WO2022206180A1 - 空调器的电控冷却方法、装置、空调器及计算机可读存储介质 - Google Patents

空调器的电控冷却方法、装置、空调器及计算机可读存储介质 Download PDF

Info

Publication number
WO2022206180A1
WO2022206180A1 PCT/CN2022/075728 CN2022075728W WO2022206180A1 WO 2022206180 A1 WO2022206180 A1 WO 2022206180A1 CN 2022075728 W CN2022075728 W CN 2022075728W WO 2022206180 A1 WO2022206180 A1 WO 2022206180A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
control module
electronic control
indoor
Prior art date
Application number
PCT/CN2022/075728
Other languages
English (en)
French (fr)
Inventor
路会同
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2022206180A1 publication Critical patent/WO2022206180A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20209Thermal management, e.g. fan control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present application relates to the technical field of air conditioners, and in particular, to an electronically controlled cooling method and device for an air conditioner, an air conditioner, and a computer-readable storage medium.
  • the air conditioners control the change of the operating frequency of the compressor according to the signal feedback through the electronic control module.
  • the higher the operating frequency the larger the current, the faster cooling and heating, high temperature control accuracy, comfortable and energy-saving characteristics. normal operation.
  • the introduction of outdoor air to cool the electronic control module is generally adopted.
  • the outdoor temperature is usually high during the day. After the outdoor air cools the condenser first, the air temperature can reach about 60°C. To cool the electronic control module, the cooling effect is poor, and the problem of high temperature shutdown occurs.
  • cooling medium rings are used to dissipate heat from the electronic control modules.
  • the cost of heat dissipation by the refrigerant rings is relatively high.
  • the electronic control heat dissipation problem can be solved, for the use of board room air conditioners, the refrigerant rings are not conducive to high temperature cooling conditions. cooling effect.
  • the present application provides an electronically controlled cooling method, device, air conditioner and storage medium for an air conditioner, aiming at solving the current technical problems of poor cooling effect or high cost by electronic control.
  • the present application provides an electronically controlled cooling method for an air conditioner, the method comprising:
  • the operating parameters of the air conditioner are adjusted according to the temperature of the first electronic control module, the first indoor temperature, the temperature of the second electronic control module and the second indoor temperature.
  • Steps include:
  • the operating parameters of the air conditioner are adjusted according to the second indoor temperature.
  • the step of adjusting the operating parameters of the air conditioner according to the second indoor temperature includes:
  • the compressor of the air conditioner is controlled to stop.
  • the method further includes:
  • the compressor of the air conditioner is controlled to shut down.
  • the step of adjusting the opening of the air guide vanes of the air conditioner according to the current temperature of the electronic control module includes:
  • the opening degree of the air guide vanes of the air conditioner is adjusted to the first preset opening degree.
  • the method further includes:
  • the opening degree of the air guide vanes of the air conditioner is adjusted to a second preset opening degree, wherein the second preset opening degree is smaller than the first preset opening degree.
  • the adjustment of the operating parameters of the air conditioner according to the temperature of the first electric control module, the temperature of the first indoor room, the temperature of the second electric control module, and the temperature of the second room is performed.
  • the steps also include:
  • the electronically controlled cooling device for an air conditioner includes:
  • the first obtaining module is configured to obtain the current temperature of the electronic control module of the air conditioner, and when it is detected that the current temperature of the electronic control module of the air conditioner is greater than the first preset temperature, adjust the temperature of the air conditioner according to the current temperature of the electronic control module. Adjust the opening of the air guide vane;
  • the second acquiring module is configured to acquire the temperature of the first electronic control module of the air conditioner and the first indoor temperature of the indoor environment where the air conditioner is located when the air conditioner operates with the adjusted opening of the air guide vanes, and acquire the interval preset time the temperature of the second electronic control module of the rear air conditioner and the second indoor temperature of the indoor environment where the air conditioner is located;
  • the adjustment module is configured to adjust the operating parameters of the air conditioner according to the temperature of the first electronic control module, the first indoor temperature, the temperature of the second electronic control module and the second indoor temperature.
  • the present application also provides an air conditioner
  • the air conditioner includes a processor, a memory, and an electronically controlled cooling program of the air conditioner stored in the memory, and the electronically controlled cooling program of the air conditioner When executed by the processor, the steps of the above-described method for electrically controlled cooling of an air conditioner are implemented.
  • the present application also provides a computer-readable storage medium, where an electronically controlled cooling program of an air conditioner is stored on the computer-readable storage medium, and the electronically controlled cooling program of the air conditioner is run by a processor At the same time, the steps of the electronically controlled cooling method of the air conditioner as described above are realized.
  • the present application provides an electronically controlled cooling method for an air conditioner, by acquiring the current temperature of the electronic control module of the air conditioner, and when it is detected that the current temperature of the electronic control module of the air conditioner is greater than the first preset temperature, Adjust the opening of the air guide vanes of the air conditioner according to the current temperature of the electronic control module; obtain the temperature of the first electronic control module of the air conditioner when the air conditioner operates with the adjusted opening of the air guide vanes and the first temperature of the indoor environment where the air conditioner is located. an indoor temperature, and obtain the temperature of the second electronic control module of the air conditioner after the preset time interval and the second indoor temperature of the indoor environment where the air conditioner is located; The module temperature and the second indoor temperature are used to adjust the operating parameters of the air conditioner.
  • the opening of the air guide vanes of the air conditioner is adjusted and controlled.
  • the opening of the air guide vanes of the air conditioner based on the indoor temperature, that is, the change of the temperature of the electronic control module , to adjust the operating parameters of the air conditioner, so as to improve the cooling effect of electronic control.
  • FIG. 1 is a schematic diagram of the hardware structure of an air conditioner involved in various embodiments of the present application.
  • FIG. 2 is a schematic flowchart of the first embodiment of the electronically controlled cooling method for the air conditioner of the present application
  • FIG. 3 is a schematic structural diagram of an air conditioner involved in the control method of the air conditioner of the present application.
  • FIG. 4 is a schematic diagram of a through hole of an air conditioner involved in the control method of the air conditioner of the present application
  • FIG. 5 is a schematic diagram of the internal air flow of the air conditioner involved in the control method of the air conditioner of the present application;
  • FIG. 6 is a schematic flowchart of a second embodiment of an electronically controlled cooling method for an air conditioner of the present application
  • FIG. 7 is a schematic diagram of functional modules of an embodiment of an electronically controlled cooling device for an air conditioner of the present application.
  • FIG. 1 is a schematic diagram of a hardware structure of an air conditioner according to various embodiments of the present application.
  • the air conditioner may include a processor 1001 (for example, a central processing unit, Central Processing Unit, CPU), a communication bus 1002 , an input port 1003 , an output port 1004 , and a memory 1005 .
  • the communication bus 1002 is used to realize the connection communication between these components; the input port 1003 is used for data input; the output port 1004 is used for data output, and the memory 1005 can be a high-speed RAM memory or a stable memory (non-volatile memory).
  • the memory 1005 may optionally also be a storage device independent of the aforementioned processor 1001 .
  • the hardware structure shown in FIG. 1 does not constitute a limitation to the present application, and may include more or less components than the one shown, or combine some components, or arrange different components.
  • the memory 1005 as a readable storage medium in FIG. 1 may include an operating system, a network communication module, an application program module, and an electronically controlled cooling program of an air conditioner.
  • the network interface 1004 is mainly used to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly used to connect to the client (client) and perform data communication with the client;
  • the processor 1001 can be used to call the heating standby indoor unit control program stored in the memory 1005.
  • the heating standby indoor unit control device includes: a memory 1005, a processor 1001, and an electronically controlled cooling program of an air conditioner stored on the memory 1005 and running on the processor 1001, wherein, When the processor 1001 calls the electronically controlled cooling program of the air conditioner stored in the memory 1005, the following operations are performed:
  • the operating parameters of the air conditioner are adjusted according to the temperature of the first electronic control module, the first indoor temperature, the temperature of the second electronic control module and the second indoor temperature.
  • a first embodiment of the present application provides an electronically controlled cooling method for an air conditioner.
