WO2021233463A1 - 吸风式空调器的控制方法 - Google Patents

吸风式空调器的控制方法 Download PDF

Info

Publication number
WO2021233463A1
WO2021233463A1 PCT/CN2021/099543 CN2021099543W WO2021233463A1 WO 2021233463 A1 WO2021233463 A1 WO 2021233463A1 CN 2021099543 W CN2021099543 W CN 2021099543W WO 2021233463 A1 WO2021233463 A1 WO 2021233463A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electric control
heat dissipation
control box
frequency
Prior art date
Application number
PCT/CN2021/099543
Other languages
English (en)
French (fr)
Inventor
熊长友
安超
刘守宇
孙超
曹志高
杨坤
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021233463A1 publication Critical patent/WO2021233463A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/33Responding to malfunctions or emergencies to fire, excessive heat or smoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically relates to a control method of a suction type air conditioner.
  • the existing suction air conditioners are equipped with electric control boxes for installing and protecting various electric control modules. Due to the limitation of the internal structure of their indoor units, the electric control boxes of the existing suction air conditioners are all set close to One side of the indoor fan, thus causing the electric control box to keep in contact with the heat exchanged air. At the same time, since each electronic control module in the electric control box will continuously generate heat during the working process, the existing electric control box is usually provided with a heat dissipation member to better conduct the heat inside the box to the outside of the box. . When the suction air conditioner operates in the cooling mode, these heat dissipation components can not only conduct the heat inside the box, but also absorb the cold generated by the indoor heat exchanger.
  • the heat radiating component absorbs more cold from the outside than the heat it is conducting, it will cause the temperature of the radiating component to decrease.
  • the temperature of the radiating component continues to decrease, the part of the radiating component exposed to the inside of the box is prone to condensation.
  • the continuous accumulation of condensation will cause the humidity inside the cabinet to continuously increase, and even water will accumulate inside the cabinet; in this high humidity environment, the electronic control module set in the electric control box is prone to failure when working , And even directly lead to the problem of short-circuit burnout.
  • the present invention provides a suction type air conditioner
  • the suction air conditioner includes an indoor unit and an outdoor unit connected to each other, wherein the indoor unit includes an indoor heat exchanger and an indoor fan that are arranged in sequence along the air outlet direction, and an indoor fan that is arranged close to the indoor fan.
  • the electric control box is provided with a heat dissipating component
  • the outdoor unit includes a frequency conversion compressor
  • the control method includes: obtaining the heat dissipating component when the air conditioner is operating in a cooling condition According to the temperature of the heat dissipation member and the internal temperature of the electric control box, the speed of the indoor fan and/or the frequency of the inverter compressor is selectively adjusted.
  • the steps specifically include: calculating the difference between the temperature of the heat dissipation member and the internal temperature of the electric control box; comparing the difference between the temperature of the heat dissipation member and the internal temperature of the electric control box with a preset difference If the difference between the temperature of the heat dissipation member and the internal temperature of the electric control box is less than or equal to the preset difference, then selectively adjust the rotation speed of the indoor fan and/or the inverter compressor frequency.
  • step of "rotating speed and/or frequency of the inverter compressor” specifically includes: if the difference between the temperature of the heat dissipation member and the internal temperature of the electric control box is less than the preset difference, increasing the indoor temperature And reduce the frequency of the inverter compressor.
  • the step of "increasing the rotation speed of the indoor fan and reducing the frequency of the inverter compressor” specifically includes: increasing the rotation speed of the indoor fan by a preset rotation speed and causing the The frequency of the inverter compressor is reduced by the preset frequency.
  • the preset frequency is 10 Hz.
  • step of "rotating speed and/or frequency of the inverter compressor” also includes: if the difference between the temperature of the heat dissipation member and the internal temperature of the electric control box is equal to the preset difference, increasing the indoor temperature The speed of the fan and the frequency of controlling the inverter compressor must not be increased.
  • control method further includes: if the difference between the temperature of the heat dissipation member and the internal temperature of the electric control box is greater than the preset difference, not according to the heat dissipation
  • the temperature of the component and the internal temperature of the electric control box regulate the rotation speed of the indoor fan and the frequency of the inverter compressor.
  • the preset difference is zero.
  • the control method further includes: obtaining again after a preset time has elapsed.
  • the preset time is 5 minutes.
  • the suction type air conditioner of the present invention includes an indoor unit and an outdoor unit that are connected, wherein the indoor unit includes indoor air conditioners arranged in sequence along the direction of the wind. Heater and indoor fan, and an electric control box arranged on the side close to the indoor fan, the electric control box is provided with a heat dissipation member, the outdoor unit includes a frequency conversion compressor, and the control method includes: In the case of operating cooling conditions, obtain the temperature of the heat dissipation member and the internal temperature of the electric control box; according to the temperature of the heat dissipation member and the internal temperature of the electric control box, selectively adjust the indoor fan The speed and/or frequency of the inverter compressor.
  • the control method of the present invention predicts in a timely manner whether condensation is likely to occur on the heat dissipation member according to the temperature of the heat dissipation member and the internal temperature of the electric control box under cooling conditions, so as to timely adjust the indoor temperature when necessary.
  • the rotation speed of the fan and/or the frequency of the inverter compressor controls the temperature of the heat dissipating component, so as to avoid the problem of condensation on the heat dissipating component which may cause the failure of the electronic control module or even the short-circuit burnout, thereby ensuring
  • the suction type air conditioner can operate stably.
  • Figure 1 is a schematic diagram of the internal structure of the indoor unit of the present invention.
  • FIG. 2 is a flow chart of the main steps of the control method of the present invention.
