WO2022206640A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2022206640A1
WO2022206640A1 PCT/CN2022/083228 CN2022083228W WO2022206640A1 WO 2022206640 A1 WO2022206640 A1 WO 2022206640A1 CN 2022083228 W CN2022083228 W CN 2022083228W WO 2022206640 A1 WO2022206640 A1 WO 2022206640A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
liquid crystal
light
crystal material
layer
Prior art date
Application number
PCT/CN2022/083228
Other languages
English (en)
French (fr)
Inventor
何奕松
李伟斯
詹悦星
庞欢
游玉霖
徐逢
伍国平
谢斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022206640A1 publication Critical patent/WO2022206640A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0279Improving the user comfort or ergonomics
    • H04M1/0283Improving the user comfort or ergonomics for providing a decorative aspect, e.g. customization of casings, exchangeable faceplate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to an electronic device.
  • the back cover of electronic equipment mainly realizes the appearance effect of the back cover through the paradigm of coating, spraying, printing or sticking effect film.
  • the appearance effect of the back cover is fixed and cannot meet the appearance requirements of users.
  • the embodiment of the present application provides an electronic device, in which the appearance effect of the back cover is variable, which can meet the user's appearance requirements.
  • the present application provides an electronic device including a back cover, a processor, a circuit board and a flexible circuit board.
  • the back cover includes a liquid crystal material layer and a non-black ink layer, and the non-black ink layer is located inside the liquid crystal material layer.
  • the processor, the circuit board and the flexible circuit board are located on the inner side of the back cover.
  • the processor is mounted on the circuit board and is electrically connected to the circuit board.
  • One end of the flexible circuit board is electrically connected to the circuit board, that is, the flexible circuit board is electrically connected to the processor through the circuit board. .
  • the other end of the flexible circuit board is electrically connected to the back cover.
  • the circuit board may be a mainboard of an electronic device.
  • the liquid crystal material layer When the liquid crystal material layer is in the light-transmitting state, after the ambient light passes through the liquid crystal material layer, it is reflected by the non-black ink layer to form background color light, and the background color light passes through the liquid crystal material layer and then exits. At this time, only the background color light is emitted from the back cover.
  • ambient light can also be called natural light.
  • Ambient light is generally a polychromatic light compounded by a variety of monochromatic lights, and the ambient light is light covering the entire wavelength band.
  • the ambient light mentioned in the embodiments of the present application may refer to the light existing in the natural environment, and may also refer to the light existing in the artificially created environment. Since the human eye can only perceive light in the visible light band (wavelength between 400nm and 800nm), the ambient light mentioned in the embodiments of the present application may be light in the visible light band, for example, the ambient light may be white visible light.
  • the ambient light is scattered in the liquid crystal material layer, part of the ambient light is emitted from the surface of the liquid crystal material layer away from the non-black ink layer, and part of the ambient light is reflected by the non-black ink layer to form background color light, and the background color light is in the liquid crystal material layer.
  • the material layer is scattered, and part of the background color light is emitted from the surface of the liquid crystal material layer away from the non-black ink layer. At this time, ambient light and background color light are emitted from the back cover.
  • the liquid crystal material layer can be switched between a light-transmitting state and an astigmatic state, and the light emitted from the back cover is changed between background color light and mixed light of ambient light and background color light.
  • the cover changes between the two appearance effects, which satisfies the user's appearance requirements for the back cover.
  • the user can set the appearance effect of the back cover according to personal preferences, so as to realize the user's personalized back cover setting.
  • the back cover is used for an electronic device, the electronic device is in different application scenarios, and the appearance effect of the back cover is different.
  • the user can judge the application scene of the electronic device according to the appearance effect of the back cover, and realize the function between the user and the electronic device. interact.
  • the back cover further includes a first electrode layer and a second electrode layer, the first electrode layer is located on the side of the liquid crystal material layer away from the non-black ink layer, and the second electrode layer is located on the liquid crystal material layer and the non-black ink layer. In between, the first electrode layer and the second electrode layer are used to drive the liquid crystal material layer to switch between a light-transmitting state and a light-scattering state.
  • both the first electrode layer and the second electrode layer have electrical signal input terminals
  • the electrical signal input terminals of the first electrode layer and the second electrode layer are both electrically connected to the flexible circuit board
  • the processor is connected to the flexible circuit board through the flexible circuit board.
  • the liquid crystal material layer is driven to switch between a light-transmitting state and a light-scattering state.
  • the liquid crystal material layer when there is a voltage difference between the first electrode layer and the second electrode layer (that is, the voltage difference is greater than 0), the liquid crystal material layer is in a light-transmitting state, and there is no voltage difference between the first electrode layer and the second electrode layer.
  • the voltage difference ie, the voltage difference is equal to 0
  • the liquid crystal material layer is in an astigmatic state.
  • the liquid crystal material layer when there is no voltage difference between the first electrode layer and the second electrode layer (that is, the voltage difference is equal to 0), the liquid crystal material layer is in a light-transmitting state, and there is no voltage difference between the first electrode layer and the second electrode layer.
  • the liquid crystal material layer When there is a voltage difference (ie, the voltage difference is greater than 0), the liquid crystal material layer is in an astigmatic state.
  • the first electrode layer and the second electrode layer can be made of transparent conductive oxides such as tin-doped indium oxide or aluminum-doped zinc oxide.
  • the materials of the first electrode layer and the second electrode layer may be the same or different.
  • the first electrode layer includes a plurality of electrode portions independent of each other
  • the liquid crystal material layer includes liquid crystal portions corresponding to the plurality of electrode portions one-to-one
  • each electrode portion and the second electrode layer are used to drive one liquid crystal portion. Toggles between a light-transmitting state and an astigmatic state.
  • both the first electrode layer and the plurality of electrode parts may be powered on, or both the first electrode layer and some of the electrode portions may be powered on, or the first electrode layer and the plurality of electrode portions may be powered on. Can not be powered on, in order to enrich the appearance of the back cover to meet the user's appearance needs.
  • the second electrode layer includes a plurality of electrode parts independent of each other
  • the liquid crystal material layer includes liquid crystal parts corresponding to the plurality of electrode parts one-to-one
  • each electrode part and the first electrode layer are used for driving one liquid crystal The section switches between a light-transmitting state and an astigmatic state.
  • a plurality of mutually independent electrode portions means that the plurality of electrode portions are insulated from each other, and when one electrode portion is energized, other electrode portions around the electrode portion are not affected.
  • the back cover further includes a brightness enhancement film, which is located between the non-black ink layer and the liquid crystal material layer to enhance the reflection effect of the non-black ink layer on ambient light and improve the brightness of background color light.
  • a brightness enhancement film which is located between the non-black ink layer and the liquid crystal material layer to enhance the reflection effect of the non-black ink layer on ambient light and improve the brightness of background color light.
  • the brightness enhancement film is located between the non-black ink layer and the second electrode layer, and the brightness enhancement film and the non-black ink layer form the background layer of the back cover.
  • the brightness enhancement film can be made of oxides such as silicon dioxide, titanium dioxide or niobium oxide, or the brightness enhancement film can also be an optical coating film or a nano-scale multi-layer optical film made of a structural color material.
  • the back cover further includes a brightness enhancement film, the brightness enhancement film is located between the non-black ink layer and the liquid crystal material layer, and the brightness enhancement film includes brightness enhancement portions corresponding to the plurality of electrode portions one-to-one. At this time, the brightness enhancement film and the non-black ink layer form the background layer of the back cover.
  • the shape of the highlighted part is English letters, Chinese characters, numbers or other identifying patterns, or a combination of English letters, Chinese characters, numbers or other identifying patterns.
  • the setting of Chinese and English letters, Chinese characters, numbers or other identifying patterns in the brightness enhancement film can further enrich the appearance effect of the back cover, meet the user's appearance requirements, and improve the user's use experience.
  • the back cover further includes a nano-texture layer and a brightness enhancement film
  • the nano-texture layer and the brightness enhancement film are both located between the non-black ink layer and the liquid crystal material layer
  • the nano-texture layer includes a nano-texture facing the non-black ink layer.
  • the brightness enhancement film covers the nano-textured surface.
  • the nano-texture layer and the brightening film are used to strengthen the reflection of the non-black ink layer on the ambient light, so that the background light can produce a glare effect, so as to enrich the appearance effect of the back cover, meet the user's appearance requirements, and improve the user's experience.
  • both the nano-texture layer and the brightness enhancement film are located between the non-black ink layer and the second electrode layer. At this time, the nanotexture layer, the brightness enhancement film and the non-black ink layer form the background layer of the back cover.
  • the nano-textured surface has a plurality of protrusions, and the size of the plurality of protrusions is in the nanometer scale.
  • the shape of the protrusion includes but is not limited to a triangle, a semicircle or an arc.
  • the back cover further includes a nano-texture layer and a brightness enhancement film
  • the nano-texture layer and the brightness enhancement film are both located between the non-black ink layer and the liquid crystal material layer
  • the nano-texture layer includes a one-to-one correspondence with a plurality of electrode parts.
  • Each texture part includes a nano-texture surface away from the liquid crystal material layer
  • the brightness enhancement film covers the nano-texture surface of each texture part.
  • the nanotexture layer, the brightness enhancement film and the non-black ink layer form the background layer of the back cover.
  • the shape of the texture part is English letters, Chinese characters, numbers or other identifying patterns, or a combination of English letters, Chinese characters, numbers or other identifying patterns.
  • the arrangement of Chinese and English letters, Chinese characters, numbers or other identifying patterns in the nano-texture layer can further enrich the appearance effect of the back cover, meet the user's appearance requirements, and improve the user's use experience.
  • the back cover further includes a structural color material layer, and the structural color material layer is located between the liquid crystal material layer and the non-black ink layer. That is, the liquid crystal material layer and the non-black ink layer are located on opposite sides of the structural color material layer, respectively.
  • the structural color material layer is located between the second electrode layer and the non-black ink layer.
  • the structural color material layer is made of structural color material.
  • Structural color materials refer to materials that can selectively transmit light wavelengths in the visible light band.
  • the structural color material layer can divide the white visible light into transmitted light and reflected light of different colors.
  • the transmitted light and the reflected light may be monochromatic light or polychromatic light.
  • the liquid crystal material layer When the liquid crystal material layer is in the light-transmitting state, after the ambient light passes through the liquid crystal material layer, it is divided into different colors of transmitted light and reflected light by the structural color material layer, and the transmitted light is reflected by the non-black ink layer to form a different color from the reflected light.
  • the background color light is emitted after passing through the structural color material layer and the liquid crystal material layer, and the reflected light is emitted after passing through the liquid crystal material layer. At this time, the background color light and the reflected light are emitted from the back cover.
  • the transmitted light has high intensity and has multiple propagation directions (that is, has multiple exit angles)
  • the background color light has high intensity and multiple propagation directions (that is, has multiple propagation directions). multiple exit angles)
  • the intensity of the reflected light is low and has a single propagation direction (ie, has a single exit angle).
  • the reflected light is negligible. Therefore, when the liquid crystal material layer is in the light-transmitting state, it is equivalent that only the background color light is emitted from the back cover.
  • the ambient light is scattered in the liquid crystal material layer, part of the ambient light is emitted from the surface of the liquid crystal material layer away from the structural color material layer, and part of the ambient light is divided into transmitted light and reflected light by the structural color material layer, The transmitted light is reflected by the non-black ink layer to form the background color light.
  • the background color light passes through the structural color material layer, it is scattered in the liquid crystal material layer, and part of the background color light is emitted from the surface of the liquid crystal material layer away from the structural color material layer. Scattering occurs in the material layer, and part of the reflected light exits from the surface of the liquid crystal material layer facing away from the structural color material layer. At this time, ambient light, background color light and emission light are emitted from the back cover.
  • ambient light, background color light and reflected light are all scattered in the liquid crystal material layer, ambient light, background color light and reflected light have multiple propagation directions (ie, have multiple exit angles). Therefore, the ambient light, the background color light and the reflected light are all emitted from the optical film assembly, that is, the mixed light of the ambient light, the background color light and the reflected light is emitted from the back cover.
  • the liquid crystal material layer can be switched between a light-transmitting state and a light-scattering state, and the light emitted from the back cover is converted between background color light and mixed light of ambient light, background color light and reflected light. It can be seen that the back cover changes between the two appearance effects to meet the user's appearance requirements for the back cover.
  • the back cover further includes a structural color material layer, and the structural color material layer is located on a side of the liquid crystal material layer away from the non-black ink layer.
  • the “one side” mentioned in this application when describing the positional relationship between each layer structure refers to the orientation along the thickness direction of the layer structure, that is, the orientation toward which the surface of the layer structure faces, that is, the layer The orientation of the top or bottom of the .
  • the structural color material layer is located on the side of the first electrode layer away from the liquid crystal material layer.
  • the ambient light is divided into different colors of transmitted light and reflected light by the structural color material layer.
  • the transmitted light is polychromatic light. After the transmitted light passes through the liquid crystal material layer, it is reflected by the non-black ink layer to form a The background color light with different transmitted light colors is emitted after passing through the liquid crystal material layer and the structural color material layer, and the reflected light is emitted from the surface of the structural color material layer away from the liquid crystal material layer;
  • the ambient light is divided into transmitted light and reflected light by the structural color material layer.
  • the transmitted light is scattered in the liquid crystal material layer, and part of the transmitted light passes through the structural color material layer and exits, and part of the transmitted light is non-transmitted light.
  • the black ink layer reflects the background color light, the background color light is scattered in the liquid crystal material layer, part of the background color light passes through the structural color material layer and then exits, and the reflected light exits from the surface of the structural color material layer away from the liquid crystal material layer.
  • the structural color material layer is an optical coating or a nano-scale multilayer optical film.
  • the back cover further includes a first bearing member, and the first bearing member is located on a side of the first electrode layer away from the liquid crystal material layer, and is used for bearing the first electrode layer.
  • the first carrier can be made of transparent glass or transparent plastic materials such as polyethylene terephthalate, polycarbonate or polymethacrylate.
  • the first carrier can be any one of an injection molded part, a plate or a diaphragm.
  • the back cover further includes a second bearing member, the second bearing member is located on the side of the second electrode layer away from the liquid crystal material layer, and is used for bearing the second electrode layer.
  • the second carrier is located between the second electrode layer and the non-black ink layer.
  • the second carrier can be made of transparent glass or transparent plastic materials such as polyethylene terephthalate, polycarbonate or polymethacrylate.
  • the second carrier can be any one of an injection molded part, a plate or a diaphragm.
  • the materials of the second carrier and the first carrier may be the same or different.
  • the back cover further includes a cover plate, and the cover plate is located on the side of the liquid crystal material layer away from the non-black ink layer. That is, the cover plate corresponds to the first carrier described above.
  • the optical film assembly can be directly used as the back cover, so as to reduce the number of layers of the back cover and help to reduce the thickness of the back cover.
  • the back cover further includes an auxiliary cover plate, and the auxiliary cover plate is located on the side of the second electrode layer away from the liquid crystal material layer, and is used for supporting the second electrode layer. That is, the auxiliary cover corresponds to the second carrier described above.
  • the optical film assembly can be directly used as the back cover, which further reduces the number of layers of the back cover and helps to reduce the thickness of the back cover.
  • the back cover further includes a black ink layer, and the black ink layer is located on the side of the non-black ink layer away from the liquid crystal material layer to prevent light leakage from the side of the back cover away from the liquid crystal material layer.
  • the back cover further includes a supplementary ink layer, and the supplementary ink layer covers the peripheral surfaces of the liquid crystal material layer and the non-black ink layer to prevent light leakage from the side of the back cover.
  • edge-filling ink layer and the liquid crystal material layer are located on the same side of the cover plate.
  • the back cover further includes a flexible circuit board, the flexible circuit board is used to electrically connect the processor of the electronic device, and the processor drives the liquid crystal material layer to switch between the light-transmitting state and the light-scattering state through the flexible circuit board.
  • the liquid crystal material layer is made of liquid crystal, polymer dispersed liquid crystal or polymer meshed liquid crystal.
  • the present application further provides an electronic device including a back cover, a processor, a circuit board and a flexible circuit board.
  • the back cover includes a liquid crystal material layer and a black ink layer, and the black ink layer is located inside the liquid crystal material layer.
  • the processor, the circuit board and the flexible circuit board are located on the inner side of the back cover.
  • the processor is mounted on the circuit board and is electrically connected to the circuit board.
  • One end of the flexible circuit board is electrically connected to the circuit board, that is, the flexible circuit board is electrically connected to the processor through the circuit board. .
  • the other end of the flexible circuit board is electrically connected to the back cover.
  • the liquid crystal material layer can be switched between a light-transmitting state and an astigmatic state, and the human eye can switch between invisible light and ambient light, and the user can see the two appearance effects of the back cover. Changes between them meet the user's requirements for the appearance of the back cover.
  • the back cover further includes a first electrode layer and a second electrode layer, the first electrode layer is located on the side of the liquid crystal material layer away from the non-black ink layer, and the second electrode layer is located on the liquid crystal material layer and the non-black ink layer. In between, the first electrode layer and the second electrode layer are used to drive the liquid crystal material layer to switch between a light-transmitting state and a light-scattering state.
  • the liquid crystal material layer when there is a voltage difference between the first electrode layer and the second electrode layer (that is, the voltage difference is greater than 0), the liquid crystal material layer is in a light-transmitting state, and there is no voltage difference between the first electrode layer and the second electrode layer.
  • the voltage difference ie, the voltage difference is equal to 0
  • the liquid crystal material layer is in an astigmatic state.
  • the liquid crystal material layer when there is no voltage difference between the first electrode layer and the second electrode layer (that is, the voltage difference is equal to 0), the liquid crystal material layer is in a light-transmitting state, and there is no voltage difference between the first electrode layer and the second electrode layer.
  • the liquid crystal material layer When there is a voltage difference (ie, the voltage difference is greater than 0), the liquid crystal material layer is in an astigmatic state.
  • the first electrode layer includes a plurality of electrode portions independent of each other
  • the liquid crystal material layer includes liquid crystal portions corresponding to the plurality of electrode portions one-to-one
  • each electrode portion and the second electrode layer are used to drive one liquid crystal portion. Toggles between a light-transmitting state and an astigmatic state.
  • both the first electrode layer and the plurality of electrode parts may be powered on, or both the first electrode layer and some of the electrode portions may be powered on, or the first electrode layer and the plurality of electrode portions may be powered on. All are not powered on, so as to enrich the appearance of the back cover and meet the user's appearance needs.
  • the second electrode layer includes a plurality of electrode parts independent of each other
  • the liquid crystal material layer includes liquid crystal parts corresponding to the plurality of electrode parts one-to-one
  • each electrode part and the first electrode layer are used for driving one liquid crystal The section switches between a light-transmitting state and an astigmatic state.
  • the back cover further includes a brightness enhancement film, and the brightness enhancement film is located between the non-black ink layer and the liquid crystal material layer.
  • the setting of the brightness enhancement film can increase the difference between the two appearance effects of the back cover.
  • the brightness enhancement film is located between the black ink layer and the second electrode layer, and the brightness enhancement film and the black ink layer form the background layer of the back cover.
  • the back cover further includes a brightness enhancement film, the brightness enhancement film is located between the non-black ink layer and the liquid crystal material layer, and the brightness enhancement film includes brightness enhancement portions corresponding to the plurality of electrode portions one-to-one. At this time, the brightness enhancement film and the non-black ink layer form the background layer of the back cover.
  • the shape of the highlighted part is English letters, Chinese characters, numbers or other identifying patterns, or a combination of English letters, Chinese characters, numbers or other identifying patterns.
  • the setting of Chinese and English letters, Chinese characters, numbers or other identifying patterns in the brightness enhancement film can further enrich the appearance effect of the back cover, meet the user's appearance requirements, and improve the user's use experience.
  • the back cover further includes a nano-texture layer and a brightness enhancement film, both of which are located between the black ink layer and the liquid crystal material layer, and the nano-texture layer includes a nano-texture surface facing the black ink layer, Brightness enhancement film covers the nano-textured surface.
  • the nano-texture layer and the brightening film are used to enrich the appearance of the back cover, meet the user's appearance requirements, and improve the user's experience.
  • both the nano-texture layer and the brightness enhancement film are located between the black ink layer and the second electrode layer. At this time, the nano-texture layer, the brightness enhancement film and the black ink layer form the background layer of the back cover.
  • the back cover further includes a nano-texture layer and a brightness enhancement film
  • the nano-texture layer and the brightness enhancement film are both located between the black ink layer and the liquid crystal material layer
  • the nano-texture layer includes a one-to-one correspondence with a plurality of electrode parts
  • Each texture part includes a nano-texture surface away from the liquid crystal material layer
  • the brightness enhancement film covers the nano-texture surface of each texture part.
  • the nano-texture layer, the brightness enhancement film and the black ink layer form the background layer of the back cover.
  • the shape of the texture part is English letters, Chinese characters, numbers or other identifying patterns, or a combination of English letters, Chinese characters, numbers or other identifying patterns.
  • the arrangement of Chinese and English letters, Chinese characters, numbers or other identifying patterns in the nano-texture layer can further enrich the appearance effect of the back cover, meet the user's appearance requirements, and improve the user's use experience.
  • the back cover further includes a structural color material layer, and the structural color material layer is located on the side of the liquid crystal material layer away from the black ink layer. That is, the structural color material layer and the black ink layer are located on opposite sides of the liquid crystal material layer, respectively.
  • the structural color material layer is located on the side of the first electrode layer away from the liquid crystal material layer.
  • the ambient light is divided into transmitted light and reflected light of different colors by the structural color material layer.
  • the transmitted light passes through the liquid crystal material layer, it is absorbed by the black ink layer, and the reflected light departs from the structural color material layer.
  • the surface of the liquid crystal material layer emerges. At this time, the reflected light is emitted from the back cover.
  • the ambient light is divided into transmitted light and reflected light by the structural color material layer.
  • the transmitted light is scattered in the liquid crystal material layer, and part of the transmitted light passes through the structural color material layer and exits, and part of the transmitted light is black.
  • the ink layer absorbs, and the reflected light is emitted from the surface of the structural color material layer away from the liquid crystal material layer. At this time, the transmitted light and the reflected light are emitted from the back cover.
  • the intensity of transmitted light is high and has multiple propagation directions (ie, has multiple exit angles), while the intensity of reflected light is low and has a single propagation direction (ie, has single exit angle). Reflected light is negligible compared to transmitted light. Therefore, it is equivalent that only the transmitted light is emitted from the back cover.
  • the liquid crystal material layer can be switched between the light-transmitting state and the astigmatic state, and the light emitted from the back cover is changed between the reflected light and the transmitted light, and the user can see the back cover.
  • the cover changes between two appearance effects to meet the user's appearance requirements for the back cover.
  • the structural color material layer is an optical coating or a nano-scale multilayer optical film.
  • the back cover further includes a first bearing member, and the first bearing member is located on a side of the first electrode layer away from the liquid crystal material layer, and is used for bearing the first electrode layer.
  • the first carrier can be made of transparent glass or transparent plastic materials such as polyethylene terephthalate, polycarbonate or polymethacrylate.
  • the first carrier can be any one of an injection molded part, a plate or a diaphragm.
  • the back cover further includes a second bearing member, the second bearing member is located on the side of the second electrode layer away from the liquid crystal material layer, and is used for bearing the second electrode layer.
  • the second carrier is located between the second electrode layer and the non-black ink layer.
  • the second carrier can be made of transparent glass or transparent plastic materials such as polyethylene terephthalate, polycarbonate or polymethacrylate.
  • the second carrier can be any one of an injection molded part, a plate or a diaphragm.
  • the materials of the second carrier and the first carrier may be the same or different.
  • the back cover further includes a cover plate, and the cover plate is located on a side of the liquid crystal material layer away from the non-black ink layer. That is, the cover plate corresponds to the first carrier described above.
  • the optical film assembly can be directly used as the back cover, so as to reduce the number of layers of the back cover and help to reduce the thickness of the back cover.
  • the back cover further includes an auxiliary cover plate, and the auxiliary cover plate is located on the side of the second electrode layer away from the liquid crystal material layer, and is used for supporting the second electrode layer. That is, the auxiliary cover corresponds to the second carrier described above.
  • the optical film assembly can be directly used as the back cover, which further reduces the number of layers of the back cover and helps to reduce the thickness of the back cover.
  • the back cover further includes an auxiliary liquid crystal material layer, and the auxiliary liquid crystal material layer is located on a side of the structural color material layer away from the liquid crystal material layer.
  • the auxiliary liquid crystal material layer is located on the side of the structural color material layer away from the first electrode layer.
  • the auxiliary liquid crystal material layer When the auxiliary liquid crystal material layer is in the light-transmitting state and the liquid crystal material layer is in the astigmatic state, after the ambient light passes through the auxiliary liquid crystal material layer, it is divided into transmitted light and reflected light by the structural color material layer, and the transmitted light is scattered in the liquid crystal material layer. Part of the transmitted light passes through the structural color material layer and the auxiliary liquid crystal material layer and then exits, part of the transmitted color light is absorbed by the black ink layer, and the reflected light passes through the auxiliary liquid crystal material layer and exits. At this time, the transmitted light and the reflected light are emitted from the surface of the optical film assembly.
  • the intensity of transmitted light is high and has multiple propagation directions (ie, has multiple exit angles), while the intensity of reflected light is low and has a single propagation direction (ie, has single exit angle). Reflected light is negligible compared to transmitted light. Therefore, it is equivalent that only the transmitted light is emitted from the back cover.
  • the auxiliary liquid crystal material layer is in the astigmatic state, and when the liquid crystal material layer is in the astigmatic state, the ambient light is scattered in the auxiliary liquid crystal material layer, and part of the ambient light is emitted from the surface of the auxiliary liquid crystal material layer away from the structural color material layer, and part of the ambient light is emitted by the structure.
  • the color material layer is divided into transmitted light and reflected light. The transmitted light is scattered in the liquid crystal material layer, part of the transmitted light is absorbed by the black ink layer, and part of the transmitted light passes through the structural color material layer and is scattered in the auxiliary liquid crystal material layer.
  • the transmitted light is emitted from the surface of the auxiliary liquid crystal material layer away from the structural color material layer, the reflected light is scattered in the auxiliary liquid crystal material layer, and part of the reflected light is emitted from the surface of the auxiliary liquid crystal material layer away from the structural color material layer.
  • ambient light, transmitted light and reflected light are all emitted from the surface of the optical film assembly.
  • ambient light, transmitted light and reflected light are all scattered under the action of liquid crystal, ambient light, transmitted light and reflected light have multiple propagation directions (ie, multiple exit angles). Therefore, the ambient light, the transmitted light and the reflected light all exit from the back cover, that is, the mixed light of the ambient light, the transmitted light and the reflected light exits from the back cover.
  • the auxiliary liquid crystal material layer is in a light-transmitting state, and when the liquid crystal material layer is in a light-transmitting state, after the ambient light passes through the auxiliary liquid crystal material layer, it is divided into transmitted light and reflected light by the structural color material layer, and the transmitted light passes through the liquid crystal material layer.
  • the black ink layer absorbs the reflected light and exits after passing through the auxiliary liquid crystal material layer. At this time, the reflected light is emitted from the back cover.
  • the intensity of transmitted light is high and has multiple propagation directions (ie, has multiple exit angles), while the intensity of reflected light is low and has a single propagation direction (ie, has single exit angle). Therefore, at this time, the intensity of the reflected light emitted from the back cover is lower and the color is lighter.
  • the ambient light is scattered in the auxiliary liquid crystal material layer, and part of the ambient light is emitted from the surface of the auxiliary liquid crystal material layer away from the structural color material layer, and part of the ambient light is emitted by the auxiliary liquid crystal material layer.
  • the structural color material layer is divided into transmitted light and reflected light, the transmitted light is absorbed by the black ink layer after passing through the liquid crystal material layer, the reflected light is scattered in the auxiliary liquid crystal material layer, and part of the reflected light is away from the structural color material layer from the auxiliary liquid crystal material layer. surface exit. At this time, ambient light and reflected light are emitted from the back cover.
  • the reflected light is scattered under the action of the liquid crystal, the reflected light exits from the back cover in multiple directions. Therefore, at this time, the reflected light exiting from the back cover has a higher intensity and a darker color.
  • the optical film assembly further includes a third electrode layer and a fourth electrode layer, the third electrode layer is located on the side of the auxiliary liquid crystal material layer away from the structural color material layer, and the fourth electrode layer is located on the auxiliary liquid crystal material layer and the structure. Between the color material layers, the third electrode layer and the fourth electrode layer are used to drive the auxiliary liquid crystal material layer to switch between a light-transmitting state and a light-scattering state.
  • the liquid crystal material layer when there is a voltage difference between the third electrode layer and the fourth electrode layer (that is, the voltage difference is greater than 0), the liquid crystal material layer is in a light-transmitting state, and there is no voltage difference between the third electrode layer and the fourth electrode layer.
  • the voltage difference ie, the voltage difference is equal to 0
  • the liquid crystal material layer is in an astigmatic state.
  • the liquid crystal material layer when there is no voltage difference between the third electrode layer and the fourth electrode layer (that is, the voltage difference is equal to 0), the liquid crystal material layer is in a light-transmitting state, and there is no voltage difference between the third electrode layer and the fourth electrode layer.
  • the liquid crystal material layer When there is a voltage difference (ie, the voltage difference is greater than 0), the liquid crystal material layer is in an astigmatic state.
  • the third electrode layer and the fourth electrode layer can be made of transparent conductive oxides such as tin-doped indium oxide or aluminum-doped zinc oxide.
  • the materials of the third electrode layer and the fourth electrode layer may be the same or different.
  • the optical film assembly further includes a third bearing member, and the third bearing member is located on the side of the third electrode layer away from the auxiliary liquid crystal material layer, and is used for bearing the third electrode layer.
  • the optical film assembly further includes a fourth bearing member, and the fourth bearing member is located on the side of the fourth electrode layer away from the auxiliary liquid crystal material layer, and is used for bearing the fourth electrode layer.
  • the third carrier and the fourth carrier may be made of transparent glass or transparent plastic materials such as polyethylene terephthalate, polycarbonate or polymethacrylate.
  • the third carrier and the fourth carrier may be any one of an injection molded part, a plate or a diaphragm.
  • the materials of the third carrier and the fourth carrier may be the same or different.
  • the fourth carrier is located between the fourth electrode layer and the structural color material layer, or the fourth carrier is located on the side of the structural color material layer away from the fourth electrode layer.
  • the auxiliary liquid crystal material layer is made of liquid crystal, polymer dispersed liquid crystal or polymer mesh liquid crystal.
  • the back cover further includes a supplementary ink layer, and the supplementary ink layer covers the peripheral surfaces of the liquid crystal material layer and the black ink layer to prevent light leakage from the side of the back cover.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 2 is the structural representation of the rear cover in the electronic device shown in Fig. 1;
  • FIG. 3 is a schematic structural diagram of the rear cover shown in FIG. 2 at another angle;
  • FIG. 4 is a schematic cross-sectional structure diagram of the rear cover shown in FIG. 3 cut along the A-A direction;
  • Fig. 5a is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in Fig. 4 under an embodiment
  • Figure 5b is a schematic structural diagram of the structure shown in Figure 5a under one embodiment
  • FIG. 6 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 5b when the liquid crystal material layer is in a light-transmitting state;
  • Fig. 7 is a schematic diagram of the optical path of the optical film assembly shown in Fig. 5b when the liquid crystal material layer is in the astigmatism state;
  • Fig. 8a is a partial structural schematic diagram of the optical film assembly shown in Fig. 5a under another embodiment
  • Fig. 8b is a partial structural schematic diagram of the optical film assembly shown in Fig. 5a under the third embodiment
  • FIG. 9 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the second embodiment
  • FIG. 10 is a schematic view of the bottom surface structure of the rear cover shown in FIG. 9;
  • Fig. 11 is a partial structural schematic diagram of the optical film assembly shown in Fig. 9;
  • FIG. 12 is a schematic diagram of the top surface structure of the back cover when the liquid crystal material layer is in a light-transmitting state
  • FIG. 13 is a schematic diagram of the top surface structure of the back cover when part of the liquid crystal material layer is in a light-transmitting state
  • FIG. 14 is a schematic diagram of the top surface structure of the back cover when the liquid crystal material layer is in the astigmatism state;
  • FIG. 15 is a schematic structural diagram of the optical film assembly shown in FIG. 9 under another embodiment
  • Fig. 16a is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in Fig. 4 under the third embodiment;
  • Fig. 16b is a schematic structural diagram of the structure shown in Fig. 16a under an embodiment
  • FIG. 17 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 16b when the liquid crystal material layer is in a light-transmitting state;
  • Fig. 18 is a schematic diagram of the optical path of the optical film assembly shown in Fig. 16b when the liquid crystal material layer is in the astigmatism state;
  • Fig. 19 is a schematic structural diagram of the optical module shown in Fig. 16b under one embodiment
  • FIG. 20 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the fourth embodiment;
  • FIG. 21 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the fifth embodiment
  • FIG. 22 is a schematic structural diagram of the optical film assembly shown in FIG. 21 under one embodiment
  • FIG. 23 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the sixth embodiment;
  • FIG. 24 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the seventh embodiment
  • FIG. 25 is a schematic structural diagram of the optical film assembly shown in FIG. 24 under one embodiment
  • 26 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the eighth embodiment;
  • Fig. 27a is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in Fig. 4 under the ninth embodiment;
  • Figure 27b is a schematic structural diagram of the structure shown in Figure 27a under an embodiment
  • FIG. 28 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 27b when the liquid crystal material layer is in a light-transmitting state;
  • Fig. 29 is a schematic diagram of the optical path of the optical film assembly shown in Fig. 27b when the liquid crystal material layer is in the astigmatism state;
  • Fig. 30 is a schematic structural diagram of the optical film assembly shown in Fig. 27b under one embodiment
  • FIG. 31 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the tenth embodiment
  • FIG. 32 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the eleventh embodiment;
  • FIG. 33 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twelfth embodiment
  • Fig. 34a is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in Fig. 4 under the thirteenth embodiment;
  • Figure 34b is a schematic structural diagram of the structure shown in Figure 34a under one embodiment
  • 35 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 34b when the liquid crystal material layer is in a light-transmitting state;
  • FIG. 36 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 34b when the liquid crystal material layer is in the astigmatism state;
  • Fig. 37a is a partial structural schematic diagram of the optical film assembly shown in Fig. 34b under another embodiment
  • Fig. 37b is a partial structural schematic diagram of the optical film assembly shown in Fig. 34b under the third embodiment
  • Fig. 38a is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in Fig. 4 under the fourteenth embodiment;
  • Figure 38b is a schematic structural diagram of the structure shown in Figure 38a under one embodiment
  • FIG. 39 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 38b when the liquid crystal material layer is in a light-transmitting state;
  • Fig. 40 is a schematic diagram of the optical path of the optical film assembly shown in Fig. 38b when the liquid crystal material layer is in the astigmatism state;
  • Figure 41 is a schematic structural diagram of the optical film assembly shown in Figure 38b under one embodiment
  • FIG. 42 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the fifteenth embodiment
  • FIG. 43 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the sixteenth embodiment
  • Fig. 45a is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in Fig. 4 under the eighteenth embodiment;
  • Figure 45b is a schematic structural diagram of the structure shown in Figure 45a under one embodiment
  • Figure 46 is a schematic diagram of the optical path of the optical film assembly shown in Figure 45b when the auxiliary liquid crystal material layer is in a light-transmitting state and the liquid crystal material layer is in a light-scattering state;
  • FIG. 47 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 45b when the auxiliary liquid crystal material layer is in the astigmatic state and the liquid crystal material layer is in the astigmatic state;
  • FIG. 48 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 45b when the auxiliary liquid crystal material layer is in a light-transmitting state and the liquid crystal material layer is in a light-transmitting state;
  • FIG. 49 is a schematic diagram of the optical path of the optical film assembly shown in FIG. 45b when the auxiliary liquid crystal material layer is in a light-scattering state and the liquid crystal material layer is in a light-transmitting state;
  • Figure 50 is a schematic structural diagram of the optical film assembly shown in Figure 45b under one embodiment
  • 51 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the nineteenth embodiment;
  • FIG. 52 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twentieth embodiment
  • FIG. 53 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-first embodiment
  • FIG. 54 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-second embodiment;
  • FIG. 55 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-third embodiment;
  • FIG. 56 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-fourth embodiment
  • FIG. 57 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-fifth embodiment;
  • FIG. 58 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-sixth embodiment
  • FIG. 59 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-seventh embodiment
  • FIG. 60 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-eighth embodiment;
  • 61 is a schematic structural diagram of the optical film assembly and the flexible circuit board in the back cover shown in FIG. 4 under the twenty-ninth embodiment
  • FIG. 62 is a schematic cross-sectional structural diagram of the rear cover of the second electronic device provided in the embodiment of the present application cut along the A-A direction.
  • FIG. 1 is a schematic structural diagram of an electronic device 1000 provided by an embodiment of the present application.
  • the width direction of the electronic device 1000 is defined as the X-axis direction
  • the length direction of the electronic device 1000 is defined as the Y-axis direction
  • the height direction of the electronic device 1000 is defined as the Z-axis direction
  • the electronic device 1000 is defined as the Z-axis direction.
  • the height direction of the electronic device 1000 (the Z-axis direction in the figure) is perpendicular to the length direction (the Y-axis direction in the figure) and the width direction (the X-axis direction in the figure) of the electronic device 1000 .
  • the electronic device 1000 may be an electronic product such as a mobile phone, a tablet, a notebook computer, a car device, a wearable device, a point of sales terminal (point of sales terminal, POS machine for short).
  • the wearable device may be a smart bracelet, a smart watch, augmented reality (AR) glasses, virtual reality (virtual reality, VR) glasses, and the like.
  • AR augmented reality
  • VR virtual reality
  • the electronic device 1000 includes a casing 100 , a display module 200 , a circuit board 300 , a processor 400 , a speaker module 500 and a camera module 600 .
  • the casing 100 is provided with a sound outlet 1001 .
  • the display module 200 is mounted on the casing 100 and is enclosed with the casing 100 to form an inner cavity (not shown in the figure).
  • the inner cavity of the whole machine is communicated with the sound outlet 1001 .
  • the circuit board 300 , the processor 400 , the speaker module 500 and the camera module 600 are all installed in the inner cavity of the whole machine.
  • the processor 400 is mounted on the circuit board 300 and is electrically connected to the circuit board 300 .
  • the circuit board 300 may be a main board of the electronic device 1000
  • the processor 400 may be a central processing unit (CPU) of the electronic device 1000
  • the speaker module 500 is electrically connected to the processor 400 .
  • the speaker module 500 receives the audio signal sent by the processor 400 , and vibrates and emits sound according to the audio signal, and the sound is diffused into the external environment through the sound outlet 1001 to realize the sound of the electronic device 1000 .
  • the camera module 600 is electrically connected to the processor 400.
  • the camera module 600 receives the information collection signal sent by the processor 400, collects light outside the electronic device 1000, and forms corresponding image data.
  • a certain component or module is installed in the inner cavity of the whole machine, which does not mean that the component or module must be all located in the overall inner cavity, and part or all of the component or module is located in the whole machine. Inner cavity is available.
  • FIG. 2 is a schematic structural diagram of the rear cover of the electronic device 1000 shown in FIG. 1 .
  • the case 100 includes a middle frame 110 and a rear cover 120 .
  • the sound outlet 1001 is provided in the middle frame 110 .
  • the rear cover 120 is provided with the avoidance hole 1201 passing through the rear cover 120 along the thickness direction of the rear cover 120 .
  • the back cover 120 is fixed to one side of the middle frame 110 .
  • the avoidance hole 1201 is communicated with the inner cavity of the whole machine.
  • the processor 400 is located inside the back cover 120 .
  • the rear cover 120 may be detachably mounted on the middle frame 110 to facilitate maintenance and replacement of internal components or modules of the electronic device 1000 .
  • the rear cover 120 and the middle frame 110 can also be assembled to form an integrated structure, so as to improve the structural stability of the casing 100 .
  • the display module 200 is fixed on the other side of the middle frame 110 . That is, the display module 200 is fixed on the side of the middle frame 110 away from the back cover 120 . That is, the display module 200 and the back cover 120 are respectively fixed to opposite sides of the middle frame 110 .
  • the display module 200 may be placed toward the user, and the back cover 120 may be placed away from the user, or the back cover 120 may be placed toward the user and the display module 200 may be placed away from the user.
  • the display module 200 includes a cover plate and a display screen fixed on the cover plate.
  • the cover plate can be made of transparent materials such as glass.