  • FIG. 2 is a schematic flowchart of a first embodiment of an electronically controlled cooling method for an air conditioner of the present application.
  • Embodiments of the present application provide embodiments of an electronically controlled cooling method for an air conditioner. It should be noted that, although a logical sequence is shown in the flowchart, in some cases, all steps may be performed in a sequence different from that here. steps shown or described. Specifically, the electronically controlled cooling method of the air conditioner in this embodiment includes:
  • Step S10 obtaining the current temperature of the electronic control module of the air conditioner, detecting that the current temperature of the electronic control module of the air conditioner is greater than the first preset temperature, and adjusting the opening of the air guide vanes of the air conditioner according to the current temperature of the electronic control module;
  • FIG. 3 is a simplified schematic diagram of the structure of the air conditioner involved in this embodiment, as shown in FIG. 3 .
  • the air conditioner includes an indoor unit 100 and an outdoor unit 200.
  • the indoor unit 100 and the outdoor unit 200 are not detachably connected, that is, in this embodiment, the air conditioner is an integral air conditioner, and the indoor unit 100 is connected to the outdoor unit 200.
  • the air conditioners 200 cannot be disassembled, so that the installation and dismantling of the above air conditioners on the prefabricated house can be completed by ordinary users without the assistance of professionals.
  • the indoor unit 100 and the outdoor unit 200 are also detachably installed, so that the user can disassemble the indoor unit 100 and the outdoor unit 200 at any time according to requirements, disperse the volume and weight, and facilitate transportation.
  • the air conditioner is an integrated air conditioner, and the user can directly place the air conditioner indoors for use, or install the air conditioner on the wall of the prefab room , so that the air outlet of the indoor unit 100 leads to the indoor, and the air outlet of the outdoor unit 200 leads to the outdoor.
  • the indoor unit 100 and the outdoor unit 200 can also be separated, so that the air conditioner can be used as a split air conditioner.
  • the indoor unit 100 is installed indoors and the outdoor unit 100 is installed outdoors, thereby reducing the space occupied by the air conditioner indoors and saving indoor space .
  • the indoor unit 100 and the outdoor unit 200 of the above-mentioned air conditioner in this embodiment are communicated through a refrigerant pipe, wherein the indoor unit 100 includes an indoor unit casing, an indoor fan wheel, and an indoor heat exchanger.
  • the above air conditioner further includes an outer casing, wherein the bottom of the inner casing is detachably connected to the top of the outer casing.
  • the outer casing is provided with an outdoor side air inlet and an outdoor side air outlet, and an outdoor heat exchanger and an outdoor wind wheel are also installed in the outer casing, wherein the outdoor wind wheel can also be an axial flow wind wheel, a centrifugal chamber Wind wheel, etc.
  • the indoor heat exchanger is an evaporator
  • the outdoor heat exchanger is a condenser.
  • the outdoor wind wheel drives the air into the outer casing from the outdoor side air inlet, and flows through the condenser to dissipate heat from the condenser. Then blow it out from the outside air outlet.
  • the bottom of the inner casing and the top of the outer casing can also be detachably connected.
  • the air conditioner is an integral type. After the inner casing is disassembled from the outer casing, the air conditioner can be used as a split air conditioner, thereby improving the flexibility of the air conditioner usage scenarios.
  • the electronic control module 300 of the electronic control operation module is located at the rear of the condenser, so that the air driven by the outdoor fan wheel enters the outer casing from the outdoor side air inlet, and flows through the condenser to cool the condenser. After heat dissipation, during the process of blowing out from the outdoor air outlet, the air flows through the condenser to dissipate heat from the condenser, and then flows through the electronic control module to dissipate heat from the electronic control module, and then flows from the outdoor air outlet. Blow out, thereby using the outdoor wind wheel to drive the outdoor air to dissipate the heat of the electronic control module.
  • the outdoor wind wheel is used to drive the outdoor air to dissipate the heat of the electronic control module.
  • the outdoor temperature is usually high during the day, so when the air flows through the condenser to dissipate heat from the condenser After that, the air temperature can reach about 60°C. At this time, to cool the electronic control module, the cooling effect is poor, and the problem of high temperature shutdown is easy to occur.
  • the present application proposes an electronically controlled cooling method for an air conditioner, thereby
  • the low-cost electronically controlled cooling is achieved by directly cooling the electronic control module by introducing cold air with a lower indoor temperature into the air conditioner.
  • the present application improves the structure of the existing air conditioner to realize the Electronically controlled cooling method.
  • a plurality of through holes 400 are provided at the indoor side casing of the air conditioner. Specifically, as shown in FIG. 4 , a plurality of through holes are formed on the indoor side of the inner casing. 400 , the air from the indoor side is allowed to enter the interior of the air conditioner based on the above-mentioned plurality of through holes 400 so as to use the low temperature air on the indoor side to cool the electronic control module inside the air conditioner. In the process of cooling the electronic control module inside the air conditioner, when the temperature of the electronic control module is not high, only a small amount of indoor air can be used to cool the electronic control module.
  • the stepper motor is used to drive the opening of the air guide vanes, so that the opening degree of the air guide vanes is driven by the stepping motor to adjust the air volume of the indoor side air entering the interior of the air conditioner from the above-mentioned plurality of through holes 400, thereby
  • the stepper motor can be used to drive the air guide vanes to close, thereby preventing the indoor air of the air conditioner from passing through the above.
  • FIG. 5 is a schematic diagram of the internal wind flow direction of the air conditioner in this embodiment, wherein the arrows refer to the wind flow direction, and the outdoor wind wheel of the air conditioner is an axial flow wind wheel 500, thereby using the shaft
  • the air flow wheel 500 drives the air from the outdoor side air inlet into the outer casing, flows through the outdoor heat exchanger 600 to dissipate heat from the outdoor heat exchanger 600, and then blows out from the outdoor side air outlet.
  • the stepper motor is used to drive the air guide vanes to open, so that the axial flow fan 500 is used to drive the air from the plurality of through holes 400 on the indoor side to enter the outer casing and flow through the electronic control module 300 After the electric control module 300 is directly radiated, it is blown out from the outdoor side air outlet.
  • the indoor air of the air conditioner is used to cool the electronic control module, so as to achieve the purpose of low-cost electronically controlled cooling.
  • the temperature of the electronic control module of the air conditioner is monitored in real time.
  • a temperature sensor is installed inside or on the surface of the electronic control module. , to obtain the temperature of the electronic control module of the air conditioner through the temperature sensor.
  • the above-mentioned first preset temperature is a preset trigger temperature used to control the air conditioner to execute the electronically controlled temperature drop logic program, that is, when the temperature of the electronic control module is greater than the first preset temperature, it represents the current electronically controlled temperature drop.
  • the temperature of the module is too high, there is a danger of high temperature shutdown or the normal operation of the air conditioner is affected.
  • the temperature sensor is obtained through the internal or surface device of the electronic control module.
  • the current electronic control module temperature of the air conditioner and then when it is detected that the current electronic control module temperature of the air conditioner is greater than the first preset temperature, the air conditioner starts to execute the electronic control module temperature drop logic program.
  • the electronic control module temperature is less than or When it is equal to the first preset temperature, it indicates that the current temperature of the electronic control module is not very high, and the electronic control module can be cooled by outdoor air, for example, the axial flow fan is used to drive the air from the outdoor side air inlet into the outer casing, After flowing through the electronic control module to dissipate heat from the electronic control module, it is blown out from the outdoor side air outlet to introduce outdoor air to cool the electronic control module.
  • the indoor side of the inner casing of the air conditioner in the present application is provided with a plurality of through holes
  • the plurality of through holes are provided with air guide vanes and stepper motors.
  • the stepper motor is used to drive the air guide vanes to open
  • the axial flow fan wheel is used to drive the air to enter the outer casing from the above-mentioned through holes on the indoor side, and flow through the electronic control module. After the electronic control module is radiated, it is blown out from the outdoor side air outlet.
  • the air guide vanes of the air conditioner can be opened according to the current electronic control module temperature. Adjust the temperature to use the low-temperature air on the indoor side to cool the electronic control module.