  • Figure 3 is a flow chart of the steps of a preferred embodiment of the control method of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection. ; It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection. ; It can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the suction type air conditioner of the present invention includes an indoor unit and an outdoor unit (not shown in the figure) connected by a refrigerant pipeline, wherein the indoor unit is provided with an indoor heat exchanger 11, and the outdoor unit is provided with The outdoor heat exchanger, the inverter compressor and the throttling component, the indoor heat exchanger 11, the outdoor heat exchanger, the inverter compressor and the throttling component are connected by a refrigerant pipeline, so that the refrigerant can circulate to realize heat exchange.
  • the present invention does not impose any restrictions on the specific structures of the indoor unit and the outdoor unit, and technicians can set it according to actual use requirements, as long as the type of the air conditioner is a suction air conditioner .
  • the indoor unit is also provided with an indoor fan 12 and an electric control box 13.
  • the indoor heat exchanger 11 and the indoor fan 12 are arranged in the direction of the wind (the direction indicated by the arrow), and the electric control box 13 It is set on the side close to the indoor fan 12, specifically on the lower left side in the figure; of course, this is not a restricted setting position, and technicians can also adjust the specific setting position of the electric control box 13 according to actual use requirements.
  • various electronic control modules are provided in the electric control box 13, and a heat dissipation member 131 is also provided on the electric control box 13.
  • the heat dissipation member 131 is a metal heat sink structure, which is arranged
  • the upper side of the box 13 serves as the upper cover of the electric control box 13 to effectively improve the heat dissipation effect.
  • the present invention does not impose any restrictions on the specific structure and installation position of the heat dissipation member 131. The technician can set it according to actual use requirements, as long as the heat dissipation member 131 is installed on the electric control box 13 and can assist the electric The control box 13 can dissipate heat.
  • the suction type air conditioner of the present invention further includes a heat dissipation temperature sensor, a cabinet temperature sensor, and a controller, wherein the heat dissipation temperature sensor is disposed on the heat dissipation member 131 to detect the temperature of the heat dissipation member 131;
  • the box temperature sensor is arranged in the electric control box 13 to detect the internal temperature of the electric control box 13; the controller can obtain the detection results of the heat dissipation temperature sensor and the box temperature sensor. It should be noted that the present invention does not impose any restrictions on the specific types and installation positions of the heat dissipation temperature sensor and the box temperature sensor.
  • the technician can set it according to actual needs, as long as the heat dissipation temperature sensor can detect heat dissipation.
  • the temperature of the component 131 and the box temperature sensor can detect the internal temperature of the electric control box 13.
  • the controller can be the original controller of the suction air conditioner, or it can be used for implementation.
  • technicians can set the specific structure and model of the controller by themselves according to actual use requirements.
  • FIG. 2 is a flowchart of the main steps of the control method of the present invention.
  • the control method of the present invention mainly includes the following steps:
  • S2 According to the temperature of the heat dissipating component and the internal temperature of the electric control box, selectively adjust the speed of the indoor fan and/or the frequency of the inverter compressor.
  • step S1 when the suction type air conditioner is operating under the cooling condition, the controller can obtain the temperature of the heat dissipation member 131 through the heat dissipation temperature sensor and obtain the electric control box through the cabinet temperature sensor. 13 internal temperature.
  • the cooling conditions described in the present invention are not limited to the situation where the suction type air conditioner executes the cooling mode, but can also include the situation where the suction type air conditioner executes the outdoor defrost mode, etc. As long as the indoor heat exchanger 11 is used as an evaporator, it belongs to the refrigeration operating mode described in the present invention.
  • step S2 the controller can selectively adjust the rotation speed of the indoor fan 12 and/or the frequency of the inverter compressor according to the temperature of the heat dissipation member 131 and the internal temperature of the electric control box 13. Specifically, the controller can selectively adjust the rotation speed of the indoor fan 12 and/or the frequency of the inverter compressor according to whether the temperature of the heat dissipation member 131 and the internal temperature of the electric control box 13 are within a preset temperature range.
  • FIG. 3 is a flowchart of the steps of a preferred embodiment of the control method of the present invention.
  • the preferred embodiment of the control method of the present invention specifically includes the following steps:
  • S102 Calculate the difference between the temperature of the heat dissipation component and the internal temperature of the electric control box;
  • S104 Do not adjust the speed of the indoor fan and the frequency of the inverter compressor according to the temperature of the heat dissipation component and the internal temperature of the electric control box;
  • step S105 Determine whether the difference value is equal to the preset difference value; if yes, go to step S106; if not, go to step S107;
  • S106 Increase the speed of the indoor fan and the frequency of controlling the inverter compressor must not be increased;
  • step S101 when the suction type air conditioner is operating under a cooling condition, the controller can obtain the temperature of the heat dissipation member 131 through the heat dissipation temperature sensor and obtain the electric control box through the cabinet temperature sensor. 13 internal temperature.
  • the temperature of the heat dissipating member 131 in the present invention can be the temperature of a certain point on the heat dissipating member 131, or the average temperature of multiple points; in the same way, the internal temperature of the electric control box 13 can be It is the temperature of a certain point in the electric control box 13, or the average value of multiple points, which can be set by the technicians according to actual use requirements.
  • the controller can calculate the difference between the temperature of the heat dissipation member 131 and the internal temperature of the electric control box 13, so as to determine the probability of condensation on the heat dissipation member 131 based on this. It is understandable that this calculation can be done by the controller itself, or it can be obtained by the controller after it is completed by a separate calculation module, which is not restrictive; and, although this preferred embodiment The judgment condition used in this is to compare the difference between the temperature of the heat dissipating member 131 and the internal temperature of the electric control box 13 with a preset difference, but this is not restrictive. The technician can also compare the temperature of the heat dissipating member 131 with the preset difference.
