の先端面が押圧により押し広げられ、エンドプレート50Aの側板部52と差込部34bとが密着し、エンドプレート50Aとヘッダカバー10とが係止される。
 エンドプレート50Aには、入口配管61が挿入される入口開口部62が形成されている。入口配管61は、入口開口部62に挿入されており、エンドプレート50Aを貫通している。すなわち、2つのエンドプレート50Aのうち一方のエンドプレート50Aには、第1ヘッダ34の内部に流入する冷媒が通る入口配管61が設けられている。入口配管61は、2つのエンドプレート50Aのうち一方のエンドプレート50Aを貫通している。
 あるいは、エンドプレート50Aには、出口配管63が挿入される出口開口部64が形成されている(図4参照)。出口配管63は、出口開口部64に挿入されており、エンドプレート50Aを貫通している。すなわち、2つのエンドプレート50Aのうち他方のエンドプレート50Aには、第1ヘッダ34の内部から流出する冷媒が通る出口配管63が設けられている。出口配管63は、2つのエンドプレート50Aのうち他方のエンドプレート50Aを貫通している。
<熱交換器30の作用効果>
 エンドプレート50Aは、差込部34bで押し広げられる板先端部53を有し、入口配管61は、入口開口部62に挿入されており、エンドプレート50Aを貫通している。そのため、エンドプレート50Aの側面となる板先端部53を変形させる際、エンドプレート50Aの板面と平行な方向に、エンドプレート50Aに荷重が加わるので、入口開口部62の形状が変形し、入口配管61をエンドプレート50Aに仮固定できる。
 エンドプレート50Aの板先端部53への押圧によって、入口配管61を、エンドプレート50Aに仮固定できるため、熱交換器30の製造工程において、事前に溶接等によりエンドプレート50Aと入口配管61とを仮固定する工程を省略できる。
 また、エンドプレート50Aは、差込部34bで押し広げられる板先端部53を有し、出口配管63は、出口開口部64に挿入されており、エンドプレート50Aを貫通している。そのため、エンドプレート50Aの側面となる板先端部53を変形させる際、エンドプレート50Aの板面と平行な方向に、エンドプレート50Aに荷重が加わるので、出口開口部64の形が変形し、出口配管63をエンドプレート50Aに仮固定できる。
 エンドプレート50Aの板先端部53への押圧によって、出口配管63を、エンドプレート50Aに仮固定できるため、熱交換器30の製造工程において、事前に溶接等によりエンドプレート50Aと出口配管63とを仮固定する工程を省略できる。
実施の形態5.
 図15は、実施の形態5に係る第1ヘッダ34の一部を表した拡大斜視図である。図16は、実施の形態5に係る第1ヘッダ34の管軸方向に沿った断面図であり、仕切板50の配置部分の断面を概念的に示した部分断面図である。図15及び図16を用いて、実施の形態5に係る第1ヘッダ34の詳細な構成を説明する。なお、図16では、伝熱管38の接続口94の位置を記載している。
 実施の形態1~実施の形態4に係る第1ヘッダ34等と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略する。以下、実施の形態5が実施の形態1~実施の形態4と異なる点を中心に説明し、実施の形態5で説明しない構成は実施の形態1~実施の形態4と同様である。
 実施の形態5に係る第1ヘッダ34は、本体部34aと仕切板50とが仮固定された状態において、本体部34aに変形部95を有している。変形部95は、一対の差込部34bのそれぞれに沿って形成されており、本体部34aを構成する壁が断面V字形状の溝を形成するように押し広げられて形成されている。変形部95は、第1ヘッダ34の管軸方向と平行な方向において、差込部34bの両側に設けられている。変形部95が、差込部34bの両側に設けられており、仕切板50の側板部52は、第1ヘッダ34の管軸方向と平行な方向の両側から差込部34bの内壁34b1によって挟まれるため、より強固に差込部34bと係合する。なお、変形部95は、第1ヘッダ34の管軸方向と平行な方向において、差込部34bの片側にのみ設けられてもよい。