  • the air guide vanes with a smaller opening at that time can no longer meet the heat dissipation of the electronic control module, so adjust the opening degree of the air guide vanes of the air conditioner to a larger opening degree. Therefore, a large amount of indoor cold air is used to cool the electronic control module.
  • the opening of the air guide vanes of the air conditioner is controlled to be 1.
  • the air conditioner is controlled.
  • the opening degree of the air guide vanes of the air conditioner is 2. Specifically, for the convenience of understanding, in this embodiment, it is detected that the current temperature of the electric control module of the air conditioner is greater than the first preset temperature.
  • the opening degree of the air guide vanes of the air conditioner is adjusted to the first preset opening degree.
  • the above-mentioned second preset temperature is a preset divided temperature used to control the opening of the air guide vanes of the air conditioner. Specifically, when the temperature of the electric control module is greater than the second preset temperature, it indicates that the current electric If the temperature of the control module is very high, a large amount of indoor cold air needs to be used to cool the electronic control module, that is, the opening degree of the air guide vanes of the air conditioner is adjusted to the first preset opening degree, wherein the first preset opening degree is a preset opening degree.
  • a certain temperature may also be the maximum opening degree that the air guide vanes are allowed to open, which is not limited in this embodiment.
  • the method further includes:
  • the opening degree of the air guide vanes of the air conditioner is adjusted to a second preset opening degree, wherein the second preset opening degree is smaller than the first preset opening degree.
  • the first preset opening degree is a preset specific temperature, and may also be the minimum opening degree that the air guide vanes are allowed to open, which is not limited in this embodiment.
  • Step S20 Obtain the temperature of the first electronic control module of the air conditioner and the first indoor temperature of the indoor environment where the air conditioner is located when the air conditioner operates with the adjusted opening of the air guide vanes, and obtain the first temperature of the air conditioner after the interval preset time.
  • Step S30 Adjust the operating parameters of the air conditioner according to the temperature of the first electronic control module, the first indoor temperature, the temperature of the second electronic control module, and the second indoor temperature.
  • the temperature of the first electronic control module and the first indoor temperature may be the temperatures collected at the corresponding time when the opening degree of the air guide vanes of the air conditioner is adjusted.
  • the temperature of the first electronic control module and the first indoor temperature are also It can be the temperature collected when the electronic control module of the air conditioner and/or the indoor temperature of the indoor environment where the air conditioner is located is stable after the opening degree of the air guide vanes of the air conditioner is adjusted.
  • the first indoor temperature refers to the temperature corresponding to a preset time difference from the temperature collection time interval between the first electronic control module temperature and the first indoor temperature, for example, the preset time is 1 minute, and the air conditioner is obtained at 10:10 If the temperature of the first electronic control module of the air conditioner and the first indoor temperature of the indoor environment where the air conditioner is located are obtained, the temperature of the second electronic control module of the air conditioner and the second indoor temperature of the indoor environment where the air conditioner is located at 10:11 are obtained to obtain In this way, the cooling effect of the current indoor air on the electronic control module is determined by the temperature of the first electronic control module, the first indoor temperature, the temperature of the second electronic control module and the second indoor temperature of the indoor environment where the air conditioner is located, so as to determine the subsequent electronic control module.
  • the electronically controlled temperature drop logic program is a preset time difference from the temperature collection time interval between the first electronic control module temperature and the first indoor temperature, for example, the preset time is 1 minute, and the air conditioner is obtained at 10:10 If the temperature of the first
  • this embodiment is exemplified.
  • the opening of the air guide vanes of the air conditioner can be reduced or the air guide vanes of the air conditioner can be controlled to close.
  • the compressor frequency limiting method can be used to reduce the heating of the electronic control module, thereby reducing the temperature of the electronic control module, thereby improving the cooling effect of the electronic control from the source.
  • the temperature of the second electronic control module and the second indoor temperature are analyzed to analyze the reason for the temperature fluctuation of the electronic control module, and then the adjustment of the operating parameters of the air conditioner is determined according to the reason of the temperature fluctuation of the electronic control module.
  • the operating parameters of the air conditioner are adjusted according to the temperature of the first electronic control module, the first indoor temperature, the temperature of the second electronic control module and the second indoor temperature. After the steps, also include:
  • the air conditioner After a preset time, return to executing the obtaining of the current temperature of the electronic control module of the air conditioner, and when it is detected that the current temperature of the electronic control module of the air conditioner is greater than the first preset temperature, the air conditioner is adjusted according to the current temperature of the electronic control module.
  • the temperature of the electronic control module is reduced by multiple fine-tuning through the above-mentioned cyclic regulation steps, thereby improving the temperature drop effect of the electronic control module.
  • the current electronic control module temperature of the air conditioner is obtained, and when it is detected that the current electronic control module temperature of the air conditioner is greater than the first preset temperature, the air guide vanes of the air conditioner are adjusted according to the current electronic control module temperature. Adjust the opening degree; obtain the temperature of the first electronic control module of the air conditioner when the air conditioner operates with the adjusted opening degree of the air guide vanes and the first indoor temperature of the indoor environment where the air conditioner is located, and obtain the air conditioner after the interval preset time.
  • the temperature of the second electronic control module and the second indoor temperature of the indoor environment where the air conditioner is located Therefore, compared with the electronically controlled cooling method using outdoor air or refrigerant ring in the prior art, in this application, cold air with a lower indoor temperature is introduced by adjusting the opening of the air guide vanes of the air conditioner to control the electronically controlled cooling.
  • the operating parameters of the air conditioner are adjusted based on the change of the indoor temperature, that is, the temperature of the electronic control module, so as to improve the Electronically controlled cooling effect.
  • FIG. 6 is a schematic flowchart of a second embodiment of an electronically controlled cooling method for an air conditioner of the present application.
  • the difference between the second embodiment of the electronically controlled cooling method for the air conditioner and the first embodiment of the electronically controlled cooling method for the air conditioner is that the method according to the temperature of the first electronic control module, the first indoor temperature,
  • the steps of adjusting the operating parameters of the air conditioner for the temperature of the second electronic control module and the second indoor temperature include:
  • Step S301 judging whether the temperature of the second electronic control module is lower than the temperature of the first electronic control module
  • Step S302 in response to the temperature of the second electronic control module being lower than the temperature of the first electronic control module, determine whether the second indoor temperature is greater than the first indoor temperature;
  • Step S303 In response to the second indoor temperature being greater than the first indoor temperature, adjust the operating parameters of the air conditioner according to the second indoor temperature.
  • the temperature of the second electric control module is When the temperature is lower than the temperature of the first electronic control module, it is determined whether the second indoor temperature is greater than the first indoor temperature. If the second indoor temperature is greater than the first indoor temperature, it indicates that the current indoor temperature is on the rise. In this embodiment, the operating parameters of the air conditioner are adjusted according to the second indoor temperature.
  • this embodiment provides a method that if the second indoor temperature is greater than the first indoor temperature, according to the second indoor temperature.
  • the compressor of the air conditioner is controlled to stop.
  • the above-mentioned set temperature refers to the indoor cooling temperature set by the user.
  • the indoor air temperature when the indoor air temperature is on the rise, it is determined whether the current indoor temperature is greater than the set temperature, and if the second indoor temperature is greater than The set temperature indicates that the heat leakage caused by the current use of indoor air to cool the electronic control module has begun to affect the comfort of indoor users.
  • the air conditioner can be shut down at a high temperature, that is, the compressor of the air conditioner is shut down to reduce the heat generation of the electronic control module, thereby effectively reducing the temperature of the electronic control module from the source.
  • the temperature of the second electronic control module is greater than or equal to the temperature of the first electronic control module, it means that the indoor air cannot cool the electronic control module, which means that the indoor air is doing useless work, and it is judged at this time During the period of using indoor air to cool the electronic control module, whether the loss of indoor cooling capacity is too large, that is, it is determined whether the second indoor temperature is greater than the first indoor temperature. If the second indoor temperature is greater than the first indoor temperature, it means that the current indoor air cannot be cooled. The electronic control module also has a large loss.