  • the internal temperature of the electric control box 13 is respectively compared with a preset value, or the ratio of the temperature of the heat dissipation member 131 to the internal temperature of the electric control box 13 is compared with the preset ratio.
  • the adjustment of these specific judgment conditions does not deviate from the basic principle of the present invention, and belongs to the protection scope of the present invention.
  • the present invention does not impose any restrictions on the specific value of the preset difference, and technicians can set it according to actual use requirements; preferably, the preset difference is zero for effective balance. Anti-condensation effect and cooling effect.
  • step S103 Based on the determination result of step S103, if the controller determines that the difference between the temperature of the heat dissipation member 131 and the internal temperature of the electric control box 13 is greater than the preset difference, that is, the temperature of the heat dissipation member 131 is greater than that of the electric control box 13.
  • the heat dissipation member 131 mainly conducts the heat exchange process from the inside of the electric control box 13 to the outside, and the amount of cold absorbed from the outside is less than the heat being conducted, and the heat dissipation member 131 does not produce condensation
  • step S104 the controller does not adjust the rotation speed of the indoor fan 12 and the frequency of the inverter compressor according to the temperature of the heat dissipation member 131 and the internal temperature of the electric control box 13.
  • the controller can freely adjust the rotation speed of the indoor fan 12 and the frequency of the inverter compressor according to the control result of other control logic, so as to effectively ensure the cooling effect of the suction air conditioner, thereby effectively improving the user experience;
  • the present invention does not impose any restrictions on other control logic control methods.
  • step S105 Based on the judgment result of step S105, if the controller judges that the difference between the temperature of the heat dissipating member 131 and the internal temperature of the electric control box 13 is equal to the preset difference, that is, the temperature of the heat dissipating member 131 and the temperature of the electric control box 13
  • the internal temperature is similar or even the same. In this case, the amount of cold absorbed by the heat dissipation member 131 from the outside is equivalent to the heat being conducted.
  • Step S106 is executed, that is, the controller controls the rotation speed of the indoor fan 12 to increase and the frequency of controlling the inverter compressor must not increase, so that the temperature of the heat dissipation member 131 can be slightly increased, thereby effectively reducing the risk of condensation.
  • the method for controlling the frequency of the inverter compressor not to increase is specifically: when other control logic needs to control the frequency of the inverter compressor to increase, the controller does not issue an increase command for effective control. The frequency of the inverter compressor no longer increases.
  • the control logic for controlling the frequency of the inverter compressor to decrease can be executed normally.
  • the present invention does not specifically limit the increase in the rotation speed of the indoor fan 12, and technicians can set it according to the actual situation; as a preferred adjustment method, for the indoor fan 12 with extreme adjustment, control The rotation speed of the indoor fan 12 is increased by one gear.
  • step S103 and step S105 are both no, it means that the difference between the temperature of the heat dissipation member 131 and the internal temperature of the electric control box 13 is less than the preset difference, that is, the temperature of the heat dissipation member 131 is less than the electric temperature.
  • the internal temperature of the control box 13, in this case, the heat dissipation member 131 mainly absorbs the heat exchange process of external cold, and the cold absorbed from the outside is greater than the heat it is conducting, and the heat dissipation member 131 is facing the risk of condensation.
  • Step S107 is executed, that is, the controller controls the rotation speed of the indoor fan 12 to increase and the frequency of the inverter compressor to decrease, so as to quickly increase the temperature of the heat dissipation member 131, thereby effectively avoiding condensation on the surface of the heat dissipation member 131, and thus This effectively avoids the problem of short circuit or even burning of the electronic control module arranged in the electric control box 13.
  • the present invention does not impose any restriction on the execution order of step S103 and step S105, and the technician can adjust it according to the actual situation.
  • the judgment condition corresponding to step S105 can also be executed first and then the judgment condition corresponding to step S103 is executed. This adjustment of the specific execution sequence does not deviate from the basic principle of the present invention, and belongs to the protection scope of the present invention.
  • the controller controls the rotation speed of the indoor fan 12 to increase the preset rotation speed and controls the frequency of the inverter compressor to decrease the preset frequency.
  • the preset rotation speed In order to control the speed corresponding to the increase when the gear of the indoor fan 12 is raised by one gear, the preset frequency is preferably 10 Hz; that is, the controller controls the indoor fan 12 to raise one gear and controls the frequency of the inverter compressor Decrease by 10Hz.
  • this is only a preferred adjustment method, but it is not restrictive, and technicians can also adjust themselves according to actual use requirements.
  • step S108 after the preset time has elapsed, the controller can again obtain the temperature of the heat dissipation member 131 and the internal temperature of the electric control box 13, so as to determine the temperature of the heat dissipation member 131 in time. Whether the temperature has been raised rapidly, so as to avoid the risk of condensation on the surface of the heat dissipation member 131 to the greatest extent.
  • S102 is executed again to analyze the risk of condensation of the heat dissipating member 131 once again, and perform corresponding steps according to the analysis results to effectively protect the electric Control the security of the module.
  • the present invention does not impose any restrictions on the specific value of the preset time, and technicians can set it by themselves according to actual use requirements; preferably, the preset time is 5 minutes, so as to effectively avoid frequent operations.
  • the resulting energy loss can effectively take into account the heat exchange efficiency of the suction air conditioner while protecting the electronic control module.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明属于空调技术领域,具体涉及一种吸风式空调器的控制方法。本发明旨在解决现有吸风式空调器的电控模块容易在制冷工况下因凝露而出现短路的问题。为此,本发明的吸风式空调器包括室内机和室外机,其中,室内机包括沿出风方向依次设置的室内换热器和室内风机以及设置在靠近室内风机一侧的电控箱,电控箱上设置有散热构件,室外机包括变频压缩机,该控制方法包括:在空调器运行制冷工况的情形下,获取散热构件的温度和电控箱的内部温度;根据散热构件的温度和电控箱的内部温度,选择性地调节室内风机的转速和/或变频压缩机的频率,从而最大程度地避免散热构件上容易出现凝露而导致电控模块故障甚至短路烧毁的问题,进而保证空调器的稳定运行。