 第1ヘッダ34は、本体部34aと仕切板50とが組み合わされた状態において、板先端部53が、一対の差込部34bのそれぞれから本体部34aの外側に突出していない。また、第1ヘッダ34は、側板部52の根元部分である基部と対向する部分の差込部34bの内壁34b1により形成される貫通孔の大きさよりも、板先端部53と対向する部分の差込部34bの内壁34b1により形成される貫通孔の大きさが小さくなるように形成されている。第1ヘッダ34は、変形部95によって、一対の差込部34bのそれぞれの内壁34b1が貫通孔の中心側に向かって変形しており、一対の差込部34bのそれぞれが形成する貫通孔の内部において、板先端部53と一対の差込部34bのそれぞれの内壁34b1とが係合している。すなわち、第1ヘッダ34は、一対の差込部34bのそれぞれの内壁34b1において、差込部34bを構成する内壁34b1のうち互いに向かい合う内壁34b1が、変形部95の存在によって、互いに向かい合う方向に向かって変形している。このように変形した状態によって、一対の差込部34bのそれぞれが形成する貫通孔の内部において、板先端部53と一対の差込部34bのそれぞれの内壁34b1とが係合している。
 ヘッダベース9のベース側面部93がヘッダカバー10のカバー側面部103の外側に配置されている場合には、本体部34aと仕切板50とが仮固定された状態において、変形部95は、ヘッダベース9のベース側面部93に形成されている。あるいは、ヘッダカバー10のカバー側面部103がヘッダベース9のベース側面部93の外側に配置されている場合には、本体部34aと仕切板50とが仮固定された状態において、変形部95は、ヘッダカバー10のカバー側面部103に形成されている。
 変形部95がベース側面部93に形成されている場合、変形部95は、ベース切込部92に沿って、ベース切込部92の近くに形成されている。変形部95がカバー側面部103に形成されている場合、変形部95は、カバー切込部102に沿って、カバー切込部102の近くに形成されている。
 変形部95は、器具を用いてベース側面部93のベース外壁面9bあるいはカバー側面部103のカバー外壁面10bを押圧して変形させることにより形成された部分である。変形部95は、器具を用いてベース側面部93のベース外壁面9bが押圧され押し広げられ、また、ベース側面部93のベース内壁面9a側に凹んだ部分である。あるいは、変形部95は、器具を用いてカバー側面部103のカバー外壁面10bが押圧され押し広げられ、また、カバー側面部103のカバー内壁面10a側に凹んだ部分である。
 ヘッダベース9は、ベース切込部92に沿って、変形部95を形成することによって、ベース切込部92の内壁が、ベース切込部92の開口を小さくするように変形する。ヘッダカバー10は、カバー切込部102に沿って、変形部95を形成することによって、カバー切込部102の内壁が、カバー切込部102の開口を小さくするように変形する。
 そのため、第1ヘッダ34は、ベース側面部93あるいはカバー側面部103に変形部95が形成されることによって、仕切板50の側板部52とベース切込部92とが密着し、仕切板50とヘッダベース9とを係止する。すなわち、第1ヘッダ34は、ベース側面部93あるいはカバー側面部103に変形部95が形成されることによって、板先端部53の外縁部53bが変形した差込部34b内の内壁34b1と密着し、側板部52が差込部34bの内壁34b1に固定される。
 変形部95は、例えば、先端がV字形状の金型を用いて押圧して変形させることで、ベース側面部93あるいはカバー側面部103の板面が割れたように左右に押し広げられ、左右に押し広げられた差込部34bの内壁34b1が仕切板50の側板部52と密着する。なお、ここでいう左右は、第1ヘッダ34の管軸方向と平行な方向である。
 変形部95は、先端がV字形状の金型を用いて押圧して変形されているため、ベース側面部93のベース内壁面9a側に凹んだ溝として形成されている。あるいは、変形部95は、先端がV字形状の金型を用いて押圧して変形されているため、カバー側面部103のカバー内壁面10a側に凹んだ溝として形成されている。溝状に形成された変形部95は、第1ヘッダ34の管軸方向と垂直な方向に伸びるように形成されている。なお、溝状に形成された変形部95の伸びる方向は、第1ヘッダ34において、伝熱管38の伸びる方向と同じ方向である。
 変形部95は、ベース切込部92に沿って形成されているが、ベース切込部92の切込長さと同じ長さに形成されている。なお、変形部95の長さは当該長さに限定されるものではなく、仕切板50と本体部34aのヘッダベース9とが仮固定されるのであれば、ベース切込部92の切込長さよりも小さい長さに形成されてもよい。