  • the operating parameters of the air conditioner are adjusted according to the second indoor temperature, for example, the air guide of the air conditioner is turned off. leaves, thereby blocking the loss of indoor cooling.
  • this embodiment provides a specific implementation after the above step of judging whether the temperature of the second electronic control module is lower than the temperature of the first electronic control module:
  • the compressor of the air conditioner is controlled to stop.
  • the above-mentioned preset electric control limit temperature refers to a temperature that threatens the normal operation of the electric control module.
  • the electric control module may catch fire at high temperature, or the electric control The fuse in the module will break, causing the electronic control module to fail to work, etc.
  • the compressor of the air conditioner is controlled to stop, so as to prevent the electronic control module from continuing. heat, thereby effectively reducing the temperature of the electronic control module from the source.
  • the electronic control module can be protected by frequency limit to reduce the heat generation of the electronic control module , so as to effectively reduce the temperature of the electronic control module from the source while maintaining the normal operation of the air conditioner.
  • the operating parameters of the air conditioner are adjusted according to the second indoor temperature, so that by judging the change of the indoor temperature, in the case of an increase in the indoor temperature, it is determined that the indoor temperature increases. Reasons, and carry out corresponding actions, so as to improve the effect of electronically controlled cooling.
  • FIG. 7 is a schematic diagram of functional modules of an embodiment of an electronically controlled cooling device for an air conditioner of the present application.
  • the electronically controlled cooling device of the air conditioner is a virtual device, which is stored in the memory 1005 of the air conditioner shown in FIG. 1 to realize all functions of the electronically controlled cooling program of the air conditioner: used to obtain the The current electronic control module temperature of the air conditioner is detected, and when it is detected that the current electronic control module temperature of the air conditioner is greater than the first preset temperature, the opening degree of the air guide vanes of the air conditioner is adjusted according to the current electronic control module temperature; for obtaining The temperature of the first electronic control module of the air conditioner and the first indoor temperature of the indoor environment where the air conditioner is located when the air conditioner operates with the adjusted opening of the air guide vanes, and the second electronic control module of the air conditioner after the interval preset time is obtained temperature and the second indoor temperature of the indoor environment where the air conditioner is located; used to determine the temperature of the first electronic control module, the first indoor temperature, the temperature of the second electronic control module and the second indoor temperature Adjust the operating parameters of the air conditioner.
  • the electronically controlled cooling device of the air conditioner includes:
  • the first obtaining module 10 is configured to obtain the current temperature of the electronic control module of the air conditioner, and when it is detected that the current temperature of the electronic control module of the air conditioner is greater than the first preset temperature, the air conditioner is adjusted according to the current temperature of the electronic control module. Adjust the opening of the guide vane;
  • the second obtaining module 20 is configured to obtain the temperature of the first electronic control module of the air conditioner and the first indoor temperature of the indoor environment where the air conditioner is located when the air conditioner operates with the adjusted opening of the air guide vanes, and obtain the preset interval After time, the temperature of the second electronic control module of the air conditioner and the second indoor temperature of the indoor environment where the air conditioner is located;
  • the adjustment module 30 is configured to adjust the operating parameters of the air conditioner according to the temperature of the first electronic control module, the first indoor temperature, the temperature of the second electronic control module and the second indoor temperature.