Description

吸风式空调器的控制方法 技术领域
本发明属于空调技术领域,具体涉及一种吸风式空调器的控制方法。
背景技术
现有吸风式空调器大多都设置有用于安装和保护各种电控模块的电控箱,由于受到其室内机的内部结构限制,现有吸风式空调器的电控箱都设置在靠近室内风机的一侧,因而导致电控箱不断与换热后的空气接触。同时,又由于电控箱中的各个电控模块在工作过程中均会不断产生热量,因而现有电控箱通常都设置有散热构件以更好地将箱体内部的热量传导至箱体外部。当吸风式空调器运行制冷模式时,这些散热构件不仅能将箱体内部的热量传导出去,而且还能够吸收室内换热器产生的冷量。如果散热构件从外部吸收的冷量大于其正在传导的热量就会导致散热构件的温度降低,而当散热构件的温度不断降低时,散热构件暴露在箱体内部的部分就很容易出现凝露,凝露的不断聚集将会导致箱体内部的湿度不断提升,甚至还会在箱体内部聚集出水;在这种高湿环境下,设置在电控箱中的电控模块工作时很容易出现故障,甚至还会直接导致短路烧毁的问题。
相应地,本领域需要一种新的吸风式空调器的控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有吸风式空调器的电控模块容易在制冷工况下因凝露而出现短路的问题,本发明提供了一种吸风式空调器的控制方法,所述吸风式空调器包括相连的室内机和室外机,其中,所述室内机包括沿出风方向依次设置的室内换热器和室内风机以及设置在靠近所述室内风机一侧的电控箱,所述电控箱上设置有散热构件,所述室外机包括变频压缩机,所述控制 方法包括:在所述空调器运行制冷工况的情形下,获取所述散热构件的温度和所述电控箱的内部温度;根据所述散热构件的温度和所述电控箱的内部温度,选择性地调节所述室内风机的转速和/或所述变频压缩机的频率。
在上述控制方法的优选技术方案中,“根据所述散热构件的温度和所述电控箱的内部温度,选择性地调节所述室内风机的转速和/或所述变频压缩机的频率”的步骤具体包括:计算所述散热构件的温度与所述电控箱的内部温度的差值;将所述散热构件的温度与所述电控箱的内部温度的差值和预设差值进行比较;如果所述散热构件的温度与所述电控箱的内部温度的差值小于或等于所述预设差值,则选择性地调节所述室内风机的转速和/或所述变频压缩机的频率。
在上述控制方法的优选技术方案中,“如果所述散热构件的温度与所述电控箱的内部温度的差值小于或等于所述预设差值,则选择性地调节所述室内风机的转速和/或所述变频压缩机的频率”的步骤具体包括:如果所述散热构件的温度与所述电控箱的内部温度的差值小于所述预设差值,则增大所述室内风机的转速且降低所述变频压缩机的频率。
在上述控制方法的优选技术方案中,“增大所述室内风机的转速且降低所述变频压缩机的频率”的步骤具体包括:使所述室内风机的转速增大预设转速且使所述变频压缩机的频率降低预设频率。
在上述控制方法的优选技术方案中,所述预设频率为10Hz。
在上述控制方法的优选技术方案中,“如果所述散热构件的温度与所述电控箱的内部温度的差值小于或等于所述预设差值,则选择性地调节所述室内风机的转速和/或所述变频压缩机的频率”的步骤还包括:如果所述散热构件的温度与所述电控箱的内部温度的差值等于所述预设差值,则增大所述室内风机的转速且控制所述变频压缩机的频率不得增大。
在上述控制方法的优选技术方案中,所述控制方法还包括:如果所述散热构件的温度与所述电控箱的内部温度的差值大于所 述预设差值,则不根据所述散热构件的温度和所述电控箱的内部温度调节所述室内风机的转速和所述变频压缩机的频率。
在上述控制方法的优选技术方案中,所述预设差值为零。
在上述控制方法的优选技术方案中,在执行“增大所述室内风机的转速且降低所述变频压缩机的频率”的步骤之后,所述控制方法还包括:经过预设时间后,再次获取所述散热构件的温度和所述电控箱的内部温度;根据再次获取到的所述散热构件的温度和所述电控箱的内部温度,选择性地调节所述室内风机的转速和/或所述变频压缩机的频率。
在上述控制方法的优选技术方案中,所述预设时间为5分钟。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的吸风式空调器包括相连的室内机和室外机,其中,所述室内机包括沿出风方向依次设置的室内换热器和室内风机以及设置在靠近所述室内风机一侧的电控箱,所述电控箱上设置有散热构件,所述室外机包括变频压缩机,该控制方法包括:在所述空调器运行制冷工况的情形下,获取所述散热构件的温度和所述电控箱的内部温度;根据所述散热构件的温度和所述电控箱的内部温度,选择性地调节所述室内风机的转速和/或所述变频压缩机的频率。本发明的控制方法在制冷工况下根据所述散热构件的温度和所述电控箱的内部温度及时预判所述散热构件上是否容易出现凝露,以便在必要时及时通过调节所述室内风机的转速和/或所述变频压缩机的频率来控制所述散热构件的温度,从而最大程度地避免所述散热构件上容易出现凝露而导致电控模块故障甚至短路烧毁的问题,进而保证吸风式空调器能够稳定运行。