  • the display screen may be a liquid crystal display (liquid crystal display, LCD) or an organic light-emitting diode (organic light-emitting diode, OLED) display screen, etc., for displaying pictures.
  • the camera module 600 is used as a rear camera module of the electronic device 1000 .
  • the camera module 600 is exposed relative to the back cover 120 .
  • the camera module 600 passes through the avoidance hole 1201 of the back cover 120 .
  • some of the camera modules 600 are located in the inner cavity of the whole machine, and some of the camera modules 600 protrude from the back cover 120 .
  • the exposure of the camera module 600 relative to the rear cover 120 means that the rear cover 120 does not completely cover the camera module 600 .
  • the camera module 600 may not protrude relative to the rear cover 120 . In this case, the camera module 600 may not pass through the avoidance hole 1201 of the rear cover 120 , but is completely accommodated in the inner cavity of the whole machine.
  • FIG. 3 is a schematic structural diagram of the rear cover 120 shown in FIG. 2 from another angle.
  • FIG. 4 is a cross-sectional structural diagram of the rear cover 120 shown in FIG. 3 cut along the A-A direction.
  • cut along the A-A direction refers to the cut along the A-A line and the plane where the arrows at both ends of the A-A line are located, and the description of the accompanying drawings will be understood hereinafter.
  • the electronic device 1000 further includes a flexible circuit board 125 located inside the back cover 120 .
  • One end of the flexible circuit board 125 is electrically connected to the processor 400 (as shown in FIG. 1 ), and the other end is electrically connected to the back cover 120 .
  • One end of the flexible circuit board 125 is electrically connected to the circuit board 300 , that is, the flexible circuit board 125 is electrically connected to the processor 400 via the circuit board 300 .
  • orientation word "inside” involved in this application is a description with reference to the orientation shown in FIG. 1 , and it does not indicate or imply that the device or element must be directed toward the inner cavity of the whole machine as the inside. It has a specific orientation, is constructed and operates in a specific orientation, and therefore should not be construed as a limitation of the present application.
  • the rear cover 120 includes a cover plate 121 , an optical film assembly 122 , an adhesive layer 123 and an edge-filling ink layer 124 .
  • the cover plate 121 is a transparent cover plate.
  • the cover plate 121 may be made of transparent materials such as polycarbonate (PC), polymethyl methacrylate (PMMA) or glass.
  • the optical film assembly 122 is located on the bottom side of the cover plate 121 .
  • the optical film assembly 122 has an electrical signal input end 127 .
  • the cover plate 121 covers the optical film assembly 122 to protect the optical film assembly 122 .
  • the optical film assembly 122 only partially covers the bottom surface of the cover plate 121 .
  • the optical film assembly 122 can also completely cover the bottom surface of the cover plate 121 .
  • the cover plate 121 is a transparent cover plate, which means that the light transmittance of the cover plate 121 is greater than 85%, and the haze is less than 10%.
  • the cover plate 121 may not have a basic color, or may have a basic color, which is not specified in this application. Limitation, the "transparency" mentioned in the following can be understood in the same way.
  • top and bottom involved in this application are described with reference to the azimuth shown in FIG.
  • the negative direction is "top”, which does not indicate or imply that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present application.
  • the adhesive layer 123 is located between the cover plate 121 and the optical film assembly 122 .
  • the top surface of the adhesive layer 123 contacts the bottom surface of the cover plate 121
  • the bottom surface of the adhesive layer 123 contacts the top surface of the optical film assembly 122 .
  • the adhesive layer can be made of optically clear adhesive (OCA).
  • OCA optically clear adhesive
  • the edge-filling ink layer 124 surrounds the peripheral surfaces of the optical film assembly 122 and the adhesive layer 123 , which can not only ensure the aesthetic appearance of the back cover 120 , but also prevent light leakage from the edges of the back cover 120 .
  • the flexible circuit board 125 is connected between the electrode layer of the optical film assembly 122 and the processor 400 (shown in FIG. 1 ). Specifically, one end of the flexible circuit board 125 is electrically connected to the electrode layer of the optical film assembly 122 through the electrical signal input end 127 , and the other end is electrically connected to the processor 400 through the circuit board 300 .
  • the flexible circuit board 125 can transmit the electrical signal of the processor 400 to the optical film assembly 122, so as to realize the change of the appearance effect (such as color or pattern) of the back cover 120, so as to realize the functional interaction with the user.
  • the interactive functions include but are not limited to notification reminder functions such as phone calls, messages, alarms, scan codes, Bluetooth and WIFI connections, or the countdown function for taking pictures, or the voice assistant response function, or the music rhythm function, etc.
  • the back cover 120 may also include a flexible circuit board 125, that is, the flexible circuit board 125 is a component of the back cover 120, one end of the flexible circuit board 125 is electrically connected to the optical film assembly 122, and the other end is electrically connected to the processor 400 .
  • This application does not specifically limit this.
  • the back cover 120 has various appearance effects.
  • the appearance effect of the back cover 120 can be set to a specific appearance effect according to personal preference, so as to realize the individuality of the back cover 120 in the electronic device 1000 .
  • Customized when the electronic device 1000 is in different application scenarios, the back cover 120 exhibits different appearance effects. The user can directly determine which application scenario the electronic device 1000 is in based on the appearance effect of the back cover 120 without unlocking the electronic device 1000, thereby improving the user experience. Interact with the functions of the electronic device 1000 .
  • the user when the electronic device 1000 is in a dormant state, the user can The cover 120 exhibits the first appearance effect.
  • the processor 400 can control the optical film assembly 122 through the flexible circuit board 125, so that the user can visually see that the back cover 120 presents the second appearance effect.
  • the processor 400 can control the optical film assembly 122 through the flexible circuit board 125, so that the user can visually see the back cover 120 presenting the third appearance effect.
  • the processor 400 of the electronic device 1000 can control the optical film assembly 122 through the flexible circuit board 125 to realize the change of the appearance effect of the back cover 120, realize the effective interaction between the electronic device 1000 and the user in various scenarios, and improve the user experience .
  • FIG. 5a is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under an embodiment.
  • the optical film assembly 122 includes an interactive functional layer 122 a and a non-black ink layer 40 , and the interactive functional layer 122 a has an electrical signal input end 127 .
  • the non-black ink layer 40 is located on the side of the interactive functional layer 122a away from the cover plate 121 . That is, the non-black ink layer 40 is located inside the interactive functional layer 122a.
  • the interactive functional layer 122 a includes a liquid crystal material layer 11 , a first electrode layer 21 and a second electrode layer 22 .
  • the liquid crystal material layer 11 may be made of liquid crystal, polymer-dispersed liquid crystal (PDLC) or polymer-network liquid crystal (PNLC).
  • the “one side” mentioned in this application when describing the positional relationship between each layer structure refers to the orientation along the thickness direction of the layer structure, that is, the orientation toward which the surface of the layer structure faces, that is, the layer The orientation of the top or bottom of the .
  • the non-black ink layer 40 is located on one side of the liquid crystal material layer 11 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are used to drive the liquid crystal material layer 11 to switch between a light-transmitting state and a light-scattering state.
  • the first electrode layer 21 is located on the side of the liquid crystal material layer 11 away from the non-black ink layer 40 , and is located between the cover plate 21 and the liquid crystal material layer 11 .
  • the second electrode layer 22 is located between the liquid crystal material layer 11 and the non-black ink layer 40 . That is, the first electrode layer 21 is located on the top side of the liquid crystal material layer 11 , and the second electrode layer 22 is located on the bottom side of the liquid crystal material layer 11 .
  • the electrode layers are both transparent electrode layers.
  • the electrode layers eg, the first electrode layer 21 and the second electrode layer 22
  • ITO tin-doped indium oxide
  • AZO aluminum-doped zinc oxide
  • TCO transparent conductive oxides
  • the materials of the first electrode layer 21 and the second electrode layer 22 may be the same or different.
  • the interactive function layer 122a has two electrical signal input terminals 127 .
  • the first electrode layer 21 has an electrical signal input terminal 127
  • the second electrode layer 22 has an electrical signal input terminal 127 .
  • the electrical signal input ends 127 of the first electrode layer 21 and the second electrode layer 22 are both electrically connected to the flexible circuit board 125 . That is, the processor 400 (as shown in FIG. 1 ) electrically connects the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, so as to change the voltage difference between the first electrode layer 21 and the second electrode layer 22, In order to drive the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state.
  • the processor 400 powers on the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and there is a voltage difference between the first electrode layer 21 and the second electrode layer 22 (that is, the voltage difference is greater than 0), the liquid crystal molecules of the liquid crystal material layer 11 are arranged in an orderly manner, and the liquid crystal material layer 11 is in a light-transmitting state. At this time, the light can directly pass through the liquid crystal material layer 11 and keep the propagation direction unchanged.
  • the processor 400 powers off the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and there is no voltage difference between the first electrode layer 21 and the second electrode layer 22 (that is, the voltage difference is 0), That is, when the first electrode layer 21 and the second electrode layer 22 are powered off (ie, not powered on), the liquid crystal molecules of the liquid crystal material layer 11 are arranged disorderly, and the liquid crystal material layer 11 is in an astigmatic state. At this time, the light will be scattered under the action of the liquid crystal, and the light can travel in multiple directions. At this time, the haze of the liquid crystal material layer 11 is between 85% and 100%. It should be understood that the higher the haze of the material, the stronger the scattering effect of the material on light.
  • the processor 400 powers off the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and there is no voltage difference between the first electrode layer 21 and the second electrode layer 22 (ie, When the voltage difference is 0), that is, when the first electrode layer 21 and the second electrode layer 22 are powered off (ie, not powered on), the liquid crystal material layer 11 can also be in a light-transmitting state.
  • the processor 400 powers on the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and there is a voltage difference between the first electrode layer 21 and the second electrode layer 22 (that is, the voltage difference is greater than 0)
  • the liquid crystal The material layer 11 may also be in an astigmatic state.
  • the non-black ink layer 40 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 . That is, the non-black ink layer 40 is located on the bottom side of the second electrode layer 22 . It should be understood that the non-black ink layer is made with non-black ink.
  • the non-black ink refers to other color inks other than black ink, such as white ink, red ink or blue ink.
  • FIG. 5b is a schematic structural diagram of the structure shown in FIG. 5a in one embodiment.
  • the interactive function layer 122a further includes a first carrier 61 and a second carrier 62 .
  • the first carrier 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 . That is, the first carrier 61 is located on the top side of the first electrode layer 21 for carrying the first electrode layer 21 . Specifically, the first carrier 61 is located between the cover plate 121 and the first electrode layer 21 .
  • the top surface of the first carrier 61 is the top surface of the optical film assembly 122 .
  • the top surface of the adhesive layer 123 contacts the cover plate 121 , and the bottom surface of the adhesive layer 123 contacts the first carrier 61 .
  • the first electrode layer 21 is disposed on the bottom surface of the first carrier 61 .
  • the first electrode layer 21 may be formed on the bottom surface of the first carrier 61 by a process such as physical vapor deposition (PVD).
  • the second carrier 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 . That is, the second carrier 62 is located on the bottom side of the second electrode layer 22 for carrying the second electrode layer 22 . Specifically, the second carrier 62 is located between the second electrode layer 22 and the non-black ink layer 40 .
  • the top surface of the second carrier 62 carries the second electrode layer 22
  • the bottom surface of the second carrier 62 carries the non-black ink layer 40 .
  • the second electrode layer 22 can be formed on the top surface of the second carrier 62 by a process such as physical deposition, and the non-black ink layer 40 can be formed on the bottom surface of the second carrier 62 by printing or spraying.
  • the carriers are both transparent carriers.
  • the carrier (such as the first carrier 61 and the second carrier 62 ) can be made of transparent glass or transparent plastic materials such as polyethylene terephthalate (PET), PC or PMMA. It is any one of injection molded parts, plates or diaphragms. It should be noted that the materials of the first carrier 61 and the second carrier 62 may be the same or different.
  • FIG. 6 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 5b when the liquid crystal material layer 11 is in a light-transmitting state.
  • the liquid crystal material layer 11 is in a light-transmitting state.
  • Ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the first carrier 61 ) from the outside, passes through the first carrier 61 and the first electrode layer 21 in sequence, and reaches the top surface of the liquid crystal material layer 11 .
  • the ambient light L 0 can pass through the liquid crystal material layer 11 and exit from the bottom surface of the liquid crystal material layer 11 along the initial propagation direction. Subsequently, the ambient light L 0 sequentially passes through the second electrode layer 22 and the second carrier 62 to reach the non-black ink layer 40 . The ambient light L 0 is reflected by the non-black ink layer 40 to form the background color light L * , and the background color light L * sequentially passes through the second carrier 62, the second electrode layer 22, the liquid crystal material layer 11, the first electrode layer 21 and the first carrier The component 61 is emitted from the top surface of the first carrier 61 (ie, the top surface of the optical film assembly 122 ). At this time, only the background color light L * is emitted from the top surface of the optical film assembly 122 .
  • FIG. 7 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 5 b when the liquid crystal material layer 11 is in an astigmatic state.
  • the liquid crystal material layer 11 When the processor 400 powers off the first electrode layer 21 and the second electrode layer 22, and the voltage difference between the first electrode layer 21 and the second electrode layer 22 is zero, the liquid crystal material layer 11 is in the astigmatism state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the first carrier 61 ) from the outside, passes through the first carrier 61 and the first electrode layer 21 in sequence, and reaches the top surface of the liquid crystal material layer 11 , Since the liquid crystal material layer 11 is in a scattered light state, the ambient light L 0 will be scattered in the liquid crystal material layer 11 , that is, the ambient light L 0 will be scattered and propagate in multiple directions under the action of the liquid crystal.
  • Part of the ambient light L 0 is emitted from the surface of the liquid crystal material layer 11 away from the non-black ink layer 40 (ie, the top surface of the liquid crystal material layer 11 ), passes through the first electrode layer 21 and the first carrier 61 in sequence, and exits from the first carrier The top surface of 61 (ie, the top surface of the optical film assembly 122 ) exits.
  • Part of the ambient light L 0 is emitted from the bottom surface of the liquid crystal material layer 11 . Subsequently, the part of the ambient light L 0 sequentially passes through the second electrode layer 22 and the second carrier 62 to reach the top surface of the non-black ink layer 40 . The ambient light L 0 is reflected by the non-black ink layer 40 to form the background color light L * , and the background color light L * passes through the second carrier 62 and the second electrode layer 22 in sequence to reach the bottom surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in an astigmatic state, the background color light L * is scattered in the liquid crystal material layer, that is, the background color light L * is scattered under the action of the liquid crystal and propagates in multiple directions.
  • both ambient light L 0 and background color light L * are both scattered under the action of liquid crystals, both ambient light L 0 and background color light L * have multiple propagation directions (ie, have multiple exit angles). Therefore, both the ambient light L 0 and the background color light L * exit from the top surface of the optical film assembly 122 , that is, the mixed light of the ambient light L 0 and the background color light L * exits from the top surface of the optical film assembly 122 .
  • the intensity of the background color light L * emitted from the top surface of the optical film assembly 122 is smaller.
  • the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye. See background tint L * .
  • both the ambient light L 0 and the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, At this time, the human eye can see the mixed light of the ambient light L 0 and the background color light L * .
  • the light can completely pass through the liquid crystal material layer 11 .
  • the processor 400 When the processor 400 powers on the first electrode layer 21 and the second electrode layer 22, the voltage difference between the first electrode layer 21 and the second electrode layer 22 can be instantly added to V m , which can be seen by the human eye at this time. to the background shade L * of maximum intensity.
  • the processor 400 can instantaneously increase the voltage difference between the first electrode layer 21 and the second electrode layer 22 to be between 0 and V m (excluding the endpoint value, such as 12 V), and the human eye can see that the intensity is relatively small.
  • the background color light L * Alternatively, the processor 400 may gradually increase the voltage difference between the first electrode layer 21 and the second electrode layer 22 to V m , and the human eye can see that the intensity of the background color light L * gradually increases.
  • the processor 400 can also add the voltage difference between the first electrode layer 21 and the second electrode layer 22 to V m according to a certain rhythm (for example, in stages), at this time, the human eye can feel the effect of the background color light L * The intensity is gradually increased according to a certain rhythm (such as a staged pattern).
  • a certain rhythm for example, in stages
  • the processor 400 when the processor 400 powers off the first electrode layer 21 and the second electrode layer 22, it can instantly reduce the voltage difference between the first electrode layer 21 and the second electrode layer 22 to 0V.
  • a mixture of ambient light L 0 at maximum intensity and background color light L * can be seen.
  • the processor 400 can instantaneously reduce the voltage difference between the first electrode layer 21 and the second electrode layer 22 to between 0 and V m (excluding the endpoint value, such as 12 V), and the human eye can see that the intensity is small at this time.
  • the mixed light of the ambient light L 0 and the background color light L * Alternatively, the processor 400 can also gradually reduce the voltage difference between the first electrode layer 21 and the second electrode layer 22 to 0V.
  • the human eye can feel the mixed light intensity of the ambient light L 0 and the background color light L * gradually increase.
  • the processor 400 can also reduce the voltage difference between the first electrode layer 21 and the second electrode layer 22 to 0V according to a certain rhythm, and the human eye can feel the mixture of the ambient light L 0 and the background color light L * The light intensity gradually increases according to a certain rhythm.
  • the processor 400 can be used to adjust the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, so that the liquid crystal material layer 11 can be switched between the light-transmitting state and the light-scattering state, so as to achieve
  • the human eye sees the background color light L * and the mixed light of the ambient light L 0 and the background color light L *
  • the user can see that the back cover 120 changes between the two appearance effects, which can satisfy the user's expectations for the back cover 120. Appearance requirements.
  • the user can set the appearance effect of the back cover 120 according to personal preference, or the user can judge which application scenario the electronic device 1000 is in through the appearance effect of the back cover 120, so as to realize the interaction between the user and the electronic device 1000, and improve the User experience.
  • ambient light also known as natural light.
  • Ambient light is generally a polychromatic light compounded by a variety of monochromatic lights, and the ambient light is light covering the entire wavelength band.
  • the ambient light mentioned in the embodiments of the present application may refer to both the light existing in the natural environment and the light existing in the artificially created environment. Since the human eye can only perceive the light in the visible light band (wavelength between 400nm and 800nm), the ambient light mentioned in the embodiments of the present application may be equivalent to the light in the visible light band, for example, the ambient light may be equivalent to the white light visible light.
  • the appearance effect transformation of the back cover 120 is analyzed by taking the ambient light L 0 as white visible light and a red ink layer made of red ink as an example. At this time, the background color light L * is red light.
  • the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye.
  • the red background color light L * can be seen, that is, the back cover 120 can be seen as red by the human eye.
  • both the ambient light L 0 and the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, At this time, the human eye can see the mixed light of the ambient light L 0 and the background color light L * , that is, the human eye can see the mixed light of white light and red light, that is, the human eye can see the light red light, that is, the human eye can see the mixed light of the white light and the red light. It can be seen that the back cover 120 is light red.
  • the processor 400 adds the voltage difference between the first electrode layer 11 and the second electrode layer 12 to the maximum value Vm , the human eye can see the red light with the maximum intensity (the intensity is Imax ), That is, the back cover 120 can be seen to be dark red by human eyes.
  • the processor 400 reduces the voltage difference between the first electrode layer 11 and the second electrode layer 12 to 0, the human eye can see the red light with the minimum intensity (the intensity is Imin ), that is, the human eye can see the back cover 120 is light red.
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and drives the liquid crystal material layer 11 to switch between the light-transmitting state and the astigmatic state, so that the human eye can see
  • the intensity of the obtained red light is changed within the range of I min to I max (including the two end points of I min and I max ), and the user can judge which application scenario the electronic device 1000 is in through the shade of red of the back cover 120, The interaction between the user and the electronic device 1000 is realized, and the user experience is improved.
  • FIG. 8a is a partial structural diagram of the optical film assembly 122 shown in FIG. 5a in another implementation manner. Wherein, FIG. 8 a only shows the non-black ink layer 40 , the brightness enhancement film 42 and the second carrier 62 of the optical film assembly 122 .
  • the optical film assembly 122 further includes a brightness enhancement film 42.
  • the brightness enhancement film 42 is located between the non-black ink layer 40 and the liquid crystal material layer 11 (as shown in FIG. 5a ), and is used to enhance the pairing of the non-black ink layer 40 against each other.
  • the reflection of ambient light L 0 increases the brightness of the background color light L * .
  • the brightness enhancement film 42 is located between the second carrier 62 and the non-black ink layer 40 .
  • the brightness enhancement film 42 is disposed on the bottom surface of the second carrier 62
  • the non-black ink layer 40 is disposed on the bottom surface of the brightness enhancement film 42 .
  • the brightness enhancement film 42 and the non-black ink layer 40 form the background layer 122 b of the back cover 120 .
  • the brightness enhancement film 42 may be made of oxides such as silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), and niobium oxide (Nb 2 O 5 ), or the brightness enhancement film 42 may also be made of structural color. Optical coatings or nano-scale multilayer optical films made of materials. Wherein, the brightness enhancement film 42 can be formed on the bottom surface of the second carrier 42 by a PVD process, and the non-black ink layer 42 can be formed on the bottom surface of the brightness enhancement film 42 by printing or spraying.
  • the appearance effect transformation of the back cover 120 is analyzed by taking the ambient light L 0 as white visible light and a red ink layer made of red ink as an example. At this time, the background color light L * is red light.
  • the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye.
  • the background color light L * can be seen, that is, the human eye can see the high-brightness red light, that is, the human eye can see that the back cover 120 is red with high brightness.
  • both the ambient light L 0 and the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, At this time, the human eye can see the mixed light of the ambient light L 0 and the background color light L * , that is, the human eye can see the mixed light of white light and red light, that is, the human eye can see the light red light, that is, the human eye can see the mixed light of the white light and the red light. It can be seen that the back cover 120 is light red.
  • the brightness enhancement film 42 increases the brightness of the background color light L * , but the liquid crystal material layer 11 in the astigmatic state will be larger The magnitude weakens the brightness of the background color light L * (more than 50%), so the back cover 120 appears red with lower brightness to the human eye.
  • the processor 400 adds the voltage difference between the first electrode layer 11 and the second electrode layer 12 to the maximum value V m , the human eye can see the red light with the maximum brightness (the brightness is L max ), That is, the back cover 120 can be seen to be dark red by human eyes.
  • the processor 400 reduces the voltage difference between the first electrode layer 11 and the second electrode layer 12 to 0, the human eye can see the red light with the minimum brightness (the brightness is L min ), that is, the human eye can see the back cover 120 is light red.
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and drives the liquid crystal material layer 11 to switch between the light-transmitting state and the astigmatic state, so that the human eye can see
  • the intensity of the obtained red light is changed within the range of L min to L max (including the two end points of L min and L max ), and the user can judge which application scenario the electronic device 1000 is in by the shade of red of the back cover 120 , The interaction between the user and the electronic device 1000 is realized, and the user experience is improved.
  • the disposition of the brightness enhancement film 42 also increases the difference between the two appearance effects of the back cover 120 .
  • FIG. 8b is a partial structural diagram of the optical film assembly 122 shown in FIG. 5a under the third embodiment. Wherein, FIG. 8 b only shows the non-black ink layer 40 , the brightness enhancement film 42 , the nano-texture layer 43 and the second carrier 62 of the optical film assembly 122 .
  • the optical film assembly 122 further includes a brightness enhancement film 42 and a nano-texture layer 43.
  • Both the brightness enhancement film 42 and the nano-texture layer 43 are located between the non-black ink layer 40 and the liquid crystal material layer 11 (as shown in FIG. 5a ). During the time, it is used to strengthen the reflection effect of the non-black ink layer 40 on the ambient light L 0 , so that the background color light L * produces a glare effect.
  • the brightness enhancement film 42 and the nano-texture layer 43 are both located between the non-black ink layer 40 and the second carrier 62 .
  • the nano-texture layer 43 is disposed on the bottom surface of the second carrier 62 .
  • the nano-texture layer 43 includes a nano-texture surface 431 facing the non-black ink layer 40 , and the brightness enhancement film 42 covers the nano-texture surface 431 .
  • the non-black ink layer 40 , the enhancement film 42 and the nano-texture layer 43 form the background layer 122 b of the back cover 120 .
  • the nano-textured surface 431 is provided with a plurality of protrusions (not marked in the figure), and the size of the plurality of protrusions is in the nanometer scale.
  • the shape of the protrusion is not limited to the triangle shown in FIG. 12 , but can also be a semicircle, an arc or other shapes.
  • the nano-texture layer 43 can be made of acrylic resin.
  • the nano-texture layer 43 can be formed on the bottom surface of the second carrier 62 by a thermal transfer photocuring (ultraviolet, UV) nano-texture process, and the brightness enhancement film 42 can be formed on the bottom surface of the nano-texture layer 43 by a PVD process.
  • the ink layer 40 can be formed on the bottom surface of the brightness enhancement film 42 by printing or spraying.
  • the appearance effect transformation of the back cover 120 is analyzed by taking the ambient light L 0 as white visible light and a red ink layer made of red ink as an example. At this time, the background color light L * is red light.
  • the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye.
  • the red background color light L * can be seen. Since the nano-texture layer 43 and the brightness enhancement film 42 will cause the background color light L * to produce a glare effect, the human eye can see the red light with the glare effect, that is, the human eye can see the red light with the glare effect.
  • the back cover 120 is reached, it is dazzling red.
  • both the ambient light L 0 and the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, At this time, the human eye can see the mixed light of the ambient light L 0 and the background color light L * , that is, the human eye can see the mixed light of white light and red light, that is, the human eye can see the light red light, that is, the human eye can see the mixed light of the white light and the red light. It can be seen that the back cover 120 is light red.
  • the ambient light L 0 forms the background color light L * under the reflection of the non-black ink layer 40
  • the nano-texture layer 43 and the brightness enhancement film 42 cause the background color light L * to produce a glare effect.
  • the liquid crystal material layer 11 can make the glare effect of the background color light L * disappear, so the back cover 120 appears light red to the human eye.
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and drives the liquid crystal material layer 11 to switch between the light-transmitting state and the astigmatic state, so that the human eye can see
  • the back cover 120 changes between glare red and light red
  • the user can judge which application scenario the electronic device 1000 is in by whether the back cover 120 has a glare effect, so as to realize the interaction between the user and the electronic device 1000.
  • Improve user experience is provided to improve user experience.
  • FIG. 9 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the second embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a non-black ink layer 40 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the non-black ink layer 40 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11, and is used for bearing the first electrode layer 21.
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the second electrode layer 22 includes a plurality of electrode parts 221 that are independent of each other.
  • the mutually independent electrode parts 221 means that the plurality of electrode parts 221 are insulated from each other, and when one electrode part 221 is energized, the electrode parts 221 around the electrode part 221 will not be affected.
  • the liquid crystal material layer 11 includes the liquid crystal portions 111 corresponding to the plurality of electrode portions 221 one-to-one.
  • the liquid crystal portion 111 corresponds to the electrode portion 221 means that the orthographic projection of the liquid crystal portion 111 on the second electrode layer 22 covers the electrode portion 221, and the description of “correspondence” in the following can be the same understand.
  • the liquid crystal portion 111 corresponding to the electrode portion 221 may also mean that the orthographic portion of the liquid crystal portion 111 on the second electrode layer 22 covers the electrode portion 221 .
  • the second electrode layer 22 includes seven electrode portions 221 that are independent of each other, and the liquid crystal material layer 11 includes seven liquid crystal portions 111 corresponding to the seven electrode portions 221 one-to-one.
  • Each liquid crystal portion 111 can be switched between a light-transmitting state and a light-scattering state under the driving of one electrode portion 221 and the first electrode layer 21 . That is, each electrode part 221 and the first electrode layer 21 can drive one liquid crystal part 111 to switch between a light-transmitting state and a light-scattering state.
  • the second electrode layer 22 may also include two, three, four, five, six, or more than eight mutually independent electrode portions 221 , which are not specifically limited in this application.
  • the seven electrode parts 221 are named as a first electrode part 221a, a second electrode part 221b, a third electrode part 221c, a fourth electrode part 221d, a fifth electrode part 221e, and a sixth electrode part, respectively 221f and the seventh electrode portion 221g to describe the structure of the optical film assembly 122.
  • the interactive function layer 122 a has eight electrical signal input terminals 127
  • the first electrode layer 21 has one electrical signal input terminal 127
  • the second electrode layer 22 has seven electrical signal input terminals 127 .
  • each electrode portion 221 has an electrical signal input terminal 127 .
  • the eight electrical signal input terminals 127 are respectively a first electrical signal input terminal 127a, a second electrical signal input terminal 127b, a third electrical signal input terminal 127c, a fourth electrical signal input terminal 127d, and a fifth electrical signal input terminal 127e , a sixth electrical signal input terminal 127f, a seventh electrical signal input terminal 127g and an eighth electrical signal input terminal 127h.
  • the first electrode layer 21 has a first electrical signal input end 127a
  • the first electrode portion 221a has a second electrical signal input end 127b
  • the second electrode portion 221b has a third electrical signal input end 127c
  • the third electrode portion 221c has a fourth electrical signal input terminal 127d
  • the fourth electrode portion 221d has a fifth electrical signal input terminal 127e
  • the fifth electrode portion 221e has a sixth electrical signal input terminal 127f
  • the sixth electrode portion 221f has a seventh electrical signal input terminal 127g
  • the seventh electrode portion 221g has an eighth electrical signal input terminal 127h.
  • FIG. 10 is a schematic diagram of the bottom surface of the back cover 120 shown in FIG. 9 .
  • the eight electrical signal input terminals 127 are exposed relative to the bottom surface of the back cover 120 . Specifically, the eight electrical signal input terminals 127 are arranged at intervals along the X-axis. Among them, the first electrical signal input terminal 127a, the second electrical signal input terminal 127b, the third electrical signal input terminal 127c, the fourth electrical signal input terminal 127d, the fifth electrical signal input terminal 127e, the sixth electrical signal input terminal 127f, The seventh electrical signal input end 127g and the eighth electrical signal input end 127h are sequentially arranged along the X-axis, and are both electrically connected to the flexible circuit board 125 .
  • the processor 400 (as shown in FIG. 1 ) electrically connects the first electrode layer 21 and the seven electrode parts 221 through the flexible circuit board 125 .
  • the processor 400 can change the voltage difference between the first electrode layer 21 and one electrode part 221 through the flexible circuit board 125 to drive one liquid crystal part 111 to switch between a light-transmitting state and a light-scattering state.
  • the processor 400 can change the voltage difference between the first electrode layer 21 and the first electrode part 221a through the flexible circuit board 125 to drive the liquid crystal part 111 corresponding to the first electrode part 221a in a light-transmitting state and an astigmatic state switch between.
  • the processor 400 can change the voltage difference between the first electrode layer 21 and the plurality of electrode parts 221 through the flexible circuit board 125 to drive the plurality of liquid crystal parts 111 to switch between the light transmission state and the astigmatism state.
  • the first electrode layer 21 may also include a plurality of electrode parts that are independent of each other, and each electrode part of the first electrode layer 21 corresponds to one electrode part 221 of the second electrode layer 22 and corresponds to the first electrode part 221 of the second electrode layer 22 One electrode part 221 of the two electrode layers 22 is used to drive one liquid crystal part 111 to switch between the light-transmitting state and the light-scattering state, or only the first electrode layer 21 includes a plurality of electrode parts independent of each other.
  • the plurality of electrode portions of the electrode layer 21 correspond to the plurality of liquid crystal portions 111 one-to-one, and each electrode portion of the first electrode layer 21 and the second electrode layer 22 are used to drive one liquid crystal portion 111 between the light-transmitting state and the light-scattering state. switch.
  • FIG. 11 is a partial structural schematic diagram of the optical film assembly 122 shown in FIG. 9 under another embodiment. 11 only shows the non-black ink layer 40 , the brightness enhancement film 42 and the second carrier 62 of the optical film assembly 122 .
  • the optical film assembly 122 further includes a brightness enhancement film 42.
  • the brightness enhancement film 42 is located between the non-black ink layer 40 and the liquid crystal material layer 11 (as shown in FIG. 9 ), and is used to enhance the pairing of the non-black ink layer 40 against the The reflection of ambient light L 0 increases the brightness of the background color light L * .
  • the brightness enhancement film 42 is located between the second carrier 62 and the non-black ink layer 40 .
  • the brightness enhancement film 42 is disposed on the bottom surface of the second carrier 62
  • the non-black ink layer 40 is disposed on the bottom surface of the brightness enhancement film 42 .
  • the brightness enhancement film 42 and the non-black ink layer 40 form the background layer 122 b of the back cover 120 .
  • the brightness enhancement film 42 includes a plurality of brightness enhancement portions, and the plurality of brightness enhancement portions correspond to the plurality of electrode portions 221 one-to-one.
  • the thickness of the brightness enhancement film 42 is in the nanometer scale, while the thickness of the non-black ink layer 40 is in the micrometer scale.
  • the brightness enhancement film 42 shown in FIG. In the actual structure, since the thickness of the non-black ink layer 40 is much larger than the thickness of the brightness enhancement film 42, it is equivalent that the brightness enhancement film 42 can also be embedded on the top of the non-black ink layer 40, as long as the brightness enhancement film 42 is relatively thicker than the non-black ink layer 40. The top surface of the layer 40 may be exposed.
  • the brightness enhancement film 42 includes seven brightness enhancement parts, and the seven brightness enhancement parts correspond to the seven electrode parts 221 one-to-one.
  • the seven brightening parts are respectively the first brightening part 42a, the second brightening part 42b, the third brightening part 42c, the fourth brightening part 42d, the fifth brightening part 42e and the sixth brightening part 42f and the seventh brightening portion 42g.
  • the first brightening portion 42a corresponds to the first electrode portion 221a
  • the second brightening portion 42b corresponds to the second electrode portion 221b
  • the third brightening portion 42c corresponds to the third electrode portion 221c
  • the fourth brightening portion 42d corresponds to The fourth electrode portion 221d
  • the fifth brightening portion 42e correspond to the fifth electrode portion 221e
  • the sixth brightening portion 42f corresponds to the sixth electrode portion 221f
  • the seventh brightening portion 42g corresponds to the seventh electrode portion 221g.
  • the shapes of the seven brightening parts are different English letters, the first brightening part 42a is in the shape of the English letter "L”, the second brightening part 42b is in the shape of the English letter "O”, and the third brightening part 42b is in the shape of the English letter "O”.
  • the shape of the part 42c is the English letter "V”
  • the shape of the fourth highlighting part 42d is the English letter "E”
  • the shape of the fifth highlighting part 42e is the English letter "Y”
  • the shape of the sixth highlighting part 42f is The English letter "O”
  • the shape of the seventh brightening part 42g is the English letter "U”.
  • the shapes of the seven highlighted parts may also be Chinese characters or other identifying patterns, or a combination of English letters, Chinese characters or other identifying patterns, and the application does not make any changes to the shapes of the highlighted portions. Specific restrictions.
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the first embodiment above, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as that of the above-mentioned first embodiment.
  • the optical schematic diagrams of the optical film assembly 122 shown in the first embodiment are substantially the same, so the other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the description of the optical film assembly 122 shown in the first embodiment above. The description is not repeated here.
  • the ambient light L 0 as white visible light and a blue ink layer made of blue ink as an example
  • the appearance effects of the back cover 120 shown in this embodiment in different states are analyzed.
  • the background color light L * is blue light.
  • FIG. 12 is a schematic diagram of the top surface structure of the back cover 120 when the liquid crystal material layer 11 is in a light-transmitting state.
  • the processor 400 powers on the first electrode layer 21 and the seven electrode portions 221 , and there is a voltage difference between each electrode portion 221 and the first electrode layer 21 (that is, the voltage difference is greater than zero). ), the entire liquid crystal material layer 11 is in a light-transmitting state, and the background color light L * can enter the human eye through the adhesive layer 123 and the cover plate 121, and the human eye can see the background color light L * , that is, the human eye can see the blue light . At this time, human eyes can see that the top surface of the back cover 120 displays seven bright blue fonts "L", "O", "V”, "E”, "Y”, "O” and "U” English alphabet. Among them, the background color of seven English letters is light blue.
  • FIG. 13 is a schematic diagram of the top surface structure of the back cover 120 when part of the liquid crystal material layer is in a light-transmitting state.
  • the processor 400 powers on the first electrode layer 21 and the four electrode portions 221, and there is a voltage difference between the four electrode portions 211 and the first electrode layer 21 (that is, the voltage difference is greater than zero). ), the four liquid crystal portions 111 corresponding to the four electrode portions 221 are in a light-transmitting state.
  • the processor 400 powers on the first electrode part 221a, the third electrode part 221c, the fifth electrode part 221e and the seventh electrode part 221g, and the first electrode part 221a, the third electrode part 221c, the fifth electrode part 221e
  • the four liquid crystal parts 111 corresponding to the seventh electrode part 221g are all in a light-transmitting state, and the background color light L * can enter the human eye through the adhesive layer 123 and the cover plate 121, and the human eye can see the background color light L * , that is, The human eye can see blue light.
  • human eyes can see that the top surface of the back cover 120 displays four English letters "L", "V", "Y” and "U” in bright blue fonts. Among them, the background color of the four English letters is light blue.
  • the processor 400 does not power on the remaining three electrode parts 221 (the second electrode part 221b, the fourth electrode part 221d, and the sixth electrode part 221f), and the three corresponding to the three electrode parts 221
  • the liquid crystal portion 111 is in an astigmatic state.
  • the top surface of the back cover 120 can be seen by the human eye to weakly display three blue letters "O", "E” and "O".
  • the background color of the three English letters is light blue, the human eye cannot distinguish the background color and the color of the font, so the human eye cannot see the three patterns of "O", "E” and "O” in white letters on a blue background. .
  • the processor 400 can also power on the first electrode layer 21 and the remaining electrode parts 221, or the processor 400 can also power on the first electrode layer 21 and one, two, three, five Or the six electrode parts 221 are powered on, at this time, the top surface of the back cover 120 can be seen to display different patterns by human eyes.
  • FIG. 14 is a schematic diagram of the top surface structure of the back cover 120 when the liquid crystal material layer 11 is in the astigmatism state.
  • the liquid crystal material layer 11 is in the astigmatism state.
  • the colors of English letters and fonts are light blue, the human eye cannot see the pattern on the top surface of the back cover 120 .
  • FIG. 15 is a partial structural schematic diagram of the optical film assembly 122 shown in FIG. 9 under another embodiment. 15 only shows the non-black ink layer 40 , the brightness enhancement film 42 , the nano-texture layer 43 and the second carrier 62 of the optical film assembly 122 .
  • the optical film assembly 122 further includes a brightness enhancement film 42 and a nano-texture layer 43.
  • Both the brightness enhancement film 42 and the nano-texture layer 43 are located between the non-black ink layer 40 and the liquid crystal material layer 11 (as shown in FIG. 9 ). During the time, it is used to strengthen the reflection effect of the non-black ink layer 40 on the ambient light L 0 , so that the background color light L * produces a glare effect.
  • the brightness enhancement film 42 and the nano-texture layer 43 are both located between the non-black ink layer 40 and the second carrier 62 .
  • the nano-texture layer 43 is disposed on the bottom surface of the second carrier 62 , and the brightness enhancement film 42 covers the nano-texture layer 43 .
  • the non-black ink layer 40 , the enhancement film 42 and the nano-texture layer 43 form the background layer 122 b of the back cover 120 .
  • the nano-texture layer 43 includes a plurality of texture parts, and the plurality of texture parts correspond to the plurality of electrode parts 221 one-to-one.
  • each texture portion includes a nano-texture surface 430 facing away from the liquid crystal material layer 11
  • the brightness enhancement film 42 covers the nano-texture surface 430 of each texture portion.
  • the brightness enhancement film 42 includes seven textured portions, and the seven textured portions correspond to the seven electrode portions 221 one-to-one.
  • the seven texture parts are respectively a first texture part 43a, a second texture part 43b, a third texture part 43c, a fourth texture part 43d, a fifth texture part 43e, a sixth texture part 43f and a seventh texture part 43g.
  • the first textured portion 43a corresponds to the first electrode portion 221a
  • the second textured portion 43b corresponds to the second electrode portion 221b
  • the third textured portion 43c corresponds to the third electrode portion 221c
  • the fourth textured portion 43d corresponds to the fourth electrode portion 221d
  • the fifth textured portion 43e corresponds to the fifth electrode portion 221e
  • the sixth textured portion 43f corresponds to the sixth electrode portion 221f
  • the seventh textured portion 43g corresponds to the seventh electrode portion 221g.