  • the electronically controlled cooling device of the air conditioner proposed in this embodiment acquires the current temperature of the electronic control module of the air conditioner, and when it is detected that the current temperature of the electronic control module of the air conditioner is greater than the first preset temperature, according to the current temperature of the electronic control module Adjust the opening of the air guide vanes of the air conditioner; obtain the temperature of the first electronic control module of the air conditioner when the air conditioner operates with the adjusted opening of the air guide vanes and the first indoor temperature of the indoor environment where the air conditioner is located, and obtain After a preset time interval, the temperature of the second electronic control module of the air conditioner and the second indoor temperature of the indoor environment where the air conditioner is located; The temperature is adjusted to the operating parameters of the air conditioner.
  • the indoor temperature is introduced by adjusting the opening of the air guide vane of the air conditioner.
  • the low cold air cools the electronic control module, so as to achieve low-cost electronic control cooling.
  • the temperature of the air conditioner is adjusted. The operating parameters can be adjusted to improve the effect of electronically controlled cooling.
  • an embodiment of the present application further provides a computer-readable storage medium, where an electronically controlled cooling program of an air conditioner is stored on the computer-readable storage medium, and the electronically controlled cooling program of the air conditioner is implemented by a processor as described above. The steps of the electronically controlled cooling method of the air conditioner will not be repeated here.

Abstract

本申请涉及空调器技术领域,公开了一种空调器的电控冷却方法、装置、空调器及存储介质,该方法包括:检测到空调器的当前电控模块温度大于第一预设温度,根据当前电控模块温度对空调器的导风叶开度进行调整;获取第一电控模块温度及空调器所处室内环境的第一室内温度,并获取第二电控模块温度及空调器所处室内环境的第二室内温度;根据第一电控模块温度、第一室内温度、第二电控模块温度及第二室内温度对空调器的运行参数进行调整。

Description

空调器的电控冷却方法、装置、空调器及计算机可读存储介质
本申请要求于2021年4月2日申请的、申请号为202110364653.8的中国专利申请的优先权。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器的电控冷却方法、装置、空调器及计算机可读存储介质。
背景技术
随着经济的发展,现在人们越来越追求生活的舒适性,对空调器的节能舒适更加关注,目前空调器通过电控模块,根据信号反馈来控制压缩机运行频率的变化,运行频率越高,电流越大,从而普遍具有制冷制热迅速,控温精度高、舒适节能的特点,然而现实生活中空调器的电控模块在工作过程中,温度会变的很高,从而影响空调器的正常运行。
针对上述情况,普遍采用引入室外空气冷却电控模块,然而在空调器高温的使用场景下,白天室外温度通常较高,室外空气先冷却冷凝器后,空气温度可以达到60℃左右,此时再去冷却电控模块,降温效果差,出现高温停机的问题。
此外少部分采用冷媒环方式对电控模块进行散热,然而冷媒环散热,则成本较高,虽然可以解决电控散热问题,但是对于板房空调使用场景来说,冷媒环不利于高温制冷工况的制冷效果。
技术解决方案
本申请提供一种空调器的电控冷却方法、装置、空调器及存储介质,旨在解决目前电控降温效果差或成本高的技术问题。
为实现上述目的,本申请提供一种空调器的电控冷却方法,所述方法包括:
获取空调器的当前电控模块温度,检测到空调器的当前电控模块温度大于第一预设温度,根据所述当前电控模块温度对空调器的导风叶开度进行调整;
获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;以及
根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整。
在一实施方式中,所述根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤包括:
判断所述第二电控模块温度是否小于所述第一电控模块温度;
响应于所述第二电控模块温度小于所述第一电控模块温度,判断所述第二室内温度是否大于所述第一室内温度;以及
响应于所述第二室内温度大于所述第一室内温度,根据所述第二室内温度对空调器的运行参数进行调整。
在一实施方式中,所述响应于所述第二室内温度大于所述第一室内温度,根据所述第二室内温度对空调器的运行参数进行调整的步骤包括:
响应于所述第二室内温度大于所述第一室内温度,判断所述第二室内温度是否大于设定温度;
响应于所述第二室内温度大于所述设定温度,减小空调器的导风叶开度及降低空调器的压缩机的运行频率;以及,
响应于所述第二室内温度小于或等于设定温度,控制空调器的压缩机停机。
在一实施方式中,所述判断所述第二电控模块温度是否小于所述第一电控模块温度的步骤之后,还包括:
响应于所述第二电控模块温度大于或等于所述第一电控模块温度,判断所述第二电控模块温度是否小于预设电控限制温度;
响应于所述第二电控模块温度小于所述预设电控限制温度,降低空调器的压缩机的运行频率;以及,
响应于所述第二电控模块温度大于或等于所述预设电控限制温度,控制空调器的压缩机停机。
在一实施方式中,所述检测到空调器的当前电控模块温度大于第一预设温度,根据所述当前电控模块温度对空调器的导风叶开度进行调整的步骤包括:
检测到空调器的当前电控模块温度大于所述第一预设温度,判断所述当前电控模块温度是否大于第二预设温度,其中,所述第二预设温度大于第一预设温度;以及
响应于所述当前电控模块温度大于第二预设温度,将空调器的导风叶开度调整为第一预设开度。
在一实施方式中,所述判断所述当前电控模块温度是否大于第二预设温度的步骤之后,还包括:
响应于所述当前电控模块温度小于第二预设温度,将空调器的导风叶开度调整为第二预设开度,其中,所述第二预设开度小于所述第一预设开度。
在一实施方式中,所述根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤之后,还包括:
在预设时间后返回执行获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据所述当前电控模块温度对空调器的导风叶开度进行调整的步骤;
继续执行获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度的步骤;
继续执行根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤。
此外,为实现上述目的,本申请还提供一种空调器的电控冷却装置,所述空调器的电控冷却装置包括:
第一获取模块,被配置为获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据所述当前电控模块温度对空调器的导风叶开度进行调整;
第二获取模块,被配置为获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;
调整模块,被配置为根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整。
此外,为实现上述目的,本申请还提供一种空调器,所述空调器包括处理器,存储器以及存储在所述存储器中的空调器的电控冷却程序,所述空调器的电控冷却程序被所述处理器运行时,实现如上所述的空调器的电控冷却方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有空调器的电控冷却程序,所述空调器的电控冷却程序被处理器运行时实现如上所述空调器的电控冷却方法的步骤。
相比现有技术,本申请提供一种空调器的电控冷却方法,通过获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据当前电控模块温度对空调器的导风叶开度进行调整;获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;根据第一电控模块温度、第一室内温度、第二电控模块温度及第二室内温度,对空调器的运行参数进行调整,由此相比于现有技术中利用室外空气或冷媒环的电控冷却方法,本申请中通过调控空调器的导风叶开度来引入室内温度较低的冷空气对电控模块进行冷却,从而实现低成本的电控降温,此外在调控空调器的导风叶开度之后,基于室内温度即电控模块温度的变化情况,来对空调器的运行参数进行调整,从而提高电控降温效果。
附图说明
图1是本申请各实施例涉及的空调器的硬件结构示意图;
图2是本申请空调器的电控冷却方法第一实施例的流程示意图;
图3是本申请空调器的控制方法涉及的空调器的结构示意图;
图4是本申请空调器的控制方法涉及的空调器的通孔示意图;
图5是本申请空调器的控制方法涉及的空调器的内部风流向示意图;
图6是本申请空调器的电控冷却方法第二实施例的流程示意图;
图7是本申请空调器的电控冷却装置一实施例的功能模块示意图。
附图说明:
标号 名称 标号 名称
100 室内机 200 室外机
300 电控模块 400 通孔
500 轴流风轮 600 室外换热器