附图说明
图1是本发明的室内机的内部结构示意图;
图2是本发明的控制方法的主要步骤流程图;
图3是本发明的控制方法的优选实施例的步骤流程图;
附图标记:11、室内换热器;12、室内风机;13、电控箱;131、散热构件。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。此外,在本发明的描述中,尽管本申请中按照特定顺序描述了本发明的控制方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
需要说明的是,在本发明的优选实施方式的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“相连”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参阅图1,该图是本发明的室内机的内部结构示意图。本发明的吸风式空调器包括通过冷媒管路相连的室内机和室外机(图中未示出),其中,所述室内机中设置有室内换热器11,所述室外机中设置有室外换热器、变频压缩机和节流构件,室内换热器11、室外换热器、变频压缩机和节流构件通过冷媒管路相连,以使冷媒能够循环流动而实现换热。需要说明的是,本发明不对所述室内机和所述室外机的具体结构作任何限制,技术人员可以根据实际使用需求自行设定,只要所述空调器的类型为吸风式空调器即可。如图1所示,所述室内机中还设置有室内风机12和电控箱13,室内换热器11和室内风机12沿出风方向(箭头所指的方向)依次设置,电控箱13设置在靠近室内风机12的一侧,具体设置在图中的左下侧;当然,这并不是限制的设置位置,技术人员也可以根据实际使用需求自行调整电控箱13 的具体设置位置。进一步地,电控箱13中设置有各种电控模块,并且电控箱13上还设置有散热构件131,在本优选实施例中,散热构件131为金属散热片结构,其设置在电控箱13的上侧,用以充当电控箱13的上盖,以便有效提升散热效果。此外,还需要说明的是,本发明不对散热构件131的具体结构和设置位置作任何限制,技术人员可以根据实际使用需求自行设定,只要散热构件131设置在电控箱13上且能辅助电控箱13散热即可。
进一步地,本发明的吸风式空调器还包括散热温度传感器、箱体温度传感器和控制器,其中,所述散热温度传感器设置在散热构件131上,用以检测散热构件131的温度;所述箱体温度传感器设置在电控箱13中,用以检测电控箱13的内部温度;所述控制器能够获取所述散热温度传感器和所述箱体温度传感器的检测结果。需要说明的是,本发明不对所述散热温度传感器和所述箱体温度传感器的具体类型和设置位置作任何限制,技术人员可以根据实际使用需求自行设定,只要所述散热温度传感器能够检测散热构件131的温度且所述箱体温度传感器能够检测电控箱13的内部温度即可。此外,本领域技术人员能够理解的是,本发明不对所述控制器的具体结构和型号作任何限制,并且所述控制器可以是吸风式空调器原有的控制器,也可以是为执行本发明的控制方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的具体结构和型号。
接着参阅图2,该图是本发明的控制方法的主要步骤流程图。如图2所示,基于上述优选实施例中所述的吸风式空调器,本发明的控制方法主要包括下列步骤:
S1:在空调器运行制冷工况的情形下,获取散热构件的温度和电控箱的内部温度;
S2:根据散热构件的温度和电控箱的内部温度,选择性地调节室内风机的转速和/或变频压缩机的频率。
在步骤S1中,在所述吸风式空调器运行制冷工况的情形下,所述控制器能够通过所述散热温度传感器获取散热构件131的温度且通过所述箱体温度传感器获取电控箱13的内部温度。需要说明的是,本发明中所述的制冷工况不仅局限于所述吸风式空调器执行制冷 模式的情形,还可以包括所述吸风式空调器执行室外除霜模式的情形等,即只要室内换热器11用作蒸发器的模式均属于本发明中所述的制冷工况。
在步骤S2中,所述控制器能够根据散热构件131的温度和电控箱13的内部温度选择性地调节室内风机12的转速和/或所述变频压缩机的频率。具体地,所述控制器既可以根据散热构件131的温度和电控箱13的内部温度是否处于预设温度范围内来选择性地调节室内风机12的转速和/或所述变频压缩机的频率,也可以根据散热构件131的温度和电控箱13的内部温度的比值或差值与预设值的比较结果来选择性地调节室内风机12的转速和/或所述变频压缩机的频率,这都不是限制性的,技术人员可以根据实际使用需求自行设定,只要判断条件中涉及的基础参数是散热构件131的温度和电控箱13的内部温度就属于本发明的保护范围。这些改变均不偏离本发明的基本原理,属于本发明的保护范围。
下面参阅图3,该图是本发明的控制方法的优选实施例的步骤流程图。如图3所示,基于上述优选实施例中所述的吸风式空调器,本发明的控制方法的优选实施例具体包括下列步骤:
S101:在空调器运行制冷工况的情形下,获取散热构件的温度和电控箱的内部温度;
S102:计算散热构件的温度与电控箱的内部温度的差值;
S103:判断差值是否大于预设差值;如果是,执行步骤S104;如果否,执行步骤S105;
S104:不根据散热构件的温度和电控箱的内部温度调节室内风机的转速和变频压缩机的频率;
S105:判断差值是否等于预设差值;如果是,执行步骤S106;如果否,执行步骤S107;
S106:增大室内风机的转速且控制变频压缩机的频率不得增大;
S107:增大室内风机的转速且降低变频压缩机的频率;
S108:经过预设时间后,再次获取散热构件的温度和电控箱的内部温度。
在步骤S101中,在所述吸风式空调器运行制冷工况的情形下,所述控制器能够通过所述散热温度传感器获取散热构件131的温度且通过所述箱体温度传感器获取电控箱13的内部温度。需要说明的是,本发明中所述的散热构件131的温度既可以是散热构件131上某点的温度,也可以是多点温度的平均值;同理,电控箱13的内部温度既可以是电控箱13内某点的温度,也可以是多点温度的平均值,技术人员可以根据实际使用需求自行设定。
接着,在步骤S102中,所述控制器能够计算散热构件131的温度与电控箱13的内部温度的差值,以便据此来判断散热构件131上出现凝露的概率。可以理解的是,这个计算工作既可以由所述控制器自行完成,也可以由单独的计算模块完成后再由所述控制器获取得到,这并不是限制性的;并且,虽然本优选实施例中使用的判断条件是将散热构件131的温度与电控箱13的内部温度的差值与预设差值进行比较,但这并不是限制性的,技术人员也可以将散热构件131的温度和电控箱13的内部温度分别与预设值进行比较,或者将散热构件131的温度与电控箱13的内部温度的比值与预设比值进行比较。这些具体判断条件的调整均不偏离本发明的基本原理,属于本发明的保护范围。此外,还需要说明的是,本发明不对所述预设差值的具体值作任何限制,技术人员可以根据实际使用需求自行设定;优选地,所述预设差值为零,以便有效均衡防凝露效果和制冷效果。
基于步骤S103的判断结果,如果所述控制器判断出散热构件131的温度与电控箱13的内部温度的差值大于所述预设差值,即散热构件131的温度大于电控箱13的内部温度,在此情形下,散热构件131以将电控箱13内部的热量传导至外部的换热过程为主,其从外部吸收的冷量小于其正在传导的热量,散热构件131没有产生凝露的风险;相应执行步骤S104,即所述控制器不根据散热构件131的温度和电控箱13的内部温度调节室内风机12的转速和所述变频压缩机的频率。换言之,所述控制器可以根据其他控制逻辑的控制结果自由调节室内风机12的转速和所述变频压缩机的频率,以便有效保证所述吸风式空调器的制冷效果,进而有效提升用户体验;当然,本发明不对其他控制逻辑的控制方式作任何限制。
基于步骤S105的判断结果,如果所述控制器判断出散热构件131的温度与电控箱13的内部温度的差值等于所述预设差值,即散热构件131的温度与电控箱13的内部温度相近甚至相同,在此情形下,散热构件131从外部吸收的冷量与其正在传导的热量相当,一旦散热构件131的温度继续下降,散热构件131就将面临表面产生凝露的风险;因而执行步骤S106,即所述控制器控制室内风机12的转速增大且控制所述变频压缩机的频率不得增大,以使散热构件131的温度得以小幅提升,进而有效降低凝露风险。具体而言,控制所述变频压缩机的频率不得增大的方式具体为:当其他控制逻辑需要控制所述变频压缩机的频率增大时,所述控制器不下达增大指令,以便有效控制所述变频压缩机的频率不再增大,当然,控制所述变频压缩机的频率减小的控制逻辑可以正常执行。此外,需要说明的是,本发明不对室内风机12的转速的增大量作具体限制,技术人员可以根据实际情况自行设定;作为一种优选的调节方式,对于有极调节的室内风机12,控制室内风机12的转速提升一个档位。
进一步地,如果步骤S103和步骤S105的判断结果均为否,则说明散热构件131的温度与电控箱13的内部温度的差值小于所述预设差值,即散热构件131的温度小于电控箱13的内部温度,在此情形下,散热构件131以吸收外部冷量的换热过程为主,其从外部吸收的冷量大于其正在传导的热量,散热构件131正在面临凝露风险,执行步骤S107,即所述控制器控制室内风机12的转速增大且控制所述变频压缩机的频率降低,以便快速提升散热构件131的温度,从而有效避免散热构件131的表面产生凝露,进而有效避免设置在电控箱13中的电控模块出现短路甚至烧毁的问题。需要说明的是,本发明不对步骤S103和步骤S105的执行顺序作任何限制,技术人员可以根据实际情况自行调整,例如,也可以先执行步骤S105对应的判断条件再执行步骤S103对应的判断条件。这种有关具体执行顺序的调整并不偏离本发明的基本原理,属于本发明的保护范围。
作为一种优选控制方式,所述控制器控制室内风机12的转速增大预设转速且控制所述变频压缩机的频率降低预设频率,对于有极调节的室内风机12,所述预设转速为控制室内风机12的档位提升 一个档位时对应提升的转速,所述预设频率优选为10Hz;即,所述控制器控制室内风机12提升一个档位且控制所述变频压缩机的频率降低10Hz。当然,这仅是一种优选调节方式,但并不是限制性的,技术人员也可以根据实际使用需求自行调节。
在执行完步骤S107后,接着,在步骤S108中,经过所述预设时间后,所述控制器能够再次获取散热构件131的温度和电控箱13的内部温度,以便及时判断散热构件131的温度是否已经得到快速提升,从而最大程度地避免散热构件131的表面产生凝露的风险。在获取到散热构件131的温度和电控箱13的内部温度之后,再次执行S102,以便再一次对散热构件131产生凝露的风险进行全面分析,并根据分析结果执行相应步骤,进而有效保护电控模块的安全。需要说明的是,本发明不对所述预设时间的具体值作任何限制,技术人员可以根据实际使用需求自行设定;优选地,所述预设时间为5分钟,以便有效避免频繁操作所带来的能量损耗,进而在保护电控模块的同时,还能够有效兼顾所述吸风式空调器的换热效率。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不仅局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种吸风式空调器的控制方法,其特征在于,所述吸风式空调器包括相连的室内机和室外机,其中,所述室内机包括沿出风方向依次设置的室内换热器和室内风机以及设置在靠近所述室内风机一侧的电控箱,所述电控箱上设置有散热构件,所述室外机包括变频压缩机,所述控制方法包括:
    在所述空调器运行制冷工况的情形下,获取所述散热构件的温度和所述电控箱的内部温度;
    根据所述散热构件的温度和所述电控箱的内部温度,选择性地调节所述室内风机的转速和/或所述变频压缩机的频率。
  2. 根据权利要求1所述的控制方法,其特征在于,“根据所述散热构件的温度和所述电控箱的内部温度,选择性地调节所述室内风机的转速和/或所述变频压缩机的频率”的步骤具体包括:
    计算所述散热构件的温度与所述电控箱的内部温度的差值;
    将所述散热构件的温度与所述电控箱的内部温度的差值和预设差值进行比较;
    如果所述散热构件的温度与所述电控箱的内部温度的差值小于或等于所述预设差值,则选择性地调节所述室内风机的转速和/或所述变频压缩机的频率。
  3. 根据权利要求2所述的控制方法,其特征在于,“如果所述散热构件的温度与所述电控箱的内部温度的差值小于或等于所述预设差值,则选择性地调节所述室内风机的转速和/或所述变频压缩机的频率”的步骤具体包括:
    如果所述散热构件的温度与所述电控箱的内部温度的差值小于所述预设差值,则增大所述室内风机的转速且降低所述变频压缩机的频率。
  4. 根据权利要求3所述的控制方法,其特征在于,“增大所述室 内风机的转速且降低所述变频压缩机的频率”的步骤具体包括:
    使所述室内风机的转速增大预设转速且使所述变频压缩机的频率降低预设频率。
  5. 根据权利要求4所述的控制方法,其特征在于,所述预设频率为10Hz。
  6. 根据权利要求2所述的控制方法,其特征在于,“如果所述散热构件的温度与所述电控箱的内部温度的差值小于或等于所述预设差值,则选择性地调节所述室内风机的转速和/或所述变频压缩机的频率”的步骤还包括:
    如果所述散热构件的温度与所述电控箱的内部温度的差值等于所述预设差值,则增大所述室内风机的转速且控制所述变频压缩机的频率不得增大。
  7. 根据权利要求2所述的控制方法,其特征在于,所述控制方法还包括:
    如果所述散热构件的温度与所述电控箱的内部温度的差值大于所述预设差值,则不根据所述散热构件的温度和所述电控箱的内部温度调节所述室内风机的转速和所述变频压缩机的频率。
  8. 根据权利要求3至7中任一项所述的控制方法,其特征在于,所述预设差值为零。
  9. 根据权利要求3至7中任一项所述的控制方法,其特征在于,在执行“增大所述室内风机的转速且降低所述变频压缩机的频率”的步骤之后,所述控制方法还包括:
    经过预设时间后,再次获取所述散热构件的温度和所述电控箱的内部温度;
    根据再次获取到的所述散热构件的温度和所述电控箱的内部温度,选择性地调节所述室内风机的转速和/或所述变频压缩机的频率。
  10. 根据权利要求9所述的控制方法,其特征在于,所述预设时间为5分钟。
PCT/CN2021/099543 2020-10-30 2021-06-11 吸风式空调器的控制方法 WO2021233463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011196801.1A CN112303854B (zh) 2020-10-30 2020-10-30 吸风式空调器的控制方法
CN202011196801.1 2020-10-30

Publications (1)

Publication Number Publication Date
WO2021233463A1 true WO2021233463A1 (zh) 2021-11-25

Family

ID=74333401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099543 WO2021233463A1 (zh) 2020-10-30 2021-06-11 吸风式空调器的控制方法

Country Status (2)

Country Link
CN (1) CN112303854B (zh)
WO (1) WO2021233463A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023103366A1 (zh) * 2021-12-07 2023-06-15 青岛海尔空调器有限总公司 车载空调机组及其变频压缩机频率控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112303854B (zh) * 2020-10-30 2023-02-03 青岛海尔空调电子有限公司 吸风式空调器的控制方法
CN114056045B (zh) * 2021-11-15 2024-07-12 广东美的制冷设备有限公司 驻车空调器的控制方法、装置、空调器及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967027A (zh) * 2012-12-14 2013-03-13 四川长虹空调有限公司 变频热泵空调控制方法
JP5448390B2 (ja) * 2008-08-22 2014-03-19 東芝キヤリア株式会社 空気調和機
CN105783185A (zh) * 2016-03-04 2016-07-20 广东美的制冷设备有限公司 空调器防凝露控制方法及装置
CN107560007A (zh) * 2017-08-15 2018-01-09 广东美的暖通设备有限公司 空调系统及其冷媒散热管的防凝露控制方法和装置
CN110044032A (zh) * 2019-04-15 2019-07-23 广东美的制冷设备有限公司 空气调节装置的控制方法
CN110567137A (zh) * 2019-08-26 2019-12-13 青岛海尔空调电子有限公司 空调器及其送风控制方法
CN112303854A (zh) * 2020-10-30 2021-02-02 青岛海尔空调电子有限公司 吸风式空调器的控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013189020A1 (zh) * 2012-06-19 2013-12-27 海信科龙电器股份有限公司 一种空调器室外机
CN103363597B (zh) * 2013-07-26 2016-05-25 广东科龙空调器有限公司 一种空调器室外机
CN205105501U (zh) * 2015-09-30 2016-03-23 深圳市奥兰特机械有限公司 具有外部散热装置的温度控制设备电控箱
CN105605680B (zh) * 2016-02-01 2019-08-20 青岛海尔空调电子有限公司 空调器
US11441795B2 (en) * 2017-05-08 2022-09-13 Gd Midea Heating & Ventilating Equipment Co., Ltd. Electric control box for air conditioner and air conditioner with same
CN207585022U (zh) * 2017-06-28 2018-07-06 广东美的暖通设备有限公司 变频空调器的室内机和变频空调器
CN107940609A (zh) * 2017-11-06 2018-04-20 珠海格力电器股份有限公司 一种空调电控箱的散热组件、空调系统和控制方法
CN110131796A (zh) * 2019-05-20 2019-08-16 广东美的暖通设备有限公司 散热装置、空调器及其控制方法、计算机可读存储介质
CN110831402A (zh) * 2019-10-17 2020-02-21 珠海格力电器股份有限公司 一种电控箱的散热装置、电控箱及散热方法
CN111678199B (zh) * 2020-06-08 2024-03-19 珠海格力电器股份有限公司 具有防凝露功能的室内机、空调及室内机的控制方法
CN112074180B (zh) * 2020-10-10 2024-03-19 珠海格力电器股份有限公司 可调导流控制系统及其控制方法、热水机
CN114144051A (zh) * 2021-12-24 2022-03-04 珠海格力电器股份有限公司 电控箱的散热系统、散热控制方法及空调

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448390B2 (ja) * 2008-08-22 2014-03-19 東芝キヤリア株式会社 空気調和機
CN102967027A (zh) * 2012-12-14 2013-03-13 四川长虹空调有限公司 变频热泵空调控制方法
CN105783185A (zh) * 2016-03-04 2016-07-20 广东美的制冷设备有限公司 空调器防凝露控制方法及装置
CN107560007A (zh) * 2017-08-15 2018-01-09 广东美的暖通设备有限公司 空调系统及其冷媒散热管的防凝露控制方法和装置
CN110044032A (zh) * 2019-04-15 2019-07-23 广东美的制冷设备有限公司 空气调节装置的控制方法
CN110567137A (zh) * 2019-08-26 2019-12-13 青岛海尔空调电子有限公司 空调器及其送风控制方法
CN112303854A (zh) * 2020-10-30 2021-02-02 青岛海尔空调电子有限公司 吸风式空调器的控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023103366A1 (zh) * 2021-12-07 2023-06-15 青岛海尔空调器有限总公司 车载空调机组及其变频压缩机频率控制方法

Also Published As

Publication number Publication date
CN112303854A (zh) 2021-02-02
CN112303854B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2021233463A1 (zh) 吸风式空调器的控制方法
WO2021233468A1 (zh) 吸风式空调器的控制方法
WO2019149167A1 (zh) 一种空调散热结构控制方法及系统
JP5029913B2 (ja) 空調システム及びその制御方法
JP5984456B2 (ja) 熱源システムの制御装置、熱源システムの制御方法、熱源システム、電力調整ネットワークシステム、及び熱源機の制御装置
CN111351148A (zh) 一种电器盒散热组件、控制方法和空调器
JP5493813B2 (ja) 室外機、空気調和装置、空気調和装置の運転方法
CN104735954B (zh) 液冷式冷却器的控制方法、冷却装置及空调系统
CN107166563B (zh) 一种窗式空调及其电控散热方法
CN107027278A (zh) 一种空调及其控制器散热总成
US20200318849A1 (en) Air conditioning system and control method therof
JP5745337B2 (ja) 空気調和システム
CN113465044B (zh) 空调器室外机
CN113251501A (zh) 空调器室外机控制方法及空调器室外机
CN212005988U (zh) 一种电器盒散热组件和空调器
CN213983805U (zh) 一种室外空调器
CN112566464B (zh) 一种空调器
CN112594895B (zh) 一种外机温度智能调节控制方法及系统
JP2016161206A (ja) 冷凍装置の熱源ユニット
JP2015200433A (ja) 自然循環型の冷却システムおよび制御方法
JP2016161204A (ja) 冷凍装置の熱源ユニット
CN111397002A (zh) 一种控制器散热组件、控制方法和空调器
CN110285497A (zh) 空调器室外机及空调器控制方法
JP4594146B2 (ja) 空調システムの変風量最適制御方法
JP2006046838A (ja) インバータ式空気調和装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807895

Country of ref document: EP

Kind code of ref document: A1