  • the shapes of the seven textured parts are different English letters, the shape of the first textured part 43a is the English letter “L”, the shape of the second textured part 43b is the English letter “O”, and the shape of the third textured part 43c It is the English letter "V”, the shape of the fourth texture part 43d is the English letter "E”, the shape of the fifth texture part 43e is the English letter "Y”, and the shape of the sixth texture part 43f is the English letter "O”.
  • the shape of the seven-textured portion 43g is the English letter "U”.
  • the shapes of the seven textured portions may also be Chinese characters or other identifying patterns, or a combination of English letters, Chinese characters or other identifying patterns, and the shape of the textured portions is not specifically limited in this application. .
  • the ambient light L 0 as white visible light and a blue ink layer made of blue ink as an example
  • the appearance effects of the back cover 120 shown in this embodiment in different states are analyzed.
  • the background color light L * is blue light.
  • the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, which can be seen by the human eye.
  • the background color light L * that is, blue light with glare effect can be seen by human eyes.
  • the human eye can see that the top surface of the back cover 120 displays seven fonts "L", “O”, “V”, “E”, “Y”, “O” and "U” in glare blue.
  • English alphabet Among them, the background color of seven English letters is light blue (as shown in Figure 12).
  • the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, and the background color light L * It can enter the human eye through the adhesive layer 123 and the cover plate 121, and the human eye can see the background color light L * , that is, the human eye can see the blue light with glare effect.
  • the back cover can be seen by the human eye.
  • the top surface of the 120 displays the four English letters "L", "V", "Y” and "U” in the glare blue font. Among them, the background color of the four English letters is light blue (as shown in Figure 13).
  • the processor 400 when the processor 400 powers on the first electrode layer 21 and the seven electrode parts 221, it can not only increase the voltage difference between the first electrode layer 21 and the electrode parts 221 to a value greater than 0 instantaneously or according to a certain rhythm and less than or equal to V m , one or more electrode parts 221 can also be powered on, or one or more electrode parts 221 can be powered on in sequence according to a certain rhythm, which helps to enrich the appearance of the back cover 120 and improve user interaction.
  • the types of interactive functions of the back cover 120 can improve the user experience.
  • FIG. 16a is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the third embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 and a non-black ink layer 40 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the non-black ink layer 40 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • FIG. 16b is a schematic structural diagram of the structure shown in FIG. 16a under one embodiment.
  • the optical film assembly 122 further includes a first carrier 61 and a second carrier 62 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the optical film assembly 122 further includes a structural color material layer 30 and a black ink layer 50 .
  • the structural color material layer 30 is located between the liquid crystal material layer 11 and the non-black ink layer 20 .
  • the structural color material layer 30 is located between the second carrier 62 and the non-black ink layer 40 .
  • the structural color material layer 30 is disposed on the bottom surface of the second carrier 62
  • the non-black ink layer 40 is disposed on the bottom surface of the structural color material layer 30 .
  • the top surface of the second carrier 62 carries the second electrode layer 22
  • the bottom surface of the second carrier 62 carries the structural color material layer 30 .
  • the structural color material layer 30 is made of structural color material.
  • the structural color material refers to a material that can selectively transmit light wavelengths in the visible light band (light with wavelengths between 400 nm and 800 nm).
  • the structural color material layer 30 can divide the white visible light into transmitted light and reflected light of different colors.
  • the transmitted light and the reflected light may be monochromatic light or polychromatic light.
  • the structural color material layer 30 may be a nano-scale multilayer optical film.
  • the optical film assembly 122 further includes an adhesive layer 70 located between the second carrier 62 and the structural color material layer 30 .
  • the top surface of the adhesive layer 70 contacts the bottom surface of the second carrier 62
  • the bottom surface of the adhesive layer 70 contacts the top surface of the structural color material layer 30 .
  • the adhesive layer 70 is a transparent adhesive layer
  • the adhesive layer 70 can be made of OCA.
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the structural color material layer 30 . That is, the black ink layer 50 is located on the bottom side of the non-black ink layer 40 . Specifically, the black ink layer 50 is disposed on the bottom surface of the non-black ink layer 40 to prevent light leakage from the bottom side of the back cover 120 .
  • the black ink layer 50 is made of black ink. Exemplarily, the black ink layer 50 may be formed on the bottom surface of the non-black ink layer 40 by printing or spraying.
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the first embodiment, so other structures of the optical film assembly 122 shown in this embodiment may refer to The descriptions related to the optical film assembly 122 shown in the first embodiment above will not be repeated here.
  • FIG. 17 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 16b when the liquid crystal material layer 11 is in a light-transmitting state.
  • the liquid crystal material layer 11 is in a light-transmitting state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the first carrier 61 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and sequentially passes through the first carrier 61 and the first carrier 61 .
  • the electrode layer 21 reaches the top surface of the liquid crystal material layer 11.
  • ambient light L 0 can pass through the liquid crystal material layer 11 and exit from the bottom surface of the liquid crystal material layer 11 along the initial propagation direction. Subsequently, the ambient light L 0 sequentially passes through the second electrode layer 22 , the second carrier 62 and the adhesive layer 70 to reach the top surface of the structural color material layer 30 .
  • the structural color material layer 30 divides the ambient light L 0 into transmitted light L 1 and reflected light L 2 of different colors.
  • the transmitted light L 1 and the reflected light L 2 may be monochromatic light or polychromatic light.
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 and reaches the top surface of the non-black ink layer 40 .
  • the transmitted light L1 is fully or partially reflected by the non - black ink layer 40 to form the background color light L * , and the background color light L * then passes through the structural color material layer 30, the adhesive layer 70, the second carrier 62, and the second electrode layer 22 in turn , the liquid crystal material layer 11 , the first electrode layer 21 and the first carrier 61 , which are emitted from the top surface of the first carrier 61 (ie, the top surface of the optical film assembly 122 ).
  • the color of the background color light L * is different from the color of the reflected light L 2 , and the color of the background color light L * and the color of the transmitted light L 1 may be the same or different.
  • the reflected light L2 exits from the top surface of the structural color material layer 30, and passes through the adhesive layer 70, the second carrier 62, the second electrode layer 22, the liquid crystal material layer 11, the first electrode layer 21 and the first carrier in sequence
  • the component 61 is emitted from the top surface of the first carrier 61 (ie, the top surface of the optical film assembly 122 ).
  • both the background color light L * and the reflected light L 2 are emitted from the top surface of the optical film assembly 122 .
  • the transmitted light L1 has a high intensity and has multiple propagation directions (ie, has multiple exit angles)
  • the background color light L * has a high intensity and has multiple
  • the intensity of the reflected light L2 is low and has a single propagation direction (ie, has a single exit angle).
  • the reflected light L 2 can be ignored. Therefore, it is equivalent that only the background color light L * is emitted from the top surface of the optical film assembly 122 .
  • FIG. 18 is a schematic diagram of the optical path in the optical film assembly 122 shown in FIG. 16b when the liquid crystal material layer 11 is in the astigmatism state.
  • the processor 400 powers off the first electrode layer 21 and the second electrode layer 22, and the voltage difference between the first electrode layer 21 and the second electrode layer 22 is zero, the liquid crystal material layer 11 in astigmatism.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the first carrier 61 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and sequentially passes through the first carrier 61 and the first carrier 61 .
  • the electrode layer 21 reaches the top surface of the liquid crystal material layer 11.
  • the ambient light L 0 will be scattered in the liquid crystal material layer 11 , that is, the ambient light L 0 will be scattered under the action of the liquid crystal and will be scattered toward the liquid crystal material layer 11 . spread in multiple directions. Part of the ambient light L 0 is emitted from the top surface of the liquid crystal material layer 11 , passes through the first electrode layer 21 and the first carrier 11 in sequence, and then exits the top surface of the first carrier 11 (ie, the top surface of the optical film assembly 122 ) out.
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 and reaches the top surface of the non-black ink layer 40 .
  • the transmitted light L1 is fully or partially reflected by the non - black ink layer 40 to form a background color light L * , and the background color light L * passes through the structural color material layer 30, the adhesive layer 70, the second carrier 62 and the second electrode layer 22 in turn to reach the The bottom surface of the liquid crystal material layer 11 .
  • the background color light L * After the background color light L * enters the liquid crystal material layer 11, it will be scattered in the liquid crystal material layer 11, that is, the background color light L * will be scattered and propagate in multiple directions under the action of the liquid crystal.
  • the reflected light L 2 exits from the top surface of the structural color material layer 30 , and passes through the adhesive layer 70 , the second carrier 62 and the second electrode layer 22 in sequence to reach the bottom surface of the liquid crystal material layer 11 .
  • the reflected light L 2 After the reflected light L 2 enters the liquid crystal material layer 11 , it will be scattered in the liquid crystal material layer 11 , that is, the reflected light L 2 will be scattered and propagate in multiple directions under the action of the liquid crystal.
  • the partially reflected light L2 is emitted from the top surface of the liquid crystal material layer 11, and passes through the first electrode layer 21 and the first carrier 61 in sequence, and exits from the top surface of the first carrier 11 (ie, the top surface of the optical film assembly 122). out.
  • the ambient light L 0 , the background color light L * and the reflected light L 2 are all emitted from the top surface of the optical film assembly 122 .
  • the ambient light L 0 , the background color light L * and the reflected light L 2 are all scattered under the action of the liquid crystal, the ambient light L 0 , the background color light L * and the reflected light L 2 all have multiple propagation directions (ie with multiple exit angles). Therefore, the ambient light L 0 , the background color light L * and the reflected light L 2 are all emitted from the top surface of the optical film assembly 122 , that is, the mixed light of the ambient light L 0 , the background color light L * and the reflected light L 2 emerges from the optical film assembly 122 The top surface exits.
  • the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye. See background tint L * .
  • the ambient light L 0 , the background color light L * and the reflected light L 2 can all pass through the adhesive layer 123 and the cover plate 121 enters the human eye, and the human eye can see the mixed light of the ambient light L 0 , the background color light L * and the reflected light L 2 .
  • the processor 400 can adjust the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125 to drive the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state, so that people When the eye sees the background color light L * and the mixed light of the ambient light L 0 , the background color light L * and the reflected light L 2 , the user can see that the back cover 120 changes between the two appearance effects, which can satisfy the user’s expectations. Appearance requirements of the back cover 120 .
  • the user can set the appearance effect of the back cover 120 according to personal preference, or the user can judge which application scenario the electronic device 1000 is in through the appearance effect of the back cover 120, so as to realize the interaction between the user and the electronic device 1000, and improve the User experience.
  • FIG. 19 is a schematic structural diagram of the optical module shown in FIG. 16b in one embodiment.
  • the liquid crystal material layer 11 is made of PDLC
  • the first electrode layer 21 and the second electrode layer 22 are both ITO films made of ITO
  • the structural color material layer 30 is a nano-scale multilayer optical film, non-black
  • the ink layer 40 is made of white ink.
  • the first carrier 61 and the second carrier 62 are PET films made of PET.
  • the adhesive layer 70 is made of OCA.
  • the ambient light L 0 is white light
  • the transmitted light L 1 is blue light
  • the reflected light L 2 is orange light
  • the background color light L * is blue light of the same color as the transmitted light L 1 .
  • orange light is a complex light composed of red light and green light.
  • the human eye can see the blue background color light L * when the liquid crystal material layer 11 is in the light-transmitting state, that is, the human eye can see that the back cover 120 is blue .
  • the human eye can see the mixed light of the white ambient light L 0 , the blue background color light L * and the orange reflected light L 2 , that is, the human eye can see the white light, and also That is, the back cover 120 can be seen as white by human eyes.
  • the back cover 120 can be switched between blue and white.
  • FIG. 20 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the fourth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a non-black ink layer 40 , a black ink layer 50 , a first carrier 61 , and a second carrier 62 and adhesive layer 70.
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the non-black ink layer 40 is located on the side of the structural color material layer 30 away from the second electrode layer 22 .
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the structural color material layer 30 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the adhesive layer 70 is located between the second carrier 62 and the structural color material layer 30 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the third embodiment above is that the second carrier 62 is located between the structural color material layer 30 and the non-black ink layer 40 .
  • the top surface of the second carrier 62 carries the structural color material layer 30
  • the bottom surface of the second carrier 62 carries the non-black ink layer 40 .
  • the top surface of the adhesive layer 70 contacts the bottom surface of the structural color material layer 30
  • the bottom surface of the adhesive layer 70 contacts the top surface of the second carrier 62 .
  • the second electrode layer 22 is disposed on the top surface of the structural color material layer 30
  • the non-black ink layer 40 is disposed on the bottom surface of the second carrier 62 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the third embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as the above-mentioned
  • the optical schematic diagrams of the optical film assembly 122 shown in the third embodiment are substantially the same, so other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the related descriptions of the optical film assembly 122 shown in the third embodiment above. The description is not repeated here.
  • FIG. 21 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the fifth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a non-black ink layer 40 , a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the non-black ink layer 40 is located on the side of the structural color material layer 30 facing away from the second electrode layer 22.
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the structural color material layer 30 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the structural color material layer 30 is an optical coating. Specifically, the structural color material layer 30 is disposed on the bottom surface of the second carrier 62 , and the non-black ink layer 40 is disposed on the bottom surface of the structural color material layer 30 . Wherein, the structural color material layer 30 can be formed on the bottom surface of the second carrier 62 by a process such as PVD. At this time, the structural color material layer 30 can be equivalent to the brightness enhancement film 42 (as shown in FIG. 8 a ), and the structural color material layer 30 and the non-black ink layer 40 can form the background layer 122 b of the back cover 120 (as shown in FIG. 8 a ) .
  • the optical film assembly 122 shown in this embodiment omits the adhesive layer 70, which is beneficial to reduce the thickness of the optical film assembly 122.
  • the number of stacked layers can reduce the thickness of the back cover 120 , which is beneficial to the light and thin design of the electronic device 1000 .
  • the optical film assembly 122 may also include a nano-texture layer 43, the nano-texture layer 43 is located between the liquid crystal material layer 11 and the non-black ink layer 40, the nano-texture layer 43 and the structural color
  • the material layer 30 is used to enhance the reflection effect of the non-black ink layer 40 on the ambient light L 0 , so that the background color light L * produces a glare effect.
  • the nano-texture layer 43 is located between the non-black ink layer 40 and the second carrier 62 .
  • the nano-texture layer 43 is disposed on the bottom surface of the second carrier 62 .
  • the nano-texture layer 43 includes a nano-texture surface 431 facing the non-black ink layer 40 , and the structural color material layer 30 covers the nano-texture surface 431 . At this time, the non-black ink layer 40 , the structural color material layer 30 and the nano-texture layer 43 form the background layer 122 b of the back cover 120 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the third embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as the above-mentioned
  • the optical schematic diagrams of the optical film assembly 122 shown in the third embodiment are substantially the same, so other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the related descriptions of the optical film assembly 122 shown in the third embodiment above. The description is not repeated here.
  • FIG. 22 is a schematic structural diagram of the optical film assembly 122 shown in FIG. 21 under an embodiment.
  • the liquid crystal material layer 11 is made of PDLC
  • the first electrode layer 21 and the second electrode layer 22 are ITO films made of ITO
  • the structural color material layer 30 is an optical coating
  • the non-black ink layer 40 is made of Made of white ink.
  • the first carrier 61 and the second carrier 62 are PET films made of PET.
  • the structural color material layer 30 divides the ambient light L 0 into orange transmitted light L 1 and blue reflected light L 2 as an example.
  • the appearance effect transformation is described.
  • the ambient light L 0 is white light
  • the transmitted light L 1 is orange light
  • the reflected light L 2 is blue light
  • the background color light L * is orange light of the same color as the transmitted light L 1 .
  • the human eye can see the orange background color light L * when the liquid crystal material layer 11 is in a transparent state, that is, the human eye can see that the back cover 120 is orange.
  • the human eye can see the mixed light of the white ambient light L 0 , the orange background color light L * and the blue reflected light L 2 , that is, the human eye can see the white light, and also That is, the back cover 120 can be seen as white by human eyes.
  • the back cover 120 can be switched between orange and white.
  • FIG. 23 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the sixth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a non-black ink layer 40 , a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11.
  • the structural color material layer 30 is an optical coating.
  • the non-black ink layer 40 is located on the side of the structural color material layer 30 away from the second electrode layer 22 .
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the structural color material layer 30 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the third embodiment above is that the second carrier 62 is located between the structural color material layer 30 and the non-black ink layer 40 .
  • the top surface of the second carrier 62 carries the structural color material layer 30
  • the bottom surface of the second carrier 62 carries the non-black ink layer 40 .
  • the second electrode layer 22 is disposed on the top surface of the structural color material layer 30
  • the non-black ink layer 40 is disposed on the bottom surface of the second carrier 62 .
  • the optical film assembly 122 may further include a nano-texture layer 43 and a brightness enhancement film 42, and both the nano-texture layer 43 and the brightness enhancement film 42 are located on the second carrier 62 and the non-black ink Between the layers 40 , the nano-texture layer 43 is disposed on the surface of the second carrier 62 facing the non-black ink layer 40 (ie, the bottom surface of the second carrier 62 ), and the nano-texture layer 43 includes a nano-texture surface away from the second carrier 62 431 , the brightness enhancement film covers the nano-textured surface 431 .
  • the nano-texture layer 43 and the brightness enhancement film are used to generate a glare effect on the backlight color light L * , so as to enrich the appearance effect of the back cover 120 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the third embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as the above-mentioned
  • the optical schematic diagrams of the optical film assembly 122 shown in the third embodiment are substantially the same, so other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the related descriptions of the optical film assembly 122 shown in the third embodiment above. The description is not repeated here.
  • FIG. 24 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the seventh embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a non-black ink layer 40 , a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the non-black ink layer 40 is located on the side of the structural color material layer 30 away from the second electrode layer 22 .
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the structural color material layer 30 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the optical film assembly 122 further includes an auxiliary carrier 80 and an adhesive layer 90 .
  • the auxiliary bearing member 80 is located between the second bearing member 62 and the structural color material layer 30 for supporting the structural color material layer 30 .
  • the structural color material layer 30 is disposed on the bottom surface of the auxiliary carrier 80 .
  • the non-black ink layer 40 is provided on the bottom surface of the structural color material layer 30 .
  • the structural color material layer 30 may be formed on the bottom surface of the auxiliary carrier 80 by a process such as PVD.
  • the auxiliary carrier 80 is a transparent carrier.
  • the auxiliary bearing member 80 can be made of transparent plastic materials such as PET, PC or PMMA, and the auxiliary bearing member 80 can be any one of injection molding, plate or film.
  • the adhesive layer 90 is located between the auxiliary carrier 80 and the second carrier 62 . Specifically, the top surface of the adhesive layer 90 contacts the bottom surface of the second carrier 62 , and the bottom surface of the adhesive layer 90 contacts the top surface of the auxiliary carrier 80 .
  • the adhesive layer 90 is a transparent adhesive layer, and the adhesive layer 90 can be made of OCA.
  • the structural color material layer 30 shown in this embodiment is an optical coating.
  • the structural color material layer 30 can also be a nano-scale multilayer optical film.
  • the optical film component 30 further includes The adhesive layer 70 (as shown in FIG. 9 ), the adhesive layer 70 is located between the auxiliary carrier 80 and the structural color material layer 30 , the top surface of the adhesive layer 70 contacts the auxiliary carrier 80 , and the bottom surface of the adhesive layer 70 contacts Structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the third embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as the above-mentioned
  • the optical schematic diagrams of the optical film assembly 122 shown in the third embodiment are substantially the same, so other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the related descriptions of the optical film assembly 122 shown in the third embodiment above. The description is not repeated here.
  • FIG. 25 is a schematic structural diagram of the optical film assembly 122 shown in FIG. 24 under an embodiment.
  • the liquid crystal material layer 11 is made of PNLC
  • the first electrode layer 21 and the second electrode layer 22 are both AZO films made of AZO
  • the structural color material layer 30 is an optical coating
  • the non-black ink layer 40 is made of Made of red ink.
  • the first carrier 61 and the second carrier 62 are transparent PC injection molded parts made of PC.
  • the auxiliary carrier 80 is made of PET film
  • the adhesive layer 90 is made of OCA.
  • the structural color material layer 30 divides the ambient light L 0 into magenta transmitted light L 1 and green reflected light L 2 as an example.
  • the appearance effect transformation is described.
  • the ambient light L0 is white light
  • the transmitted light L1 is magenta light
  • the reflected light L2 is green light
  • the background color light L * is red light of the same color as the transmitted light L1 .
  • the human eye can see the red background color light L * , that is, the human eye can see that the back cover 120 is red.
  • the liquid crystal material layer 11 is in the astigmatism state, the human eye can see the mixed light of the white ambient light L 0 , the red background color light L * and the green reflected light L 2 , that is, the human eye can see the yellow light, that is Human eyes can see that the back cover 120 is yellow.
  • the yellow light is a mixed light formed by mixing white light, red light and green light. In other words, by controlling the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state, the back cover 120 can be switched between red and yellow.
  • FIG. 26 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the eighth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a non-black ink layer 40 , a black ink layer 50 , a first carrier 61 , and a second carrier 62 , the auxiliary carrier 80 and the adhesive layer 90 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the non-black ink layer 40 is located on the side of the structural color material layer 30 away from the second electrode layer 22 .
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the structural color material layer 30 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the seventh embodiment is that the auxiliary carrier 80 is located between the structural color material layer 30 and the non-black ink layer 40 .
  • the top surface of the auxiliary carrier 80 carries the structural color material layer 30
  • the bottom surface of the auxiliary carrier 80 carries the non-black ink layer 40 .
  • the adhesive layer 90 is located between the second carrier 62 and the structural color material layer 30 .
  • the top surface of the adhesive layer 90 contacts the bottom surface of the second carrier 62
  • the bottom surface of the adhesive layer 90 contacts the top surface of the structural color material layer 30 .
  • the non-black ink layer 40 is provided on the bottom surface of the auxiliary carrier 80 .
  • the structural color material layer 30 shown in this embodiment is an optical coating.
  • the structural color material layer 30 can also be a nano-scale multilayer optical film.
  • the optical film component 30 further includes The adhesive layer 70 (as shown in FIG. 9 ), the adhesive layer 70 is located between the auxiliary carrier 80 and the structural color material layer 30 , the top surface of the adhesive layer 70 contacts the auxiliary carrier 80 , and the bottom surface of the adhesive layer 70 contacts Structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the third embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as the above-mentioned
  • the optical schematic diagrams of the optical film assembly 122 shown in the third embodiment are substantially the same, so other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the related descriptions of the optical film assembly 122 shown in the third embodiment above. The description is not repeated here.
  • FIG. 27a is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the rear cover 120 shown in FIG. 4 under the ninth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 and a non-black ink layer 40 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 .
  • the non-black ink layer 40 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • FIG. 27b is a schematic structural diagram of the structure shown in FIG. 27a under one embodiment.
  • the optical film assembly 122 further includes a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the first carrier 61 is located between the first electrode layer 21 and the structural color material layer 30 .
  • the top surface of the first carrier 61 carries the structural color material layer 30
  • the bottom surface of the first carrier 61 carries the first electrode layer 21 .
  • the top surface of the structural color material layer 30 is the top surface of the optical film assembly 122 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the second carrier 62 is located between the second electrode layer 22 and the non-black ink layer 40 .
  • the top surface of the second carrier 62 carries the second electrode layer 22
  • the bottom surface of the second carrier 62 carries the non-black ink layer 40 .
  • the structural color material layer 30 is a nano-scale multilayer optical film.
  • the optical film assembly 122 further includes an adhesive layer 70 located between the structural color material layer 30 and the first carrier 61 . Specifically, the top surface of the adhesive layer 70 contacts the structural color material layer 30 , and the bottom surface of the adhesive layer 70 contacts the first carrier 61 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the third embodiment, so other structures of the optical film assembly 122 shown in this embodiment can be described Referring to the related description of the optical film assembly 122 shown in the third embodiment above, the description will not be repeated here.
  • FIG. 28 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 27b when the liquid crystal material layer 11 is in a light-transmitting state.
  • the liquid crystal material layer 11 is in a light-transmitting state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the structural color material layer 30 ) from the outside through the cover plate 121 , and the structural color material layer 30 divides the ambient light L 0 into transmitted light L of different colors. 1 and reflected light L 2 .
  • the reflected light L 2 exits from the top surface of the structural color material layer 30 (ie, the top surface of the optical film assembly 122 ).
  • the transmitted light is complex light L 1
  • the reflected light L 2 may be monochromatic light or polychromatic light.
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 , passes through the adhesive layer 70 , the first carrier 61 and the first electrode layer 21 in sequence, and reaches the top surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in a light-transmitting state, the transmitted light L1 can pass through the liquid crystal material layer 11 and exit from the bottom surface of the liquid crystal material layer 11 along the initial propagation direction. Subsequently, the transmitted light L 1 sequentially passes through the second electrode layer 22 and the second carrier 62 to reach the top surface of the non-black ink layer 40 .
  • the transmitted light L1 is partially reflected by the non - black ink layer 40 to form the background color light L * , and the background color light L * passes through the second carrier 62, the second electrode layer 22, the liquid crystal material layer 11, the first electrode layer 21, the first The carrier 61 , the adhesive layer 70 and the structural color material layer 30 are emitted from the top surface of the structural color material layer 30 (ie, the top surface of the optical film assembly 122 ). At this time, both the background color light L * and the reflected light L 2 are emitted from the top surface of the optical film assembly 122 .
  • the color of the background color light L * is different from the colors of the reflected light L 2 and the transmitted light L 1 .
  • the color of the background color light L * is the same as the color of one of the monochromatic lights in the transmitted light L1, or the color of the background color light L * is the same as the color of light obtained by mixing multiple monochromatic lights in the transmitted light L1.
  • the transmitted light L1 is a polychromatic light composed of N (N ⁇ 2, and N is an integer) kinds of monochromatic light
  • the non-black ink layer 40 can reflect M(1 ⁇ M ⁇ N, and N is an integer) kinds of monochromatic light to form background color light L * .
  • the transmitted light L1 has a high intensity and has multiple propagation directions (ie, has multiple exit angles)
  • the background color light L * has a high intensity and has multiple
  • the intensity of the reflected light L2 is low and has a single propagation direction (ie, has a single exit angle).
  • the reflected light L 2 can be ignored. Therefore, it is equivalent that only the background color light L * is emitted from the top surface of the optical film assembly 122 .
  • FIG. 29 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 27b when the liquid crystal material layer 11 is in the astigmatism state.
  • the processor 400 powers off the first electrode layer 21 and the second electrode layer 22, and the voltage difference between the first electrode layer 21 and the second electrode layer 22 is zero, the liquid crystal material layer 11 in astigmatism.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the structural color material layer 30 ) from the outside through the cover plate 121 , and the structural color material layer 30 divides the ambient light L 0 into transmitted light L of different colors. 1 and reflected light L 2 .
  • the reflected light L 2 exits from the top surface of the structural color material layer 30 (ie, the top surface of the optical film assembly 122 ).
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 , passes through the adhesive layer 70 , the first carrier 61 and the first electrode layer 21 in sequence, and reaches the top surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in a scattered light state, the transmitted light L 1 will be scattered in the liquid crystal material layer 11 , that is, the transmitted light L 1 will be scattered and propagate in multiple directions under the action of the liquid crystal. Part of the transmitted light L1 can be emitted from the top surface of the liquid crystal material layer 11 , and pass through the first electrode layer 21 , the first carrier 61 , the adhesive layer 70 and the structural color material layer 30 in sequence, and then pass through the structural color material layer 30 . The top surface (ie, the top surface of the optical film assembly 122 ) exits.
  • Part of the transmitted light L 1 exits from the bottom surface of the liquid crystal material layer 11 , and passes through the second electrode layer 22 and the second carrier 62 in sequence to reach the top surface of the non-black ink layer 40 .
  • the transmitted light L1 is partially reflected by the non - black ink layer 40 to form a background color light L * , which passes through the second carrier 62 and the second electrode layer 22 in sequence to reach the bottom surface of the liquid crystal material layer 11 .
  • the background color light L * will be scattered in the liquid crystal material layer 11 , that is, the background color light L * will be scattered and propagate in multiple directions under the action of the liquid crystal.
  • Part of the background color light L * is emitted from the top surface of the liquid crystal material layer 11 , passes through the first electrode layer 21 , the first carrier 61 , the adhesive layer 70 and the structural color material layer 30 in sequence, and exits from the top surface of the structural color material layer 30 .
  • surface ie, the top surface of the optical film assembly 122 .
  • the transmitted light L 1 , the background color light L * and the reflected light L 2 are all emitted from the top surface of the optical film assembly 122 .
  • the transmitted light L1 and the background color light L * have high intensities and have multiple propagation directions ( ie, have multiple exit angles )
  • the reflected light L2 has a low intensity
  • has a single propagation direction ie, has a single exit angle.
  • the transmitted light L 1 and the background color light L * are negligible. Therefore, it is equivalent that only the transmitted light L 1 and the background color light L * are emitted from the top surface of the optical film assembly 122 .
  • the background color light L * is formed by the reflection of the transmitted light L 1 by the non-black ink layer 40 , it is equivalent to that only the transmitted light L 1 is emitted from the top surface of the optical film assembly 122 .
  • the background color light L * can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye. See background shade L*.
  • the transmitted light L1 can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, which can be seen by the human eye at this time. to the transmitted light L 1 .
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and drives the liquid crystal material layer 11 to switch between the light transmission state and the astigmatism state, so that the human eye can see
  • the user can see that the back cover 120 changes between the two appearance effects, which can satisfy the user's appearance requirements for the back cover 120.
  • the user can set the appearance effect of the back cover 120 according to personal preference, or the user can judge which application scenario the electronic device 1000 is in through the appearance effect of the back cover 120, so as to realize the interaction between the user and the electronic device 1000, and improve the User experience.
  • FIG. 30 is a schematic structural diagram of the optical film assembly 122 shown in FIG. 27b under an embodiment.
  • the liquid crystal material layer 11 is made of liquid crystal
  • the first electrode layer 21 is an AZO film made of AZO
  • the second electrode layer 22 is an ITO film made of ITO
  • the structural color material layer 30 is nanoscale Multilayer optical film
  • the non-black ink layer 40 is made of blue ink.
  • the first carrier 61 is a PMMA/PC composite sheet made of PMMA and PC
  • the second carrier 62 is a PET film made of PET.
  • the adhesive layer 70 is made of OCA.
  • the ambient light L 0 is white visible light
  • the transmitted light L 1 is cyan light
  • the reflected light L 2 is red light
  • the background color light L * is blue light having a different color from the transmitted light L 1 .
  • the cyan light is a complex light composed of green light and blue light.
  • the human eye can see the blue background color light L*, that is, the human eye can see that the back cover 120 is blue .
  • the human eye can see the cyan transmitted light L 1 , that is, the human eye can see that the back cover 120 is cyan.
  • the back cover 120 can be switched between blue and cyan.
  • FIG. 31 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the tenth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a non-black ink layer 40 , a black ink layer 50 , a first carrier 61 , and a second carrier 62 and adhesive layer 70.
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 . Wherein, the structural color material layer is a nano-scale multilayer optical film.
  • the non-black ink layer 40 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the second electrode layer 22 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the adhesive layer 70 is located between the first carrier 61 and the structural color material layer 30 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the ninth embodiment above is that the first carrier 61 is located on the side of the structural color material layer 30 away from the first electrode layer 21 .
  • the structural color material layer 30 is disposed on the bottom surface of the first carrier 61 .
  • the top surface of the adhesive layer 70 contacts the bottom surface of the first carrier 61
  • the bottom surface of the adhesive layer 70 contacts the structural color material layer 30 .
  • the first electrode layer 21 is disposed on the bottom surface of the structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the ninth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as the above-mentioned
  • the optical schematic diagrams of the optical film assembly 122 shown in the ninth embodiment are substantially the same, so other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the description of the optical film assembly 122 shown in the ninth embodiment above. The description is not repeated here.
  • FIG. 32 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the eleventh embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a non-black ink layer 40 , a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 .
  • the non-black ink layer 40 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the second electrode layer 22 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the structural color material layer 30 is an optical coating. Specifically, the structural color material layer 30 is provided on the top surface of the first carrier 61 . The top surface of the first carrier 61 carries the structural color material layer 30 , and the bottom surface of the first carrier 61 carries the first electrode layer 21 . Exemplarily, the structural color material layer 30 may be formed on the top surface of the first carrier 61 by a process such as PVD. It can be understood that, compared with the optical film assembly 122 shown in the ninth and tenth embodiments above, the optical film assembly 122 shown in this embodiment omits the adhesive layer 70, which is beneficial to reduce the thickness of the optical film assembly 122. By stacking the layers, the thickness of the back cover 120 can be reduced, which is beneficial to the light and thin design of the electronic device 1000 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the ninth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as the above-mentioned
  • the optical schematic diagrams of the optical film assembly 122 shown in the ninth embodiment are substantially the same, so other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the description of the optical film assembly 122 shown in the ninth embodiment above. The description is not repeated here.
  • FIG. 33 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twelfth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a non-black ink layer 40 , a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 .
  • the non-black ink layer 40 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the black ink layer 50 is located on the side of the non-black ink layer 40 away from the second electrode layer 22 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the eleventh embodiment above is that the first carrier 61 is located on the side of the structural color material layer 30 away from the first electrode layer 21 . Specifically, the structural color material layer 30 is disposed on the bottom surface of the first carrier 61 . At this time, the first electrode layer 21 is disposed on the bottom surface of the structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the ninth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment is the same as the above-mentioned
  • the optical schematic diagrams of the optical film assembly 122 shown in the ninth embodiment are substantially the same, so other structures and schematic diagrams of the optical paths of the optical film assembly 122 shown in this embodiment can refer to the description of the optical film assembly 122 shown in the ninth embodiment above. The description is not repeated here.
  • FIG. 34a is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the thirteenth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 and a black ink layer 50 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the black ink layer 50 is located inside the liquid crystal material layer 11 .
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11.
  • FIG. 34b is a schematic structural diagram of the structure shown in FIG. 34a under one embodiment.
  • the optical film assembly 122 further includes a first carrier 61 and a second carrier 62 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the second carrier 62 is located between the second electrode layer 22 and the black ink layer 50 .
  • the top surface of the second carrier 62 carries the second electrode layer 22
  • the bottom surface of the second carrier 62 carries the black ink layer 50 .
  • the black ink layer 50 may be formed on the bottom surface of the second carrier 62 by printing or spraying.
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the first embodiment, so other structures of the optical film assembly 122 shown in this embodiment may refer to The descriptions related to the optical film assembly 122 shown in the first embodiment above will not be repeated here.
  • FIG. 35 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 34b when the liquid crystal material layer 11 is in a light-transmitting state.
  • the liquid crystal material layer 11 is in a light-transmitting state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the first carrier 61 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and sequentially passes through the first carrier 61 and the first carrier 61 .
  • the electrode layer 21 reaches the top surface of the liquid crystal material layer 11 .
  • the ambient light L 0 can pass through the liquid crystal material layer 11 and exit from the bottom surface of the liquid crystal material layer 11 along the initial propagation direction. Subsequently, the ambient light L 0 sequentially passes through the second electrode layer 22 and the second carrier 62 to reach the black ink layer 50 . The ambient light L 0 is completely absorbed by the black ink layer 50 . At this time, no light is emitted from the top surface of the optical film assembly 122 .
  • FIG. 36 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 34b when the liquid crystal material layer 11 is in the astigmatism state.
  • the processor 400 powers off the first electrode layer 21 and the second electrode layer 22, and the voltage difference between the first electrode layer 21 and the second electrode layer 22 is zero, the liquid crystal material layer 11 in astigmatism.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the first carrier 61 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and sequentially passes through the first carrier 61 and the first carrier 61 .
  • the electrode layer 21 reaches the top surface of the liquid crystal material layer 11. Since the liquid crystal material layer 11 is in a light-scattering state, the ambient light L 0 will be scattered under the action of the liquid crystal.
  • the processor 400 can be used to adjust the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, so that the liquid crystal material layer 11 can be switched between the light-transmitting state and the light-scattering state, so as to achieve
  • the human eye changes between invisible light and seeing part of the ambient light L 0
  • the user can see that the back cover 120 changes between the two appearance effects, which can meet the user's appearance requirements for the back cover 120 .
  • the user can set the appearance effect of the back cover 120 according to personal preference, or the user can judge which application scenario the electronic device 1000 is in through the appearance effect of the back cover 120, so as to realize the interaction between the user and the electronic device 1000, and improve the User experience.
  • the appearance effect transformation of the back cover 120 is analyzed by taking the ambient light L 0 as white visible light as an example.
  • the back cover 120 appears dark black as seen by the human eye.
  • the ambient light L 0 can enter the human eye through the adhesive layer 123 and the cover plate 121 , and the human eye sees the environment For the light L 0 , when the ambient light L 0 is white visible light, the back cover 120 appears light black to the human eye.
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125 to switch the liquid crystal material layer 11 between the light-transmitting state and the astigmatic state, so that the user can Seeing the change in the black depth of the back cover 120 , the user can judge which application scenario the electronic device 1000 is in according to the change in the appearance of the back cover 120 , so as to realize the interaction between the user and the electronic device 1000 and improve the user experience. .
  • FIG. 37a is a partial structural schematic diagram of the optical film assembly 122 shown in FIG. 34b under another embodiment. 37a only shows the black ink layer 50, the brightness enhancement film 42 and the second carrier 62 of the optical film assembly 122. As shown in FIG. 37a
  • the optical film assembly 122 further includes a brightness enhancement film 42, and the brightness enhancement film 42 is located between the black ink layer 50 and the liquid crystal material layer 11 (as shown in FIG. 34b).
  • the brightness enhancement film 42 is located between the second carrier 62 and the black ink layer 50 .
  • the brightness enhancement film 42 is disposed on the bottom surface of the second carrier 62
  • the black ink layer 50 is disposed on the bottom surface of the brightness enhancement film 42 .
  • the brightness enhancement film 42 and the black ink layer 50 form the background layer 122 b of the back cover 120 .
  • the appearance effect transformation of the back cover 120 is analyzed by taking the ambient light L 0 as white visible light as an example.
  • the back cover 120 When the user holds the electronic device 1000 and uses the back cover 120 facing the user, when the liquid crystal material layer 11 is in a light-transmitting state, no light enters the human eye through the adhesive layer 123 and the cover plate 121, and the human eye cannot see the light at this time. That is, the back cover 120 is seen as black with high brightness to the human eye.
  • the ambient light L 0 can enter the human eye through the adhesive layer 123 and the cover plate 121 , and the human eye sees the environment For the light L 0 , when the ambient light L 0 is white visible light, the back cover 120 is seen by the human eye as light black with low brightness.
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125 to switch the liquid crystal material layer 11 between the light-transmitting state and the astigmatic state, so that the user can Seeing the change in the brightness of the black displayed by the back cover 120, the user can judge which application scenario the electronic device 1000 is in according to the change in the appearance of the back cover 120, so as to realize the interaction between the user and the electronic device 1000, and improve the usage of the user. experience.
  • FIG. 37b is a partial structural diagram of the optical film assembly 122 shown in FIG. 34b under the third embodiment. 37 b only shows the black ink layer 50 , the brightness enhancement film 42 , the nano-texture layer 43 and the second carrier 62 of the optical film assembly 122 .
  • the optical film assembly 122 further includes a brightness enhancement film 42 and a nano-texture layer 43.
  • Both the brightness enhancement film 42 and the nano-texture layer 43 are located between the black ink layer 50 and the liquid crystal material layer 11 (as shown in FIG. 34b ).
  • the brightness enhancement film 42 and the nano-texture layer 43 are both located between the black ink layer 50 and the second carrier 62 .
  • the nano-texture layer 43 is disposed on the bottom surface of the second carrier 62 .
  • the nano-texture layer 43 includes a nano-texture surface 431 facing the black ink layer 50 , and the brightness enhancement film 42 covers the nano-texture surface 431 .
  • the black ink layer 50 , the enhancement film 42 and the nano-texture layer 43 form the background layer 122 b of the back cover 120 .
  • the back cover 120 When the user holds the electronic device 1000 and uses the back cover 120 facing the user, when the liquid crystal material layer 11 is in a light-transmitting state, no light enters the human eye through the adhesive layer 123 and the cover plate 121, and the human eye cannot see the light at this time. That is, the back cover 120 is dazzling black when seen by human eyes.
  • the ambient light L 0 can enter the human eye through the adhesive layer 123 and the cover plate 121 , and the human eye sees the environment For the light L 0 , when the ambient light L 0 is white visible light, the back cover 120 appears light black to the human eye.
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125 to switch the liquid crystal material layer 11 between the light-transmitting state and the astigmatic state, so that the user can Seeing that the back cover 120 changes between glare black and light black, the user can judge which application scenario the electronic device 1000 is in according to the change in the appearance of the back cover 120, so as to realize the interaction between the user and the electronic device 1000. Improve user experience.