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1是本申请各实施例涉及的空调器的硬件结构示意图。本申请实施例中,空调器可以包括处理器1001(例如中央处理器Central Processing Unit、CPU),通信总线1002,输入端口1003,输出端口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信;输入端口1003用于数据输入;输出端口1004用于数据输出,存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器,存储器1005可选的还可以是独立于前述处理器1001的存储装置。本领域技术人员可以理解,图1中示出的硬件结构并不构成对本申请的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
继续参照图1,图1中作为一种可读存储介质的存储器1005可以包括操作系统、网络通信模块、应用程序模块以及空调器的电控冷却程序。在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的制热待机室内机控制程序。
在本实施例中,制热待机室内机控制装置包括:存储器1005、处理器1001及存储在所述存储器1005上并可在所述处理器1001上运行的空调器的电控冷却程序,其中,处理器1001调用存储器1005中存储的空调器的电控冷却程序时,并执行以下操作:
获取空调器的当前电控模块温度,检测到空调器的当前电控模块温度大于第一预设温度,根据所述当前电控模块温度对空调器的导风叶开度进行调整;
获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;
根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整。
基于图1所示的硬件结构,本申请第一实施例提供了一种空调器的电控冷却方法。
参照图2,图2为本申请空调器的电控冷却方法第一实施例的流程示意图。
本申请实施例提供了空调器的电控冷却方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。具体地,本实施例空调器的电控冷却方法包括:
步骤S10:获取空调器的当前电控模块温度,检测到空调器的当前电控模块温度大于第一预设温度,根据所述当前电控模块温度对空调器的导风叶开度进行调整;
需要说明的是,本实施例中提出的上述空调器指代可拆卸安装于板房上的空调器,参考图3,图3为本实施例中所涉及的空调器结构简易示意图,如图3所示,该空调器包括室内机100和室外机200,其中,室内机100与室外机200之间为不可拆卸连接,即本实施例中,该空调器为整体式空调,室内机100与室外机200之间不可拆卸,由此使得在板房上安装与拆除上述空调器时,普通用户无需专业人员的协助就可完成。
此外,在另一实施例中,上述室内机100和室外机200之间还为可拆卸安装,以便用户能够随时根据需求将室内机100和室外机200拆开,分散体积和重量,搬运方便,此外,本实施例中,当室内机100和室外机200连接时,空调器为一体式空调,用户可直接将空调器放置在室内进行使用,也可以将空调器安装在活动板房的墙壁上,使室内机100的风口通向室内,室外机200的风口通向室外。此外室内机100与室外机200还可以分开,以使空调器作为分体式空调使用,室内机100安装在室内,室外机100安装在室外,从而减小空调器在室内占用的空间,节省室内空间。
具体而言,本实施例中的上述空调器的室内机100与室外机200之间通过冷媒管连通,其中,室内机100包括内机机壳、室内风轮和室内换热器,进一步地,本实施例中,上述空调器还包括外机机壳,其中,内机机壳的底部与外机机壳的顶部可拆卸连接。具体的,外机机壳开设有室外侧进风口和室外侧出风口,外机机壳内还安装有室外换热器和室外风轮,其中,室外风轮还可以为轴流风轮、离心室风轮等,室内换热器为蒸发器,室外换热器则为冷凝器,室外风轮驱动空气从室外侧进风口进入外机机壳内,流经冷凝器以对冷凝器进行散热后,再从室外侧出风口吹出。
另外,在一实施例中,上述内机机壳的底部与外机机壳的顶部还可为可拆卸连接,如此,在内机机壳与外机机壳连接时,该空调器作为整体式空调使用;而在内机机壳相对外机机壳拆卸后,该空调器则可作为分体式空调使用,从而提高空调器使用场景的灵活性。
在另一实施例中,电控操作模块的电控模块300位于冷凝器的后方,由此在室外风轮驱动空气从室外侧进风口进入外机机壳内,流经冷凝器以对冷凝器进行散热后,再从室外侧出风口吹出的过程中,空气在流经冷凝器以对冷凝器进行散热后,接着会流经电控模块以对电控模块进行散热,再从室外侧出风口吹出,由此利用室外风轮驱动室外侧空气对电控模块进行散热,需要说明的是,针对空调器的电控模块在工作过程中,温度会变的很高,从而影响空调器的正常运行的情况,因此利用室外风轮驱动室外侧空气对电控模块进行散热,然而在空调器高温的使用场景下,白天室外温度通常较高,所以当空气在流经冷凝器以对冷凝器进行散热后,空气温度可以达到60℃左右,此时再去冷却电控模块,降温效果差,容易出现高温停机的问题,因此本申请为了解决上述问题提出了一种空调器的电控冷却方法,从而通过引入空调器的室内温度较低的冷空气直接对电控模块进行冷却,从而实现低成本的电控降温,具体地,本申请对现有空调器结构进行改进,以实现本申请空调器的电控冷却方法。
具体而言,本实施例中,采用在空调器的室内侧机壳处设有多个通孔400,具体地,如图4所示,在内机机壳的室内侧开设有多个通孔400,由此基于上述多个通孔400使室内侧的空气进入空调器的内部,以利用室内侧低温的空气对空调器内部的电控模块进行冷却,需要说明的是,在利用室内侧低温的空气对空调器内部的电控模块进行冷却的过程中,而当电控模块温度不高时,则仅需利用少量的室内侧空气即可对电控模块进行冷却,而当电控模块温度高时,则需利用大量的室内侧空气即可对电控模块进行冷却,而在将室内侧的空气通过多个通孔400进入空调器的内部时,空调器的制冷量存在一定量的损失,因此为了达到提高电控模块冷却的灵活性及维持空调器的制冷量的目的,本实施例中,在设有多个通孔400处的空调器的内部对应位置装置有导风叶及用于驱动导风叶开度的步进电机,由此通过步进电机驱动导风叶的开度,来调控从上述多个通孔400进入空调器的内部的室内侧空气的空气量,由此来提高电控模块冷却的灵活性及维持空调器的制冷量,例如,在电控模块温度不高时,则可利用步进电机驱动导风叶关闭,进而避免空调器的室内侧空气通过上述通孔400进入空调器的内部,在电控模块温度高时,则可利用步进电机驱动导风叶打开,进而使室内侧空气通过上述通孔400进入空调器的内部。
此外,为了便于理解,参考图5,图5为本实施例中空调器的内部风流向示意图,其中,箭头指代风流向,空调器的室外风轮为轴流风轮500,由此利用轴流风轮500驱动空气从室外侧进风口进入外机机壳内,流经室外换热器600以对室外换热器600进行散热后,再从室外侧出风口吹出,此外本实施例中,在空调器进行制冷时,利用步进电机驱动导风叶打开,由此利用轴流风轮500驱动空气从室内侧的上述多个通孔400进入外机机壳内,流经电控模块300以直接对电控模块300进行散热后,再从室外侧出风口吹出。
由此,基于本实施例上述的空调器的构造,达到利用空调器的室内侧空气对电控模块进行冷却,从而实现低成本的电控降温的目的。
具体而言,本实施例中,为了避免电控散热不足而影响空调器的正常运转,实时对空调器的电控模块进行温度监控,可选地,在电控模块的内部或者表面装置温度传感器,以通过温度传感器获取空调器的电控模块温度。
具体而言,上述第一预设温度为预先设定的用于控制空调器执行电控温降逻辑程序的触发温度,即在电控模块温度大于该第一预设温度时,表征当前电控模块温度过高,存在高温停机危险或影响空调器正常运作情况,具体地,在具体实施时,在检测到空调器开启,即压缩机启动时,通过电控模块的内部或者表面装置温度传感器获取空调器的当前电控模块温度,接着在检测到空调器的当前电控模块温度大于第一预设温度时,空调器开始执行电控模块温降逻辑程序,此外,当电控模块温度小于或等于该第一预设温度时,表征当前电控模块温度不是很高,则可由室外空气对电控模块进行冷却,例如利用轴流风轮驱动空气从室外侧进风口进入外机机壳内,流经电控模块以对电控模块进行散热后,再从室外侧出风口吹出,以引入室外空气对电控模块进行降温。
应当理解地,由于本申请中空调器的内机机壳的室内侧开设有多个通孔,在设有多个通孔处的机壳部位内侧对应装置有导风叶及步进电机,具体地,在空调器进行制冷时,利用步进电机驱动导风叶打开,由此利用轴流风轮驱动空气从室内侧的上述多个通孔进入外机机壳内,流经电控模块以对电控模块进行散热后,再从室外侧出风口吹出,因此当空调器的当前电控模块温度大于第一预设温度时,可先根据当前电控模块温度对空调器的导风叶开度进行调整,以利用室内侧的低温空气对电控模块进行降温。
此外,值得注意的是,由于在利用室内侧的低温空气对电控模块进行降温时,室内冷量会损失,因此为了减少室内冷量的损失,本实施例中,根据当前电控模块温度大小来确定空调器的导风叶开度大小,在电控模块温度不是很高时,调整空调器的导风叶开度为较小开度,由此保证室内冷量损失不大的前提下,保证电控模块的散热降温,在电控模块温度很高时,当时较小开度的导风叶已满足不了电控模块的散热,则调整空调器的导风叶开度为较大开度,由此利用大量的室内冷空气冷却电控模块,例如当电控模块温度不是很高时,则控制空调器的导风叶开度为1,当电控模块温度很高时,则控制空调器的导风叶开度为2,具体地为了便于理解,本实施例对上述检测到空调器的当前电控模块温度大于第一预设温度,根据所述当前电控模块温度对空调器的导风叶开度进行调整的步骤具体说明:
检测到空调器的当前电控模块温度大于第一预设温度时,判断所述当前电控模块温度是否大于第二预设温度,其中,所述第二预设温度大于第一预设温度;
响应于所述当前电控模块温度大于第二预设温度,将空调器的导风叶开度调整为第一预设开度。
具体而言,上述第二预设温度为预先设定的用于控制空调器导风叶开度大小的分割温度,具体地,当电控模块温度大于第二预设温度时,则表明当前电控模块温度很高,则需要用大量的室内冷空气去冷却电控模块,即将空调器的导风叶开度调整为第一预设开度,其中第一预设开度为预先设定的某一特定温度,还可为导风叶允许开启的最大开度,本实施例对此不作限制。
此外,另一实施中,当电控模块温度不是很高时,为了减少室内冷量的损失,在上述判断所述当前电控模块温度是否大于第二预设温度的步骤之后,还包括:
响应于所述当前电控模块温度小于第二预设温度,将空调器的导风叶开度调整为第二预设开度,其中,所述第二预设开度小于所述第一预设开度。
即在电控模块温度不是很高时,调整空调器的导风叶开度为较小开度,由此保证室内冷量损失不大的前提下,保证电控模块的散热降温,其中,上述第一预设开度为预先设定的某一特定温度,还可为导风叶允许开启的最小开度,本实施例对此不作限制。
步骤S20:获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;
步骤S30:根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整。