<熱交換器30の作用効果>
 本開示に係る熱交換器30は、板先端部53が、本体部34aと仕切板50とが組み合わされた状態において、一対の差込部34bのそれぞれから本体部34aの外側に突出していない。また、第1ヘッダ34は、側板部52の根元部分である基部と対向する部分の差込部34bの内壁34b1により形成される貫通孔の大きさよりも、板先端部53と対向する部分の差込部34bの内壁34b1により形成される貫通孔の大きさが小さくなるように形成されている。第1ヘッダ34は、変形部95によって、一対の差込部34bのそれぞれの内壁34b1が貫通孔の中心側に向かって変形しており、一対の差込部34bのそれぞれが形成する貫通孔の内部において、板先端部53と一対の差込部34bのそれぞれの内壁34b1とが係合している。そのため、熱交換器30は、第1ヘッダ34の外側の側面から仕切板50を突出させて本体部34aと仕切板50とを固定する必要がない。
 熱交換器30は、当該構成を有することによって、本体部34aと仕切板50とを固定するために本体部34aの外側に仕切板50を突出させる必要があるヘッダと比較して、第1ヘッダ34内に仕切板50を有していても第1ヘッダ34の幅を小さくできる。また、熱交換器30は、当該構成を第2ヘッダ35に適用することによって、第2ヘッダ35内に仕切板50を有していても第2ヘッダ35の幅を小さくできる。また、熱交換器30は、第1ヘッダ34及び第2ヘッダ35の両方に上記構成を適用することによって、熱交換器30の幅を小さくすることができ、熱交換器30の設置スペースを小さくすることができる。
 第1ヘッダ34は、変形部95によって、一対の差込部34bのそれぞれの内壁34b1が貫通孔の中心側に向かって変形しており、一対の差込部34bのそれぞれが形成する貫通孔の内部において、板先端部53と一対の差込部34bのそれぞれの内壁34b1とが係合している。そのため、熱交換器30は、差込部34bと側板部52との間の隙間を小さくでき、第1ヘッダ34もしくは第2ヘッダ35の気密性を確保できる。熱交換器30は、差込部34bに側板部52を挿入した後に、変形部95を押し広げられた状態に変形させることで、予め差込部34bと側板部52との間の隙間を大きく形成しておく必要はなく、第1ヘッダ34もしくは第2ヘッダ35の気密性を確保できる。
 実施の形態5に係る第1ヘッダ34は、第1ヘッダ34の仕切板50に近いヘッダベース9の表面を変形させることで仕切板50とヘッダベース9とを仮固定する。あるいは、実施の形態5に係る第1ヘッダ34は、第1ヘッダ34の仕切板50に近いヘッダカバー10の表面を変形させることで仕切板50とヘッダカバー10とを仮固定する。実施の形態5に係る第1ヘッダ34は、仕切板50の側面を変形させないため、仕切板50の板厚を薄くすることができ、熱交換器30の材料費を低減できる。
 実施の形態1で説明した空気調和装置100は、実施の形態1~実施の形態5の熱交換器30を備えている。そのため、空気調和装置100は、上記の熱交換器30と同様の効果を得ることができる。
 9 ヘッダベース、9a ベース内壁面、9b ベース外壁面、9c ベース先端部、9d ベース開口部、10 ヘッダカバー、10a カバー内壁面、10b カバー外壁面、10c カバー先端部、10d カバー開口部、11 圧縮機、12 流路切替装置、13 ファン、15 室外機、20 室内機、21 絞り装置、22 室内熱交換器、23 室内ファン、30 熱交換器、31 第1熱交換体、32 第2熱交換体、34 第1ヘッダ、34a 本体部、34b 差込部、34b1 内壁、34c 内壁、35 第2ヘッダ、38 伝熱管、39 フィン、40 内部空間、41 分配空間、42 列渡しヘッダ、42a 第1流路、42b 第2流路、43 合流空間、45 合流分配空間、50 仕切板、50A エンドプレート、51 壁部、51a 外縁部、52 側板部、53 板先端部、53a 溝部、53b 外縁部、54 山形状部、61 入口配管、62 入口開口部、63 出口配管、64 出口開口部、91 天面部、92 ベース切込部、93 ベース側面部、94 接続口、95 変形部、100 空気調和装置、101 底面部、102 カバー切込部、103 カバー側面部。

Claims (11)

  1.  互いに間隔を空けて配置された複数の伝熱管と、
     前記複数の伝熱管に冷媒を分配するヘッダと、
    を備え、
     前記ヘッダは、
     筒状に形成されており、内部に冷媒が流れる空間が形成されている本体部と、
     前記本体部の内部空間を前記ヘッダの管軸方向に分割する仕切板と、
    を有し、
     前記本体部は、
     両側面において、貫通孔を形成して前記仕切板と係合する一対の差込部を有し、
     前記仕切板は、
     前記内部空間を前記管軸方向に分割する壁を構成する壁部と、
     前記壁部の両側面から突出しており、前記一対の差込部に挿入される一対の側板部と、
    を有し、
     前記一対の側板部のそれぞれは、
     前記一対の側板部のそれぞれの突出方向の先端部分であって、前記一対の差込部に挿入された状態において、前記貫通孔を閉塞する板先端部を有しており、
     前記板先端部は、
     前記本体部と前記仕切板とが組み合わされた状態において、前記一対の差込部のそれぞれから前記本体部の外側に突出しておらず、端面がV字形状の溝を形成するように前記板先端部の壁が前記管軸方向と平行な方向に押し広げられた状態に変形しており、前記一対の差込部のそれぞれが形成する前記貫通孔の内部で前記一対の差込部のそれぞれの内壁と係合している熱交換器。
  2.  互いに間隔を空けて配置された複数の伝熱管と、
     前記複数の伝熱管に冷媒を分配するヘッダと、
    を備え、
     前記ヘッダは、
     筒状に形成されており、内部に冷媒が流れる空間が形成されている本体部と、
     前記本体部の内部空間を前記ヘッダの管軸方向に分割する仕切板と、
    を有し、
     前記本体部は、
     両側面において、貫通孔を形成して前記仕切板と係合する一対の差込部を有し、
     前記一対の差込部のそれぞれに沿って形成されており、前記本体部を構成する壁が断面V字形状の溝を形成するように押し広げられて形成された変形部と、
    を有し、
     前記仕切板は、
     前記内部空間を前記管軸方向に分割する壁を構成する壁部と、
     前記壁部の両側面から突出しており、前記一対の差込部に挿入される一対の側板部と、
    を有し、
     前記一対の側板部のそれぞれは、
     前記一対の側板部のそれぞれの突出方向の先端部分であって、前記一対の差込部に挿入された状態において、前記貫通孔を閉塞する板先端部を有しており、
     前記ヘッダは、
     前記本体部と前記仕切板とが組み合わされた状態において、
     前記板先端部が、前記一対の差込部のそれぞれから前記本体部の外側に突出しておらず、前記変形部によって、前記一対の側板部のそれぞれの根元部分である基部と対向する部分の内壁により形成される前記貫通孔の大きさよりも、前記板先端部と対向する部分の前記内壁により形成される前記貫通孔の大きさが小さくなるように、前記一対の差込部のそれぞれの前記内壁が前記貫通孔の中心側に向かって変形しており、前記一対の差込部のそれぞれが形成する前記貫通孔の内部において、前記板先端部と前記一対の差込部のそれぞれの前記内壁とが係合している熱交換器。
  3.  前記本体部は、
     前記管軸方向に対する垂直断面がU字形状に形成されており、前記複数の伝熱管が接続されるヘッダベースと、
     前記管軸方向に対する垂直断面がU字形状に形成されており、前記ヘッダベースと組み合わされ、前記ヘッダベースと共に前記内部空間を形成するヘッダカバーと、
    を有する請求項1又は2に記載の熱交換器。
  4.  前記ヘッダベースは、
     互いに対向する板面を形成する一対のベース側面部と、
     前記一対のベース側面部の端部の間に架橋するように形成されており、前記複数の伝熱管と接続される天面部と、
    を有し、
     前記一対のベース側面部のそれぞれは、
     板状に形成されており、前記天面部の反対側の端部から、前記天面部側に向かって伸びる孔を形成するベース切込部を有し、
     前記ヘッダカバーは、
     互いに対向する板面を形成する一対のカバー側面部と、
     前記一対のカバー側面部の端部の間に架橋するように形成されており、前記本体部において前記天面部と対向する底面部と、
    を有し
     前記一対のカバー側面部のそれぞれは、
     板状に形成されており、前記底面部の反対側の端部から、前記底面部側に向かって伸びる孔を形成するカバー切込部を有し、
     前記差込部は、
     前記本体部において、前記本体部の内側から外側に向かって、前記ベース切込部と前記カバー切込部とが重なることによって形成されている請求項3に記載の熱交換器。
  5.  前記ヘッダベースは、
     前記一対のベース側面部の互いに対向する面であるベース内壁面と、
     前記ベース内壁面と反対側の面であるベース外壁面と、
    を有し、
     前記ヘッダカバーは、
     前記一対のカバー側面部の互いに対向する面であるカバー内壁面と、
     前記カバー内壁面と反対側の面であるカバー外壁面と、
    を有し、
     前記本体部は、
     前記一対のベース側面部のそれぞれの前記ベース内壁面と、前記一対のカバー側面部のそれぞれの前記カバー外壁面とが当接する請求項4に記載の熱交換器。
  6.  前記ヘッダベースは、
     前記一対のベース側面部の互いに対向する面であるベース内壁面と、
     前記ベース内壁面と反対側の面であるベース外壁面と、
    を有し、
     前記ヘッダカバーは、
     前記一対のカバー側面部の互いに対向する面であるカバー内壁面と、
     前記カバー内壁面と反対側の面であるカバー外壁面と、
    を有し、
     前記本体部は、
     前記一対のベース側面部のうち一方の前記ベース側面部の前記ベース内壁面と、前記一対のカバー側面部のうち一方のカバー側面部の前記カバー外壁面とが当接し、
     前記一対のベース側面部のうち他方の前記ベース側面部の前記ベース外壁面と、前記一対のカバー側面部のうち他方のカバー側面部の前記カバー内壁面とが当接する請求項4に記載の熱交換器。
  7.  前記本体部には、前記複数の伝熱管が挿入される複数の接続口が形成されており、
     前記複数の接続口のうち隣り合う接続口同士の間の距離は、前記ヘッダベースの板厚の4倍以下の大きさである請求項3~6のいずれか1項に記載の熱交換器。
  8.  前記仕切板を複数有し、
     複数の前記仕切板のうちの2つは、
     前記本体部の両端部を閉塞する2つのエンドプレートを形成し、
     前記2つのエンドプレートのうち一方のエンドプレートには、前記ヘッダの内部に流入する冷媒が通る入口配管が設けられており、
     前記入口配管は、
     前記2つのエンドプレートのうち一方のエンドプレートを貫通しており、
     前記2つのエンドプレートのうち他方のエンドプレートには、前記ヘッダの内部から流出する冷媒が通る出口配管が設けられており、
     前記出口配管は、
     前記2つのエンドプレートのうち他方のエンドプレートを貫通している請求項3~7のいずれか1項に記載の熱交換器。
  9.  前記ヘッダを2つ有し、2つの前記ヘッダの接続側と反対側の前記複数の伝熱管の端部に設けられており、2つの前記ヘッダのうち一方の前記ヘッダと接続された前記複数の伝熱管と、2つの前記ヘッダのうち他方の前記ヘッダと接続された前記複数の伝熱管との間で冷媒を流通させる列渡しヘッダと、
     伝熱促進部材であり、前記複数の伝熱管のうち隣り合う伝熱管の間に配置されるフィンと、
    を更に備えた請求項8に記載の熱交換器。
  10.  前記ヘッダベース、前記ヘッダカバー、前記仕切板、前記複数の伝熱管、前記入口配管、前記出口配管、前記列渡しヘッダ、及び、前記フィンがアルミニウム製である請求項9に記載の熱交換器。
  11.  前記一対の側板部のそれぞれは、
     前記管軸方向と平行な方向において前記差込部の内壁と対向する壁に、三角柱状に形成された山形状部を有し、
     前記山形状部は、
     前記一対の側板部のそれぞれに複数形成されており、
     複数の前記山形状部は、
     前記伝熱管の伸びる方向と平行な方向に並列して形成されている請求項1~10のいずれか1項に記載の熱交換器。
PCT/JP2021/013858 2021-03-31 2021-03-31 熱交換器 WO2022208733A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023510026A JP7462832B2 (ja) 2021-03-31 2021-03-31 熱交換器
PCT/JP2021/013858 WO2022208733A1 (ja) 2021-03-31 2021-03-31 熱交換器
US18/263,016 US20240085116A1 (en) 2021-03-31 2021-03-31 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013858 WO2022208733A1 (ja) 2021-03-31 2021-03-31 熱交換器