  • the optical film assemblies 122 shown in this embodiment omit the non-black ink layer 40, which is beneficial to reduce the number of optical film assemblies.
  • the number of stacked layers of 122 can reduce the thickness of the back cover 120 , which is beneficial to the light and thin design of the electronic device 1000 .
  • FIG. 38a is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the fourteenth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 and a black ink layer 50 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • FIG. 38b is a schematic structural diagram of the structure shown in FIG. 38a under one embodiment.
  • the optical film assembly 122 further includes a first carrier 61 and a second carrier 62 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the optical film assembly 122 further includes a structural color material layer 30, and the structural color material layer 30 is located on the first electrode
  • the layer 21 is on the side facing away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is located between the first carrier 61 and the first electrode layer 21 .
  • the structural color material layer 30 is an optical coating.
  • the top surface of the first carrier 61 is the top surface of the optical film assembly 122 .
  • the structural color material layer 30 is disposed on the bottom surface of the first carrier 61
  • the first electrode layer 21 is disposed on the bottom surface of the structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the thirteenth embodiment above, so other structures of the optical film assembly 122 shown in this embodiment are described
  • the related description of the optical film assembly 122 shown in the thirteenth embodiment may be referred to, and the description will not be repeated here.
  • FIG. 39 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 38b when the liquid crystal material layer 11 is in a light-transmitting state.
  • the liquid crystal material layer 11 is in a light-transmitting state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the first carrier 61 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and passes through the first carrier 61 to the structural color material The top surface of layer 30.
  • the structural color material layer 30 divides the ambient light L 0 into transmitted light L 1 and reflected light L 2 of different colors.
  • the reflected light L 2 is emitted from the top surface of the structural color material layer 30 , and exits from the top surface of the first carrier 61 (ie, the top surface of the optical film assembly 122 ) through the first carrier 61 .
  • the transmitted light L 1 and the reflected light L 2 may be monochromatic light or polychromatic light.
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 and passes through the first electrode layer 21 to reach the top surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in a light-transmitting state, the transmitted light L1 can pass through the liquid crystal material layer 11 and exit from the bottom surface of the liquid crystal material layer 11 along the initial propagation direction. Subsequently, the transmitted light L 1 sequentially passes through the second electrode layer 22 and the second carrier 62 to reach the top surface of the black ink layer 50 . The black ink layer 50 completely absorbs the transmitted light L1. At this time, only the reflected light L 2 is emitted from the top surface of the optical film assembly 122 .
  • FIG. 40 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 38b when the liquid crystal material layer 11 is in the astigmatism state.
  • the processor 400 powers off the first electrode layer 21 and the second electrode layer 22, and the voltage difference between the first electrode layer 21 and the second electrode layer 22 is zero, the liquid crystal material layer 11 in astigmatism.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the first carrier 61 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and passes through the first carrier 61 to the structural color material The top surface of layer 30.
  • the structural color material layer 30 divides the ambient light L 0 into transmitted light L 1 and reflected light L 2 of different colors.
  • the reflected light L 2 is emitted from the top surface of the structural color material layer 30 , and exits from the top surface of the first carrier 61 (ie, the top surface of the optical film assembly 122 ) through the first carrier 61 .
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 and passes through the first electrode layer 21 to reach the top surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in a scattered light state, the transmitted light L 1 will be scattered in the liquid crystal material layer 11 , that is, the transmitted light L 1 will be scattered and propagate in multiple directions under the action of the liquid crystal. Part of the transmitted light L1 exits from the top surface of the liquid crystal material layer 11, passes through the first electrode layer 21, the structural color material layer 30 and the first carrier 61 in sequence from the top surface of the first carrier 61 (ie, the optical film assembly 122). top surface) exits.
  • Part of the transmitted light L1 passes through the liquid crystal material layer 11 and exits from the bottom surface of the liquid crystal material layer 11 , and sequentially passes through the second electrode layer 22 and the second carrier 62 to reach the top surface of the black ink layer 50 .
  • the black ink layer 50 completely absorbs the transmitted light L1.
  • both the transmitted light L 1 and the reflected light L 2 are emitted from the top surface of the optical film assembly 122 .
  • the intensity of the transmitted light L1 is high and has multiple propagation directions (ie, has multiple exit angles )
  • the intensity of the reflected light L2 is low and has a single Propagation direction (ie with a single exit angle).
  • the reflected light L 2 is negligible compared to the transmitted light L 1 . Therefore, it is equivalent that only the transmitted light L 1 is emitted from the top surface of the optical film assembly 122 .
  • the liquid crystal material layer 11 When the user holds the electronic device 1000 and uses the back cover 120 facing the user, when the liquid crystal material layer 11 is in a light-transmitting state, the reflected light L 2 can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye. The reflected light L 2 is seen. When the liquid crystal material layer 11 is in the astigmatism state, the transmitted light L 1 can enter the human eye through the adhesive layer 123 and the cover plate 121 , and the human eye can see the transmitted light L 1 at this time.
  • the processor 400 can adjust the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125 to switch the liquid crystal material layer 11 between the light-transmitting state and the astigmatic state, so that people
  • the eye sees the reflected light L 2 and the transmitted light L 1
  • the user can see that the back cover 120 changes between the two appearance effects, which can satisfy the user's appearance requirements for the back cover 120 .
  • the user can set the appearance effect of the back cover 120 according to personal preference, or the user can judge which application scenario the electronic device 1000 is in through the appearance effect of the back cover 120, so as to realize the interaction between the user and the electronic device 1000, and improve the User experience.
  • FIG. 41 is a schematic structural diagram of the optical film assembly 122 shown in FIG. 38b under an embodiment.
  • the liquid crystal material layer 11 is made of PDLC
  • the first electrode layer 21 and the second electrode layer 22 are ITO films made of ITO
  • the structural color material layer 30 is an optical coating
  • the black ink layer 50 is made of ITO.
  • the first carrier 61 is made of glass
  • the second carrier 62 is a PET film made of PET.
  • the ambient light L 0 is white visible light
  • the structural color material layer 30 divides the ambient light L 0 into green transmitted light L 1 and magenta reflected light L 2 as an example
  • the appearance of the back cover 120 in this embodiment is discussed. Effect transformations are described.
  • the ambient light L 0 is white light
  • the transmitted light L 1 is green light
  • the reflected light L 2 is magenta light.
  • the human eye can see the magenta reflected light L 2 , that is, the human eye can see that the back cover 120 is magenta .
  • the human eye can see the green transmitted light L 1 , that is, the human eye can see that the back cover 120 is green.
  • FIG. 42 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the fifteenth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11, and both are electrically connected to the flexible circuit board 125.
  • the structural color material layer 30 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the fourteenth embodiment above is that the first carrier 61 is located between the structural color material layer 30 and the first electrode layer 21 . Specifically, the top surface of the first carrier 61 carries the structural color material layer 30 , and the bottom surface of the first carrier 61 carries the first electrode layer 21 . At this time, the top surface of the structural color material layer 30 is the top surface of the optical film assembly 122 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the fourteenth embodiment above, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the fourteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the fourteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 43 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the sixteenth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 .
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the fifteenth embodiment above is that the structural color material layer 30 is a nano-scale multilayer optical film.
  • the optical film assembly 122 further includes an adhesive layer 70 located between the structural color material layer 30 and the first carrier 61 .
  • the top surface of the adhesive layer 70 contacts the structural color material layer 30
  • the bottom surface of the adhesive layer 70 contacts the first carrier 61 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the fourteenth embodiment above, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the fourteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the fourteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 44 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the seventeenth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , a first carrier 61 and a second carrier 62 .
  • the first electrode layer 21 and the second electrode layer 22 are respectively located on opposite sides of the liquid crystal material layer 11 , and are both electrically connected to the flexible circuit board 125 .
  • the structural color material layer 30 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 .
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the sixteenth embodiment is that the first carrier 61 is located on the side of the structural color material layer 30 away from the first electrode layer 21 . Specifically, the bottom surface of the first bearing member 61 carries the structural color material layer 30 , and the first electrode layer 21 is provided on the bottom surface of the structural color material layer 30 . At this time, the adhesive layer 70 is located between the first carrier 61 and the structural color material layer 30 . The top surface of the adhesive layer 70 contacts the first carrier 61 , and the bottom surface of the adhesive layer 70 contacts the structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the fourteenth embodiment above, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the fourteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the fourteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 45a is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the eighteenth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , a fourth electrode layer 24 and a black ink layer 50 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between a light-transmitting state and a light-scattering state.
  • the structural color material layer 30 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the first electrode layer 21 .
  • the auxiliary liquid crystal material layer 12 may be made of liquid crystal material, PDLC or PNLC.
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 between the light-transmitting state and the light-scattering state. switch.
  • the electrode layers eg, the third electrode layer 23 and the fourth electrode layer 24
  • the electrode layers can be made of transparent conductive oxides such as ITO or AZO. It should be noted that the materials of the third electrode layer 23 and the fourth electrode layer 24 may be the same or different.
  • FIG. 45b is a schematic structural diagram of the structure shown in FIG. 45a under one embodiment.
  • the optical film assembly 122 further includes a first carrier 61 , a second carrier 62 , a third carrier 63 and a fourth carrier 64 .
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for bearing the first electrode layer 21 .
  • the first carrier 61 is located between the first electrode layer 21 and the structural color material layer 30 .
  • the first electrode layer 21 is disposed on the bottom surface of the first carrier 61 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for bearing the second electrode layer 22 .
  • the second carrier 62 is located between the second electrode layer 22 and the black ink layer 50 .
  • the top surface of the second carrier 62 carries the second electrode layer 22
  • the bottom surface of the second carrier 62 carries the black ink layer 50 .
  • the black ink layer 50 may be formed on the bottom surface of the second carrier 62 by printing or spraying.
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the third electrode layer 23 is disposed on the bottom surface of the third carrier 63 .
  • the third electrode layer 23 may be formed on the bottom surface of the third carrier 63 by a process such as PVD.
  • the top surface of the third carrier 63 is the top surface of the optical film assembly 122 .
  • the fourth bearing member 64 is located on the side of the fourth electrode layer 24 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the fourth electrode layer 24 .
  • the fourth carrier 64 is located between the fourth electrode layer 24 and the structural color material layer 30 .
  • the top surface of the fourth carrier 64 carries the fourth electrode layer 24
  • the bottom surface of the fourth carrier 64 carries the structural color material layer 30 .
  • the fourth electrode layer 24 may be formed on the top surface of the fourth carrier 64 by a process such as physical deposition
  • the structural color material layer 30 may be formed on the bottom surface of the fourth carrier 64 by a process such as PVD.
  • the carriers are both transparent carriers.
  • the carriers can be made of transparent glass or transparent plastic materials such as PET, PC or PMMA, and the carrier can be any one of injection molded parts, plates or films. It should be noted that the materials of the third carrier 63 and the fourth carrier 64 may be the same or different.
  • the optical film assembly 122 further includes an adhering layer 126 , and the adhering layer 126 is located between the structural color material layer 30 and the first carrier 61 .
  • the top surface of the bonding layer 126 contacts the bottom surface of the structural color material layer 30
  • the bottom surface of the adhesive layer 70 contacts the top surface of the first carrier 61 .
  • the conforming layer 126 is a transparent conforming layer.
  • the conformal layer 126 may be made of OCA.
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the fourteenth embodiment above, so other structures of the optical film assembly 122 shown in this embodiment can be Referring to the related description of the optical film assembly 122 shown in the above fourteenth embodiment, the description will not be repeated here.
  • FIG. 46 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 45b when the auxiliary liquid crystal material layer 12 is in a light-transmitting state and the liquid crystal material layer 11 is in a light-scattering state.
  • the processor 400 powers on the third electrode layer 23 and the fourth electrode layer 24 , and there is a voltage difference between the third electrode layer 23 and the fourth electrode layer 24 (that is, the voltage difference is greater than zero) , the auxiliary liquid crystal material layer 12 is in a light-transmitting state. Meanwhile, when the processor 400 powers off the first electrode layer 21 and the second electrode layer 22, and the voltage difference between the first electrode layer 21 and the second electrode layer 22 is zero, the liquid crystal material layer 11 is in the astigmatism state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the third carrier 63 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and passes through the third carrier 63 and the third carrier 63 in sequence.
  • the three-electrode layer 23 reaches the top surface of the auxiliary liquid crystal material layer 12 . Since the auxiliary liquid crystal material layer 12 is in a light-transmitting state, the ambient light L 0 can pass through the auxiliary liquid crystal material layer 12 and exit from the bottom surface of the auxiliary liquid crystal material layer 12 along the initial propagation direction, and pass through the fourth electrode layer 24 and the fourth carrier in sequence. 64 reaches the top surface of the layer 30 of structural color material.
  • the structural color material layer 30 divides the ambient light L 0 into transmitted light L 1 and reflected light L 2 of different colors.
  • the reflected light L2 exits from the top surface of the structural color material layer 30, passes through the fourth carrier 64, the fourth electrode layer 24, the auxiliary liquid crystal material layer 12, the third electrode layer 23, and the third carrier 63 in sequence, from the first
  • the top surfaces of the three carriers 63 ie, the top surfaces of the optical film assemblies 122 ) exit.
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 , and passes through the bonding layer 126 , the first carrier 61 and the first electrode layer 21 in sequence to reach the top surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in a scattered light state, the transmitted light L1 is scattered in the liquid crystal material layer 11 , that is, the transmitted light L1 is scattered and propagates in multiple directions under the action of the liquid crystal. Part of the transmitted light L1 emerges from the bottom surface of the liquid crystal material layer 11, and reaches the black ink layer 50 through the second electrode layer 22 and the second carrier 62 in turn, and the black ink layer 50 will absorb all the transmitted light L1.
  • both the transmitted light L 1 and the reflected light L 2 are emitted from the top surface of the optical film assembly 122 .
  • the intensity of the transmitted light L1 is high and has multiple propagation directions (ie, has multiple exit angles )
  • the intensity of the reflected light L2 is low and has a single Propagation direction (ie with a single exit angle).
  • the reflected light L 2 is negligible compared to the transmitted light L 1 . Therefore, it is equivalent that only the transmitted light L 1 is emitted from the top surface of the optical film assembly 122 .
  • FIG. 47 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 45b when the auxiliary liquid crystal material layer 12 is in the astigmatism state and the liquid crystal material layer 11 is in the astigmatism state.
  • the processor 400 powers off the third electrode layer 23 and the fourth electrode layer 24, and the voltage difference between the third electrode layer 23 and the fourth electrode layer 24 is zero, the auxiliary liquid crystal material layer 12 in astigmatism. Meanwhile, when the processor 400 powers off the first electrode layer 21 and the second electrode layer 22, and the voltage difference between the first electrode layer 21 and the second electrode layer 22 is zero, the liquid crystal material layer 11 is in the astigmatism state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the third carrier 63 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and passes through the third carrier 63 and the third carrier 63 in sequence.
  • the three-electrode layer 23 reaches the top surface of the auxiliary liquid crystal material layer 12 . Since the auxiliary liquid crystal material layer 12 is in a scattered light state, the ambient light L 0 will be scattered in the auxiliary liquid crystal material layer 12 , that is, the ambient light L 0 will be scattered and propagate in multiple directions under the action of the liquid crystal.
  • Part of the ambient light L 0 is emitted from the bottom surface of the auxiliary liquid crystal material layer 12 , and passes through the fourth electrode layer 24 and the fourth carrier 62 in sequence to reach the top surface of the structural color material layer 30 .
  • the structural color material layer 30 divides the ambient light L 0 into transmitted light L 1 and reflected light L 2 of different colors.
  • the reflected light L 2 exits from the top surface of the structural color material layer 30 , passes through the fourth carrier 62 and the fourth electrode layer 24 in sequence, and reaches the bottom surface of the auxiliary liquid crystal material layer 12 . Since the auxiliary liquid crystal material layer 12 is in a scattered light state, the reflected light L 2 is scattered in the auxiliary liquid crystal material layer 12 , that is, the reflected light L 2 is scattered and propagates in multiple directions under the action of the liquid crystal.
  • the partially reflected light L2 passes through the auxiliary liquid crystal material layer 12 and exits from the top surface of the auxiliary liquid crystal material layer 12, passes through the third electrode layer 23 and the third carrier 63 in sequence, and exits from the top surface of the third carrier 63 (ie, the top surface of the optical film assembly 122) out.
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 , and passes through the bonding layer 126 , the first carrier 61 and the first electrode layer 21 in sequence to reach the top surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in a scattered light state, the transmitted light L 1 will be scattered in the liquid crystal material layer 11 , that is, the transmitted light L 1 will be scattered and propagate in multiple directions under the action of the liquid crystal. Part of the transmitted light L1 passes through the liquid crystal material layer 11 and exits from the bottom surface of the liquid crystal material layer 11, and passes through the second electrode layer 22 and the second carrier 62 in turn to reach the black ink layer 50, and the black ink layer 50 will transmit the part. Light L1 is completely absorbed.
  • Part of the transmitted light L1 exits from the top surface of the liquid crystal material layer 11, and passes through the first electrode layer 21, the first carrier 61, the bonding layer 126, the structural color material layer 30, the fourth carrier 64 and the fourth electrode layer 24 reaches the bottom surface of the auxiliary liquid crystal material layer 12 . Since the auxiliary liquid crystal material layer 12 is in a scattered light state, the part of the transmitted light L1 will be scattered in the auxiliary liquid crystal material layer 12 , that is, the part of the transmitted light L1 will be scattered and propagate in multiple directions under the action of the liquid crystal.
  • Part of the transmitted light L1 passes through the auxiliary liquid crystal material layer 12 and exits from the top surface of the auxiliary liquid crystal material layer 12, passes through the third electrode layer 23 and the third carrier 63 in sequence, and exits from the top surface of the third carrier 63 (ie, the top surface of the optical film assembly 122) out. At this time, both the transmitted light L 1 and the reflected light L 2 are emitted from the top surface of the optical film assembly 122 .
  • the ambient light L 0 , the transmitted light L 1 and the reflected light L 2 are all scattered under the action of the liquid crystal, the ambient light L 0 , the transmitted light L 1 and the reflected light L 2 all have multiple propagation directions (ie with multiple exit angles). Therefore, the ambient light L 0 , the transmitted light L 1 and the reflected light L 2 are all emitted from the top surface of the optical film assembly 122 , that is, the mixed light of the ambient light L 0 , the transmitted light L 1 and the reflected light L 2 emerges from the optical film assembly 122 The top surface exits.
  • FIG. 48 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 45b when the auxiliary liquid crystal material layer 12 is in the light-transmitting state and the liquid crystal material layer 11 is in the light-transmitting state.
  • the processor 400 powers on the third electrode layer 23 and the fourth electrode layer 24 , and there is a voltage difference between the third electrode layer 23 and the fourth electrode layer 24 (that is, the voltage difference is greater than zero) , the auxiliary liquid crystal material layer 12 is in a light-transmitting state.
  • the processor 400 powers on the first electrode layer 21 and the second electrode layer 22, and there is a voltage difference between the first electrode layer 21 and the second electrode layer 22 (ie, the voltage difference is greater than zero), the liquid crystal material layer 11 in a translucent state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (that is, the top surface of the third carrier 63 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and passes through the third carrier 63 and the third carrier in sequence.
  • the three-electrode layer 23 reaches the top surface of the auxiliary liquid crystal material layer 12 . Since the auxiliary liquid crystal material layer 12 is in a light-transmitting state, the ambient light L 0 can pass through the auxiliary liquid crystal material layer 12 and exit from the bottom surface of the auxiliary liquid crystal material layer 12 along the initial propagation direction, and pass through the fourth electrode layer 24 and the fourth carrier in turn.
  • Pieces 64 reach the top surface of layer 30 of structural color material.
  • the structural color material layer 30 divides the ambient light L 0 into transmitted light L 1 and reflected light L 2 of different colors.
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 , and passes through the bonding layer 126 , the first carrier 61 and the first electrode layer 21 in sequence to reach the top surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in a light-transmitting state, the transmitted light L1 can pass through the liquid crystal material layer 11 and exit from the bottom surface of the liquid crystal material layer 11 along the initial propagation direction, and pass through the second electrode layer 22 and the second carrier 62 in sequence to reach The black ink layer 50, the black ink layer 50 will absorb all the transmitted light L1. At this time, only the reflected light L 2 is emitted from the top surface of the optical film assembly 122 .
  • the intensity of the transmitted light L1 is high and has multiple propagation directions (ie, has multiple exit angles )
  • the intensity of the reflected light L2 is low and has a single Propagation direction (ie with a single exit angle). Therefore, at this time, the reflected light L2 emitted from the top surface of the optical film assembly 122 has a lower intensity and a lighter color.
  • FIG. 49 is a schematic diagram of the optical path of the optical film assembly 122 shown in FIG. 45b when the auxiliary liquid crystal material layer 12 is in the astigmatic state and the liquid crystal material layer 11 is in the light-transmitting state.
  • the processor 400 powers off the third electrode layer 23 and the fourth electrode layer 24, and the voltage difference between the third electrode layer 23 and the fourth electrode layer 24 is zero, the auxiliary liquid crystal material layer 12 in astigmatism.
  • the processor 400 powers on the first electrode layer 21 and the second electrode layer 22, and there is a voltage difference between the first electrode layer 21 and the second electrode layer 22 (the voltage difference is greater than zero), the liquid crystal material layer 11 is in the Translucent state.
  • the ambient light L 0 enters the top surface of the optical film assembly 122 (ie, the top surface of the third carrier 63 ) from the outside through the cover plate 121 (as shown in FIG. 4 ), and passes through the third carrier 63 and the third carrier 63 in sequence.
  • the three-electrode layer 23 reaches the top surface of the auxiliary liquid crystal material layer 12 . Since the auxiliary liquid crystal material layer 12 is in a scattered light state, the ambient light L 0 will be scattered in the auxiliary liquid crystal material layer 12 , that is, the ambient light L 0 will be scattered and propagate in multiple directions under the action of the liquid crystal.
  • Part of the ambient light L 0 can be emitted from the top surface of the auxiliary liquid crystal material layer 12 , pass through the third electrode layer 23 and the third carrier 63 in sequence, and exit from the top surface of the third carrier 63 (ie, the top of the optical film assembly 122 ). face) exit.
  • Part of the ambient light L 0 is emitted from the bottom surface of the auxiliary liquid crystal material layer 12 , and passes through the fourth electrode layer 24 and the fourth carrier 64 in sequence to reach the top surface of the structural color material layer 30 .
  • the structural color material layer 30 divides the ambient light L 0 into transmitted light L 1 and reflected light L 2 of different colors.
  • the reflected light L 2 exits from the top surface of the structural color material layer 30 , passes through the fourth carrier 64 and the fourth electrode layer 24 in sequence, and reaches the bottom surface of the auxiliary liquid crystal material layer 12 . Since the auxiliary liquid crystal material layer 12 is in a scattered light state, the reflected light L 2 will be scattered in the auxiliary liquid crystal material layer 12 , that is, the reflected light L 2 will be scattered and propagate in multiple directions under the action of the liquid crystal. Part of the reflected light L2 exits from the top surface of the auxiliary liquid crystal material layer 12, passes through the third electrode layer 23 and the third carrier 63 in sequence, and exits from the top surface of the third carrier 63 (ie, the top surface of the optical film assembly 122). ) out.
  • the transmitted light L 1 exits from the bottom surface of the structural color material layer 30 , and passes through the bonding layer 126 , the first carrier 61 and the first electrode layer 21 in sequence to reach the top surface of the liquid crystal material layer 11 . Since the liquid crystal material layer 11 is in a light-transmitting state, the transmitted light L1 can pass through the liquid crystal material layer 11 and exit from the bottom surface of the liquid crystal material layer 11 along the initial propagation direction, and pass through the second electrode layer 22 and the second carrier 62 in sequence to reach the black color The ink layer 50 and the black ink layer 50 will absorb all the transmitted light L1. At this time, the ambient light L 0 and the reflected light L 2 are emitted from the top surface of the optical film assembly 122 .
  • the reflected light L 2 since the reflected light L 2 is scattered under the action of the liquid crystal, the reflected light L 2 propagates in multiple directions from the top surface of the optical film assembly 122 . Therefore, at this time, the reflected light L 2 exits from the top surface of the optical film assembly 122 The reflected light L2 has a larger intensity and a darker color.
  • the transmitted light L1 can pass through the adhesive layer 123 and the cover
  • the plate 121 enters the human eye, and the human eye can see the transmitted light L 1 .
  • the auxiliary liquid crystal material layer 12 is in the astigmatic state and the liquid crystal material layer 11 is in the astigmatic state
  • the mixed light of the ambient light L 0 , the transmitted light L 1 and the reflected light L 2 can enter through the adhesive layer 123 and the cover plate 121
  • the human eye can see the mixed light of the ambient light L 0 , the transmitted light L 1 and the reflected light L 2 .
  • the reflected light L 2 can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, and the human eye can see the color is relatively small. Shallow reflected light L 2 .
  • the reflected light L2 can pass through the adhesive layer 123 and the cover plate 121 and enter the human eye, and the human eye can see a darker color at this time The reflected light L 2 .
  • the processor 400 can adjust the voltage difference between the third electrode layer 23 and the fourth electrode layer 24 and the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, so that the The auxiliary liquid crystal material layer 12 and the liquid crystal material layer 11 are switched between the light transmission state and the astigmatism state, so that the human eye can see the transition between the four colors of light, that is, the user can see the four appearance effects of the back cover 120 Switching between them can meet the user's requirements for the appearance of the back cover 120 .
  • the user can set the appearance effect of the back cover 120 according to personal preference, or the user can judge which application scenario the electronic device 1000 is in through the appearance effect of the back cover 120, so as to realize the interaction between the user and the electronic device 1000, and improve the User experience.
  • FIG. 50 is a schematic structural diagram of the optical film assembly 122 shown in FIG. 45b under an embodiment.
  • the auxiliary liquid crystal material layer 12 and the liquid crystal material layer 11 are all made of PDLC
  • the third electrode layer 23 , the fourth electrode layer 24 , the first electrode layer 21 and the second electrode layer 22 are all made of ITO
  • the ITO film, the structural color material layer 30 is an optical coating, and the black ink layer 50 is a black ink layer.
  • the third carrier 63 , the fourth carrier 64 , the first carrier 61 and the second carrier 62 are all PET films made of PET, and the adhesive layer 126 is made of OCA.
  • the ambient light L 0 is white visible light
  • the structural color material layer 30 divides the ambient light L 0 into red transmitted light L 1 and cyan reflected light L 2 as an example
  • the appearance of the back cover 120 in this embodiment is discussed. Effect transformations are described.
  • the ambient light L 0 is white light
  • the transmitted light L 1 is red light
  • the reflected light L 2 is cyan light.
  • the human eye can see the red transmitted light L 1 , that is, Human eyes can see that the back cover 120 is red.
  • the human eye can see the mixed light of the white ambient light L 0 , the red transmitted light L 1 and the cyan reflected light L 2 , That is, the back cover 120 can be seen as white light by the human eye.
  • the human eye can see the light cyan reflected light L 2 , that is, the human eye can see that the back cover 120 is light cyan.
  • the auxiliary liquid crystal material layer 12 is in the astigmatic state and the liquid crystal material layer 11 is in the light-transmitting state
  • the human eye can see the cyan reflected light L 2 , that is, the human eye can see that the back cover 120 is cyan. Therefore, by controlling the auxiliary liquid crystal material layer 12 and the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state, the mutual transition of the back cover 120 between the four colors can be realized.
  • the color of the back cover 120 can be seen by the human eye to change between red and white.
  • the color of the back cover 120 can be seen to change between light cyan and cyan to the human eye.
  • the color of the back cover 120 can be seen by the human eye to change between light cyan and red.
  • the back cover 120 can be seen by the human eye to change between cyan and white.
  • FIG. 51 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the rear cover 120 shown in FIG. 4 under the nineteenth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 , a third carrier 63 and a fourth carrier 64 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the fourth bearing member 64 is located on the side of the fourth electrode layer 24 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the fourth electrode layer 24 .
  • the fourth carrier 64 is located between the structural color material layer 30 and the first carrier 61 .
  • the structural color material layer 30 is disposed on the top surface of the fourth carrier 64
  • the fourth electrode layer 64 is disposed on the top surface of the structural color material layer 30 .
  • the optical film assembly 122 further includes a bonding layer 126 , and the bonding layer 126 is located between the fourth carrier 64 and the first carrier 61 .
  • the top surface of the adhesive layer 126 contacts the bottom surface of the fourth carrier 64
  • the bottom surface of the adhesive layer 126 contacts the top surface of the first carrier 61 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 52 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twentieth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 , a third carrier 63 and a fourth carrier 64 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the fourth bearing member 64 is located on the side of the fourth electrode layer 24 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the fourth electrode layer 24 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the eighteenth embodiment above is that the first carrier 61 is located between the structural color material layer 30 and the first electrode layer 21 . Specifically, the top surface of the first carrier 61 carries the structural color material layer 30 , and the bottom surface of the first carrier 61 carries the first electrode layer 21 .
  • the optical film assembly 122 further includes an adhering layer 126 , and the adhering layer 126 is located between the fourth carrier 64 and the structural color material layer 30 . Specifically, the top surface of the adhering layer 126 contacts the fourth carrier 64 , and the bottom surface of the adhering layer 126 contacts the structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 53 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-first embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 and a third carrier 63 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the optical film assembly 122 shown in this embodiment omits the fourth carrier 64 and the bonding layer 126 , which is beneficial to reduce the stacking of the optical film assembly 122 In this way, the thickness of the optical film assembly 122 is reduced, which is beneficial to realize the reduction of the thickness of the back cover 120 and realize the light and thin design of the electronic device 1000 .
  • the structural color material layer 30 can also be disposed on the bottom surface of the fourth carrier 64 , and the first electrode layer 21 can be disposed on the bottom surface of the structural color material layer 30 , and the first carrier 61 can be omitted in this case.
  • the number of stacked layers of the optical film assembly 122 can also be reduced.
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 54 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-second embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 , a third carrier 63 and a fourth carrier 64 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the fourth bearing member 64 is located on the side of the fourth electrode layer 24 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the fourth electrode layer 24 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the eighteenth embodiment above is that the first carrier 61 is located between the structural color material layer 30 and the fourth carrier 64 . Specifically, the structural color material layer 30 is disposed on the bottom surface of the first carrier 61 , and the first electrode layer 21 is disposed on the bottom surface of the structural color material layer 30 .
  • the optical film assembly 122 further includes a bonding layer 126 , and the bonding layer 126 is located between the fourth carrier 64 and the first carrier 61 .
  • the top surface of the adhesive layer 126 contacts the bottom surface of the fourth carrier 64
  • the bottom surface of the adhesive layer 126 contacts the top surface of the first carrier 61 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 55 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-third embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 and a third carrier 63 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the optical film assembly 122 shown in this embodiment omits the fourth carrier 64 and the bonding layer 126 , which is beneficial to reduce the stacking of the optical film assembly 122 In this way, the thickness of the optical film assembly 122 is reduced, which is beneficial to realize the reduction of the thickness of the back cover 120 and realize the light and thin design of the electronic device 1000 .
  • the structural color material layer 30 can also be provided on the top surface of the fourth carrier 64 , and the first electrode layer 21 can be provided on the bottom surface of the fourth carrier 64 .
  • the first carrier can be omitted.
  • 61 and the bonding layer 126 can also reduce the number of stacked layers of the optical film assembly 122 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 56 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-fourth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 , a third carrier 63 and a fourth carrier 64 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the fourth bearing member 64 is located on the side of the fourth electrode layer 24 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the fourth electrode layer 24 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the eighteenth embodiment above is that the structural color material layer 30 is a nano-scale multilayer optical film.
  • the optical film assembly 122 further includes an adhesive layer 70 located between the fourth carrier 64 and the structural color material layer 30 . Specifically, the top surface of the adhesive layer 70 contacts the fourth carrier 64 , and the bottom surface of the adhesive layer 70 contacts the structural color material layer 30 .
  • the adhesive layer 70 is made of OCA.
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 57 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-fifth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 , a third carrier 63 and a fourth carrier 64 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the fourth bearing member 64 is located on the side of the fourth electrode layer 24 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the fourth electrode layer 24 .
  • the fourth carrier 64 is located between the structural color material layer 30 and the first carrier 61 .
  • the structural color material layer 30 is disposed on the top surface of the fourth carrier 64
  • the fourth electrode layer 64 is disposed on the top surface of the structural color material layer 30 .
  • the optical film assembly 122 further includes an adhesive layer 70 and a bonding layer 126 .
  • the adhesive layer 70 is located between the structural color material layer 30 and the fourth carrier 64 .
  • the top surface of the adhesive layer 70 contacts the structural color material layer 30
  • the bottom surface of the adhesive layer 70 contacts the fourth carrier 64 .
  • the adhering layer 126 is located between the fourth carrier 64 and the first carrier 61 .
  • the top surface of the adhering layer 126 contacts the fourth carrier 64
  • the bottom surface of the adhering layer 126 contacts the first carrier 61 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 58 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-sixth embodiment.
  • Optical film assembly 122 liquid crystal material layer 11, first electrode layer 21, second electrode layer 22, structural color material layer 30, black ink layer 50, auxiliary liquid crystal material layer 12, third electrode layer 23, fourth electrode layer 24, The first carrier 61 , the second carrier 62 , the third carrier 63 and the fourth carrier 64 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the fourth bearing member 64 is located on the side of the fourth electrode layer 24 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the fourth electrode layer 24 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the twenty-fourth embodiment above is that the first carrier 61 is located between the structural color material layer 30 and the first electrode layer 21 . Specifically, the top surface of the first carrier 61 carries the structural color material layer 30 , and the bottom surface of the first carrier 61 carries the first electrode layer 21 .
  • the optical film assembly 122 further includes an adhesive layer 70 and a bonding layer 126 .
  • the adhesive layer 70 is located between the structural color material layer 30 and the first carrier 61 .
  • the top surface of the adhesive layer 70 contacts the structural color material layer 30
  • the bottom surface of the adhesive layer 70 contacts the first carrier 61 .
  • the adhering layer 126 is located between the fourth carrier 64 and the structural color material layer 30 .
  • the top surface of the adhering layer 126 contacts the fourth carrier 64
  • the bottom surface of the adhering layer 126 contacts the structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 59 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-seventh embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 and a third carrier 63 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the optical film assembly 122 shown in this embodiment Compared with the optical film assembly 122 shown in the above twenty-sixth embodiment, the optical film assembly 122 shown in this embodiment omits the fourth carrier 64 and the bonding layer 126, which is beneficial to reduce the stacking of the optical film assembly 122.
  • the thickness of the optical film assembly 122 is reduced by the number of layers, which is beneficial to realize the reduction of the thickness of the back cover 120 and realize the light and thin design of the electronic device 1000 .
  • the structural color material layer 30 can also be disposed on the bottom surface of the fourth carrier 64 , and the first electrode layer 21 can be disposed on the bottom surface of the structural color material layer 30 , and the first carrier 61 can be omitted in this case.
  • the number of stacked layers of the optical film assembly 122 can also be reduced.
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 60 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-eighth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 , a third carrier 63 and a fourth carrier 64 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the fourth bearing member 64 is located on the side of the fourth electrode layer 24 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the fourth electrode layer 24 .
  • the difference between the optical film assembly 122 shown in this embodiment and the optical film assembly 122 shown in the twenty-fourth embodiment above is that the first carrier 61 is located between the structural color material layer 30 and the fourth carrier 64 .
  • the structural color material layer 30 is disposed on the bottom surface of the first carrier 61
  • the first electrode layer 21 is disposed on the bottom surface of the structural color material layer 30 .
  • the optical film assembly 122 further includes an adhesive layer 70 and a bonding layer 126 .
  • the adhesive layer 70 is located between the structural color material layer 30 and the first carrier 61 .
  • the top surface of the adhesive layer 70 contacts the first carrier 61 , and the bottom surface of the adhesive layer 70 contacts the structural color material layer 30 .
  • the adhering layer 126 is located between the fourth carrier 64 and the structural color material layer 30 .
  • the top surface of the adhering layer 126 contacts the fourth carrier 64 , and the bottom surface of the adhering layer 126 contacts the structural color material layer 30 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 61 is a schematic structural diagram of the optical film assembly 122 and the flexible circuit board 125 in the back cover 120 shown in FIG. 4 under the twenty-ninth embodiment.
  • the optical film assembly 122 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a structural color material layer 30 , a black ink layer 50 , an auxiliary liquid crystal material layer 12 , a third electrode layer 23 , and a fourth electrode layer 24 , a first carrier 61 , a second carrier 62 and a third carrier 63 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state .
  • the structural color material layer 30 is located on the side of the first electrode layer 24 away from the liquid crystal material layer 11 .
  • the structural color material layer 30 is an optical coating.
  • the black ink layer 50 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the auxiliary liquid crystal material layer 12 , the third electrode layer 23 and the fourth electrode layer 24 are all located on the side of the structural color material layer 30 away from the liquid crystal material layer 11 .
  • the third electrode layer 23 and the fourth electrode layer 24 are located on opposite sides of the auxiliary liquid crystal material layer 12 respectively, and are electrically connected to the flexible circuit board 125 for driving the auxiliary liquid crystal material layer 12 in a transparent state and astigmatism switch between states.
  • the first bearing member 61 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 12 , and is used for bearing the first electrode layer 21 .
  • the second bearing member 62 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 12 , and is used for bearing the second electrode layer 22 .
  • the third bearing member 63 is located on the side of the third electrode layer 23 away from the auxiliary liquid crystal material layer 12 , and is used for bearing the third electrode layer 23 .
  • the optical film assembly 122 shown in this embodiment omits the fourth carrier 64 and the bonding layer 126 , which is beneficial to reduce the stacking of the optical film assembly 122 In this way, the thickness of the optical film assembly 122 is reduced, which is beneficial to realize the reduction of the thickness of the back cover 120 and realize the light and thin design of the electronic device 1000 .
  • the structural color material layer 30 can also be provided on the top surface of the fourth carrier 64 , and the first electrode layer 21 can be provided on the bottom surface of the fourth carrier 64 .
  • the first carrier can be omitted.
  • 61 and the bonding layer 126 can also reduce the number of stacked layers of the optical film assembly 122 .
  • optical film assembly 122 shown in this embodiment are substantially the same as those of the optical film assembly 122 shown in the eighteenth embodiment, and the schematic diagram of the optical path of the optical film assembly 122 shown in this embodiment and The optical schematic diagrams of the optical film assembly 122 shown in the eighteenth embodiment above are substantially the same, so other structures and optical path schematic diagrams of the optical film assembly 122 shown in this embodiment can refer to the optical film assembly 122 shown in the eighteenth embodiment above. Related descriptions are not repeated here.
  • FIG. 62 is a schematic cross-sectional structural diagram of the rear cover 120 of the second electronic device 1000 according to the embodiment of the present application cut along the A-A direction.
  • the back cover 120 includes a liquid crystal material layer 11 , a first electrode layer 21 , a second electrode layer 22 , a non-black ink layer 40 and a flexible circuit board 125 .
  • the first electrode layer 21 and the second electrode layer 22 are located on opposite sides of the liquid crystal material layer 11 respectively, and are electrically connected to the flexible circuit board 125 for driving the liquid crystal material layer 11 to switch between a light-transmitting state and a light-scattering state.
  • the non-black ink layer 40 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 .
  • the rear cover 120 further includes a cover plate 121 , an auxiliary cover plate 128 and a side-filling ink layer 124 .
  • the cover plate 121 is located on the side of the first electrode layer 21 away from the liquid crystal material layer 11 , and is used for supporting the first electrode layer 21 .
  • the auxiliary cover plate 128 is located on the side of the second electrode layer 22 away from the liquid crystal material layer 11 , and is used for supporting the second electrode layer 22 .
  • the auxiliary cover plate 128 is located between the second electrode layer 22 and the non-black ink layer 40 .
  • the top surface of the auxiliary cover plate 128 carries the second electrode layer 22
  • the bottom surface of the auxiliary cover plate 128 carries the non-black ink layer 40 .
  • the complementary ink layer 124 is disposed around the peripheral surface of the liquid crystal material layer 11 , the first electrode layer 21 , the second electrode layer 22 , the non-black ink layer 40 and the auxiliary cover plate 128 .
  • the cover plate 121 is equivalent to the first carrier 61 (as shown in FIG. 5b ) of the optical film assembly 122 shown in the first embodiment above, and the auxiliary cover plate 128 is equivalent to the first bearing member 61 of the above-mentioned first embodiment.