具体而言,上述第一电控模块温度及第一室内温度可为在空调器的导风叶开度调整时对应时刻采集到的温度,此外上述第一电控模块温度及第一室内温度还可为在对空调器的导风叶开度进行调整之后,监测到空调器的电控模块和/或空调器所处室内环境的室内温度稳定时采集到的温度,上述第一电控模块温度及第一室内温度指代与第一电控模块温度及第一室内温度之间的温度采集时间间隔相差预设时间对应的温度,例如预设时间为1分钟,在10点10分获取到空调器第一电控模块温度及空调器所处室内环境的第一室内温度,则获取10点11分时空调器的第二电控模块温度及空调器所处室内环境的第二室内温度,以此通过第一电控模块温度、第一室内温度、第二电控模块温度及空调器所处室内环境的第二室内温度确定当前室内空气对电控模块的冷却效果,从而确定后续电控模块的电控温降逻辑程序。
为了便于理解,本实施例对此举例说明,例如当第一电控模块温度为40℃,第二电控模块温度为38℃、第一室内温度为26℃,第二室内温度为27℃时,表明当前由于冷却电控模块造成的漏热导致室内温度上升,且当前电控模块温度呈下降趋势,则可减小空调器的导风叶开度或控制空调器的导风叶关闭,若当第一电控温度为40℃,第二电控温度为38℃、第一室内温度为26℃,第二室内温度为27℃时,则表明当前室内冷空气无法有效降低电控模块温度,则可采用压缩机限频方式,来说减少电控模块发热,从而降低电控模块温度,从而从源头上提高电控降温效果,由此根据第一电控模块温度、第一室内温度、第二电控模块温度及第二室内温度来分析电控模块温度波动的原因,进而根据电控模块温度波动的原因确定空调器的运行参数的调整。
此外,在一实施例中,上述根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤之后,还包括:
在预设时间后返回执行所述获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据所述当前电控模块温度对空调器的导风叶开度进行调整的步骤;
继续执行所述获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度的步骤;
继续执行所述根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤。
具体而言,本实施例中通过上述循环调控步骤,通过多次微调降低电控模块温度,从而提高电控模块温降效果。
应当理解的是,以上仅为举例说明,对本申请的技术方案并不构成任何限制,本领域的技术人员在实际应用中可以基于需要进行设置,此处不再一一列举。
在本实施例中,通过获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据当前电控模块温度对空调器的导风叶开度进行调整;获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;根据第一电控模块温度、第一室内温度、第二电控模块温度及第二室内温度,对空调器的运行参数进行调整,由此相比于现有技术中利用室外空气或冷媒环的电控冷却方法,本申请中通过调控空调器的导风叶开度来引入室内温度较低的冷空气对电控模块进行冷却,从而实现低成本的电控降温,此外在调控空调器的导风叶开度之后,基于室内温度即电控模块温度的变化情况,来对空调器的运行参数进行调整,从而提高电控降温效果。
进一步地,基于本申请空调器的电控冷却方法的第一实施例,提出本申请空调器的电控冷却方法第二实施例。
参照图6,图6为本申请空调器的电控冷却方法第二实施例的流程示意图;
所述空调器的电控冷却方法第二实施例与所述空调器的电控冷却方法第一实施例的区别在于,所述根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤包括:
步骤S301:判断所述第二电控模块温度是否小于所述第一电控模块温度;
步骤S302:响应于所述第二电控模块温度小于所述第一电控模块温度,判断所述第二室内温度是否大于所述第一室内温度;
步骤S303:响应于所述第二室内温度大于所述第一室内温度,根据所述第二室内温度对空调器的运行参数进行调整。
本实施例中,容易理解地,当第二电控模块温度小于第一电控模块温度时,则表明在室内空气的冷却下电控模块温度呈降低趋势,达到电控温降目标,此外值得注意的是,当利用室内空气冷却电控模块时,会造成室内冷量损失,从而会造成室内温度升高,进而影响室内用户的舒适感,因此本实施例中,在第二电控模块温度小于第一电控模块温度时,则判断第二室内温度是否大于第一室内温度,若第二室内温度大于第一室内温度,则表征当前室内温度呈上升趋势,则为了维持用户的舒适感,本实施例中根据第二室内温度对空调器的运行参数进行调整。
此外,为了在维持用户的舒适感的条件下有效地对电控模块进行降温,本实施例中给出一种若所述第二室内温度大于所述第一室内温度,则根据所述第二室内温度对空调器的运行参数进行调整的具体实施方案:
响应于所述第二室内温度大于所述第一室内温度,判断所述第二室内温度是否大于设定温度;
响应于所述第二室内温度大于设定温度,减小空调器的导风叶开度及降低空调器的压缩机的运行频率;以及,
响应于所述第二室内温度小于或等于设定温度,控制空调器的压缩机停机。
具体而言,上述设定温度指代用户设定的室内制冷温度,具体地本实施例中,当室内空气温度呈上升趋势时,判断当前室内温度是否大于设定温度,若第二室内温度大于设定温度,则表征当前利用室内空气冷却电控模块造成的漏热已经开始影响室内用户的舒适度,则此时为了维持室内用户的舒适度,则此时减小空调器的导风叶开度,以降低室内冷量的损失,从而降低室内温度,此外,由于当前电控模块呈上升趋势,则为了避免由于电控模块高温而造成的停机,在减小空调器的导风叶开度同时,降低压缩机的运行频率,来减少电控模块的发热量,从而从源头处有效地降低电控模块温度。
此外,当第二室内温度大于设定温度时,则表征当前空调器的制冷量已达到用户所需求的制冷量,而由于当前电控模块呈上升趋势,则为了避免由于电控模块高温而造成的停机,空调器可达温停机,即控制空调器的压缩机停机,来减少电控模块的发热量,从而从源头处有效地降低电控模块温度。
此外,在又一实施例中,若第二电控模块温度大于或等于第一电控模块温度时,则表明在室内空气无法冷却电控模块,此时表征室内空气在做无用功,此时判断在利用室内空气冷却电控模块期间,室内冷量损失是否过大,即判断第二室内温度是否大于第一室内温度,若第二室内温度大于第一室内温度,则表征当前室内空气即无法冷却电控模块,又存在较大的损失,为了避免室内空气继续泄露而导致影响用户的舒适感,本实施例中根据第二室内温度对空调器的运行参数进行调整,例如关闭空调器的导风叶,从而阻断室内冷量的损失。
具体地,本实施例中给出上述判断所述第二电控模块温度是否小于所述第一电控模块温度的步骤之后的具体实施方案:
响应于所述第二电控模块温度大于或等于所述第一电控模块温度,判断所述第二电控模块温度是否小于预设电控限制温度;
响应于所述第二电控模块温度小于预设电控限制温度,降低空调器的压缩机的运行频率;以及,
响应于所述第二电控模块温度大于或等于预设电控限制温度,控制空调器的压缩机停机。
具体而言,上述预设电控限制温度指代对电控模块正常运转存在威胁的温度,例如当电控模块超出该预设电控限制温度后,电控模块会发生高温着火,或者电控模块中的保险丝会断裂从而造成电控模块无法工作等。
可以理解地,为了保证空调器工作时的安全性,在检测到第二电控模块温度大于或等于预设电控限制温度时,则控制空调器的压缩机停机,以阻断电控模块继续发热,从而从源头处有效地降低电控模块温度,此外,当第二电控模块温度小于预设电控限制温度时,则可对电控模块进行限频保护,减少电控模块的发热量,从而在维持空调器正常运行的情况下从源头处有效地降低电控模块温度。
本实施例中,通过判断第二电控模块温度是否小于第一电控模块温度,若第二电控模块温度小于所述第一电控模块温度,则判断第二室内温度是否大于第一室内温度,若第二室内温度大于第一室内温度,则根据第二室内温度对空调器的运行参数进行调整,从而通过判断室内温度变化,在室内温度升高的情况下,判断室内温度升高的原因,并进行相应的动作,从而提高电控降温效果。
此外,本实施例还提供一种空调器的电控冷却装置。参照图7,图7为本申请空调器的电控冷却装置一实施例的功能模块示意图。
本实施例中,所述空调器的电控冷却装置为虚拟装置,存储于图1所示的空调器的存储器1005中,以实现空调器的电控冷却程序的所有功能:用于获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据所述当前电控模块温度对空调器的导风叶开度进行调整;用于获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;用于根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整。
具体地,参照图7,所述空调器的电控冷却装置包括:
第一获取模块10,被配置为获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据所述当前电控模块温度对空调器的导风叶开度进行调整;
第二获取模块20,被配置为获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;
调整模块30,被配置为根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整。
本实施例提出的空调器的电控冷却装置,通过获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据当前电控模块温度对空调器的导风叶开度进行调整;获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;根据第一电控模块温度、第一室内温度、第二电控模块温度及第二室内温度,对空调器的运行参数进行调整,由此相比于现有技术中利用室外空气或冷媒环的电控冷却方法,本申请中通过调控空调器的导风叶开度来引入室内温度较低的冷空气对电控模块进行冷却,从而实现低成本的电控降温,此外在调控空调器的导风叶开度之后,基于室内温度即电控模块温度的变化情况,来对空调器的运行参数进行调整,从而提高电控降温效果。
此外,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有空调器的电控冷却程序,所述空调器的电控冷却程序被处理器运行时实现如上所述空调器的电控冷却方法的步骤,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备执行本申请各个实施例所述的方法。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种空调器的电控冷却方法,所述方法包括:
    获取空调器的当前电控模块温度,检测到空调器的当前电控模块温度大于第一预设温度,根据所述当前电控模块温度对空调器的导风叶开度进行调整;
    获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;以及
    根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整。
  2. 根据权利要求1所述的空调器的电控冷却方法,其中,所述根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤包括:
    判断所述第二电控模块温度是否小于所述第一电控模块温度;
    响应于所述第二电控模块温度小于所述第一电控模块温度,判断所述第二室内温度是否大于所述第一室内温度;以及
    响应于所述第二室内温度大于所述第一室内温度,根据所述第二室内温度对空调器的运行参数进行调整。