Publications (1)

Publication Number Publication Date
WO2022208733A1 true WO2022208733A1 (ja) 2022-10-06

Family

ID=83458226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013858 WO2022208733A1 (ja) 2021-03-31 2021-03-31 熱交換器

Country Status (3)

Country Link
US (1) US20240085116A1 (ja)
JP (1) JP7462832B2 (ja)
WO (1) WO2022208733A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236044A (en) * 1990-04-05 1993-08-17 Zexel Corporation Heat exchanger tank partition device
US5297624A (en) * 1991-07-02 1994-03-29 Thermal-Werke Warme-, Kalte-, Klimatechnik Gmbh Header for a flat tube liquefier
JPH11182977A (ja) * 1997-09-26 1999-07-06 Halla Aircon Co Ltd 車両エアコン用の多重流動型凝縮器
JP2000304488A (ja) * 1999-04-23 2000-11-02 Calsonic Kansei Corp アルミニウム合金製熱交換器
JP2003004394A (ja) * 2001-06-26 2003-01-08 Calsonic Kansei Corp 熱交換器用タンクおよびその製造方法
WO2003102486A1 (fr) * 2002-05-31 2003-12-11 Zexel Valeo Climate Control Corporation Echangeur de chaleur
JP2015200497A (ja) * 2012-04-26 2015-11-12 三菱電機株式会社 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機
JP2017505421A (ja) * 2013-11-18 2017-02-16 ヴァレオ システム テルミク 熱交換器のためのマニホールド

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236044A (en) * 1990-04-05 1993-08-17 Zexel Corporation Heat exchanger tank partition device
US5297624A (en) * 1991-07-02 1994-03-29 Thermal-Werke Warme-, Kalte-, Klimatechnik Gmbh Header for a flat tube liquefier
JPH11182977A (ja) * 1997-09-26 1999-07-06 Halla Aircon Co Ltd 車両エアコン用の多重流動型凝縮器
JP2000304488A (ja) * 1999-04-23 2000-11-02 Calsonic Kansei Corp アルミニウム合金製熱交換器
JP2003004394A (ja) * 2001-06-26 2003-01-08 Calsonic Kansei Corp 熱交換器用タンクおよびその製造方法
WO2003102486A1 (fr) * 2002-05-31 2003-12-11 Zexel Valeo Climate Control Corporation Echangeur de chaleur
JP2015200497A (ja) * 2012-04-26 2015-11-12 三菱電機株式会社 熱交換器、この熱交換器を備えた冷凍サイクル装置及び空気調和機
JP2017505421A (ja) * 2013-11-18 2017-02-16 ヴァレオ システム テルミク 熱交換器のためのマニホールド

Also Published As

Publication number Publication date
US20240085116A1 (en) 2024-03-14
JP7462832B2 (ja) 2024-04-05
JPWO2022208733A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
US8938988B2 (en) Multichannel heat exchanger with dissimilar flow
JP6573722B2 (ja) 熱交換器およびこの熱交換器を備えた冷凍サイクル装置
EP0769665A2 (en) Refrigerant evaporator, improved for uniform temperature of air blown out therefrom
AU2018242788B2 (en) Heat exchanger
US20120031601A1 (en) Multichannel tubes with deformable webs
AU2012208118A1 (en) Heat exchanger and air conditioner
WO2021192902A1 (ja) 熱交換器
US11555655B2 (en) Heat exchanger and heat pump device
JP7292510B2 (ja) 熱交換器及び空気調和機
WO2022030376A1 (ja) 熱交換器
WO2022208733A1 (ja) 熱交換器
WO2021234962A1 (ja) 熱交換器
WO2020178966A1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
WO2024089927A1 (ja) 熱交換器およびこの熱交換器を備えた冷凍サイクル装置
WO2019058514A1 (ja) 熱交換器、冷凍サイクル装置、及び、熱交換器の製造方法
JP7486671B2 (ja) 冷媒分配器、熱交換器及び冷凍サイクル装置
US11988463B2 (en) Microchannel heat exchanger for appliance condenser
WO2022259288A1 (ja) 熱交換器及び室外機
WO2024089798A1 (ja) 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
JP7330294B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
WO2024189823A1 (ja) 熱交換器およびそれを備えた空気調和装置
JP7089187B2 (ja) 熱交換器及び空気調和装置
US20230128871A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
WO2021070312A1 (ja) 熱交換器、熱交換器ユニット、冷凍サイクル装置、及び熱交換部材の製造方法
WO2019207806A1 (ja) 冷媒分配器、熱交換器および空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510026

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18263016

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934899

Country of ref document: EP

Kind code of ref document: A1