  • the cover plate 120 shown in this embodiment directly uses the cover plate 121 to carry the first electrode layer 21 , and uses the auxiliary cover plate 128 to carry the second electrode layer 22 , which is equivalent to omitting the first bearing member 61 and the second bearing member 62 . It is beneficial to reduce the number of stacked layers of the back cover 120 , realize the thinning of the thickness of the back cover 120 , and be beneficial to realize the light and thin design of the electronic device 1000 . In other words, when the thicknesses of the first carrier 61 and the second carrier 62 are constant and have sufficient strength, the first carrier 61 and the second carrier 62 also directly replace the cover plate 121 and the auxiliary cover plate 128 . The number of stacks of cover 120.
  • the cover plate 121 may only be equivalent to the first carrier 61 of the optical film assembly 122 shown in the first embodiment above, or the auxiliary cover plate 128 may only be equivalent to the first supporting member 61 of the optical film assembly 122 shown in the first embodiment above.
  • the thickness of the back cover 120 can also be reduced.
  • cover plate 121 of the back cover 120 shown in this embodiment may also be equivalent to the first carrier 61 of the optical film assembly 122 shown in the second to twenty-ninth embodiments, and/or,
  • the auxiliary cover plate 128 of the rear cover 120 shown in this embodiment can also be equivalent to the second carrier 62 of the optical film assembly 122 shown in the second to twenty-ninth embodiments, and the thickness of the rear cover 120 can also be achieved. Thinning is not repeated here.
  • the embodiment of the present application provides a display method for the back cover 120, which is suitable for the back cover 120 shown in the first to twelfth embodiments of the above-mentioned back covers 120.
  • the display method of the back cover 120 includes:
  • the liquid crystal material layer 11 is driven in a light-transmitting state, and after the ambient light L 0 passes through the cover plate 121 and the liquid crystal material layer 11 , it is reflected by the non-black ink layer 40 to form the background color light L * , the background color light L * Exit after passing through the liquid crystal material layer 11 and the cover plate 1212.
  • the processor 400 powers on the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 12, and there is a voltage difference between the first electrode layer 21 and the second electrode layer 22 (that is, the voltage difference is greater than zero) , the liquid crystal material layer 11 is in a light-transmitting state.
  • the human eye can see the background color light L * , and the human eye sees the appearance effect that the back cover 120 presents the same color as the background color light L * .
  • the liquid crystal material layer 11 is driven to be in an astigmatic state, the ambient light L 0 is scattered in the liquid crystal material layer 11 after passing through the cover plate 121 , and part of the ambient light L 0 passes through the cover plate 121 and then exits. After the ambient light L 0 passes through the liquid crystal material layer 11 , it is reflected by the non-black ink layer 40 to form the background color light L * , and the background color light L * passes through the liquid crystal material layer 11 and the cover plate 121 and then exits.
  • the liquid crystal material layer 11 is in astigmatism.
  • the human eye can see the mixed light of the ambient light L 0 and the background color light L * , and the human eye sees that the back cover 120 presents the same appearance effect as the mixed light color of the ambient light L 0 and the background color light L * .
  • the processor 400 may also power on the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 12, and there is a voltage difference between the first electrode layer 21 and the second electrode layer 22 ( That is, when the voltage difference is greater than zero), the liquid crystal material layer 11 is in the astigmatism state, the processor 400 powers off the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 12, and the first electrode layer 21 and the second electrode layer 22. When the voltage difference between 22 is zero, the liquid crystal material layer 11 is in a light-transmitting state.
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and drives the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state, so as to
  • the human eye can change between the background color light L * and the mixed light of the ambient light L 0 and the background color light L * , and the user can judge which application scenario the electronic device 1000 is in through the appearance effect of the back cover 120, so that the user can The interaction with the electronic device 1000 improves the user experience.
  • the embodiment of the present application provides another display method for the back cover 120, which is applicable to the back cover 120 shown in the thirteenth to twenty-ninth embodiments of the above-mentioned back covers 120.
  • the display method of the back cover 120 includes:
  • the liquid crystal material layer 11 is driven to be in a light-transmitting state, and the ambient light L 0 is absorbed by the black ink layer 50 after passing through the cover plate 121 and the liquid crystal material layer 11 .
  • the processor 400 powers on the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 12, and there is a voltage difference between the first electrode layer 21 and the second electrode layer 22 (that is, the voltage difference is greater than zero) , the liquid crystal material layer 11 is in a light-transmitting state. At this time, the human eye cannot see the light, and the back cover 120 is black.
  • the liquid crystal material layer 11 is driven to be in an astigmatic state. After the ambient light L 0 passes through the cover plate 121 , the liquid crystal material layer 11 scatters. The ambient light L 0 is absorbed by the black ink layer 50 after passing through the liquid crystal material layer 11 . Specifically, when the processor 400 powers off the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 12, and the voltage difference between the first electrode layer 21 and the second electrode layer 22 is zero, the liquid crystal material layer 11 is in astigmatism. At this time, human eyes can see part of the ambient light L 0 . Exemplarily, when the ambient light L 0 is white visible light, the back cover 120 appears light black to the human eye.
  • the processor 400 may also power on the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 12, and there is a voltage difference between the first electrode layer 21 and the second electrode layer 22 ( That is, when the voltage difference is greater than zero), the liquid crystal material layer 11 is in the astigmatism state, the processor 400 powers off the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 12, and the first electrode layer 21 and the second electrode layer 22. When the voltage difference between 22 is zero, the liquid crystal material layer 11 is in a light-transmitting state.
  • the processor 400 adjusts the voltage difference between the first electrode layer 21 and the second electrode layer 22 through the flexible circuit board 125, and drives the liquid crystal material layer 11 to switch between the light-transmitting state and the light-scattering state, so as to
  • the human eye can switch between invisible light and ambient light L 0 , and the user can judge which application scenario the electronic device 1000 is in through the appearance effect of the back cover 120 , so as to realize the interaction between the user and the electronic device 1000 and improve the User experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请提供一种电子设备,包括后盖、处理器、电路板和柔性电路板。后盖包括液晶材料层和非黑色油墨层,非黑色油墨层位于液晶材料层的内侧,处理器、电路板和柔性电路板均位于后盖的内侧,处理器安装于电路板,且与电路板电连接,柔性电路板的一端电连接电路板,另一端电连接后盖。本申请所示电子设备中,后盖的外观效果是可变的,可满足用户的外观要求。

Description

电子设备
本申请要求于2021年03月31日提交中国专利局、申请号为202110352784.4、申请名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种电子设备。
背景技术
随着生活水平的不断体改,手机等电子设备已经成为人们必不可少的日常用品,人们对电子设备的外观要求也在不断提高。目前,电子设备的后盖主要通过镀膜、喷涂、印刷或贴效果膜的范式实现后盖的外观效果,其后盖的外观效果是固定不变的,无法满足用户的外观要求。
发明内容
本申请实施例提供一种电子设备,电子设备中后盖的外观效果是可变的,可满足用户的外观要求。
第一方面,本申请提供一种电子设备,包括后盖、处理器、电路板和柔性电路板。后盖包括液晶材料层和非黑色油墨层,非黑色油墨层位于液晶材料层的内侧。处理器、电路板和柔性电路板位于后盖的内侧,处理器安装于电路板,且与电路板电连接,柔性电路板的一端电连接电路板,即柔性电路板经电路板电连接处理器。柔性电路板的另一端电连接后盖。
其中,电路板可以为电子设备的主板。
液晶材料层处于透光状态时,环境光穿过液晶材料层后,被非黑色油墨层反射形成背景色光,背景色光穿过液晶材料层后出射。此时,仅有背景色光自后盖出射。
其中,环境光,也可以称为自然光。环境光一般是由多种单色光复合而成的复色光,环境光为覆盖全波段的光线。本申请实施例提及的环境光可以指自然环境中存在的光线,还可以指人为创造的环境中存在的光线。由于人眼仅能感知到位于可见光波段(波长在400nm~800nm之间)的光线,本申请实施例提及的环境光可为位于可见光波段的光线,比如,环境光可为白色的可见光。
液晶材料层处于散光状态时,环境光在液晶材料层发生散射,部分环境光自液晶材料层背离非黑色油墨层的表面出射,部分环境光被非黑色油墨层反射形成背景色光,背景色光在液晶材料层发生散射,部分背景色光自液晶材料层背离非黑色油墨层的表面出射。此时,环境光和背景色光自后盖出射。
本申请所示电子设备中,液晶材料层可在透光状态和散光状态之间切换,自后盖出射的光线在背景色光以及环境光和背景色光的混合光之间变换,用户可看到后盖在两种外观效果之间变换,满足了用户对后盖的外观要求。
此外,用户可依据个人喜好设置后盖的外观效果,实现用户的个性化后盖设置。或者,后盖用于电子设备时,电子设备处于不同的应用场景下,后盖的外观效果不同,用户可依据后盖的外观效果判断电子设备的应用场景,实现用户与电子设备之间的功能交互。
一种实施方式中,后盖还包括第一电极层和第二电极层,第一电极层位于液晶材料层背离非黑色油墨层的一侧,第二电极层位于液晶材料层和非黑色油墨层之间,第一电极层和第二电极层用于驱动液晶材料层在透光状态和散光状态之间切换。
一种实施方式中,第一电极层和第二电极层均具有电信号输入端,第一电极层和第二电极层的电信号输入端均与柔性电路板电连接,处理器经柔性电路板驱动液晶材料层在透光状态和散光状态之间切换。
一种实施方式中,第一电极层和第二电极层之间存在电压差(即电压差大于0)时,液晶材料层处于透光状态,第一电极层和第二电极层之间不存在电压差(即电压差等于0)时,液晶材料层处于散光状态。
另一种实施方式中,第一电极层和第二电极层之间不存在电压差(即电压差等于0)时,液晶材料层处于透光状态,第一电极层和第二电极层之间存在电压差(即电压差大于0)时,液晶材料层处于散光状态。
其中,第一电极层和第二电极层可采用掺锡氧化铟或掺铝氧化锌等透明导电氧化物制成。
其中,第一电极层和第二电极层的材料可以相同,也可以不同。
一种实施方式中,第一电极层包括多个彼此独立的电极部分,液晶材料层包括与多个电极部分一一对应的液晶部分,每一电极部分和第二电极层用于驱动一个液晶部分在透光状态和散光状态之间切换。
本实施方式所示电子设备中时,第一电极层和多个电极部分可均上电,或者,第一电极层和部分电极部分可均上电,或者,第一电极层和多个电极部分可均不上电,以丰富后盖的外观效果,满足用户的外观需求。
另一种实施方式中,第二电极层包括多个彼此独立的电极部分,液晶材料层包括与多个电极部分一一对应的液晶部分,每一电极部分和第一电极层用于驱动一个液晶部分在透光状态和散光状态之间切换。
其中,多个彼此独立的电极部分是指,多个电极部分之间彼此绝缘,一个电极部分通电时,不会对该电极部分周边的其他电极部分产生影响。
一种实施方式中,后盖还包括增亮膜,增亮膜位于非黑色油墨层和液晶材料层之间,用以加强非黑色油墨层对环境光的反射作用,提高背景色光的亮度。液晶材料层在透光状态和散光状态之间切换时,增亮膜的设置可以增加后盖的两种外观效果之间的差异。
其中,增亮膜位于非黑色油墨层和第二电极层之间,增亮膜和非黑色油墨层形成后盖的背景层。
其中,增亮膜可采用二氧化硅、二氧化钛或氧化铌等氧化制成,或者,增亮膜也可以为采用结构色材料制成的光学镀膜或纳米级多层光学膜。
另一种实施方式中,后盖还包括增亮膜,增亮膜位于非黑色油墨层和液晶材料层之间,增亮膜包括与多个电极部分一一对应的增亮部分。此时,增亮膜和非黑色油墨层形成后盖的背景层。
其中,增亮部分的形状为英文字母、汉字、数字或其他具有标识性的图案,或者,英文字母、汉字、数字或其他具有标识性的图案的组合。
本实施方式所示电子设备中,增亮膜中英文字母、汉字、数字或其他具有标识性图案的设置可进一步丰富后盖的外观效果,满足用户的外观需求,提高用户的使用体验。
一种实施方式中,后盖还包括纳米纹理层和增亮膜,纳米纹理层和增亮膜均位于非黑色油墨层和液晶材料层之间,纳米纹理层包括朝向非黑色油墨层的纳米纹理面,增亮膜覆盖纳 米纹理面。纳米纹理层和增亮膜用以加强非黑色油墨层对环境光的反射作用,使背景光产生炫光效果,以丰富后盖的外观效果的,满足用户的外观需求,提高用户的使用体验。
其中,纳米纹理层和增亮膜均位于非黑色油墨层和第二电极层之间。此时,纳米纹理层、增亮膜和非黑色油墨层形成后盖的背景层。
其中,纳米纹理面具有多个凸起,多个凸起的尺寸在纳米级。
其中,凸起的形状包括且不限于三角形、半圆形或弧形。
一种实施方式中,后盖还包括纳米纹理层和增亮膜,纳米纹理层和增亮膜均位于非黑色油墨层和液晶材料层之间,纳米纹理层包括与多个电极部分一一对应的纹理部分,每一纹理部分均包括背离液晶材料层的纳米纹理面,增亮膜覆盖每一纹理部分的纳米纹理面。此时,纳米纹理层、增亮膜和非黑色油墨层形成后盖的背景层。
其中,纹理部分的形状为英文字母、汉字、数字或其他具有标识性的图案,或者,英文字母、汉字、数字或其他具有标识性的图案的组合。
本实施方式所示后盖中,纳米纹理层中英文字母、汉字、数字或其他具有标识性图案的设置可进一步丰富后盖的外观效果,满足用户的外观需求,提高用户的使用体验。
一种实施方式中,后盖还包括结构色材料层,结构色材料层位于液晶材料层和非黑色油墨层之间。即,液晶材料层和非黑色油墨层分别位于结构色材料层的相对两侧。
其中,结构色材料层位于第二电极层和非黑色油墨层之间。
其中,结构色材料层采用结构色材料制成。结构色材料是指可以在可见光波段内选择透射光波长的材料。示例性的,白色的可见光射入结构色材料层时,结构色材料层可将白色的可见光分为不同颜色的透射光和反射光。其中,透射光和反射光可以是单色光,也可以是复色光。
液晶材料层处于透光状态时,环境光穿过液晶材料层后,被结构色材料层分为不同颜色的透射光和反射光,透射光被非黑色油墨层反射形成与反射光的颜色不同的背景色光,背景色光穿过结构色材料层和液晶材料层后出射,反射光穿过液晶材料层后出射。此时,背景色光和反射光自后盖出射。
应当理解的是,基于结构色材料层的特性,透射光的强度高,且具有多个传播方向(即具有多个出射角度),则背景色光的强度高,且具有多个传播方向(即具有多个出射角度),而反射光的强度低,且具有单一的传播方向(即具有单一出射角度)。相比于背景色光,反射光可以忽略不计。因此,在液晶材料层处于透光状态时,相当于仅有背景色光自后盖出射。
液晶材料层处于散光状态时,环境光在液晶材料层中发生散射,部分环境光自液晶材料层背离结构色材料层的表面出射,部分环境光被结构色材料层分为透射光和反射光,透射光被非黑色油墨层反射形成背景色光,背景色光穿过结构色材料层后,在液晶材料层中发生散射,部分背景色光自液晶材料层背离结构色材料层的表面出射,反射光在液晶材料层中发生散射,部分反射光自液晶材料层背离结构色材料层的表面出射。此时,环境光、背景色光和发射光自后盖射出。
应当理解的是,由于环境光、背景色光和反射光均在液晶材料层发生了散射,环境光、背景色光和反射光均具有多个传播方向(即具有多个出射角度)。因此,环境光、背景色光和反射光均自光学膜组件出射,即环境光、背景色光和反射光的混合光自后盖出射。
本实施方式所示后盖中,液晶材料层可在透光状态和散光状态之间切换,自后盖出射的光线在背景色光以及环境光、背景色光和反射光的混合光之间变换,用户可看到后盖在两种外观效果之间变换,满足用户对后盖的外观要求。
一种实施方式中,后盖还包括结构色材料层,结构色材料层位于液晶材料层背离非黑色油墨层的一侧。
需要说明的是,本申请描述各层结构之间的位置关系时所提及的“一侧”均是指沿层结构的厚度方向的方位,即层结构的表面所朝向的方位,也即层的顶面或底面所朝向的方位。
其中,结构色材料层位于第一电极层背离液晶材料层的一侧。
液晶材料层处于透光状态时,环境光被结构色材料层分为不同颜色的透射光和反射光,透射光为复色光,透射光穿过液晶材料层后,被非黑色油墨层反射形成与透射光颜色不同的背景色光,背景色光穿过液晶材料层和结构色材料层后出射,反射光自结构色材料层背离液晶材料层的表面出射;
液晶材料层处于散光状态时,环境光被结构色材料层分为透射光和反射光,透射光在液晶材料层中发生散射,部分透射光穿过结构色材料层后出射,部分透射光被非黑色油墨层反射形成背景色光,背景色光在液晶材料层中发生散射,部分背景色光穿过结构色材料层后出射,反射光自结构色材料层背离液晶材料层的表面出射。
一种实施方式中,结构色材料层为光学镀膜或纳米级多层光学膜。
一种实施方式中,后盖还包括第一承载件,第一承载件位于第一电极层背离液晶材料层的一侧,用于承载第一电极层。
其中,第一承载件可以采用透明玻璃或聚对苯二甲酸乙二醇脂、聚碳酸酯或聚甲基丙烯酸酯等透明塑胶材料制成。
其中,第一承载件可以是注塑件、板材或膜片的任意一种。
一种实施方式中,后盖还包括第二承载件,第二承载件位于第二电极层背离液晶材料层的一侧,用于承载第二电极层。
其中,第二承载件位于第二电极层和所述非黑色油墨层之间。
其中,第二承载件可以采用透明玻璃或聚对苯二甲酸乙二醇脂、聚碳酸酯或聚甲基丙烯酸酯等透明塑胶材料制成。
其中,第二承载件可以是注塑件、板材或膜片的任意一种。
其中,第二承载件和第一承载件的材料可以相同,也可以不同。
一种实施方式中,后盖还包括盖板,盖板位于液晶材料层背离非黑色油墨层的一侧。即,盖板相当于上述第一承载件。换言之,第一承载件的厚度较大且具有一定强度时,光学膜组件可直接用作后盖,以减小后盖的叠层数,有助于减小后盖的厚度。
一种实施方式中,后盖还包括辅助盖板,辅助盖板位于第二电极层背离液晶材料层的一侧,用于承载第二电极层。即,辅助盖板相当于上述第二承载件。换言之,第二承载件的厚度较大且具有一定强度时,光学膜组件可直接用作后盖,进一步减小后盖的叠层数,有助于减小后盖的厚度。
一种实施方式中,后盖还包括黑色油墨层,黑色油墨层位于非黑色油墨层背离液晶材料层的一侧,防止后盖中非黑色油墨层背离液晶材料层的一侧漏光。
一种实施方式中,后盖还包括补边油墨层,补边油墨层覆盖液晶材料层和非黑色油墨层的周面,以防止后盖的侧边漏光。
其中,补边油墨层与液晶材料层位于盖板的同一侧。
一种实施方式中,后盖还包括柔性电路板,柔性电路板用于电连接电子设备的处理器,处理器经柔性电路板驱动液晶材料层在透光状态和散光状态之间切换。
一种实施方式中,液晶材料层采用液晶、聚合物分散液晶或聚合物网格液晶制成。
第二方面,本申请还提供一种电子设备,包括后盖、处理器、电路板和柔性电路板。后盖包括液晶材料层和黑色油墨层,黑色油墨层位于液晶材料层的内侧。处理器、电路板和柔性电路板位于后盖的内侧,处理器安装于电路板,且与电路板电连接,柔性电路板的一端电连接电路板,即柔性电路板经电路板电连接处理器。柔性电路板的另一端电连接后盖。
液晶材料层处于透光状态时,环境光穿过液晶材料层后,被黑色油墨层吸收。此时,没有光线从后盖出射。
液晶材料层处于散光状态时,环境光在液晶材料层中发生散射,部分环境光自液晶材料层背离黑色油墨层的表面出射,部分环境光被黑色油墨层吸收。此时,环境光从后盖出射。
本申请所示后盖中,液晶材料层可在透光状态和散光状态之间切换,人眼在看不到光线和看到环境光之间变换,用户可看到后盖在两种外观效果之间变换,满足了用户对后盖的外观要求。
一种实施方式中,后盖还包括第一电极层和第二电极层,第一电极层位于液晶材料层背离非黑色油墨层的一侧,第二电极层位于液晶材料层和非黑色油墨层之间,第一电极层和第二电极层用于驱动液晶材料层在透光状态和散光状态之间切换。
一种实施方式中,第一电极层和第二电极层之间存在电压差(即电压差大于0)时,液晶材料层处于透光状态,第一电极层和第二电极层之间不存在电压差(即电压差等于0)时,液晶材料层处于散光状态。
另一种实施方式中,第一电极层和第二电极层之间不存在电压差(即电压差等于0)时,液晶材料层处于透光状态,第一电极层和第二电极层之间存在电压差(即电压差大于0)时,液晶材料层处于散光状态。
一种实施方式中,第一电极层包括多个彼此独立的电极部分,液晶材料层包括与多个电极部分一一对应的液晶部分,每一电极部分和第二电极层用于驱动一个液晶部分在透光状态和散光状态之间切换。
本实施方式所示电子设备中,第一电极层和多个电极部分可均上电,或者,第一电极层和部分电极部分可均上电,或者,第一电极层和多个电极部分可均不上电,以丰富后盖的外观效果,满足用户的外观需求。
另一种实施方式中,第二电极层包括多个彼此独立的电极部分,液晶材料层包括与多个电极部分一一对应的液晶部分,每一电极部分和第一电极层用于驱动一个液晶部分在透光状态和散光状态之间切换。
一种实施方式中,后盖还包括增亮膜,增亮膜位于非黑色油墨层和液晶材料层之间。液晶材料层在透光状态和散光状态之间切换时,增亮膜的设置可以增加后盖的两种外观效果之间的差异。
其中,增亮膜位于黑色油墨层和第二电极层之间,增亮膜和黑色油墨层形成后盖的背景层。
另一种实施方式中,后盖还包括增亮膜,增亮膜位于非黑色油墨层和液晶材料层之间,增亮膜包括与多个电极部分一一对应的增亮部分。此时,增亮膜和非黑色油墨层形成后盖的背景层。
其中,增亮部分的形状为英文字母、汉字、数字或其他具有标识性的图案,或者,英文字母、汉字、数字或其他具有标识性的图案的组合。
本实施方式所示后盖中,增亮膜中英文字母、汉字、数字或其他具有标识性图案的设置可进一步丰富后盖的外观效果,满足用户的外观需求,提高用户的使用体验。
一种实施方式中,后盖还包括纳米纹理层和增亮膜,纳米纹理层和增亮膜均位于黑色油墨层和液晶材料层之间,纳米纹理层包括朝向黑色油墨层的纳米纹理面,增亮膜覆盖纳米纹理面。纳米纹理层和增亮膜用以丰富后盖的外观效果,满足用户的外观需求,提高用户的使用体验。
其中,纳米纹理层和增亮膜均位于黑色油墨层和第二电极层之间。此时,纳米纹理层、增亮膜和黑色油墨层形成后盖的背景层。
另一种实施方式中,后盖还包括纳米纹理层和增亮膜,纳米纹理层和增亮膜均位于黑色油墨层和液晶材料层之间,纳米纹理层包括与多个电极部分一一对应的纹理部分,每一纹理部分均包括背离液晶材料层的纳米纹理面,增亮膜覆盖每一纹理部分的纳米纹理面。此时,纳米纹理层、增亮膜和黑色油墨层形成后盖的背景层。
其中,纹理部分的形状为英文字母、汉字、数字或其他具有标识性的图案,或者,英文字母、汉字、数字或其他具有标识性的图案的组合。
本实施方式所示后盖中,纳米纹理层中英文字母、汉字、数字或其他具有标识性图案的设置可进一步丰富后盖的外观效果,满足用户的外观需求,提高用户的使用体验。
一种实施方式中,后盖还包括结构色材料层,结构色材料层位于液晶材料层背离黑色油墨层的一侧。即,结构色材料层和黑色油墨层分别位于液晶材料层的相对两侧。
其中,结构色材料层位于第一电极层背离液晶材料层的一侧。
液晶材料层处于透光状态时,环境光被结构色材料层分为不同颜色的透射光和反射光,透射光穿过液晶材料层后,被黑色油墨层吸收,反射光自结构色材料层背离液晶材料层的表面出射。此时,反射光自后盖出射。
液晶材料层处于散光状态时,环境光被结构色材料层分为透射光和反射光,透射光在液晶材料层中发生散射,部分透射光穿过结构色材料层后出射,部分透射光被黑色油墨层吸收,反射光自结构色材料层背离液晶材料层的表面出射。此时,透射光和反射光自后盖出射。
应当理解的是,基于结构色材料层的特性,透射光的强度高,且具有多个传播方向(即具有多个出射角度),而反射光的强度低,且具有单一的传播方向(即具有单一出射角度)。相比于透射光,反射光可以忽略不计。因此,相当于仅有透射光自后盖出射。
本实施例所示光学膜组件用于后盖时,液晶材料层可在透光状态和散光状态之间切换,自后盖出射的光线在反射光以及透射光之间变换,用户可看到后盖在两种外观效果之间变换,满足用户对后盖的外观要求。
一种实施方式中,结构色材料层为光学镀膜或纳米级多层光学膜。
一种实施方式中,后盖还包括第一承载件,第一承载件位于第一电极层背离液晶材料层的一侧,用于承载第一电极层。
其中,第一承载件可以采用透明玻璃或聚对苯二甲酸乙二醇脂、聚碳酸酯或聚甲基丙烯酸酯等透明塑胶材料制成。
其中,第一承载件可以是注塑件、板材或膜片的任意一种。
一种实施方式中,后盖还包括第二承载件,第二承载件位于第二电极层背离液晶材料层的一侧,用于承载第二电极层。
其中,第二承载件位于第二电极层和所述非黑色油墨层之间。
其中,第二承载件可以采用透明玻璃或聚对苯二甲酸乙二醇脂、聚碳酸酯或聚甲基丙烯酸酯等透明塑胶材料制成。
其中,第二承载件可以是注塑件、板材或膜片的任意一种。
其中,第二承载件和第一承载件的材料可以相同,也可以不同。
一种实施方式中,后盖还包括盖板,盖板位于液晶材料层背离非黑色油墨层的一侧。即,盖板相当于上述第一承载件。换言之,第一承载件的厚度较大且具有一定强度时,光学膜组件可直接用作后盖,以减小后盖的叠层数,有助于减小后盖的厚度。
一种实施方式中,后盖还包括辅助盖板,辅助盖板位于第二电极层背离液晶材料层的一侧,用于承载第二电极层。即,辅助盖板相当于上述第二承载件。换言之,第二承载件的厚度较大且具有一定强度时,光学膜组件可直接用作后盖,进一步减小后盖的叠层数,有助于减小后盖的厚度。
一种实施方式中,后盖还包括辅助液晶材料层,辅助液晶材料层位于结构色材料层背离液晶材料层的一侧。
其中,辅助液晶材料层位于结构色材料层背离第一电极层的一侧。
辅助液晶材料层处于透光状态,且液晶材料层处于散光状态时,环境光穿过辅助液晶材料层后,被结构色材料层分成透射光和反射光,透射光在液晶材料层中发生散射,部分透射光穿过结构色材料层和辅助液晶材料层后出射,部分透射色光被黑色油墨层吸收,反射光穿过辅助液晶材料层后出射。此时,透射光和反射光自光学膜组件的表面出射。
应当理解的是,基于结构色材料层的特性,透射光的强度高,且具有多个传播方向(即具有多个出射角度),而反射光的强度低,且具有单一的传播方向(即具有单一出射角度)。相比于透射光,反射光可以忽略不计。因此,相当于仅有透射光自后盖出射。
辅助液晶材料层处于散光状态,且液晶材料层处于散光状态时,环境光在辅助液晶材料层中发生散射,部分环境光自辅助液晶材料层背离结构色材料层的表面出射,部分环境光被结构色材料层分成透射光和反射光,透射光在液晶材料层中发生散射,部分透射光被黑色油墨层吸收,部分透射光穿过结构色材料层后,在辅助液晶材料层中发生散射,部分透射光自辅助液晶材料层背离结构色材料层的表面出射,反射光在辅助液晶材料层中发生散射,部分反射光自辅助液晶材料层背离结构色材料层的表面出射。此时,环境光、透射光和反射光均自光学膜组件的表面出射。
应当理解的是,由于环境光、透射光和反射光均在液晶的作用下发生了散射,环境光、透射光和反射光均具有多个传播方向(即具有多个出射角度)。因此,环境光、透射光和反射光均自后盖出射,即环境光、透射光和反射光的混合光自后盖出射。
辅助液晶材料层处于透光状态,且液晶材料层处于透光状态时,环境光穿过辅助液晶材料层后,被结构色材料层分成透射光和反射光,透射光穿过液晶材料层后被黑色油墨层吸收,反射光穿过辅助液晶材料层后出射。此时,反射光自后盖射出。
应当理解的是,基于结构色材料层的特性,透射光的强度高,且具有多个传播方向(即具有多个出射角度),而反射光的强度低,且具有单一的传播方向(即具有单一出射角度)。因此,此时自后盖出射的反射光的强度较低,颜色较浅。
辅助液晶材料层处于散光状态,且液晶材料层处于透光状态时,环境光在辅助液晶材料层中发生散射,部分环境光自辅助液晶材料层背离结构色材料层的表面出射,部分环境光被结构色材料层分成透射光和反射光,透射光穿过液晶材料层后被黑色油墨层吸收,反射光在辅助液晶材料层中发生散射,部分反射光自辅助液晶材料层背离结构色材料层的表面出射。此时,环境光和反射光自后盖出射。
应当理解的是,由于反射光在液晶的作用下发生了散射,反射光自后盖沿多个方向出射,因此,此时自后盖出射的反射光的强度较大,颜色较深。
一种实施方式中,光学膜组件还包括第三电极层和第四电极层,第三电极层位于辅助液晶材料层背离结构色材料层的一侧,第四电极层位于辅助液晶材料层和结构色材料层之间,第三电极层和第四电极层用于驱动辅助液晶材料层在透光状态和散光状态之间切换。
一种实施方式中,第三电极层和第四电极层之间存在电压差(即电压差大于0)时,液晶材料层处于透光状态,第三电极层和第四电极层之间不存在电压差(即电压差等于0)时,液晶材料层处于散光状态。
另一种实施方式中,第三电极层和第四电极层之间不存在电压差(即电压差等于0)时,液晶材料层处于透光状态,第三电极层和第四电极层之间存在电压差(即电压差大于0)时,液晶材料层处于散光状态。
其中,第三电极层和第四电极层可采用掺锡氧化铟或掺铝氧化锌等透明导电氧化物制成。
其中,第三电极层和第四电极层的材料可以相同,也可以不同。
一种实施方式中,光学膜组件还包括第三承载件,第三承载件位于第三电极层背离辅助液晶材料层的一侧,用于承载第三电极层。
一种实施方式中,光学膜组件还包括第四承载件,第四承载件位于第四电极层背离辅助液晶材料层的一侧,用于承载第四电极层。
其中,第三承载件和第四承载件可以采用透明玻璃或聚对苯二甲酸乙二醇脂、聚碳酸酯或聚甲基丙烯酸酯等透明塑胶材料制成。
其中,第三承载件和第四承载件可以是注塑件、板材或膜片的任意一种。
其中,第三承载件和第四承载件的材料可以相同,也可以不相同。
一种实施方式中,第四承载件位于第四电极层和结构色材料层之间,或者,第四承载件位于结构色材料层背离第四电极层的一侧。
一种实施方式中,辅助液晶材料层采用液晶、聚合物分散液晶或聚合物网格液晶制成。
一种实施方式中,后盖还包括补边油墨层,补边油墨层覆盖液晶材料层和黑色油墨层的周面,以防止后盖的侧边漏光。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例所需要使用的附图进行说明。
图1是本申请实施例提供的一种电子设备的结构示意图;
图2是图1所示电子设备中后盖的结构示意图;
图3是图2所示后盖在另一个角度下的结构示意图;
图4是图3所示后盖沿A-A方向剖开的剖面结构示意图;
图5a是图4所示后盖中光学膜组件和柔性电路板在一种实施例下的结构示意图;
图5b是图5a所示结构在一种实施方式下的结构示意图;
图6是液晶材料层处于透光状态时,图5b所示光学膜组件的光路示意图;
图7是液晶材料层处于散光状态时,图5b所示光学膜组件的光路示意图;
图8a是图5a所示光学膜组件在另一种实施方式下的部分结构示意图;
图8b是图5a所示光学膜组件在第三种实施方式下的部分结构示意图;
图9是图4所示后盖中光学膜组件和柔性电路板在第二种实施例下的结构示意图;
图10是图9所示后盖的底面结构示意图;
图11是图9所示光学膜组件的部分结构示意图;
图12是液晶材料层处于透光状态时,后盖的顶面结构示意图;
图13是部分液晶材料层处于透光状态时,后盖的顶面结构示意图;
图14是液晶材料层处于散光状态时,后盖的顶面结构示意图;
图15是图9所示光学膜组件在另一种实施方式下的结构示意图;
图16a是图4所示后盖中光学膜组件和柔性电路板在第三种实施例下的结构示意图;
图16b是图16a所示结构在一种实施方式下的结构示意图;
图17是液晶材料层处于透光状态时,图16b所示光学膜组件的光路示意图;
图18是液晶材料层处于散光状态时,图16b所示光学膜组件的光路示意图;
图19是图16b所示光学模组在一种实施方式下的结构示意图;
图20是图4所示后盖中光学膜组件和柔性电路板在第四种实施例下的结构示意图;
图21是图4所示后盖中光学膜组件和柔性电路板在第五种实施例下的结构示意图;
图22是图21所示光学膜组件在一种实施方式下的结构示意图;
图23是图4所示后盖中光学膜组件和柔性电路板在第六种实施例下的结构示意图;
图24是图4所示后盖中光学膜组件和柔性电路板在第七种实施例下的结构示意图;
图25是图24所示光学膜组件在一种实施方式下的结构示意图;
图26是图4所示后盖中光学膜组件和柔性电路板在第八种实施例下的结构示意图;
图27a是图4所示后盖中光学膜组件和柔性电路板在第九种实施例下的结构示意图;
图27b是图27a所示结构在一种实施方式下的结构示意图;
图28是液晶材料层位于透光状态时,图27b所示光学膜组件的光路示意图;
图29是液晶材料层位于散光状态时,图27b所示光学膜组件的光路示意图;
图30是图27b所示光学膜组件在一种实施方式下的结构示意图;
图31是图4所示后盖中光学膜组件和柔性电路板在第十种实施例下的结构示意图;
图32是图4所示后盖中光学膜组件和柔性电路板在第十一种实施例下的结构示意图;
图33是图4所示后盖中光学膜组件和柔性电路板在第十二种实施例下的结构示意图;
图34a是图4所示后盖中光学膜组件和柔性电路板在第十三种实施例下的结构示意图;
图34b是图34a所示结构在一种实施方式下的结构示意图;
图35是液晶材料层位于透光状态时,图34b所示光学膜组件的光路示意图;
图36是液晶材料层位于散光状态时,图34b所示光学膜组件的光路示意图;
图37a是图34b所示光学膜组件在另一种实施方式下的部分结构示意图;
图37b是图34b所示光学膜组件在第三种实施方式下的部分结构示意图;
图38a是图4所示后盖中光学膜组件和柔性电路板在第十四种实施例下的结构示意图;
图38b是图38a所示结构在一种实施方式下的结构示意图;
图39是液晶材料层处于透光状态时,图38b所示光学膜组件的光路示意图;
图40是液晶材料层处于散光状态时,图38b所示光学膜组件的光路示意图;
图41是图38b所示光学膜组件在一种实施方式下的结构示意图;
图42是图4所示后盖中光学膜组件和柔性电路板在第十五种实施例下的结构示意图;
图43是图4所示后盖中光学膜组件和柔性电路板在第十六种实施例下的结构示意图;
图44是图4所示后盖中光学膜组件和柔性电路板在第十七种实施例下的结构示意图;
图45a是图4所示后盖中光学膜组件和柔性电路板在第十八种实施例下的结构示意图;
图45b是图45a所示结构在一种实施方式下的结构示意图;
图46是辅助液晶材料层处于透光状态且液晶材料层处于散光状态时,图45b所示光学膜 组件的光路示意图;
图47是辅助液晶材料层处于散光状态且液晶材料层处于散光状态时,图45b所示光学膜组件的光路示意图;
图48是辅助液晶材料层处于透光状态且液晶材料层处于透光状态时,图45b所示光学膜组件的光路示意图;
图49是辅助液晶材料层处于散光状态且液晶材料层处于透光状态时,图45b所示光学膜组件的光路示意图;
图50是图45b所示光学膜组件在一种实施方式下的结构示意图;
图51是图4所示后盖中光学膜组件和柔性电路板在第十九种实施例下的结构示意图;
图52是图4所示后盖中光学膜组件和柔性电路板在第二十种实施例下的结构示意图;
图53是图4所示后盖中光学膜组件和柔性电路板在第二十一种实施例下的结构示意图;
图54是图4所示后盖中光学膜组件和柔性电路板在第二十二种实施例下的结构示意图;
图55是图4所示后盖中光学膜组件和柔性电路板在第二十三种实施例下的结构示意图;
图56是图4所示后盖中光学膜组件和柔性电路板在第二十四种实施例下的结构示意图;
图57是图4所示后盖中光学膜组件和柔性电路板在第二十五种实施例下的结构示意图;
图58是图4所示后盖中光学膜组件和柔性电路板在第二十六种实施例下的结构示意图;
图59是图4所示后盖中光学膜组件和柔性电路板在第二十七种实施例下的结构示意图;
图60是图4所示后盖中光学膜组件和柔性电路板在第二十八种实施例下的结构示意图;
图61是图4所示后盖中光学膜组件和柔性电路板在第二十九种实施例下的结构示意图;
图62是本申请实施例提供的第二种电子设备中后盖沿A-A方向剖开的剖面结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参阅图1,图1是本申请实施例提供的一种电子设备1000的结构示意图。其中,为方便后文说明,图1中将电子设备1000的宽度方向定义为X轴方向,电子设备1000的长度方向定义为Y轴方向,电子设备1000的高度方向定义为Z轴方向,电子设备1000的高度方向(图示Z轴方向)垂直于电子设备1000的长度方向(图示Y轴方向)和电子设备1000的宽度方向(图示X轴方向)。
电子设备1000可以是手机、平板、笔记本电脑、车机、可穿戴设备、销售点终端(point of sales terminal,简称为POS机)等电子产品。可穿戴设备可以是智能手环、智能手表、增强现实(augmented reality,AR)眼镜、虚拟现实技术(virtual reality,VR)眼镜等。图1所示实施例以电子设备1000是手机为例进行说明。
电子设备1000包括壳体100、显示模组200、电路板300、处理器400、扬声器模组500和摄像模组600。壳体100设有出声孔1001。显示模组200安装于壳体100,且与壳体100围合形成整机内腔(图未示)。整机内腔与出声孔1001连通。电路板300、处理器400、扬声器模组500和摄像模组600均安装于整机内腔。处理器400安装于电路板300,且与电路板300电连接。其中,电路板300可为电子设备1000的主板(main board),处理器400可为电子设备1000的中央处理器(central processing unit,CPU)。扬声器模组500与处理器400电连接。扬声器模组500接收处理器400发送的音频信号,并根据音频信号振动发声,声音经出声孔1001扩散至外界环境中,实现电子设备1000的发声。摄像模组600与处理器400电 连接。摄像模组600接收处理器400发送的信息采集信号,采集电子设备1000外部的光线,并形成对应的图像数据。应当理解的是,本申请实施例中某一部件或模组安装于整机内腔,并不意味着该部件或模组必须全部位于整体内腔,该部件或模组部分或全部位于整机内腔均可。
请一并参阅图2,图2是图1所示电子设备1000中后盖的结构示意图。
壳体100包括中框110和后盖120。出声孔1001设于中框110。本实施例中,后盖120设有,避让孔1201沿后盖120的厚度方向贯穿后盖120。具体的,后盖120固接于中框110的一侧。其中,避让孔1201与整机内腔连通。此时,处理器400位于后盖120的内侧。示例性的,后盖120可采用可拆卸的方式安装于中框110,以便于电子设备1000内部器件或模组的维修和更换。在其他一些实施例中,后盖120与中框110也可以通过组装形成一体化的结构,以提高壳体100的结构稳定性。
显示模组200固接于中框110的另一侧。即显示模组200固接于中框110背离后盖120的一侧。也即显示模组200和后盖120分别固接于中框110的相对两侧。用户使用电子设备1000时,显示模组200可朝向用户放置,后盖120可背离用户放置,或者,后盖120也可朝向用户放置,显示模组200也可背离用户放置。其中,显示模组200包括盖板和固定于盖板的显示屏。盖板可以采用玻璃等透明材料制成。显示屏可以是液晶显示屏(liquid crystal display,LCD)或有机发光二极管显示屏(organic light-emitting diode,OLED)等显示屏,用于显示画面。
本实施例中,摄像模组600作为电子设备1000的后置摄像模组。具体的,摄像模组600相对于后盖120露出。其中,摄像模组600穿过后盖120的避让孔1201。此时,部分摄像模组600位于整机内腔,部分摄像模组600相对于后盖120凸出。需要说明的是,摄像模组600相对于后盖120露出是指,后盖120不完全遮盖摄像模组600。在其他一些实施例中,摄像模组600也可以不相对后盖120凸出,此时,摄像模组600也可以不穿过后盖120的避让孔1201,而完全收容于整机内腔。
请参阅图3和图4,图3是图2所示后盖120在另一个角度下的结构示意图,图4是图3所示后盖120沿A-A方向剖开的剖面结构示意图。其中,沿“A-A方向剖开”是指沿A-A线及A-A线两端箭头所在的平面剖开,后文中对附图的说明做相同理解。
电子设备1000还包括柔性电路板125,柔性电路板125位于后盖120的内侧。柔性电路板125的一端电连接处理器400(如图1所示),另一端电连接后盖120。其中,柔性电路板125的一端电连接电路板300,即柔性电路板125经电路板300电连接处理器400。
需要说明的是,本申请中涉及的方位词“内侧”是参考附图1所示的方位进行的描述,以朝向整机内腔为内侧其并不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
后盖120包括盖板121、光学膜组件122、粘合层123和补边油墨层124。盖板121为透明盖板。示例性的,盖板121可采用聚碳酸酯(polycarbonate,PC)、聚甲基丙烯酸酯(polymethyl methacrylate,PMMA)或玻璃等透明材料制成。光学膜组件122位于盖板121的底侧。其中,光学膜组件122具有电信号输入端127。具体的,盖板121覆盖光学膜组件122,以保护光学膜组件122。本实施例中,光学膜组件122仅部分覆盖盖板121的底面。在其他一些实施例中,光学膜组件122也可以完全覆盖盖板121的底面。
应当理解的是,本申请实施例所提及的“透明”是指不会阻挡光线传播,即光线可穿过。比如盖板121为透明盖板代表着,盖板121的透光率大于85%,雾度小于10%。光线射入盖 板121时,光线不会被盖板121阻挡,即光线可穿过盖板121继续传播,此时盖板121可以没有基础色,也可以具有基础色,本申请对此不作具体限定,后文中所提及“透明”可作相同理解。
需要说明的是,本申请中涉及的“顶”、“底”等方位用词,是参考附图4所示的方位进行的描述,以朝向Z轴正方向为“底”,以朝向Z轴负方向为“顶”,其并不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
粘合层123位于盖板121和光学膜组件122之间。其中,粘合层123的顶面接触盖板121的底面,粘合层123的底面接触光学膜组件122的顶面。示例性的,胶层可采用光学透明粘胶剂(optically clear adhesive,OCA)制成。补边油墨层124环绕光学膜组件122和粘合层123的周面,不仅可以保证后盖120的外观美观性,还可以防止后盖120的边缘漏光。
柔性电路板125连接于光学膜组件122的电极层与处理器400(图1所示)之间。具体的,柔性电路板125的一端经电信号输入端127电连接光学膜组件122的电极层,另一端经电路板300电连接处理器400。柔性电路板125可将处理器400的电信号传输至光学膜组件122,以实现后盖120的外观效果(比如颜色或图案)变换,从而实现和用户之间的功能交互。其中,交互功能包括且不限于电话、信息、闹铃、扫码、蓝牙和WIFI连接等通知类提醒功能,或者,拍照倒计时功能,或者,语音助手回应功能,或者,音乐律动功能等。
在其他一些实施例中,后盖120也可以包括柔性电路板125,即柔性电路板125为后盖120的部件,柔性电路板125的一端电连接光学膜组件122,另一端电连接处理器400。本申请对此不作具体限定。
本实施例中,后盖120具有多种外观效果,用户使用电子设备1000时,可以依据个人喜好将后盖120的外观效果设置成特定的外观效果,以实现电子设备1000中后盖120的个性化定制。或者,电子设备1000处于不同的应用场景下,后盖120呈现不同的外观效果,用户不用解锁电子设备1000直接可依据后盖120的外观效果,来判定电子设备1000处于哪种应用场景,提高用户与电子设备1000的功能交互。
示例性的,在用户手持电子设备1000,且后盖120朝向用户(比如利用电子设备1000的摄像模组600进行自拍)的场景下,当电子设备1000处于休眠状态时,用户可肉眼观察看后盖120呈现第一种外观效果。当电子设备1000来电时,处理器400可通过柔性电路板125控制光学膜组件122,以使用户可肉眼看到后盖120呈现第二种外观效果。当电子设备1000接收到信息时,处理器400可通过柔性电路板125控制光学膜组件122,以使用户可肉眼看到后盖120呈现第三种外观效果。换言之,电子设备1000的处理器400可通过柔性电路板125控制光学膜组件122,实现后盖120的外观效果变换,实现电子设备1000与用户在各种场景下的有效交互,提高用户的使用体验。
请一并参阅图5a,图5a是图4所示后盖120中光学膜组件122和柔性电路板125在一种实施例下的结构示意图。
光学膜组件122包括交互功能层122a和非黑色油墨层40,交互功能层122a具有电信号输入端127。非黑色油墨层40位于交互功能层122a的背离盖板121的一侧。即,非黑色油墨层40位于交互功能层122a的内侧。本实施例中,交互功能层122a包括液晶材料层11、第一电极层21和第二电极层22。示例性的,液晶材料层11可采用液晶、聚合物分散液晶(polymer-dispersed liquid crystal,PDLC)或聚合物网络液晶(polymer-network liquid crystal,PNLC)制成。
需要说明的是,本申请描述各层结构之间的位置关系时所提及的“一侧”均是指沿层结构的厚度方向的方位,即层结构的表面所朝向的方位,也即层的顶面或底面所朝向的方位。
非黑色油墨层40位于液晶材料层11的一侧。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,用于驱动液晶材料层11在透光状态和散光状态之间切换。具体的,第一电极层21位于液晶材料层11背离非黑色油墨层40的一侧,且位于盖板21和液晶材料层11之间。第二电极层22位于液晶材料层11和非黑色油墨层40之间。即,第一电极层21位于液晶材料层11的顶侧,第二电极层22位于液晶材料层11的底侧。
示例性的,电极层(如第一电极层21和第二电极层22)均为透明电极层。电极层(如第一电极层21和第二电极层22)可采用掺锡氧化铟(indium tin oxide,ITO)或掺铝氧化锌(aluminium zinc oxide,AZO)等透明导电氧化物(transparent conductive oxide,TCO)制成。需要说明的是,第一电极层21和第二电极层22的材料可以相同,也可以不同。
此外,交互功能层122a具有两个电信号输入端127。具体的,第一电极层21具有一个电信号输入端127,第二电极层22具有一个电信号输入端127。第一电极层21和第二电极层22的电信号输入端127均与柔性电路板125电连接。即处理器400(如图1所示)通过柔性电路板125电连接第一电极层21和第二电极层22,用于改变第一电极层21和第二电极层22之间的电压差,以驱动液晶材料层11在透光状态和散光状态之间切换。
本实施例中,处理器400通过柔性电路板125给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于0)时,液晶材料层11的液晶分子有序排布,液晶材料层11处于透光状态。此时,光线可直接穿过液晶材料层11,且保持传播方向不变。
处理器400通过柔性电路板125给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间不存在电压差(即电压差为0)时,即第一电极层21和第二电极层22断电(即未上电)时,液晶材料层11的液晶分子无序排布,液晶材料层11处于散光状态。此时,光线会在液晶的作用下发生散射,光线可沿多个方向传播。此时,液晶材料层11的雾度在85%~100%之间。应当理解的是,材料的雾度越高,材料对光线的散射作用越强。
在其他一些实施例中,处理器400通过柔性电路板125给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间不存在电压差(即电压差为0)时,即第一电极层21和第二电极层22断电(即未上电)时,液晶材料层11也可以处于透光状态。处理器400通过柔性电路板125给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于0)时,液晶材料层11也可以处于散光状态。
非黑色油墨层40位于第二电极层22背离液晶材料层11的一侧。即,非黑色油墨层40位于第二电极层22的底侧。应当理解的是,非黑色油墨层采用非黑色油墨制成。其中,非黑色油墨是指除黑色油墨以外的其他颜色油墨,比如白色油墨、红色油墨或蓝色油墨等。
请参阅图5b,图5b是图5a所示结构在一种实施方式下的结构示意图。
交互功能层122a还包括第一承载件61和第二承载件62。第一承载件61位于第一电极层21背离液晶材料层11的一侧。即第一承载件61位于第一电极层21的顶侧,用于承载第一电极层21。具体的,第一承载件61位于盖板121和第一电极层21之间。第一承载件61的顶面为光学膜组件122的顶面。粘合层123的顶面接触盖板121,粘合层123的底面接触第一承载件61。此时,第一电极层21设于第一承载件61的底面。其中,第一电极层21可以通过物理沉积(physical vapor deposition,PVD)等工艺形成在第一承载件61的底面。
第二承载件62位于第二电极层22背离液晶材料层11的一侧。即第二承载件62位于第 二电极层22的底侧,用于承载第二电极层22。具体的,第二承载件62位于第二电极层22和非黑色油墨层40之间。第二承载件62的顶面承载第二电极层22,第二承载件62的底面承载非黑色油墨层40。其中,第二电极层22可以通过物理沉积等工艺形成在第二承载件62的顶面,非黑色油墨层40可以通过印刷或喷涂等方式形成于第二承载件62的底面。
示例性的,承载件(如第一承载件61和第二承载件62)均为透明承载件。承载件(如第一承载件61和第二承载件62)可采用透明玻璃或聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)、PC或PMMA等透明塑胶材料制成,承载件可以是注塑件、板材或膜片的任意一种。需要说明的是,第一承载件61和第二承载件62的材料可以相同,也可以不同。
请一并参阅图6,图6是液晶材料层11处于透光状态时,图5b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于透光状态。环境光L 0从外界射入光学膜组件122的顶面(即第一承载件61的顶面),依次穿过第一承载件61和第一电极层21到达液晶材料层11的顶面。由于液晶材料层11为透光状态,环境光L 0可穿过液晶材料层11沿初始传播方向自液晶材料层11的底面出射。随后,环境光L 0依次穿过第二电极层22和第二承载件62到达非黑色油墨层40。环境光L 0被非黑色油墨层40反射形成背景色光L *,背景色光L *依次穿过第二承载件62、第二电极层22、液晶材料层11、第一电极层21和第一承载件61,自第一承载件61的顶面(即光学膜组件122的顶面)出射。此时,仅有背景色光L *自光学膜组件122的顶面出射。
请参阅图5b和图7,图7是液晶材料层11处于散光状态时,图5b所示光学膜组件122的光路示意图。
处理器400给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。环境光L 0从外界射入光学膜组件122的顶面(即第一承载件61的顶面),依次穿过第一承载件61和第一电极层21到达液晶材料层11的顶面,由于液晶材料层11为散光状态,环境光L 0会在液晶材料层11中发生散射,即环境光L 0会在液晶的作用下发生散射而沿多个方向传播。部分环境光L 0自液晶材料层11背离非黑色油墨层40的表面(即液晶材料层11的顶面)出射,依次穿过第一电极层21和第一承载件61,自第一承载件61的顶面(即光学膜组件122的顶面)出射。
部分环境光L 0自液晶材料层11的底面出射。随后,该部分环境光L 0依次穿过第二电极层22和第二承载件62到达非黑色油墨层40的顶面。环境光L 0被非黑色油墨层40反射形成背景色光L *,背景色光L *依次穿过第二承载件62和第二电极层22到达液晶材料层11的底面。由于液晶材料层11为散光状态,背景色光L *在液晶材料层中发生散射,即背景色光L *在液晶的作用下发生散射而沿多个方向传播。部分背景色光L *自液晶材料层11背离非黑色油墨层40的表面(即液晶材料层11的顶)面出射,依次穿过第一电极层21和第一承载件61,自第一承载件61的顶面(即光学膜组件122的顶面)出射。此时,背景色光L *和环境光L 0均自光学膜组件122的顶面出射。
应当理解的是,由于环境光L 0和背景色光L *均在液晶的作用下发生了散射,环境光L 0和背景色光L *均具有多个传播方向(即具有多个出射角度)。因此,环境光L 0和背景色光L *均自光学膜组件122的顶面出射,即环境光L 0和背景色光L *的混合光自光学膜组件122的顶面出射。相比于液晶材料层11处于透光状态,液晶材料层11处于散光状态时,自光学膜组件122的顶面出射的背景色光L *的强度较小。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,背景色光L *可穿过粘合层123和盖板121进入人眼,此时人眼可看到背景色光L *。用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,环境光L 0和背景色光L *均可穿过粘合层123和盖板121进入人眼,此时人眼可看到环境光L 0和背景色光L *的混合光。
示例性的,第一电极层21和第二电极层22之间的电压差为V m(比如24V)时,光线可完全穿过液晶材料层11。
处理器400在对第一电极层21和第二电极层22上电时,可瞬间将第一电极层21和第二电极层22之间的电压差加到V m,此时人眼可看到最大强度的背景色光L *。或者,处理器400可瞬间将第一电极层21和第二电极层22的电压差加到0~V m之间(不包括端点值,比如12V),此时人眼可看到强度较小的背景色光L *。或者,处理器400也可逐渐将第一电极层21和第二电极层22之间的电压差逐渐加到V m,此时人眼可看到背景色光L *的强度逐渐增大。或者,处理器400也可以将第一电极层21和第二电极层22之间的电压差按照一定节奏(比如阶段式)地加到V m,此时人眼可感受到背景色光L *的强度按照一定节奏(比如阶段式)逐渐增大。
同样的,处理器400在对第一电极层21和第二电极层22断电时,可瞬间将第一电极层21和第二电极层22之间的电压差减到0V,此时人眼可看到最大强度的环境光L 0和背景色光L *的混合光。或者,处理器400可瞬间将第一电极层21和第二电极层22的电压差减到0~V m之间(不包括端点值,比如12V),此时人眼可看到强度较小的环境光L 0和背景色光L *的混合光。或者,处理器400也可逐渐将第一电极层21和第二电极层22之间的电压差逐渐减到0V,此时人眼可感受到环境光L 0和背景色光L *的混合光强度逐渐增大。或者,处理器400也可以将第一电极层21和第二电极层22之间的电压差按照一定节奏地减到0V,此时人眼可感受到环境光L 0和背景色光L *的混合光强度按照一定节奏逐渐增大。
换言之,可利用处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,使液晶材料层11在透光状态和散光状态之间切换,以实现人眼在看到背景色光L *以及环境光L 0和背景色光L *的混合光之间变换,用户可看到后盖120在两种外观效果之间变换,可满足用户对后盖120的外观要求。此外,用户可依据个人喜好设置后盖120的外观效果,或者,用户可通过后盖120的外观效果来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
一般来说,环境光,又可称自然光。环境光一般是由多种单色光复合而成的复色光,环境光为覆盖全波段的光线。本申请实施例所提及的环境光即可以指自然环境中存在的光线,又可以指人为创造的环境中存在的光线。由于人眼仅能感知到位于可见光波段(波长在400nm~800nm之间)的光线,本申请实施例所提及的环境光可相当于位于可见光波段的光线,比如,环境光可相当于白色的可见光。
为了便于理解,以环境光L 0为白色的可见光,为采用红色油墨制成的红色油墨层为例对后盖120的外观效果变换进行分析。此时,背景色光L *为红色光。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,背景色光L *可穿过粘合层123和盖板121进入人眼,此时,人眼可看到红色的背景色光L *,即人眼可看到后盖120呈红色。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,环境光L 0和背景色光L *均可穿过粘合层123和盖板121进入人眼,此时,人眼可看到环 境光L 0和背景色光L *的混合光,即人眼可看到白色光和红色光的混合光,即人眼可看到浅红色光,也即人眼可看到后盖120呈浅红色。
可以理解的是,处理器400将第一电极层11和第二电极层12之间的电压差加到最大值V m时,人眼可看到强度最大(强度为I max)的红色光,即人眼可看到后盖120呈深红色的。处理器400将第一电极层11和第二电极层12之间的电压差减到0时,人眼可看到强度最小(强度为I min)的红色光,即人眼可看到后盖120呈浅红色。
换言之,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,驱动液晶材料层11在透光状态和散光状态之间切换,以使人眼看到的红色光的强度在I min~I max(包括I min和I max两个端点)范围内变换,用户可通过后盖120的红色的深浅状态来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
请参阅图8a,图8a是图5a所示光学膜组件122在另一种实施方式下的部分结构示意图。其中,图8a仅示出了光学膜组件122的非黑色油墨层40、增亮膜42和第二承载件62。
本实施方式中,光学膜组件122还包括增亮膜42,增亮膜42位于非黑色油墨层40和液晶材料层11(如图5a所示)之间,用以加强非黑色油墨层40对环境光L 0的反射作用,提高背景色光L *的亮度。具体的,增亮膜42位于第二承载件62和非黑色油墨层40之间。其中,增亮膜42设于第二承载件62的底面,非黑色油墨层40设于增亮膜42的底面。此时,增亮膜42和非黑色油墨层40形成了后盖120的背景层122b。
示例性的,增亮膜42可采用二氧化硅(SiO 2)、二氧化钛(TiO 2)和氧化铌(Nb 2O 5)等氧化物制成,或者,增亮膜42也可以为采用结构色材料制成的光学镀膜或纳米级多层光学膜。其中,增亮膜42可以通过PVD工艺形成于第二承载件42的底面,非黑色油墨层42可以通过印刷或喷涂等方式形成于增亮膜42的底面。
接下来,为了便于理解,以环境光L 0为白色的可见光,为采用红色油墨制成的红色油墨层为例对后盖120的外观效果变换进行分析。此时,背景色光L *为红色光。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,背景色光L *可穿过粘合层123和盖板121进入人眼,此时,人眼可看到背景色光L *,即人眼可看到高亮度的红色光,也即人眼可看到后盖120呈亮度较高的红色。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,环境光L 0和背景色光L *均可穿过粘合层123和盖板121进入人眼,此时,人眼可看到环境光L 0和背景色光L *的混合光,即人眼可看到白色光和红色光的混合光,即人眼可看到浅红色光,也即人眼可看到后盖120呈浅红色。
需要说明的是,环境光L 0在非黑色油墨层40的反射作用下形成背景色光L *时,增亮膜42增加了背景色光L *的亮度,然而处于散光状态的液晶材料层11会大幅度削弱背景色光L *的亮度(削弱50%以上),因此人眼看到后盖120呈亮度较低的红色。
可以理解的是,处理器400将第一电极层11和第二电极层12之间的电压差加到最大值V m时,人眼可看到亮度最大(亮度为L max)的红色光,即人眼可看到后盖120呈深红色的。处理器400将第一电极层11和第二电极层12之间的电压差减到0时,人眼可看到亮度最小(亮度为L min)的红色光,即人眼可看到后盖120呈浅红色。
换言之,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,驱动液晶材料层11在透光状态和散光状态之间切换,以使人眼看到的红色光的强度在L min~L max(包括L min和L max两个端点)范围内变换,用户可通过后盖120的红色的深 浅状态来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。此外,液晶材料层11在透光状态和散光状态之间切换时,增亮膜42的设置还增加了后盖120的两种外观效果之间的差异。
请参阅图8b,图8b是图5a所示光学膜组件122在第三种实施方式下的部分结构示意图。其中,图8b仅示出了光学膜组件122的非黑色油墨层40、增亮膜42、纳米纹理层43和第二承载件62。
本实施方式中,光学膜组件122还包括增亮膜42和纳米纹理层43,增亮膜42和纳米纹理层43均位于非黑色油墨层40和液晶材料层11(如图5a所示)之间,用以加强非黑色油墨层40对环境光L 0的反射作用,使背景色光L *产生炫光效果。具体的,增亮膜42和纳米纹理层43均位于非黑色油墨层40和第二承载件62之间。其中,纳米纹理层43设于第二承载件62的底面。纳米纹理层43包括朝向非黑色油墨层40的纳米纹理面431,增亮膜42覆盖纳米纹理面431。此时,非黑色油墨层40、增强膜42和纳米纹理层43形成后盖120的背景层122b。
其中,纳米纹理面431设有多个凸起(图未标),多个凸起的尺寸在纳米级。应当理解的是,凸起的形状并不仅限于图12所示的三角形,也可以为半圆形、弧形或者其他形状。
示例性的,纳米纹理层43可采用丙烯酸酯类树脂制成。其中,纳米纹理层43可以通过热转印光固化(ultraviolet,UV)纳米纹理工艺形成于第二承载件62的底面,增亮膜42可以通过PVD工艺形成于纳米纹理层43的底面,非黑色油墨层40可以通过印刷或喷涂等方式形成于增亮膜42的底面。
接下来,为了便于理解,以环境光L 0为白色的可见光,为采用红色油墨制成的红色油墨层为例对后盖120的外观效果变换进行分析。此时,背景色光L *为红色光。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,背景色光L *可穿过粘合层123和盖板121进入人眼,此时,人眼可看到红色的背景色光L *,由于纳米纹理层43和增亮膜42会使背景色光L *产生炫光效果,人眼可看到具有炫光效果的红色光,也即人眼可看到后盖120呈炫光红。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,环境光L 0和背景色光L *均可穿过粘合层123和盖板121进入人眼,此时,人眼可看到环境光L 0和背景色光L *的混合光,即人眼可看到白色光和红色光的混合光,即人眼可看到浅红色光,也即人眼可看到后盖120呈浅红色。
需要说明的是,环境光L 0在非黑色油墨层40的反射作用下形成背景色光L *时,纳米纹理层43和增亮膜42使背景色光L *产生炫光效果,然而处于散光状态的液晶材料层11会使背景色光L *的炫光效果消失,因此人眼看到后盖120呈浅红色。
换言之,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,驱动液晶材料层11在透光状态和散光状态之间切换,以使人眼看到后盖120在炫光红和浅红色之间变换,用户可通过后盖120的是否具有炫光效果来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
请参阅图9,图9是图4所示后盖120中光学膜组件122和柔性电路板125在第二种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、非黑色油墨层40、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。非黑色油墨层40位于第二电极层22背离液晶材料层11一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一 电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第一种实施例所示光学膜组件122的不同之处在于,第二电极层22包括多个彼此独立的电极部分221。需要说明的是,彼此独立的电极部分221是指,多个电极部分221之间彼此绝缘,一个电极部分221通电时,不会对该电极部分221周边的电极部分221造成影响。
液晶材料层11包括与多个电极部分221一一对应的液晶部分111。需要说明的是,本申请实施例中液晶部分111对应于电极部分221是指,液晶部分111在第二电极层22上的正投影覆盖电极部分221,后文中关于“对应”的描述可以作相同理解。在其他一些实施例中,液晶部分111对应于电极部分221也可以指,液晶部分111在第二电极层22上的正投影部分覆盖电极部分221。
示例性的,第二电极层22包括七个彼此独立的电极部分221,液晶材料层11包括与七个电极部分221一一对应的七个液晶部分111。每一液晶部分111均可在一个电极部分221和第一电极层21的驱动下在透光状态和散光状态之间切换。即每一电极部分221和第一电极层21可驱动一个液晶部分111在透光状态和散光状态之间切换。在其他一些实施例中,第二电极层22也可以包括两个、三个、四个、五个、六个或八个以上的彼此独立的电极部分221,本申请对此不作具体限定。
接下来,为了便于说明,将七个电极部分221分别命名为第一电极部分221a、第二电极部分221b、第三电极部分221c、第四电极部分221d、第五电极部分221e、第六电极部分221f和第七电极部分221g,以对光学膜组件122的结构进行说明。
交互功能层122a具有八个电信号输入端127,第一电极层21具有一个电信号输入端127,第二电极层22具有七个电信号输入端127。具体的,每一电极部分221具有一个电信号输入端127。其中,八个电信号输入端127分别为第一电信号输入端127a、第二电信号输入端127b、第三电信号输入端127c、第四电信号输入端127d、第五电信号输入端127e、第六电信号输入端127f、第七电信号输入端127g和第八电信号输入端127h。
具体的,第一电极层21具有第一电信号输入端127a,第一电极部分221a具有第二电信号输入端127b,第二电极部分221b具有第三电信号输入端127c,第三电极部分221c具有第四电信号输入端127d,第四电极部分221d具有第五电信号输入端127e,第五电极部分221e具有第六电信号输入端127f,第六电极部分221f具有第七电信号输入端127g,第七电极部分221g具有第八电信号输入端127h。
请一并参阅图10,图10是图9所示后盖120的底面结构示意图。
八个电信号输入端127相对于后盖120的底面露出。具体的,八个电信号输入端127沿X轴间隔排布。其中,第一电信号输入端127a、第二电信号输入端127b、第三电信号输入端127c、第四电信号输入端127d、第五电信号输入端127e、第六电信号输入端127f、第七电信号输入端127g和第八电信号输入端127h沿X轴依次排布,且均与柔性电路板125电连接。
此时,处理器400(如图1所示)通过柔性电路板125电连接第一电极层21和七个电极部分221。处理器400可通过柔性电路板125改变第一电极层21和一个电极部分221之间的电压差,以驱动一个液晶部分111在透光状态和散光状态之间切换。比如,处理器400可通过柔性电路板125改变第一电极层21和第一电极部分221a之间的电压差,以驱动与第一电极部分221a相对应的液晶部分111在透光状态和散光状态之间切换。可以理解的是,处理器400可通过柔性电路板125改变第一电极层21和多个电极部分221之间的电压差,以驱动多 个液晶部分111在透光状态和散光状态之间切换。
在其他一些实施例中,第一电极层21也可以包括多个彼此独立的电极部分,第一电极层21的每一电极部分与第二电极层22的一个电极部分221相对应,且与第二电极层22的一个电极部分221用于驱动一个液晶部分111在透光状态和散光状态之间切换,或者,仅有第一电极层21包括多个彼此独立的电极部分,此时,第一电极层21的多个电极部分与多个液晶部分111一一对应,第一电极层21的每一个电极部分和第二电极层22用于驱动一个液晶部分111在透光状态和散光状态之间切换。
请参阅图11,图11是图9所示光学膜组件122在另一种实施方式下的部分结构示意图。其中,图11仅示出了光学膜组件122的非黑色油墨层40、增亮膜42和第二承载件62。
本实施方式中,光学膜组件122还包括增亮膜42,增亮膜42位于非黑色油墨层40和液晶材料层11(如图9所示)之间,用以加强非黑色油墨层40对环境光L 0的反射作用,提高背景色光L *的亮度。具体的,增亮膜42位于第二承载件62和非黑色油墨层40之间。其中,增亮膜42设于第二承载件62的底面,非黑色油墨层40设于增亮膜42的底面。此时,增亮膜42和非黑色油墨层40形成了后盖120的背景层122b。
本实施方式中,增亮膜42包括多个增亮部分,多个增亮部分与多个电极部分221一一对应。需要说明的是,增亮膜42的厚度在纳米级,而非黑色油墨层40的厚度在微米级,图11所示增亮膜42位于非黑色油墨层40的顶面为理想化结构,在实际结构中,由于非黑色油墨层40的厚度远大于增亮膜42的厚度,相当于增亮膜42也可以嵌设于非黑色油墨层40的顶端,只要增亮膜42相对于非黑色油墨层40的顶面露出即可。
示例性的,增亮膜42包括七个增亮部分,七个增亮部分与七个电极部分221一一对应。其中,七个增亮部分分别为第一增亮部分42a、第二增亮部分42b、第三增亮部分42c、第四增亮部分42d、第五增亮部分42e、第六增亮部分42f和第七增亮部分42g。第一增亮部分42a对应于第一电极部分221a,第二增亮部分42b对应于第二电极部分221b,第三增亮部分42c对应于第三电极部分221c,第四增亮部分42d对应于第四电极部分221d,第五增亮部分42e对应于第五电极部分221e,第六增亮部分42f对应于第六电极部分221f,第七增亮部分42g对应于第七电极部分221g。
其中,七个增亮部分的形状分别为不同的英文字母,第一增亮部分42a的形状为英文字母“L”,第二增亮部分42b的形状为英文字母“O”,第三增亮部分42c的形状为英文字母“V”、第四增亮部分42d的形状为英文字母“E”,第五增亮部分42e的形状为英文字母“Y”,第六增亮部分42f的形状为英文字母“O”,第七增亮部分42g的形状为英文字母“U”。在其他一些实施例中,七个增亮部分的形状也可以为汉字或其他具有标识性的图案,或者,为英文字母、汉字或其他标识性图案的组合,本申请对增亮部分的形状不作具体限定。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第一种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第一种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第一种实施例所示光学膜组件122相关描述,在此不再重复描述。
接下来,为了便于理解,以环境光L 0为白色的可见光,为采用蓝色油墨制成的蓝色油墨层为例,对本实施例所示后盖120在不同状态下的外观效果进行分析。此时,背景色光L *为蓝色光。
请参阅图12,图12是液晶材料层11处于透光状态时,后盖120的顶面结构示意图。
处理器400(如图1所示)给第一电极层21和七个电极部分221均上电,且每一电极部分221和第一电极层21之间均存在电压差(即电压差大于零)时,整个液晶材料层11处于透光状态,背景色光L *可穿过粘合层123和盖板121进入人眼,人眼可看到背景色光L *,即人眼可看到蓝色光。此时,人眼可看到后盖120的顶面显示字体为亮蓝色的“L”、“O”、“V”、“E”、“Y”、“O”和“U”七个英文字母。其中,七个英文字母的底色为浅蓝色。
请参阅图13,图13是部分液晶材料层处于透光状态时,后盖120的顶面结构示意图。
处理器400(如图1所示)给第一电极层21和四个电极部分221均上电,且四个电极部分211和第一电极层21之间均存在电压差(即电压差大于零)时,与四个电极部分221相对应的四个液晶部分111处于透光状态。其中,处理器400给第一电极部分221a、第三电极部分221c、第五电极部分221e和第七电极部分221g上电,与第一电极部分221a、第三电极部分221c、第五电极部分221e和第七电极部分221g相对应的四个液晶部分111均处于透光状态,背景色光L *可穿过粘合层123和盖板121进入人眼,人眼可看到背景色光L *,即人眼可看到蓝色光。此时,人眼可看到后盖120的顶面显示字体为亮蓝色的“L”、“V”、“Y”和“U”四个英文字母。其中,四个英文字母的底色为浅蓝色。
此时,处理器400并未给其余的三个电极部分221(第二电极部分221b、第四电极部分221d和第六电极部分221f)上电,与这三个电极部分221相对应的三个液晶部分111处于散光状态。理论上来说,人眼可看到后盖120的顶面会微弱地显示三个蓝色的“O”、“E”和“O”三个字母。然而,由于三个英文字母的底色为浅蓝色,人眼无法区分底色和字体的颜色,因此人眼无法看到蓝底白字的“O”、“E”和“O”三个图案。
在其他一些实施例中,处理器400也可以给第一电极层21和其余电极部分221上电,或者,处理器400也可以给第一电极层21和一个、两个、三个、五个或六个电极部分221上电,此时,人眼可看到后盖120的顶面显示不同的图案。
请参阅图14,图14是液晶材料层11处于散光状态时,后盖120的顶面结构示意图。
处理器400给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。同样的,由于英文字母和字体的颜色均为浅蓝色,因此人眼无法在后盖120的顶面看到图案。
请参阅图15,图15是图9所示光学膜组件122在另一种实施方式下的部分结构示意图。其中,图15仅示出了光学膜组件122的非黑色油墨层40、增亮膜42和纳米纹理层43和第二承载件62。
本实施方式中,光学膜组件122还包括增亮膜42和纳米纹理层43,增亮膜42和纳米纹理层43均位于非黑色油墨层40和液晶材料层11(如图9所示)之间,用以加强非黑色油墨层40对环境光L 0的反射作用,使背景色光L *产生炫光效果。具体的,增亮膜42和纳米纹理层43均位于非黑色油墨层40和第二承载件62之间。其中,纳米纹理层43设于第二承载件62的底面,增亮膜42覆盖纳米纹理层43。此时,非黑色油墨层40、增强膜42和纳米纹理层43形成后盖120的背景层122b。
本实施方式中,纳米纹理层43包括多个纹理部分,多个纹理部分与多个电极部分221一一对应。其中,每一纹理部分均包括背离液晶材料层11纳米纹理面430,增亮膜42覆盖每一纹理部分的纳米纹理面430。示例性的,增亮膜42包括七个纹理部分,七个纹理部分与七个电极部分221一一对应。其中,七个纹理部分分别为第一纹理部分43a、第二纹理部分43b、第三纹理部分43c、第四纹理部分43d、第五纹理部分43e、第六纹理部分43f和第七纹理部分43g。第一纹理部分43a对应于第一电极部分221a,第二纹理部分43b对应于第二电极部 分221b,第三纹理部分43c对应于第三电极部分221c,第四纹理部分43d对应于第四电极部分221d,第五纹理部分43e对应于第五电极部分221e,第六纹理部分43f对应于第六电极部分221f,第七纹理部分43g对应于第七电极部分221g。
其中,七个纹理部分的形状分别为不同的英文字母,第一纹理部分43a的形状为英文字母“L”,第二纹理部分43b的形状为英文字母“O”,第三纹理部分43c的形状为英文字母“V”、第四纹理部分43d的形状为英文字母“E”,第五纹理部分43e的形状为英文字母“Y”,第六纹理部分43f的形状为英文字母“O”,第七纹理部分43g的形状为英文字母“U”。在其他一些实施例中,七个纹理部分的形状也可以为汉字或其他具有标识性的图案,或者,为英文字母、汉字或其他标识性图案的组合,本申请对纹理部分的形状不作具体限定。
接下来,为了便于理解,以环境光L 0为白色的可见光,为采用蓝色油墨制成的蓝色油墨层为例,对本实施例所示后盖120在不同状态下的外观效果进行分析。此时,背景色光L *为蓝色光。
用户手持电子设备1000,且后盖120朝向用户使用时,在整个液晶材料层11处于透光状态下,背景色光L *可穿过粘合层123和盖板121进入人眼,人眼可看到背景色光L *,即人眼可看到具有炫光效果的蓝色光。此时,人眼可看到后盖120的顶面显示字体为炫光蓝的“L”、“O”、“V”、“E”、“Y”、“O”和“U”七个英文字母。其中,七个英文字母的底色为浅蓝色(如图12所示)。
用户手持电子设备1000,且后盖120朝向用户使用时,在部分液晶材料层11处于透光状态下,背景色光L *可穿过粘合层123和盖板121进入人眼,背景色光L *可穿过粘合层123和盖板121进入人眼,人眼可看到背景色光L *,即人眼可看到具有炫光效果的蓝色光。示例性的,与第一电极部分221a、第三电极部分221c、第五电极部分221e和第七电极部分221g相对应的四个液晶部分111均处于透光状态时,人眼可看到后盖120的顶面显示字体为炫光蓝的“L”、“V”、“Y”和“U”四个英文字母。其中,四个英文字母的底色为浅蓝色(如图13所示)。
用户手持电子设备1000,且后盖120朝向用户使用时,在整个液晶材料层11处于散光状态下,人眼无法在后盖120的顶面看到图案(如图14所示)。
本实施例中,处理器400对第一电极层21和七个电极部分221上电时,不仅可瞬间或按照一定节奏将第一电极层21和电极部分221之间的电压差加到大于0且小于或等于V m,还可给一个或多个电极部分221上电,或者按照一定节奏依次给一个或多个电极部分221上电,有助于丰富后盖120的外观效果,提高用户与后盖120可交互功能的种类,提高用户的使用体验。
请参阅图16a,图16a是图4所示后盖120中光学膜组件122和柔性电路板125在第三种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22和非黑色油墨层40。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。非黑色油墨层40位于第二电极层22背离液晶材料层11一侧。
请参阅图16b,图16b是图16a所示结构在一种实施方式下的结构示意图。
光学膜组件122还包括第一承载件61和第二承载件62。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第一种实施例所示光学膜组件122的不同之处在于, 光学膜组件122还包括结构色材料层30和黑色油墨层50。结构色材料层30位于液晶材料层11和非黑色油墨层20之间。具体的,结构色材料层30位于第二承载件62和非黑色油墨层40之间。结构色材料层30设于第二承载件62的底面,非黑色油墨层40设于结构色材料层30的底面。其中,第二承载件62的顶面承载第二电极层22,第二承载件62的底面承载结构色材料层30。示例性的,结构色材料层30采用结构色材料制成。
应当理解的是,结构色材料是指可以在可见光波段(波长在400nm~800nm之间的光线)内选择透射光波长的材料。白色的可见光射入采用结构色材料制成的结构色材料层30时,结构色材料层30可将白色的可见光分为不同颜色的透射光和反射光。其中,透射光和反射光可以是单色光,也可以是复色光。
本实施例中,结构色材料层30可以是纳米级多层光学膜。光学膜组件122还包括粘接层70,粘接层70位于第二承载件62和结构色材料层30之间。具体的,粘接层70的顶面接触第二承载件62的底面,粘接层70的底面接触结构色材料层30的顶面。示例性的,粘接层70为透明粘接层,粘接层70可采用OCA制成。
黑色油墨层50位于非黑色油墨层40背离结构色材料层30的一侧。即黑色油墨层50位于非黑色油墨层40的底侧。具体的,黑色油墨层50设于非黑色油墨层40的底面,以防止后盖120的底侧漏光。其中,黑色油墨层50采用黑色油墨制成。示例性的,黑色油墨层50可通过印刷或喷涂等方式形成于非黑色油墨层40的底面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第一种实施例所示光学膜组件122的结构大致相同,因此本实施例所示光学膜组件122的其他结构可参照上述第一种实施例所示光学膜组件122相关描述,在此不再重复描述。
请一并参阅图17,图17是液晶材料层11处于透光状态时,图16b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于透光状态。环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第一承载件61的顶面),依次穿过第一承载件61和第一电极层21到达液晶材料层11的顶面,由于液晶材料层11为透光状态,环境光L 0可穿过液晶材料层11沿初始传播方向自液晶材料层11的底面出射。随后,环境光L 0依次穿过第二电极层22、第二承载件62和粘接层70到达结构色材料层30的顶面。结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2。其中,透射光L 1和反射光L 2可以是单色光,也可以是复色光。
透射光L 1自结构色材料层30的底面出射,并到达非黑色油墨层40的顶面。透射光L 1被非黑色油墨层40全部或部分反射形成背景色光L *,背景色光L *再依次穿过结构色材料层30、粘接层70、第二承载件62、第二电极层22、液晶材料层11、第一电极层21和第一承载件61,自第一承载件61的顶面(即光学膜组件122的顶面)出射。其中,背景色光L *的颜色与反射光L 2的颜色不同,背景色光L *的颜色与透射光L 1的颜色可以相同,也可以不同。
反射光L 2自结构色材料层30的顶面出射,并依次穿过粘接层70、第二承载件62、第二电极层22、液晶材料层11、第一电极层21和第一承载件61,自第一承载件61的顶面(即光学膜组件122的顶面)出射。此时,背景色光L *和反射光L 2均自光学膜组件122的顶面出射。
应当理解的是,基于结构色材料层30的特性,透射光L 1的强度高,且具有多个传播方向(即具有多个出射角度),则背景色光L *的强度高,且具有多个传播方向(即具有多个出 射角度)而反射光L 2的强度低,且具有单一的传播方向(即具有单一出射角度)。相比于背景色光L *,反射光L 2可以忽略不计。因此,相当于仅有背景色光L *自光学膜组件122的顶面出射。
请参阅图16b和图18,图18是液晶材料层11处于散光状态时,图16b所示光学膜组件122中的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第一承载件61的顶面),依次穿过第一承载件61和第一电极层21到达液晶材料层11的顶面,由于液晶材料层11为散光状态,环境光L 0会在液晶材料层11中发生散射,即环境光L 0会在液晶的作用下发生散射而朝多个方向传播。部分环境光L 0自液晶材料层11的顶面出射,依次穿过第一电极层21和第一承载件11后,自第一承载件11的顶面(即光学膜组件122的顶面)出射。
部分环境光L 0自液晶材料层11的底面出射,依次穿过第二电极层22、第二承载件62和粘接层70到达结构色材料层30的顶面,并被结构色材料层30分为不同颜色的透射光L 1和反射光L 2
透射光L 1自结构色材料层30的底面出射,并到达非黑色油墨层40的顶面。透射光L 1被非黑色油墨层40全部或部分反射形成背景色光L *,背景色光L *依次穿过结构色材料层30、粘接层70、第二承载件62和第二电极层22到达液晶材料层11的底面。背景色光L *进入液晶材料层11后,会在液晶材料层11中发生散射,即背景色光L *会在液晶的作用下发生散射而沿多个方向传播。部分背景色光L *自液晶材料层11的顶面出射,并依次穿过第一电极层21和第一承载件61,自第一承载件11的顶面(即光学膜组件122的顶面)出射。
反射光L 2自结构色材料层30的顶面出射,并依次穿过粘接层70、第二承载件62和第二电极层22到达液晶材料层11的底面。反射光L 2进入液晶材料层11后,会在液晶材料层11中发生散射,即反射光L 2会在液晶的作用下发生散射而沿多个方向传播。部分反射光L 2自液晶材料层11的顶面出射,并依次穿过第一电极层21和第一承载件61,自第一承载件11的顶面(即光学膜组件122的顶面)出射。此时,环境光L 0、背景色光L *和反射光L 2均自光学膜组件122的顶面出射。
应当理解的是,由于环境光L 0、背景色光L *和反射光L 2均在液晶的作用下发生了散射,环境光L 0、背景色光L *和反射光L 2均具有多个传播方向(即具有多个出射角度)。因此,环境光L 0、背景色光L *和反射光L 2均自光学膜组件122的顶面出射,即环境光L 0、背景色光L *和反射光L 2的混合光自光学膜组件122的顶面出射。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,背景色光L *可穿过粘合层123和盖板121进入人眼,此时人眼可看到背景色光L *。用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,环境光L 0、背景色光L *和反射光L 2均可穿过粘合层123和盖板121进入人眼,此时人眼可看到环境光L 0、背景色光L *和反射光L 2的混合光。
换言之,处理器400可通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,驱动液晶材料层11在透光状态和散光状态之间切换,以使人眼在看到背景色光L *以及环境光L 0、背景色光L *和反射光L 2的混合光之间变换,用户可看到后盖120在两种外观效果之间变换,可满足用户对后盖120的外观要求。此外,用户可依据个人喜好设置后盖120的外观效果,或者,用户可通过后盖120的外观效果来判断电子设备1000处于哪种 应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
请参阅图19,图19是图16b所示光学模组在一种实施方式下的结构示意图。
本实施方式中,液晶材料层11采用PDLC制成,第一电极层21和第二电极层22均为采用ITO制成的ITO膜,结构色材料层30为纳米级多层光学膜,非黑色油墨层40采用白色油墨制成。第一承载件61和第二承载件62为采用PET制成的PET膜。粘接层70采用OCA制成。
接下来,以环境光L 0为白色的可见光,结构色材料层30将环境光L 0分为蓝色的透射光L 1和橙色的反射光L 2为例,对本实施方式中后盖120的外观效果变换进行描述。此时,环境光L 0为白色光,透射光L 1为蓝色光,反射光L 2为橙色光,背景色光L *为与透射光L 1的颜色相同的蓝色光。其中,橙色光是由红色光和绿色光组合而成的复色光。
用户手持电子设备1000,且后盖120朝向用户时,在液晶材料层11处于透光状态下,人眼可以看到蓝色的背景色光L *,即人眼可看到后盖120呈蓝色。在液晶材料层11处于散光状态下,人眼可以看到白色的环境光L 0、蓝色的背景色光L *和橙色的反射光L 2的混合光,即人眼可以看到白色光,也即人眼可看到后盖120呈白色。换言之,通过控制液晶材料层11在透光状态和散光状态之间的切换,可实现后盖120在蓝色和白色之间的相互转变。
请参阅图20,图20是图4所示后盖120中光学膜组件122和柔性电路板125在第四种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、非黑色油墨层40、黑色油墨层50、第一承载件61、第二承载件62和粘接层70。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第二电极层22背离液晶材料层11一侧。非黑色油墨层40位于结构色材料层30背离第二电极层22的一侧。黑色油墨层50位于非黑色油墨层40背离结构色材料层30的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。粘接层70位于第二承载件62和结构色材料层30之间。
本实施例所示光学膜组件122与上述第三种实施例所示光学膜组件122的不同之处在于,第二承载件62位于结构色材料层30和非黑色油墨层40之间。具体的,第二承载件62的顶面承载结构色材料层30,第二承载件62的底面承载非黑色油墨层40。其中,粘接层70的顶面接触结构色材料层30的底面,粘接层70的底面接触第二承载件62的顶面。此时,第二电极层22设于结构色材料层30的顶面,非黑色油墨层40设于第二承载件62的底面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第三种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第三种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第三种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图21,图21是图4所示后盖120中光学膜组件122和柔性电路板125在第五种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、非黑色油墨层40、黑色油墨层50、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第二电极层22背离液晶材料层11一侧。非黑色油墨层40位于结构色材料层30背 离第二电极层22的一侧。黑色油墨层50位于非黑色油墨层40背离结构色材料层30的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第三种实施例所示光学膜组件122的不同之处在于,结构色材料层30为光学镀膜。具体的,结构色材料层30设于第二承载件62的底面,非黑色油墨层40设于结构色材料层30的底面。其中,结构色材料层30可通过PVD等工艺形成于第二承载件62的底面。此时,结构色材料层30可相当于增亮膜42(如图8a所示),结构色材料层30和非黑色油墨层40可形成后盖120的背景层122b(如图8a所示)。
可以理解的是,相比于上述第三种和第四种实施例所示光学膜组件122,本实施例所示光学膜组件122省去了粘接层70,有利于减少光学膜组件122的叠层数,实现后盖120的厚度减薄,有利于电子设备1000的轻薄化设计。
在其他一些实施例中,如图8b所示,光学膜组件122也可以包括纳米纹理层43,纳米纹理层43位于液晶材料层11和非黑色油墨层40之间,纳米纹理层43和结构色材料层30用以加强非黑色油墨层40对环境光L 0的反射作用,使背景色光L *产生炫光效果。具体的,纳米纹理层43位于非黑色油墨层40和第二承载件62之间。其中,纳米纹理层43设于第二承载件62的底面。纳米纹理层43包括朝向非黑色油墨层40的纳米纹理面431,结构色材料层30覆盖纳米纹理面431。此时,非黑色油墨层40、结构色材料层30和纳米纹理层43形成后盖120的背景层122b。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第三种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第三种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第三种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图22,图22是图21所示光学膜组件122在一种实施方式下的结构示意图。
本实施方式中,液晶材料层11采用PDLC制成,第一电极层21和第二电极层22均为采用ITO制成的ITO膜,结构色材料层30为光学镀膜,非黑色油墨层40采用白色油墨制成。第一承载件61和第二承载件62为采用PET制成的PET膜。
接下来,以环境光L 0为白色的可见光,结构色材料层30将环境光L 0分为橙色的透射光L 1和蓝色的反射光L 2为例,对本实施方式中后盖120的外观效果变换进行描述。此时,环境光L 0为白色光,透射光L 1为橙色光,反射光L 2为蓝色光,背景色光L *为与透射光L 1的颜色相同的橙色光。
用户手持电子设备1000,且后盖120朝向用户时,在液晶材料层11处于透光状态下,人眼可以看到橙色的背景色光L *,即人眼可看到后盖120呈橙色。在液晶材料层11处于散光状态下,人眼可以看到白色的环境光L 0、橙色的背景色光L *和蓝色的反射光L 2的混合光,即人眼可以看到白色光,也即人眼可看到后盖120呈白色。换言之,通过控制液晶材料层11在透光状态和散光状态之间的切换,可以实现后盖120在橙色和白色之间的相互转变。
请参阅图23,图23是图4所示后盖120中光学膜组件122和柔性电路板125在第六种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、非黑色油墨层40、黑色油墨层50、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料 层30位于第二电极层22背离液晶材料层11一侧。其中,结构色材料层30为光学镀膜。非黑色油墨层40位于结构色材料层30背离第二电极层22的一侧。黑色油墨层50位于非黑色油墨层40背离结构色材料层30的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第三种实施例所示光学膜组件122的不同之处在于,第二承载件62位于结构色材料层30和非黑色油墨层40之间。具体的,第二承载件62的顶面承载结构色材料层30,第二承载件62的底面承载非黑色油墨层40。此时,第二电极层22设于结构色材料层30的顶面,非黑色油墨层40设于第二承载件62的底面。
在其他一些实施例中,如图8a所示,光学膜组件122还可以包括纳米纹理层43和增亮膜42,纳米纹理层43和增亮膜42均位于第二承载件62和非黑色油墨层40之间,纳米纹理层43设于第二承载件62朝向非黑色油墨层40的表面(即第二承载件62的底面),纳米纹理层43包括背离第二承载件62的纳米纹理面431,增亮膜覆盖纳米纹理面431。纳米纹理层43和增亮膜用于使背光色光L *产生炫光效果,以丰富后盖120的外观效果。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第三种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第三种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第三种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图24,图24是图4所示后盖120中光学膜组件122和柔性电路板125在第七种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、非黑色油墨层40、黑色油墨层50、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第二电极层22背离液晶材料层11一侧。其中,结构色材料层30为光学镀膜。非黑色油墨层40位于结构色材料层30背离第二电极层22的一侧。黑色油墨层50位于非黑色油墨层40背离结构色材料层30的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第六种实施例所示光学膜组件122的不同之处在于,光学膜组件122还包括辅助承载件80和胶层90。辅助承载件80位于第二承载件62和结构色材料层30之间,用于承载结构色材料层30。具体的,结构色材料层30设于辅助承载件80的底面。此时,非黑色油墨层40设于结构色材料层30的底面。其中,结构色材料层30可通过PVD等工艺形成于辅助承载件80的底面。示例性的,辅助承载件80为透明承载件。辅助承载件80可采用PET、PC或PMMA等透明塑胶材料制成,辅助承载件80可以是注塑件、板材或膜片的任意一种。
胶层90位于辅助承载件80和第二承载件62之间。具体的,胶层90的顶面接触第二承载件62的底面,胶层90的底面接触辅助承载件80的顶面。示例性的,胶层90为透明胶层,胶层90可采用OCA制成。
应当理解的是,本实施例所示结构色材料层30为光学镀膜,在其他一些实施例中,结构色材料层30也可以为纳米级多层光学膜,此时,光学膜组件30还包括粘接层70(如图9所 示),粘接层70位于辅助承载件80和结构色材料层30之间,粘接层70的顶面接触辅助承载件80,粘接层70的底面接触结构色材料层30。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第三种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第三种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第三种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图25,图25是图24所示光学膜组件122在一种实施方式下的结构示意图。
本实施方式中,液晶材料层11采用PNLC制成,第一电极层21和第二电极层22均为采用AZO制成的AZO膜,结构色材料层30为光学镀膜,非黑色油墨层40采用红色油墨制成。第一承载件61和第二承载件62为采用PC制成的透明PC注塑件。辅助承载件80采用PET制成的PET膜,胶层90采用OCA制成。
接下来,以环境光L 0为白色的可见光,结构色材料层30将环境光L 0分为洋红色的透射光L 1和绿色的反射光L 2为例,对本实施方式中后盖120的外观效果变换进行描述。此时,环境光L 0为白色光,透射光L 1为洋红色光,反射光L 2为绿色光,背景色光L *为与透射光L 1的颜色相同的红色光。
用户手持电子设备1000,且后盖120朝向用户时,在液晶材料层11处于透光状态下,人眼可以看到红色的背景色光L *,即人眼可看到后盖120呈红色。在液晶材料层11处于散光状态下,人眼可以看到白色的环境光L 0、红色的背景色光L *和绿色的反射光L 2的混合光,即人眼可以看到黄色光,也即人眼可看到后盖120呈黄色。其中,黄色光是由白色光、红色光和绿色光混合而成的混合光。换言之,通过控制液晶材料层11在透光状态和散光状态之间切换,可实现后盖120在红色和黄色之间的相互转变。
请参阅图26,图26是图4所示后盖120中光学膜组件122和柔性电路板125在第八种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、非黑色油墨层40、黑色油墨层50、第一承载件61、第二承载件62、辅助承载件80和胶层90。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第二电极层22背离液晶材料层11一侧。其中,结构色材料层30为光学镀膜。非黑色油墨层40位于结构色材料层30背离第二电极层22的一侧。黑色油墨层50位于非黑色油墨层40背离结构色材料层30的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第七种实施例所示光学膜组件122的不同之处在于,辅助承载件80位于结构色材料层30和非黑色油墨层40之间。具体的,辅助承载件80的顶面承载结构色材料层30,辅助承载件80的底面承载非黑色油墨层40。其中,胶层90位于第二承载件62和结构色材料层30之间。胶层90的顶面接触第二承载件62的底面,胶层90的底面接触结构色材料层30的顶面。此时,非黑色油墨层40设于辅助承载件80的底面。
应当理解的是,本实施例所示结构色材料层30为光学镀膜,在其他一些实施例中,结构色材料层30也可以为纳米级多层光学膜,此时,光学膜组件30还包括粘接层70(如图9所示),粘接层70位于辅助承载件80和结构色材料层30之间,粘接层70的顶面接触辅助承载件80,粘接层70的底面接触结构色材料层30。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第三种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第三种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第三种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图27a,图27a是图4所示后盖120中光学膜组件122和柔性电路板125在第九种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30和非黑色油墨层40。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第一电极层21背离液晶材料层11一侧。非黑色油墨层40位于第二电极层22背离液晶材料层11的一侧。
请参阅图27b,图27b是图27a所示结构在一种实施方式下的结构示意图。
光学膜组件122还包括黑色油墨层50、第一承载件61和第二承载件62。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。具体的,第一承载件61位于第一电极层21和结构色材料层30之间。其中,第一承载件61的顶面承载结构色材料层30,第一承载件61的底面承载第一电极层21。此时,结构色材料层30的顶面为光学膜组件122的顶面。
第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。具体的,第二承载件62位于第二电极层22和非黑色油墨层40之间。其中,第二承载件62的顶面承载第二电极层22,第二承载件62的底面承载非黑色油墨层40。
本实施例中,结构色材料层30为纳米级多层光学膜。光学膜组件122还包括粘接层70,粘接层70位于结构色材料层30和第一承载件61之间。具体的,粘接层70的顶面接触结构色材料层30,粘接层70的底面接触第一承载件61。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第三种实施例所示光学膜组件122的结构大致相同,因此本实施例所示光学膜组件122的其他结构描述可参照上述第三种实施例所示光学膜组件122相关描述,在此不再重复描述。
请一并参阅图28,图28是液晶材料层11位于透光状态时,图27b所述光学膜组件122的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于透光状态。环境光L 0从外界穿过盖板121射入光学膜组件122的顶面(即结构色材料层30的顶面),结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2。反射光L 2自结构色材料层30的顶面(即光学膜组件122的顶面)出射。其中,透射光为复色光L 1,反射光L 2可以是单色光,也可是复色光。
透射光L 1自结构色材料层30的底面出射,依次穿过粘接层70、第一承载件61和第一电极层21并到达液晶材料层11的顶面。由于液晶材料层11为透光状态,透射光L 1可穿过液晶材料层11沿初始传播方向自液晶材料层11的底面出射。随后,透射光L 1依次穿过第二电极层22和第二承载件62到达非黑色油墨层40的顶面。透射光L 1被非黑色油墨层40部分反射形成背景色光L *,背景色光L *依次穿过第二承载件62、第二电极层22、液晶材料层11、第一电极层21、第一承载件61、粘接层70和结构色材料层30,自结构色材料层30的顶面(即光学膜组件122的顶面)出射。此时,背景色光L *和反射光L 2均自光学膜组件122的顶 面出射。
其中,背景色光L *的颜色与反射光L 2和透射光L 1的颜色均不同。背景色光L *的颜色与透射光L 1中的一种单色光的颜色相同,或者,背景色光L *的颜色与透射光L 1中多种单色光混合而成的光线的颜色相同。换言之,当透射光L 1为由N(N≥2,且N为整数)种单色光组合而成的复色光时,非黑色油墨层40可反射透射光L 1中M(1≤M<N,且N为整数)种单色光,以形成背景色光L *
应当理解的是,基于结构色材料层30的特性,透射光L 1的强度高,且具有多个传播方向(即具有多个出射角度),则背景色光L *的强度高,且具有多个传播方向(即具有多个出射角度)而反射光L 2的强度低,且具有单一的传播方向(即具有单一出射角度)。相比于背景色光L *,反射光L 2可以忽略不计。因此,相当于仅有背景色光L *自光学膜组件122的顶面出射。
请参阅图27b和图29,图29是液晶材料层11位于散光状态时,图27b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。环境光L 0从外界穿过盖板121射入光学膜组件122的顶面(即结构色材料层30的顶面),结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2。反射光L 2自结构色材料层30的顶面(即光学膜组件122的顶面)出射。
透射光L 1自结构色材料层30的底面出射,依次穿过粘接层70、第一承载件61和第一电极层21并到达液晶材料层11的顶面。由于液晶材料层11为散光状态,透射光L 1会在液晶材料层11中发生散射,即透射光L 1会在液晶的作用下发生散射而朝多个方向传播。部分透射光L 1可自液晶材料层11的顶面出射,并依次穿过第一电极层21、第一承载件61、粘接层70和结构色材料层30,自结构色材料层30的顶面(即光学膜组件122的顶面)出射。
部分透射光L 1自液晶材料层11的底面出射,并依次穿过第二电极层22和第二承载件62到达非黑色油墨层40的顶面。透射光L 1被非黑色油墨层40部分反射形成背景色光L *,背景色光L *依次穿过第二承载件62和第二电极层22到达液晶材料层11的底面。背景色光L *会在液晶材料层11中发生散射,即背景色光L *会在液晶的作用下发生散射而沿多个方向传播。部分背景色光L *自液晶材料层11的顶面出射,并依次穿过第一电极层21、第一承载件61、粘接层70和结构色材料层30,自结构色材料层30的顶面(即光学膜组件122的顶面)出射。此时,透射光L 1、背景色光L *和反射光L 2均自光学膜组件122的顶面出射。
应当理解的是,基于结构色材料层30的特性,透射光L 1和背景色光L *的强度高,且具有多个传播方向(即具有多个出射角度),而反射光L 2的强度低,且具有单一的传播方向(即具有单一出射角度)。相比于透射光L 1和背景色光L *,反射光L 2可以忽略不计。因此,相当于仅有透射光L 1和背景色光L *自光学膜组件122的顶面出射。此外,由于背景色光L *由透射光L 1被非黑色油墨层40反射而形成,因此相当于仅有透射光L 1自光学膜组件122的顶面出射。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,背景色光L *可穿过粘合层123和盖板121进入人眼,此时人眼可看到背景色光L*。用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,透射光L 1可穿过粘合层123和盖板121进入人眼,此时人眼可看到透射光L 1
换言之,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压 差进行调整,驱动液晶材料层11在透光状态和散光状态之间切换,以使人眼在看到背景色光L *以及透射光L 1之间变换,用户可看到后盖120在两种外观效果之间变换,可满足用户对后盖120的外观要求。此外,用户可依据个人喜好设置后盖120的外观效果,或者,用户可通过后盖120的外观效果来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
请参阅图30,图30是图27b所示光学膜组件122在一种实施方式下的结构示意图。
本实施方式中,液晶材料层11采用液晶制成,第一电极层21为采用AZO制成的AZO膜,第二电极层22为采用ITO制成的ITO膜,结构色材料层30为纳米级多层光学膜,非黑色油墨层40采用蓝色油墨制成。第一承载件61为采用PMMA和PC复合而成的PMMA/PC复合片材,第二承载件62为采用PET制成的PET膜。粘接层70采用OCA制成。
接下来,以环境光L 0为白色的可见光,结构色材料层30将环境光L 0分为青色的透射光L 1和红色的反射光L 2为例,对本实施方式中后盖120的外观效果变换进行描述。此时,环境光L 0为白色光,透射光L 1为青色光,反射光L 2为红色光,背景色光L *为与透射光L 1的颜色不同的蓝色光。其中,青色光是由绿色光和蓝色光组合而成的复色光。
用户手持电子设备1000,且后盖120朝向用户时,在液晶材料层11处于透光状态下,人眼可以看到蓝色的背景色光L*,即人眼可看到后盖120呈蓝色。在液晶材料层11处于散光状态下,人眼可以看到青色的透射光L 1,即人眼可以看到后盖120呈青色。换言之,通过控制液晶材料层11在透光状态和散光状态之间的切换,可实现后盖120在蓝色和青色之间的相互转变。
请参阅图31,图31是图4所示后盖120中光学膜组件122和柔性电路板125在第十种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、非黑色油墨层40、黑色油墨层50、第一承载件61、第二承载件62和粘接层70。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第一电极层21背离液晶材料层11一侧。其中,结构色材料层为纳米级多层光学膜。非黑色油墨层40位于第二电极层22背离液晶材料层11的一侧。黑色油墨层50位于非黑色油墨层40背离第二电极层22的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。粘接层70位于第一承载件61和结构色材料层30之间。
本实施例所示光学膜组件122与上述第九种实施例所示光学膜组件122的不同之处在于,第一承载件61位于结构色材料层30背离第一电极层21的一侧。具体的,结构色材料层30设于第一承载件61的底面。其中,粘接层70的顶面接触第一承载件61的底面,粘接层70的底面接触结构色材料层30。此时,第一电极层21设于结构色材料层30的底面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第九种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第九种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第九种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图32,图32是图4所示后盖120中光学膜组件122和柔性电路板125在第十一种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、非黑色油墨层40、黑色油墨层50、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第一电极层21背离液晶材料层11一侧。非黑色油墨层40位于第二电极层22背离液晶材料层11的一侧。黑色油墨层50位于非黑色油墨层40背离第二电极层22的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第九种实施例所示光学膜组件122的不同之处在于,结构色材料层30为光学镀膜。具体的,结构色材料层30设于第一承载件61的顶面。其中,第一承载件61的顶面承载结构色材料层30,第一承载件61的底面承载第一电极层21。示例性的,结构色材料层30可通过PVD等工艺形成于第一承载件61的顶面。可以理解的是,相比于上述第九种和第十种实施例所示光学膜组件122,本实施例所示光学膜组件122省去了粘接层70,有利于减少光学膜组件122的叠层,实现后盖120的厚度减薄,有利于电子设备1000的轻薄化设计。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第九种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第九种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第九种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图33,图33是图4所示后盖120中光学膜组件122和柔性电路板125在第十二种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、非黑色油墨层40、黑色油墨层50、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第一电极层21背离液晶材料层11一侧。非黑色油墨层40位于第二电极层22背离液晶材料层11的一侧。黑色油墨层50位于非黑色油墨层40背离第二电极层22的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第十一种实施例所示光学膜组件122的不同之处在于,第一承载件61位于结构色材料层30背离第一电极层21的一侧。具体的,结构色材料层30设于第一承载件61的底面。此时,第一电极层21设于结构色材料层30的底面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第九种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第九种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第九种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图34a,图34a是图4所示后盖120中光学膜组件122和柔性电路板125在第十三种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22和黑色油墨层50。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。黑色油墨层50位于液晶材料层11的内侧。其中,黑色油墨层50位于第二电极层 22背离液晶材料层11的一侧。
请参阅图34b,图34b是图34a所示结构在一种实施方式下的结构示意图。
光学膜组件122还包括第一承载件61和第二承载件62。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。其中,第二承载件62位于第二电极层22和黑色油墨层50之间。第二承载件62的顶面承载第二电极层22,第二承载件62的底面承载黑色油墨层50。其中,黑色油墨层50可以通过印刷或喷涂等方式形成于第二承载件62的底面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第一种实施例所示光学膜组件122的结构大致相同,因此本实施例所示光学膜组件122的其他结构可参照上述第一种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图34b和图35,图35是液晶材料层11处于透光状态时,图34b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于透光状态。环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第一承载件61的顶面),依次穿过第一承载件61和第一电极层21到达液晶材料层11的顶面。由于液晶材料层11为透光状态,环境光L 0可穿过液晶材料层11沿初始传播方向自液晶材料层11的底面出射。随后,环境光L 0依次穿过第二电极层22和第二承载件62到达黑色油墨层50。环境光L 0被黑色油墨层50全部吸收。此时,没有光线自光学膜组件122的顶面出射。
请参阅图34b和图36,图36是液晶材料层11处于散光状态时,图34b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第一承载件61的顶面),依次穿过第一承载件61和第一电极层21到达液晶材料层11的顶面,由于液晶材料层11为散光状态,环境光L 0会在液晶的作用下发生散射。部分环境光L 0自液晶材料层11的顶面出射,依次穿过第一电极层21和第一承载件61,自第一承载件61的顶面(即光学膜组件122的顶面)出射。
部分环境光L 0自液晶材料层11的底面出射,依次穿过第二电极层22和第二承载件62到达黑色油墨层50的顶面,被黑色油墨层50全部吸收。此时,仅有环境光L 0自光学膜组件122的顶面出射。
换言之,可利用处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,使液晶材料层11在透光状态和散光状态之间切换,以实现人眼在看不到光线和看到部分环境光L 0之间变换,用户可看到后盖120在两种外观效果之间变换,可满足用户对后盖120的外观要求。此外,用户可依据个人喜好设置后盖120的外观效果,或者,用户可通过后盖120的外观效果来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
接下来,为了便于理解,以环境光L 0为白色的可见光为例对后盖120的外观效果变换进行分析。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态 下,没有光线穿过粘合层123和盖板121进入人眼,此时人眼看不到光线,即人眼看到后盖120呈深黑色。用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,环境光L 0可穿过粘合层123和盖板121进入人眼,此时人眼看到环境光L 0,由于环境光L 0为白色的可见光时,人眼看到后盖120呈浅黑色。
换言之,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,使液晶材料层11在透光状态和散光状态之间切换,以使用户可看到后盖120呈现的黑色深浅转变,用户可依据后盖120的外观效果的变换来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
请参阅图37a,图37a是图34b所示光学膜组件122在另一种实施方式下的部分结构示意图。其中,图37a仅示出了光学膜组件122的黑色油墨层50、增亮膜42和第二承载件62。
本实施方式中,光学膜组件122还包括增亮膜42,增亮膜42位于黑色油墨层50和液晶材料层11(如图34b所示)之间。具体的,增亮膜42位于第二承载件62和黑色油墨层50之间。其中,增亮膜42设于第二承载件62的底面,黑色油墨层50设于增亮膜42的底面。此时,增亮膜42和黑色油墨层50形成了后盖120的背景层122b。
接下来,为了便于理解,以环境光L 0为白色的可见光为例对后盖120的外观效果变换进行分析。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,没有光线穿过粘合层123和盖板121进入人眼,此时人眼看不到光线,即人眼看到后盖120呈亮度较高的黑色。用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,环境光L 0可穿过粘合层123和盖板121进入人眼,此时人眼看到环境光L 0,由于环境光L 0为白色的可见光时,人眼看到后盖120呈亮度较低的浅黑色。
换言之,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,使液晶材料层11在透光状态和散光状态之间切换,以使用户可看到后盖120呈现的黑色的亮度转变,用户可依据后盖120的外观效果的变换来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
请参阅图37b,图37b是图34b所示光学膜组件122在第三种实施方式下的部分结构示意图。其中,图37b仅示出了光学膜组件122的黑色油墨层50、增亮膜42、纳米纹理层43和第二承载件62。
本实施方式中,光学膜组件122还包括增亮膜42和纳米纹理层43,增亮膜42和纳米纹理层43均位于黑色油墨层50和液晶材料层11(如图34b所示)之间。具体的,增亮膜42和纳米纹理层43均位于黑色油墨层50和第二承载件62之间。其中,纳米纹理层43设于第二承载件62的底面。纳米纹理层43包括朝向黑色油墨层50的纳米纹理面431,增亮膜42覆盖纳米纹理面431。此时,黑色油墨层50、增强膜42和纳米纹理层43形成后盖120的背景层122b。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,没有光线穿过粘合层123和盖板121进入人眼,此时人眼看不到光线,即人眼看到后盖120呈炫光黑。用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于散光状态下,环境光L 0可穿过粘合层123和盖板121进入人眼,此时人眼看到环境光L 0,由于环境光L 0为白色的可见光时,人眼看到后盖120呈浅黑色。
换言之,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,使液晶材料层11在透光状态和散光状态之间切换,以使用户可看到后盖120在 炫光黑和浅黑色之间转变,用户可依据后盖120的外观效果的变换来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
可以理解的是,相比于上述第三种至第十二种实施例所示光学膜组件122,本实施例所示光学膜组件122省去了非黑色油墨层40,有利于减少光学膜组件122的叠层数,实现后盖120的厚度减薄,有利于电子设备1000的轻薄化设计。
请参阅图38a,图38a是图4所示后盖120中光学膜组件122和柔性电路板125在第十四种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22和黑色油墨层50。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。黑色油墨层50位于第二电极层22背离液晶材料层11一侧。
请参阅图38b,图38b是图38a所示结构在一种实施方式下的结构示意图。
光学膜组件122还包括第一承载件61和第二承载件62。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第十三种实施例所示光学膜组件122的不同之处在于,光学膜组件122还包括结构色材料层30,结构色材料层30位于第一电极层21背离液晶材料层11一侧。具体的,结构色材料层30位于第一承载件61和第一电极层21之间。其中,结构色材料层30为光学镀膜。此时,第一承载件61的顶面为光学膜组件122的顶面。结构色材料层30设于第一承载件61的底面,第一电极层21设于结构色材料层30的底面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十三种实施例所示光学膜组件122的结构大致相同,因此本实施例所示光学膜组件122的其他结构描述可参照上述第十三种实施例所示光学膜组件122相关描述,在此不再重复描述。
请一并参阅图39,图39是液晶材料层11处于透光状态时,图38b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于透光状态。环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第一承载件61的顶面),穿过第一承载件61到达结构色材料层30的顶面。结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2。反射光L 2自结构色材料层30的顶面出射,并穿过第一承载件61自第一承载件61的顶面(即光学膜组件122的顶面)出射。其中,透射光L 1和反射光L 2可以是单色光,也可以是复色光。
透射光L 1自结构色材料层30的底面出射,并穿过第一电极层21到达液晶材料层11的顶面。由于液晶材料层11为透光状态,透射光L 1可穿过液晶材料层11沿初始传播方向自液晶材料层11的底面出射。随后,透射光L 1依次穿过第二电极层22和第二承载件62到达黑色油墨层50的顶面。黑色油墨层50将透射光L 1全部吸收。此时,仅有反射光L 2自光学膜组件122的顶面出射。
请参阅图38b和图40,图40是液晶材料层11处于散光状态时,图38b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第一承载件61的顶面),穿过第一承 载件61到达结构色材料层30的顶面。结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2。反射光L 2自结构色材料层30的顶面出射,并穿过第一承载件61自第一承载件61的顶面(即光学膜组件122的顶面)出射。
透射光L 1自结构色材料层30的底面出射,并穿过第一电极层21到达液晶材料层11的顶面。由于液晶材料层11为散光状态,透射光L 1会在液晶材料层11中发生散射,即透射光L 1会在液晶的作用下发生散射而朝多个方向传播。部分透射光L 1自液晶材料层11的顶面出射,依次穿过第一电极层21、结构色材料层30和第一承载件61自第一承载件61的顶面(即光学膜组件122的顶面)出射。
部分透射光L 1穿过液晶材料层11自液晶材料层11的底面出射,并依次穿过第二电极层22和第二承载件62到达黑色油墨层50的顶面。黑色油墨层50将透射光L 1全部吸收。此时,透射光L 1和反射光L 2均自光学膜组件122的顶面出射。
应当理解的是,基于结构色材料层30的特性,透射光L 1的强度高,且具有多个传播方向(即具有多个出射角度),而反射光L 2的强度低,且具有单一的传播方向(即具有单一出射角度)。相比于透射光L 1,反射光L 2可以忽略不计。因此,相当于仅有透射光L 1自光学膜组件122的顶面出射。
用户手持电子设备1000,且后盖120朝向用户使用时,在液晶材料层11处于透光状态下,反射光L 2可穿过粘合层123和盖板121进入人眼,此时人眼可看到反射光L 2。在液晶材料层11处于散光状态下,透射光L 1可穿过粘合层123和盖板121进入人眼,此时人眼可看到透射光L 1
换言之,处理器400可通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,使液晶材料层11在透光状态和散光状态之间切换,以使人眼在看到反射光L 2和透射光L 1之间变换,用户可看到后盖120在两种外观效果之间变换,可满足用户对后盖120的外观要求。此外,用户可依据个人喜好设置后盖120的外观效果,或者,用户可通过后盖120的外观效果来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
请参阅图41,图41是图38b所示光学膜组件122在一种实施方式下的结构示意图。
本实施方式中,液晶材料层11采用PDLC制成,第一电极层21和第二电极层22均为采用ITO制成的ITO膜,结构色材料层30为光学镀膜,黑色油墨层50为采用黑色油墨制成的黑色油墨层。第一承载件61采用玻璃制成,第二承载件62为采用PET制成的PET膜。
接下来,以环境光L 0为白色的可见光,结构色材料层30将环境光L 0分为绿色的透射光L 1和洋红色的反射光L 2为例,对本实施方式中后盖120的外观效果变换进行描述。此时,环境光L 0为白色光,透射光L 1为绿色光,反射光L 2为洋红色光。
用户手持电子设备1000,且后盖120朝向用户时,在液晶材料层11处于透光状态下,人眼可以看到洋红色的反射光L 2,即人眼可看到后盖120呈洋红色。在液晶材料层11处于散光状态下,人眼可以看到绿色的透射光L 1,即人眼可以看到后盖120呈绿色。换言之,通过控制液晶材料层11在透光状态和散光状态之间的切换,可实现后盖120在洋红色和绿色之间的相互转变。
请参阅图42,图42是图4所示后盖120中光学膜组件122和柔性电路板125在第十五种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于 液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第一电极层21背离液晶材料层11一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第十四种实施例所示光学膜组件122的不同之处在于,第一承载件61位于结构色材料层30和第一电极层21之间。具体的,第一承载件61的顶面承载结构色材料层30,第一承载件61的底面承载第一电极层21。此时,结构色材料层30的顶面为光学膜组件122的顶面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十四种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十四种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十四种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图43,图43是图4所示后盖120中光学膜组件122和柔性电路板125在第十六种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第一电极层21背离液晶材料层11一侧。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第十五种实施例所示光学膜组件122的不同之处在于,结构色材料层30为纳米级多层光学膜。光学膜组件122还包括粘接层70,粘接层70位于结构色材料层30和第一承载件61之间。其中,粘接层70的顶面接触结构色材料层30,粘接层70的底面接触第一承载件61。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十四种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十四种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十四种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图44,图44是图4所示后盖120中光学膜组件122和柔性电路板125在第十七种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、第一承载件61和第二承载件62。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接。结构色材料层30位于第一电极层21背离液晶材料层11一侧。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。
本实施例所示光学膜组件122与上述第十六种实施例所示光学膜组件122的不同之处在于,第一承载件61位于结构色材料层30背离第一电极层21的一侧。具体的,第一承载件 61的底面承载结构色材料层30,第一电极层21设于结构色材料层30的底面。此时,粘接层70位于第一承载件61和结构色材料层30之间。其中,粘接层70的顶面接触第一承载件61,粘接层70的底面接触结构色材料层30。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十四种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十四种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十四种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图45a,图45a是图4所示后盖120中光学膜组件122和柔性电路板125在第十八种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、辅助液晶材料层12、第三电极层23、第四电极层24和黑色油墨层50。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层21背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离第一电极层21的一侧。示例性的,辅助液晶材料层12可采用液晶材料、PDLC或PNLC制成。第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。示例性的,电极层(如第三电极层23和第四电极层24)均为透明电极层。电极层(如第三电极层23和第四电极层24)可采用ITO或AZO等透明导电氧化物制成。需要说明的是,第三电极层23和第四电极层24的材料可以相同,也可以不同。
请参阅图45b,图45b是图45a所示结构在一种实施方式下的结构示意图。
光学膜组件122还包括第一承载件61、第二承载件62、第三承载件63和第四承载件64。第一承载件61位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。具体的,第一承载件61位于第一电极层21和结构色材料层30之间。其中,第一电极层21设于第一承载件61的底面。
第二承载件62位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。具体的,第二承载件62位于第二电极层22和黑色油墨层50之间。第二承载件62的顶面承载第二电极层22,第二承载件62的底面承载黑色油墨层50。其中,黑色油墨层50可以通过印刷或喷涂等方式形成于第二承载件62的底面。
第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。具体的,第三电极层23设于第三承载件63的底面。其中,第三电极层23可以通过PVD等工艺形成在第三承载件63的底面。此时,第三承载件63的顶面为光学膜组件122的顶面。
第四承载件64位于第四电极层24背离辅助液晶材料层12的一侧,用于承载第四电极层24。具体的,第四承载件64位于第四电极层24和结构色材料层30之间。第四承载件64的顶面承载第四电极层24,第四承载件64的底面承载结构色材料层30。其中,第四电极层24可以通过物理沉积等工艺形成在第四承载件64的顶面,结构色材料层30可以通过PVD等工艺形成在第四承载件64的底面。
示例性的,承载件(如第三承载件63和第四承载件64)均为透明承载件。承载件(如 第三承载件63和第四承载件64)均可采用透明玻璃或PET、PC或PMMA等透明塑胶材料制成,承载件可以是注塑件、板材或膜片的任意一种。需要说明的是,第三承载件63和第四承载件64的材料可以相同,也可以不同。
此外,光学膜组件122还包括贴合层126,贴合层126位于结构色材料层30和第一承载件61之间。具体的,贴合层126的顶面接触结构色材料层30的底面,粘接层70的底面接触第一承载件61的顶面。示例性的,贴合层126为透明贴合层。贴合层126可采用OCA制成。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十四种实施例所示光学膜组件122的结构大致相同,因此本实施例所示光学膜组件122的其他结构可参照上述第十四种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图45b和图46,图46是辅助液晶材料层12处于透光状态且液晶材料层11处于散光状态时,图45b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第三电极层23和第四电极层24上电,且第三电极层23和第四电极层24之间存在电压差(即电压差大于零)时,辅助液晶材料层12处于透光状态。同时,处理器400给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。
环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第三承载件63的顶面),并依次穿过第三承载件63和第三电极层23到达辅助液晶材料层12的顶面。由于辅助液晶材料层12处于透光状态,环境光L 0可穿过辅助液晶材料层12沿初始传播方向自辅助液晶材料层12的底面出射,并依次经过第四电极层24、第四承载件64到达结构色材料层30的顶面。结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2。反射光L 2自结构色材料层30的顶面出射,依次穿过第四承载件64、第四电极层24、辅助液晶材料层12、第三电极层23和第三承载件63,自第三承载件63的顶面(即光学膜组件122的顶面)出射。
透射光L 1自结构色材料层30的底面出射,并依次经过贴合层126、第一承载件61和第一电极层21到达液晶材料层11的顶面。由于液晶材料层11处于散光状态,透射光L 1在液晶材料层11中发生散射,即透射光L 1液晶的作用下发生散射而沿多个方向传播。部分透射光L 1自液晶材料层11的底面出射,并依次经第二电极层22和第二承载件62到达黑色油墨层50,黑色油墨层50会将该部分透射光L 1全部吸收。
部分透射光L 1自液晶材料层11的顶面出射,并经第二电极层23、第二承载件63、贴合层126、结构色材料层30、第四承载件62、第四电极层22、辅助液晶材料层11、第三电极层21和第三承载件61,自第三承载件61的顶面(即光学膜组件122的顶面)出射。此时,透射光L 1和反射光L 2均自光学膜组件122的顶面出射。
应当理解的是,基于结构色材料层30的特性,透射光L 1的强度高,且具有多个传播方向(即具有多个出射角度),而反射光L 2的强度低,且具有单一的传播方向(即具有单一出射角度)。相比于透射光L 1,反射光L 2可以忽略不计。因此,相当于仅有透射光L 1自光学膜组件122的顶面出射。
请参阅图45b和图47,图47是辅助液晶材料层12处于散光状态且液晶材料层11处于散光状态时,图45b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第三电极层23和第四电极层24断电,且第三电极层23和第四电极层24之间电压差为零时,辅助液晶材料层12处于散光状态。同时,处理器400给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间电压差为零时, 液晶材料层11处于散光状态。
环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第三承载件63的顶面),并依次穿过第三承载件63和第三电极层23到达辅助液晶材料层12的顶面。由于辅助液晶材料层12处于散光状态,环境光L 0会在辅助液晶材料层12中发生散射,即环境光L 0会在液晶的作用下发生散射而沿多个方向传播。部分环境光L 0自辅助液晶材料层12的顶面出射,并依次经过第三电极层23和第三承载件63,自第三承载件63的顶面(即光学膜组件122的顶面)出射。
部分环境光L 0自辅助液晶材料层12的底面出射,并依次经过第四电极层24、第四承载件62到达结构色材料层30的顶面。结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2
反射光L 2自结构色材料层30的顶面出射,依次穿过第四承载件62和第四电极层24到达辅助液晶材料层12的底面。由于辅助液晶材料层12处于散光状态,反射光L 2在辅助液晶材料层12中发生散射,即反射光L 2在液晶的作用下发生散射而沿多个方向传播。部分反射光L 2穿过辅助液晶材料层12自辅助液晶材料层12的顶面出射,依次穿过第三电极层23和第三承载件63,并自第三承载件63的顶面(即光学膜组件122的顶面)出射。
透射光L 1自结构色材料层30的底面出射,并依次经过贴合层126、第一承载件61和第一电极层21到达液晶材料层11的顶面。由于液晶材料层11处于散光状态,透射光L 1会在液晶材料层11中发生散射,即透射光L 1会在液晶的作用下发生散射而沿多个方向传播。部分透射光L 1穿过液晶材料层11自液晶材料层11的底面出射,并依次穿过第二电极层22和第二承载件62到达黑色油墨层50,黑色油墨层50会将该部分透射光L 1全部吸收。
部分透射光L 1自液晶材料层11的顶面出射,并经第一电极层21、第一承载件61、贴合层126、结构色材料层30、第四承载件64和第四电极层24到达辅助液晶材料层12的底面。由于辅助液晶材料层12处于散光状态,该部分透射光L 1会在辅助液晶材料层12中发生散射,即该部分透射光L 1会在液晶的作用下发生散射而沿多个方向传播。部分透射光L 1穿过辅助液晶材料层12自辅助液晶材料层12的顶面出射,并依次穿过第三电极层23和第三承载件63,自第三承载件63的顶面(即光学膜组件122的顶面)出射。此时,透射光L 1和反射光L 2均自光学膜组件122的顶面出射。
应当理解的是,由于环境光L 0、透射光L 1和反射光L 2均在液晶的作用下发生了散射,环境光L 0、透射光L 1和反射光L 2均具有多个传播方向(即具有多个出射角度)。因此,环境光L 0、透射光L 1和反射光L 2均自光学膜组件122的顶面出射,即环境光L 0、透射光L 1和反射光L 2的混合光自光学膜组件122的顶面出射。
请参阅图45b和图48,图48是辅助液晶材料层12处于透光状态且液晶材料层11处于透光状态时,图45b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第三电极层23和第四电极层24上电,且第三电极层23和第四电极层24之间存在电压差(即电压差大于零)时,辅助液晶材料层12处于透光状态。同时,处理器400给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于透光状态。
环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第三承载件63的顶面),并依次穿过第三承载件63和第三电极层23到达辅助液晶材料层12的顶面。由于辅助液晶材料层12处于透光状态,环境光L 0可穿过辅助液晶材料层12沿初始传播方向自辅助液晶材料层12的底面出射,并依次穿过第四电极层24、第四承载件64到达结构色材 料层30的顶面。结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2
反射光L 2自结构色材料层30的顶面出射,依次穿过第四承载件64、第四电极层24、辅助液晶材料层12、第三电极层23和第三承载件63,自第三承载件63的顶面(即光学膜组件122的顶面)出射。
透射光L 1自结构色材料层30的底面出射,并依次穿过贴合层126、第一承载件61和第一电极层21到达液晶材料层11的顶面。由于液晶材料层11处于透光状态,透射光L 1可穿过液晶材料层11沿初始传播方向自液晶材料层11的底面出射,并依次穿过第二电极层22和第二承载件62到达黑色油墨层50,黑色油墨层50会将透射光L 1全部吸收。此时,仅有反射光L 2自光学膜组件122的顶面出射。
应当理解的是,基于结构色材料层30的特性,透射光L 1的强度高,且具有多个传播方向(即具有多个出射角度),而反射光L 2的强度低,且具有单一的传播方向(即具有单一出射角度)。因此,此时自光学膜组件122的顶面出射的反射光L 2的强度较低,颜色较浅。
请参阅图45b和图49,图49是辅助液晶材料层12处于散光状态且液晶材料层11处于透光状态时,图45b所示光学膜组件122的光路示意图。
处理器400(如图1所示)给第三电极层23和第四电极层24断电,且第三电极层23和第四电极层24之间电压差为零时,辅助液晶材料层12处于散光状态。同时,处理器400给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(电压差大于零)时,液晶材料层11处于透光状态。
环境光L 0从外界穿过盖板121(如图4所示)射入光学膜组件122的顶面(即第三承载件63的顶面),并依次穿过第三承载件63和第三电极层23到达辅助液晶材料层12的顶面。由于辅助液晶材料层12处于散光状态,环境光L 0会在辅助液晶材料层12中发生散射,即环境光L 0会在液晶的作用下发生散射而沿多个方向传播。
部分环境光L 0可自辅助液晶材料层12的顶面出射,并依次穿过第三电极层23和第三承载件63,自第三承载件63的顶面(即光学膜组件122的顶面)出射。部分环境光L 0自辅助液晶材料层12的底面出射,并依次经过第四电极层24和第四承载件64到达结构色材料层30的顶面。结构色材料层30将环境光L 0分为不同颜色的透射光L 1和反射光L 2
反射光L 2自结构色材料层30的顶面出射,依次穿过第四承载件64和第四电极层24到达辅助液晶材料层12的底面。由于辅助液晶材料层12处于散光状态,反射光L 2会在辅助液晶材料层12中发射散射,即反射光L 2会在液晶的作用下发生散射而沿多个方向传播。部分反射光L 2自辅助液晶材料层12的顶面出射,并依次穿过第三电极层23和第三承载件63,自第三承载件63的顶面(即光学膜组件122的顶面)出射。
透射光L 1自结构色材料层30的底面出射,并依次穿过贴合层126、第一承载件61和第一电极层21到达液晶材料层11的顶面。由于液晶材料层11处于透光状态,透射光L 1可穿过液晶材料层11沿初始传播方向自液晶材料层11的底面出射,并依次经第二电极层22和第二承载件62到达黑色油墨层50,黑色油墨层50会将透射光L 1全部吸收。此时,环境光L 0和反射光L 2自光学膜组件122的顶面出射。
应当理解的是,由于反射光L 2在液晶的作用下发生了散射,反射光L 2自光学膜组件122的顶面沿多个方向传播,因此,此时自光学膜组件122的顶面出射的反射光L 2的强度较大,颜色较深。
用户手持电子设备1000,且后盖120朝向用户使用时,在辅助液晶材料层12处于透光状态下且液晶材料层11处于散光状态下时,透射光L 1可穿过粘合层123和盖板121进入人 眼,此时人眼可看到透射光L 1。在辅助液晶材料层12处于散光状态下且液晶材料层11处于散光状态下时,环境光L 0、透射光L 1和反射光L 2的混合光可穿过粘合层123和盖板121进入人眼,此时人眼可看到环境光L 0、透射光L 1和反射光L 2的混合光。在辅助液晶材料层12处于透光状态下且液晶材料层11处于透光状态时,反射光L 2可穿过粘合层123和盖板121进入人眼,此时人眼可看到颜色较浅的反射光L 2。在辅助液晶材料层12处于散光状态下且液晶材料层11处于透光状态时,反射光L 2可穿过粘合层123和盖板121进入人眼,此时人眼可看到颜色较深的反射光L 2
换言之,处理器400可通过柔性电路板125对第三电极层23和第四电极层24之间的电压差、及第一电极层21和第二电极层22之间的电压差进行调整,使辅助液晶材料层12和液晶材料层11在透光状态和散光状态之间切换,以使人眼在看到四种颜色光之间的转变,即用户可看到后盖120在四种外观效果之间变换,可满足用户对后盖120的外观要求。此外,用户可依据个人喜好设置后盖120的外观效果,或者,用户可通过后盖120的外观效果来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
请参阅图50,图50是图45b所示光学膜组件122在一种实施方式下的结构示意图。
本实施方式中,辅助液晶材料层12和液晶材料层11均采用PDLC制成,第三电极层23、第四电极层24、第一电极层21和第二电极层22均为采用ITO制成的ITO膜,结构色材料层30为光学镀膜,黑色油墨层50为黑色油墨层。第三承载件63、第四承载件64、第一承载件61和第二承载件62均为采用PET制成的PET膜,贴合层126采用OCA制成。
接下来,以环境光L 0为白色的可见光,结构色材料层30将环境光L 0分为红色的透射光L 1和青色的反射光L 2为例,对本实施方式中后盖120的外观效果变换进行描述。此时,环境光L 0为白色光,透射光L 1为红色光,反射光L 2为青色光。
用户手持电子设备1000,且后盖120朝向用户使用时,在辅助液晶材料层12处于透光状态下且液晶材料层11处于散光状态下时,人眼可看到红色的透射光L 1,即人眼可看到后盖120呈红色。在辅助液晶材料层12处于散光状态下且液晶材料层11处于散光状态下时,人眼可看到白色的环境光L 0、红色的透射光L 1和青色的反射光L 2的混合光,即人眼可看到后盖120呈白光。在辅助液晶材料层12处于透光状态下且液晶材料层11处于透光状态时,人眼可看到浅青色的反射光L 2,即人眼可看到后盖120呈浅青色。在辅助液晶材料层12处于散光状态下且液晶材料层11处于透光状态时,人眼可看到青色的反射光L 2,即人眼可看到后盖120呈青色。因此,通过控制辅助液晶材料层12和液晶材料层11在透光状态和散光状态之间切换,可实现后盖120在四种颜色之间的相互转变。
换言之,在辅助液晶材料层12在透光状态和散光状态之间切换,且液晶材料层11保持在散光状态时,人眼可看到后盖120的颜色在红色和白色之间相互转变。在辅助液晶材料层12在透光状态和散光状态之间切换,且液晶材料层11保持在透光状态时,人眼可看到后盖120的颜色在浅青色和青色之间相互转变。在辅助液晶材料层12保持透光状态,且液晶材料层11在透光状态和散光状态之间切换时,人眼可看到后盖120的颜色在浅青色和红色之间相互转变。在辅助液晶材料层12保持散光状态,且液晶材料层11在透光状态和散光状态之间切换时,人眼可看到后盖120在青色和白色之间相互转变。
请参阅图51,图51是图4所示后盖120中光学膜组件122和柔性电路板125在第十九种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、 黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62、第三承载件63和第四承载件64。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。第四承载件64位于第四电极层24背离辅助液晶材料层12的一侧,用于承载第四电极层24。
本实施例所示光学膜组件122与上述第十八种实施例所示光学膜组件122的不同之处在于,第四承载件64位于结构色材料层30和第一承载件61之间。具体的,结构色材料层30设于第四承载件64的顶面,第四电极层64设于结构色材料层30的顶面。
此外,光学膜组件122还包括贴合层126,贴合层126位于第四承载件64和第一承载件61之间。具体的,贴合层126的顶面接触第四承载件64的底面,贴合层126的底面接触第一承载件61的顶面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图52,图52是图4所示后盖120中光学膜组件122和柔性电路板125在第二十种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62、第三承载件63和第四承载件64。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。 第四承载件64位于第四电极层24背离辅助液晶材料层12的一侧,用于承载第四电极层24。
本实施例所示光学膜组件122与上述第十八种实施例所示光学膜组件122的不同之处在于,第一承载件61位于结构色材料层30和第一电极层21之间。具体的,第一承载件61的顶面承载结构色材料层30,第一承载件61的底面承载第一电极层21。
此外,光学膜组件122还包括贴合层126,贴合层126位于第四承载件64和结构色材料层30之间。具体的,贴合层126的顶面接触第四承载件64,贴合层126的底面接触结构色材料层30。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图53,图53是图4所示后盖120中光学膜组件122和柔性电路板125在第二十一种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62和第三承载件63。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。
本实施例所示光学膜组件122与上述第二十种实施例所示光学膜组件122的不同之处在于,第四电极层24设于结构色材料层30的顶面。相比于上述第二十种实施例所示光学膜组件122,本实施例所示光学膜组件122省去了第四承载件64和贴合层126,有利于减少光学膜组件122的叠层数,实现光学膜组件122的厚度减薄,进而有利于实现后盖120的厚度减薄,实现电子设备1000的轻薄化设计。
在其他一些实施例中,结构色材料层30也可以设于第四承载件64的底面,第一电极层21可以设于结构色材料层30的底面,此时可以省去第一承载件61和贴合层126,同样可以减少光学膜组件122的叠层数。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图54,图54是图4所示后盖120中光学膜组件122和柔性电路板125在第二十二种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62、第三承载件63和第四承载件64。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。第四承载件64位于第四电极层24背离辅助液晶材料层12的一侧,用于承载第四电极层24。
本实施例所示光学膜组件122与上述第十八种实施例所示光学膜组件122的不同之处在于,第一承载件61位于结构色材料层30和第四承载件64之间。具体的,结构色材料层30设于第一承载件61的底面,第一电极层21设于结构色材料层30的底面。
此外,光学膜组件122还包括贴合层126,贴合层126位于第四承载件64和第一承载件61之间。具体的,贴合层126的顶面接触第四承载件64的底面,贴合层126的底面接触第一承载件61的顶面。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图55,图55是图4所示后盖120中光学膜组件122和柔性电路板125在第二十三种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62和第三承载件63。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。
本实施例所示光学膜组件122与上述第二十二种实施例所示光学膜组件122的不同之处在于,第四电极层24设于第一承载件61的顶面。相比于上述第二十种实施例所示光学膜组件122,本实施例所示光学膜组件122省去了第四承载件64和贴合层126,有利于减少光学膜组件122的叠层数,实现光学膜组件122的厚度减薄,进而有利于实现后盖120的厚度减薄,实现电子设备1000的轻薄化设计。
在其他一些实施例中,结构色材料层30也可以设于第四承载件64的顶面,第一电极层21可以设于第四承载件64的底面,此时可以省去第一承载件61和贴合层126,同样可以减少光学膜组件122的叠层数。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图56,图56是图4所示后盖120中光学膜组件122和柔性电路板125在第二十四种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62、第三承载件63和第四承载件64。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。第四承载件64位于第四电极层24背离辅助液晶材料层12的一侧,用于承载第四电极层24。
本实施例所示光学膜组件122与上述第十八种实施例所示光学膜组件122的不同之处在于,结构色材料层30为纳米级多层光学膜。光学膜组件122还包括粘接层70,粘接层70位于第四承载件64和结构色材料层30之间。具体的,粘接层70的顶面接触第四承载件64,粘接层70的底面接触结构色材料层30。示例性的,粘接层70采用OCA制成。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再 重复描述。
请参阅图57,图57是图4所示后盖120中光学膜组件122和柔性电路板125在第二十五种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62、第三承载件63和第四承载件64。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。第四承载件64位于第四电极层24背离辅助液晶材料层12的一侧,用于承载第四电极层24。
本实施例所示光学膜组件122与上述第二十四种实施例所示光学膜组件122的不同之处在于,第四承载件64位于结构色材料层30和第一承载件61之间。具体的,结构色材料层30设于第四承载件64的顶面,第四电极层64设于结构色材料层30的顶面。
此外,光学膜组件122还包括粘接层70和贴合层126。粘接层70位于结构色材料层30和第四承载件64之间。其中,粘接层70的顶面接触结构色材料层30,粘接层70的底面接触第四承载件64。贴合层126位于第四承载件64和第一承载件61之间。其中,贴合层126的顶面接触第四承载件64,贴合层126的底面接触第一承载件61。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图58,图58是图4所示后盖120中光学膜组件122和柔性电路板125在第二十六种实施例下的结构示意图。
光学膜组件122液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62、第三承载件63和第四承载件64。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的 相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。第四承载件64位于第四电极层24背离辅助液晶材料层12的一侧,用于承载第四电极层24。
本实施例所示光学膜组件122与上述第二十四种实施例所示光学膜组件122的不同之处在于,第一承载件61位于结构色材料层30和第一电极层21之间。具体的,第一承载件61的顶面承载结构色材料层30,第一承载件61的底面承载第一电极层21。
此外,光学膜组件122还包括粘接层70和贴合层126。粘接层70位于结构色材料层30和第一承载件61之间。其中,粘接层70的顶面接触结构色材料层30,粘接层70的底面接触第第一承载件61。贴合层126位于第四承载件64和结构色材料层30之间。其中,贴合层126的顶面接触第四承载件64,贴合层126的底面接触结构色材料层30。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图59,图59是图4所示后盖120中光学膜组件122和柔性电路板125在第二十七种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62和第三承载件63。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。
本实施例所示光学膜组件122与上述第二十六种实施例所示光学膜组件122的不同之处在于,第四电极层24设于结构色材料层30的顶面。相比于上述第二十六种实施例所示光学膜组件122,本实施例所示光学膜组件122省去了第四承载件64和贴合层126,有利于减少光学膜组件122的叠层数,实现光学膜组件122的厚度减薄,进而有利于实现后盖120的厚度减薄,实现电子设备1000的轻薄化设计。
在其他一些实施例中,结构色材料层30也可以设于第四承载件64的底面,第一电极层21可以设于结构色材料层30的底面,此时可以省去第一承载件61和贴合层126,同样可以 减少光学膜组件122的叠层数。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图60,图60是图4所示后盖120中光学膜组件122和柔性电路板125在第二十八种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62、第三承载件63和第四承载件64。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。第四承载件64位于第四电极层24背离辅助液晶材料层12的一侧,用于承载第四电极层24。
本实施例所示光学膜组件122与上述第二十四种实施例所示光学膜组件122的不同之处在于,第一承载件61位于结构色材料层30和第四承载件64之间。具体的,结构色材料层30设于第一承载件61的底面,第一电极层21设于结构色材料层30的底面。
此外,光学膜组件122还包括粘接层70和贴合层126。粘接层70位于结构色材料层30和第一承载件61之间。其中,粘接层70的顶面接触第一承载件61,粘接层70的底面接触结构色材料层30。贴合层126位于第四承载件64和结构色材料层30之间。其中,贴合层126的顶面接触第四承载件64,贴合层126的底面接触结构色材料层30。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图61,图61是图4所示后盖120中光学膜组件122和柔性电路板125在第二十九种实施例下的结构示意图。
光学膜组件122包括液晶材料层11、第一电极层21、第二电极层22、结构色材料层30、黑色油墨层50、辅助液晶材料层12、第三电极层23、第四电极层24、第一承载件61、第二承载件62和第三承载件63。
第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板 125的电连接,用于驱动液晶材料层11在透光状态和散光状态之间切换。结构色材料层30位于第一电极层24背离液晶材料层11的一侧。其中,结构色材料层30为光学镀膜。黑色油墨层50位于第二电极层22背离液晶材料层11的一侧。
辅助液晶材料层12、第三电极层23和第四电极层24均位于结构色材料层30背离液晶材料层11的一侧。具体的,第三电极层23和第四电极层24分别位于辅助液晶材料层12的相对两侧,且均与柔性电路板125电连接,用于驱动辅助液晶材料层12在透光状态和散光状态之间切换。
第一承载件61位于第一电极层21背离液晶材料层12的一侧,用于承载第一电极层21。第二承载件62位于第二电极层22背离液晶材料层12的一侧,用于承载第二电极层22。第三承载件63位于第三电极层23背离辅助液晶材料层12的一侧,用于承载第三电极层23。
本实施例所示光学膜组件122与上述第二十八种实施例所示光学膜组件122的不同之处在于,第四电极层24设于第一承载件61的顶面。相比于上述第二十种实施例所示光学膜组件122,本实施例所示光学膜组件122省去了第四承载件64和贴合层126,有利于减少光学膜组件122的叠层数,实现光学膜组件122的厚度减薄,进而有利于实现后盖120的厚度减薄,实现电子设备1000的轻薄化设计。
在其他一些实施例中,结构色材料层30也可以设于第四承载件64的顶面,第一电极层21可以设于第四承载件64的底面,此时可以省去第一承载件61和贴合层126,同样可以减少光学膜组件122的叠层数。
需要说明的是,本实施例所示光学膜组件122的其他结构与上述第十八种实施例所示光学膜组件122的结构大致相同,且本实施例所示光学膜组件122的光路示意图和上述第十八种实施例所示光学膜组件122的光学示意图大致相同,因此本实施例所示光学膜组件122的其他结构和光路示意图可参照上述第十八种实施例所示光学膜组件122相关描述,在此不再重复描述。
请参阅图62,图62是本申请实施例提供的第二种电子设备1000中后盖120沿A-A方向剖开的剖面结构示意图。
后盖120包括液晶材料层11、第一电极层21、第二电极层22、非黑色油墨层40和柔性电路板125。第一电极层21和第二电极层22分别位于液晶材料层11的相对两侧,且均与柔性电路板125电连接,用于驱动液晶材料层11在透光状态和散光状态之间转换。非黑色油墨层40位于第二电极层22背离液晶材料层11的一侧。
后盖120还包括盖板121、辅助盖板128和补边油墨层124。盖板121位于第一电极层21背离液晶材料层11的一侧,用于承载第一电极层21。辅助盖板128位于第二电极层22背离液晶材料层11的一侧,用于承载第二电极层22。具体的,辅助盖板128位于第二电极层22和非黑色油墨层40之间。其中,辅助盖板128的顶面承载第二电极层22,辅助盖板128的底面承载非黑色油墨层40。补边油墨层124环绕液晶材料层11、第一电极层21、第二电极层22、非黑色油墨层40和辅助盖板128的周面设置。
需要说明的是,本实施例所示后盖120的其他结构与上述第一种实施例所示后盖120的结构大致相同,且本实施例所示后盖120的光路示意图和上述第一种实施例所示后盖120的光学示意图大致相同,因此本实施例所示后盖120的其他结构和光路示意图可参照上述第一种实施例所示后盖120相关描述,在此不再重复描述。
本实施例所示后盖120中,盖板121相当于上述第一种实施例所示光学膜组件122的第一承载件61(如图5b所示),辅助盖板128相当于上述第一种实施例所示光学膜组件122的 第二承载件62。
本实施例所示盖板120直接利用盖板121承载第一电极层21,利用辅助盖板128承载第二电极层22,相当于省去了第一承载件61和第二承载件62,有利于减少后盖120的叠层数,实现后盖120的厚度减薄,有利于实现电子设备1000的轻薄化设计。换言之,当第一承载件61和第二承载件62的厚度一定,且具有足够的强度时,第一承载件61和第二承载件62也直接取代盖板121和辅助盖板128,减少后盖120的叠层数。
在其他一些实施例中,盖板121也可以仅相当于上述第一种实施例所示光学膜组件122的第一承载件61,或者,辅助盖板128仅相当于上述第一种实施例所示光学膜组件122的第二承载件62,同样可以实现后盖120的厚度减薄。
可以理解的是,本实施例所示后盖120的盖板121也可以相当于上述第二种至第二十九种实施例所示光学膜组件122的第一承载件61,和/或,本实施例所示后盖120的辅助盖板128也可以相当于上述第二种至第二十九种实施例所示光学膜组件122的第二承载件62,同样可实现后盖120的厚度减薄,在此不再重复描述。
本申请实施例提供一种后盖120的显示方法,适用于上述后盖120中第一种至第十二种实施例所示后盖120。后盖120的显示方法包括:
在第一种应用场景下,驱动液晶材料层11处于透光状态,环境光L 0穿过盖板121和液晶材料层11后,被非黑色油墨层40反射形成背景色光L *,背景色光L *穿过液晶材料层11和盖板1212后出射。具体的,处理器400通过柔性电路板12给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于透光状态。此时,人眼可看到背景色光L *,人眼看到后盖120呈现与背景色光L *相同颜色的外观效果。
在第二种应用场景下,驱动液晶材料层11处于散光状态,环境光L 0穿过盖板121后,在液晶材料层11中发生散射,部分环境光L 0穿过盖板121后出射,环境光L 0穿过液晶材料层11后,被非黑色油墨层40反射形成背景色光L *,背景色光L *穿过液晶材料层11和盖板121后出射。具体的,处理器400通过柔性电路板12给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。此时,人眼可看到环境光L 0和背景色光L *的混合光,人眼看到后盖120呈现与环境光L 0和背景色光L *的混合光颜色相同的外观效果。
在其他一些实施例中,也可以处理器400通过柔性电路板12给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于散光状态,处理器400通过柔性电路板12给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于透光状态。
本实施例中,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,驱动液晶材料层11在透光状态和散光状态之间切换,以使人眼在看到背景色光L *和环境光L 0和背景色光L *的混合光之间变换,用户可通过后盖120的外观效果来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
本申请实施例提供另一种后盖120的显示方法,适用于上述后盖120中第十三种至第二十九种实施例所示后盖120。后盖120的显示方法包括:
在第一种应用场景下,驱动液晶材料层11处于透光状态,环境光L 0穿过盖板121和液 晶材料层11后,被黑色油墨层50吸收。具体的,处理器400通过柔性电路板12给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于透光状态。此时,人眼看不到光线,后盖120呈黑色。
在第二种应用场景下,驱动液晶材料层11处于散光状态,环境光L 0穿过盖板121后,在液晶材料层11发生散射,部分环境光L 0穿过盖板121后出射,部分环境光L 0穿过液晶材料层11后,被黑色油墨层50吸收。具体的,处理器400通过柔性电路板12给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于散光状态。此时,人眼可看到部分环境光L 0。示例性的,环境光L 0为白色的可见光时,人眼看到后盖120呈现浅黑色。
在其他一些实施例中,也可以处理器400通过柔性电路板12给第一电极层21和第二电极层22上电,且第一电极层21和第二电极层22之间存在电压差(即电压差大于零)时,液晶材料层11处于散光状态,处理器400通过柔性电路板12给第一电极层21和第二电极层22断电,且第一电极层21和第二电极层22之间的电压差为零时,液晶材料层11处于透光状态。
本实施例中,处理器400通过柔性电路板125对第一电极层21和第二电极层22之间的电压差进行调整,驱动液晶材料层11在透光状态和散光状态之间切换,以使人眼在看不到光线和环境光L 0之间变换,用户可通过后盖120的外观效果来判断电子设备1000处于哪种应用场景下,实现用户与电子设备1000之间的交互,提高用户的使用体验。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种电子设备,其特征在于,包括后盖、处理器、电路板和柔性电路板,所述后盖包括液晶材料层和非黑色油墨层,所述非黑色油墨层位于所述液晶材料层的内侧,所述处理器、所述电路板和所述柔性电路板均位于所述后盖的内侧,所述处理器安装于所述电路板,且与所述电路板电连接,所述柔性电路板的一端电连接所述电路板,另一端电连接所述后盖。
  2. 根据权利要求1所述的电子设备,其特征在于,所述后盖还包括第一电极层和第二电极层,所述第一电极层位于所述液晶材料层背离所述非黑色油墨层的一侧,所述第二电极层位于所述液晶材料层和所述非黑色油墨层之间,所述第一电极层和所述第二电极层均与所述柔性电路板电连接。
  3. 根据权利要求2所述的电子设备,其特征在于,所述第一电极层包括多个彼此独立的电极部分,所述液晶材料层包括与多个所述电极部分一一对应的液晶部分,每一所述电极部分和所述第二电极层均与所述柔性电路板电连接;
    或者,所述第二电极层包括多个彼此独立的电极部分,所述液晶材料层包括与多个所述电极部分一一对应的液晶部分,每一所述电极部分和所述第一电极层均与所述柔性电路板电连接。
  4. 根据权利要求1-3中任一项所述的电子设备,其特征在于,所述后盖还包括增亮膜,所述增亮膜位于所述非黑色油墨层和所述液晶材料层之间。
  5. 根据权利要求3所述的电子设备,其特征在于,所述后盖还包括增亮膜,所述增亮膜位于所述非黑色油墨层和所述液晶材料层之间,所述增亮膜包括与多个所述电极部分一一对应的增亮部分。
  6. 根据权利要求1-3中任一项所述的电子设备,其特征在于,所述后盖还包括纳米纹理层和增亮膜,所述纳米纹理层和所述增亮膜均位于所述非黑色油墨层和所述液晶材料层之间,所述纳米纹理层包括朝向所述非黑色油墨层的纳米纹理面,所述增亮膜覆盖所述纳米纹理面。
  7. 根据权利要求3所述的电子设备,其特征在于,所述后盖还包括纳米纹理层和增亮膜,所述纳米纹理层和所述增亮膜均位于所述非黑色油墨层和所述液晶材料层之间,所述纳米纹理层包括与多个所述电极部分一一对应的纹理部分,每一所述纹理部分均包括背离所述液晶材料层的纳米纹理面,所述增亮膜覆盖每一所述纹理部分的纳米纹理面。
  8. 根据权利要求1或2所述的电子设备,其特征在于,所述第一电极层和所述第二电极层均具有电信号输入端,所述第一电极层和所述第二电极层的电信号输入端均与所述柔性电路板电连接,所述第一电极层和所述第二电极层用于驱动所述液晶材料层在透光状态和散光状态之间切换。
  9. 根据权利要求1-8中任一项所述的电子设备,其特征在于,所述液晶材料层处于透光 状态时,环境光穿过所述液晶材料层后,被所述非黑色油墨层反射形成背景色光,所述背景色光穿过所述液晶材料层后出射;
    所述液晶材料层处于散光状态时,环境光在所述液晶材料层发生散射,部分环境光自液晶材料层背离所述非黑色油墨层的表面出射,部分环境光被所述非黑色油墨层反射形成所述背景色光,所述背景色光在所述液晶材料层发生散射,部分所述背景色光自液晶材料层背离所述非黑色油墨层的表面出射。
  10. 根据权利要求1-9中任一项所述的电子设备,其特征在于,所述后盖还包括结构色材料层,所述结构色材料层位于所述液晶材料层和所述非黑色油墨层之间。
  11. 根据权利要求10所述的电子设备,其特征在于,所述液晶材料层处于透光状态时,环境光穿过所述液晶材料层后,被所述结构色材料层分为不同颜色的透射光和反射光,所述透射光被所述非黑色油墨层反射形成与所述反射光的颜色不同的所述背景色光,所述背景色光穿过所述结构色材料层和所述液晶材料层后出射,所述反射光穿过所述液晶材料层后出射;
    所述液晶材料层处于散光状态时,环境光在所述液晶材料层中发生散射,部分环境光自所述液晶材料层背离所述结构色材料层的表面出射,部分环境光被所述结构色材料层分为所述透射光和所述反射光,所述透射光被所述非黑色油墨层反射形成所述背景色光,所述背景色光穿过所述结构色材料层后,在所述液晶材料层中发生散射,部分所述背景色光自所述液晶材料层背离所述结构色材料层的表面出射,所述反射光在所述液晶材料层中发生散射,部分所述反射光自所述液晶材料层背离所述结构色材料层的表面出射。
  12. 根据权利要求1-9中任一项所述的电子设备,其特征在于,所述后盖还包括结构色材料层,所述结构色材料层位于所述液晶材料层背离所述非黑色油墨层的一侧。
  13. 根据权利要求12所述的电子设备,其特征在于,所述液晶材料层处于透光状态时,环境光被所述结构色材料层分为不同颜色的透射光和反射光,所述透射光为复色光,所述透射光穿过所述液晶材料层后,被所述非黑色油墨层反射形成与所述透射光颜色不同的所述背景色光,所述背景色光穿过所述液晶材料层和所述结构色材料层后出射,所述反射光自所述结构色材料层背离所述液晶材料层的表面出射;
    所述液晶材料层处于散光状态时,环境光被所述结构色材料层分为所述透射光和所述反射光,所述透射光在所述液晶材料层中发生散射,部分所述透射光穿过所述结构色材料层后出射,部分所述透射光被所述非黑色油墨层反射形成所述背景色光,所述背景色光在所述液晶材料层中发生散射,部分所述背景色光穿过所述结构色材料层后出射,所述反射光自所述结构色材料层背离所述液晶材料层的表面出射。
  14. 根据权利要求10-13中任一项所述的电子设备,其特征在于,所述结构色材料层为光学镀膜或纳米级多层光学膜。
  15. 根据权利要求1-14中任一项所述的电子设备,其特征在于,所述后盖还包括盖板,所述盖板位于所述液晶材料层背离所述非黑色油墨层的一侧。
  16. 根据权利要求1-15中任一项所述的电子设备,其特征在于,所述后盖还包括黑色油墨层,所述黑色油墨层位于所述非黑色油墨层背离所述液晶材料层的一侧。
  17. 根据权利要求1-16中任一项所述的电子设备,其特征在于,所述后盖还包括补边油墨层,所述补边油墨层覆盖所述液晶材料层和所述非黑色油墨层的周面。
  18. 一种电子设备,其特征在于,包括后盖、处理器、电路板和柔性电路板,所述后盖包括液晶材料层和黑色油墨层,所述黑色油墨层位于所述液晶材料层的内侧,所述处理器、所述电路板和所述柔性电路板均位于所述后盖的内侧,所述处理器安装于所述电路板,且与所述电路板电连接,所述柔性电路板的一端电连接所述处理器,另一端电连接所述后盖。
  19. 根据权利要求18所述的电子设备,其特征在于,所述液晶材料层处于透光状态时,环境光穿过所述液晶材料层后,被所述黑色油墨层吸收;
    所述液晶材料层处于散光状态时,环境光在所述液晶材料层中发生散射,部分环境光自所述液晶材料层背离所述黑色油墨层的表面出射,部分环境光被所述黑色油墨层吸收。
  20. 根据权利要求18或19所述的电子设备,其特征在于,所述后盖还包括结构色材料层,所述结构色材料层位于所述液晶材料层背离所述黑色油墨层的一侧。
  21. 根据权利要求20所述的电子设备,其特征在于,所述液晶材料层处于透光状态时,环境光被所述结构色材料层分为不同颜色的透射光和反射光,所述透射光穿过所述液晶材料层后,被所述黑色油墨层吸收,所述反射光自所述结构色材料层背离所述液晶材料层的表面出射;
    所述液晶材料层处于散光状态时,环境光被所述结构色材料层分为所述透射光和所述反射光,所述透射光在所述液晶材料层中发生散射,部分所述透射光穿过所述结构色材料层后出射,部分所述透射光被所述黑色油墨层吸收,所述反射光自所述结构色材料层背离所述液晶材料层的表面出射。
  22. 根据权利要求20或21所述的电子设备,其特征在于,所述后盖还包括辅助液晶材料层,所述辅助液晶材料层位于所述结构色材料层背离所述液晶材料层的一侧。
  23. 根据权利要求22所述的电子设备,其特征在于,所述辅助液晶材料层处于透光状态,且所述液晶材料层处于散光状态时,环境光穿过所述辅助液晶材料层后,被所述结构色材料层分成所述透射光和所述反射光,所述透射光在所述液晶材料层中发生散射,部分所述透射光穿过所述结构色材料层和所述辅助液晶材料层后出射,部分所述透射色光被所述黑色油墨层吸收,所述反射光穿过所述辅助液晶材料层后出射;
    所述辅助液晶材料层处于散光状态,且所述液晶材料层处于散光状态时,环境光在所述辅助液晶材料层中发生散射,部分环境光自所述辅助液晶材料层背离所述结构色材料层的表面出射,部分环境光被所述结构色材料层分成所述透射光和所述反射光,所述透射光在所述液晶材料层中发生散射,部分所述透射光被所述黑色油墨层吸收,部分所述透射光穿过所述结构色材料层后,在所述辅助液晶材料层中发生散射,部分所述透射光自所述辅助液晶材料 层背离所述结构色材料层的表面出射,所述反射光在所述辅助液晶材料层中发生散射,部分所述反射光自所述辅助液晶材料层背离所述结构色材料层的表面出射;
    所述辅助液晶材料层处于透光状态,且所述液晶材料层处于透光状态时,环境光穿过所述辅助液晶材料层后,被所述结构色材料层分成所述透射光和所述反射光,所述透射光穿过所述液晶材料层后被所述黑色油墨层吸收,所述反射光穿过所述辅助液晶材料层后出射;
    所述辅助液晶材料层处于散光状态,且所述液晶材料层处于透光状态时,环境光在所述辅助液晶材料层中发生散射,部分环境光自所述辅助液晶材料层背离所述结构色材料层的表面出射,部分环境光被所述结构色材料层分成所述透射光和所述反射光,所述透射光穿过所述液晶材料层后被所述黑色油墨层吸收,所述反射光在所述辅助液晶材料层中发生散射,部分所述反射光自所述辅助液晶材料层背离所述结构色材料层的表面出射。
PCT/CN2022/083228 2021-03-31 2022-03-26 电子设备 WO2022206640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110352784.4A CN115150488A (zh) 2021-03-31 2021-03-31 电子设备
CN202110352784.4 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022206640A1 true WO2022206640A1 (zh) 2022-10-06

Family

ID=83405580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083228 WO2022206640A1 (zh) 2021-03-31 2022-03-26 电子设备

Country Status (2)

Country Link
CN (1) CN115150488A (zh)
WO (1) WO2022206640A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204203916U (zh) * 2014-09-18 2015-03-11 福建省飞阳光电有限公司 保护盖板及触控面板
JP2015152681A (ja) * 2014-02-12 2015-08-24 日本精機株式会社 表示装置
CN108549184A (zh) * 2018-06-01 2018-09-18 Oppo广东移动通信有限公司 壳体及制备方法、电子设备
CN109164660A (zh) * 2018-09-30 2019-01-08 Oppo广东移动通信有限公司 电致变色器件、壳体、电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108845469A (zh) * 2018-04-28 2018-11-20 浙江上方电子装备有限公司 一种颜色可任意定制的电致变色器件及应用
CN209170427U (zh) * 2018-10-29 2019-07-26 信利光电股份有限公司 一种变色盖板
CN109618029B (zh) * 2018-11-02 2021-08-03 华为终端有限公司 移动终端设备及其后盖组件和显示屏组件
CN109606002A (zh) * 2018-12-03 2019-04-12 Oppo(重庆)智能科技有限公司 电子设备的壳体及其制作方法、电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152681A (ja) * 2014-02-12 2015-08-24 日本精機株式会社 表示装置
CN204203916U (zh) * 2014-09-18 2015-03-11 福建省飞阳光电有限公司 保护盖板及触控面板
CN108549184A (zh) * 2018-06-01 2018-09-18 Oppo广东移动通信有限公司 壳体及制备方法、电子设备
CN109164660A (zh) * 2018-09-30 2019-01-08 Oppo广东移动通信有限公司 电致变色器件、壳体、电子设备

Also Published As

Publication number Publication date
CN115150488A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US11307453B2 (en) Display panel and display device
US11340481B2 (en) Backlight module having reflective index adjustment material, method for preparing the same, method for driving the same, and display device
WO2014050729A1 (ja) 照明装置及び表示装置
JP2013080646A (ja) 照明装置、表示装置および電子機器
US9927567B2 (en) Display with additional lighting effects
CN112217965B (zh) 摄像头盖板、壳体组件、电子设备以及电致变色方法
CN112147781A (zh) 穿戴设备
CN110290330A (zh) 控制方法、电子装置和存储介质
JP2004014527A (ja) 面光源装置
JP3277509B2 (ja) 液晶パネルおよびこれを用いた電子機器
WO2022206640A1 (zh) 电子设备
CN211654169U (zh) 电子设备及其显示模组
WO2022206642A1 (zh) 光学膜组件、后盖和电子设备
CN111464675B (zh) 后盖组件及电子设备
CN109743427B (zh) 一种移动终端
CN209858861U (zh) 穿戴设备
CN208547791U (zh) 背光模组、液晶显示模组和电子装置
KR20190057172A (ko) 듀얼 디스플레이 장치
CN208421472U (zh) 背光模组、液晶显示模组和电子装置
WO2023065876A1 (zh) 后盖、电子设备和后盖的制备方法
US9690036B1 (en) Controlling display lighting color and uniformity
CN208421475U (zh) 背光模组、液晶显示模组和电子装置
US9316779B1 (en) Shaping reflective material for controlling lighting uniformity
CN109164636B (zh) 一种显示装置
CN208421474U (zh) 背光模组、液晶显示模组和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22778822

Country of ref document: EP

Kind code of ref document: A1