  3. 根据权利要求2所述的空调器的电控冷却方法,其中,所述响应于所述第二室内温度大于所述第一室内温度,根据所述第二室内温度对空调器的运行参数进行调整的步骤包括:
    响应于所述第二室内温度大于所述第一室内温度,判断所述第二室内温度是否大于设定温度;
    响应于所述第二室内温度大于所述设定温度,减小空调器的导风叶开度及降低空调器的压缩机的运行频率;以及,
    响应于所述第二室内温度小于或等于所述设定温度,控制空调器的压缩机停机。
  4. 根据权利要求2所述的空调器的电控冷却方法,其中,所述判断所述第二电控模块温度是否小于所述第一电控模块温度的步骤之后,还包括:
    响应于所述第二电控模块温度大于或等于所述第一电控模块温度,判断所述第二电控模块温度是否小于预设电控限制温度;
    响应于所述第二电控模块温度小于所述预设电控限制温度,降低空调器的压缩机的运行频率;以及,
    响应于所述第二电控模块温度大于或等于所述预设电控限制温度,控制空调器的压缩机停机。
  5. 根据权利要求1所述的空调器的电控冷却方法,其中,所述检测到空调器的当前电控模块温度大于第一预设温度,根据所述当前电控模块温度对空调器的导风叶开度进行调整的步骤包括:
    检测到空调器的当前电控模块温度大于所述第一预设温度,判断所述当前电控模块温度是否大于第二预设温度,其中,所述第二预设温度大于第一预设温度;以及
    响应于所述当前电控模块温度大于第二预设温度,将空调器的导风叶开度调整为第一预设开度。
  6. 根据权利要求5所述的空调器的电控冷却方法,其中,所述判断所述当前电控模块温度是否大于第二预设温度的步骤之后,还包括:
    响应于所述当前电控模块温度小于第二预设温度,将空调器的导风叶开度调整为第二预设开度,其中,所述第二预设开度小于所述第一预设开度。
  7. 根据权利要求1至6任一项所述的空调器的电控冷却方法,其中,所述根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤之后,还包括:
    在预设时间后返回执行所述获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据所述当前电控模块温度对空调器的导风叶开度进行调整的步骤;
    继续执行所述获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度的步骤;
    继续执行所述根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整的步骤。
  8. 一种空调器的电控冷却装置,包括:
    第一获取模块,被配置为获取空调器的当前电控模块温度,并在检测到空调器的当前电控模块温度大于第一预设温度时,根据所述当前电控模块温度对空调器的导风叶开度进行调整;
    第二获取模块,被配置为获取空调器以调整后的导风叶开度运行时空调器的第一电控模块温度及空调器所处室内环境的第一室内温度,并获取间隔预设时间后空调器的第二电控模块温度及空调器所处室内环境的第二室内温度;
    调整模块,被配置为根据所述第一电控模块温度、所述第一室内温度、所述第二电控模块温度及所述第二室内温度,对空调器的运行参数进行调整。
  9. 一种空调器,所述空调器包括处理器,存储器以及存储在所述存储器中的空调器的电控冷却程序,所述空调器的电控冷却程序被所述处理器运行时,实现如权利要求1-7中任一项所述的空调器的电控冷却方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有空调器的电控冷却程序,所述空调器的电控冷却程序被处理器运行时实现如权利要求1-7中任一项所述空调器的电控冷却方法的步骤。
PCT/CN2022/075728 2021-04-02 2022-02-09 空调器的电控冷却方法、装置、空调器及计算机可读存储介质 WO2022206180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110364653.8 2021-04-02
CN202110364653.8A CN115164376A (zh) 2021-04-02 2021-04-02 空调器的电控冷却方法、装置、空调器及存储介质

Publications (1)

Publication Number Publication Date
WO2022206180A1 true WO2022206180A1 (zh) 2022-10-06

Family

ID=83455579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075728 WO2022206180A1 (zh) 2021-04-02 2022-02-09 空调器的电控冷却方法、装置、空调器及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115164376A (zh)
WO (1) WO2022206180A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061893A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Works Ltd 発熱機器収納室の換気冷房システム
CN203478506U (zh) * 2013-09-03 2014-03-12 海尔集团公司 一种空调室外机电控模块降温装置
CN105716205A (zh) * 2016-03-15 2016-06-29 北京百度网讯科技有限公司 应用于机房的冷却方法和装置
CN110139533A (zh) * 2018-02-09 2019-08-16 夏敬懿 机柜
US20200015389A1 (en) * 2018-07-05 2020-01-09 Baidu Usa Llc Control and optimization of indirect evaporative cooling units for data center cooling
CN211090402U (zh) * 2019-11-15 2020-07-24 华能应城热电有限责任公司 一种控制柜
CN111503757A (zh) * 2020-04-30 2020-08-07 宁波奥克斯电气股份有限公司 散热装置控制方法、空调器及计算机可读存储介质
CN112503734A (zh) * 2020-12-01 2021-03-16 珠海格力电器股份有限公司 空调的温度控制方法、装置、空调、存储介质及处理器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107940609A (zh) * 2017-11-06 2018-04-20 珠海格力电器股份有限公司 一种空调电控箱的散热组件、空调系统和控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061893A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Works Ltd 発熱機器収納室の換気冷房システム
CN203478506U (zh) * 2013-09-03 2014-03-12 海尔集团公司 一种空调室外机电控模块降温装置
CN105716205A (zh) * 2016-03-15 2016-06-29 北京百度网讯科技有限公司 应用于机房的冷却方法和装置
CN110139533A (zh) * 2018-02-09 2019-08-16 夏敬懿 机柜
US20200015389A1 (en) * 2018-07-05 2020-01-09 Baidu Usa Llc Control and optimization of indirect evaporative cooling units for data center cooling
CN211090402U (zh) * 2019-11-15 2020-07-24 华能应城热电有限责任公司 一种控制柜
CN111503757A (zh) * 2020-04-30 2020-08-07 宁波奥克斯电气股份有限公司 散热装置控制方法、空调器及计算机可读存储介质
CN112503734A (zh) * 2020-12-01 2021-03-16 珠海格力电器股份有限公司 空调的温度控制方法、装置、空调、存储介质及处理器

Also Published As

Publication number Publication date
CN115164376A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
KR100367349B1 (ko) 통신중계기지국의 냉각제어방식
WO2022227529A1 (zh) 一种空调智能控制方法、控制装置及空调系统
CN102105033A (zh) 货柜式数据中心的环境调节系统及调节方法
CN109751911B (zh) 冷却塔风机频率自适应调节方法及空调系统
WO2021233463A1 (zh) 吸风式空调器的控制方法
CN106288241A (zh) 一种空调室内机的风机控制方法及基站空调
WO2021233468A1 (zh) 吸风式空调器的控制方法
TWI482581B (zh) 溫度控制系統及其溫度控制方法
WO2022160979A1 (zh) 用于空调的控制方法、装置、电子设备及存储介质
CN112710065B (zh) 一拖多空调器的控制方法、一拖多空调器及存储介质
CN113891624A (zh) 数据中心制冷系统
WO2022206180A1 (zh) 空调器的电控冷却方法、装置、空调器及计算机可读存储介质
CN105674484A (zh) 一种水冷多联机制热的控制方法
WO2024021568A1 (zh) 窗机空调及其控制板温度控制方法、装置、设备及介质
CN211531601U (zh) 一种用于电力信息通信机房带有散热功能的服务器机柜
WO2023159977A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
US11765867B2 (en) Cooling system for data center based on hyperbola cooling tower
WO2021233344A1 (zh) 风力发电机的冷却控制方法、系统、设备及存储介质
WO2022127108A1 (zh) 空调器及其温湿度调控方法、计算机可读存储介质
CN112594895B (zh) 一种外机温度智能调节控制方法及系统
WO2022001534A1 (zh) 加热控制方法、装置、空调器及存储介质
CN201944963U (zh) 一体式室内外送回风节能空调
WO2022188587A1 (zh) 空调器的控制方法、装置、空调器及存储介质
CN108662682A (zh) 一种室外机热量的回收系统、方法及装置
CN219961223U (zh) 一种冷却设备和数据中心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22778367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE